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Chapter 1 

Introduction 

 

 

1.1. World Energy Demand 

In 2009, the first decline in energy consumption occurred since 1982 due to the recent global 

economic recession (BP Statistical Review of World Energy 2010). Nevertheless, the recession 

is over now and there is again a growing demand for energy worldwide. The world’s primary 

energy resources include oil, natural gas, coal, nuclear, and hydroelectric power. Fig. 1 

illustrates the annual worldwide consumption of the primary energy resources in the year 

2009.  

 

Fig. 1: Annual consumption of the primary energy resources per capita in the year 2009. The 

consumption is in tons oil equivalent (BP Statistical Review of World Energy 2010).  
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Although coal is the world’s most abundant fossil fuel, oil maintains its position as the world’s 

principal fuel. Looking at the regional markets in Fig. 2, the highest consumption of the fossil 

fuels per region is as follows: oil and natural gas in the Middle East, coal in Asia Pacific, 

nuclear in Europe and Eurasia, and hydroelectric in South and Central America (BP Statistical 

Review of World Energy 2010). 

Wind and solar energy are also rapidly growing. Their energy generation capacity has risen by 

31% and 47% respectively in 2009. China and the US are the leading countries in applying 

wind energy (BP Statistical Review of World Energy 2010). 

 

Fig. 2: Regional consumption pattern of the primary energy resources in percentage at the end of 2009. 

(BP Statistical Review of World Energy 2010). 

The future availability of fossil fuels is expressed by R/P ratio, which is the remaining amount 

of these fuels in years. This ratio is computed by dividing the remaining reserves at the end of 

a year by the production in that year; assuming that the production will remain constant in 

the years ahead. At the end of 2009, this ratio was equal to 45.7 years for oil, 62.8 years for 

natural gas, and 119 years for coal (BP Statistical Review of World Energy 2010). Therefore, as 

will be discussed later, it is important to efficiently produce the remaining oil and gas reserves 

to improve the hydrocarbon recovery from hydrocarbon reservoirs. 
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1.2. Hydrocarbon Reservoirs 

Hydrocarbon reservoirs are subsurface bodies of rock containing hydrocarbons. Reservoir 

rocks must have sufficient porosity (fraction of void volume in the rock) and permeability 

(ability to transport fluids) to accumulate and conduct the fluids. Reservoir-rock types are 

generally sandstone and limestone. Hydrocarbon reservoirs are generally located at a depth of 

1-5 km and their thickness varies from a few meters to hundreds of meters. The areal scale of 

reservoirs ranges from a few square kilometers to a few hundred square kilometers.  

 

Fig. 3: Schematic vertical cross-section of an oil reservoir. The reservoir is confined by an impermeable 

cap rock at the top and an aquifer at the bottom. The oil/water interface is called oil-water contact.  

A schematic vertical cross-section of an oil reservoir is illustrated in Fig. 3. Oil is trapped 

beneath an impermeable rock (usually a shale layer) called cap rock. From below, oil is usually 

in contact with an aquifer that is a water-bearing reservoir rock. Oil production wells are 

completed in the oil-bearing section of the reservoir. The reservoir is initially in a static 

condition at high pressure. Once production begins, oil flows to surface via the well(s) and the 

pressure starts to decline. Various oil-recovery mechanisms exist to maintain the reservoir 

pressure and boost oil production. They are discussed below. 

1.3. Recovery Mechanisms for Hydrocarbon Reservoirs 

When a virgin reservoir comes into production, the initial reservoir pressure is usually high 

enough to make the hydrocarbons flow to the surface through the well(s) with the natural 

reservoir energy corresponding to water-drive (aquifer), gas-drive (gas cap or solution gas), or 

gravity drainage. However, if the initial reservoir pressure is not adequate or the reservoir 

pressure declines due to production, artificial lift techniques (e.g., down-hole pumps, gas lift) 

Cap rock

Oil-bearing reservoir rock

Water-bearing reservoir rock
(aquifer)

Non-reservoir rock
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are required to reduce the bottomhole pressure and assist the production. The period of 

application of these two methods (i.e., natural flow and artificial lift) is considered as the 

primary recovery stage of the reservoir. On average, about 10% of the initial hydrocarbons in 

place is produced during the primary recovery (Fig. 4).  

 

Fig. 4: Oil-recovery mechanisms. Modified from Stosur et al. (2003). Original source of the figure is 

Moritis (2000). 

When the reservoir pressure is so depleted that oil production is not economical any more, the 

secondary recovery stage starts with the main purpose of pressure maintenance in the 

reservoir to displace the hydrocarbons. During this stage, fluid(s) (water, gas) is/are injected 

through injection wells to mimic the natural drives that were initially in place. Waterflooding 

and gas injection are the most common techniques in secondary recovery. Water is injected 

into the aquifer or production zone and/or gas is injected into the gas cap to push the 

hydrocarbons to the production wells. Secondary recovery stops when oil production declines, 

considerable amounts of the injected fluid are produced, and further production is no longer 

economical. At the end of the secondary recovery, the oil-recovery factor is typically between 

15 and 50%.  

To further increase oil recovery, tertiary recovery techniques are employed to improve both 

the sweep and displacement efficiencies. These techniques alter fluid and/or rock-fluid 

interaction properties. Some of them (e.g., thermal recovery, miscible gas injection, microbial 

EOR) mainly modify the oil properties. Polymers increase water viscosity, while surfactants 
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have different applications. In surfactant flooding, surfactants lower the interfacial tension 

between oil and water, increasing capillary number and reducing residual oil saturation. In 

foam flooding, a mixture of surfactant, water, and gas can turn into foam and gas-phase 

mobility is reduced by making a stable foam. Surfactants also alter the rock wettability. 

Although these techniques are called tertiary, they can be initiated throughout the entire 

productive life of the reservoir. The three major categories are thermal recovery, 

miscible/immiscible gas injection, and chemical flooding (see Fig. 4 for details). Each of these 

methods performs at its best if it is applied at the reservoir conditions that are favorable for 

that method. These conditions involve the oil and water saturation at the beginning of the 

tertiary recovery, oil properties (composition, API gravity, and viscosity), reservoir 

temperature, pressure, thickness, depth, porosity, permeability, reservoir type, and rock type. 

For instance, foam may collapse at high oil saturation, low water saturation, and in the 

presence of light oils (high API gravity). As a result, it is not recommended to apply foam at 

early stages of the reservoir life due to high oil saturation. These tertiary recovery methods are 

also called enhanced oil recovery (EOR) methods. 

EOR techniques are relatively expensive; hence, it is extremely important to optimize them to 

have an economically feasible process (Jansen 2011). Otherwise, the cost of the injected fluid 

itself (such as surfactant) can simply exceed the revenue of the remaining oil to be produced.  

1.4. Foam EOR 

Foam has a variety of applications in oil extraction ranging from drilling (to transport cuttings 

to the surface), to near-wellbore well-stimulation treatments (to divert acids to improve the 

acid-injection profile) (Gdanski 1993; Zhou and Rossen 1994), and gas mobility control in 

EOR (Schramm 1994; Rossen 1996). Foam is also used in shallow subsurface application to 

improve the sweep of surfactant solutions in aquifer remediation (Hirasaki et al. 2000). In 

this work, foam is specifically used for controlling the mobility of injected gas to improve 

sweep and displacement efficiencies in EOR.  

Foam is generally divided into two wide categories: foam in bulk and foam in porous media 

(see Fig. 5). In foam in bulk, the size of a container is much larger than individual bubbles, 

whereas in foam in porous media, the diameter of bubbles is comparable to or larger than 

the pore size (Rossen 1992). Foam in porous media is defined as “a dispersion of gas in a 

liquid such that the liquid phase is continuous, and at least some part of the gas is made 

discontinuous by thin liquid films called lamellae” according to Hirasaki (1989). The lamellae 

(of the order of 10-100 nm thick) are stabilized by surfactants adsorbed at the gas/liquid 

interface.  



6 1: Introduction 

 

 
 (a) (b) 

Fig 5: (a) Foam in bulk that is encountered in everyday life. (b) Foam in porous media. Lamellae are thin 

liquid films with a thickness of the order of 10-100 nm sketched between grains of rock in Fig. 5b. 

In the presence of foam, gas mobility in porous media is drastically reduced through trapping 

a large fraction of gas in place and increasing the effective gas viscosity. Forward movement of 

gas trapped inside foam bubbles must first overcome capillary resistance to movement of the 

lamellae. If the bubbles do flow, drag between the foam bubbles and pore walls/constrictions 

further hinders gas movement. Nevertheless, to a good approximation foam does not alter the 

relative-permeability functions or viscosities of water and oil phases (Bernard and Jacobs 

1965; Huh and Handy 1989; Vassenden and Holt 2000; Chou 1990).  

1.4.1. History and Field Tests 

The application of foam to mobility control goes back to 1958 when it was first proposed by 

Bond and Holbrook (1958). Fried (1961) conducted the first research on the mechanisms of 

the foam-drive processes. Further research was performed by Bernard and Holm (1964) and 

Marsden and his colleagues in 1960’s (Marsden et al. 1967; Raza and Marsden 1965). Later, 

foam was suggested for mobility control in various processes (Reisberg 1972; Kamal and 

Marsden 1973; Bernard et al. 1980). Lawson and Reisberg (1980) conducted experiments in 

cores to study the performance of foam for mobility control in surfactant-alternating-gas 

(SAG) flooding. Due to lack of understanding of the mechanisms of mobility control by foam 

at that time, this concept was not adopted immediately (Li et al. 2008). 

Many advances have been made in understanding this concept since then and many field tests 

on foam EOR have been carried out (Hanssen 1994). Turta and Singhal (1998) investigated 

more than 40 foam EOR projects. Shan (2001) lists 11 foam field trials (see Table 1) with CO2, 

N2, air or hydrocarbon-gas (HC) foam. They include different injection strategies at a fixed 

pressure (P) or injection rate (Q): SAG and/or continuous foam injection (i.e., coinjection of 

surfactant solution and gas at a fixed water fractional flow or foam quality). While Shan has 
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excluded steam-foam trials, Hirasaki (1989) and Eson (1989) have reviewed various steam-

foam-drive field projects. One of the most successful field tests of foam for mobility control is 

the foam-assisted water-alternating-gas (FAWAG) trial performed in the Snorre field in the 

North Sea (Blaker et al. 2002). Prior to this, foam application in the North Sea had been 

mainly limited to production-well treatments (Aarra et al. 1996; Svorstøl et al. 1997).  

Table 1: Summary of foam field trials excluding steam foam (from Shan 2001). 

Field Trial Gas SAG Continuous 

Rangely Weber Sand Unit (Jonas et al. 1990) CO2 - Const. P 

North Ward-Estes (Chou et al. 1992) CO2 Const. P - 

San Andres & S.E. Utah (Hoefner et al. 1995) CO2 Const. Q Const. Q 

EVGSAU (Stevens et al. 1992; Stevens and Martin et al. 1995) CO2 Const. Q - 

Siggins Field (Holm 1970) Air Const. Q Const. Q 

Painter Reservoir (Kuehne et al. 1998) N2 - Const. Q 

Prudhoe Bay (Krause et al. 1992) N2 Const. Q Const. Q 

Triassic Field (Liu et al. 1988) HC Const. Q - 

Oseberg Field (Aarra et al. 1995) HC Const. Q - 

Pembina/Ostracod ‘G’ Pool (Chad et al. 1988) N2+HC - Const. Q 

Snorre Field in North Sea (Svorstøl et al. 1997; Blaker et al. 2002) N2+HC Const. Q Const. Q 

1.4.2. Physics 

Foam EOR processes must be applied under favorable reservoir conditions for foam (lamella) 

stability to achieve a successful displacement. Foam is sensitive to several parameters 

including oil saturation, water saturation through its effect on capillary pressure, surfactant 

concentration and chemical formulation, salinity, oil composition, heterogeneity, and 

capillary number which reflects flow rate. Among these parameters, we confine our 

investigations to the effect of oil and water saturations and surfactant concentration on foam 

stability.  

Specifically, foam may be weakened or destroyed at high oil saturations and/or low water 

saturations (high capillary pressures). The presence of enough surfactant in the reservoir is 

also a key parameter for foam formation. If any of the above conditions is violated (too much 

oil for instance), foam may collapse completely and injected gas almost immediately breaks 

through to the production well, leaving much of the oil behind. In order to prevent this, it is of 

extreme importance to intelligently design a foam process. This comprises the selection of a 

suitable surfactant that fits both the economics and the above criteria.  
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Surfactant must be able to produce strong lamellae that survive the reservoir conditions. 

