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ABSTRACT

A number of qualitative properties of a first-order gradient
transport model for turbulent density-stratified flow is analyzed.
The dynamical stability of a statically stable shear flow is
considered to re—examine certain arguments found in the literature
which are in favour of the possibility of instability. Real flows
seem to be stable in the sense that in homogeneous turbulence sharp
interfaces do not arise spontaneously. Furthermore the development
of an interface between two homogeneous layers 1s dealt with, and is

found to be in line with the stability analysis and with experimental

evidence reported in the literature.



Report No. 80-2

The following reference should be added:

Linden, P.F., 1979: Mixing in stratified fluids,

Geophys. Astrophys. Fluid Dyn., 13, 3-23.



CONTENTS

ABSTRACT

I. INTRODUCTION

2. STABILITY OF TURBULENT, STRATIFIED SHEAR FLOW

2.1. Formulation of the problem
2.2. Linear stability analysis

2.3. Discussion

3. DEVELOPMENT OF THE INTERFACE BETWEEN TWO
HOMOGENEOUS LAYERS

3.1. Problem considered

3,2. Evolution of interface thicknesses du and Sb

3.3. Discussion

4, CONCLUSIONS

REFERENCES

NOTATION

APPENDIX — ANALYSIS OF EQUATIONS 3.13 TO 3.15

page

xR W

10
19

21

22

24

25







1. INTRODUCTION

Despite the rapid development of various higher-order turbulence
closure schemes of recent years, relatively simple gradient transport
models continue to be a useful tool for the computation of nearly
horizontal flows in which the turbulence is influenced by density
stratification. In these models the vertical transports of momentum
and buoyancy are assumed proportional to the vertical gradients of
mean horizontal velocity and mean buoyancy. It is common practice to
write the proportionality coefficients - eddy viscosity and eddy
diffusivity - as products of turbulence velocity and length scales,
both under neutral conditions, and a function of a local (gradient)
Richardson number to account for the damping effects of buoyancy.

A number of qualitative properties of a model of this type is
analyzed in this report. In section 2 the dynamical stability of
a statically stable shear flow (Couette flow) is considered to
critically re—examine certain arguments found in the literature which
are in favour of the possibility of instability. Section 3 deals with
the development of an interface between two homogeneous layers. The
results of this section are compared with those of section 2 and with

experimental evidence reported in the literature.




2, STABILITY OF TURBULENT, STRATIFIED SHEAR FLOW

2.1. Formulation of the problem

It is sometimes argued (Phillips, 1972; Posmentier, 1977) that a
turbulent density-stratified shear flow may become unstable because
an effective eddy diffusivity relating to the vertical buoyancy
transport (caused by differences in salinity or temperature, for
instance) would become negative under strongly stratified conditioms.
Both Phillips and Posmentier ignore the interaction between buoyancy
field and velocity field, and find that finestructure may develop

when the buoyancy field is dynamically unstable. The purpose of the

present analysis is to examine the influence of the interaction
between both fields on the stability of the flow. The approaches of
Phillips and Posmentier are included as special cases.

Consider a horizontally homogeneous shear flow (turbulent Couette
flow) in which the vertical turbulent transport may be modelled as
gradient transports. The mean horizontal momentum and buoyancy

equations then are

du 9 du

9t 3z (Km Bz) (2.1
5 _ 9 b

T (2.2)
where u is the mean horizontal velocity, b = ~g65/pr the mean

buoyancy, p.a reference density, 8p the deviation from P> 8 the
acceleration due to gravity, z the vertical co-ordinate, t time, and
Km and Kb are the eddy viscosity and eddy diffusivity.

Regarding the dependence of Km and Kb on the stratification,
two cases will be considered, namely a case where the vertical

length scale of the energy containing eddies is determined by




geometrical constraints (wall-affected turbulence, case I), and a case
where this length scale is determined by the density stratification
(free turbulence, case II). Case I resembles that considered by
Posmentier, case 1l is that analyzed by Phillips.

