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Abstract

Hybrid propulsion is a promising technology to reduce the environmental footprint of the vessel. It
combines the use of mechanical and electrical propulsion, as such, it is able to operate efficiently at
a multitude of operational setpoints. Hybrid power supply uses two or more types of power sources
to provide electrical power to the propulsive system. For instance, power supply combinations such
a battery and diesel generator-sets are quite common. The combination of the hybrid power supply
allows for the efficient use of the diesel generator-sets. An energy management system is required to
effectively operate the complex systems of hybrid propulsion and hybrid power supply systems. For
that reason, in this research an energy management system is developed for a hybrid propulsion and
hybrid power supply vessel. The EMS is developed through a case study of the Holland-class offshore
patrol vessel. The EMS consists of three main pillars, namely, the powertrain model, shaft power
forecasting model, and the controller. The forecasting model predicts the shaft power, and provides
reference values for the controller over a control horizon.

Four shaft power forecasting models were developed in the course of this research. The method-
ologies of linear regression, moving average, ARIMA and RNN were applied. The linear regression
model is able to predict accurately for up to 18 seconds, showing a MAPE of 4.25%. The moving av-
erage improved on the performance of the linear regression model and is able to accurately predict 27
seconds in the future, with a MAPE of 4.67%. In order to capture the variance of the shaft power an
ARIMA model was applied also. However, due to occasional divergence of the ARIMA model it proved
an unreliable prediction tool for the purpose of shaft power prediction. It was only able to accurately
predict the shaft power for 3 seconds in the future with a MAPE of 3.28%. The RNN is able to predict the
shaft power 48 seconds in the future while maintaining a MAPE of 4.78%. Unfortunately, a prediction
horizon of 48 seconds is not enough for the purpose of an energy management system. To effectively
make use of the hybrid power supply, medium to long-term predictions are required; in the order of
minutes to hours.

The energy management system is optimization-based using an equivalent consumption minimiza-
tion strategy (ECMS). The designed controller is able to incorporate the use of the battery as an equiva-
lent fuel consumption (ESFC) in the optimization problem. The controller correctly provides the system
with an optimal power split between induction machine and diesel engines (Hybrid propulsion). Itis also
able to find an optimal split for the hybrid power supply; between the battery and the diesel generator-
sets. Additionally, through constraints on the SOC between 20% and 80% the battery is operating at
a favourable setpoint, which could prolong battery life. Four simulation studies were performed in the
research to test and compare the effectiveness of the EMS. (1) Optimization at every timestep. (2)
Triggered optimization, when a significant change (5%) occurs in SOC or shaft power demand. (3)
Non-causal optimization for a prediction horizon of 48 seconds with 3 timesteps in the prediction hori-
zon. (4) Optimization for a prediction horizon of 48 seconds with 3 timesteps in the prediction horizon,
using RNN predicted shaft power reference values. The total fuel consumption and SOC trajectories
of the 4 simulations are almost identical. Energy fuel reduction could not be proven. Given the param-
eters of the case study this is not surprising: (a) There is limited data availability leading to short-term
predictions, and (b) a small battery capacity, leading to limited usefulness of the hybrid power sup-
ply system. With a simulation, reduction of 0.77% of total energy consumption was achieved with the
implementation of a 400 kW battery compared to a no-battery scenario.

Keywords Energy management system - Propulsion control - Hybrid vehicles - Marine systems - Hybrid
energy supply
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Introduction

1.1. Background

At present, ocean shipping facilitates 80% of the transportation of global trade [1]. The shipping industry
is only expected to grow, and this development is naturally paired by a multitude of environmental
problems. The increased carbon and nitrogen oxides (NO,) emissions resulting from the increased
shipping demand is one of these problems [2]. In fact, the shipping industry is one of the fastest growing
industries with regard to greenhouse gas emissions [3]. To combat the ever-increasing emissions,
regulations have been put in place and are expected to become more stringent over time. Currently,
there are restrictions on the weighted cycle NO, emissions for diesel engines with an output of more
than 130 kW [4]. In future, it is expected that there will not only be restrictions on engine specific N0,
emissions but on NO, emissions per mile also [5]. Additionally, new ships are expected to adhere to
a specific Energy Efficiency Design Index (EEDI) [4]. This index is a measure of CO2 emissions of a
cargo vessel per mile or per tonne of goods. Given these restrictions as well as the increasing price of
energy, it is imperative that the propulsion and power generation plants of ships have ways of reducing
fuel consumption and emissions.

Hybrid propulsion is a promising technology to reduce the environmental footprint of a vessel. It
involves the combined use of mechanical and electrical propulsion, such as the combination of diesel
engines and induction machines [4]. It is primarily used in ships with operating profiles that present
power demand peaks followed by periods of low loading [6]. The benefit of such a system is that the two
types of propulsion can compensate for each other’s respective weaknesses. For instance, mechanical
propulsion is particularly efficient when operating close to rated speed. Moreover, it consists of only
three power conversion stages, the main engine, the gearbox (torque and speed conversion) and the
propeller, leading to low conversion losses. However, at lower operating speeds mechanical propulsion
is far less efficient. Additionally, during increased accelerations there is a high NO, emission profile [5].
Also, dynamic loading can effect the required maintenance frequency of the engine. Electric propulsion,
on the other hand, is particularly effective for vessels with diverse operating loads. However, the power
conversion of electric propulsion is less efficient due to the increased number of conversion stages [4].
So in a hybrid propulsion system, a direct mechanical drive can provide propulsion at high speeds and
high efficiencies. And at lower speeds and part load, the electric drive takes over. Typical propulsion
layouts are depicted below in Figure 1.1. In these layouts the variable speed motors that are not in-line
with a propeller serve other mission-critical purposes and can be considered an auxiliary load.

1



2023.MME.8764 1. Introduction
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Figure 1.1: Overview of typical propulsion system layouts: (a) Mechanical propulsion system, (b) Electrical propulsion system,
and (c) Hybrid propulsion system. Images retrieved from [4].

Besides hybrid propulsion there is also hybrid power supply. With a hybrid power supply a com-
bination of two types of power sources can provide electrical power to the propulsive system. Most
commonly a combination of diesel generators and energy storage systems such as a battery is used.
The battery is charged and discharged in a manner that allows the diesel generator to operate at a more
efficient operating point. Generally this means that (a) the battery is charged when a diesel generator
has low load, in order to push it to higher loads which are generally more efficient. Or (b) the battery
is discharged when it allows the idling of the diesel generator. Consequently, this lowers specific fuel
consumption (sfc), as well as emissions [7]. Additionally, the battery can enable load levelling and peak
shaving, by taking over the power fluctuations and delivering power during high power demand periods.
This results in a more levelled loading of the engines, while maintaining a more efficient operating point.
The challenges of a hybrid power supply lie in the complexity of the control strategies and recovering
investments costs of the batteries [4]. Typical propulsion layouts with hybrid power supply are depicted
below in Figure 1.2.

To effectively operate the complex system of a combined hybrid propulsion and hybrid power supply
system, an energy management system (EMS) is required. An EMS finds favourable setpoints for the
diesel engines, diesel generators, electric drives and battery in order to reduce fuel consumption and
emissions. The complexity originates from the number of degrees of freedom that the system has: the
diesel generators set points, main engines set points, induction machines set points and battery set
point. These components are also linked directly and indirectly, which is described mathematically in
detail in section 7.2. The objective of the EMS is to find an optimal split between the mechanical and
electric drive, to find an optimal power split between power sources, and to minimize fuel consumption.
Closely related to the EMS are the power management system (PMS) and the battery management
system (BMS). The PMS has the job of ensuring power availability, as well as load levelling of the
engines, and peak shaving. The goal of the BMS is to keep the battery within a safe operating region
in terms of voltage, current, and temperature during charging, and discharging [1]. As will be evident
later, in section 7.2, some goals of the PMS and BMS can also be partially performed by the controller
of the EMS. Currently, few energy management systems have been developed for a system of hybrid
propulsion & hybrid power supply (HPHPS) for the maritime domain, of which an overview is given in
chapter 2.

More advanced EMSs also take into account receding horizon control. A receding horizon control
problem takes into account setpoints in the future, over a prediction horizon, and additionally how each

2
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Figure 1.2: Overview of two typical propulsion system layouts with hybrid power supply: (a) Electrical propulsion system, (b)
Hybrid propulsion system. Images retrieved from [4].

set point in each timestep effects the overall outcome. In order to further improve EMSs that optimize
over a receding horizon, one can employ load forecasting. Load forecasting schemes anticipate future
load demand, based on historical data of the load demand. By anticipating the load over a receding
horizon, leveraging data driven load predictions, a controller can find optimal solutions accordingly. An
overview of data driven load forecasting methods is given in chapter 2.

The focus of this master thesis project is to develop a novel energy management system leveraging
a receding horizon principle and with load forecasting. As well as to implement this system to a case
study in a simulated environment, and evaluate the outcome to a benchmark performance. The case
study in this project is the Holland-class offshore patrol vessel (HCOPV). Damen naval, one of the
stakeholders of the project, has supplied data on this vessel, as well as powertrain models. It is also
in their interest to study this particular case. The case study details are elaborated in chapter 3. It
should be noted that the HCOPV is not a ship with hybrid power supply. However, for the purpose of
this project the ship model of the HCOPV will be augmented with a battery, to make the model have a
hybrid power supply system. In this manner, an EMS can be developed for a HPHPS system.

1.2. Research goal and research questions

The research goal of this project is to prescribe an efficient energy management system for vessels
with hybrid propulsion and hybrid power supply, applied to a case study of the Holland-class offshore
patrol vessel.

In order to achieve this energy management system, first the overall strategy of the EMS should be
determined. The strategies are discussed in the literature review in chapter 2, where an overview
of available strategies is given such as heuristic, optimization-based and learning based strategies.
Secondly, more specific design features of the EMS can be developed such as a controller. To achieve
the research goal, the following research questions, noted below, have been composed.

1. What is an effective energy management strategy for a hybrid propulsion & hybrid energy sup-
ply marine vessel, that is able to reduce energy consumption & emissions and prescribe power
allocation in real-time?
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(a) What are the state-of-the-art energy management strategies that have been developed for
electric or hybrid propulsion & hybrid energy supply marine or ground vessels?

(b) What are suitable key performance indicators (KPIs) for the evaluation of an energy man-
agement strategy?

2. What is an appropriate powertrain description of the Holland-class offshore patrol vessel that is
augmented with a battery?

(a) What are the components of the powertrain of the Holland-class offshore patrol vessel, how
are they connected, and how would a battery be connected to the powertrain?

(b) What features of the components should be modelled in order to obtain an accurate numer-
ical description of the complete powertrain behaviour, while also providing enough informa-
tion for the KPIs?

3. What is an effective data driven model for power load forecasting with a prediction horizon of two
minutes while maintaining high levels of accuracy, given the data set of the Holland-class offshore
patrol vessel?

(a) What are the state-of-the-art data-driven methods currently employed for power load fore-
casting, and which is the most effective in terms of accuracy and prediction horizon?

(b) Which data attributes should be included in input space X, and which data cleaning and
preparation steps are required for the provided data set?

(c) What are the relevant hyperparameters for the selected data-driven method, and what are
their optimal settings, evaluated with model selection criteria of k-fold cross-validation and
MSE?

(d) What is the performance of the model evaluated with MAE, MSE, R?, and sSMAPE, and their
respective confidence intervals? How does the model performance compare to state-of-the-
art data driven methods for power load prediction?*

4. What is an effective controller design given the selected energy management strategy (RQ1),
powertrain model (RQ2), and data-driven power load forecasting model (RQ3), that is able to
reduce energy consumption & emissions and prescribe power allocation in real-time?

(a) What should be the input vector X , output vector ¥y, control vector @ and disturbance vector
d of the system?

(b) What is an objective function for the controller that is able to a) find an optimal power split
between mechanical and electric drive, b) find an optimal split between diesel generators
and battery, and c) reduce energy consumption?

(c) What are appropriate constraints for the states, outputs, control variables, and disturbances
of the system, with respect to accomplishing EMS goals and KPI performance?

(d) What is the performance of the model evaluated with selected KPI (RQ1.3)?

* The metrics mentioned here are discussed in detail in chapter 6. The metrics have been selected
based on common practise for forecasting problems.

1.3. Contributions

This report presents an overview of the state-of-the-art of energy management strategies for hybrid
power supply marine vessel systems. Additionally, the research provides a novel energy manage-
ment approach for the application of hybrid propulsion and hybrid power supply systems; Namely the
combination of an optimal control-based controller and data-driven load forecasting. An overview of
currently available methods compared to the novelty of this research is shown in chapter 2. The main
contributions of this report, summarized, are:

+ A state-of-the-art overview of energy management strategies for HPHPS systems, in chapter 2.
» Implementation and evaluation of various load prediction methods, in chapter 6.

* A novel optimization-based controller with a receding horizon principle leveraging predicted load
demand, in chapter 7.
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1.4. Outline

This paper is organised as follows: chapter 2 shows the findings of the literature review. Case related
information about the Holland-class offshore patrol vessel, and the data provided by Damen are dis-
cussed in chapter 3. An overview of the methodology is provided in chapter 4. A complete account
of the methodology is given in subsequent chapters for the powertrain model, power load forecasting
model and the controller respectively. Powertrain model is described in chapter 5, the power load fore-
casting models in chapter 6, and the energy management system & controller description, in chapter 7.
The results of implementation of the EMS are presented in chapter 8. Finally, chapter 9 summarises
the conclusions of the report and provides suggestions for future work. A graphical representation of
the structure of the report is presented below in Figure 1.3.

Chapter 2 Literature review Research question 1
Chapter 3 Case related information
Methodology
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Experimental results & .
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Figure 1.3: Graphical representation of the structure of the report.



Literature review

In this chapter the results to research question 1 are presented. A literature review is given that shows
the state-of-the-art in energy management systems that have been developed for electric or hybrid
propulsion & hybrid energy supply vehicles. Secondly, suitable key performance indicators are identi-
fied for the evaluation of an energy management strategy. For convenience the research question is
restated here.

Research question 1: "What is an effective energy management strategy for a hybrid propulsion &
hybrid energy supply marine vessel, that is able to reduce energy consumption & emissions and
prescribe power allocation in real-time?”

(a) What are the state-of-the-art energy management strategies that have been developed for electric
or hybrid propulsion & hybrid energy supply marine or ground vessels?

(b) What are suitable key performance indicators (KPIs) for the evaluation of an energy management
strategy?

Research question 2a is answered below, in the related work sections. Question 2b is answered in
the subsequent section. As a conclusion to the chapter the main research question is answered.

2.1. Related works

In this section the state-of-the-art methods for energy management systems are discussed as well as
the strengths and limitations of more prominent methods. In [4] the various powertrain topologies of
ships are classified, as well as the control strategies employed for these respective topologies. These
different topologies are all the combinations between mechanical and electric drive, coupled with var-
ious types of power supply. Some of these topologies have already been shown in Figure 1.1 and
Figure 1.2. The control strategies of relevance to this project are the EMSs that have been devel-
oped for topologies with hybrid power supplies. These developed control strategies can be classified
as heuristic control strategies or optimization-based control strategy [8]. Among the more popular
optimization-based control strategies in the maritime sector are equivalent consumption minimiza-
tion strategy (ECMS), and power management through operating load estimation [4, 9-11]. Within
optimization-based control strategies there is online and offline optimization. Online optimization in-
volves a controller that is causal and is often computationally fast enough to facilitate real-time opti-
mization outputs. Causality implies the controller only uses information that is available at each time
step. Offline optimization, or global optimization, are controllers that are not operated in real-time [12].
Within offline optimization there are also non-causal control strategies that require the detailed knowl-
edge of the future driving conditions. These controllers are not considered here, as they require specific
knowledge on operational conditions and in practise that is rarily the case [12]. Non-causal controllers
can serve as a good benchmark for online controllers however, since the non-causality ensures that
an optimal solution can be found over the whole period of an operational profile. Other relevant control
strategies discussed in this section are learning-based energy management strategies.
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2.1.1. Heuristic control

Heuristic control uses logical rules to determine the operating modes of the vessel and energy system.
Heuristic control often uses two guiding principles [12]. The first principle of heuristic strategies is that
in hybrid vehicles the main engine should only be used when its efficiency is relatively high; For less
favorable situations the electric motors should take over and the main engine should be turned off.
Often, also the engines are running at a higher load than operator demanded power, in order to run the
engine at a more favorable set point. The additional power is used to charge the battery. The second
principle of heuristic control of an EMS is that the state of charge of the battery stays within a predefined
bound. Therefore, when the state of charge is relatively high, the EMS will aim to discharge the battery,
and when the state of charge is relatively low, the EMS will aim to charge the battery. Note that there
are more facets to heuristic control and energy management systems, but only the ones relevant to the
project are mentioned here.

Two common implementation approaches for heuristic control are the map-based and rule-based
approaches. In the map-based approach [13—-15], the output setpoints of the EMS are determined by
mapped control set points for different speeds and torque request points by the operator. In this map
different regions are established that will warrant different behaviours. In Figure 2.1, an example of a
map is shown. In this example for a region of u = 0 corresponds to the use of the main engine alone,
u = 1 is electric mode. The other regions are combined use of the main engine and electric motor to
charge or discharge to battery. Different maps can be established for a high and low state of charge
as well. In some other methods [16—18], these map regions are not rigid and can instead be defined
using other methodology such as fuzzy logic.

T

O<u<l

Figure 2.1: Typical map-based heuristic energy-management strategy for a hybrid electric vehicle. Image retrieved from [12].

Various articles have presented implementation of rule-based controllers. Forinstance, [19] presents
a control strategy that uses the batteries at low speeds for propulsion rather than the engine, and at
higher speeds the battery can electrically assist the engine. The article shows that the strategy is
able to reduce fuel consumption, and that these savings are proportional to the battery capacity. In
[20], ECMS, rule-based logic and reinforcement learning are compared in terms of appropriateness for
real-time implementation in an automotive setting. The rule-based controller outperformed the other
methods in computational time. However, higher fuel saving were achieved by the other methods when
the operational profile of the vehicle is not known.

2.1.2. Online optimization-based control
Optimization-based control uses a performance index J, that is either minimized or maximised. The
most common an simplest performance index is the fuel mass consumed over a period of time:
tr
min | = my(u(t))dt, (2.1)
0

where 1 (u(t)) is the fuel mass, as a function of the control output u(t). Rather than just taking
into account the fuel mass consumption in the performance index, pollutants can also be incorporated
[21, 22].
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More advanced optimization-based control allow for the incorporation of a battery in the performance
index. In the Equivalent Consumption Minimisation Strategy (ECMS), an optimal control problem is
formulated that minimises the fuel consumption of the engine and the equivalent fuel consumption of the
battery. This means that an equivalent fuel consumption cost function has to be designed for the use of
the battery. [9] proves the effectiveness of ECMS as an EMS in automotive industry, as it outperformed
heuristic control. This control method performs particularly well compared to other strategies when the
operating profile is not known beforehand. Fuel savings of up to 10% were shown in [10] while using the
ECMS strategy compared to rule-based logic. In [11], 6% fuel savings were achieved in a simulation
study of a tugboat, with unknown load demand. ECMS methods do not necessarily operate in real-time,
it is partially dependant on the solvers, and complexity of the problem whether it is possible to apply
the method online. The relative simplicity of a ground vehicle with only a single generator and motor,
has made some of these approaches more feasible in the automotive industry in real-time. Whereas
the maritime applications often involve more engines and more complex inter-relations between them,
leading to more difficult control problems.

In order to further improve the performance of an optimization-based controller, for unknown oper-
ating profiles, is to incorporate load predictions. Load predictions are methods that anticipate future
load demand based on historical load demand data. For instance [23], shows that a 9% improvement
on the cost function performance compared to the rule-based control of [19] can be achieved by pre-
dicting the load. In [24], power load prediction is implemented in conjunction with a multi-level model
predictive control (MPC) scheme. First a wavelet transform splits the signal in low and high frequen-
cies. Secondly, separately for the low and high frequencies, and consequently short- and long-term,
an MPC controller minimizes fuel consumption and ensures power availability. The reference values
of the MPCs are obtained by prediction. Unfortunately, the article does not disclose the exact method
of prediction. It does, however, show an improved performance with the load prediction compared to
classic MPC without load prediction.

At this point it is important to be aware of the effect of time scales in predictions. There are short-
term predictions in the order of a few seconds. Medium-term predictions in the order of minutes and
long-term in the order of an hour or longer. The farther predictions can be made in the future, the
more the optimizer can leverage future knowledge to obtain reduced fuel use over a prediction horizon.
Short-term trends can often be identified and predicted reasonable accurate, where-as long-term trends
are difficult. For this reason [24] designed the two-level MPC; To have accurate short-term predictions
and control, combined with capturing a less accurate but broader trend of power consumption in the
long-term. [25] also uses MPC to account for future power demand, while also taking into account en-
vironmental disturbances and uncertainties. Various machine learning prediction methodologies have
not yet been applied in an EMS framework for the application of a ship. Depending of the methodology
of prediction and control, load forecasting schemes are not necessarily real-time methods.

2.1.3. Offline optimization-based control

Offline optimization-based control methods are often global optimization (GO) methods that are not fast
enough to be implemented in real-time, or they utilize future knowledge in the present (non-causal).
One such method is presented in [26], where the fuel consumption of the engines is predicted rather
than the load demand, using a neural network. Based on the predicted fuel consumption an appro-
priate course of action over the prediction horizon can be computed. In [27] a combination of fuzzy
logic and optimal control is used. The fuzzy logic provides a set of operational constraint to which the
energy management system is to adhere. The optimal control minimizes for fuel consumption using
quantum particle swarm optimization (QPSO). This method proved more efficient than classic heuristic
control. Other GO control methods include particle swarm optimization (PSO) [28], simulated anneal-
ing algorithm (SAA) [29], genetic algorithm (GA) [30], differential evolution algorithm (DEA) [31], and
ant colony optimization algorithm (ACOA) [32]. The ACOA method was combined with ECMS, and
showed a reduction of fuel usage of 12.1% compared to a reduction of 6.9% achieved by rule-based
control in the same simulation.

2.1.4. Learning based EMS

In [33], a combination of ECMS and rule-based logic is used in order to generate data and train a neural
network. The paper proved the methodology is feasible but does not compare the performance to a
benchmark. The employment of a neural network is an attempt to perform the lengthy optimization

8
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of optimal control offline, in order to operate a more computationally cheap trained machine learning
model in real-time. [34] and [35] apply this idea to hybrid vehicle power control and diesel engine
air path control. They successfully show that computationally heavy non-linear MPC and dynamic
programming (DP), can be replaced by training machine learning models such as neural networks.

2.2. Key performance indicators

Research question 1b: "What are suitable key performance indicators (KPIs) for the evaluation of an
energy management strategy?” will be answered here. In [4] a list of performance criteria is given for
powertrains, namely:

1. Fuel consumption;

Emissions;

Radiated noise;

Propulsion availability;

Maneuverability;

Comfort due to minimal noise, vibrations, and smell

maintenance cost due to engine thermal and mechanical loading; and

© N o g bk~ w N

Purchase cost.

The criteria purchase cost, maintenance cost, comfort, and maneuverability are design- and operation-
related considerations and will therefore not be selected as KPIs for the energy management system.
Radiated noise is a relevant EMS KPI as the controller could opt for the electric drive when low noise
operations are required. However, given the scope of the project they will not be selected as a KPI.
Propulsion availability can be guaranteed through constraints that ensure the required power will be
delivered by the main engines and induction machines. Propulsion availability is therefore a KPI that is
selected. Note, that theoretical availability does not represent accurate reliability of propulsion availabil-
ity. The main KPIs that are selected for this project is fuel consumption and emissions. The controller in
this project will minimize for fuel consumption. It is assumed that with reduced fuel consumption comes
reduced emissions. More specific performance indexes to reduce pollutants are not considered.