Thus, very careful surfactant selection is required. First, the approximate distribution of oil 

and water saturations in the reservoir before starting foam EOR must be identified. Next, 

extensive experiments must be conducted with the real reservoir oil to screen surfactant 

chemical formulations and discover the exact effects (weakening/killing) of the factors 

endangering the foam stability. Lastly, the surfactant that can produce a foam stable at the 

reservoir conditions is selected. 

Surfactants can be very expensive if they are designed for specialized purposes. Moreover, 

surfactant loss due to adsorption on the rock surface can seriously damage the economics of 

the projects, such that the cost of the surfactant lost to the rock by itself can exceed the 

revenue of the remaining oil to be produced (see §4.4 for more detail).  

1.4.3. Models Describing Foam Behavior in Porous Media 

In the presence of foam, the gas-phase mobility is significantly reduced (Bernard and Holm 

1964; Huh and Handy 1989). However, the water relative-permeability function remains 

unchanged (Bernard and Jacobs 1965; Huh and Handy 1989; Vassenden and Holt 2000). We 

like-wise assume that foam does not alter the oil relative permeability. Experiments clearly 

show that the gas mobility in the presence of foam (hereafter referred to as foam mobility) is 

dependent on foam texture (i.e., bubble size) inside the rock, which is difficult to measure in 

situ. Based on this, models are developed to describe the complex mechanisms governing 

foam texture and foam mobility: 

 Fully mechanistic models 

 Population-balance models 

 Network models  

 Local-steady-state models 

1.4.3.1. Fully Mechanistic Models 

Fully mechanistic models aim at completely describing the central role of foam texture and all 

the factors influencing it, in a dynamic way. 

1.4.3.1.1. Population-Balance Models 

Population-balance models strive to fully describe foam dynamics by incorporating all the 

mechanisms controlling and influencing foam texture, which dominates foam mobility. These 

models analytically describe the dynamics of foam generation, trapping, and coalescence on 

the pore scale. A conservation equation is introduced in this model in which the rate of change 
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of foam texture depends on the rate of inflow, outflow, generation, trapping, and coalescence 

of lamellae (Patzek 1988; Falls et al. 1988; Friedmann et al. 1991; Kovscek 1995, 1997; Nguyen 

et al. 2000; Zitha et al. 2006; Kam et al. 2007). This type of model has been successfully 

applied to describe laboratory experiments (Falls et al. 1988; Friedmann et al. 1991; Chen  

et al. 2010). Variations of the population balance differ primarily in their assumptions about 

foam generation. Chen et al. (2010) has developed a simplified population-balance model 

based on the local-steady-state assumption (§1.4.3.2), in which the rates of foam generation 

and coalescence are taken to be equal.  

Pros: This type of model fully describes foam dynamics to the extent that it is complete and 

that all its mathematical expressions for describing foam behavior are accurate. Only this type 

of model could represent foam dynamics where local steady-state does not apply, for instance 

near the injection face, where foam generation occurs, and within shock fronts.  

Cons: It is complex. Numerous parameters are required to be determined from experiments 

due to the lack of comprehensive understanding of the foam mechanisms inside a rock. These 

parameters are essentially difficult to measure. Moreover, there is ambiguity in understanding 

the correct mechanisms from coreflood experiments. For instance, it is generally impossible to 

differentiate between a low lamellae destruction rate and high lamellae generation rate 

(Zeilinger 1996). 

1.4.3.1.2. Network Models 

Percolation or statistical network models represent a disordered medium (the pore space of 

rock) by a random spatial distribution of interconnected flow paths (a network) representative 

of the topology of the porous medium, with bond conductivities reflecting pore size. This 

concept is applied to describe generation and displacement of foam in porous media. Gas 

mobility is reduced by blockage of the network (Chou 1990; Rossen and Gauglitz 1990; 

Rossen et al. 1994, 1995; Kharabaf and Yortsos 1998; Chen et al. 2005) and is reduced to zero 

by foam at the percolation threshold. Gas flows only if the fraction of throats not blocked by 

lamellae exceeds the percolation threshold (Rossen et al. 1994).  

Of the works cited above, only Chou (1990) attempted to build a complete model for foam. A 

key assumption of this theory is that lamellae are continuously regenerated by snap-off 

mechanisms in pore throats with an aspect ratio greater than some critical value, blocking gas 

flow. Chou’s model assumes local steady-state; lamellae are quickly regenerated at the throats 

if ruptured. The balance between characteristic times for lamella destruction and regeneration 

leads to a probability that a throat is blocked at any time; gas mobility is reduced according to 

the fraction of throats blocked.  
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Pros: The models of Rossen and Gauglitz (1990), Kharabaf and Yortsos (1998) and Chen et al. 

(2005) provide insights into mechanisms of foam generation and mobility, but not complete 

foam models.  

Cons: Fully dynamic network models (Chen et al. 2005) are computationally expensive. No 

one has yet attempted to define a complete model for foam based on dynamic computations 

on a pore network. Chou's local-steady-state model is based on the problematic assumption 

that lamellae break (requiring high capillary pressure) and then regenerate by snap-off 

(requiring low capillary pressure), with no explanation offered for why this would occur  

(cf. Rossen 2003). Moreover, gas is assumed to be incompressible (Chou 1990). 

1.4.3.2. Local-Steady-State Models 

Local-steady-state models preserve the central role of foam texture in gas mobility while being 

simple. The local-steady-state assumption implies that foam reaches the steady state 

corresponding to the local saturation of the regime in which it resides relatively fast (Rossen 

and Bruining 2007). This model also assumes that gas mobility is fully determined by the local 

conditions (i.e., saturations, surfactant concentration, velocities, etc.). Population-balance 

models employ an extra differential equation to describe bubble texture as a function of local 

conditions, whereas local-steady-state models make use of an algebraic relation to describe 

foam rheology.  

A typical approach for describing foam rheology in local-steady-state models is through the 

models based on mobility-reduction factor. These models were first proposed by Marfoe et al. 

(1987) and improved by Islam and Farouq Ali (1990). In these models, a mobility-reduction 

factor obtained from steady-state laboratory experiments is applied to modify gas mobility in 

the presence of foam. These models are based on the local-steady-state assumption and 

implicitly reflect the effect of foam texture on gas mobility reduction through the variation of 

the pressure gradient as a function of parameters influencing the gas mobility (i.e., absolute 

rock permeability, surfactant concentration, superficial velocities, water and oil saturations, 

pressure drop, etc.). Foam mobility is eventually obtained by multiplying either gas relative 

permeability or gas viscosity, or both, by these correlations.  

Different ranges of complexity can be accounted for in describing the effect of various features 

on foam and the effect of foam on gas mobility in local-steady-state models. Complexity 

ranges from simply assuming a fixed reduction in gas mobility (Mayberry et al. 2008) to more 

complicated models (Namdar Zanganeh et al. 2011; Chapter 3). 

  



1: Introduction  11 

 

Most local-steady-state models incorporate the existence of a limiting capillary pressure. 

Lamellae are extremely sensitive to capillary pressure (Pc); these thin liquid films are drained 

and foam collapses at high Pc. Khatib et al. (1988) discovered through experiments that foam 

collapses rather abruptly at/above a certain value of Pc and they called it the limiting capillary 

pressure (Pc*). Since capillary pressure depends on water saturation (Sw) in rock, this suggests 

that for a given surfactant formulation foam collapses at a fixed value of Sw = Sw*; foam 

reduces mobility greatly for Sw > Sw*, but little or not at all for Sw ≤ Sw* in water-wet 

reservoirs. Models with this mechanism represent a local-steady-state form of the population-

balance model for strong foams where the capillary pressure controls foam texture. 

Pros:  

 Local-steady-state models can be implemented very easily. They implicitly account for the 

central role of foam texture in gas mobility. Although they do not individually account for 

mechanisms of foam generation and collapse (as in population-balance models), recently 

there is agreement that local steady-state applies to foam displacements at field scale and 

even at laboratory scale (Chen et al. 2010), unless the pressure gradient in the field is less 

than that required for foam generation, where the local-steady-state assumption may not 

apply (Mamun et al. 2002). 

 The numerical solution of foam models under the local-steady-state assumption is much less 

complex and numerically more stable than population-balance models (Kam et al. 2007).  

 Various studies reveal that population-balance models and local-steady-state models 

produce comparable results when modeling foam at the field scale and even at the 

laboratory scale; assuming local steady-state (Rossen et al. 1999; Kam et al. 2007; Chen  

et al. 2010). Thus, it is crucial to clearly find the conditions for which the added complexity 

(i.e., modeling with population-balance model) is indeed necessary. 

Cons: 

 The effect of foam texture inside the rock is, in general, not explicitly accounted for (Bertin 

et al. 1998). Moreover, these models are case-specific and they lack generality (Nguyen et al. 

2000). 

 Applicability of this type of model might be impaired if there is hysteresis in gas trapping 

due to the complex relation between capillary pressure and liquid saturation (Chen et al. 

1990). 
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1.4.4. Method of Characteristics 

The method of characteristics (MOC) is useful for solving the equations for foam flow (Zhou 

and Rossen 1995; Rossen et al. 1999; Namdar Zanganeh et al. 2011) and other EOR processes 

(Lake 1989; Marchesin and Plohr 2001; Orr 2005). The MOC is an analytical technique for 

solving a system of first-order quasi-linear partial-differential equations (PDEs). One of the 

two essential principles of the MOC is solving the PDEs by converting them into systems of 

ordinary-differential equations and then integrating them simultaneously to find the solution.  

With additional simplifying assumptions, the transport equations can be solved by the MOC. 

The assumptions we make include one-dimensional (1D), immiscible displacement; 

incompressible phases; Newtonian mobilities; absence of gravity, dispersion, gradients of 

capillary pressure, and viscous fingering (which are 2D effects); and immediate attainment of 

local steady-state. (See Chapter 2 for the complete list of assumptions.) Some of these 

assumptions have been relaxed in the literature*. In spite of these simplifying assumptions, 

the MOC is found to be accurate and useful in foam field tests at the Snorre field (Martinsen 

and Vassenden 1999). 

The MOC applied to injection processes involving two-phase flow gives rise to fractional-flow 

theory in the petroleum engineering community. Fractional-flow theory was first applied to 

foam displacements by Zhou and Rossen (1995) following the same principles as were first 

introduced by Buckley and Leverett (1942) for two phase water/oil flow. In the MOC, fixed-

saturation waves propagate through the porous medium. The wave velocities are derived from 

fractional-flow functions that are dependent on phase mobilities. Gas mobility in the presence 

of foam is modified by a mobility-reduction factor (§1.4.3.2) in the MOC; hence, the MOC 

incorporates the local-steady-state assumption. 

Pros:  

 The MOC provides exact solutions for benchmarking the accuracy and numerical artifacts of 

numerical simulators.  

 The MOC solutions have proved useful in highlighting key mechanisms and strategies for 

improving foam performance (Zhou and Rossen 1994, 1995; Rossen et al. 1999; Shan and 

Rossen 2004; Mayberry et al. 2008), and in better understanding foam simulation models 

(Rossen et al. 1999; Dong and Rossen 2007).  

                                                                    
* e.g., non-Newtonian mobilities: Rossen et al. (2008, 2010); non-steady-state assumption (assuming 
local-steady-state except at specific locations): Ashoori et al. (2011a, 2011b); miscible phases: Orr (2005); 
1D in the presence of gravity: Rodrigues (2010). 
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 Rossen et al. (1999) showed that a population-balance model that required 10 parameters 

for defining foam behavior in radial flow can be represented by only 1 parameter using 

fractional-flow theory. These insights can lead to an improved EOR process design. Also, 

one can identify the most important conditions for conducting experiments.  

 The use of an empirical mobility-reduction factor greatly simplifies foam modeling in porous 

media, although it cannot capture transient foam behavior.  

 Incorporating the limiting capillary pressure concept into the MOC simplifies the modeling 

task greatly without loss of generality (Hill and Rossen 1994; Zeilinger 1996).  

Cons:  

 The MOC solutions are valid only in one-dimension. 

 If the solution is very complex, it is usually hard to find, using the MOC; a numerical 

solution may help in finding it. 

 Because of its simplifying assumptions, the MOC cannot be used in complex real-world 

applications where many of its assumptions are violated. Its usefulness is in the insights it 

offers, not as a quantitative, predictive tool for real reservoirs. 

1.5. Oil-Production Optimization 

Chemical EOR is relatively expensive due to the high cost of the injected chemicals such as 

surfactants. Their excessive use leads to processes that are not economically feasible. Thus, 

optimizing the injected amount of these chemicals is of extreme importance (Jansen 2011). 

There are two optimization modes: short-term (daily, weekly) and long-term (years to 

decades). We address the long-term optimization of foam EOR processes in Chapter 5.  

Any optimization problem consists of two main parts: the objective function that must be 

minimized or maximized (optimized) and one or more controllable parameters that should be 

adjusted to arrive at the optimum control settings, leading to the optimized objective function. 