The assumed expressions are for case I

~
]

u 1 F(Ri) (2.3)

Kb u*lnG(Ri) (2.4)

and for case II (see Phillips)

K = ui N FRL) (2.5)

K, W N e(ri) (2.6)

Here u_ is a friction velocity, ln a mixing length under neutral

1/2 the local buoyancy frequency, and F and

conditions, N = (3b/5z)
G are functions representing the influence of the stability of the
flow as characterized by the local gradient Richardson number

Ri (RL > 0),

_ b du,-2 (2.7)

The functions F and G are positive and decrease as Ri increases
(dF/dRi and dG/dRi < 0). Explicit expressions for F and G will not
be given here, since these functions are different to determine
experimentally and moreover may differ somewhat from one situation

to another.

2.2, Linear stability analysis

The undisturbed buoyancy and velocity profiles are assumed to be




time-independent and (locally) linear functions of z; the turbulence
is (locally) homogeneous and stationary. Infinitesimal perturbations

au(z,t) and Bb(z,t) are introduced according to

a(z,t) UO + az + aulz,t) (2.8)

b(z,t) B, + Bz + Bb(z,t) (2.9)

where Uo’ BO, o and B are constants (B2 0); the coefficients o and 8
multiplying u and b have been introduced for the sake of convenience.
A possible dependence of the perturbations on a horizontal coordinate
is not considered.

Substituting (2.8) and (2.9) into (2.1), (2.2) and (2.7), and

linearizing yield as perturbation equations

2 2
du 5u 3%b
T R IR SR (2.10)
3z 3z
2 2
3b 3%y 5°b
3t - KZI 5 + KZZ S (2.11)
3z oz
where for case I (using (2.3) and (2.4))
= api mt sy
(F - 2R F')_ (Ri F')_
K = w1 (2.12)
b ot st
(2Ri G') (G + Ri G')
and for case II (using (2.5) and (2.6))
- 9Ri F! - Zri o
- (F 2Ri F )0 (2 F Ri F )0
(] = upw (2.13)
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Here subscript o denotes the undisturbed situation, Ri = Rio = B/oc2
and NO = 61/2. A prime denotes differentiation with respect to Ri.
Eqs. 2.10 and 2.11 show a linear interaction between buoyancy

field and velocity field.
A harmonic solution to (2.10) and (2.11) can be obtained in the

usual way by letting
u =1 exp (At + ikz) (2.14)

exp (At + ikz) (2.15)

o
]
T

where k is a real wave number, A a (possibly complex) frequency, and
U and g are constants. Stable solutions are obtained if Re A <0,
whereas Re A > 0 implies instability of the system. Substituting
(2.14) and (2.15) into the governing equations, two homogeneous,
algebraic equations in u and g are obtained. In order that these
(linear) equations be compatible the coefficient determinant must
vanish. Thus one arrives at a quadratic equation,

A2

(=" + K

A =
" + KZZ)(;EJ + (K”K22 KIZKZI) =0 (2.16)

In (2.16) the wave number k figures in the quotient A/k2 only.
Therefore, the stability boundary (Re x = 0), if any, does not depend

on k.

The conditions for stability (Re A < 0) following from (2.16) are

Kl] + K22 >0 (2.17)
and
K > 0 (2.18)




A simple physical analogy exists to illustrate these results.

Eliminating u, for instance, between (2.10) and (2.11) gives

2 3 4

3% 3”b 3'b _
e (RK.. + K + (K11K22 KIZKZI) —;Z~~ 0 (2.19)

)
ot H 22 Szzst 3

This equation describes the transverse oscillations of an elastic
bar. If b represents the transverse displacement of a material element
of the bar, the second term of (2.19) is proportional to the rate of
strain. It is a damping term provided (2.17) is satisfied. Eq. 2.18
is equivalent of the condition that the modulus of elasticity
(Young's modulus) be nonnegative.

Returning to the problem under consideration, the two cases I

and II are now discussed separately.

case 1

Using (2.12) conditions (2.17) and (2.18) may be written as (the

subscript o is dropped)

(2.20)

\%
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(2.21)

v
<o

a ¢ .
dRi (? Ri)

The ratio F/G = Prt is known as the turbulent Prandtl (or Schmidt)
number, Experimental evidence shows that under neutral conditions
F/G = 0.5 in plane jets and mixing layers, somewhat larger in other
free flows, and certainly larger in near-wall flows. Furthermore,
F/G increases with stability in free flows (e.g. Townsend, 1976,

p. 374; Turner, 1973, p. 161; Webster 1964). For stratified shear

flow it may therefore be assumed that

Prt > 0.5 (2.22)




Measurements also indicate that the expression (G/F)Ri increases with
Ri (additional references: Arya, 1972; Gartrell, 1979). On the
assumption of gradient transport it is equal to the flux Rirchardson
number (e.g. Turner, 1973, p. 133), which number is found to increase
with Ri in shear flow, also see McEwan (1980). It may therefore be

concluded that

d

G .