2.3. Conclusion

Of all the methods mentioned in this literature review very few have been specifically applied for hybrid
propulsion & hybrid energy supply (HPHPS) systems [1, 11, 19]. [1] presents an EMS for a hybrid
energy supply leveraging power load forecasting, however, hybrid propulsion was not considered.[19]
does consider a HPHPS system but only for optimal powertrain design purposes, and not for an en-
ergy management system. [11] considers an optimization-based controller for a HPHPS system using
ECMS. However, the method did not leverage power load forecasting to further enhance the perfor-
mance of the EMS. Therefore, what is currently missing is the implementation and evaluation of a
state-of-the-art energy management systems for HPHPS systems leveraging power load forecasting;
More specifically, an online optimization-based control method. Given the excellent performance of
these load predicting optimization-based control algorithms, it is worth exploring their effectiveness for
HPHPS systems.

Finally, to answer research question 1: Optimization-based control has proven to outperform heuris-
tic methods in the reduction of energy consumption and emissions. Additionally, the method is more
adaptive when operating profiles are unknown or not well-defined. This makes the method more widely
useful, and prevents the need to redefine sets of rules in heuristic control for ship specific behaviour.
Whether optimization-based control can be used in real-time depends on the optimizer and the com-
plexity of the internal models of the controller. The optimization-based method that stands out is the
ECMS. The ECMS methods have proven to handle the complexity of the models well and can provide
real-time optimization with reducing the fuel consumption. Finally, the ECMS also allows for the incor-
poration of the battery through a equivalent specific fuel consumption (ESFC), which is very useful in

9
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the HPHPS system. This ESFC describes the battery as a resource with a particular cost depending
of the amount of power consumed or discharged. Therefore, because of its strong performance as
well as the capability to incorporate the battery in the fuel minimization problem, the ECMS is selected
as the energy management strategy. The addition of power load forecasting can further increase the
performance of the controller, as more accurate predicted future states, lead to better control outputs
by the controller when optimizing over a control horizon. Therefore, the energy management strategy
used in this project will be an optimization-based controller leveraging the ECMS scheme, as well as
a load prediction model, evaluated with the following KPls: fuel consumption, emissions, and propul-
sion availability. The details of the controller will be discussed in chapter 7, and the load predictions in
chapter 6.

10



Case related information

In this chapter the information relating to the case to be studied is discussed. First, the Holland-class
offshore patrol vessel (HCOPV) is described and its powertrain. The engines and battery specifications
are mentioned also. Secondly, the data shared by Damen naval is described, processed and evaluated
for predictive value. Because the case-specific information directly effects the selection of methods of
the research, it is discussed prior to the methodology.

3.1. Holland-class offshore patrol vessel

The Holland-class offshore patrol vessel is a sea-going patrol vessel constructed for the Royal Nether-
lands Navy. "They are designed to fulfill patrol and intervention tasks against lightly armed opponents,
such as pirates and smugglers, but have much higher level electronic and radar surveillance capabil-
ities which are used for military stabilization and security roles, short of outright war” [36]. The vessel
can viewed below in Figure 3.1.

Figure 3.1: Holland-class offshore patrol vessel of the Royal Netherlands Navy. Image retrieved from [37].

The propulsion system is made up of two diesel engines and two electric motors. The diesel engines

11
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are 4-stroke diesel engines with a power of 5400 kW each, with a rated speed of 1000 rpm. The electric
motors have a power of 400 kW each. The gears combine a diesel engine and a electric motor to drive
a controllable pitch propeller on each of the two shafts. The vessel has 3 generator sets of 968 kW
each and one emergency generator set of 255 kW, combining for a total of 4 [38]. The system has
various hotel loads such as air-conditioning, lights, and water-cooling systems, these auxiliary loads
are assumed to be constant. The size of the auxiliary loads are not described in the public domain,
and will therefore not be states here. The selected battery pack has a capacity of 400 kWh, and allows
1c charging and discharging, therefore, the maximum power the battery can deliver is 400 kW. An
overview of the power ratings of the components is given in Table 3.1
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Figure 3.2: Powertrain of the Holland-class offshore patrol vessel, augmented with a battery.

Given the description above of the powertrain components the powertrain can be visualized as pre-
sented in Figure 3.2. The emergency generator set has been excluded, as in the energy management
system it is not to be relied on as a readily available resource. The battery supplies energy to the bus,
and conversely, can receive energy as well. A transformer is used to connect the electric circuit to the
electric network of auxiliary load.

Component Power rating [kW] Amount
Main engine 5400 2
Diesel-generator set 968 3
Induction machine 400 2
Battery pack 400 1
Emergency generator-set 255 1

Table 3.1: Overview of power ratings of powertrain components

3.2. Data description

Data is provided for four different offshore patrol vessels (OPVs). There are 6 data features in the time
series data set, shown below in Table 3.2.
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X  Data description

x; Percentage available power main engine starboard
x, Percentage available power main engine portside
x3 Power of induction machine starboard in [kW]

x, Power of induction machine portside in [kW]

x5 Main engine shaft speed starboard in [rpm]

x¢ Main engine shaft speed portside in [rpm]

Table 3.2: Data features of the shared data set.

The total shaft power demand, and predicted total shaft power demand is the data feature that the
controller needs in order to allocate set points for the engines effectively. However, as is evident from
the table above this data is not directly available; It can be computed with the available data features
though. Data features x; and x, can be used in conjunction with the main engine fuel efficiency map,
example shown in Figure 7.1. This provides the main engine power, x, and xg for starboard and
portside respectively as a time series. The total shaft power for starboard and portside are respectively
X9 = X7 + x5 and x;y = xg + x4.

Data features x4 and x;, are additive compositions of x,, x,, x3 and x,. The individual power of
induction machines and main engines are not interesting to the controller, since the power split is one
of the decisions to be made by the controller and therefore should not be provided through data. These
four data features also do not capture trends that aren’t already captured by x4 and x,,. Therefore, the
data features x,, x,, x3 and x, do not hold additional predictive power compared to x4 and x4, and for
that reason they are not included in the prediction models in this project.

The operational profile of the vessel speed x;;, which is an operator set point, can be deduced
based on main engines shaft speed x5 and x4,. Therefore, x;; is the scaled version of x5 and x,
between 0-100%. The extrapolated data features are presented in Table 3.3. How these data features
are used will be discussed in chapter 6.

X Data description

x;  Main engine power starboard in [kW]
xg  Main engine power portside in [kW]
xq  Total shaft power starboard in [kW]
x1o Total shaft power portside in [kW]
x11  Vessel speed set point in [%]

Table 3.3: Extrapolated data features.

3.3. Operational profiles

From the available data 8 operational profiles are composed, shown in Figure 3.3. Note that the num-
bers have been removed from the axes since the data is confidential. There are 2 operational profiles
per offshore patrol vessel. The operational profiles have been selected at random days, and are all
around 2 hours in length. These operational profiles should sufficiently represent the power profiles,
and power needs of the Holland-class offshore patrol vessels for the purposes of this project. These
profiles are selected to show a variety in vessel, season of operation and electric- or hybrid operating
modes. To smooth out some of the erratic variances in the data, which is due to disturbances like
measurement noise, a moving average of order 15 has been applied. The order was selected with to
smooth out the profile, while retaining significant power changes in the operational profiles. These op-
erational profiles will be used in the forecasting methods in chapter 6, as well as showing the behaviour
of the controller in chapter 7.
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Figure 3.3: Operational profiles

It can be noted that the profiles show many flat spots, indication a stable shaft power demand. These
flat spots are followed up by sudden shifts in power demand.
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Methodology

The summarized methodology of the research is described in this chapter, for reader convenience.
A complete description of the methodology is described in subsequent chapters. The methodology
of the research can be represented by the three pillars that make up the energy management strat-
egy: the powertrain model, power load forecasting model, and the optimization based controller. The
relationship between these respective components is graphically shown in Figure 4.1.
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System description
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Figure 4.1: Overview of relationship between the controller, power prediction model and powertrain model.

The information that is known at the start of an iteration is the operator setpoint for the shaft power,
P, (k). This shaft power is used as a starting point since it is one of the few data features available.
This data is shown graphically in Figure 3.3. Based on the shaft power setpoint the operator setpoint
for the vessel speed, v,.:(k), is assumed. It is assumed that the setpoints of shaft power and vessel
speed are proportional. For instance, when 100% of the available shaft power is demanded, the vessel
speed setpoint is also assumed at 100%. Based on the vessel speed setpoint the speed setpoints for

the diesel engines, n2Z (k), and induction machines, n!¥,, are inferred.
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For the diesel engines the speed setpoint is assumed proportional to the vessel speed and shaft
power. For the induction machine the speed setpoint is assumed stationary at rated speed. Rated
speed is assumed here, since not enough information is available to make a more informed assumption.
The assumption of proportionality of the speed setpoint for the induction machine to the vessel speed,
leads to limited power availability by the induction machine, and is therefore not preferred here. This
occurs because the power of the induction machine is speed dependant, as shown in Equation 7.2.
The available efficiency map of the induction machine shows that for induction machine speed in range
[0, n-qteq] the available torque is equal for all speeds. Additionally, the efficiency curves obtained for
different speed settings are similar. Therefore, although not optimal, the lack of a variable induction
machine setpoint should not have a diminishing effect on the results of the energy management system.

The physical system is described by a powertrain model of the Holland-class offshore patrol vessel.
The full description is given in chapter 5. This powertrain model is a mathematical representation
that shows the dynamics of the components of the powertrain of the ship. The models chosen are
selected based on availability, and accuracy. The models are made available in an adaptive pitch
control framework, the framework is presented in [11, 39]. To operate this framework multiple controllers
are required to maintain setpoints for the engines and motors and propeller pitch. It is outside the time
limits and scope of this project to use this full model to evaluate the novel energy management strategy
developed in this research as it would involve re-tuning multiple controllers. Instead, in this project the
powertrain model is used in order generate synthetic data. The set of synthetic data features, X;, is
used by data driven load prediction methods. These will be described later.

The controller is an optimization-based control tool. It uses reduced models of the powertrain in
order to evaluate which set of decision variables will work best in order to minimize fuel consumption.
The simplified models that represent the powertrain dynamics within the controller will from now on
be referred to as the internal model of the controller. The internal model of the controller has the
purpose of modelling the relationship between power, torque and and specific fuel consumption of
diesel engines, diesel generators and induction machines. Additionally, an artificial fuel consumption
model is established for the battery. Based on the internal model of the controller, the optimizer is able
to find a set point for the engines and battery. Based on defined constraints, these are feasible set
points, that fall within the operating envelopes of the engines. The internal model of the controller is
defined in detail in section 7.1. The speed setpoints for the induction machines and diesel engines, as
well as the measurement variables, y(k), are used as input by the controller. The output is a set of
decision variables , 1 (k), that minimizes fuel consumption of a prediction horizon with N steps.

To evaluate the output of the controller a reduced model of the powertrain model is used. In fact this
model is the same as the internal model of the controller. The full powertrain model could not be used
here, since in order to operate this full model multiple extra controllers for pitch control, engine control
and induction machine control are required. Due to time constraints and the scope of the project, this is
not possible to implement. Therefore, the reduced model is used to evaluate the output and recorded
the measurement variables y (k).

The data-driven load prediction tool uses historical data on the shaft power, X,, to predict future
shaft power demand. In this research project, unfortunately, very few data features are available.
Consequently, univariate prediction methods are used. These methods use a single data feature to
predict a single data feature in the future. In this case past shaft power is used to predict future shaft
power. In order to improve on the performance of these univariate prediction methods, synthetic data
is also computed, using the full powertrain model, and used to train a recurrent neural network (RNN).
This RNN uses as input not only the historical data on the shaft power, X,, but also measurement
variables provided by the powertrain model X;. The total input space for the RNN is X = X; U X,.
The output to the prediction tools are reference values for the expected shaft power demand over a
prediction horizon with N steps. The reference values are denoted by X,..r. The reference values are
used by the controller to make decisions over the prediction horizon.

For each of the three components of the energy management system, (1) Powertrain model, (2)
Load forecasting tool, and (3) Controller, a brief description is given on the methods used, and the
reasoning behind using these methods. The details on the implementation of the methods is discussed
in subsequent chapters, as well as the results.
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4.1. Powertrain model

The powertrain model is an extensive model that aims to represent the behaviour of the ships powertrain
accurately. It is outside the scope of this project, to model this powertrain, since the purpose of the
project is to design a controller and a load forecasting model. Thankfully, TU Delft and Damen Naval
have an accurate powertrain model available. An overview of the powertrain component models are
listed in Table 4.1. Descriptions of the models can be found in chapter 5. The model calibration and
validation can be found in [11], and will not be restated here.

Component Model

Diesel Engine Mean value first principle model
Induction Machine Dq equivalent circuit
Frequency converter Modelled as a power loss
Battery 2nd order RC equivalent circuit
Auxiliary loads Constant power load

Diesel generator set  Synchronous generator per-phase equivalent circuit
Propeller 4-quadrant open water diagram
Gearbox & shaft Modelled as torque loss

Hull dynamics Single DoF surge model

Wave model Wave model at propeller centre

Table 4.1: Overview of selected powertrain component models.

4.2. Power load forecasting model

As mentioned before, the shared data set of the Holland-class patrol vessel has very few data features.
The scarcity of data features implies that many state-of-the-art forecasting models will not be feasible.
Therefore, first some univariate forecasting methods will be used, namely: Linear regression, moving
averaging, and ARIMA. Linear regression and moving average methods are easy to implement, and
have a short computation time. Given the shape of the operational profiles - which show many flat
spots, followed by sudden large shifts in power - these methods can be a good prediction tool for short-
term predictions; in the order of seconds. In order to implement a bit more advanced methods and to
capture short-term variance the Auto-Regressive Integrated Moving Average (ARIMA) model is also
used. ARIMA models are one of the most widely used approaches to time series forecasting [40].
ARIMA models aim to describe the auto-correlations in the data. Therefore, it is an appropriate choice
for univariate load predictions. ARIMA models combine the use of an auto-regression model with a
moving average model. The ARIMA model can still only predict the load demand in the short-term.

Using the powertrain model, some synthetic data is generated for a selection of data features,
described in Table 4.2. The procedure of establishing the synthetic data is explained in section 6.5.
Using the synthetic data, the state-of-the-art method recurrent neural network (RNN) with long-short-
term-memory(LSTM) can be applied. The RNN model is selected since it has proven to have excellent
predictive capabilities in a multitude of fields. In the maritime domain the method is used for instance,
for ship position estimations [41, 42], non-parametric modeling of ship maneuvering motion [43], as
well as pitch, heave and roll motion predictions [44, 45].

RNN can predict in the short- and medium-term; order of seconds and minutes. However, it is
greatly dependant on the quality of the data that is used for training the neural network. Since the
shaft power data is real data containing measurement noise and uncertainty, as well as large and
inconsistent variances, it can be deduced that RNN will only produce accurate prediction results for
short-term predictions. Since the synthetic data is a product of the real data, the synthetic data will also
contain these variances.
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X; Data description

X1, Main engine shaft speed in [rpm]
x13 Pitch ratio

x14 Propeller torque M, in [Nm]

x15  Propeller thrust T, in [N]

x16 Vessel speed vg in [knots]

Table 4.2: Generated data features, and input space X .

Figure 4.1 shows that the output of the data driven load prediction model should be a set of reference
values for the total shaft power demand over prediction horizon with N steps. In order to achieve these
predictions the load prediction model is provided with input space X = X; UX,. The stored shaft power
values are represented by X, and the synthetic data features are represented by X;. This implies only
the RNN will be using the output of the powertrain model as input to make predictions on the shaft
power. The other methods are univariate regression methods that only use X,.

4.3. Controller

The controller uses an internal model, which describes the relationship between torque, power and
specific fuel consumption of the main engines, diesel-generator sets and induction machines using
fuel efficiency maps. The battery is described using an equivalent fuel consumption map, which is
constructed based on the diesel-generator fuel curve, and then fine-tuned based on simulations and
control parameters. This fine-tuning is required in order to get the desired optimization behaviour,
and battery usage; by incentivizing and disincentivizing battery charging and discharging at the right
moments. A full account of the procedure is given in section 6.5 and section 7.3.

Since the controller uses an equivalent fuel consumption for the battery the optimization problem is
an equivalent consumption minimization strategy (ECMS). The objective function of an ECMS is simply
the summation of the sources of fuel consumption, as can be seen below. The objective function is
subject to system dynamics, constraints, and boundary conditions. The operating envelopes of the
engines maps are also constraints. The objective function is:

N 2 3
min J = (Z g () + )iy, () + mf,BATUc)) (4.1)
u(k) , 4
k=1 ‘i=1 i=1

with N the prediction horizon, k the discrete step-size, my pg, (k) the fuel consumption rate of the
diesel engine i, ms p¢, (k) the fuel consumption rate of the diesel-generator set i and s g4 (k) the
equivalent fuel consumption rate of the battery. The summation of the fuel consumption rates is taken
at each timestep until the maximum prediction horizon step N is reached. A full account of constraints,
system dynamics described, and internal model of the controller is presented in chapter 7.
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Powertrain Model

In this chapter the results to research question 2 are presented, regarding the powertrain model. For
convenience the research question is restated here.

Research question 2: What is an appropriate powertrain description of the Holland-class offshore
patrol vessel that is augmented with a battery?

(a) What are the components of the powertrain of the Holland-class offshore patrol vessel, how are
they connected, and how would a battery be connected to the powertrain?

(b) What features of the components should be modelled in order to obtain an accurate numerical
description of the complete powertrain behaviour, while also providing enough information for the
KPIs?

The answer to research question 2a is the powertrain overview given in section 3.1. Question 2b is
answered in the following section.

5.1. Powertrain models

The powertrain model is an extensive model that aims to represent the behaviour of the ships pow-
ertrain accurately. It is outside the scope of this project, to model this powertrain, since the purpose
of the project is to design a controller and a load forecasting model. Thankfully, TU Delft and Damen
Naval have an accurate powertrain model available. An overview of the powertrain component models
are listed in Table 5.1. Descriptions of the models can be found in subsequent sections. The model
calibration and validation can be found in [11], and will not be restated here.

Component Model

Diesel Engine Mean value first principle model
Induction Machine Dq equivalent circuit
Frequency converter Modelled as a power loss
Battery 2nd order RC equivalent circuit
Auxiliary loads Constant power load

Diesel generator set  Synchronous generator per-phase equivalent circuit
Propeller 4-quadrant open water diagram
Gearbox & shaft Modelled as torque loss

Hull dynamics Single DoF surge model

Wave model Wave model at propeller centre

Table 5.1: Overview of selected powertrain component models.

19



2023.MME.8764 5. Powertrain Model

5.1.1. Main diesel engine

For the main diesel engines a mean value first principle model is used. The method is proposed and
validated with Factory Acceptance Test (FAT) and Sea Acceptance Trial (SAT) data in [39]. The diesel
engine model is graphically presented in Figure 5.1. The model is directly taken from [39], it consists
of the following sub-models: fuel pump, air swallow, heat release, Seiliger cycle, exhaust receiver and
turbocharger, and mechanical conversion. The interested reader may refer to [39], for the mathematical
description of the model. For the purpose of this project, the model provides more information than is
required on the dynamic behaviour of the engine. However, due to the availability of the model it has
been selected.

My, M | Exhaust

receiver and
mq, Mg turbocharger,
> Te DAE P1
| » (28)-(29)
Fue
Kot mg 23 | Seiliger | Ps (33)-(37)
5 pump, > Mo EAE > (43)
AE (1) Air mi | Heat cvee
5 9341 (12)-(13)
swallow, release,
P1 AE AL oA |9 Wi
(12-(13) (4)-9) | Mechanical
Ne > conversion |
AE (44)-(46) >
My, Ne .

Figure 5.1: Schematic presentation of the diesel engine model and the interaction between its subsystems. Image retrieved
from [39].

5.1.2. Induction machine

For the induction machines, a state space model based on [46] is used, which is a dq equivalent circuit
of an induction machine with an arbritrary rotating reference frame, shown in Figure 5.2. The interested
reader may refer to [11], for the implementation and mathematical description of the model. The model
has been selected for its accurate representation of the induction machine behaviour as well as the
availability of the model. Just as the diesel engine model, the induction machine model provides more
information than is required on the dynamic behaviour of the engine, for the purposes of this project.
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Figure 5.2: Dq equivalent circuit of an induction machine in an arbitrary rotating reference frame. Image retrieved from [11].

5.1.3. Diesel generator set

The electrical network dynamics are not considered in this study as they do not effect the fuel con-
sumption [47]. Therefore, simplified diesel generator set models are used, namely, a steady-state
model based on the synchronous generator per-phase equivalent circuit. In [11], the mathematical
description of the model can be found, for the interested reader.

Xg Iy 1

—E
s \/ \\/ \\/ Y ;’\\ ;/'\_\ ja'\\ 5
\ / \/ / \\._f
+
+
\'f—\\ \]
N7 Uy

Figure 5.3: Synchronous generator per-phase equivalent circuit. Image retrieved from [11].

5.1.4. Frequency converter model

The power losses of the frequency converters can be estimated using an empirical relationship, the
method is proposed in [48]. The polynomial loss equation Py, |,ss (t) With fitted parameters a,b and ¢
is as follows:

Pfc, loss (t) = Pfc,nom (1 - nfc,nom) (a + bi;c(t) + Cilfcz (t)) (51)

Pt (t) = Pimel + Ptc, loss » (5.2)

where ¢ nom iS an efficiency measure of the frequency converter and Py, ¢ is the electrical power of
the induction machine.
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5.1.5. Battery model

The battery is modelled as a second-order RC equivalent circuit. This model provides a good trade-off
between accuracy and model complexity [49]. In the model the parameters are all functions of the state
of charge, as can be seen from Equation 5.3, Equation 5.4, and Equation 5.5. ug, is the open circuit
voltage in V, ¢; the capacitors in F, r; the resistors in Ohm. V = (v;..v4), @;; € R**2, and B; ; € R**?,
are the model’s parameters that are constant.

rs r r

y C1 (6) +

ul/ )

<+> /f [
T Uoc U (75) Uy

Figure 5.4: 2nd order RC equivalent circuit of a battery. Image retrieved from [11].

The model description is as follows [50, 51]:

Uoc (SOC (1)) = v,e7¥250CM 4y + 1,50C(t) + vsSOC?(t) + vSOC3 (L) (5.3)
1, (SOC(Y)) = aj,e”%250¢®O 4+, i=1,2,3 (5.4)
¢ (SOC(D) = e Fizs0CO 1 g5, i=1,2 (5.5)

The circuit behaviour is described as follows:

d o w® @

() = et T 1,2 (5.6)
2

(6 = to(6) = ) wi(6) = Tainar (0 (5.7)
i=1

For this research project, measurement inaccuracies have been neglected, therefore, Ah counting is
used to estimate SOC, as follows:

t .
SOC(t) = SOC (ty) + f _hba® (5.8)

to Qbat

5.1.6. Auxiliary loads model

In this study we assume the auxiliary loads to be constant, while in reality these might fluctuate. The
relationship between auxiliary load power P,,,,, and the auxiliary current i ,,, for the 3-phase electrical
network is described by [11]:

Pux () = 3ug ®)iqux (t)COS(fp), (5.9)

where f, is a power factor, and u, the per-phase voltage.
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5.1.7. Propeller model

The propeller model is used to give the relationship between the thrust, torque and propeller speed.
The 4-quadrant open water diagram is used to model this relationship. This diagram gives the relation-
ship between the hydrodynamic pitch angle B, the propeller torque M,, in Nm, and torque and thrust
coefficient respectively Cr and C,. The propeller thrust T,, in N, can be computed as follows [52]:

B(t) = arctan va—(t) (5.10)
0.77n, (£)D, ‘
v (t) = (1 = fu) vs(t) (5.11)
S cr®) (1-1t,) —— (5.12)
2P (va(t) + (O.77rnp (t)Dp) ) ZDp
My(t) = Co® (5.13)

e (VE(O) + (0.77m,, (t)Dp)Z) D3

5.1.8. Gearbox and shaft-line model

[39] proposes to use values at the propeller curve and generator line to predict the gearbox losses
across the full gearbox. The gearbox torque loss in Nm, M; . and resulting gearbox output torque
My, also in Nm, can be represented by:

ne(t) M, (t)
Ml(t) = Mlnom (agb + bgb ne + Cgb Me ) (514)
€nom €nom
P
tom = (5.15)
Pnom
Mgb(t) = Me(t)igb — M, (), (5.16)

where agp,, by, and cg;, are the gearbox loss function parameters, P, is the nominal gearbox loss
powerin Wandn,  isthe nominal gearbox output shaft speed and also the nominal propeller speed
in rev/s. These function parameters can be extrapolated from manufacturer data or from a thermal
network model presented in [53].