We intend to find the optimum amount of the injected surfactant that maximizes the long-

term cumulative oil production. Thus, our objective function is the cumulative oil production, 

and the control settings in our case could in principle be one or more of the following 

variables: composition of the injected surfactant solution (in simultaneous injection of gas 

and surfactant solution, the switching time between surfactant solution and gas injection  

(in surfactant alternating gas injection), and various control settings such as flow rate, 

bottomhole pressure and valve settings. As an initial case study, we optimize the duration of 

surfactant injection in a SAG process to maximize total oil production.  
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1.5.1. Optimization Methods 

There exist various optimization methods. Some of them are gradient-based, and some are 

derivative-free methods. Gradient-based methods in general can very efficiently find an 

optimum with few forward model evaluations, and they assure that the objective function 

grows at each iteration (in the maximization problem). However, they only provide local 

information about the objective function in the neighborhood of certain values of the 

controllable parameters. Therefore, if the objective function has multiple local optima, it is 

highly probable to find a local optimum instead of a global optimum (Sarma et al. 2005), 

because gradient-based methods tend to find the optimum closest to the initial guess. Since 

the results obtained by these methods are generally dependent on the initial guess of the 

controllable parameter, it is beneficial to try different choices as an initial guess. The 

ensemble Kalman filter (EnKF) and optimal control theory (OCT) are gradient-based.  

In OCT, gradients are computed analytically by an adjoint equation (Oliver et al. 2008). We 

note that sometimes a wider class of methods is used in OCT for gradient calculation, but in 

this thesis we do not consider those other methods. OCT is particularly useful in optimization 

problems where a large number of controllable parameters must be optimized. However, 

implementation of the adjoint routine is complex and time-consuming and requires 

considerable code development. The adjoint routine depends on the forward model (system 

equations). Thus, every time that the forward model is modified, the adjoint code must be 

updated and one needs access to the simulator’s source code to do so (Sarma et al. 2005; Chen 

et al. 2009; Jansen 2011). 

EnKF is an adjoint-free method and is the extension of Kalman filter to nonlinear problems. It 

has been mainly used for history-matching problems, but it is applied in optimization as well 

(Oliver et al. 2008; Chen et al. 2009). In this method, stochastic gradients are calculated that 

are approximations of the analytical gradients. EnKF is easy to implement and computes the 

gradients via the sensitivities provided by the ensembles, while the simulator acts as a black 

box. The computational cost of EnKF is claimed to be nearly independent of the number of 

unknown parameters (Chen et al. 2009). However, the quality of the approximated gradients 

is affected by the ensemble size and level of nonlinearity of the system.  

Global optimization methods such as simulated annealing (Yang et al. 2003) are in principle 

capable of finding the global optimum, provided that a sufficient number (usually large) of 

forward model evaluations is performed. However, they do not ensure monotonic 

optimization of the objective function. Therefore, these methods are computationally 

expensive and are not favored if the number of controllable parameters is large and the 

individual function evaluations take a long time (Brouwer 2004).  
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We use OCT in this thesis, in which gradients are computed analytically and backward in time 

by an adjoint equation. We apply OCT because of its efficiency and because the simulator 

MoReS, that was available for this study, is already equipped to compute the required 

gradients. 

1.6. Research Objectives  

The specific objectives of this research are stated as follows: 

 To evaluate the success of 1D foam EOR processes in the presence of mobile oil by means of 

an analytical technique and assert the operating conditions leading to successful processes. 

 To investigate the performance of the numerical simulator in matching the 1D analytical 

solutions of foam EOR processes and gain insights to ensure finding correct solutions in 3D 

simulations. 

 To find the physics underlying a 3D oil displacement process by foam, comprehend the 

physical conditions leading to the optimum switching time between surfactant and gas 

injection cycles in SAG EOR processes, and suggest favorable conditions for maximizing the 

oil recovery. 

 To assess the usefulness and performance of a gradient-based optimization routine in 

optimizing the switching time to maximize the oil-recovery factor from petroleum reservoirs 

both in 1D and 3D simulations. 

1.7. Outline 

This thesis consists of 6 chapters, starting with Chapter 1 as the introduction.  

Chapter 2 discusses the mathematics of the MOC applied to three-phase flow. We describe an 

efficient technique for constructing the saturation paths. Moreover, we explain the procedure 

for finding the displacement route.  

In Chapter 3, the MOC is applied to foam EOR processes in 1D in the presence of mobile oil 

and we present the analytical solutions for various cases. We examine the sensitivity of the 

displacement to initial oil and water saturations in the reservoir, foam quality, the functional 

forms used to express foam sensitivity to oil and water saturations, and linear and nonlinear 

relative-permeability models. Chapter 3 and a part of Chapter 2 are published in Namdar 

Zanganeh et al. (2011). 
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In Chapter 4, the performance of the numerical simulator is validated against the MOC 

solutions in 1D obtained in Chapter 3. This chapter introduces the three-phase relative-

permeability model used in Chapter 5. Next, different options in the simulator for 

incorporating foam and modeling surfactant transport are introduced and their limitations 

are discussed. Finally, the performance of the simulator in modeling foam displacement is 

validated against the available MOC analytical solutions in Chapter 3. The insights gained 

from this validation help defining the 3D model in Chapter 5 and validating the results to 

ensure finding correct solutions in 3D simulations. 

In Chapter 5, the simulation model is introduced first. Then, the effect of the switching time 

on the objective function is investigated in three different scenarios in which different 

injection-well constraints and end-time constraints are applied. It continues with a brief 

overview on the history and application of optimal control theory in petroleum engineering. 

After that, three methods of gradient calculation are discussed and the adjoint method that is 

used in this chapter is explained. The application of the adjoint method for calculating the 

gradient with respect to switching time is discussed in detail afterwards. Finally, the capability 

of a gradient-based optimization routine is investigated in finding the switching time that 

maximizes the cumulative oil production. The performance of the optimization routine is 

examined for four cases varying in the simulation mode (i.e., 1D or 3D) and the foam model 

(i.e., linear or nonlinear).  

Finally, the main conclusions of the thesis are summarized in Chapter 6. 



 

 
 

 

 

Chapter 2 

Solution Paths in Three-Phase Flow 

 

 

2.1. Introduction  

Riemann (1860) gave an analytical solution to a system of first-order partial-differential 

equations (Eq. 1) in the context of Euler’s equation for gas dynamics. There he also described 

the fundamentals of the method of characteristics (MOC). Fractional-flow theory for two 

mobile phases (water/oil) was first developed by Buckley and Leverett (1942). Certain aspects 

of this theory were extended to multicomponent, two-phase systems by Helfferich (1981) 

under the name coherence theory (Pope 1980; Lake 1989; Falls and Schulte 1992a, 1992b). 

Rarefaction-wave theory, also known as coherence theory, is a subset of the MOC; more 

mathematical details can be found in Helfferich and Klein (1970), Lake (1989), Rhee et al. 

(2001), Juanes and Patzek (2004b), and Dafermos (2005) for general systems. Marchesin and 

Plohr (2001) reviewed the recent progress on mathematical theory of immiscible three-phase 

flow in the appendix of their paper for models with nonlinear relative-permeability functions.  

One of the two major principles in the MOC is converting the partial-differential equations 

(PDEs) into a system of ordinary-differential equations (ODEs). For the special types of 

initial-boundary data appearing in injection problems, this system of ODEs is then integrated 

simultaneously to give the smooth solution to the original PDEs. The other principle is the 

relationship between left and right states of a discontinuity propagating with a fixed speed, 

discovered independently by two engineers, Rankine and Hugoniot (Smoller 1983).  

In this chapter, smooth solutions of the classical three-phase conservation law are 

reformulated as an eigenvalue problem that has two eigenvalues and is solved by the MOC. In 

three-phase flow, the larger eigenvalue is the fast characteristic speed (σfast). The eigenvector 

corresponding to σfast points in the direction of fast characteristics. Fast saturation paths are 

constructed by numerical integration in the direction of the fast eigenvector. The same story 

holds for the slow characteristic speed (σslow) that is the smaller eigenvalue. Saturation paths 
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are the only possible directions on the so-called ternary diagram (i.e., saturation space) along 

which the saturations can vary continuously during the displacement for the injection 

problem, without contradicting the three-phase mass-conservation law. We describe an 

efficient technique for constructing these saturation paths. We also describe the procedure for 

finding the displacement route. A displacement route is the particular path representing a 

given displacement that passes from the injection to the initial condition. In Chapter 3, this 

method is applied to three-phase foam EOR processes in one-dimension (1D). 

2.2. Assumptions 

We make the following assumptions and restrictions, to simplify the description of the three-

phase flow process: 

 Flow is rectilinear and 1D in a horizontal porous medium, and gravity is neglected.  

 Up to three mobile phases are present: oil, water, and gas. We have an immiscible 

displacement; i.e., each phase is assumed to consist of only its own pseudo-component. 

 Properties (e.g., mobilities) are independent of pressure and depend only on phase 

saturations. 

 Fluids are injected at fixed fractional flows*.  

 Flow is isothermal and all phases are incompressible. 

 The porous medium is assumed to be homogeneous.  

 Dispersive processes (e.g., fingering, capillary diffusion, and dispersion) can be neglected. 

 There is instantaneous attainment of local steady-state saturations. 

 Mobilities are Newtonian; i.e., they do not depend on total superficial velocity. 

 The injection rate of each of the injected fluids (gas/water) is constant; the initial conditions 

are homogenous in the reservoir. 

 For simplicity, adsorption of surfactant on rock is neglected. 

Many of these assumptions have been relaxed in the literature. 

2.3. Theory 

Riemann (1860) gave an analytical solution for a system of first-order partial-differential 

equations such as the one in Eq. 1, describing the fundamentals of the MOC, in the context of 

Euler’s equation for gas dynamics; see Dafermos (2005) for a modern review. The solution of 

injection problems for conservation laws consists of a sequence of constant-state regions, 

rarefaction waves (which become more spread out on propagation), and propagating 

                                                                    
* This implies injecting fluids at a fixed volumetric ratio since phases are incompressible. 
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discontinuities (either shock waves or indifferent waves).  

One of the two essential principles of the MOC is solving the PDEs (i.e., Eq. 1) by converting 

them into ODEs and then integrating them simultaneously to find the solution. 

0 , ,
D D

S f
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t x
  
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 (1) 

where Sα and fα are the saturation and fractional-flow function of phase α (water or oil), 

respectively*. Eq. 1 is the dimensionless representation of the 1D, immiscible, incompressible 

three-phase-flow equation in porous media in the absence of dispersive processes and gravity. 

In rectilinear flow, the dimensionless position is defined as xD=x/L where L is the length of 

the medium. The dimensionless time tD is defined as the total volume of fluid injected until 

time t divided by the total pore volume (PV) of the medium [see Lake (1989) for more details]. 

The fractional-flow function fα in a horizontal system, ignoring the capillary pressure gradient, 

is defined as the mobility of phase α (i.e., kkrα/µα) divided by the summation of the mobilities 

of all the phases, where k is the rock absolute permeability and krα and µα are, respectively, the 

relative permeability and viscosity of phase α.  

Coherent waves were found in Riemann’s work and were given that name by Helfferich and 

Klein (1970) in the context of flow in porous media [also see Rhee et al. (1971) and Rhee et al. 

(2001)]. For smooth waves†, the solution procedure results in a set of saturation paths on the 

phase diagram that satisfy the PDE in Eq. 1, from which we find the solution by specifying the 

initial and injection conditions. Saturation paths for rarefaction waves are the same as those 

in coherence theory; for shock waves, they have different properties. 

The rarefaction-wave characteristic speed (σ) is a function of the dependent variables (i.e., Sw, 

So) given by  
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 where and so on.
w
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* Eq. 1 is the mass-conservation equation and is valid for all three phases. However, the fact that the three 
phases jointly fill the void space (Sw + So + Sg = 1) results in eliminating one of the three mass-
conservation equations leading to a complete system of two equations for solving two of the three main 
unknowns (i.e., Sw, So, and Sg). The third unknown (Sg here) is evaluated accordingly. 

† Smooth means that a certain number of derivatives exist and are continuous. The number of continuous 
derivatives necessary for a wave to be considered smooth is problem dependent and may vary from one to 
infinity. In the case of our problem, having two continuous derivatives is sufficient. 
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The two allowed characteristic velocities are the two eigenvalues of Eq. 2, which are given by 
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where, by definition σfast ≥ σslow if the roots are real. The eigenvalues in Eq. 3 can be real or 

complex, depending on the relative-permeability model used and the state at which they are 

evaluated. Marchesin and Medeiros (1989) and Falls and Schulte (1992a) described a 

sufficiency condition to ensure real characteristic velocities. Their sufficiency condition states 

that, if the relative permeability of each phase during three-phase flow is a unique function of 

only its own saturation, the characteristic velocities are real everywhere in the three-phase 

flow region. Isaacson et al. (1992) and Guzmán (1995) have examined some common relative-

permeability models. If the relative-permeability model is such that the resulting system has 

everywhere two real, distinct eigenvalues, then it is called strictly hyperbolic. An umbilic point 

is an isolated point where the eigenvalues are real but coincident (equal) which contradicts the 

assumption of distinct eigenvalues of strictly hyperbolic systems. The existence of umbilic 

points causes our system to be nonstrictly hyperbolic for each of the cases we will consider.  