The experimental results (2.22) and (2.23) indicate that both (2.20)
and (2.21) are satisfied (2 - G/F = 2 - Pr;1 >0, F' <0,
(G/Fz)Ri = ((G/F)Ri)/F). Consequently, the flow will be stable.
Posmentier (1977) ignored the perturbation of the velocity field,
implicitly assuming that F (or Km) does not depend on Ri. Eq. 2.17
then becomes K22 > 0 indicating that instability would occur when
K22 = G + RiG"' = d(Ri G)/dRi < 0. Walters, Carey and Winter (1978)
also arrive at this conclusion, but state that the unstable case is
not an acceptable one. Condition 2.18 does not arise in Posmentier's
analysis. The differences from the results obtained here demonstrate

that the dependence of F on Ri must not be ignored, although in

certain cases this dependence may be weaker than that of G on Ri.

case I1
Using (2.13) conditions (2.17) and (2.18) may be written as

4

P IR

ERi) + (2-DGF-RiF) 20 (2.24)

(2.25)
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Condition (2.25) is always satisfied (F' < 0), and (2.22) and (2.23)
indicate that (2.24) is also satisfied. Again it may be concluded

that the flow is stable.




Phillips (1972) also considered the behaviour of K22 only. In

case II K22 is given by

=1 DS - Sy
K22 G+ RL G' = Ri IRE (R1%G) (2.26)

A

Phillips based his instability argument on the behaviour of the

1
expression d(Ri°G)/dRi.
2.3. Discussion

Summarizing it can be concluded that taking into account the
interaction between buoyancy field and velocity field through the
gradient Richardson number will lead to stable solutions, since
(2.22) and (2.23) are likely to be satisfied in real shear flows.
Therefore, the mathematical model represented by Eq. 2.1 through
2.7 does not predict finestructure, or a system of sheets and layers,
in initially homogeneous turbulence.

The dependent variables in the mathematical model are ensemble-
averaged quantities so far as turbulence is concerned. Since
turbulence itself is an instability phenomenon, the length scale of
any instability produced by the model must be larger, at least by
an order of magnitude, than that of the turbulence. Eq. 2.16 shows,
however, that a possible instability does not depend on the scale
(=k_1), that is, if the flow is unstable it is unstable at all
scales (in fact, the small scale disturbances then grow most
rapidly). If this point of view is correct, only such functions
F(Ri) and G(Ri) would be admissable that the stability conditions
2.17 and 2.18 are satisfied.

It must be kept in mind that the question under what conditions
the gradient transport model adequately describes the physics under-—

lying it has not been considered.




3. DEVELOPMENT OF THE INTERFACE BETWEEN TWO HOMOGENEOUS LAYERS

3.1.Problem considered

In section 2 the behaviour of small perturbations on a steady-
state situation, in which the profiles of both mean velocity u and
mean buoyancy b were linear, was analyzed. In this section a somewhat
different problem is considered, namely the development of an
interface or mixing layer between two homogeneous layers in a plane
Couette flow, see Fig. 3.1. The flow at the interface is assumed to
be turbulent. The homogeneous layers may be laminar or weakly
turbulent so that the turbulence at the interface is internally
generated. The overall Richardson number Ab h/Au2 is assumed to be
sufficiently large so that the thickness of the interface remains
less than the height, 2h, of the channel. Here 2Ab and 2Au are
the imposed differences in mean buoyancy and velocity between top and

bottom of the channel.
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Fig. 3.1 - Definition sketch of stratified Couette flow.

In section 3.2 the evolution of the maximum-slope thicknesses 26b
and 25u of the buoyancy and velocity profiles, respectively, is
examined on the basis of Eqs. 2.1, 2.2, 2.3, 2.4 and 2.7 {(case I
of section 2). An increasing thickness of the interface would

indicate diffusive behaviour corresponding with the stable solutions




discussed in section 2, whereas a decrease in thickness would lead to
the formation of a sharp interface also arising in the unstable
solutions obtained by Posmentier (1977). The results of this section
need not necessarily be identical to those of section 2, since the
initial buoyancy and velocity profiles are different and the
perturbations are finite.