The shaft-line losses can be modelled with a linear loss percentage, namely the shaft-line efficiency
ns1, on the output torque of the gearbox. This is a constant. The relationship is represented by:

Mg (t) = nslMgb(t)' (5.17)

where My, are the shaft-line losses in Nm. The equations of motion for the coupled gearbox, shaft-line,
and propeller is described by:

dnp(t) — Mgb(t) - Msl(t) - Mp(t)
dt 2mf;

(5.18)

It =]ei;b +]gb + /s +]p + Jew, (5.19)

where J; is the total moment of inertia of the shaft and all connected rotating equipment in kgmz. Jgb>
Jes Js1» Jp @and J,, are the moments of inertia of the gearbox, diesel engine, shaft-line, propeller, and

entrained water respectively, all in kgmz.
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5.1.9. Hull dynamics

The chosen hull dynamics model is a single degree of freedom model in the surge direction. The model
provides an estimate of the relationship between hull resistance R, in N and vessel speed v, in knots.
The resistance of the ship is estimated using empirical methods such as towing tank tests. In this
project the resistance will be found using a look-up table, that is also used in [39]. The equation of
motion in the single DoF of the ship is represented by:

Ry (vs(t))
dvs(t) (ka”(t)_ 1—Sft )

dt m ’

(5.20)

where f; is the thrust deduction factor, k,, is the number of propellers, T, is the propeller thrust, and m
is the ships mass in kg.

5.1.10. Wave model

Waves can cause significant disturbances on the loading of diesel engines when a ship sails in high
sea states [39], therefore, it is important to model the waves. The selected model considers the wave
speed at the propeller centre, as follows [54]:

vy () = (we*w? sin ((—kvs — w) t), (5.21)
k= 2 5.22
w = ?' ( . )

where w is the wave radial frequency in rad/s, ¢ is the significant wave amplitude in m, k,, is the wave
number in 1/m, g is the standard gravity in m/s? and z is the water depth in m at the propeller centre.

5.2. Conclusion

In this chapter the selected powertrain model and its sub-models have been described. The models
capture advanced dynamic behaviour of the engines and batteries. The drawback of the model is that
only a single degree of motion of the ship is considered. For the generation of more valuable data a
multi-DoF model is better, as it can provide more information on maneuvering behaviour of the ship. The
maneuvering behaviour, if captured in data, can provide a valuable asset in shaft power forecasting.
Maneuvering operations are often slow, and it would allow the forecasting model to know in advance
the power demand. However, due to time constraints of the project, the powertrain model will not be
altered to incorporate these changes.
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Power load forecasting model

In this chapter power load forecasting models will be discussed and research question 3 will be an-
swered. For convenience the research question is stated below. Research question 3a has been ad-
dressed in the literature review in chapter 2. Question 3b is answered in sections about data, namely
section 6.1 and section 6.5. Question 3c addresses the hyperparameters of the chosen forecasting
methods, and is naturally discusses throughout the description of the methodology. Question 3d is
the comparison of the performances of the forecasting methods, this question will be answered in sec-
tion 6.7.

Research question 3: What is an effective data driven model for power load forecasting with a
prediction horizon of two minutes while maintaining high levels of accuracy, given the data set of the
Holland-class offshore patrol vessel?

(a) What are the state-of-the-art data-driven methods currently employed for power load forecasting,
and which is the most effective in terms of accuracy and prediction horizon?

(b) Which data attributes should be included in input space X, and which data cleaning and prepa-
ration steps are required for the provided data set?

(c) What are the relevant hyperparameters for the selected data-driven method, and what are their
optimal settings, evaluated with model selection criteria of k-fold cross-validation and MSE?

(d) What is the performance of the model evaluated with MAE, MSE, R?, and sMAPE, and their
respective confidence intervals? How does the model performance compare to state-of-the-art
data driven methods for power load prediction?

Unfortunately, the shared data set of the Holland-class patrol vessel has very few data features.
The scarcity of data features implies that many state-of-the-art forecasting models will not be feasible;
Methods such as neural networks, kernel-regularized least squares (KRLS) and support vector ma-
chines (SVM). Therefore, first some univariate forecasting methods will be used: Linear regression,
moving averaging, and ARIMA. These methods will be discussed in detail in the following sections.
Afterwards, using the powertrain model described in the previous chapter, some synthetic data will be
generated for a selection of data features, described in section 6.5. With the additional data features
it becomes possible to use the state-of-the-art forecasting methods. Therefore, the method recurrent
neural network (RNN) with a long-short-term-memory (LSTM) will be used in conjunction with the gen-
erated synthetic data. The reasons for choosing the RNN method as well as the RNN model selection
and methodology is described in section 6.6. Due to time constraints of the project it is not possible to
use multiple state-of-the-art forecasting methods such convolutional neural networks, KRLS, and SVM.

The structure of the chapter is as follows: First the data is described and the data preparation steps
are discussed for the univariate prediction methods in section 6.1. Secondly, for the linear regression
(section 6.2), moving average (section 6.3) and ARIMA (section 6.4) the methodology is discussed, the
implementation and the results. Thirdly, the synthetic data generation is discussed in section 6.5. The
RNN its data preparation steps, methodology, implementation and results can be found in section 6.6.
And finally, the conclusion and answer to research question 3 can be found in section 6.7.
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2023.MME.8764 6. Power load forecasting model

6.1. Data
6.1.1. Data description

The data features available are discussed in chapter 3, and are repeated below in Table 6.1.

X Data description

x;  Available power main engine starboard in [%]
x, Available power main engine portside in [%)]
x3  Power of induction machine starboard in [kW]
x,  Power of induction machine portside in [kW]
xs  Main engine shaft speed starboard in [rpm]
X¢  Main engine shaft speed portside in [rpm]

x;  Main engine power starboard in [kW]

xg  Main engine power portside in [kW]

xq  Total shaft power starboard in [kW]

X10 Total shaft power portside in [kKW]

x11 Vessel speed set point in [%]

Table 6.1: Data features & extrapolated data features of the shared time series.

Onboard the OPV the total shaft power that is required at time t is not available to the controller,
unless by prediction. Neither are all the other data features, with the exception of x;; the operational
speed. It will be assumed that the operational speed is an operator set-point and is therefore available
at timestep t. Data features x4 and x,, are additive compositions of x;, x,, x3 and x,. The individual
power of induction machines and main engines are not interesting to the controller since determining
the power split between electric and diesel engines is one of the jobs of the controller, one does not
want the power split to be dictated by data. Additionally, the four data features do not capture any
trends that aren’t already captured by xq and x,,. Therefore, these data features x;, x,, x3 and x, do
not hold additional predictive power compared to x4 and x;,, and for that reason they are not included
in the prediction models in this research.

Additionally, the energy management as well as the powertrain model are only attuned to linear
motion of the ship; Maneuvering actions are not captured by the model. Therefore, only either starboard
or portside data is required. Once a side is chosen they are assumed to be equal for both sides of
the ship. The justifications for choosing a single degree of freedom model is previously discussed in
chapter 5.

In conclusion, the only remaining data feature to be used in shaft power forecasting, is past values
of the shaft power, as well as the operational speed. However, since the operational speed is directly
extrapolated from the main engine shaft speed, which is directly proportional to the shaft power, it also
does not hold additional predictive power. Therefore, univariate prediction methods will be employed.
Namely, linear regression, moving averaging, and ARIMA are applied on the univariate time series of
total shaft power. As described in the introduction, an RNN model will also be described in this chapter.
It uses the total shaft power, shaft speed and a few extra synthetic data features, these are described
in subsequent chapters.

6.1.2. Data preparation
Only data preparation steps relevant to the linear regression, moving averaging and ARIMA will be
discussed here. The full data preparation process for the RNN with be discussed in section 6.6.

Data cleaning Data cleaning is the first step in the data preparation process. Three sources of data
cleaning are identified: selection of data attributes, missing data, and outliers. Selection of data at-
tributes was discussed in the previous section. The presence of missing data can be solved by interpo-
lation or removing the affected row of data. Due to the abundance of available data, and the accuracy
issues related with data interpolation, data elimination was opted for. This means that rows with miss-
ing data were eliminated. Outliers in the dataset were removed where the shaft power values do not fall
within the feasible range of P, € [0,5400]kW. Similarly, for the the main engine shaft speed outliers
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outside the feasible range ng, € [330,1000] were removed. The engine shaft speed should be zero,
ngp, = 0, when the main engine not is not in operation, this has also been confirmed by inspection.

Defining prediction variable y The aim of the prediction methods is to predict the total shaft power
at each step of a prediction horizon y = [P, (k), -+, Psp (k+ N)]. Sequences of data in the range [t —A~,
t — 1] will be used to predict the shaft power. This input-output relationship is graphically presented in
Figure 6.1.

o Known values o Value to be predicted o Unknown values

~— AT T ey
1 |
|
1 T |
L] L1y

t—A~ t—yu‘_ f+A_+J

Figure 6.1: Input-output relationships for the univariate prediction models.

Data sequencing As previously explained, the models take sequences of data as input, where each
sequence has data points in the range [t — A™, t — 1], with a different t for different sequences. These
sequences can be constituted after the other data preparation steps.

6.2. Linear regression

Since we are dealing with a univariate time series and the operational profile shows ‘flat’ spots. A
linear regression model can be used to make short-term predictions on that shaft power; In the order
of seconds. Linear regression involves a linear approach for modelling the relationship between a
response variable and a dependant variables. A moving time window of data in [t —A™,t —1] is used to
estimate a linear model, and compute A* seconds ahead, in time window [¢,t + A*]. The linear model
can be described as [40]:

Ve = Bo + Bit + &, (6.1)

where the coefficients B, and 3, denote the intercept and the slope of the line, respectively. ¢; is
an error term that denotes effects on y; other than time. y; is the shaft power are time t and is the
variable to be predicted. There are a few assumptions when using a linear model that are important to
take note off. Namely, (a) the errors of the linear model should have a mean zero, (b) the errors are
not related to the predictor variables [40]. the first assumption should hold true, else it would imply that
the linear approximation is systematically bias; A better approximation could have been found. The
second assumption should hold true, because otherwise there should have been more information
included in the systematic part of the model, thus more variables should have been included. The
second assumption is unfortunately not adhered to for the shaft power time series in this project. Since
using only past values of the shaft power to predict the shaft power at time ¢, as previously mentioned,
is not sufficient to capture all the information of the time-series. Regardless, linear regression will be
used here, if only to show the relative effectiveness of other methods in the following chapters.

6.2.1. Model approximation

In order to approximate the values of 8, and ;, the linear least squares method (LSM) is used. The LSM
is a way of choosing the coefficients by minimising the sum of the squared errors. The mathematical
formulation of the errors is as follows:
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T T
Dt =) b hit) 6.2)

t=1 t=1

with T the number of data samples. The formulation of the linear problem can be written in matrix
form in:

Y1 t; 1
%=?ﬂ%} 3
yr tr 1

or in short notation it can be written as y = Xc. Then, to solve for the set of coefficients c, the solution
is [55]:

c=X"X)"xTy (6.4)

6.2.2. Modelling process

Below the modelling process has been shows graphically in Figure 6.2. First, the data sequence in
time window [t — A7, t — 1] is loaded. Secondly, the least squares problem is formulated, as shown
in Equation 6.2. Thirdly the minimization process is executed and coefficients are approximated for
Bo and By, using the solution presented in Equation 6.4. Finally, forecasts can be computed given
the established linear regression of the data. Once the forecasts have been saved and passed on to
the controller, the next timestep is initiated and the process starts over. Note that the models are not
regularized. This is a step that could have been implemented to potentially obtain better results, as
regularization can prevent over- and underfitting of the model on the data. Regularization has been
excluded for linear regression as well as the other methods, due to time constraints of the project.
However, in future, regularization of the model can provide a way to obtain models that generalize
better.
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Bo, B

v

Calculate
forecasts
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Figure 6.2: Linear regression modelling process.

6.2.3. Linear regression results
The results of the linear regression methods are shown below in various graphs and tables. First, it
should be established that the maximum allowable prediction error is 5% mean absolute percentage
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error (MAPE) is established for this research. [56] states that 5% MAPE is considered as an indication
that the forecast is acceptably accurate. The MAPE is a measure of prediction accuracy of a forecasting
method, and is mathematically presented by:

A — F
A

100% <
MAPE = — Z

t=1

(6.5)

where A; is the actual value, F, the predicted value and n the number of data samples. Below in
Figure 6.3 the MAPE values are shown for an increasing prediction horizon. Note that the prediction
horizon increases with steps of 3 seconds, according to the provided sampling time of the data. From
this graph it can be seen 18 seconds is the maximum prediction interval of the horizon. Therefore, the
prediction horizon of 18 seconds is used to compute the remaining results in this section for the linear

regression method. Note that the values of the MAPE functions were achieved using varying values of
A,

45 Mean absolute percentage error
T T T T

—#— MAPE Linear regression

— — — -Maximum allowable MAPE
40 | m

35 [ ]
30 */* i

Absolute percentage error [%]

0 20 40 60 80 100 120
A7 3]

Figure 6.3: Mean absolute percentage error for the linear regression model.

Below in Table 6.2, the relationships between A* and A~ is shown. For an increasing horizon with
A*, various data ranges [t — A™,t — 1] were evaluated; In order to find the optimal combination of
prediction horizon and data sequence used to predict the prediction horizon. It can be noted from the
table that using more data, thus a larger A~, to make predictions does not lead to improved prediction
accuracy for the linear regression method. This is likely because for more datapoints the data is less
linear; thus a linear approximation of more datapoints leads to worse results. The optimal A~ is 9[s].
Therefore, the remaining results for the linear regression methods are computed with a combination of
A~ =9 [s]and A* = 18 [s].
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At [s]
m 3 6 15 30 60 90 120
9 072 200 346 7.70 1759 28.38 39.75
15 0.86 2.07 352 7.62 1714 27.44 38.41
30 144 272 416 825 1753 27.45 38.09
90 440 585 7.38 1148 2043 30.03 39.66
180 8.93 1040 11.92 1588 2423 32.82 4143
360 16.97 18.36 19.77 23.39 30.95 3879 46.75

Table 6.2: MAPE [%] of the linear regression model for different combinations of A~ and A*.

In Figure 6.4, the distribution of actual shaft power, a scatter plot (actual versus predicted), and the
relative frequency distribution of absolute errors is shown. As mentioned, the results are for At = 18][s],
with A~ = 9[s]. The red line in the scatter-plot is the line that shows the correct prediction values for the
actual values, which is a 45° angle line. As can be seen from the scatter-plot there is a tight grouping
of predicted values around the line, indicating relatively accurate predictions. The relative frequency
distribution of the absolute percentage errors also clearly indicates a high frequency of 'close-to-zero’
errors rather than larger errors. The outliers, can be explained by the big jumps in the operating profile
of the shaft power, as these can not be predicted accurately. For confidentiality the dimensionality of
the data has been changed.
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Figure 6.4: Distribution of actual shaft power, scatter plot (actual versus predicted), relative frequency distribution of AE.
Results are for A* = 18[s], with A~ = 9[s]. n = 19110 samples.

To further illustrate the predictive capabilities of the linear regression method a trend in time is
shown in Figure 6.5. This graph shows that the trend in time of the actual shaft power can clearly be
followed by the predicted shaft power 18 seconds in the future. It should be noted however, that the
predicted shaft power shows relatively erratic behaviour compared to the actual shaft power. This can
be explained by the fact that the predicted shaft power is merely a linear regression based on 3 data
samples (A~ = 9 [s]). This leads to an estimation of a slope fitting these 3 data samples, but not fitting
to the larger trend in the shaft power. This is also the reason why the linear regression can not be used
for medium-term predictions, in the order of minutes.
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Figure 6.5: A section of the trend in time (actual versus predicted) shaft power. Results are for A* = 18[s], with A~ = 9[s].

Finally, the root mean squared error, mean absolute error and Mean absolute percentage error are
noted for the combination of A~ = 9 [s] and A* = 18 [s]. The Mean Absolute Error (MAE) is a measure
of errors between paired observations, in this case the actual and forecasted shaft power demand.
Mathematically the MAE can be written as:

i A — Fl
n

MAE = (6.6)

The MAE of 40.466 kW indicates that the average error between predicted and actual shaft power
is 40.466 kW. Based on the fact that the maximum shaft power is 5400 kW, this can be considered a
relatively small error. The root mean squared error (RMSE) is another measure showing the predictive
accuracy of a method. It measures the average difference between values predicted by a model and
the actual values. It can be mathematically described by:

Y, (A —F)*
n

RMSE = (6.7)

RMSE [kW] MAE [kW] MAPE [%]
241.394 40.466 +3.370 4.251

Table 6.3: RMSE, MAE, and MAPE, for A* = 18 [s], and A~ = 9 [s].

6.3. Moving average

A rather simple model that can be used is the moving average or order m, mMA. The average value
of the moving window time-series in range [t — A7, t — 1] is computed using the following formula:

A-
1
mMA = m kzl}’t—k, (6.8)

where is the number of samples in data range [t — A™,t — 1]. The mean value is used as the
prediction for prediction horizon [t,t + A*]. The method is not very advanced, however, it can be used
comparatively to other models to benchmark their performances.
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6.3.1. Moving average results

Similarly to the linear regression the MAPE values have been presented graphically, in Figure 6.6. It
can be seen that the maximum acceptable prediction horizon is where At = 27 [s].
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Figure 6.6: Mean absolute percentage error for the moving average.

Below in Table 6.4, the relationships between A* and A~ is shown. For an increasing horizon with
At, various data ranges [t — A™,t — 1] were evaluated; In order to find the optimal combination of
prediction horizon and data sequence used to predict the prediction horizon. It can be noted from the
table that using more data, thus a larger A~, to make predictions does not lead to improved prediction
accuracy for the moving average method. The optimal A~ is 3[s]. Therefore, the remaining results for
the linear regression methods are computed with a combination of A~ = 3 [s] and At = 27 [s].

+
N 3 6 15 30 60 90 120
A~ [s]

3 067 169 269 517 10.18 1530 20.35
9 116 217 317 565 1067 1579 20.83
15 164 265 365 6.14 1117 16.29 21.31
30 287 386 486 7.36 1241 17.52 2249
90 777 876 976 1227 17.30 2225 27.04
180 15.08 16.05 17.02 1944 2420 28.74 33.01
360 2765 2846 29.28 3129 3520 38.94 4250

Table 6.4: MAPE [%] of the moving average model for different combinations of A~ and A™.

Note that A~ = 3[s] indicates that a single datapoint is used for the average. Which means that for
this optimal solution the value of shaft power at t — 3[s] is said to be the prediction value for all steps in
prediction horizon [t,t 4+ 27][s]. This is nicely shown in Figure 6.7, which shows a section of the trend
in time of the actual shaft power versus the predicted shaft power 27 seconds in the future. It can be
seen that the graph is simply shifted 27 seconds. But these ’'predictions’ are still enough to stay under
the 5% MAPE limit.
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Figure 6.7: A section of the trend in time (actual versus predicted) shaft power. Results are for A* = 27[s], with A~ = 3[s].

Below, in Figure 6.8, the distribution of actual shaft power, a scatter plot (actual versus predicted),
and the relative frequency distribution of the absolute errors are shown. Results are for At = 27][s], with
A~ = 3[s]. From the scatter-plot it is clear that predictions show a wider spread than those of the linear
regression method. However, more data samples are closely grouped to the diagonal, indicating an
overall strong predictive accuracy. Again, the relative frequency distribution of the absolute percentage
errors show that most error are close to zero.
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Figure 6.8: Distribution of actual shaft power, scatter plot (actual versus predicted), and relative frequency distribution of AE.
Results are for A* = 27[s], with A~ = 3[s].n = 19110 samples.

Finally, the RMSE, MAE and MAPE values are shown for the combination of A~ = 3 [s]and AT = 27
[s], for the moving average method. A MAE of 54.608 kW is an acceptable error compared to the
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maximum shaft power demand of 5400 kW. And as indicated earlier a MAPE value under 5% is also
acceptable.

RMSE MAE MAPE
228.842 54.608 £2.345 4.673

Table 6.5: RMSE [kW], MAE [kW],and MAPE [%] for A* = 27[s], and A~ = 3][s].

6.4. ARIMA

In order to improve on the performance of a simple moving average, and linear regression, a method is
employed that can use polynomial regression, namely the Auto-Regressive Integrated Moving Average
(ARIMA) model will be used. ARIMA models are one of the most widely used approaches to time
series forecasting [40]. ARIMA models aim to describe the auto-correlations in the data. Therefore, it
is an appropriate choice for univariate load predictions. ARIMA models combine the use of an auto-
regression model with a moving average model. In this section the full procedure to applying the ARIMA
model is explained. Throughout the section at each step, a example is shown of the application of the
step on one of the operational profiles presented in Figure 3.3. Towards the ends of the section an
overview of the full method is graphically shown for reader convenience.

6.4.1. Auto-regression model

In a regression model the variable of interest is forecasted using a linear combination of predictors.
In an auto-regression model, the variable of interest is forecasted using a linear combination of past
values of the variable. In this case, the shaft power is predicted based on past values of the shaft
power. The auto-regressive part of the ARIMA model of order p can be written as

Ve=C+d1Yeo1 + G2Veo + o+ DpYip &, (6.9)

where ¢, is the white noise, y; the shaft power at time t, and ¢;,i € [1,p] are parameters at time
t —i that are fitted in order to obtain an accurate prediction. Some constraints on the fitting parameters
of the auto-regressive model apply. These constraints aim to prevent the polynomial from diverging
to infinity or minus infinity. Based on the order p of the auto-regressive model these constraints get
increasingly complex, these exact constraints will not be discussed here. Auto-regressive models are
normally restricted to stationary data [40], the implications of this will be explained later.

6.4.2. Moving average model

The second ingredient to an ARIMA model is the moving average model. In this case the moving
average is applied to the forecasting errors ¢;, where the error is assumed to be white noise. The
moving average model of order q is described as:

Ye=cC+e+ 0161+ 026 5+ + 0564 (6.10)

where y, is a weighted moving average of of the past forecasting errors, and 6;,i € [1,q] are
parameters at time t — i that are fitted in order to obtain an accurate relationship between errors and
output. Similarly to ¢;, 8; are subject to constraints that get increasingly complex for increasing q. The
constraints’ purpose is to prevent the model from diverging.