Rarefaction waves are paths along which the characteristic speed is non-decreasing in the 

downstream direction and must be obtained by integrating Eq. 4 resulting in coherent waves 

(Courant and Friedrichs 1948; Smoller 1983). Solving for dSw and dSo in Eq. 2 gives:  
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d d
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with similar equations for fast paths. Falls and Schulte (1992a) observed that it is convenient 

to use the first equation when |dSo/dSw|≤ 1 and switch to the second one when |dSo/dSw|> 1 

(this ensures finding the solution whenever either dSw or dSo is close to zero). The locus of the 

integral of Eq. 4 corresponding to σslow and σfast are called a slow and a fast rarefaction path, 

respectively. These derivations and their theoretical background are discussed in more detail 

elsewhere (Helfferich 1981; Lake 1989; Falls and Schulte 1992a).  

At this stage, we can map out the solution of Eq. 4 as saturation paths on the ternary diagram 

based on Eq. 4 (Fig. 1); see Appendix A in Namdar Zanganeh et al. (2009) for this procedure. 

There is another procedure for mapping out the saturation paths [described e.g., by Courant 

and Friedrichs (1948) in the context of shocks in gas dynamics and recently by Azevedo et al. 

(2010) in the context of three-phase flow in porous media], that is more robust than the above 

mentioned procedure and is explained below in §2.4.2. 
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The ternary diagram with the saturation paths acts as a map for finding the displacement 

route (i.e., the particular path that passes from the injection to the initial condition for a given 

displacement) for any arbitrary pair of injection and initial reservoir conditions for that 

specific system. The procedure of finding the displacement route is discussed below in §2.5.  

2.4. Plotting the Saturation Paths 

To map out the saturation paths, we follow two major steps. First, we identify the wave family 

(i.e., fast or slow) to which the lines defining residual-saturations belong and then, starting 

from these lines we map out the saturation paths inside the three-phase-flow region of the 

ternary diagram. Mapping out the saturation paths can be performed in several ways. The 

method explained here for mapping out the saturation paths follows from that in the Azevedo 

et al. (2010) and is very efficient. Moreover, its performance is not affected if the path is not 

monotone with respect to any of the saturations.  

 

Fig. 1: Ternary diagram for the linear relative-permeability model in Chapter 3 in the absence of foam. 

The ternary diagram illustrates solutions to Eq. 1 before applying initial and injection conditions. Heavy 

lines are the fast paths, and thin dashed lines are the slow paths. Arrows are in the direction of increasing 

σ. The only umbilic point is located along the Swr line and is indicated by a solid black circle. 

2.4.1. Identifying the Wave Family (Slow/Fast) of the Residual-Saturations Lines 

In all the cases that we study in Chapter 3, the residual-saturation lines are saturation paths. 

We discover this by verifying if a certain property is valid along them. For the Sw = Swr line to 

be a saturation path, dSw/dSo must be equal to zero for the points along this line (see Eq. 4), 

since Sw is constant there. For the So = Sor line to be a saturation path, dSo/dSw must be zero 

because So is constant. Lastly, in order for the Sg = Sgr line to be a path, dSo/dSw and dSw/dSo 
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must be equal to (-1) along the Sgr line. We also calculate (dSo/dSw) or (dSw/dSo) for both σfast 

and σslow from Eq. 4. Based on whether or not the fast or slow solution is in agreement with 

the above-mentioned criteria, the family to which the residual-saturation line belongs is then 

determined. In Fig. 1, (dSo/dSw)fast = 0 on the Sor line and (dSo/dSw)slow = -1 on the Sgr line. 

Thus, the lines at So = Sor and Sg = Sgr are saturation paths and belong to the fast and slow 

saturation-wave families, respectively. However, the path along Sw = Swr line switches from 

slow to fast at the umbilic point. The umbilic point is a point at which the eigenvalues are 

equal (σfast = σslow), the eigenvectors coincide, and the path changes from fast to slow (Falls 

and Schulte 1992a). We show examples with foam in Chapter 3 where an umbilic point may 

also occur on So = Sor or on Sg = Sgr lines. It is very important to identify and calculate the 

location of these umbilic points accurately, because they are used in identifying the wave 

family (slow/fast) to which each segment of the boundary of the three-phase region belongs.  

2.4.2. Mapping Out the Saturation Paths Inside the Three-Phase Region 

Once the type of the saturation path (fast/slow) on the residual-saturation lines is determined, 

one can map out the rest of the paths inside the ternary diagram. Imagine that we want to plot 

the paths originating from So = Sor. Following the criterion* that no two slow or fast paths 

cross one another [for more details see Helfferich and Klein (1970)], all the paths originating 

from So = Sor must be slow paths, because the line So = Sor is a fast path. Accordingly, these 

slow paths should terminate on a fast path as well to satisfy the above-mentioned criterion. 

They can terminate on the So = Sor or the fast-path portion of Sw = Swr; however, as the paths 

in Fig. 1 are straight lines, they should land on the fast-path portion of Sw = Swr.  

For the MOC applied to injection problems [see Azevedo et al. (2010) for more details], the 

mass-conservation Eq. 1 is reformulated in terms of the self-similarity variable ξ = xD/tD, 

where s = s(ξ), by using the chain rule and multiplying the equation by tD 
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where s = (Sw, So)T and f(s)=(fw, fo)T and J is the 2×2 Jacobian matrix in Eq. 2. If we introduce 

a 2×2 identity matrix I into Eq. 5, it can be rewritten as  
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 
J I 0

s
s r s r s  (6) 

                                                                    
* This criterion holds only for strictly hyperbolic systems.  
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The saturation paths are constructed in three steps: 

(1) The eigenvalues (i.e., ξfast and ξslow) must be calculated. Thus, the determinant of the term 

(J(s)- ξI) in Eq. 6 must be equal to zero. 

  ( ) 0.ww wo
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ow oo

f ξ f
ξ f ξ f ξ f f

f f ξ


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
J Is  (7) 

Solving this equation returns the expressions for ξfast and ξslow in Eq. 3.  

(2) The eigenvector (i.e., rw and ro) must be computed after substituting either value of ξ 

determined in step 1 in Eq. 6:  
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Here we choose to calculate ro = dSo/dξ from the first equation in Eq. 9 for the slow paths: 

d d
,

d d

slow
o ww w

slow slow
wo

S ξ f S

ξ f ξ


  (10) 

with similar equation for the fast paths. The value of rw = dSw/dξslow in Eq. 10 is arbitrary in 

this formulation. If one reformulates the above and writes rw in terms of ro, then the choice of 

ro is arbitrary. For Eq. 10, we choose rw = fwo*. Thus, we obtain ro = (ξslow - fww) from Eq. 10.  

(3) The saturation paths are constructed by integrating the following ODE: 

 
 

T

22
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,
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slow
wo ww

slow
wo ww

f ξ f

f ξ f


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 

s r s

r s
 (11) 

where |r(s)| is the magnitude of r(s) and η is an arc length and accepts any arbitrary value. 
                                                                    
* The eigenvector r(s) is a vector with two components (i.e., rw and ro). Multiplying both components by 
the same nonzero constant results in another vector that is also an eigenvector. If the constant is negative, 
it points to the opposite direction, but, as an eigenvector, it is equivalent to the original one. In addition, 
the formula for the eigenvector is not unique, but all formulae are equivalent. Therefore, the choice of rw 
in Eq. 10 is arbitrary. In Eq. 10, for convenience we choose rw as the denominator of the (ξslow - fww)/fwo 
ratio to avoid division to zero if fwo becomes zero. Moreover, the two components of an eigenvector are not 
important in our approach, but the slope of the eigenvector is important (i.e., dSo/dSw or dSw/dSo).  
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Equivalently, Eq. 11 can be written as 
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Solving this equation provides the vector s = (Sw, So) and constructs the entire saturation path 

or part of it, based on the range of η that we choose. In fact, η defines the range in which  

Eq. 12 is solved. As a result, the length of the saturation path obtained from Eq. 12 is 

proportional to the range defined for η. In our calculations, we never needed to choose η 

larger than one. (It is important to emphasize that only the length of η is important, i.e., there 

is no difference between [0, 1] and [200, 201] for instance.) Starting from the initial point, if 

we choose η = [0, 1], the path is plotted in one direction and if we choose η = [1, 0], the path is 

plotted in the direction opposite to the previous one. This is important to note, because for 

instance if we start from the residual-saturation lines, the path is plotted only if it points 

towards the inside of the ternary diagram. If we choose a wrong direction, the path will point 

to direction outside the ternary diagram and is not plotted because it is unphysical. If we 

shrink the range, only part of the path is plotted, so we should integrate between [0,1]. By 

enlarging the range we can ensure that the entire saturation path is plotted in one go. We can 

choose the initial point to start the path from any point inside the ternary diagram or on the 

sides (residual-saturation lines). 

It is possible to solve Eq. 12 by one of the available ODE solvers in MATLAB. The ode45 

routine (Runge-Kutta method) is the first choice but does not always find the correct solution. 

In this case, it is recommended to use ode15s (Gear’s method). To improve the performance of 

these methods, one can also provide the following Jacobian matrix analytically into the 

routine (we were able to find the solution with the ode15s without providing this matrix): 
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    
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 (13) 

where Aw and Ao are the right-hand sides of the differential equations in Eq. 12, respectively. 

In the above formulations, we chose the first ODE in Eq. 9 to find the eigenvectors. However, 

sometimes integrating Eq. 12 with those eigenvectors does not result in finding the s. In that 

case, we have to switch to the second ODE and repeat the procedure.  

In some cases, if there is a region with complex eigenvalues in the course of the saturation 

path, the ODE solver stops once it reaches this region. In this case, we need to make the range 

of η shorter such that the path ends before entering this region. 
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To assure that the path is correctly calculated, the eigenvector at the next calculated point 

[i.e., rn+1(s)] must be in the same direction as the eigenvector of the previous calculated point 

[i.e., rn(s)] along the saturation path. In other words, (rw,ro)n · (rw,ro)n+1 > 0, where “·” is the 

inner vector product. Every time that this condition is violated, the entire r(s) vector must be 

multiplied by (-1).  

If one uses MATLAB for the calculations, it is important to note that this software is prone to 

finding complex saturations due to round-off errors. In other words, zeroes are sometimes 

represented by extremely small values*. If these values are negative and are raised to a power 

smaller than one or a non-integer power, they may result in complex saturations and the 

procedure fails. Therefore, it is necessary to make use of the procedure in the footnote to avoid 

complex saturations.  

2.5. Finding the Displacement Route 

Once the saturation paths are mapped out on the ternary diagram by numerically integrating 

either of Eq. 4 or Eq. 12 (e.g., through using one of the MATLAB ODE solvers), we specify the 

direction of increasing σ (characteristic speed given by Eq. 3) on every path by arrows (see 

Fig. 1). At this stage, the ternary diagram with the saturation paths acts as a map for finding 

the displacement route (i.e., the particular path that passes from the injection to the initial 

condition) for any arbitrary pair of injection and initial reservoir condition for that specific 

system. We state the admissibility conditions for the displacement route in §2.5.1, and in 

§2.5.2 we discuss the procedure that we applied for finding them.  

2.5.1. Admissibility Conditions for the Displacement Route 

The fundamental waves encountered in this work include rarefaction waves and shock waves. 

For the displacement route to be admissible, it is required that characteristic velocities along 

the rarefaction waves and shock velocities be non-decreasing in the downstream direction 

[i.e., from the injection condition (J) to the initial condition (I)].  

In order for a shock to be admissible, it must satisfy two conditions: (1) the Rankine-Hugoniot 

jump condition and (2) the Lax condition: 

  

                                                                    
* This problem in our case raises from the way of representing Sg in terms of Sw and So. (In our 
formulations, Sw and So are the primary variables.) If one puts Sg equal to (1 - Sw - So), then for instance 
for Sw = 0.8 and So = 0.2, this expression returns a negative nonzero value for Sg (i.e., -5.55e-017). 
However, if one substitutes Sg by (-Sw - So + 1) this expression returns zero. 
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(1) Any discontinuity in a system governed by Eq. 1 must satisfy the Rankine-Hugoniot jump 

condition (Riemann 1860; Courant and Friedrichs 1948), which is the representation of 

conservation of mass for propagating discontinuities: 

 
 

,

u d u d
shock w w w w

u d u d
shock o o o o

v S S f f

v S S f f

   


  
 (14) 

where vshock is the shock velocity and superscripts u and d indicate the upstream and 

downstream sides of the shock, respectively. For a fixed upstream state, Eq. 14 determines a 

curve of downstream states for possible shocks.  