Experiments relating to the problem considered are described by
Thorpe (1971, 1973) and Gartrell (1979), for instance. Also see the
review paper of Sherman, Imberger and Corcos (1978). These experiments
reveal that the Kelvin-Helmholtz instability of an initially sharp
interface between two homogeneous layers causes the rolling up of
the vortex sheet at the interface to form billows. The subsequent
breaking of the billows produces turbulence and thickening of the
interface., If no turbulence is generated externally (at a bottom,
for instance), the turbulence at the thickened interface collapses
after a certain time interval, and a laminar flow remains.

0f course, the mathematical model employed cannot reproduce the
billow structure of the flow. At best it can predict the mean-flow
quantities ;, B, and transports of buoyancy and momentum as

functions of position (z) and time.

3,2. Evolution of interface thicknesses éu and 6b

It is assumed that the mixing length, ln, for homogeneous flow in
(2.3) and (2.4) is proportional to the (time-dependent) thickness of

the interface and does not depend on z. A possible inhomogeneity of

* . . .
The case where 1n is proportional to the height, 2h, of the channel
gives similar results, and would apply to externally generated

turbulence.




the turbulence is thus caused by the stratification through the
functions F(Ri) and G(Ri). Experimental evidence indicates that in

general 6u and §. are different. The mixing length 1n is, rather

b
arbitrarily, assumed proportional to Su. The shear flow velocity

u, is taken to be proportional to Au. Egs. 2.1 to 2.4 then become

du _ 9 ... du
g =k bu s~ [F(RL) 2 (3.1)
3 _ 3 .. b
E = k Au (Su EE [G(Rl) 5; (32)

where k is a proportionality constant. It seems reasonable to assume
that the u and b profiles are antisymmetric and of similar shape
when scaled with 6 and §,_, respectively. Therefore, the following

u b

Taylor series expansions with respect to z=0 are attempted:

T = Au [g——%(%ﬁ+...] (3.3)
u u

b = b [-g—~igl(-§—)3+...} (3.4)
b b

where ¢ is an unknown factor (¢ > 0), which may be a function of
time., The measurements of Gartrell (1979) suggest that both velocity
and buoyancy profiles are self-similar at all instants*. In that
case ¢ 1s a positive constant.

Substituting (3.3) and (3.4) into (2.7) gives the gradient

Richardson number, Ri, as

o 1.2 2 1
Ri = Rlo [] + 5 bz (—§~' — )+ ..:] (3.5)
§ éb ~

where Rio is the value of Ri at z=0,

Owing to the upstream boundary conditions the profiles observed

by Gartrell were not exactly antisymmetric.




52
Rlo = 5 (3.6)

Au db

Eq. 3.5 shows that Ri is maximal at z=0 if SU > éb/Z, and minimal
if 6u < 6b/2. Substituting (3.3), (3.4) and (3.5) into the governing

equations 3.1 and 3.2 gives

ds$

1 u 3 122 1 .
gz i + k Au 6u - {{%o + 5 ¢z ( 5 2) FO Rlo
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where F' = dF/dRi and FO = F(Rio). Similar definitions apply to

function G. Equating in both equations the coefficient of z to zero

yields
ds F
k Au 8 ¢ ° % 8 8
u u b u
ds G
‘ —2 s ri G-l - 2= (3.8)
kaus 8 ¢ dt S Ny
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The unknown function ¢ = ¢(t) may be absorbed in the time variable

by introducing a new time variable, ts according to

t
t1 =/ ¢(t") dt' (3.9)
0
The time variable £ increases as t increases, since ¢ is positive.
Egs. 3.7 and 3.8 then become

1 d(Su 2 1 F0
e + F' Ri (___, - __._) - —— =0 (3.10)
K Au 62 dtI o o) 52 62 62
u u b u
ds G
1 dtb+Gc'> Ri_ (2_2__L2_)__§_=0 (3.11)
k Au 6u6b i Su 6b 6b

Introducing dimensionless variables y, x and 1 according to

6u = y(Auz/Ab)
5, = x(4u’/Ab) (3.12)
t. = 1(Au/(kAb)

changes (3.6), (3.10) and (3.11) to the following second-order
system for the dimensionless interface thicknesses y and x as

functions of dimensionless time T (the subscript o is dropped)

Z_Z+ F'Rl (%__1.2_) _E.2_= 0 (3.]3)

y y S y

% tos (2 1 .G _

o O'RL (yz X2> 7 0 (3.14)
2

Ri = L- (3.15)
X




where ¥ = dy/dt and % = dx/dt.