6.4.3. Differencing

As mentioned previously, the ARIMA model requires a stationary time series to make predictions. From
the operational profiles in Figure 3.3 it is clear that the shaft power operational profile is not a stationary
time series. To transform the operational profile into a stationary time series we can apply the process
of differencing. Differencing is the computation of the differences between consecutive observations.
Mathematically, this can be written as:

Yt =Yt — Vi1 (6.11)
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As an example the results to differencing operational profile 1 can be viewed in Figure 6.9. Dif-
ferencing once (d = 1) may not be enough for certain time series, in those cases the data may be
differenced multiple times until the time series is stationary. Since it not always obvious whether a
series is stationary by view, unit root tests can be applied. Unit root tests are statistical hypothesis
tests that test the stationarity of the time series, and are designed to ascertain whether differencing
is required. Two commonly applied tests are the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test [57],
and the augmented Dickey-Fuller (ADF) test [58]. The KPSS test assesses the null hypothesis that a
univariate time series is stationary. The test employs a model with structure

:Vtzct+5t+u1t' (6.12)

Ct = Ct—l + uZt, (613)

where § is the trend coefficient, u,; is a stationary process and u,; is an independent and identically
distributed process with mean 0 and variance o2. The null hypothesis is that H, : 6% = 0, and the
alternative hypothesis is that H; : 62 > 0. If the statistical test with significance a shows a p-value
sufficiently large (e.g. p>0.05), then the null hypothesis can be rejected and the time series is not
stationary. This test can be computed for y, with respect to samples y,_; in the past, where i is the
number data points, or lags, in the past. An accepted or rejected KPSS test for a certain defined number
of lags does not ensure the same result for an increased number of lags. Therefore, stationarity of the
time series should be proven for n lags (data points) in the past. Stationarity of n lags is relevant to
determine what the order of the auto-regressive function p, and order of the moving average g can
be. Or alternatively, given a predefined maximum order p, g and d, stationarity should be proven for
n = p + d lags [40].

The ADF test for a unit root assesses the null hypothesis of a unit root with a model:

Ve =C + 6t + ¢Yt—1 + ﬁlAyt'—l + ...+ ﬁpAyt_p + &ty (614)

where § is the deterministic trend coefficient, c is the drift coefficient, p the number of lagged difference
terms, A is the differencing operator such that Ay, = y, — y:_1, and &; white noise. The null hypothesis
is Hy : ¢ = 1, and the alternative hypothesis H; : ¢ < 1. If the statistical test with significance a« shows
a p-value sufficiently large (e.g. p>0.05), then the null hypothesis can be rejected and the time series
is stationary. Similarly to the KPSS test, the ADF test should be repeated for different lags. The reason
to use both the ADF and KPSS test is because they are complementary. The ADF test is common and
nicely proves stationarity with the absence of a unit root, the KPSS test is variance based and can be
insightful when the variance of the time series is varying.

Combining the auto-regressive model, moving average model and differenced time series (d = 1)
the ARIMA(p,d,q) model can be described as

Ve=Cct+dyiog ot pyip H 0181+ 048 g T &, (6.15)

where p is the order of the auto-regressive part, q is the order of the moving average part, and d the
degree of differencing involved.

The example below provides some insights, shown in Figure 6.9.
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Figure 6.9: Original operational profile of the shaft power (left), and twice differenced operational profile of the shaft power
(right).

The differenced time series looks stationary, but the KPSS and ADF tests show this is not the case.
It passed the ADF test for lags k € [1,10] but fails the KPSS test for lags k € [8,10]. Differencing
the time series again results in successfully passing both stationarity tests for the 10 lags intervals.
However, if the maximum order p to be used is smaller than 7, then differing once would be enough.
since stationary of n = p +d = 7 + 1 = 8 lags was already proven after differencing once.

6.4.4. p, d, q tuning

It is often not immediately evident what the optimal settings of p, and g for the ARIMA(p,d,q) model
are. However, this is an important task. The order of p, and g determines the goodness of fit of the
ARIMA model with respect to the original data. Sometimes it is possible to determine the parameters
by inspecting the auto-correlation function (ACF) and partial auto-correlation function (PACF). The ACF
plot shows the auto-correlations which measure the relationship between y, and y,_,, for different values
of k. When two concurrent samples are correlated the next sample must also be correlated. For
instance, if y,_, and y,_s are correlated, then y;_; and y;_, must also be correlated. This implies that
y:_» and y,_, are also correlated, however it is uncertain whether this is because they are simply both
correlated to y;_5. It is important to make this distinction, since if y,_, does not have a true correlation
to y;_, then it does not hold more information that would help in predicting y;_,. The PACF overcomes
this issue by filtering out these effects. Thus the PACF graphically shows the relationship between y,
and y;_, after removing the effects of lags [1, k — 1].

Unfortunately, if both p and q are non-zero then the plots do not help in finding suitable values of p
and q. If either p or q is zero then the ACF and PACF are useful. The data may follow an ARIMA(p,d,0)
model if the ACF and PACF plots of the differenced data show the following patterns [40]: (a) the ACF
is exponentially decaying or sinusoidal or (b) there is a significant spike at lag k in the PACF and none
beyond lag k. The data may follow an ARIMA(0,d,q) with the following patterns [40]: (a) the PACF is
exponentially decaying or sinusoidal or (b) there is a significant spike at lag k in the ACF and none
beyond lag k. As an example the ACF and PACF are of the differenced operational profile 1 are shown
in Figure 6.10.
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Figure 6.10: Auto-correlation function (left), and partial auto-correlation function (right) of the twice differenced time series.

Note that both the ACF and PACF show sinusoidal trends, and the PACF shows an exponential
decay. However, there are no significant spikes followed by statistically insignificant spikes. Therefore,
p and g can not be determined by inspecting the ACF and PACF. When that is the case one can
test multiple combinations of p and g in order to determine the ARIMA(p,d,q) model that best fits the
data. The data is fitted to the ARIMA model by estimating the model parameters c, ¢;, with € [1,p]
and 6;, withi € [1,q]. This estimation happens through a maximum likelihood estimation (MLE). MLE
estimates the parameters by maximizing a likelihood function so that, under an assumed statistical
model, the observed data is most probable. For the purpose of this project, this process is considered
a black box model, and is simply executed by a Matlab function.

For each combination of p, d, and g a model should be fitted to the data, evaluated and compared.
The evaluation of the fit of an ARIMA model to the data can be done with Akaike’s Information Criterion
(AIC) [59]:

AIC = =2log(L) +2(p+q+k +1), (6.16)

where L is likelihood of the data, k is a parameter that is equal to 1 when ¢ # 0 and 0 and when
¢ = 0. Note that the second part of the function evaluated the complexity of the model. Since a lower
AIC value is considered better, a complex model is penalized. Alternative evaluation methods such as
adjusted R-squared R?, BIC, and AICc can be considered as well. [40] states that R? tends to favour
overly complex models (high p and q), and BIC tends to work particularly well when there is a true
underlying model. Since the shaft power is randomly effected by mariner decisions, a true underlying
model does not exist. AlICc is an adjusted version of the AIC model; AIC can be considered a first-
order model that evaluated information loss, and AICc a second-order model. [40] states that AICc
often outperforms the AIC, as it gives a more refined representation of fit. Therefore, the AlCc criterion
will be selected as evaluative parameter for selecting the optimal ARIMA(p,d,q) model. The AICc model
is as follows:
alce = ac + 2@ AR A D@ gk +2) 6.17)
T-p—q—k-2
To complete the example, an ARIMA(p,d,q) model has been selected using the above procedure.
With p € [0,8] and q € [0,8], and d = 2. The ARIMA(6,2,7) model showed the lowest AICc value and
therefore shows the best fit to the differenced data.

6.4.5. Model residuals

The final step before making forecasts with the ARIMA model, is to inspect the model residuals. It is
important to check that all auto-correlations in the ACF are within the threshold limits. When this is
the case, it means that the residuals are behaving like white noise, which was one of the assumptions
for using the ARIMA model. If the residuals are not within the threshold limit it proves that there are
statistically significant correlated errors, and this implies that not all the relevant relationships between
data samples have been captured in the model. Secondly, the residuals should be normally distributed,
which was another assumption for using the ARIMA model.
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To prove that the residuals behave like white noise a statistical test can be performed: The Ljung-
box test. It tests whether any of a group of auto-correlations of a time series are different from zero. The
null hypothesis specifies that the data is independently distributed. The alternate hypothesis specifies
that the data shows serial correlation.

For the example of operational profile 1, the Ljung-box test shows a p-value of p = 0.0153. The
p-value is smaller than 0.05 indicating that the residuals behave like white noise. This is further sup-
ported by the ACF graph that shows the auto-correlations of most of the residuals are statistically not
significant, since they fall within the threshold limits. The residuals are normally distributed also. The
ACF, and distribution or the residuals are shown in Figure 6.11. Since the model passed these tests it
can be assumed to be ready to make predictions.
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Figure 6.11: Residual plots for the ARIMA(6,2,7) model.

6.4.6. Forecasting
Point forecasts can be obtained by rewriting the ARIMA model equation, Equation 6.15, to [40]:

ye=(1+ <7»'A)1)3’t—1_(¢31 - (ﬁz)Yt—Z_"'_(qu—l - qsp)yt—p“i’p)’t—p—l+é15t—1+‘”+éq5t—q +&:. (6.18)

where ¢;,i € [1,p], and 8;,i € [1,q] are fitted parameters obtained in the model training and se-
lection phase previously. Note that the remaining values on the right-hand side of the equation are
also known; y,_;,i € [1,p + 1] are known historical values, and ¢,_;,i € [1, q] are known residuals of
fitting y;_; to the trained ARIMA model. The only value not known is ¢;, since this is the error of fitting
v, to the ARIMA model. Which is the timestep we are forecasting. Therefore, &, = 0 is assumed in
the model. The right-hand side of the formula can be filled in and y; can be computed. To predict
V41, EQuation 6.18 can be rewritten where t is replaced with ¢t + 1. This results in a term of y; in the
right-hand side of the function, this one can be replaced by the previously calculated predicted value
of y,. Mathematically, this becomes clear:

Vev1 = (1 + <¢31) Ve — (9‘51 - <132) Ye-1— " — (S‘[’p—l - (I»'A’p) Ye-p+1 — ‘ﬁpyt—p +0ig + -+ éq£t—q+1 426&1+915

Note that values of both ¢;,; and ¢; are not known, and have to be replaced by 0. Thus, the
moving average part of the ARIMA model has a depreciating influence on the outcome of long term
predictions. It should be clear from the equations that any number of point forecasts can be obtained
by continually shifting the time parameter t. It should be noted that the above equations are derived
based on differencing the data once. With higher order differencing come more complex multipliers on
the past samples of y;, and more complex constraints. These equations will not be discussed here.
What one can learn from the equations is that p + d samples of past values are used in evaluating the
variable on the left-hand side of the equation. Therefore, it stands to reason that stationarity of up to
p + d lags should be proven with the unit root tests, as was already incidated earlier.
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6.4.7. Modelling procedure

An overview of the modelling procedure for an ARIMA model is shown in Figure 6.12. The complete
procedure is listed on the left side of the figure. It is a summary of the previous sections of this report.

To use the ARIMA model in conjunction with an online optimization-based controller, an ARIMA
model should be selected every timestep. Therefore, the luxury of graphically inspecting the time-
series for stationarity, and the correlations in the ACF and PACF are not feasible. Instead, an ARIMA
model is created every timestep based on a moving window of time-series data of the shaft power.
This sequence of data can be defined as time range [t — A—,t — 1]. For this sequence of data the
unit root tests KPSS and ADF are calculated for lags in range k € [1,4]. If the tests show the data
to be non-stationary, the data is differenced until the tests are passed. Only 4 lags are considered
since this is the range applied to the p and ¢ is [0,3]. The reason for this range is that evaluating more
elaborate models is time consuming and not feasible for an online process. Secondly, higher order p
and g models often have diminishing returns. They are more likely to be a good fit for the data, but that
does not guarantee improved forecasting abilities [40].

Once the data is stationary candidate models are defined. The optimal model is selected by eval-
uating the goodness of fit of the models with the AICc criteria. Unfortunately, due to the automation of
the process, stationarity can never be truly ensured. Therefore, a try and catch approach is required.
If a model under evaluation diverges and causes an error it can be caught and eliminated. The fact
that it diverges also means it was not a good fit. That being the case, the fact that the model is not
further evaluated does not mean a feasible model was eliminated. Once an optimal model is selected,
a Ljung-box test is performed on the residuals. If the test shows the residuals to be correlated a fore-
cast is still performed. This does mean, however, that the model did not fully capture all the relevant
information at all lags, which is to be expected with lower p and g values. It also implies that the as-
sumption of the ARIMA model that the error term is white noise is not adhered to. In practise, when this
test is not passed the forecasting method for the timestep could be replaced by one of the previously
discussed prediction methods of simple linear regression, polynomial regression or moving average.
But for the purpose of this project, where the effectiveness of the prediction tool is estimated, this will
not be implemented. The automated procedure of ARIMA modelling is presented below in Figure 6.12.
The process is repeated at every timestep.
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Figure 6.12: Modelling procedure for an ARIMA model (left). Automated modelling procedure for an ARIMA model (right).
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6.4.8. ARIMA Results

Similarly to the linear regression and moving average methods the first result to be shown is Figure 6.13,
which shows the MAPE values for the ARIMA method for an increasing prediction horizon. Unfortu-
nately, the method does not perform great, and is only able to predict 3 seconds in the future. This is
a direct result from divergence of the polynomials that occur sometimes. These divergent prediction
show very high or very low prediction values and have a large influence of the mean of the absolute
percentage errors.
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Figure 6.13: Mean absolute percentage error for the ARIMA model.

This effect of diverging predictions is nicely shown in Figure 6.14. Which shows the trend in time for
the actual and predicted shaft power for 3 seconds in the future. As can be seen, even for a prediction
horizon of 3 seconds there are large outliers.

Trend in time predicted predicted with A* = 3 [g]
T T

Shaft power - scaled

Time [min]

Figure 6.14: A section of the trend in time (actual versus predicted) shaft power. Results are for A* = 3[s], with A~ = 180[s].

In Figure 6.15 the distribution of actual shaft power, a scatter-plot (actual versus predicted), and
the relative frequency distribution of the absolute errors is shown. The predicted values lie close to
the actual values, as can be seen in the scatter-plot. However, larger outliers can be noticed as well.
Note that the sample size for this plot is 2401 samples. Whereas, for the linear regression and moving
average the sample size was 19110 samples. Due to computational times, fewer samples for the
ARIMA method were used. This does have the effect that the outliers have a larger contributing factor
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to the mean errors. The relative frequency distribution of the absolute percentage errors shows that

predominantly close-to-zero errors occur.
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Figure 6.15: Distribution of actual shaft power, scatter plot (actual versus predicted), and relative frequency distribution of AE.
Results are for A* = 3[s], with A~ = 180[s].n = 2401 samples.

The RMSE, MAE and MAPE of the ARIMA model are shown in Table 6.6. It can be noted that
even though the MAPE value is lower than for the linear regression and moving average, the prediction
horizon is only 3 seconds. Additionally, the MAE is larger, namely 72 kW, and shows a much larger
confidence interval. This indicates the prediction have a larger spread around the mean. Which is not

favorable for prediction purposes.

RMSE

MAE

MAPE

268.944 72.073 £ 11.365 3.276

Table 6.6: RMSE [kW], MAE [kW],and MAPE [%] for A* = 3[s], and A~ = 3][s].

6.5. Synthetic data

In order to improve on the performance of univariate forecasting methods, some synthetic data is gener-
ated. The powertrain model described in chapter 5, in conjunction with controllers for the main engines,
induction machines, diesel generators and the operational profiles described in Figure 3.3, are used
to generate the data. The control design is directly taken from [11], and graphically shown below in

Figure 6.16.
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Figure 6.16: Schematic presentation & causality graph of the simulation model (propulsion and control system) showing
coupling between models. Image retrieved from [11]

Where TRM is the transmission, FOC is field oriented control, and the governor is a control unit. For
a full description and understanding the interested reader is referred to [11]. The model is supplied by
Damen, and was appended slightly in order to adjust for the power ratings of the powertrain components
of the HCOPV.

The input data to the model is the operational profile of shaft power, as well as the operational profile
of vessel speed. The recorded data features are listed below in Table 6.7. These data features are
used as input to the RNN, along with historical data on the shaft power.

X Data description

x12 Main engine shaft speed in [rpm]
x13 Pitch ratio

x14 Propeller torque M, in [Nm]

x15  Propeller thrust T, in [N]

x16 Vessel speed vg in [knots]

Table 6.7: Generated data features.

More information can be extracted from the model on the battery and induction machines. However,
their behaviour is directly a result of the energy management system. Therefore, the predictive potency
of these features are contingent on if the power load forecasting model would be used in conjunction
with this particular EMS again. Since, the EMS used in generating the data is not the same as the one
developed in the project, these features are left out.

6.6. Recurrent neural networks

In this section the approach to the RNN design is elaborated. In Figure 6.17 a flow diagram is presented
showing the various steps involved in data preparation, employing an RNN, as well as processing
results. An explanation of all the steps involved is given in subsequent sections. Recurrent neural
networks builds on top of the basic functionality of an artificial neural network (ANN). Therefore, first
the theory behind ANNSs is elaborated followed by the theory on RNNs. The hyperparameters and their
impact on model performance is discussed also. Furthermore, the choices of the set-up of the RNN for
this project have been justified and explained.
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Figure 6.17: Flow diagram of the steps involved in data preparation, employing an RNN, as well as processing results.

6.6.1. Data Preparation

The data cleaning process has already been discussed previously, and will not be restated here. This
was the process of removing outliers, selecting data features and handling missing data. The remaining
data preparation steps for the RNN are data scaling, defining output y, data splitting, k-fold cross
validation and data sequencing.

The reason to split the data and use k-fold cross validation is that, unlike the univariate methods
that obtain a new model for each data sequence, the RNN aims to obtain a generalized model that is
trained, and then can be used for all future prediction operations. Therefore, for the RNN it is imperative
that the right model is obtained with the most optimal settings and correct indicated performance. The
validation and testing data in combination with the cross validation method ensure that the trained
model, is judged accurately on unseen data. The univariate methods do not have a single set of model
setting that are used for all future prediction operations. Rather, these methods obtain new model
parameters every timestep. For that reason the methods have different approaches.

The data on which the RNN is tested is the latter 10% of the data. The other methods have been
tested on the full dataset. Consistency between results can be assumed because the latter 10% of
the data still gives a good overview of the data as it shows a wide range of shaft power values, and
variability in the data. The full dataset is used for the other methods, since more data sequences lead
to better model performance estimation.

Data scaling The data of the various data attributes have different orders of magnitudes, in order for
the neural networks to learn and understand the problem more easily, all attributes are scaled down to
a specific range. The range is determined by the activation function used in the neural network. The
choice of activation function and its implications is normally a hyperparameter that will be explained
later, in subsection 6.6.2. The activation functions considered for neural networks in this project are the
sigmoid and hyperbolic tangent activation functions, they have data scaling ranges of [0,1] and [-1,1],
respectively.

Defining output y The aim of the neural networks is to predict the shaft power demand P, in range
[t, t + AT]. The RNN uses a sequence of data, namely data points in the range [t — A™, t — 1], as
input. These input-output relations are graphically presented in Figure 6.18. Where the input space X;
is presented by the data features shown in Table 6.7.

Splitting the data The next data preparation step is to split the data in training, validation and testing
data. The latter 10% of the data is set aside for testing. The remaining 90% is used for training and
validation. It is important to grab the latter sections of the data for testing, to ensure the neural network
is not trained with data from the future and tested on data in the past.
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Figure 6.18: Input-output relationship for the RNN.

K-fold cross validation K-fold cross-validation is used for model validation, and allows for more
accurate model selection. The aim of cross-validation is to test the model’s true ability of predicting y,
given input vector X, using unseen data. Multiple folds are used in order to improve the robustness
of cross-validation in judging the models’ ability. Since the RNN deals with time-series predictions it is
important to retain a time continuity, namely the data used for validation cannot be prior to the data used
to train the model in time. Therefore, for each fold the amount of training data available decreases.
This is graphically presented in Figure 6.19.

K-fold 5 [ Training IVaIidationI
K-fold 4 [ Training IVaIidationI
kfold3s | Training | vatigation
K-fold 2 [ Training IVaIidationI
Kfold1 | Training [ vatidation
Initial data split I Training and validation I Testing I
| | | | I | | | | | J
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Percentage of data
Figure 6.19: Data splitting and k-fold cross validation for the RNN, where k = 5.
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Data sequencing As previously explained, the RNN takes sequences of data as input, where each
sequence has data points in the range [t — A™, t — 1], with a different ¢ for different sequences. These
sequences can be constituted after the k-folds have been defined and the time continuity has been
ensured. Once the sequences are created they are shuffled.

6.6.2. Artificial neural network

Artificial neural networks (ANN), are supervised learning systems that aim to learn regression or classi-
fication tasks. An ANN includes an input layer, hidden layer and output layer. The layers are connected
via nodes, the connections between the nodes and the nodes themselves make up the neural network.
The nodes in an ANN are also called neurons. The input layer of the ANN, for this particular applica-
tion, has 6 input neurons with the various data attributes of the input data X; and the past values of the
shaft power. These 6 neurons are densely connected to n neurons in the hidden layer. The value of a
hidden layer neuron, h;, is calculated as follows:

6
B = () Wi X)) + b, (6.20)
=1

where 1 is the activation function on the hidden layer, w; ; is the weight on the connection between
input node j, and hidden node i, and b; is the bias on node i. Predicted output y can be computed with:

Je = (O wyiho) +by), (6.21)
i=1

where W is the activation function on the output layer, and w,, ; is the weight on the connection between
hidden neuron i and output y, and b, the bias on the output neuron. A graphical representation of
the artificial neural network is shown in Figure 6.20. The learning process of the neural network is
to find the optimal weights and biases of the neural network so that the network gives accurate shaft
power predictions [V, V:4+a+], for an input space X. In the learning process of a neural network with
a regression problem, such as the prediction of the shaft power, the predicted values [J;, V;,4+] are
confronted with the real shaft power y, and evaluated through a loss function. The loss function used
in this research is the mean squared error E, described by:

m
1
_ L E PR
E= - k—1(yk )% (6.22)

where, m is the number of data samples used for training the network. By taking the derivative of the
loss function with respect to the weights and biases, and then shifting these parameters to minimize the
loss function the neural network can learn, this is called backpropagation. Determining which weights
and biases should be shifted is achieved through gradient descent.

Many parameters to initialize and define a neural network are required, these parameters are called
hyperparameters. The hyperparameters for an artificial neural network are: The number of neurons
in the hidden layer, the number of hidden layers, the type of activation functions, the weight initializa-
tion matrix of the network, the type of gradient descent optimizer, learning rate and momentum of the
optimizer, number of epochs and batch size. Finding the best hyperparameters is an important task
as each of these hyperparameter affects the performance of the network, thus they directly effect the
model selection. Each parameter also affects the influence of other hyperparameters on the network.
Consequently, sets of hyperparameters have to be evaluated rather than individual hyperparameters.
To evaluate the set of hyperparameters, the NN is trained with training data and subsequently evaluated
by computing the mean squared error of the network when used with the validation data, and k-fold
cross validation. Below, the various hyperparameters are discussed and their effects on the network.