(2) A genuine shock must also satisfy the Lax condition (Lax 1957). For a single scalar 

equation (such as Buckley-Leverett for oil-water flow without gas), the Lax condition requires 

that the characteristic lines impinge on the shock; i.e., σd < vshock < σu, where σ = (dfα/dSα). 

For systems of two equations, the following criteria must hold for a slow and a fast Lax shock, 

respectively (They are inspired in isothermal gas dynamics and must be true for many systems 

of two conservation laws.): 

Slow: , Fast: ,
; ;

slow slow slow fast fast fast
d shock u d shock u

fast slow slow fast slow fast fast slow
u shock shock d u shock shock d

v v

v v v v

   
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where slow
d is the slow characteristic speed of the point just downstream of the shock, and so 

on. Other discontinuities are not allowed by Lax in systems of two equations. Nevertheless, 

limits of Lax shocks, when one of the inequalities become an equality, occur in multiphase 

flow, even in the Buckley-Leverett case. By allowing Lax limits, wave groups form. In our 

examples, each wave group is a consecutive sequence of a rarefaction wave and a shock wave 

or vice versa (wave groups consist of many shocks and rarefaction waves, in general). 

Consecutive waves in wave groups are not separated by a region of constant state in physical 

space. The displacement routes in this work consist of two or three wave groups (see Fig. A-1 

for various combinations of wave groups encountered in Chapter 3), but this is not a general 

result for non-strictly hyperbolic models; see Schecter et al. (1996) for a complete discussion 

of all possible types of wave groups in non-strictly hyperbolic models. 

2.5.2. Procedure of Finding the Displacement Route 

As mentioned in §2.5.1, we must take a sequence of wave groups in increasing velocity from J 

to I (Isaacson et al. 1992). Thus, it is not possible to switch from a fast path to a slow path 

meeting at a point in the course of moving from J to I (because σfast > σslow at any point).  

In general when there are two wave groups consisting solely of rarefaction waves (i.e., in the 

absence of shocks), a displacement route starts from the injection condition along a slow path. 

Then, it changes at some point (IJ) to a fast path starting from this point and then follows this 
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path to the initial condition (e.g., see Fig. 1a and Fig. 6a in Chapter 3). IJ is a constant-state 

region because the slow and fast characteristic velocities on both sides of IJ are different and 

the formation of constant-state regions is inevitable in this case. If J and I lie on a single slow 

or fast path, the other path is unnecessary. The displacement route in these two cases can be 

easily found by looking at the ternary diagram. Fig. 1a in Chapter 3 is an example of this case: 

A slow path is followed by a fast path from J to I, on which characteristic velocities are  

non-decreasing in the downstream direction. Therefore, these two rarefaction waves construct 

the displacement route with a constant-state IJ in between.  

Unless characteristic velocities are non-decreasing from J to I, there must be shocks from one 

point to another in the saturation space, otherwise the problem has no solution. We 

encountered the following situations in Chapter 3*:  

(1) The slow path from J intersects a fast path from I, but the characteristic velocities are not 

increasing along the entire path from J to I. Two situations happen in this case:  

(1a) The shock is to a path originating from J or I (e.g., see Figs. 3a, 6b, and 7).  

(1b) The shock is to a path not originating from J or I (e.g., see Figs. 3b and 4b).  

 (2) The slow path from J does not intersect a fast path from I (e.g., see Figs. 4a and 8).  

In situation (1a), it is relatively easy to find the displacement route. For instance in Fig. 7, σ is 

not increasing along only the first portion of the slow path. Therefore, there is a shock from J 

to a point with increasing σ along the remainder of the path. Thus, J is the upstream state of 

the shock and we require to find the downstream state†. For this purpose, we check the 

validity of the Rankine-Hugoniot jump condition (Eq. 14) along the portion of the path from J 

to I with increasing σ. Equalities in Eq. 14 must hold for the upstream and downstream states 

of a shock. In other words, we set the properties (Sα and fα) along this part as the possible 

downstream state of the shock: the acceptable downstream state is the one at which

   u d u df f S S     ratio is equal for all the phases‡ and the value of this ratio at the 

acceptable downstream state [i.e., (0.35, 0.43, 0.22) in Fig. 7] gives the shock velocity (vshock). 
                                                                    
* The figures referred to in this section belong to Chapter 3. 

† In case of Fig. 6b, I is the downstream state of the shock that is known and we require to find the 
upstream state. This is also the case for the second shocks in Figs. 4a and 8 from J to I (situation 2). 

‡ If one of the phase saturations is invariant along the shock, then the    u d u df f S S     ratio 
corresponding to that phase is not defined and the ratios must be identical for the other two phases (e.g., 
Sw is constant along the shock in Fig. 3a). If this is not the case, then it suffices to check the intersection of 
two curves and the third curve will intersect at the same point (the sum of the three saturations and the 
sum of the three fractional-flow functions are equal to unity).  
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If the Rankine-Hugoniot jump condition does not hold anywhere along the path, then 

situation (1b) might be the case. Further, we examine the Lax condition in Eq. 15: for this 

shock, the limit of the slow Lax shock is satisfied (i.e., slow
d = vshock) and the shock velocity is 

identical to the characteristic speed of the rarefaction wave downstream of the shock.  

In situations (1b) and (2), the solution is more complex and is hard to find using the 

procedure discussed in situation (1a). In such circumstances, we used a fine-grid numerical 

simulator to help in finding the solution. The numerical simulation provided us with the 

following information: type of the fundamental waves in the displacement route (i.e., 

rarefaction wave or shock wave), sequence of the waves, and an approximate location(s) of the 

constant-state region(s). The admissibility of the shock(s) was then verified by checking the 

Rankine-Hugoniot jump condition (Eq. 14) and the Lax condition (Eq. 15).  

2.5.3. The Wave-Curve Method 

We applied the procedure discussed in §2.5.2 in Chapter 3 for finding the displacement route. 

However, there is an alternative procedure called the wave-curve method developed by Lax 

(1973) and Liu (1974). Prior to that, it was outlined briefly by Courant and Friedrichs (1948) in 

the context of shocks in gas dynamics. In this method, the displacement route (which is a 

sequence of rarefaction waves, shock waves, and constant-state regions) is constructed by 

following a sequence of curves in the saturation space. This method is capable of finding the 

displacement route even in the presence of shock waves in which the route is constructed in 

an essentially analytic approach. In the context of petroleum engineering, Marchesin and 

Plohr (2001) applied this method to water-alternating-gas (WAG) recovery. They also 

provided a review of the mathematical, as well as engineering, literature regarding the wave-

curve method. Azevedo et al. (2010) briefly discussed this method and applied it to solve a 

certain class of injection problems (co-injecting a mixture of water and gas) for immiscible 

three-phase flow.  



 

 
 

 

 

Chapter 3 

The Method of Characteristics Applied to  

Oil Displacement by Foam 

 

 

Abstract*  

Solutions obtained by the method of characteristics (MOC) provide key insights into complex 

foam enhanced-oil-recovery (EOR) displacements and the simulators that represent them. 

Most applications of the MOC to foam have excluded oil. We extend the MOC to foam flow 

with oil, where foam is weakened or destroyed by oil saturations above a critical oil saturation 

and/or weakened or destroyed at low water saturations, as seen in experiments and 

represented in foam simulators. Simulators account for the effects of oil and capillary pressure 

on foam using algorithms that bring foam strength to zero as a function of oil or water 

saturation, respectively. Different simulators use different algorithms to accomplish this. 

We examine SAG (surfactant-alternating-gas) and continuous foam-flood (coinjection of gas 

and surfactant solution) processes in one dimension (1D), using both the MOC and numerical 

simulation. We find that the way simulators express the negative effect of oil or water 

saturation on foam can have a large effect on the calculated nature of the displacement. For 

instance, for gas injection in a SAG process, if foam collapses at the injection point because of 

very high capillary pressure, foam has almost no effect on the displacement in the cases 

examined in this chapter. On the other hand, if foam maintains finite strength at the injection 

point in the gas-injection cycle of a SAG process, displacement leads to success in several 

cases. However, successful mobility control is always possible with continuous foam flood if 

the initial oil saturation in the reservoir is below the critical oil saturation above which foam 

collapses.  

                                                                    
* Published in SPE Journal (M. Namdar Zanganeh et al. 2011). 
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The resulting displacements can be complex. One may observe, for instance, foam 

propagation predicted at residual water saturation, with zero flow of water. In other cases, the 

displacement jumps in a shock past the entire range of conditions in which foam forms. We 

examine the sensitivity of the displacement to initial oil and water saturations in the reservoir, 

foam quality, the functional forms used to express foam sensitivity to oil and water 

saturations, and linear and nonlinear relative-permeability models. 

3.1. Introduction 

Foam is a means of improving sweep efficiency in gas and surfactant EOR (Schramm 1994; 

Rossen 1996; Li et al. 2008). Foam also is used routinely for improving the acid-injection 

profile in well-stimulation treatments (Gdanski 1993; Zhou and Rossen 1994) and on a pilot 

basis to improve the sweep of surfactant solutions in aquifer remediation (Hirasaki et al. 

2000). 

MOC solutions have proved useful in highlighting key mechanisms and strategies for 

improving foam performance (Zhou and Rossen 1994, 1995; Rossen et al. 1999; Shan and 

Rossen 2004; Mayberry et al. 2008) and in better understanding foam simulation models 

(Rossen et al. 1999; Dong and Rossen 2007). It must be noted, however, that because of its 

simplifying assumptions, the MOC cannot be used in complex real-world applications where 

many of its assumptions are violated. Its usefulness is in the insights it offers, not as a 

quantitative, predictive tool for real reservoirs. 

Previous application of the MOC to foam has been mostly limited to two-phase flow; oil, if 

present, has been assumed to be immobile at its residual saturation. Mayberry et al. (2008) 

applied the three-phase MOC to foam, where foam strength does not depend on oil or water 

saturation and gas is completely immiscible with water and oil. They examined three cases, in 

which foam reduces gas mobility greatly, moderately, and not at all; the reduction in initial oil 

saturation to its residual saturation is much more rapid when gas mobility is reduced greatly 

by foam. Rosman and Kam (2009) extended this model to layered formations. Ashoori et al. 

(2010) examined first-contact-miscible gas floods with foam, where there is only one non-

aqueous phase present at any location. 

The ability of foam to reduce gas mobility is affected both by the presence of many crude oils 

and by water saturation. The effect of crude oils on foam is complex and only partially 

understood (Law et al. 1992; Schramm 1994; Hatziavramidis et al. 1995; Rossen 1996; 

Svorstøl et al. 1996; Mannhardt and Svorstøl 1999). Experimental evidence shows that 

apparent foam viscosity is strongly reduced at oil saturations greater than some critical 

saturation, below which foam is weakened proportionately to oil saturation (Law et al. 1992; 
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Svorstøl et al. 1996; Mannhardt and Svorstøl 1999). Moreover, foam dries out and at least 

partially collapses abruptly at a water saturation corresponding to the limiting capillary 

pressure (Khatib et al. 1988; Zhou and Rossen 1995). The foam model we use partially follows 

that in the STARSTM simulator of the Computer Modeling Group (Shrivastava et al. 1999; 

Vassenden et al. 1999; Cheng et al. 2000; Computer Modeling Group 1998, 2009). 

In this chapter, we investigate the sensitivity of three-phase 1D displacements to initial phase 

saturations in the reservoir and the foam quality (i.e., fraction of gas in the injected fluid). We 

test two injection schemes and several functional forms used to express the effect of low water 

saturation and high oil saturation on foam. We also examine the effect of linear and nonlinear 

relative-permeability models. 

3.2. Relative-Permeability Model 

Most relative-permeability models give rise to elliptic regions (Bell et al. 1986). A short review 

on loss of hyperbolicity (appearance of elliptic regions and umbilic points) in three-phase flow 

models is given in Marchesin and Plohr (2001). We examine a linear and a nonlinear relative-

permeability model (in the absence of foam) that does not suffer from this problem, even after 

incorporating our foam model. 

3.2.1. Linear Model 

We applied a linear Corey-type relative-permeability model (Lake 1989) for the MOC analysis 

in this chapter:  
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where Sαr is the residual saturation and Krα is the end-point relative permeability of phase α. 