Egs. 3.13 to 3.15 could be integrated, in general numerically,
if explicit expressions for the functions F and G, and initial
conditions (y(0) and x(0)) are given. For the present purpose,
namely to answer the question whether a sharp interface can develop,
numerical integration is not necessary. Instead, the equations are
examined analytically in the Appendix to obtain an understanding
of the behaviour of the solutions to (3.13) to (3.15).

Regarding the functions F and G the inequalities 2.22 and 2.23
are adopted., Furthermore the assumption is made that a critical
Richardson number, Ric’ exists beyond which turbulence disappears

so that F and G then vanish,
F=G=0 if Ri > Ri (3.16)

The results are conveniently presented in a phase plane
(x,y-plane) by conceiving of the functions y = y(1) and x = x(1)
as a parameter representation (with the time variable T as a
parameter) of y as a function of x. Fig. 3.2 shows the phase plane
in the case where the turbulent Prandtl number, Prt = F/G is less
than two for all Ri < Ric' The direction in which the trajectories
are travelled can be indicated, since ¢ is positive so that T
increases as t increases. In Fig. 3.3 it is assumed that Prt
becomes larger than two beyond a certain value of Ri < RiC

Both Fig. 3.2 and Fig. 3.3 show that, according to the theory,
a decrease in the thickness of the interface is possible only if
the initial maximum-slope thickness of the mean velocity profile
(y) is relatively large when compared with that of the mean
buoyancy profile (x). The mechanism described by Posmentier (1977)
then is dominating (see case 2 of Appendix). The phase planes
show, however, that the erosion process comes to an end at a certain

instant. Afterwards x and, somewhat later, y increase until the
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Pig. 3.2 - Schematic of phase plane showing the relationship between
v and %, Prt < 2. The arrows indicate the direction in

which the trajectories ave travelled as time elapses.

critical value, Ric, of the gradient Richardson number at z=0
is reached. The turbulence then has collapsed and a laminar inter-
face remains. It is notable that this state is reached whatever
the initial conditions.

In the case of Fig. 3.2 (Prt < 2) the final value of the ratio
y/x is less than v2 indicating that Ri then attains a minimum at
z=0 (Eq. 3.5). Collapse of the turbulence then would tend to
occur latest at z=0. In free shear flows Prt may be larger than
two when Ri -+ Ric. Gartrell (1979, Fig. 6.2.41), for instance, plots
flux Richardson numbers, Rf, against Ri. His observations suggest

that the ratio Ri/Rf is about 2.3 at large Ri, although the
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Ri=Ric

! J
0 — X Ri,

Fig. 3.3 — Schematic of phase plane showing the relationship

between y and x, Pr, > 2 when Ri - Ric.

experimental scatter is large. This would indicate that also

Prt = 2,3 at large Ri, also see the comment following (2.22).

If Prt > 2, solutions exist for which y/x goes to V2 when Ri tends
to Ric (Fig. 3.3). Egs. 3.5 shows that Ri then is approximately
independent of z. For small Ri Appendix I gives

y/x = [}Prt)Ri=dl £,

Gartrell (1979, Fig., 6.2.7) observed y/x = 1 at Ri = 0 up to
y/x = 1.6 at Ri = Ric. The critical Richardson number, Ric, is
given as 0.25 to 0,3; a slight increase in Ri was observed after
collapse of the turbulence, however. This value of Ric agrees with
that observed by Thorpe (1973).

Eqs. 3.13 to 3.15 can be integrated analytically in two special




cases where Prt is constant. In one case it is equal to one
(G(Ri) = F(Ri)), in the other it is equal to two (G(Ri) = 5 F(R1).

These two cases will be discussed briefly.

This case would apply to wall-affected turbulence (Arya, 1972).
The solution of (3.13) to (3.15) for an initially sharp interface
then is
y = x =Ri if Pr. = F/G = 1 (3.17)
Eq. 3.13, or 3.14, then becomes
y+ yF'(y) - F(y) =0 (3.18)
If it is assumed, for example, that (Fig. 3.4)
PR = (1 - 592, 0 < Ri < Ri_ (3.19)
the solution of (3.18) becomes

y = x = Ri = Ri_ tanh ﬁii— (3.20)
C

by Eq. 3.19.