Hidden layer: number of neurons and layers Choosing the correct number of neurons in the hidden
layer is not an arbitrary task. If too few neurons are present, underfitting and statistical biases will occur.
Whereas too many neurons may lead to overfitting, high variance in neuron values, and the training
time of the network increases. Since the network is evaluated using new data, the validation data, that
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Figure 6.20: Graphical representation of the ANN, with 6 input data attributes, n neurons in the hidden layer, and output y.

was not used to train the network, whether the system is over- or underfitting will become evident. For
the purpose of this project a single hidden layer will be used in the NN. It is common practise to start
tuning the number of neurons in the hidden layer, n, with the average of the number of input and output
layer neurons, and increase the number of neurons from there. In this case there are 6 input neurons
and 40 output neuron, so the minimum value for n will be considered 23. From there, doubling intervals
are chosen to tune the number of neurons. The range considered can be viewed in Table 6.8.

Activation functions Activation functions are used to map the output of a neuron to a specific range.
In effect, the activation function has to the ability to decide whether a neuron should be activated,
as it determines whether the neuron’s output is crucial in the process of predicting the shaft power,
or not. So it is the job of the activation function to derive an appropriate output value from a certain
range, given a set of input values, as shown in Equation 6.20 and Equation 6.21. The main benefit of
the activation function is that it allows the introduction of non-linearity to the system, using non-linear
activation functions. Without a non-linear activation function, the neurons would simply be performing
linear transformations using the weights and biases. In that case, it would be impossible to learn
complex tasks as the network would behave as a linear regression model.

The non-linear activation functions considered in the scope of this project are the sigmoid (o) and
hyperbolic tangent (tanh) activation functions. The sigmoid activation function, has the benefit of scaling
the neuron output to the range of [0,1], the sigmoid function is also differentiable and provides a smooth
gradient. The smooth gradient is a beneficial property during backpropagation. The shape of the
sigmoid function can be viewed in Figure 6.21, the function definition is:

1
f@ = 1=

The tanh activation function scales the neuron output to the range [-1,1], which means the output is
centered around zero, which is a useful property for some applications. The tanh function has the same
properties as the sigmoid function of being differentiable with a smooth gradient. The function of the

(6.23)
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hyperbolic tangent function is:

e¥—e™™

P (6.24)

g(x) =
The right choice of activation function is application dependent, and its performance is also contingent
on other hyperparameters. These non-linear activation functions are used on the hidden layer. A linear
activation function is used on the output layer in order to linearly scale the hidden layer values to a valid
output value.

Sigmoid activation function
Hyperbolic tangent activation function
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(a) Sigmoid activation function. (b) Hyperbolic tangent activation function.

Figure 6.21: The two non-linear activation functions used on the hidden layer of the neural network.

Weight initialization matrix The weight initialization matrix is the matrix of initial values for weights
w;; and w,,;. The aim of weight initialization is to prevent exploding or vanishing effects of weights
in artificial neural networks with multiple hidden layers. Since a single hidden layer was selected for
the research, weight initialization processes will be omitted. Also, as will become evident later, the
application of the long-short-term memory (LSTM) will prevent exploding or diminishing weights.

Optimizers: types, learning rates and momentum The optimization algorithm for gradient descent
of the network is called the optimizer. Depending on the application, data and other hyperparameter
settings, an appropriate optimizer should be selected. Unfortunately, just as the other hyperparameters
this is a trial and error process to find the optimal one. Some of the more common optimizers are
stochastic gradient descent (SGD), root mean Square propagation (RMSProp) and adaptive moment
optimization (Adam). SGD replaces the actual gradient with a stochastic estimate in order to obtain
faster convergences for high-dimensional spaces, like in neural networks, at the cost of convergence
accuracy. RMSProp is an optimizer that uses an adaptive learning for each parameter.

The learning rate of the optimizer can be viewed as the step size by which the optimizer aims to find
a minimum. With larger learning rates, the optimizer will make quick improvements on the weights and
biases of the system, and thus quickly improves the performance of the neural network. The drawback
is that, due to the larger step size, the optimizer might overshoot the global minima, and instead roam
around the optimal solution. When choosing a smaller learning rate, these global minima will not be
missed by the optimizer. However, the smaller learning rates come at the cost of longer computational
times, as well as the risk of getting stuck in local minima. The adaptive learning rate employed by
RMSProp, aims to capture the benefits of both smaller and larger learning rates.

In the search of global minima of the optimizer, along with the gradient of the current step of the
optimizer, the idea of momentum can also be incorporated in determining which direction to go by
the optimizer. The momentum is an accumulation of the gradients of the past steps, and can therefore
provide valuable additional information on where to go next, and for that reason improves the optimizers
route towards a global minimum. Adam combines the idea of momentum with the RMSProp method
in order to further improve performance. Initial testing showed Adam to have the best performance on
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the training data used in the project, and will therefore be selected as the optimizer. The update rule
for the Adam optimizer is as follows:

i (B1), (6.25)

a

Or41 = 0 — T
VU (Bz) + €
where 6, is an update parameter, a the stepsize or learning rate, 0, the second moment estimate,
1h, the first moment estimate, and the moment estimates are a function of g{ and B¢ the exponential
decay rates for moment estimates. The first and second moment estimates are computed from the
gradients and bias-corrected through an adaptive decay rate. The initial decay rate $; and (§, are
hyperparameters that can be tuned. For simplicity only 8; is tuned. The values considered for a and
B, are presented in Table 6.8.

Epochs The number of epochs of the neural network indicates how many times the entire training
dataset has been passed through the network. Since the network learns through gradient descent, and
since the method is iterative, updating the weights and biases using one epoch is not enough. Using
one epoch would lead to underfitting, and more complex trends in the data would not be captured by
the neural network. However, using a number of epochs that is more than necessary, will lead the
neural network to learn patterns that are specific to the training dataset. This makes the network lose
generalization capacity by overfitting the training data, and will result in a poor accuracy on new data.
Therefore, tuning the number of epochs is a valuable hyperparameter that is able to provide the neural
network with enough passes of training data to find better weights and biases.

Batch size The entire training dataset can not be processed by the neural network in one pass, instead
the data is divided into batches. The batch size effects the gradient step size, and therefore affects
the learning process of the neural network. Namely, when the error gradient is estimated using one
of the optimizers, using a larger batch size will likely allow the optimizer to find a more accurate error
gradient. Consequently, the weights and biases can be shifted more accurately as well. This improved
accuracy comes at the cost of additional computation, as more predictions are made per update-step
of the weights and biases. Reducing the batch size will lead to faster computation but less accurate
updates. However, more updates could be computed in the time it takes for larger batches to compute.
By increasing the number of epochs for instance and lowering the batch size accurate results can still
be achieved. However, in practise larger batch sizes often lead to better results. The chosen batch
size in this research is 32, which is the default batch size for NN python packages.

6.6.3. Recurrent neural network

A recurrent neural network (RNN) is a type of ANN which uses sequential data as input, time-series
data for instance. Within the RNN the internal state of the hidden layer is recurrently updated, and
information from one time-step is passed on the next time-step. The computational flow diagram that
illustrates this principle can be seen in Figure 6.22. Initially, the first datapoint from the sequence is
fed into the network, it is multiplied by a set of weights w,. The state of the hidden cell h;, which is the
state of the hidden layer for a particular datapoint at time t in the sequence, is calculated with:

ht = tanh(tht_l + Wlxt), (626)

where w, is the set of weights applied on the connections between hidden cells and their neurons, and
x; the input datapoint in the sequence at time t. So the hidden layer is recurrently updating itself using
the datapoint at a particular time-step of the input sequence and the internal state of the hidden layer of
the previous time-step. The activation function tanh is default for basic recurrent neural networks. Once
all datapoints of the sequence have been processed the output can be estimated used the formula:

Vu =wzhey, (6.27)

where ¥, is the set of predicted shaft speed in range [t, t + A*] at recurrence step n, and w; the set of
weights applied on the connections between the neurons of the hidden layer and the output layer. At
each recurrence step the output y,, is computed and evaluated in the loss function.
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Similarly to the ANN, backpropagation is used in RNN models to allow the network to learn, by
taking the gradient of the loss function with respect to weights and biases in the system and shifting
them to minimize the loss function. The difference, however, is that there is now backpropagation
through time. The effects of the weights on the loss function now backtrack through numerous hidden
cell update steps. These update steps, as shown in Equation 6.26, all involve a non-linear activation
function, and each hidden cell update increases the multiplicity of the set of weights. This introduces
some problems of vanishing and exploding gradients. Namely, for larger sequences, where there are
a larger amount of hidden cell update steps, the multiplicity of the backpropagation procedure leads
the gradient to converge to zero or explode to large numbers. In either case the learning ability of the
system is lost, since the gradients no longer capture accurately which weights and biases should be
shifted.

I

Hidden cell » Hidden cell »| Hidden cell — Hidden cell
ht—A_ hr ht—2

3F 2

Backpropagation through time:

<
<

Figure 6.22: Computational flow diagram of a recurrent neural network.

To solve this problem alternate RNN models were developed such as long-short term memory
(LSTM) and gated recurrent unit (GRU). For the purpose of this research LSTM was employed as
some testing on the network showed that LSTM outperforms the GRU. An LSTM network has four ba-
sic operations it performs per recurrent update computation, namely forget, store, update and output.
The graphical representation of a LSTM hidden cell is shown in Figure 6.23.
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Figure 6.23: A graphical representation of a gates and operations in a LSTM cell.

The first step in the LSTM hidden cell, the forget step, is to decide what information is going to
be discarded from the self state. This is represented by function, f;, and is a function of the previous
state h,_, and input X;. Therefore, it can decide which data is relevant from both the input data as
well as the previous hidden state. The second step of the LSTM is to decide which of the new data is
relevant, and should be stored to the self state of the hidden cell, denoted by i;. The third step is to
selectively update the cell state, denoted by c;, using the previous cell state c;_; and the new data that
was selected in step two. And finally, step four is to provide an output, ;. The output gate controls
what information that is encoded in the self-state, is used as input to the next time-step, and send to
the output layer. Throughout each of these four steps, various non-linear activation functions are used
in order to capture the complexities of the data and to capably adapt to it. And through these dynamic
actions of forgetting, storing and updating, the gradients can be prevented from exploding or vanishing,
allowing the system to learn from larger data sequences as well as during more epochs.

Many of the parameters that are required to initialize and define a recurrent neural network are the
same as the ones discussed for an ANN. To restate, these are: the number of neurons in the hidden
layer, the number of hidden layers, the type of activation functions, the weight initialization matrix of the
network, the type of gradient descent optimizer, learning rate and momentum of the optimizer, number
of epochs and batch size. Since the RNN deals with data sequences, and can predict A™ seconds into
the future, two additional hyperparameters to be tuned are A* and A~. The tuning of these parameters
will show the optimal data sequence with range [t — A™, t — 1], to provide the network with optimal
accuracy in predicting shaft power P, at time-steps [t, t + A*].

6.6.4. RNN Results

Below, in Table 6.8, the hyperparameters ranges for the RNN model selection are presented. The
optimal solution found is presented in grey. Obviously, the optimal results are found for a small A* as it
is easier to predict the future shaft power demand a few seconds than a few minutes. The best model
performance is achieved with a larger data sequence [t —A~, t — 1]. Only 3 epochs were used in order
to cut down on computation times, since run time increases proportionally to the number of epochs.
Additionally, the decay rate was also not tuned, as it proved to be an insensitive setting in the model
selection process.
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Figure 6.24: Mean absolute percentage error for the recurrent neural network.

Hyperparameter Evaluated values

A" [s] 3 9 15 30 60 90 120
A~ [s] 3 9 15 30 90 180 360
Neurons n 25 50 100 200
Learning rate a 0.001 0.01 0.1
Decay rate ; 0.75

Optimizer Adaptive moment optimization (Adam)
Epochs 3

Table 6.8: Evaluated hyperparameters for the RNN model and optimal solution (in grey), validated through 3-fold
cross-validation.

Higher number of epochs can lead to better model performance. To ascertain an approximation of
a valid number of epochs that does not overfit the data, the loss of the prediction model with optimal
settings from Table 6.8, is plotted for training and validation data. From this it can be deduced that the
optimal epochs is 10, for this number the model does not overfit the training data.

In Figure 6.24 the mean absolute percentage error (MAPE) can be seen for various A*. Assuming
5% MAPE is the maximum allowable percentage error, it can be seen that 48 seconds in the future can
be forecasted with an acceptable error, with the RNN. Optimal settings for A=, number of neurons n,
and learning rate a, were found for each respective A*. Unlike the linear regression, moving average
and ARIMA, the MAPE value for the RNN is computed over the set of predictions [¢, t + A*], rather than
over singular predictions at timestep t + A*. This is done because the RNN model is specifically trained
to optimize for output window [t, t + A*]. Whereas the univariate methods are regression methods, that
neglect to take into account how well the fitted model might work on future data samples. Therefore,
a MAPE that falls within the bounds of 5% for RNN, does not guarantee that at each timestep in data
range [t, t + A*] the MAPE value is below 5%.

Below, in Table 6.9, the relationship between A* and A~ is shown in tabular form. It shows that the
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MAPE values increase for larger prediction horizons, which is to be expected. Additionally, it shows
that it is not clear what the optimal data sequence [t — A™,t — 1] is; For different prediction horizons,
different data sequence lengths are optimal. For the selected A* = 48 [s], the optimal data sequence
is one with A~ = 180 [s]. For this combination the remainder of the results are presented.

+
Il 9 15 30 60 90 120
A™ [s]

15 146 197 246 3.67 6.62 9.13 13.58
30 141 204 280 444 6.22 8.83 1265
90 1.78 233 289 436 649 952 13.94
180 137 221 258 399 6.70 899 12.80
360 141 280 275 397 6.36 9.28 11.65

Table 6.9: MAPE [%] of the proposed model for different combinations of A~ and A*.

For A* = 48[s], the results are shown in Figure 6.25, Figure 6.26, and Table 6.10.. The results
are computed on the test data. As is evident, the MAPE value is not below 5% on the test data, this
means the model performed worse on the test data than on the validation data. Figure 6.25 shows the
distribution of actual shaft power, a scatter plot (actual versus predicted), and the relative frequency
distribution of the absolute errors. From the scatter-plot it can be seen that there are a few tight clusters
close to the optimal solution line. However, there are outliers far from the optimal solution. These
outliers are a product of a larger data sequence used. The larger data sequence (large A™) causes an
increased chance of a shaft power shift to be contained in the data sequence. The shaft power shift is
when the ship operator sets a different shaft speed setpoint from one moment to the next. When this
happens the RNN is not able to predict the shaft power accurately. As can be seen from the relative
frequency distribution of the absolute percentage errors, the errors are most frequently close to zero.
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Figure 6.25: Distribution of actual shaft power, scatter plot (actual versus predicted), and relative frequency distribution of AE.
Results are for A* = 48 [s], with A~ = 180 [s]. n = 5000 samples.

Figure 6.26 shows a trend in time predicted with the RNN 48 seconds in the future. It can be seen
that the trend is clearly followed by the prediction method. The RMSE, MAE, MAPE and R? values for
the RNN are shown in Table 6.10. The MAE of 90 kW is higher than for the other prediction methods,
which is also supported by the fact that the MAPE value is 6.539% which is a bit higher than the
allowable MAPE. This is because a good performance of the RNN on the validation, even though k-
fold-cross-validation is used, does not guarantee the same performance on the test data. Regardless,
a MAE of 90 kW is not bad compared to a maximum shaft power of 5400 kW. The R?, shows a nice
value of 0.960, which indicates a high goodness of fit between the predicted and actual shaft power

values.

RMSE

MAE

MAPE R?

296.307 90.681 + 5484 6.539

0.960

Table 6.10: RMSE [kW], MAE [kW], MAPE [%], and R? [-]. Results are for A* = 48 [s], with A~ = 180 [s].

54



2023.MME.8764 6. Power load forecasting model

Trend in time predicted predicted with A+ = 48 [g]

Shaft power - scaled

e RNN
Actual shaft power
1 1 | 1
0 10 20 30
Time [min]

BN

Figure 6.26: A section of the trend in time (actual versus predicted) shaft power. Results are for A* = 48 [s], with A~ = 180 [s].

6.7. Conclusion

As a point of comparison Figure 6.27 summarizes the performance of the four methods: Linear regres-
sion, moving average, ARIMA, and RNN. It shows the MAPE over an increasing prediction horizon. It
nicely highlights that the RNN outperforms the other methods, and is able to predict further in the future
while maintaining a MAPE of under 5%.

Table 6.11 shows the comparison of the four methods in terms of prediction horizon length, RMSE,
MAE and MAPE. The variance in MAE can be explained by the test data that they utilized. If the test
data contains more datapoints where the shaft power is lower, for instance during electric mode of
the vessel, than the MAE is bound to be lower as well. Therefore, the MAPE is a better measure of
comparison here, as it looks at the percentage errors.
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Figure 6.27: Mean absolute percentage error for the linear regression, moving average, ARIMA, and recurrent neural network.

In Figure 6.28 the trends in time for the four prediction methods are shown. It highlights the di-
vergence of the ARIMA methods. It also shows that the RNN comparatively performs worse than the
linear regression and moving average in this particular example. This example is chosen since it is
a particularly variable load demand, compared to the operational profiles shown in Figure 3.3. This
means that RNN is a less reliable prediction method with more varying data. Although overall the RNN
outperforms the others methods in accuracy and prediction interval size.

Shaft power - scaled

Comparison of methods for a variable load demand

—me Linear regression

-———— Moving average
ARIMA

e RNN e
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| | |

10 20 30
Time [min]

Figure 6.28: A section of the trend in time (actual versus predicted) shaft power. Prediction methods: Linear regression,

Moving average, ARIMA and RNN.
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Method A* [s] RMSE [kW] MAE [kW] MAPE [%]

Linear regression 18 241.394 40.466 £ 3.370  4.251
Moving average 27 228.842 54608 + 2.345 4.673
ARIMA 3 268.944 72.073 £ 11.365 3.276
RNN 48 296.307 90.681 + 5.484  6.539

Table 6.11: Comparison of methods: RMSE, MAE, and MAPE.

Research question 3 is "What is an effective data driven model for power load forecasting with a
prediction horizon of two minutes while maintaining high levels of accuracy, given the data set of the
Holland-class offshore patrol vessel?”

The data used to make predictions was real data containing high and irregular variance caused
by measurement noise. Additionally, very few data features were made available by Damen of the
Holland-class offshore patrol vessel. Given these facts, it was not possible to maintain a high accuracy
for a prediction horizon of two minutes. The RNN has the largest prediction horizon of 48 seconds
while maintaining a MAPE of under 5%. If higher levels of error would be acceptable, than RNN is still
the best option to pursue, as can be seen in Figure 6.27. Therefore, the RNN has been selected as
the power load forecasting tool of the energy management system.
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In this chapter the optimization-based controller and the integration of the controller and load prediction
tool into a complete energy management tool are presented. This pertains to research question 4. For
convenience the research question is stated below. Question 4a, 4b and 4c are answered in section 7.2.
Due to time constraints of the project question 4d, dealing with disturbance rejection will be left out. In
section 7.5 question 4e is elaborated.

Research question 4: What is an effective controller design given the selected energy management
strategy (RQ1), powertrain model (RQ2), and data-driven power load forecasting model (RQ3), that is
able to reduce energy consumption & emissions and prescribe power allocation in real-time?

(a) What should be the input vector ¥ , output vector ¥, control vector % and disturbance vector d of
the system?

(b) Whatis an objective function for the controller that is able to a) find an optimal power split between
mechanical and electric drive, b) find an optimal split between diesel generators and battery, and
c¢) reduce energy consumption?

(c) What are appropriate constraints for the states, outputs, control variables, and disturbances of
the system, with respect to accomplishing EMS goals and KPI performance?

(d) What is the performance of the model evaluated with selected KPI (RQ1.3)?

First the internal model of the controller will be discussed in section 7.1. The internal model of the
controller describes a simplified model of the powertrain components such as the diesel engines, induc-
tion machines, diesel-generator sets and the battery. Each of these components is described by their
respective fuel consumption, power and torque relationships and power or conversion losses. Second,
the optimization problem formulation is given in section 7.2. This includes the objective function and
constraints. In ?? the model selection is discussed. This involves a brief description of the nature of
the optimization problem and the effects when choosing appropriate optimization algorithms. In the
model verification, in section 7.4, some tests are performed in order to verify the correctness of the
implemented model. Finally, the results are discussed in section 7.5.

7.1. Internal model controller
Due to confidentiality of the used engine fuel maps in this project, typical representative maps are
shown in this chapter rather than the real ones.

7.1.1. Diesel engine

The diesel engine in the internal model of the controller is presented by a fuel efficiency map. An
example of such a map is shown in Figure 7.1. Based on an operator set-point for vessel speed,
at each timestep, the engine speed is derived. Given the determined engine speed, the relationship
between power and specific fuel consumption (sfc) for that engine speed is fed to the controller.
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Figure 7.1: Specific fuel consumption of a typical high speed engine. Image retrieved from [39].

The bold bounds in the fuel map show the operating envelope of an engine. The selected power
of the controller, given the determined engine speed, must fall within the operating envelope. This
is ensured by feeding the power-sfc relationship to the controller only for datapoints within the oper-
ating envelope. The fuel consumption rate, 7 pp in g/timestep, is calculated using the specific fuel
consumption, sfcpg in g/kWh, and engine power, P, in kKW:

. sfcpg - Ppp - At
iy, pp (K) =~ (7.1)

with At in seconds, and k the timestep. The diesel engine power P, is a decision variable of the
controller.

7.1.2. Induction machine

Similarly to the diesel engine, the induction machine is represented by a torque-speed efficiency map.
The speed setpoint for the induction machine is derived from the operator setpoint of vessel speed.
Then, a cross-section of the efficiency map, given the speed setpoint, is fed to the controller, taking
into account the operating envelope.
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Figure 7.2: The torque-speed efficiency map for the induction machine.

The torque setpoint of the induction machine is a decision variable of the controller. The relationship
between induction machine power, Py, and torque Ty s¢; is given by:

nsp (k)

igp
where ng, is the shaft speed, and i;z the gearbox ratio. The fuel consumption associated with the
induction machine is calculated through the diesel generator or battery, as these two sources provide
the energy to the induction machine. The induction machine therefore only has an indirect effect on
fuel consumption.

P (k) = 27TT1M,set(k) , (7.2)

7.1.3. Diesel generator

The power that should be delivered by the diesel generator, Ppg ¢o¢ ¢ is the sum of the power demand
of the two induction machines P,,, the auxiliary power P,,, and the battery power Py . Note that
the battery power can be both positive and negative depending on whether the battery is charging or
discharging. Mathematically this is described as:

2Py (k)
mm (k) ’
where 71,y is the corresponding efficiency to the setpoint of the power of the induction machine at
a certain speed setpoint. In case of a positive Pg,r the battery is discharging, and therefore, the
diesel generator has to supply less power to the system. The diesel generator is represented to the
controller by a power-sfc relationship similarly to the diesel engine described previously. The difference
is, however, that the speed of the diesel generator-set is considered constant, and does not fluctuate
with the speed of the ship, graphically this relationship is shown in Figure 7.3. The fuel consumption
rate of each of the three generator-sets can be described as:

PDG,tot,d (k) = _PBAT, set (k) + Paux (k) + (7.3)

SfCDGi : PDGl' - At
3600

The three diesel generator-sets should supply the energy demanded by the system. Therefore, the
energy supplied by the diesel generator, Ppg ¢, s is Simply:

iy pg, (k) = ,i€[1,3]. (7.4)

3
Posioes(0) = ) Pog, , i € [1,3]. (7.5)
k=1

The supply should equal the demand: Ppg ¢ors(k) = Ppg ror.a(k), this is @ non-linear constraint.
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Figure 7.3: Specific fuel consumption curve for the diesel generator-set.
7.1.4. Battery

The current of the battery, Iz,r, is a decision variable of the controller. The current is related to the
battery power, Py, in kW, as follows:

Pear (k) = Viine V3. fp Agar(k), (7.6)

where V;, is a constant line voltage, and f,, a power factor that relates real power to apparent power,
for the purposes of this project it is assumed constant at f,, = 0.8. To account for the cost of discharging
the battery and using the energy, an equivalent specific fuel consumption (ESFC) graph is constructed.
This graph represents the associated specific fuel consumption of each power setpoint of the battery.
Of course, the battery does not in reality have an associated specific fuel consumption point. The ESFC
is merely a tool to incentivize or disincentivize the use of the battery over the diesel generator. When
the diesel generator is operating at a sub-optimal setpoint, there are two options, namely: a) Increase
the load on the diesel generators to push the generators in a more favorable operating setpoint, while
charging the battery. b) Decrease the diesel generator setpoint to a more favorable setpoint, while
discharging the battery. In the second case, the setpoint for one of the diesel generators is pushed to
0. Since only partially lowering the load on the diesel generator would create a less optimal setpoint,
as indicated in Figure 7.3.