See Table B-1 for parameters used in Eq. 1. Although this model is not a realistic one (Lake 

1989), it obeys the sufficiency condition of Falls and Schulte (1992a) and does not produce 

any elliptic regions. Fig. 1a illustrates the saturation paths for this relative-permeability 

model in the absence of foam. This model is strictly hyperbolic inside the ternary diagram and 

has a single umbilic point along the residual-water-saturation line. Moreover, it has the 

advantage of having saturation paths that are easy to describe and use in the absence of foam, 

just straight lines. Thus, it makes it easier to see the effect of foam on saturation paths. This 

model is the basis of the three-phase foam MOC modeling of Mayberry et al. 2008. In all the 

models in this chapter, we looked for the elliptic regions and umbilic points both analytically 

and numerically, and we found umbilic points only along residual-saturation lines. 
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3.2.2. Nonlinear Model  

We implemented the relative-permeability model proposed by Juanes and Patzek (2004a, 

2004b). This model is strictly hyperbolic everywhere inside the ternary diagram and presents 

a single umbilic point at the corner of 100% gas saturation. This model assumes that the water 

and gas relative permeabilities each depends only on its own saturation, whereas the oil 

relative permeability depends on all saturations. The residual saturations in this model are 

taken equal to zero: 

2 2, (1 )(1 ), 0.1 0.9 .rw w ro o w g rg g gk S k S S S k S S       (2) 

3.3. Foam Model 

Foam is not a phase but a phenomenon that greatly alters the gas mobility, depending on 

water and oil saturations and other factors. In the absence of foam, we assume water, oil, and 

gas viscosities are 1, 5, and 0.02 cp, respectively. The presence of foam reduces gas-phase 

mobility dramatically (Bernard and Holm 1964; Huh and Handy 1989). In reality, the relative 

permeability and viscosity effects of foam are inextricable, and only mobility is directly 

observable in an experiment (Rossen 1992). It is computationally equivalent to alter gas 

mobility for foam by modifying gas viscosity or gas relative permeability or both (Shan and 

Rossen 2004). In the foam models applied here, the gas relative-permeability function alone 

is altered to account for all effects of foam on gas mobility. The water relative-permeability 

function (krw) is assumed to remain unaltered in the presence of foam (Bernard and Jacobs 

1965; Huh and Handy 1989; Vassenden and Holt 2000). We likewise assume that the oil 

relative-permeability function (kro) remains unchanged in the presence of foam. 

Our models are partially based on the foam model of the STARSTM simulator (Surguchev et al. 

1995; Vassenden et al. 1999; Martinsen and Vassenden 1999; Cheng et al. 2000; Chalbaud  

et al. 2002; Renkema and Rossen 2007; Computer Modeling Group 1998, 2009). Gas relative 

permeability in the absence of foam ( nf
rgk ) is rescaled to gas relative permeability in the 

presence of foam ( f
rgk ) by multiplying nf

rgk by a dimensionless interpolation factor (fmr)*: 

1
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 (3) 

where fmmob corresponds to the normalized resistance to flow of a foam of minimum-size 

bubbles, in the absence of factors increasing bubble size (Surguchev et al. 1995) and Fw and Fo 

                                                                    
* fmr is referred to as MRF or FM elsewhere. 
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are the functions describing the stability of lamellae in the presence of water and oil, 

respectively. The complications caused by the implementation of the foam model on the 

ternary diagram are discussed in Appendix C. If the stability of lamellae is not reduced under 

any circumstances, gas mobility is reduced by the greatest possible factor, (1+fmmob). We call 

this full-strength foam. fmr also accounts for the effects of surfactant concentration, oil 

composition, capillary number (flow rate), and effect of salt on foam mobility (Computer 

Modeling Group 2009), in ways that are not addressed here. 

3.3.1. Effect of Low Water Saturation on Foam 

Foam dries out and collapses in the absence of enough water, specifically at the limiting 

capillary pressure (Pc*). Khatib et al. (1988) conducted multiphase-flow experiments in 

beadpacks and found an abrupt transition from strong foam to much weaker foam at Pc*; this 

value of capillary pressure corresponds to a limiting water saturation (Sw*). They also found 

that Pc* varies with oil saturation, superficial velocity, and absolute permeability. A large body 

of evidence supports lamella rupture near the limiting capillary pressure (Jiménez and Radke 

1989; Aronson et al. 1994; Rossen et al. 1995). However, it is not yet clear whether foam 

collapses completely at Sw* (Shan and Rossen 2004); relevant data are few (Kibodeaux and 

Rossen 1997; Wassmuth et al. 2001; Xu and Rossen 2004). Therefore, we applied three 

different models for Fw to represent the weakening and killing effect of low water saturations 

on oil recovery. These functions are discussed in Appendix C. 

3.3.2. Effect of High Oil Saturation on Foam 

 The presence of oil has a significant effect on the formation and breakdown of foam. The 

interactions between oil phase and foam lamellae are extremely complex (Nikolov et al. 1986). 

Koczo et al. (1992) performed an extended experimental study and showed that solubilized oil 

destabilizes foam. Foam destabilization may often involve the migration of emulsified oil 

droplets from the foam film lamellae into the Plateau borders (Nikolov et al. 1986). Schramm 

and Novosad (1992) found that more-viscous oils would be expected to emulsify more slowly 

than the others, and this would be expected to retard the rate of foam-lamella breakage. They 

found that foam was less stable in the presence of lighter crude oils.  

Law et al. (1992) stated that, in general, foam degrades as oil saturation increases. They also 

stated that, if So were above a so-called critical foaming saturation (So*), foam would collapse. 

Mannhardt and Svorstøl (1999) referred to this saturation as the critical oil saturation (So*). 

Svorstøl et al. (1996) and Mannhardt and Svorstøl (1999) have shown that apparent foam 

viscosity is strongly reduced at high So at Snorre reservoir conditions. However, foam was still 

present for oil saturations above the critical oil saturation in their experiments (see Appendix 
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C for more details). As a result, we use two different sensitivity functions for Fo to investigate 

how these two types of behavior (killing and weakening) would influence the oil recovery in a 

foam-flood process. We discuss these functions and their parameters in Appendix C. 

3.4. Results and Discussion for Linear Relative-Permeability Model 

We examine the sensitivity of the displacement to the initial reservoir condition, the foam 

quality, and the functional forms used to express the sensitivity of foam to oil and water 

saturations. In all our examples where foam is sensitive to low water saturations, foam 

weakens slightly below and greatly above Sw* = 0.316 or breaks at water saturations less than 

or equal to Sw* = 0.316. In the examples where foam is sensitive to oil, foam weakens or breaks 

at oil saturations of So* = 0.2 or larger. In all the examples, Sg(I) = 0. We examine two 

different initial conditions (I): 

 So(I) < So* and Sw(I) > Sw*, specifically (Sw, So)I = (0.83, 0.17), where foam at I is relatively 

unaffected by Sw and So. 

 So(I) > So* and Sw(I) < Sw*, specifically (Sw, So)I = (0.27, 0.73), where foam at I is affected by 

both Sw and So. 

We select these two specific initial conditions as typical samples from the two important zones 

on the ternary diagram [i.e., So(I) < So* and Sw(I) < Sw*]. Displacement routes for other initial 

conditions are similar to the routes of one of these two initial conditions.  

We investigate two different injection conditions (J): the gas-injection cycle (fg = 1) of a SAG 

flood (hereafter referred to as gas-injection cycle of SAG or gas/SAG) and coinjection of 

surfactant solution and gas (fg ≈ 2 ⁄3, fw ≈ 1 ⁄3), hereafter referred to as foam flood. The 

significance of studying the gas-injection cycle of SAG is that, if gas mobility is not reduced 

during gas injection, the entire SAG process is likely to fail; gas may disappear to the override 

zone, for instance, before the next liquid slug is introduced. In both cases, we assume that 

enough surfactant is injected to the reservoir before gas or foam injection, such that surfactant 

stays ahead of the gas front. In other words, surfactant propagation does not limit the rate of 

foam advance. If it does, there is a jump at the surfactant front to another three-phase 

diagram with saturation paths reflecting flow without foam (Zeilinger 1996). This jump is 

governed by material balances on surfactant, water, and oil. We wish to avoid that 

complication here. 

We analyze the effect of applying different functions Fw and Fo (see Eq. 3 and Appendix C) to 

represent the effects of water and oil saturation, respectively, on foam. We categorize our 

results on the basis of the nature of the functions Fw and Fo. 
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In some complex cases where the displacement route cannot be determined easily from the 

saturation paths, numerical simulations suggest where to search for shocks that satisfy Eqs. 14 

and 15 in Chapter 2. The 1D simulator used here is quite similar to that used in the 

simulations in Kam et al. (2007) and Kam (2008) except for the substitution of the local-

steady-state foam models in Appendix C to replace a population-balance calculation in the 

mechanistic foam simulation. The simulator is fully implicit in time and uses upstream 

weighting in space. All simulations are conducted with 200 gridblocks. However, in some 

cases, numerical simulations have difficulty finding the correct solution (i.e., cases where only 

the MOC gave a reliable solution) (see Fig. C-5). In some instances, we refer to the 

displacement route by the solution of a given case. 

We establish three base-case scenarios as a basis of comparison. (See Table B-1 for model 

parameters.) To do so, we require a criterion to distinguish a successful foam EOR process. 

Mobility control is the primary goal of a foam process. A successful foam process, therefore, is 

a process that can reduce the gas mobility efficiently. In our model, however, mobility control 

in the process as a whole, and especially in the foam bank, is reflected in the time to produce 

all mobile oil (oil in excess of residual saturation), which we call final recovery time (tD,final). 

Processes without effective mobility control for the gas take long times to reduce oil to 

residual saturation. We take tD,final for the waterflood as one basis of comparison. We 

encountered some foam processes with tD,final shorter than waterflood that are paradoxically 

less efficient than waterflood during the first pore-volume injection (PVI), however. 

Therefore, we report both tD,final and RF1PVI (fraction of mobile oil recovered after 1 PVI) in 

tables. RF1PVI values are given as a percentage next to tD,final values, and successful cases 

(relative to waterflood) are shown in boldface. Our model of completely immiscible phases 

does not represent the additional advantages of gas in terms of miscibility and reduction in 

residual oil saturation.  

In Figs. 1 through 6, fast and slow paths are shown as solid, heavy, black lines and thin, black, 

dashed lines, respectively. The rarefaction segment of the displacement route is depicted as a 

thick, light gray line, and the shock is shown by a thick, light gray dashed line. Constant-state 

regions are called IJ and are denoted by light-gray-filled circles along the displacement route. 

Arrows along saturation paths are in the direction of increasing σ. This direction may reverse 

along a given path once or several times. These points of reversal are called inflection points 

and are marked with small circles along the saturation paths: small solid and unfilled circles 

along fast and slow paths, respectively. Umbilic points are marked by solid circles along the 

residual-saturation lines. All the figures are produced with the linear relative-permeability 

model, and the weakening effect of water is represented by Eq. C-1. 
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3.4.1. Base-Case Scenarios 

 Our base-case scenarios are as follows (see Table B-1 for model parameters): 

 Waterflooding with no gas present. 

 Gas-injection cycle of WAG and continuous coinjection of gas and water, both in the absence 

of foam. 

 Gas-injection cycle of SAG and continuous coinjection of gas and surfactant, both in the 

ideal case of full-strength foam. 

We solved the two-phase (water/oil) Buckley-Leverett displacement in order to evaluate the 

waterflood performance. We use this case as the basis with which we compare the results of 

the foam processes because the rate of oil recovery is a reflection of the mobility of the 

displacing banks. A successful foam process in this context is a process that can reduce gas 

mobility efficiently and perform better than waterflood. Although the values of tD,final are 

similar for the two waterflood cases (see Table 1), oil is produced more rapidly at the start for 

the case with higher So(I). Water mobility is lower at higher initial oil saturations (if krα is a 

monotonically increasing function of Sα), and, hence, the initial rate of oil recovery is greater 

with the greater value of So(I) (Lake 1989). For instance, the case with higher So(I) reaches 

50% recovery almost 2.5 times faster than the case with lower So(I). It is 1.7 times faster to 

reach 80% recovery.  

Injecting only gas into the reservoir in the absence of foam (reflecting the gas-injection cycle 

of WAG; Fig. 1a), results in early gas breakthrough because of very high gas mobility. The 

performance of such a displacement for So(I) = 0.73 is shown in Fig. 1b. This figure shows that 

gas almost immediately (right side of the figure shows early stage) breaks through at the 

outlet (xD = 1); the displacing bank has high mobility, and, as a result, it takes 200 PVI (see 

Table 1) until all the recoverable oil is produced. Only 9.8% of the oil is recovered after 1 PVI, 

and another 40% is recovered after 28 PVI. The presence of very-slow-moving rarefaction 

waves in the solution is the reason for such a poor performance of the displacement.  