—sRi

Fig. 3.4 - Function F as given




Pr =2
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For Prt = 2 within a certain range of Ri values, a special solution

of (3.13) to (3.15) is

y = x/2 = Ri/V2 if Pr, = F/G =2 (3.21)
At relatively large Ri this solution agrees better with Gartrell's

experimental results than (3.17). Eq. 3.13, or 3.14, now becomes
y - F(y/2) =0 (3.22)

Together with the expression for the function F given by (3.19),

(3.22) gives on integration (y(0) = 0)

y = x/2 = Ri/V2 = T;-T—;%-ﬁc (3.23)
The final state (Ri = Ric) now 1s approached more gradually.

Fig. 3.5 shows the evolution of Ri as given by (3.20) and (3.23)
for RiC = 0.3, k = 0.1 (see Eqs. 3.1 and 3.2) and ¢ = 2 = constant
(see Egs. 3.3 and 3.4). The assumed value for k is based on
observations in a neutrally stratified mixing layer. The value of ¢
is that for tanh-profiles, Fig. 3.5 also shows observations of
Gartrell (1979, Fig. 6.2.8). To transform the development as a
function of distance (as in Gartrell's experiments) to a development

as a function of time, it was assumed that

|

+
I 2

G2
&

where X, is the horizontal distance from a boundary, and Gl and GZ

are horizontal velocities in upper and lower layers as defined by

Gartrell. Fig ., 3.5 indicates a reasonable agreement between theory




and experiments, which, however, is due partly to the particular

choice of Ric, k and ¢.
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Fig. 3.5 = Evolution of Ri as a function of time.

3.3. Discussion

The results of this section differ somewhat from those obtained
in section 2 in that, according to the mathematical model examined,
erosion of the interface (X < 0) may occur for certain (rather
special) initial conditions. However, the erosion process comes to
an end within a finite time interval. Afterwards the thickness of the
interface starts to increase. In the final situation, which is
approached asymptotically, the Richardson number has become so large
that the turbulence collapses. The interface is than thicker than it
was initially. Thus a stable behaviour is found again. It may be
noted here that persistent erosion may occur in highly inhomogeneous

flows where turbulence is continuously produced by a local source. An
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example 1s the development of a mixed layer caused by wind action on
a stratified water body. Mellor and Strub (1980), for instance, adopt
the gradient—transport concept and show that under certain conditions
the velocity and buoyancy profiles remain self-similar during the
erosion process. Yet the mean flow then cannot be termed unstable.
The mathematical model seems to correctly describe, at least
qualitatively, the overall features of a developing mixing layer
at an initially sharp interface. This may be a somewhat unexpected
result in particular so far as the initial phase is concerned, since
the rolling up of the vortex layer related to the Kelvin-Helmholtz
instability mechanism produces well-defined structures (billows).
If the homogeneous layers are laminar, turbulence does not come
about until the billows break. Apparently, exact knowledge about the
structures of the flow is not necessary in the case considered to
predict mean-flow quantities, For quantitative agreement, however,
mathematical models of the type examined have the well-known draw-—
back that tuning to experimental results by introducing adjustable

constants 1s unavoidable.
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4, CONCLUSTIONS

Some qualitative properties of a relatively simple gradient
transport model for turbulent, stratified flow were analyzed.
Particular attention was devoted to the dynamical stability of
statically stable flow. It was found that shear flow is likely to
be stable, since stability conditions 2.21 and 2.22 seem to be
satisfied in real flows. This result contradicts certain suggestions
found in the literature, also see Linden (1979) and McEwan (1980) .
Moreover a more fundamental objection against imstability concerning
mean—-flow variables can be raised (section 2.3).

In a flow which is stable in the sense examined herein, sharp
interfaces will not develop spontaneously if the turbulence is
homogeneous. It was shown in section 3 that an interface between two
homogeneous layers may tend to sharpen for rather special initial
conditions. The process is only temporary, however. The interface
starts to thicken after a finite time interval, and finally the
turbulence collapses. Certain results for a developing mixing layer
are in reasonable agreement with the experiments of Gartrell (1979).