In order to incentivize the battery discharging when the sfc of the generator-set is high, and incen-
tivize charging when the sfc of the generator-set is low, the ESFC of the battery should be the inverse
of the sfc graph of the generator set. This is graphically represented in Figure 7.4. Because the oper-
ating envelope of the battery is 400 kW, it is only able to cover roughly 40% of the power of one diesel
generator-set, which is about 1000 kW. With a more powerful battery with faster discharging capabili-
ties would lead to a more advantageous energy management system; the battery has more versatility
in taking over the job of the diesel-generator sets. With this limited battery capacity limited gains can

be achieved. As mentioned in the literature review chapter, [19] determined that the fuel consumption
savings are partially proportional to the battery capacity.
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Figure 7.4: Artificial equivalent specific fuel consumption of the battery for discharging mode.

Note that Figure 7.4 only shows the discharging mode, charging mode is an identical but mirrored
graph. The complete operating envelope of the battery is shown in Figure 7.5.

To further enhance the performance of the energy management system through this artificial equiv-
alent specific fuel consumption the graph can be fine-tuned to show favorable behaviour. For instance,
if shore-charging is the preferred method of charging the battery then the ESFC map can be made to
be ’estimated time of arrival (ETA)’ dependant; incentivizing discharge of the battery when the ship is
known to arrive at shore soon, and disincentivizing charging when close to shore. the ESFC can also
be state of charge dependant, where the charging and discharging becomes a function of the SOC of
the battery. Additionally, it would be possible to make the ESFC load prediction dependant as well;
For instance, if lower shaft loads are expected in the future, it is more likely that battery is to be used
in those moments, so in the near future it might then be worthwhile to incentivize charging the battery.

These more advanced ESFC for the battery are outside the scope of this project, but provide a valuable
and interesting avenue to explore in the future.

In the scope of this project the ESFC will be tuned for a specific operational profile. This is discussed
further in section 7.3.
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Figure 7.5: Artificial equivalent specific fuel consumption of the battery pack. The complete operating envelope.

The battery fuel consumption can be computed with a string of efficiencies and the ESFC [11]:

sfepar(k) - Ppar(k) - At
(Mpar - Nfc)S9"Poat)

where, ng4r and 7y are the efficiencies of the battery and the frequency converter respectively. ng,r
is battery power dependant, whereas 7. is assumed a constant. The state of charge of the battery is
estimated using the coulomb-counting method:

mf,BAT (k) = (7-7)

At
S0C(k) = SOC(k — 1) —f w (7.8)
0

where Q is the capacity of the battery.

7.2. Optimization problem formulation

Since the equivalent fuel consumption for the battery was introduced the optimization problem is an
equivalent consumption minimization strategy (ECMS). The objective function of an ECMS is simply the
summation of the sources of fuel consumption, as can be seen below. The objective function is subject
to system dynamics: Equation 7.10 until Equation 7.20, constraints: Equation 7.21 until Equation 7.30,
and boundary conditions: Equation 7.33 until Equation 7.35. The operating envelopes of the engines
maps are also constraints, but have been omitted in the description below as they are taken into account
as described previously. The state variables, X(k), are:

Ppg (k)
Pp 7 (k)
X(k) =| SoC(k)
(k)
Psh,re f (k)
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The output variables, y(k), are:

Pog (K)
7(k) = |SOC (k)
ity (k)

The control variables, % (k), are:

Ty set (k)
Iparset(k)
Ppg,1(k)
Ppg 2 (k)
Ppg,3(k)

Timsec(k + N)
Iparset(k + N)
Ppg(k + N)
Ppg2(k + N)
| Ppg3(k+N) |

u(k) =

The objective function of the problem formulation is:

N
min | = me(k 7.9
s.t.:
2 3
titg (K) = )t () + Yt (K) + 1ty ar () (7.10)
i=1 i=1
. _ sfegar(k) - Ppar(k) - At
mypar (k) = ar - 172) 597 Poa) (7.11)
. Sfepe; - Ppgyset - A
e pg, (k) = eoo.——  LEL3L (7.12)
sfcpg, - Ppg. + At
g g, () = L2 o By gy (7.13)

3600

The total reference shaft power ﬁsh‘ref is equal to the sum of the power of the induction machine
and power of the diesel engine. It is assumed that both portside and starboard share the same power
requirements.

p;h,ref(k) = Py (k) + Ppg(k) (7.14)
ngp (k)

Pun (k) = 20Tiagsee ()= (7.15)

Ppg tot,s(k) = Ppga(k) + Ppg,2(k) + Ppg 3(k) (7.16)
_ 2Py (k)

Ppg tot,a(k) = —Pgar (k) + Payx + (7.17)
Nim (k)

PDG,tot,d (k) = PDG,tot,s(k) (7.18)

Ppar (k) = V3lpar,set () Viiefy (7.19)
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TIM,min(k) < TIM,set(k) = TIM,max(k)

Ibat,min(soc(k)) < Ibat,set(k) < Ibat,max(SOC(k))

Ppgmin < Ppg1(k) < Ppgmax
Ppemin < Ppg2(k) < Ppgmax

Ppgmin < Ppe3(K) < Ppgmax

TIM,min(k + N) < TIM,set(k + N) < TIM,max(k + N)
Ibat,min(SOC(k + N)) < Ibat,set(k + N) < Ibat,max(SOC(k + N))

Ppgmin < Ppg1(k + N) < Ppgmax
Ppgmin < Ppg2(k + N) < Ppgmax
PDG,min < PDG,3(k + N) < PDG,max

Operation of Iz, between 0 and 0.5 indicates charging the battery and between 0.5 and 1 dis-

charging operation.

0.5
Ig 47 min (SOC(K)) = { 0

I 7.max (SOC(K)) = { 0o

Rl
%

0
0
0

sl <l
\Y

v

if SOC(k) > 0.8
if SOC(k) < 0.8

if SOC(k) < 0.2
if SOC(k) > 0.2

(7.20)

(7.21)
(7.22)
(7.23)
(7.24)
(7.25)

(7.26)
(7.27)
(7.28)
(7.29)
(7.30)

(7.31)

(7.32)

(7.33)
(7.34)
(7.35)

Note that the goal of reducing fuel consumption is enforced through the objective function, the
reduction of CO2 emissions is assumed to occur through the reduction of fuel consumption as well.
Propulsion availability is ensured through constraint described in Equation 7.18, which equates the
demanded power with the supplied power. Finally, a secondary goal of the control formulation is to
increase the battery lifetime by keeping state of charge of the battery between 20% and 80%, this is

enforced through constraints described in Equation 7.31 and Equation 7.32.
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For convenience the variables and their description have been listed below in summary.

Eh_ref (k) : Total shaft power load reference value
(k) : Total fuel rate consumption

g pg, (t) : Fuel consumption rate of diesel engine i
Mg pg, (t) - Fuel consumption rate of diesel generator i
Mg par(t) : Fuel consumption rate of the battery.
Ppe ot (k) : Total power of the diesel generator-sets

Py (k) @ Induction machine power

Ppg, (k) : Diesel generator-set i, setpoint

Ppg, (k) : Power of diesel engine i

Tim set (k) : Torque set-point for the induction machines.
n;u (k) : Rotational frequency of the induction machines
Pgar(k) : Battery power

P, : Total auxiliary power, a constant

Py (k) = Current power of the induction machines
Iparset (k) : Current set-point for the battery

Viine - line voltage of the system, a constant

fp : power factor, a constant

SOC(k) : State of charge of the battery

IgaT min - Minimum current of the battery

IpaT max - Maximum current of the battery

sfcgar - Equivalent specific fuel consumption battery
sfepg, « Specific fuel consumption diesel engine i

sfepg, - Specific fuel consumption diesel generator i
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7.2.1. Nature of the optimization problem

The optimisation problem can be classified as a non-linear programming problem (NLP). NLP have
the characteristic that their solution time increases exponentially with the number of dimensions of the
problem [60]. This indicates that for increasing prediction horizon the solution time increases exponen-
tially, as the decision variables increase linearly with the size of the prediction horizon. For a prediction
horizon of 48 seconds, which is the maximum feasible prediction horizon with the RNN, there are 16
prediction steps with 5 decision variables at each step, thus 80 decision variables. It is clear that this
is a slow optimization problem.

There are three options to deal with this problem practically. (1) Rather than optimize for each
timestep in the prediction horizon only a few timesteps should be considered. For instance at time [t,
t+12, t+24, t+36, t+48]. (2) Alternatively, rather than re-optimize every timestep (3 seconds), one could
optimize once every 30 seconds or once every minute. (3) Finally, rather than work with a moving
horizon, the solutions found for each timestep in the 48 second window can be used to operate the
ship for 48 seconds. Then, the next optimization solution has an allowable computation time of 48
seconds. In this case, however, one is operating the ship with relatively outdated information. Once the
optimization starts it takes 48 seconds to be implemented, and then 48 seconds to execute, therefore
much more relevant data might be available in the meantime. Therefore, the preferred solution is either
of the first two options. The selection of the preferred solution is made based on computation times of
the optimizer. This is done in the subsequent sections.

The optimization problem is tackled using a multi-start procedure. The multi-start procedure strate-
gically samples the solution space. Each sample is used as a starting point for the solvers to find a
local, or preferred, global minimum. Then, the most optimal solution of the multiple starts is selected.
The starting points selected in this project were chosen between the upper and lower bounds on the
decision variables. These bounds are presented in Equation 7.21 until Equation 7.30. First, given the
upper and lower bounds, combinations of the lower and upper bound limits for the decision variables
were used as starting positions. Secondly, starting positions between the upper and lower bounds are
used; The starting positions are in the middle of the solution space. Thirdly, given the limited amount
of probable optimal scenarios, analytically the setpoints for the scenarios were computed and used as
starting points also. Two examples of the scenarios include: (1) Diesel engine takes care of the propul-
sive power demand, induction machine is turned off, diesel generator supplies the electrical power
required by the hotel loads, and the battery is off. (2) Induction machines take care of the propulsive
power demand, Diesel engines are turned off, diesel generator supplies the electrical power required by
the hotel loads and the induction machines, and the battery supplies power as well, pushing the diesel
generator setpoint of one of the diesel-generators to zero. Multiple of the scenarios can be thought out,
and the corresponding setpoints to these scenarios can be analytically calculated. These scenarios
do not necessarily start in feasible solution space. If the starting point did not converge to a feasible
solution, the solution is discarded. Fourthly, the optimal solution to the previous timestep is also used
as a starting point.

Initially over a 100 starting positions were utilized, however, this led to very large solving times.
Upon further review, the number of starting points were reduced to 15. These 15 starting points still
converged to the global minimum in the test cases performed. The starting points used are the same
for all the evaluated solvers below.

7.2.2. Solver selection

The solvers considered in this project are sequential quadratic programming (SQP), SQP-legacy, active-
set method, and interior-point. SQP is an iterative method for constraint non-linear optimization. SQP
methods first transform the constraints into linearized versions and the optimization problem into sub-
problems each of which becomes a quadratic model [61]. This is mathematically shown below, where
an optimization problem such as:

minimize f(x)

over x €R"

subject to h(x) =0
g(x) <0,

is transformed into:
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c e T 1
minimize VF (x*) d(x) + Ed(x)TBkd(x)
over d(x) € R"
subject to () + Vh(x%) dx)y=0

g (x*) + Vg (x")T d(x) <0

where B, is a function of the hessian of f(x). The benefit of SQP methods are the fact that they
can deal with non-linear constraints and optimization problems easily. The SQP-legacy method is a
MATLAB interpretation of the SQP method where a more refined stepsize is used. This may lead to
more accurate, but slower solution. Active-set methods transform inequality constraints into simpler
equality constraint sub-problems. The SQP method also uses an active-set implicitly to try and solve
the quadratic problem (QP) using the active set of the previous QP sub-problem. The interested reader
is referred to [61].

The interior-point (IP) method is a method that can solve linear and non-linear convex problems.
The IP method moves from one point to the next in feasible solution space. The interior-point method
employs barrier functions that augments the objective function to ensure violations of inequality con-
straints are not possible. This barrier function thus ensures that the optimal solution falls in feasible
solution space.

Below in Table 7.1 the results are presented to implementation of the four algorithms that have been
applied to operational profile 7 shown in Figure 3.3. The results are shown for a prediction horizon of
one timestep. For comparison, the algorithms have also been tested on more complex solution spaces
with a prediction horizon of 5 timestep (thus 25 setpoints). These results are shown in Table 7.2.

Algorithm Total fuel Average fc per Average solving
consumption [kg] timestep [kg] time per timestep [s]

Sequential Quadratic Programming (SQP) 1285.117 0.535 1.292

SQP-legacy (SQPL) 1285.117 0.535 1.435

Active-set (AS) 1260.291 0.525 1.844

Interior-point (IP) 1293.861 0.539 2.629

Table 7.1: Comparison of algorithms for non-linear optimization, for 1 timestep, and 5 decision variables.

Algorithm Total fuel Average fc per Average solving
consumption [kg] timestep [kg] time per timestep [s]

Sequential Quadratic Programming (SQP) 1253.549 538.929 51.701

SQP-legacy (SQPL) 1324.343 569.365 56.259

Active-set (AS) 1297.750 557.932 53.127

Interior-point (IP) 1463.113 629.025 66.834

Table 7.2: Comparison of algorithms for non-linear optimization, for 5 timestep, and 25 decision variables.

From the results we can see that SQP is the fastest method. For a single timestep horizon the
AS method produces the best results in terms of minimizing fuel consumption. However, when the
prediction horizon is increased the SQP shows the best results. What can also be noted is that the
computational time of a single timestep is already 1.3 seconds. If at every timestep, so every 3 sec-
onds, the controller is to complete an optimization procedure than just 1 timestep can be predicted.
Therefore, in order to predict over a time horizon of 48 seconds and still use real-time optimization.
Solution (1) and (2) described in the previous section will be used; (1) For the prediction horizon of 48
seconds the steps [t, t+24, t+48] will be predicted using the RNN, and these timesteps will be optimized
for with the controller. (2) Since the prediction of 3 timesteps takes on average 20 seconds, every 30
seconds the controller will initiate a new optimization procedure as a moving horizon. These solving
times are estimated based on the computational power of the researchers personal laptop. With par-
allel computing and more powerful processors the optimization procedures can be sped up, and more
complex problems can be considered.
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7.3. Battery equivalent specific fuel consumption

The operational profiles in Figure 3.3 are all around two hours. The ESFC map of the battery will be
fine-tuned to be optimized for a 2 hour operating profile, namely, operating profile 7. This operational
profile is chosen as is has a nice balance between electric mode and hybrid mode and will therefore be
most illustrative. Note that the fine-tuning of the ESFC is a complex task, and as previously mentioned,
the ESFC can be made to be ETA dependant, SOC dependant, and predicted shaft power demand
dependant. Here, only the optimal energy consumption over a 2 hour profile is taken into account; the
ESFC is tuned specifically to reduce energy cost over the operating profile.
In order to fine-tune the ESFC map two operations are performed on the map shown in Figure 7.5:
(1) the map will be shifted higher or lower to have a minimum in range [0,227], and (2) the map will
have a maximum value in range [235, 735]. The first operation determined how much the discharging
of the battery is incentivized. The diesel generator-set has a sfc minimum value of 197. Therefore,
the range was chosen around this value. The second operation is to fine-tune the incentive to charge
the battery. For very high peaks, the optimizer will always elect to charge the battery, if the constraints
allow it. Visually the two operations and their ranges are shown in Figure 7.6. The maximum range is
denoted by C;, and the shifting range is denoted by C,. These two variables are control parameters
that have mapped the ranges mentioned above in range [0,1]. For instance, C; = 0 corresponds to a
cap of 235, C; = 0.33 to 400, C; = 0.66 to 565 and C; = 1 to 735. Similarly, C, = 0 corresponds to a

minimum of 0, C, = 0.33 to 75, C, = 0.66 to 150, and C, = 1 to a minimum of 227. These values are
in grams per kilowatt hour.
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Figure 7.6: Fine-tuning of the ESFC for the battery, showing the two applied shifts.

The results to the tuning procedure are shown in tabular form in Table 7.3. The table shows for
each set of evaluated control parameters the total fuel consumption of the main engines and diesel-
generator sets over a period of 2 hours. At the start of the simulation the state of charge of the battery
is 1, indicating it is completely charged. The table shows the final state of charge of the battery at the
end of the 2 hour period. This drop in state of charge is assigned an equivalent fuel consumption cost.
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The calculation is done by considering how much it would have cost to charge to battery initially with
a diesel generator at its most optimal setpoint. Then, the difference between a fully charged battery
and SOC;,, , is multiplied by this cost to indicate the equivalent cost. Finally, the equivalent cost of the
battery and total fuel consumption by the engines are summed and converted to the total energy cost
of the 2 hour operation. It is assumed that each calorific value of the diesel fuel is 43 MJ/kg of fuel [62].

It can be noted from Table 7.3 that the total energy spent is almost the same for whichever setting
of the battery, the difference between minimum and maximum total energy is 0.3 GJ which is a 0.34%
difference in energy usage. This is because the battery capacity is tiny compared to total power required
by the system. It is interesting to note that the setting ¢; = 0 and C, = 0 is the setting that used
the battery the most, and is also the most optimal setting. These settings incentivized discharging
the battery (low minimum cost), while disincentivizing charging (low cap). This result resulted in a
significantly lower total fuel consumption by the engines. However, when compensating for the battery
cost, the energy cost savings are minimal. Since this is the optimal settings, these settings of the ESFC
are used for the simulations in the remainder of the research.

Control parameter

. Fuel consumption [kg] Energy battery Total energy
settings . . cost [GJ]

C; C, Main engines gteo sreslgtzne Total S0C,,, Sgsutl\[/sglﬁnt

0 1 1461.114 561.863 2022.977 0.976 1.925 87.071
0.33 1 1462.681 560.246 2022.926 0.976 1.934 87.069
0.66 1 1464.969 557.900 2022.869 0.975 1.946 87.067
1 1 1464.969 557.900 2022.869 0.976 1.930 87.066
0 0.66 1464.432 543.397 2007.829 0.800 15.820 87.017
0.33 0.66 1465.183 543.099 2008.283 0.800 15.812 87.036
0.66 0.66 1465.655 542.699 2008.354 0.800 15.820 87.039
1 0.66 1465.018 543.275 2008.294 0.799 15.849 87.038
0 0.33 1463.245 510.566 1973.811  0.362 50.403 87.041
0.33 0.33 1462.311 549.020 2011.331  0.799 15.860 87.169
0.66 0.33 1470.710 541.483 2012.193 0.800 15.839 87.205
1 0.33 1470.436 544.316 2014.752 0.800 15.839 87.315
0 0 1462.906 497.502 1960.408 0.200 63.198 87.015
033 0 1465.004 547.893 2012.897 0.799 15.853 87.236
066 O 1464.688 547.783 2012.471  0.799 15.881 87.219
1 0 1465.393 546.973 2012.367 0.800 15.807 87.211

Table 7.3: Effect of ESFC tuning on total energy cost.

For settings C; = 1 and C, = 0.66, the total energy cost is essentially identical for settings C; = 0
and C, = 0, even though for the former settings the battery is only used up for 20%. In this case the
battery is used until the constraint on SOC is satisfied: SOC between 20% and 80%. Afterwards the
battery is charged and discharged to maintain an 80% state of charge. This is highlighted in the SOC
trajectories shown in Figure 7.7.

The state of charge trajectory of the simulation with settings C; = 1 and C, = 0.33 nicely show that
having a high cap, works as an incentive to charge the battery. However, the optimizer is only able
to charge the battery up to 80%, as implemented through a constraint. Comparing SOC trajectories
oftheof C; = 0and €, = 033 and ¢; = 0 and C, = 0 it shows that the C, influence the rate of
discharge of the battery. It can therefore influence the slope of the SOC trajectory. It also highlights
that a more advanced ESFC tuning procedure would be valuable. For instance when ESFC is SOC
based the incentives change with the SOC, and the SOC trajectory would not be so linear. Therefore,
for implementation in real-life scenarios it is recommended to make more complex ESFC maps that
take into account the SOC, estimated time of arrival, or the long-term predicted shaft power demand.
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Figure 7.7: Simulation Results of ESFC tuning: SOC trajectories

7.4. Model verification

Some simple tests were performed to show model verification; it shows that the model has been im-
plemented correctly. The checks are presented in Table 7.4.

Nr. Test Expected outcome Result
. 2 . 3 . . .
2. mp(k) =X My pg, (k) + X521 My pg, (k) + 1f par (k) Equal!ty v/
3. Ppgrota(k) = Ppg ror,s (k) Equality 4
4. 0<S0Ck)<1 Bounded v
5. Correct non-linear constraint Ig s, . (k) & Igar,,,, (k) Bounded v
6.  Operating envelopes engines Bounded v
7.  Correct minimums found for prediction horizon of 1 timestep Conversion v

Table 7.4: verification tests performed on the controller.

These particular checks have been chosen to check the correctness of implementation of the system
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dynamics (tests 1-3), constraints (tests 4-6), and correct conversion to the optimal solution (test 7).
The results to tests 1-6 were verified graphically and numerically by tracking data during optimization
procedures and ensuring these system dynamics and constraints were adhered to. Test number 7 was
done by hand for various data points of various setpoints of shaft speed. Optimization could only be
verified for a prediction horizon of 1 timestep as the complexity of the verification increases rapidly with
increasing size of the prediction horizon. In Figure 8.2 it can be seen that the propulsive power demand
is always met by the sum of the induction machine and diesel engine power. Also the diesel generator
power and battery power always equate the requested electric power.

7.5. Conclusion

The controller is optimization based using an ECMS (determined in RQ1) and utilizes a power load
forecasting tool with RNN methodology (determined in RQ3). The controller designed in this chapter is
able to incorporate the use of the battery as an equivalent fuel consumption in the optimization problem.
The controller correctly provides the system with an optimal power split between induction machine and
diesel engines (Hybrid propulsion). It is also able to find an optimal split for the hybrid power supply;
between the battery and the diesel generator-sets. Due to implementation of constraints of the diesel
generator-sets individual setpoints for the generators are possible. Additionally, through constraints on
the SOC between 20% and 80% the battery is operating at a favourable setpoint, which could prolong
battery life. The energy management strategy is evaluated for fuel efficiency in the next chapter.
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Results & Discussion

In this chapter the performance of the energy management strategy is evaluated and discussed. Af-
terwards an analysis is given on the influence of the battery size on the total fuel savings.

8.1. Results

The results can be split into four comparative parts, namely:
» Optimization at every timestep for a prediction horizon of 3 seconds.
» Optimization using a trigger
» Optimization with ’perfect knowledge’, prediction horizon of 48 seconds with 3 timesteps.

» Optimization with shaft power predictions using RNN, prediction horizon of 48 seconds with 3
timesteps.