Continuous coinjection of water and gas in the absence of foam with fw = 1  ⁄3 improves this 

situation by reducing the gas fractional flow at the outlet. As a result, oil is recovered almost 17 

times faster compared to the earlier gas-injection case. However, this case is still less efficient 

than waterflooding. Increasing the water fraction in the injection stream improves the final 

recovery time; the best performance has zero injected-gas fraction (fw = 1). Table 1 indicates 

that, in this case and in the gas-injection case, final recovery times depend only on the 

injection condition and are independent of the initial condition. We discuss the reason later.  
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(a) 

 

(b) 

Fig. 1: Results for gas-injection cycle of WAG in the absence of foam in a reservoir initially at (Sw, So, Sg) 

= (0.27, 0.73, 0). (a) Ternary diagram and displacement route. Heavy black lines are the fast paths, and 

thin dashed black lines are the slow paths. Arrows along the paths are in the direction of increasing σ. The 

thick, light-gray lines are rarefaction waves. The only umbilic point is located along the Swr line and is 

indicated by a solid black circle. (b) Fractional flows plotted against the self-similarity variable xD/tD. On 

the horizontal axis, time moves leftward. Gas breaks through at the outlet (xD = 1) at about 0.006-PV 

injection (xD/tD ≈ 168), and gas fractional flow increases rapidly. Oil fractional flow at the outlet is initially 

0.42 and decreases with time. 
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(a) 

 

(b) 

Fig. 2: Results for gas-injection cycle of SAG with full-strength foam present everywhere in the reservoir, 

with I at (Sw, So) = (0.27, 0.73). (a) Ternary diagram and displacement route. The thick, light-gray dashed 

lines are shock waves. The inset shows the small segment of the fast path along the Sor line close to J.  

(b) Fractional flow plotted against the self-similarity variable xD/tD. As in Fig. 1b, time increases to the left. 
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In the ideal case of full-strength foam (Fig. 2a), gas mobility is reduced everywhere to the 

greatest extent possible (i.e., by a factor of 55,001). Therefore, the best performance of foam is 

achieved in this case. Fig. 2b shows that, in the gas-injection cycle of SAG, no gas reaches the 

outlet until all the recoverable oil is produced, after only 0.8 PVI (xD/tD = 1.25). The improved 

displacement efficiency in this case reflects the occurrence of the constant-state IJ with both 

water and gas at their residual saturations (Fig. 2a), leading to the formation of an oil bank 

ahead of the gas front. 

We see again from Table 1 that the final recovery times for the ideal case of full-strength foam 

are independent of the initial condition. This behavior can be explained by the fact that tD,final 

is the inverse of the wave velocity at point J. If Injection point J is on a rarefaction wave, tD,final 

is the inverse of the characteristic speed σ at J, and, if it terminates a shock, tD,final is the 

inverse of the shock velocity starting from J. Consequently, tD,final values are identical for any 

number of displacements sharing the same rarefaction-wave or shock-wave velocity at J, 

regardless of the initial condition. However, sharing identical J and tD,final does not result in 

identical displacement efficiencies at shorter times. As can be seen from Table 1, higher So(I) 

corresponds to greater oil-recovery factor after 1 PVI because the shock from I to IJ is much 

faster for higher So(I). As a result, more oil is produced during the early stage (during the 

shock from I to IJ) rather than the late stage (during the shock from IJ to J); see Fig. 2a. Also, 

note that although RF1PVI for a foam flood with So(I) = 0.17 (i.e., 27%) is marginally larger than 

RF1PVI for waterflood (26%), the foam-flood recovery curve is well above the waterflood 

recovery curve for the rest of the process. 

Table 1: tD,final and RF1PVI for base-case scenarios. 

So(I) 

Full-Strength Foam 
*RF after 0.7 PVI 

Waterflood No Foam 

Gas/SAG Foam Flood, fw(J)= ⅓ fw(J) = 1 Coinjection, fw(J)= ⅓ Gas/WAG 

0.17 0.8 (19%*) 1.2 (27%) 4.61 (26%) 11.4 (10%) 200 (6%) 

0.73 0.8 (84%*) 1.2 (81%) 4.45 (59%) 11.4 (24%) 200 (9.7%) 

3.4.2. Scenario 1—Oil Kills Foam 

In this scenario, foam does not survive at So(I) ≥ So* [e.g., So(I) = 0.73]. Table 2 summarizes 

the displacement performance of this scenario. 

3.4.2.1. Case 1—Oil Kills Foam and Water Has No Effect 

The ternary diagram for this case is shown in Fig. 3a. Full-strength foam forms at J for both 

gas/SAG and foam flood because oil saturation is too low at Sor to affect foam and water has 
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no effect. However, as foam collapses at I [So(I) > So*], there is an extremely slow-moving 

shock from J to the point of complete foam collapse for both injection schemes. Ironically, 

injection of strong foam does not give successful displacement for So(I) > So* because of a 

shock over the strong-foam region to the region of foam collapse, and oil is recovered very 

slowly (Table 2). (See Fig. 3a for a plot of the fractional-flow function emphasizing this shock.) 

For the gas-injection cycle of SAG (Fig. 3a), the point of complete foam collapse upstream of 

the shock is at (0.1, 0.2, 0.7). For the foam flood, the solution resembles the one in Fig. 4b 

and the oil-recovery curve is slightly above the no-foam curve. For So(I) < So*, both initial and 

injection conditions are in the region of strong foam (So < So*). Existence of strong foam in 

this region results in the formation of two fast-moving shocks, leading to efficient 

displacement in both injection schemes [(S)(S) solution type in Appendix A].  

Assuming that water has no effect on foam implies that foam survives at Swr, whereas foam 

bubbles would collapse at this saturation from very high capillary pressure (Khatib et al. 

1988). Foam collapse at Swr alters the analysis (see Case 8). 

3.4.2.2. Case 2—Oil Kills Foam and Water Weakens Foam 

For both the gas-injection cycle of SAG (Fig. 4a) and foam flood (Fig. 4b), foam at J is merely 

weakened, not killed, by low Sw. (krg is reduced by a factor of 82 and 164 at J for the gas-

injection cycle of SAG and the foam flood, respectively.) For So(I) > So*, the same 

displacement behavior as in Case 1 exists for both injection schemes: oil is displaced to its 

residual saturation extremely slowly, and the process is nearly as inefficient as if no foam were 

present at all. (See Fig. 4b for foam flood; for the gas-injection cycle of SAG, the route 

resembles that in Fig. 3a.)  

For So(I) < So*, the foam-flood behavior is similar to Case 1 and, hence, efficient. However, for 

the gas-injection cycle of SAG, the solution type [i.e., (S)(RS); see Appendix A] and 

performance differs from Case 1 (see Fig. 4a). In this case, displacement efficiency is as good 

as it is for the waterflood until 0.7 PVI because both processes have identical initial conditions 

and produce for some time at the initial condition [i.e., at So = So(I)]. For the gas-injection 

cycle of SAG, at 0.7 PVI, production at the initial condition ends and, as the displacement 

mechanism changes, the oil-recovery curve deviates from the waterflood curve and oil 

production deteriorates afterwards. Nevertheless, the gas-injection cycle of SAG still performs 

significantly better than the no-foam case shown in Fig. 5a. 
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(a) 

 

(b) 

Fig. 3: Ternary diagrams and displacement routes for a reservoir initially at (0.27, 0.73, 0). (a) Foam is 

killed at So(I) ≥ So* (So* = 0.2) and water has no effect; the displacement route shown is for gas-injection 

cycle of SAG with IJ at (0.1, 0.6049, 0.2951). The fractional-flow curve on the right corresponds to the 

slow-path segment of the Swr line. The shock passes over the entire foam region and lands in the no-foam 

region. (b) Foam is merely weakened by high So and water has no effect; the displacement route shown is 

for foam flood with IJ at (0.2177, 0.7149, 0.0674). The single arrow on the right shows the slow path 

originating from J. The shock from J is to a point on a different slow path.  
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(a) 

 

(b) 

Fig. 4: Ternary diagrams and displacement routes when foam is killed at So ≥ So* (So* = 0.2) and 

weakened at low Sw (Sw* = 0.316). (a) Gas-injection cycle of SAG with I at (0.83,0.17,0). (b) Foam flood 

with I at (0.27,0.73,0). Only the paths involved in the displacement are shown here, to avoid clutter. 
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The model applied here for the weakening effect of water [Eq. C-1, taken from the STARSTM 

simulator (C0mputer Modeling Group 1998)] suffers from a significant shortcoming. This 

model implies finite foam strength at Sw = Swr (krg is reduced 82-fold), where capillary 

pressure is very high. In nature, foam bubbles cannot survive at very high capillary pressure 

(Khatib et al. 1988). This unrealistic assumption is key to the implied success for the cases of 

gas-injection cycle of SAG, for which the injection condition during gas injection is at Swr. Two 

models that account for foam collapse at Swr are discussed later (Scenarios 2 and 4).  

 

 (a) (b) 

Fig. 5: Oil-recovery factor versus time. (a) Gas-injection cycle of SAG with So(I) = 0.17. (b) Foam flood 

with So(I) = 0.73. 

3.4.2.3. Case 3—Both Oil and Water Kill Foam 

The region in which foam survives here is restricted to the zone confined by Sor ≤ So < So* and 

Sw ≤ Sw*. If both J and I are located in this region, the displacement is efficient because of the 

formation of two fast-moving shocks. However, if foam is killed at both J and I [e.g., at J in 

the gas-injection cycle of SAG, with So(I) > So*], the displacement is identical to the no-foam 

case because the entire displacement is in the no-foam region. In the case of the gas-injection 

cycle of SAG with So(I) < So*, where foam is killed at J, oil recovery is as efficient as waterflood 

(Fig. 5a) until 0.53 PVI. Thereafter, production at the initial-state condition I terminates and, 

as the displacement mechanism changes, the oil-recovery curve strongly deviates from the 

waterflood curve and approaches the no-foam curve. These two curves are coincident from 

approximately 19 PVI (the solution upstream of the shock is identical to the no-foam case). In 

total, this displacement is nearly as inefficient as if no foam were present at all. The foam 

flood is successful only if foam survives at I (see Fig. 5b for the unsuccessful case).  

Our findings for the processes in which foam collapses at Swr may not apply to real-field 

applications with a complete SAG process (i.e., combination of both surfactant-injection and 

gas-injection cycles) and other relative-permeability and foam models.  
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3.4.2.4. Summary of Scenario 1 

Regardless of whether foam is sensitive to water saturation, if foam is destroyed by oil at the 

initial condition, the displacement is nearly as inefficient as if no foam were present at all for 

both injection schemes. In these cases, the slight improvement in oil recovery and tD,final over 

that with no foam is caused by the formation of foam at point J, which gives a shock rather 

than a rarefaction wave to the state upstream of J. 

Regardless of whether foam is sensitive to water saturation, if it is not destroyed by oil at the 

initial condition, the foam flood is successful and more efficient than a waterflood. Note that, 

although RF1PVI values for foam floods with So(I) = 0.17 are marginally above RF1PVI for 

waterflood (26%), the foam-flood recovery curves are well above the waterflood curve for the 

rest of the displacement. However, even if foam is not destroyed at I but is sensitive to Sw, the 

gas-injection cycle of SAG results in an unsuccessful gas mobility control (Fig. 5a). If foam 

does not survive at Swr, then the gas-injection cycle of SAG is considered unsuccessful relative 

to waterflood in all cases we examined. 

Table 2: tD,final and RF1PVI when oil kills foam. 

Injection 
Oil Kills 

Water No Effect Weakens Kills 

Gas/SAG 
So(I) = 0.17 

1.8 (40%) 11.9 (22.3%) 200 (14.5%) 

Foam Flood 
fw(J)= ⅓ 

2.1 (27.5%) 2.76 (28.6%) 3.5 (27.4%) 

So(I) = 0.73 
8.1 (30%) 8.4 (29.2%) 8.7 (28.1%) 

Gas/SAG 175.1 (15.2%) 175.1 (9.7%) 200 (9.7%) 

3.4.3. Scenario 2—Water Kills Foam 

Table 3 summarizes the displacement performance of this scenario. In Scenario 2, foam does 

not survive at Sw ≤ Sw* [e.g., at J in the gas-injection cycle of SAG and at I for So(I) = 0.73]. 

The performance of this combination of J and I where foam is destroyed at both J and I has 

already been discussed in Case 3 and was marked a failure. However, in the gas-injection cycle 

of SAG with Sw(I) > Sw* [i.e., So(I) = 0.17], the slight improvement in RF over that with no 

foam at early stages (see Fig. 5a for water kills-oil kills curve) is caused by the formation of 

foam at point I, which gives a shock rather than a rarefaction wave to I (regardless of the foam 

sensitivity to So). The solution upstream of the shock is identical to that in the no-foam case.  