The relevance of the gradient-transport concept from a physical
point of view was not discussed. Woods (1977), for instance, gives
an account of the objections to this concept in the case of

stratified flow in the ocean.
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buoyancy

functions representing the damping caused by stratification
acceleration due to gravity

depth of layer

wave number, constant

diffusivity matrix

eddy viscosity and eddy diffusivity
mixing length

buoyancy frequency

turbulent Prandtl number

gradient Richardson number

critical value of Ri

time variable

shear velocity

dimensionless maximum—slope thicknesses of buoyancy and
velocity profiles

vertical coordinate, positive in upward direction
constants

velocity and buoyancy differences

maximum—slope thicknesses of velocity and buoyancy profiles
frequency

density

dimensionless time variable

time function

neutral conditions

undisturbed situation, value at z=0

mean value

differentiation
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APPENDIX - ANALYSIS OF EQUATIONS 3.13 TO 3.15
The phase planes in Figs. 3.2 and 3.3 representing the solution
of Egs. 3.13 to 3.15, are based on the analysis of the following

special cases.

1. The case where Ri is small

Egqs. 3.13 and 3.14 become

§ = F(0) = 0

Integrating these equations gives

y(0) + F(O)t (A1)

y (1)

x(T) [?(0)2 + 2y(0) G(0)T + F(0) G(0) TZI% (A.2)

Eqs. A.l and A.2 show that the gradient Richardson number,
Ri = yz/x, increases with time when T is sufficiently large.
Consequently, (A.1) and (A.2) do no longer hold good after a certain
initial period.

If x(0) = y(0) = 0 (initially sharp interface), (A.1) and (A.2)

give

1 |
y _ [FO)* _ :
Pl [‘m:} = I:G?rt)Ri:Oj[ (A.3)

2., The case where y >> X

Neglecting in (3,14) the term Z[yz with respect to l/x2 gives
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% = % (RiG' + G) = %—(Ric)’ (A.4)

which is equivalent to Posmentier's (1977) criterion: erosion

(%X < 0) occurs if (RiG)' < 0. The time derivative of Ri becomes, with
the same neglect in (3.13),

. .. 2
Ri = Ri(2 % - % « - Ri y—2 (RiG' + G - 2RiF' - 2 % ) (A.5)
x y

R’

The last term in (A.5) is negligible, since y >> x. This equation

may then be written as

Ri oy g9 & = Sy (= RiF
RT = XZ L, I (Ri F) + (2 F)( RiF') (A.6)
The inequalities 2.22 and 2.23 indicate that Ri is negative.

This result implies that if (RiG)' and % are negative, they are
temporary so, since (RiG)' in Eq. A.4 becomes positive at smaller

values of Ri.

3. The case where y < xV2

Eqs. 3.13 and 3.14 show that both y and % are positive if

y < x/2. If y = x¥/2 at a certain instant, then

=2 (A7)
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The slope of a trajectory in the phase plane is less (greater)

than 72, if Pr. <2 (»2).

4, The case where ¥ = 0 at a certain instant

Eq. 3.13 gives with y = 0
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vy 2 F

EA = JE S .

G* = 2 + (A.8)
Eq. A.8 shows that y/x > V2. For a large class of functions, F tends
more rapid to zero than its first derivative when Ri » Ric. In that
case ¥ = 0 at y/x ~ 2 when Ri - Ric.

Eqs. A.8 and 3.14 give, after some manipulatiom,

r_1_F S (ri —-) (A.9)
F

According to (2.23) % is positive. A steady-state situation
(kx =y = 0) therefore does not exist when Ri < Ric. Since

R1

x__%
e === (A.10)

< fie

the time derivative of Ri is negative.

5. The case where X = 0 at a certain instant

Eq. 3.14 gives with % = 0
yi2 _ 2RiG' _ 2RiG'__ ., 26
@ T GwieT ~ (RiG)” NEHON (A.11)

Eq. A.11 shows that % can be zero only if (RiG)' < 0, consequently
at relatively large Ri. In that case y/x > V2, and y/x > V2, when
Ri - RiC for the class of functions mentioned in case 4. Egs. A.ll

and 3.13 give

3
. F d
v TﬁIESTAde (Ri ) (A.12)
Inequality 2.23 and the fact that (RiG)' < 0 in this case show that v

is negative. As a consequence, Ri is also negative.