The first set of results are when optimizing at every timestep, and using those results for only 1
timestep. The second set of results use a trigger. The trigger tells the controller when a new optimization
cycle should begin, until it does, the last setpoints for the engines are maintained. The trigger used
in this project is a change in shaft power demand of more than 5% compared to the last optimization
cycle or a change in state of charge of more than 5% compared to the last optimization cycle. When
an optimization trigger is used it greatly diminishes the effect of the short-term prediction tool. This
is because the trigger works on a larger time-scale than the short-term predictions. So where the
predictions work in the order of seconds, the trigger works in the order of minutes.

The third set of results show the performance of the controller with a prediction horizon of 48 seconds
with acausal knowledge. The controller will have future knowledge on the shaft power in the present,
making this an acausal optimization. This resultis included as a comparison to the causal set of results.
And finally, the fourth set of results show the performance of the controller with a prediction horizon of
48 seconds using power load forecasting with the RNN described in the previous chapter. For the
methods using 48 seconds prediction horizon, 3 timesteps are optimized for, namely for t in range [t,
t+24, t+48]. For these simulations every 30 seconds a new optimization cycle is initiated. 30 seconds
is chosen in accordance with the computation times of the controller on the researcher’s laptop. This
way, the simulations can be considered as a real-time EMS.

The results in Table 8.1 show that the total energy cost for the four sets of results are almost the
same. This is not surprising as in all cases the exact same energy was demanded. So naturally, a very
similar amount of energy is going to be expended in order to deliver the required power. Two factors
are contributing to the fact that there are no energy cost reductions for the controller when using a
prediction horizon. (1) The prediction horizon is short-term, in the order of seconds. It is easy to see
that predictions of long-term trends in power demand, would allow the use of the battery to be far more
efficient. In those cases the battery can be charged when it is expected that the battery is going to
be needed in the future. Instead, battery charging and discharging for short-term load predictions is
purely decided on short-term trends. Given the variance in the data of the shaft power, the charging and
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discharging in the short-term becomes quite random. Also, since the control horizon of the controller is
not executed completely, but instead works with a receding horizon, sometimes sub-optimal setpoints
are used as decision variable setpoints. (2) The capacity of the battery, which is 400 kW, is very small
compared to the overall power demand. A larger battery capacity would allow more versatility in the
use of the battery; it could take over the function of the diesel generator-sets, rather than take over
40% of one diesel generator-set. The effect of the battery on fuel savings is discussed in detail in the
next section.

. . Fuel consumption [kg] Energy battery Total energy
Simulation . '
Mai . Diesel gene- Total soc Equivalent cost [GJ]
an engines  ator sets ota tena  cost [kg]

1 1462.906 497.502 1960.408 0.200 63.198 87.015
2 1487.794 473.122 1960.916 0.186 64.346 87.086
3 1521.679 470.425 1992.104 0.344 51.856 87.890
4 1516.185 478.354 1994.540 0.382 48.790 87.863

Table 8.1: Simulation results: fuel and energy consumption.

The triggered optimization (simulation 2), and the optimization for simulations with prediction horizon
(simulation 3 and 4), do not optimize at every timestep. This means that the shaft power demand at
each timestep is also not met exactly. This is nicely highlighted in Figure 8.3, Figure 8.4 and Figure 8.5.
Therefore, it is possible that the EMS is delivering slightly more or less power than demanded on the
timesteps where an optimization routine did not occur. The MAPE and Mean Percentage Error (MPE)
for the four simulations are shown in Table 8.2. It shows the percentage errors for these simulations.
A negative MPE indicates that an excess amount of energy was delivered on average. When the total
energy cost presented in Table 8.1 is adjusted for the excess delivered energy, the adjusted total energy
cost is calculated. This number merely indicates that had all the energy been delivered correctly at the
right times, a lower amount of energy would have been needed. Of course this number does not say
much, as the excess delivered energy was delivered at the wrong times. In the case of simulation 4,
which uses the RNN for shaft power demand forecasting, the prediction accuracy also play a role in
incorrectly delivered amount of energy, as the predicted shaft power demand is not exactly equal to the
actual desired shaft power.

Adjusted total

Simulation - MAPE [%]  MPE [%] oo cost [GJ]

1 0.00 0.00 87.015
2 1.08 -0.16 86.946
3 3.04 -0.62 87.345
4 5.65 -2.23 85.842

Table 8.2: Error values of the delivered versus requested total shaft power. Adjusted total energy cost based on the MPE.

The SOC trajectories of the four sets of results are shown in Figure 8.1. The trajectories indicate a
similar battery use in all simulation; The battery use is relatively cheap compared to the diesel gener-
ators, and is therefore used consistently. For simulation 3 and 4 occasionally the battery is charged.
For these cases given a control horizon of 48 seconds, charging the battery led to a lower objective
function value and was deemed the optimal solution. However, due to the short-term predictions, and
short-term control horizon of the controller, longer-term trends were not identified and taken into ac-
count, and an overall lower fuel consumption of the EMS could not be achieved in these simulations. It
should be noted that simulation 1 has better performance in part due to the ESFC tuning of the battery,
which was performed on this particular operational profile. Given more time in the project, it would have
been valuable to perform these simulations on a wide array of operational profiles, thus capturing more
accurately the true behaviour and power demand of the ship. Regardless, looking at the results of the
ESFC tuning, in Table 7.3, the total energy cost is lower for whichever setting of the ESFC, compared
to the simulations with the control horizon of 48 seconds. This means that the error in power delivery
when not optimizing every timestep is more dominant, compared to fuel savings by ESFC tuning. Given
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a larger battery capacity, the dominance of errors will shift to the ESFC tuning.
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Figure 8.1: SOC trajectories of the four simulations

In Figure 8.2, Figure 8.3, Figure 8.4 and Figure 8.5 the trajectories for the input (shaft power de-
mand) is shown, confronted with the indirect decision variables of induction machine power and diesel
engine power for the four simulations. The power of the machines are shown rather than the torque set-
point for the induction machine, since induction machine power is easier to confront with the input shaft
power demand, since they are in the same units. Similarly, the electric power demand is confronted
with the battery- and diesel generator- power setpoints. The power setpoints are shown rather than
the current setpoint of the battery, to be able to show the same units between comparative variables.
Thus in these graphs are shown the 5 decision variables for the diesel generators, battery, induction
machine and diesel engine, as well as the reference values for the shaft power demand.

For simulation 1 where every timestep the controller re-optimizes, the variable trajectories are shown
in Figure 8.2. It shows that at each timestep the shaft power and electric power is met by the engines,
motors, generators and battery. The first graph shows the hybrid propulsion: It shows that for lower
power requirements the controller prefers the induction machine over the diesel engine. When induction
machine cannot deliver all the power at a low-power setpoint the remaining energy is supplemented
by the diesel engine. The second graph shows the electric power demand of the ship, and highlights
the hybrid power supply behaviour of the vessel. Battery setpoints lower than 0 indicate charging of
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the battery, and it can be seen that in those cases, the diesel generator delivers more energy than is
demanded by the induction machines and the auxiliary power. It can be seen that in cases where the
shaft power is slightly more than what is deliverable by the induction machine, the controller has trouble
finding the optimal solution. This is the case because using the induction machine fully, supplementing
it with a slight amount delivered by the diesel engines, is very close to the same objective function value
as when using the diesel engine alone for that amount of energy.
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Figure 8.2: Propulsive- and electric power demand and supply. Results are for simulation 1.

Simulations 2, 3 and 4 show that not exactly the correct amount of shaft power is delivered at every
timestep. But it does show that these amounts are very close to the correct values. For simulation
2, which uses the triggered optimization procedure, it can be seen that the setpoints for the engines
are very similar to simulation 1. From this, it can be deduced that triggered optimization works well.
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Simulation results 3 and 4 use a prediction horizon with three timesteps and have therefore 15 decision
variables rather than just 5. Because of this, the exact optimal solution is not always found. Rather, an
optimum close to the global optimum is reached. This leads to some variance in the battery setpoints
and the diesel generator setpoints. Additionally, two first two sets of 5 decision variables (for the first
two timesteps) are executed before another optimization cycle begins. The small variance in setpoints
of the battery and diesel generators are not a problem. However, sometimes a different solution is
found, which is still close to the global optimum, but which indicates a different strategy. This is the
case where the battery is charged rather than discharged. In this case charging the battery over a
control horizon leads to an objective function value very close to the discharging the battery over the
same control horizon. For the reason, sometimes, a switch between these two strategies is noticed.
The way to solve this problem is to fine-tune the solver settings more precisely to a control horizon
of 48 seconds and three timesteps. Additionally, the tuning of the ESFC curve for the battery should
also be done for a control horizon rather than for a single timestep. In this way more optimized results
can be found. Unfortunately, for this research, due to time constraints these suggestions can not be
incorporated.
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Figure 8.3: Propulsive- and electric power demand and supply. Results are for simulation 2.
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Figure 8.4: Propulsive- and electric power demand and supply. Results are for simulation 3.
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Figure 8.5: Propulsive- and electric power demand and supply. Results are for simulation 4.

8.2. Battery effectiveness

As a point of discussion the effectiveness of the battery is discussed here. Itis one the main contributing
factors of for the lack of fuel savings, and is therefore worthwhile to explore further. The influence of
the battery on the total fuel consumption can be estimated using four simple ratios. The first ratio, R,
indicates the share of electric power, P,;, of the total power demand, P;,;, at a given time for the ship.
In the case of the Holland-class offshore patrol vessel the maximum energy demand is summing the
maximum power of the two diesel engines (5400 kW), the three diesel generators (968kW), and the
battery (400 kW). The induction machine is accounted for through the power supply to the machine.
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The electric power is the summation of the diesel generators and the battery.

= =0.23 (8.1)

The second ratio, R,, indicates the share of the electric power delivered by the battery, Py, .

R, = fbat _ 200 _ oo 8.2
27 p, 3304 (8.2)

The third ratio, R, shows the relative fuel savings of using the battery compared to the average specific
fuel consumption of the diesel generators, sfcpgqvg- The average setpoint for the diesel generators
determined through simulations - without using the battery - is around sfcpg ayg = 210 [g/kWh]. With
the assumption that the cost of charging the battery is 195 [g/kWh], which is considered a favourable
setpoint of the diesel generator, the associated specific fuel consumption cost of the battery, sfcy,;,
becomes 195 [g/kWh].

sfc — sfc 210 — 195
= —DGavg bat =0.07 (8.3)

3 sfepeavg - 210

Also, by using the battery, the average setpoints of the diesel generator are pushed to a more favourable
setpoint, fuel savings achieved this way have not been accounted for yet. This can be captured in an
additional ratio, R,.

sfcpgavg — SfCpgavgnew 210 — 202

R, = = =0.04 4
4 sfcpeavg 210 0.0 (8.4)

The ratios can be combined to show the overall battery effectiveness. It shows the battery’s effec-
tiveness at reducing the total fuel consumption of the ship. In this example with the particular operating
profile the estimated battery influence on total fuel consumption is 0.3%. Thus if the battery is used
optimally, it should be able to reduce the fuel consumption with 0.3%. To refine the estimations more
simulation with varying operating profiles should be run to get an estimation for the R,, R; and R,
values. Due to time constraints of the project, these values could not be estimated more precisely.

Resf =Ry Ry - (Ry +Ry) = 0.23-0.12 - (0.07 + 0.04) = 0.003 (8.5)

The four ratios are easily influenced by various factors, and the example above is merely an indi-
cation for one particular example. The influencing factors on the ratios are shown in Table 8.3. R; is
heavily influenced by the operating profile and the power demand scenarios that occur. The ratio as
calculated above shows the total electric share of power of the total possible power demand. In reality
a varying partial total load is delivered and a varying electric load. If the vessel is in electric mode,
thus using the induction machines with the diesel engines off, then the ratio R, is much higher, namely
R; = 1. Alternatively, in diesel mode with a lower hotel load, leads to a lower R, value. If a midway set-
point for the diesel engines is assumed then the ratio is R, = 0.38. If the size of the induction machines
were to be increased, the likelihood of a larger share of electric power increases as well. Of course
changing induction machine size is a design consideration, and should not simply be considered to
increase the effectiveness of the battery.

R, is effected by the battery size compared to the total power deliverable by the diesel generators. If
a large battery is chosen that is able to take over the job of all three generators then the ratiois R, = 1.
Alternatively, if a battery is chosen that can at least take over the job of one diesel generator, the ratio
is R, = 0.33. This nicely, highlights that the choice of battery size has a large influence of the total
effectiveness of the battery at reducing fuel consumption.

R; and R, are effected by the operating profile of the vessel and the various power demand sce-
narios that occur. It could be the case for instance that the combination of the hotel load and induction
machines pushes the setpoints for the diesel generators to very unfavourable setpoints. If this is the
case, the use of the battery is felt more in the fuel savings. However, if the operating profile indirectly
already facilitates relatively favourable setpoints for the diesel generators, then the effect of the battery
diminishes. Secondly, the cost of the battery can be effected by the charging procedure. If the battery is
charged more efficiently on shore, an idea to influence R; is to implement shore charging, and optimiz-
ing the equivalent fuel map to deplete the battery by the time the vessel operation ends. Alternatively,
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if the battery is charged on-board the battery cost is most likely done at the most favourable setpoint
of the diesel generators.

Ratio Influencing factor

R (1) Operating profile

1 (2) Size of induction machines
R (1) Size of the battery

2 (2) Size of the diesel generators
R, (1) Operating profile

(2) Charging cost of battery
R, Operating profile

Table 8.3: Influencing factors on battery-effectiveness ratios.

It should be noted that the ratios do not take into account the state of charge of the battery. There-
fore, these ratios assume the battery power is available. With no battery power available the battery’s
effectiveness naturally goes to zero.

To show the effect of the 400 kW battery compared to a no-battery scenario two simulation have
been run. The simulation with the battery uses the optimal battery fuel map determined in the previous
chapter. The results are shown in Table 8.4. From this example it can be shown that fuel savings of
0.77% are achieved. The reason for more fuel savings are achieved as estimated by the ratios, is
because R, and R, are undervalued; A larger share of the total energy is electric, and a larger share is
provided by the battery, since not all diesel generators are in operation all the time.

. . Fuel consumption [kg] Energy battery Total energy
Simulation 2 2
. . Diesel gene- Equivalent cost [GJ]
Main engines Total SOC;
rator sets end  cost [kg]
Battery (optimal) 1462.906 497.502 1960.408 0.200 63.198 87.015
No battery 1406.035 633.238 2039.273 1.000 0.000 87.689

Table 8.4: Effect of implementing a 400 kW on total fuel consumption.
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Conclusion

Hybrid propulsion is a promising technology to reduce the environmental footprint of the vessel. It
combines the use of mechanical and electrical propulsion, as such, it is able to operate efficiently at
a multitude of operational setpoints. Hybrid power supply uses two or more types of power sources
to provide electrical power to the propulsive system. For instance, power supply combinations such
a battery and diesel generator-sets are quite common. The combination of the hybrid power supply
allows for the efficient use of the diesel generator-sets. An energy management system is required to
effectively operate the complex systems of hybrid propulsion and hybrid power supply systems. For that
reason, in this research an energy management system is developed for a hybrid propulsion and hybrid
power supply vessel. The EMS is developed through a case study of the Holland-class offshore patrol
vessel. The EMS consists of three main pillars, namely, the powertrain model, shaft power forecasting
model, and the controller. The powertrain model was provided through Damen and TU Delft, and was
not appended in this project.

Four shaft power forecasting models were developed in the course of this research. The method-
ologies of linear regression, moving average, ARIMA and RNN were applied. The former three of
these methods are univariate methods. Due to the limited data features available, these methods were
employed. The linear regression model is able to predict accurately for up to 18 seconds, showing a
MAPE of 4.25%. The moving average improved on the performance of the linear regression model and
is able to accurately predict 27 seconds in the future, with a MAPE of 4.67%. In order to capture the
variance of the shaft power an ARIMA model was applied also. However, due to occasional divergence
of the ARIMA model it proved an unreliable prediction tool for the purpose of shaft power prediction. It
was only able to accurately predict the shaft power for 3 seconds in the future with a MAPE of 3.28%.
In order to improve on the performance of the univariate methods, synthetic data was generated and
the additional data features were used to train an RNN. The RNN is able to predict the shaft power 48
seconds in the future while maintaining a MAPE of 4.78%. It should be noted that these predictions
were made using real shaft power data, which shows high and irregular variance, and is therefore more
difficult to predict. Unfortunately, a prediction horizon of 48 seconds is not enough for the purpose of an
energy management system. To effectively make use of the hybrid power supply, medium to long-term
predictions are required; in the order of minutes to hours.

The controller is optimization-based using an equivalent consumption minimization strategy. The
designed controller is able to incorporate the use of the battery as an equivalent fuel consumption
(ESFC) in the optimization problem. The ESFC is tuned for a two hour operating profile. The controller
correctly provides the system with an optimal power split between induction machine and diesel engines
(Hybrid propulsion). It is also able to find an optimal split for the hybrid power supply; between the
battery and the diesel generator-sets. Due to implementation of constraints on the diesel generator-
sets, individual setpoints for the generators are possible. Additionally, through constraints on the SOC
between 20% and 80% the battery is operating at a favourable setpoint, which could prolong battery
life. Four simulation studies were performed in the research to test and compare the effectiveness of
the EMS. (1) Optimization at every timestep. (2) Triggered optimization, when a significant change
(5%) occurs in SOC or shaft power demand. (3) Non-causal optimization for a prediction horizon of
48 seconds with 3 timesteps in the prediction horizon. (4) Optimization for a prediction horizon of
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48 seconds with 3 timesteps in the prediction horizon, using RNN predicted shaft power reference
values. The total fuel consumption and SOC trajectories of the 4 simulations are almost identical. The
SOC trajectories indicate the battery use, and the fuel consumption indicates the efficiency of the EMS.
Energy fuel reduction could not be proven. Given the parameters of the case study this is not surprising:
(a) There is limited data availability leading to short-term predictions, and (b) a small battery capacity,
leading to limited usefulness of the hybrid power supply system. Short-term predictions and control
horizons are not sufficient to effectively utilize the hybrid power supply of the system. A small battery
leads to limited effectiveness of the EMS even if long-term predictions were possible; The battery can
only take over a fraction of the function of one diesel generator-set.

The effect of battery size on the effectiveness of the battery to reduce fuel consumption is analytically
captured by four ratios. The ratios indicate (1) the share of electric power with respect to the total
power, (2) the share of electric power that can be delivered by the battery, (3) the fuel savings the
battery can provide by taking over the function of the diesel generator, and (4) fuel savings achieved
by the battery by pushing the diesel generator setpoint to a more favourable set point. Ratio 2 shows
that the battery size influences directly the effectiveness of the battery to reduce fuel savings. With a
simulation, reduction of 0.77% of total energy consumption was shown with the implementation of a
400kW battery.

9.1. Future works

Future research has a multitude of directions to focus on. First, incorporation of medium to long-
term shaft power demand prediction tools can be developed, this can improve the performance of
the energy management strategy presented in this research. This would require more data features
and possibly other prediction methodology. Secondly, design and control could be viewed as an inter-
correlated problem; for instance, in this research the small battery capacity was a limiting factor in the
usefulness of the hybrid power supply system. Therefore, with this EMS as a guideline it could be
developed alongside the design phase of a hybrid power supply and hybrid propulsion system. Thirdly,
the equivalent specific fuel consumption map of the battery can be greatly improved upon. It can be
made to be SOC, ETA and forecasted power demand dependant. If this were to be paired with long-
term predictions it would form a powerful energy management system capable of saving significant
fuel cost. Fourthly, the objective function in the EMS can be further elaborated to incorporate soft
constraints on emissions, variability of battery current, and variability of the diesel power. Fifthly, rather
than solely focusing on replacing the short-term predictions with medium or long-term predictions, a
second layer of control could be designed for medium or long-term control. This long-term prediction
layer would be less accurate, but would focus on capturing major trends. This requires a lot of data,
and a somewhat regular operating profile of the vessel. Finally, the effect of the battery size on the fuel
consumption savings can be studied.

9.2. Practical applicability

The energy management system (EMS) provided in this research is able to incorporate the use of the
battery as an equivalent fuel consumption in the optimization problem. The EMS correctly provides the
system with an optimal power split between induction machine and diesel engines (Hybrid propulsion).
It is also able to find an optimal split for the hybrid power supply; between the battery and the diesel
generator-sets. Due to implementation of constraints on the diesel generator-sets, individual setpoints
for the generators are possible. Which allows for use of particular diesel generator-sets to dedicated
subsystems of the ship. Additionally, through constraints on the SOC between 20% and 80%, the
battery is operating at a favourable setpoint, which could prolong battery life. Reduction of energy fuel
consumption could not be proven given the parameters of the case study: (a) limited data availability
leading to short-term predictions, and (b) a small battery capacity, leading to limited usefulness of the
hybrid power supply system. 0.77% fuel savings were proven in a limited simulation where a hybrid
power supply system with a 400kW is compared to a diesel generator power supply system. With
a larger battery size, more fuel savings can be expected. However, this is to be proven with more
research and more simulations that represent the power profile of the ship better. Furthermore, to
increase the usefulness of the hybrid power supply, and electric mode of the vessel, it is recommended
to find an optimal pairing of control and powertrain design. For instance, increasing the battery and
induction machine sizes, while at the same time taking into account their effects on fuel savings via
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an EMS. With the development of medium to long-term load prediction tools the energy management

system can prove to save on energy consumption also. However, long term load prediction is infeasible
for variable, unpredictable load demand.
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Optimal Control Energy Management Strategy
for Hybrid Propulsion and Power Supply Vessels
using Data-Driven Load Forecasting

Simeon Slagter **
“ Department of Maritime & Transport Technology, Delft University of Technology, The Netherlands

Abstract—Hybrid technology could significantly reduce fuel consumption and emission for vessels that have high power demand
peaks followed by long periods of low loading. Hybrid technology refers to powertrain layouts that consist of hybrid propulsion and/or
hybrid power supply. Advanced energy management strategies (EMS) are required to make optimal use of these available power
resources. In this paper it is investigated how much fuel consumption reduction can be achieved by applying a causal, real-time
equivalent consumption minimization strategy (ECMS) to a hybrid propulsion and hybrid power supply plant with a power load
forecasting scheme, for a case study vessel: The Holland-class offshore patrol vessel. The forecasting tools evaluated are Linear
regression, moving average, ARIMA and recurrent neural networks (RNN). The RNN outperformed the other methods and is able to
predict the power demand for up to 48 seconds, while maintaining a mean absolute percentage error of under 5%. An
optimization-based controller is combined with an ECMS approach which assigns an equivalent consumption cost to the battery. The
controller is able to identify the power split for the hybrid propulsive system, and the power split for the hybrid power supply. A
simulation proved that 0.77% fuel savings are achieved with a 400 kW battery, compared to a no-battery scenario. Fuel savings could
not be proven for the EMS with a control horizon of 48 seconds, leveraging power predictions supplied by the RNN, due to limiting
factors. The limiting factors are the combination of the small control horizon, the limited battery capacity compared to the overall power

demand and the limited tuning of the ESFC curve.

Index Terms — Energy management system - Propulsion control - Hybrid vehicles - Marine systems - Hybrid energy supply

1 INTRODUCTION

At present, ocean shipping facilitates 80% of the trans-
portation of global trade [1]. The shipping industry is only
expected to grow, and this development is naturally paired
by a multitude of environmental problems. The increased
carbon and nitrogen oxides (INO) emissions resulting from
the increased shipping demand is one of these problems [2].
In fact, the shipping industry is one of the fastest growing
industries with regard to greenhouse gas emissions [3]. To
combat the ever-increasing emissions, regulations have been
put in place and are expected to become more stringent over
time. Currently, there are restrictions on the weighted cycle
NO, emissions for diesel engines with an output of more
than 130 kW [4]. In future, it is expected that there will not
only be restrictions on engine specific NO, emissions but
on NO, emissions per mile also [5]. Additionally, new ships
are expected to adhere to a specific Energy Efficiency Design
Index (EEDI) [4]. This index is a measure of CO2 emissions
of a cargo vessel per mile or per tonne of goods. Given
these restrictions as well as the increasing price of energy,
it is imperative that the propulsion and power generation
plants of ships have ways of reducing fuel consumption and
emissions.

For vessels that have high power demand peaks as well
as long periods of low loading, hybrid technology could
significantly reduce fuel consumption and emissions [6].
Hybrid technology refers to powertrain layouts that consist
of hybrid propulsion: a combination of mechanical and
electrical propulsion, and/or hybrid power supply: a com-

. * Damen Naval provided funding for this research.

bination of combustion power supply and energy storage,
found mostly in combination with electric propulsion [4].
The hybrid propulsion and power supply powertrains are
able to reduce fuel consumption and emissions by 10% to
35% [4]. Advanced energy management strategies (EMS)
are required to make optimal use of the available power
resources onboard the vessel. The EMS determines setpoints
for the engines, motors and energy storage devices, and in
this way prescribes the power split between mechanical and
electric propulsion as well as the split between combustion
power supply and energy storage.

1.1 Literature review

In [4] the various powertrain topologies of ships are clas-
sified, as well as the control strategies employed for these
respective topologies. These different topologies are all the
combinations between mechanical and electric drive, cou-
pled with various types of power supply. The control strate-
gies of relevance to this research are the EMSs that have been
developed for topologies with hybrid power supplies. These
developed control strategies can be classified as heuristic
control strategies or optimization-based control strategies
[7].

Two common implementation approaches for heuristic
control are the map-based and rule-based approaches. In
the map-based approach [8, 9, 10], the output setpoints of
the EMS are determined by mapped control set points for
different speeds and torque request points by the operator.
Different maps can be established for a high and low state of
charge as well. In some other methods [11, 12, 13], these map



regions are not rigid and can instead be defined using other
methodologies such as fuzzy logic. Various articles have
presented implementation of rule-based controllers. For in-
stance, [14] presents a control strategy that uses the batteries
at low speeds for propulsion rather than the engine, and at
higher speeds the battery can electrically assist the engine.
The article shows that the strategy is able to reduce fuel
consumption, and that these savings are proportional to the
battery capacity.

Optimization-based control uses performance indexes,
that is either minimized or maximised. The most common
and simplest performance index is the fuel mass consumed
over a period of time [15]. Rather than just taking into
account the fuel mass consumption in the performance
index, pollutants can also be incorporated [16, 17]. In the
Equivalent Consumption Minimisation Strategy (ECMS),
an optimal control problem is formulated that minimises
the fuel consumption of the engine and the equivalent
fuel consumption of a battery. [18] shows that ECMS can
approximate the fuel economy of acausual controllers, with
a computationally cheap process and limited calibration of
control parameters. [19] proves the effectiveness of ECMS
as an EMS in automotive industry, as it outperformed
heuristic control. This control method performs particularly
well compared to other strategies when the operating profile
is not known beforehand. Fuel savings of up to 10% were
shown in [20] while using the ECMS strategy compared to
rule-based logic. In [6], 6% fuel savings were achieved in a
simulation study of a tugboat, with unknown load demand.

To further improve the performance of an optimization-
based controller load predictions schemes can be incor-
porated. The load predictions methods anticipate future
load demand based on historical load demand data. Short-
term trends (order of seconds) can often be identified and
predicted reasonable accurate, where-as long-term trends
(order of minutes to hours) are difficult. For this reason
[21] designed the two-level MPC; To have accurate short-
term predictions and control, combined with capturing a
less accurate but broader trend of power consumption in
the long-term. [22] also uses MPC to account for future
power demand, while also taking into account environmen-
tal disturbances and uncertainties. [23] shows that a 9%
improvement on the cost function performance compared to
the rule-based control of [14] can be achieved by predicting
the load.

Of the methods mentioned in this literature review very
few have been specifically applied for hybrid propulsion
& hybrid energy supply (HPHPS) systems [6, 1, 14]. [1]
presents an EMS for a hybrid energy supply leveraging
power load forecasting, however, hybrid propulsion was not
considered. [14] does consider a HPHPS system but only for
optimal powertrain design purposes, and not for an energy
management system. [6] considers an optimization-based
controller for a HPHPS system using ECMS. However, the
method leveraged a limited power load forecasting scheme
to further enhance the performance of the EMS. Therefore,
what is currently missing is the implementation and evalua-
tion of an energy management systems for HPHPS systems
leveraging state-of-the-art power load forecasting methods.

1.2 Aim and contribution

In this paper it is investigated how much fuel consumption
reduction can be achieved by applying a causal, real-time
ECMS to a hybrid propulsion and hybrid power supply
plant with a power load forecasting scheme. The effect of
the battery on the fuel savings is evaluated also. A case
study vessel is used with a hybrid propulsion and hybrid
power supply topology, namely, the Holland-class offshore
patrol vessel (HCOPV), as shown in Figure 1.

The contribution of the research is twofold. First, a
power load forecasting method is developed using recurrent
neural networks (RNN) for varying operating profiles. The
performance of the RNN is contrasted with the perfor-
mance of the linear regression, moving average and ARIMA
methods for power load forecasting. Second, a novel online
optimization-based controller with a receding horizon prin-
ciple leveraging predicted load demand is developed. The
optimization-based controller is combined with an ECMS
approach which assigns an equivalent consumption cost to
the battery. The method is evaluated for operations with and
without a battery.

1.3 Outline

This paper is organised as follows: section 2 gives the system
description and information about the case study. section 3
describes the methodology applied for the load forecasting
tools, the EMS methodology and the optimization problem.
The results are shown in section 4, the discussion in sec-
tion 5, and finally the conclusion is given in section 6.

2 SYSTEM DESCRIPTION

In this research a case study of the Holland-class offshore
patrol vessel is used. The ship is a hybrid propulsion ship. In
this study the benefit of adding a battery, to create a hybrid
power supply system, is evaluated for the case study. The
powertrain topology of the powertrain is shown in Figure 1.

The propulsion system is made up of two diesel engines
and two electric motors. The diesel engines are 4-stroke
diesel engines with a power of 5400 kW each, with a rated
speed of 1000 rpm. The electric motors have a power of 400
kW each. The gears combine a diesel engine and a electric
motor to drive a controllable pitch propeller on each of the
two shafts. The vessel has 3 generator sets of 968 kW each
and one emergency generator set of 255 kW, combining
for a total of 4 [24]. The system has various hotel loads
such as air-conditioning, lights, and water-cooling systems,
these auxiliary loads are assumed to be constant. The size of
the auxiliary loads are not described in the public domain,
and will therefore not be states here. The selected battery
has a capacity of 400 kWh, and allows 1lc charging and
discharging, therefore, the maximum power the battery can
deliver is 400 kW. Due to limited space availability on the
HCOPYV, a larger battery size can not be accommodated by
the vessel infrastructure.

3 METHODS

An overview of the EMS structure is given in Figure 2.
The information that is known at the start of an iteration



1. Diesel generators

2. Battery

3. Diesel engine

4. Frequency converters

5. Induction machine
6. Gearbox

7. Transformers

8. Auxiliary loads

Figure 1: Powertrain of the Holland-class offshore patrol
vessel, augmented with a battery.

is the operator setpoint for the shaft power, Py, (k). Based
on the shaft power setpoint the operator setpoint for the
vessel speed, vset(k), is assumed. It is assumed that the
setpoints of shaft power and vessel speed are proportional.
Based on the vessel speed setpoint the speed setpoints for
the diesel engines, n2F(k), and induction machines, nf2/,
are inferred.

| Poviertrain model
Synthetic data
Operator setpoint shaft X
power 1
Data driven load prediction
Pan(k) 1. Linear regression (x,) Stored historical
2. Moving average (x,) values of shaft
i. Q’F\?‘\,\V;N; O‘;z) XZ power
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T DE M Controller
ranslation to speed [nPE k), n}] 15
setpoints propulsive Optimization process &
engines Internal model controller
Measurements Actions
-
-
V (k) u (k)

System description

Reduced model of
powertrain

Figure 2: Overview of the energy management system
structure.

The physical system is described by a powertrain model
of the Holland-class offshore patrol vessel. This powertrain
model is a mathematical representation that shows the
dynamics of the components of the powertrain of the ship.
The models chosen are selected based on availability, and
accuracy. The models are made available in an adaptive
pitch control framework, the framework is presented in
[25, 6]. To operate this framework multiple controllers are
required to maintain setpoints for the engines and motors
and propeller pitch. It is outside the time limits and scope
of this research to use this full model to evaluate the novel
energy management strategy developed in this research as
it would involve re-tuning multiple controllers. Instead, in
this project the powertrain model is used in order generate
synthetic data. The set of synthetic data features, X, is used
by the RNN load prediction method.

The controller is an optimization-based control tool. It
uses reduced models of the powertrain as the internal model
of the controller, in order to evaluate which set of decision
variables will work best in order to minimize fuel consump-

X1 Data description

xz1  Main engine shaft speed in [rpm]
xo  Pitch ratio

x3  Propeller torque M), in [Nm]

x4  Propeller thrust T}, in [N]

x5  Vessel speed v in [knots]

Table 1: Generated synthetic data features.

tion. The internal model of the controller has the purpose of
modelling the relationship between power, torque and and
specific fuel consumption of diesel engines, diesel genera-
tors and induction machines. Additionally, an artificial fuel
consumption model is established for the battery. Based on
the internal model of the controller, the optimizer is able
to find a set point for the engines and battery. The speed
setpoints for the induction machines and diesel engines, as
well as the measurement variables, 7(/{:), are used as input
by the controller. The output is a set of decision variables
, U (k), that minimizes fuel consumption of a prediction
horizon with IV steps. The internal model of the controller
is described in subsection 3.1.

To evaluate the output of the controller a reduced model
of the powertrain model is used. In fact this model is the
same as the internal model of the controller. The full power-
train model could not be used here, since in order to operate
this full model multiple extra controllers for pitch control,
engine control and induction machine control are required.
Due to time constraints and the scope of the project, this is
not possible to implement. Therefore, the reduced model is
used to evaluate the output and recorded the measurement
variables 7

Four data- drlven load prediction tools are developed
with four different methodologies. The focus in this re-
search, however, is on the RNN. The RNN model is selected
since it has proven to have excellent predictive capabilities
in a multitude of fields. In the maritime domain the method
is used for ship position estimations [26, 27], non-parametric
modeling of ship maneuvering motion [28], as well as pitch,
heave and roll motion predictions [29, 30]. The other three
methods are univariate methods; Linear regression, moving
average and ARIMA are used as a comparative measure for
the RNN performance. Due to the shape of the operating
profiles, as shown in Figure 4, and limited data availability
of ship features, univariate prediction methods are used to
predict the load demand. All four methods use historical
data on the shaft power, Xy, to predict future shaft power
demand. The RNN also uses the set of synthetic data fea-
tures, X;. The synthetic data features are shown in Table 1.
The total input space for the RNN is X = X; U Xy. The
output to the prediction tools are reference values for the
expected shaft power demand over a prediction horizon
with N steps. The reference values are denoted by Z e -
The reference values are used by the controller to make
decisions over the prediction horizon. The input-output
relationships for the RNN is shown in Figure 3, where Py,
is the shaft power demand. The input-output relationships
of the univariate methods are the same, with the exclusion
of the input space X;.

The univariate methods use a moving time window of
datain [t—A™,t—1] and estimate a linear regression model,
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Figure 3: Input-output relationship for the Recurrent neural
network.

Shaft power

Time

Figure 4: Operational profile of the Holland-class offshore
patrol vessel.

moving average model and an ARIMA model, which is
then used to compute A" seconds ahead, in time window
[t,t+A™]. The RNN method trains a generalized model, the
trained model is then used for all future load forecasting.
Model selection parameters considered for the univariate
methods are A~ and AT. ARIMA also has the model
selection parameters p,d, and q which signify the order of
the auto-regressive, differencing and moving average parts
of the model respectively. For the exact functions and imple-
mentation used for the forecasting methods, the interested
reader is referred to [31] for the linear regression, ARIMA
model and moving average, and [32] for the RNN. For the
RNN model selection parameters considered are number
of neurons, activation functions, optimizers, optimizer set-
tings, number of epochs, batch size and A~ and A*. Using
5-fold cross validation an optimal set of hyperparameters
is found. A long-short term memory scheme is applied
in conjunction with the RNN to solve the vanishing and
exploding gradient problem while using large sequence of
data.

As a point of comparison Figure 5 summarizes the
performance of the four methods: Linear regression, moving

4

average, ARIMA, and RNN. It shows the Mean absolute
percentage error (MAPE) over an increasing prediction
horizon. It highlights that the RNN outperforms the other
methods, and is able to predict further in the future while
maintaining a MAPE of under 5%. In Figure 6 the trend
in time for the four methods is shown. It highlights that
the ARIMA method has large outliers, and that the RNN
method performs worse in cases of large variances in shaft
power. Overall the RNN performs best, being able to predict
48 seconds in the future while maintaining a MAPE of less
than 5%.
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Figure 5: Mean absolute percentage error for the linear
regression, moving average, ARIMA, and recurrent neural
network.

Shaft power - scaled

~=RNN
Actual shaft power
T

10 20 30
Time [min]

Figure 6: A section of the trend in time (actual versus
predicted) shaft power for the linear regression, moving
average, ARIMA, and recurrent neural network.

3.1 Energy Management System

The energy management strategy proposed in this paper
determines the power split between the main engines and
the induction machines (hybrid propulsion), and between
the diesel generators and the battery (hybrid power sup-
ply). The speed setpoints for the propulsion machines are
determined based on the operator vessel speed setpoint. The
power setpoint for the main engines and induction machine
is established by the controller through the decision variable
T7n,set, the torque setpoint of the induction machine. The
setpoint for the main engine can be derived from this
setpoint. The speed setpoint for the diesel generators is
assumed to be fixed with the network electrical frequency at
60 Hz. The power setpoints for the battery and generators
are established through individual decision variables for
each diesel generator Ppg,; Vi € [1,3], and a current



setpoint for the frequency converter of the battery Ig a7 set.
Thus, the set of decision variables, 7(1@), for a prediction
horizon of N steps, is:

TIM,set(k)
IBAT,set(k)
Ppg,i(k)
U(k) = .
TIM,set<k + N)
IBAT,set(k? + N)
| Ppg,i(k+N) |

The aim of the strategy is to minimise fuel consumption
over a receding horizon. The objective function that achieves
this is:

N

min J = mys(k 1

i 7= iy (k) M
where (k) is the total fuel consumption in timestep
k. The fuel consumption is a function of the fuel con-
sumption of the diesel engines 7ivf p g, (k), diesel generators
my pa, (k) and the equivalent fuel consumption of the bat-
tery 1 ¢, par (k). Mathematically, this is:

2 3
myp(k) = e (k)+Y_ msoa, (k) +mppar(k), (2)
=1 =1

SfCBAT(k> . PBAT(k> - At 3)
(Bar - ge) 9 Foee)

my par(k) =

where, npa7T and 7;. are the efficiencies of the battery and
the frequency converter respectively. np 47 is battery power
dependant, whereas 7. is assumed a constant.

sfepa, - Ppayset - At

. sfepp, - Pog, - At
iny.pp, (k) = DE/3605E' Jie[1,2) (5)

The fuel consumption rate, ¢ pg in g/timestep, is calcu-
lated using the specific fuel consumption, sfcpg in g/kWh,
and engine power, Ppr in kW. Similarly, the fuel con-
sumption rate, 1y pg in g/timestep, is calculated using
the specific fuel consumption, sfcpg in g/kWh, and engine
power, Ppg in kW.

The objective function is subject to system dynamics:
Equation 2 until Equation 12, constraints: Equation 13 until
Equation 18, and boundary conditions: Equation 21 until
Equation 23. The objective function is also subject to the
operating envelopes of the engines and battery, these are
also constraints. They have been omitted in the description
below.

Pspres(k) = Prave(k) + Ppge(k) (6)
nsh(kz)
Prar(k) = 20T 10 set (k) — )
1GB
3
Ppg iots(k) =Y Ppa, ,i € [1,3]. 8)
k=1
2Py (K)

PDG,tot,d(k) - _PBAT(k) + Paua: + (9)

i (k)

Ppa tot,a(k) = Ppa,tot,s(k) (10)
Ppar(k) = V3Igar set (k) Viine fp (1)

At Ipar
Socw)zsocw—1y—/ (12)

0 Q

Trarmin(k) < Tiavset(K) < Trntmax (k) (13)
IBAT,min(k) S IBAT,set(k) S IBAT,maz(k:) (14)
PDG,min S PDG,i<k) S PDG,maz (15)

TIM,mzn(k+N> STIM,set(k+N) STIM,mam(k+N) (16)
IBAT,min(k) S IBAT,set(k + N) S IBAT,maz(k) (17)
PDGmu’n S PDG7i(k + N) S PDG,max (18)

Operation of Ip 41 between 0 and 0.5 indicates charging
and between 0.5 and 1 indicates discharging of the battery.

0.5 if SOC(k) > 0.8

IBAT,min(k) = { 0 if SOC(]{) < 0.8 (19)
{05 if SOC(k) <02

IBAT,maX(k) - { 1 if SOC(I{:) > 0.2 (20)

>0 (21)

v > (22)

x>0 (23)

Note that the goal of reducing fuel consumption is
enforced through the objective function, the reduction of
CO2 emissions is assumed to occur through the reduction of
fuel consumption as well. Propulsion availability is ensured
through constraint described in Equation 10, which equates
the demanded power with the supplied power. Finally, a
secondary goal of the control formulation is to increase the
battery lifetime by keeping state of charge of the battery
between 20% and 80%, this is enforced through constraints
on the battery current described in Equation 19 and Equa-
tion 20.

The optimisation problem can be classified as a non-
linear programming problem (NLP). NLP have the charac-
teristic that their solution time increases exponentially with
the number of dimensions of the problem [33]. The opti-
mization problem is tackled using a multi-start procedure.
The multi-start procedure strategically samples the solution
space. Each sample is used as a starting point for the solver
to find a local, or preferred, global minimum. Then, the
most optimal solution of the multiple starts is selected. The
solver used for this research is the sequential quadratic
programming (SQP). The interested reader is referred to
[34], for a complete account of the SQP method. SQP was
selected as it outperformed active-set and interior-point in
some test cases on cost and computational time.



An equivalent fuel consumption (ESFC) curve was estab-
lished for the battery. The curve is tuned in order to incen-
tivize discharging and charging of the battery at the right
times, in order to optimize fuel consumption reductions.
For a specific 2 hour operating profile, various ESFC curves
were compared and evaluated. More involved ESFC curves,
which are SOC-dependant, estimated-time-of-arrival depen-
dant, or power forecasting dependant were not considered
due to time constraints of the project.

4 RESULTS

Five comparative simulations have been run on the same
operating profile of around 2 hours, namely:

o Optimization at every timestep for a control horizon
of 3 seconds.

o Optimization at every timestep for a control horizon
of 3 seconds, without a battery.

o Triggered optimization. The trigger activates for a
change in shaft power or SOC of more than 5%.

o Optimization with "perfect knowledge’, control hori-
zon of 48 seconds with 3 timesteps for t in range [t,
t+24, t+48].

e Optimization with shaft power predictions using
RNN, control horizon of 48 seconds with 3 timesteps
for t in range [t, t+24, t+48].

The results for the five simulations are shown in Table 2.
The table shows the total energy cost of the simulation. An
equivalent cost of the battery is calculated with an assumed
fuel cost, which is equal to the most optimal fuel setpoint
of the diesel generators. Since simulation 3, 4, and 5 do not
optimize at every timestep, not the exact correct amount of
shaft power is delivered at each timestep, Table 3 highlights
this.

Simulation Total Fuel cqnsumptlon [ke] Energy batte}'y Total energy
. . Diesel gene- . Equivalent cost [G]]
Main engines Total SOCt,
rator sets end  cost [kg]

1462.906
1406.035
1487.794
1521.679
1516.185

497.502
633.238
473.122
470.425
478.354

1960.408
2039.273
1960.916
1992.104
1994.540

0.200
1.000
0.186
0.344
0.382

63.198
0.000

64.346
51.856
48.790

87.015
87.689
87.086
87.890
87.863

(SRS

Table 2: Simulation results: fuel and energy consumption.

Simulation MAPE [%] MPE [%] glcgl}:gs;ei);(t)t[eéj]
1 0.00 0.00 87015
2 0.00 0.00 87.689
3 1.08 -0.16 86.946
1 3.04 -0.62 87.345
5 5.65 2.23 85.842

Table 3: Error values of the delivered versus requested total shaft
power. Adjusted total energy cost based on the MPE.

5 DISCUSSION

The results in Table 2 show that the total energy cost
for the four sets of results are almost the same. This is
not surprising as in all cases the exact same energy was
demanded. So naturally, a very similar amount of energy
is to be expended in order to deliver the required power.
Two factors are contributing to the fact that there are no
energy cost reductions for the EMS when using a prediction
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horizon. (1) The prediction horizon is short-term, in the
order of seconds. It is easy to see that predictions of long-
term trends in power demand, would allow the use of the
battery to be far more efficient. In those cases the battery can
be charged when it is expected that the battery is going to
be needed in the future. Instead, battery charging and dis-
charging for short-term load predictions is purely decided
on short-term trends. Given the variance in the data of the
shaft power, the charging and discharging in the short-term
becomes quite random. Also, since the control horizon of
the controller is not executed completely, but instead works
with a receding horizon, sometimes sub-optimal setpoints
are used as decision variable setpoints. (2) The capacity of
the battery, which is 400 kW, is very small compared to
the overall power demand. A larger battery capacity would
allow more versatility in the use of the battery; it could take
over the function of the diesel generator-sets, rather than
take over 40% of one diesel generator-set. Fuel savings of
0.77% are achieved with a 400 kW battery compared to a
no-battery situation.

The total energy cost, when adjusted for excess power
delivered is shown in Table 3. The number merely indicates
that had all the energy been delivered correctly at the right
times, a lower amount of energy would have been needed.
Of course this number does not say much, as the excess de-
livered energy was delivered at the wrong times. The effect
of the limited control horizon, and excess power delivered
by a control cycle that does not optimize every timestep,
outdoes the potential fuel savings that might have been
achieved in these simulations. Which is evident from the
increased fuel consumption in these simulations, as shown
in Table 2.

6 CONCLUSION

In this paper it is investigated how much fuel consumption
reduction can be achieved by applying a causal, real-time
ECMS to a hybrid propulsion and hybrid power supply
plant with a power load forecasting scheme, for a case study
vessel: The Holland-class offshore patrol vessel.

e The forecasting tools evaluated are Linear regression,
moving average, ARIMA and RNN.

e The RNN outperformed the other methods and is
able to predict the power demand for up to 48
seconds, while maintaining a MAPE of under 5%.

o The optimization-based controller is combined with
an ECMS approach which assigns an equivalent con-
sumption cost to the battery. The controller correctly
identifies the power split for the hybrid propulsive
system, and the power split for the hybrid power
supply.

e A simulation proved that 0.77% fuel savings are
achieved with a 400 kW battery, compared to a no-
battery scenario.

e Fuel savings could not be proven for the EMS with a
control horizon of 48 seconds.

e The limiting factors are the combination of the small
control horizon, the limited battery capacity com-
pared to the overall power demand and the limited
tuning of the ESFC curve.
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