The following Cases 4 and 5 focus on foam-flood performance when oil does not kill foam (the 

foam-flood case in which both oil and water kill foam has already been discussed in Case 3). 
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3.4.3.1. Case 4—Foam Flood When Water Kills Foam and Oil Has No Effect 

Fig. 6a shows the solution of this case. If foam survives at I [Sw(I) > Sw* or So(I) = 0.17], the 

displacement is more efficient than waterflood and the oil-recovery curve stays above the 

waterflood curve. However, if foam is destroyed at I [Sw(I) < Sw* or So(I) = 0.73; see Fig. 6a], 

displacement is less efficient at 1 PVI than waterflood, despite the fact that tD,final is shorter 

than the waterflood case (see Fig. 5b). As we discussed earlier in connection with §3.4.1, 

waterflood is more efficient for the case with So(I) = 0.73 than for So(I) = 0.17 because of lower 

water mobility at higher oil saturations. Therefore, the waterflood acts more efficiently and is 

preferred over foam flood in this case until the very last stage of the displacement, where 

foam-flood recovery exceeds the waterflood recovery. 

3.4.3.2. Case 5—Foam Flood When Water Kills and Oil Weakens Foam 

Fig. 7 shows the ternary diagram of this case. The same story applies as in Case 4 for both I, 

except that the solution types are different (Fig. 5b and Table A-1). 

3.4.3.3. Summary of Scenario 2 

The gas-injection cycle of SAG is nearly as inefficient as if no foam were present at all, at any I. 

In the case of foam flood, tD,final is not a reliable measure for distinguishing the success or 

failure of the process, and oil-recovery curves should be examined. As the oil effect becomes 

more severe (from no effect to killing; for example, see Fig. 5b), foam-flood efficiency 

deteriorates and oil is recovered more slowly. 

3.4.4. Scenario 3—Oil Weakens Foam 

Table 4 provides the displacement performance of this scenario. The case in which high So 

weakens foam and low Sw kills foam is already discussed in Scenario 2 above.  

3.4.4.1. Case 6—Oil Weakens Foam and Water Has No Effect 

Fig. 3b shows the solution of this case. While So(I) < So*, both injection schemes (i.e., gas/SAG 

and foam flood) are significantly more efficient than waterflood. However, for So(I) = 0.73 

[i.e., So(I) > So*] as explained in §3.4.1, the waterflood sweeps the reservoir more efficiently in 

this case compared to So(I) = 0.17. Therefore, the waterflood exceeds gas- and foam-flood oil 

recovery until a certain point. Only after 1.6 PVI for the gas-injection cycle of SAG (not shown 

here) and 1.3 PVI for foam flood (see Fig. 5b) these two processes start to exceed the 

waterflood performance; they eventually recover the last of the oil twice as fast as waterflood. 

The solution type affects the displacement efficiency of the process. In this case, processes 

sharing the same initial condition have similar solution type (see Table A-1).  

As noted, real foams would be expected to collapse at Swr, in contradiction to this case. 
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(a) 

 

  (b) 

Fig. 6: Ternary diagrams and displacement routes for a reservoir initially at (0.27, 0.73, 0). (a) Foam is 

killed at Sw ≤ Sw* (Sw* = 0.316) and oil has no effect; the displacement route shown is for foam flood, with 

IJ at (0.2688, 0.7267, 0.0045). (b) Foam is only weakened by low Sw (Sw* = 0.316) and oil has no effect; 

the displacement route is for gas-injection cycle of SAG, with IJ at (0.1, 0.8485, 0.0515). 
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Fig. 7: Ternary diagram and displacement route for foam flood when foam is killed at Sw ≤ Sw*  

(Sw* = 0.316) and weakened at high So (So* = 0.2), with IJ at (0.2680, 0.7262, 0.0058). 

Table 3: tD,final and RF1PVI when water kills foam. 

So(I) 
Water Kills 

Oil No Effect Weakens Kills 

0.17 
Gas/SAG 

200 (15%) 200 (15%) 200 (14.5%) 

0.73 200 (9.7%) 200 (9.7%) 200 (9.7%) 

0.17 Foam Flood 
fw(J)= ⅓ 

3.35 (27.7%) 3.32 (27.8%) 3.5 (27.4%) 

0.73 3.35 (35.8%) 3.69 (34.7%) 8.7 (28.1%) 

3.4.4.2. Case 7—Both Oil and Water Weaken Foam 

The ternary diagram of this case is shown in Fig. 8. Even though both injection schemes 

perform more efficiently than waterflood for So(I) < So*, the gas-injection cycle of SAG fails for 

So(I) > So* [i.e., So(I) = 0.73] because the shock back to J is very slow moving. Besides, the 

foam-flood performance for this initial condition is also unsatisfactory because it lags behind 

waterflood recovery until 94% of the oil is recovered (see Fig. 5b). 

As noted, real foams would be expected to collapse at Swr, in contradiction to this case. 
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Fig. 8: Ternary diagram and displacement route for foam flood when foam is weakened by both low Sw 

(Sw*= 0.316) and high So (So* = 0.2), with IJ at (0.24, 0.2, 0.56). 

3.4.4.3. Summary of Scenario 3 

Displacement performance worsens as the effect of water saturation on foam becomes more 

severe (see Fig. 5b and Table 4). If foam is weakened by oil saturations above So*, the 

displacement is more efficient than waterflood in two cases: (1) foam flood with So(I) < So*, 

regardless of the foam sensitivity to Sw; and (2) the gas-injection cycle of SAG with So(I) < So*, 

if foam is not killed at J by low Sw. 

Table 4: tD,final and RF1PVI when oil weakens foam. 

So(I) 
Oil Weakens 

Water No Effect Weakens Kills 

0.17 
Gas/SAG 

1.0 (89.9%) 2.45 (33.1%) 200 (15%) 

0.73 2.18 (52.6%) 119.6 (10.3%) 200 (9.7%) 

0.17 Foam Flood 
fw(J)= ⅓ 

1.5 (26.9%) 1.97 (29.6%) 3.32 (27.8%) 

0.73 2.23 (57.9%) 2.86 (39.9%) 3.69 (34.7%) 

3.4.5. Scenario 4—Water Weakens Foam 

The two cases in which low Sw weakens foam and high So may kill or weaken foam have 

already been investigated in Cases 2 and 7. Table 5 summarizes the displacement 

performance of this scenario. Our weakening model fails to kill foam even at Swr.  
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3.4.5.1. Case 8—Water Weakens Foam and Oil Has No Effect 

Fig. 6b illustrates the solution of this case. If water saturations below Sw* = 0.316 weaken foam 

abruptly but smoothly, we find the resulting displacement successful at any I in both injection 

schemes. The displacement route for the gas-injection cycle of SAG with Sw(I) < Sw* is shown 

in Fig. 6b. The segment of the route along Sw = Swr corresponds to fw = 0 (i.e., no net water 

transport even as foam advances).  

However, this successful gas-injection process is obtained under the unrealistic assumption 

that foam survives at Swr (Eq. C-1). A fairly simple modification of this equation (Eq. C-2) 

keeps a behavior similar to Eq. C-1 everywhere but for Sw near Swr, where foam collapse is 

complete. We investigated this model by numerical simulation. However, this model, like the 

water-killing foam model used here, fails the design criterion developed from the MOC 

without oil (Shan and Rossen 2004) (i.e., formation of a low-mobility bank upon gas 

injection). With Eq. C-2, the conclusions for foam flood stay the same as with Eq. C-1, 

although tD,final values slightly increase (see Table 5); however, performance for the gas-

injection cycle of SAG is affected adversely. Regardless of the initial condition, gas/SAG 

processes perform as well as waterflood at very early stages [until 0.85 PVI for So(I) = 0.17 and 

0.25 PVI for So(I) = 0.73]. Afterward, they strongly deviate from the waterflood oil-recovery 

curve and their oil-recovery factors drop significantly [RF1PVI = 23.4% for So(I) = 0.17 and 

RF1PVI = 29% for So(I) = 0.73]. At the same time that the model with Eq. C-1 achieves 100% 

recovery (at 2.4 PVI), the model with Eq. C-2 recovers only 23.5% for So(I) = 0.17 and 36% for 

So(I) = 0.73.  

For the cases examined, waterflood is preferred over gas/SAG if foam is killed at J. This 

significant difference in gas flood performance highlights the crucial role of the sensitivity 

functions and the importance of defining the sensitivity functions in accordance with reality to 

obtain reliable results. 

3.4.5.2. Summary of Scenario 4 

As the effect of oil on foam becomes more severe, the final recovery time and oil-recovery 

factor worsen for both injection schemes. Increasing the water fraction of the injected fluid to 

one-third results in successful mobility control except in the case where foam is sensitive to 

high oil saturation at the initial condition. For the gas-injection cycle of SAG, with finite foam 

strength at Swr, successful mobility control can be achieved only if foam is insensitive to oil 

saturation or is weakened by oil saturation and So(I) < So*. However, the gas-injection cycle of 

SAG leads to failure in case of complete foam collapse at Swr. Table 5 represents the results 

reflecting the performance of both models for the effect of water. 
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Table 5: tD,final and RF1PVI when water weakens foam. 

So(I) 
Water Weakens (Eq. C-1; Fw ≠ 0 at Swr) Weakens (Eq. C-2; Fw = 0 at Swr) 

Oil No Effect Weakens Kills No Effect Weakens Kills 

0.17 
Gas/SAG 

2.4 (33.4%) 2.45 (33.1%) 11.9 (22.3%) 200 (23.4%) 200 (23.4%) 200 (21.5%) 

0.73 2.4 (75.5%) 119.6 (10.3%) 175.1 (9.7%) 200 (29%) 200 (11%) 200 (10.5%) 

0.17 Foam Flood 
fw(J)= ⅓ 

1.6 (30.1%) 1.97 (29.6%) 2.76 (28.6%) 1.96 (31.5%) 1.99 (28.8%) 2.82 (28.7%) 

0.73 1.6 (80.5%) 2.86 (39.9%) 8.4 (29.2%) 1.96 (67%) 2.95 (38.6%) 8.42 (28.8%) 

3.5. Effect of a Nonlinear Relative-Permeability Model 

We extend our analysis to cases with the nonlinear model in Eq. 6 (with no elliptic regions), 

and we conduct numerical simulations for two different oil viscosities (2, 5 cp).  

  
 (a) (b) 

  

  (c) (d) 

Fig. 9: Oil-recovery factor versus time for the nonlinear relative-permeability model in Eq. 6. We 

abbreviated the name of the cases to fit in the figures; e.g., WK-OW represents Water Kills-Oil Weakens 

and WK stands for Water Kills, but oil has no effect. (a) Foam flood with So(I) = 0.17. (b) Foam flood with 

So(I) = 0.73. (c) Gas-injection cycle of SAG with So(I) = 0.17. The curves of WK-OW, WK-OK, and WK are 

coincident. The WW curve drops below the waterflood curve shortly after 5.5 PVI. (d) Gas-injection cycle 

of SAG with So(I) = 0.73. Except for the waterflood, OW, and WW curves, the rest of the curves are 

coincident. The numerical simulator was exhibiting oscillations for the cases not shown in this figure. 
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We assume complete foam collapse at Swr (Eq. C-2) for the weakening effect of water instead 

of Eq. C-1, all through the simulations. We applied the same criteria as earlier for 

distinguishing successful foam processes. 

Success was always attained for a foam flood with So(I) < So* (Fig. 9a), as with the linear 

relative-permeability model with complete foam collapse at Swr. Contrary to the case of the 

linear relative-permeability model, a foam flood with So(I) > So* also appeared to be successful 

if foam is weakened or not affected (i.e., not killed) at high oil saturations (Fig. 9b). 

With complete foam collapse at Swr, gas injection was unsuccessful in most of the cases 

examined, similar to the conclusion in the linear case (Figs. 9c and 9d). Gas injection is 

successful in only two cases:  

(1) So(I) < So*: for times shorter than 5.5 PVI only if water weakens foam and oil has no effect. 

(2) So(I) > So*: only if oil weakens foam and water has no effect.  

The overall conclusions for both oil viscosities are the same; although, as expected, oil is 

recovered much faster at the lower oil viscosity. 

3.6. Conclusions 

 MOC solutions have proved useful in highlighting key mechanisms and strategies for 

improving foam performance and in understanding foam simulation models better.  

 We extend the MOC to foam flow with oil. We examine the effects of foam quality, initial oil 

saturation, foam sensitivity to high oil saturation and low water saturation, relative-

permeability model, and oil viscosity on oil displacements with foam in one dimension using 

the MOC. 

 The time required to produce all mobile oil (tD,final) is not a definitive measure of mobility 

control in these simulations. The comparison of the oil-recovery performance with 

waterflood acts as a second screening criterion for a successful foam process. 

 Regardless of whether foam is sensitive to water saturation, if foam is destroyed by oil at the 

initial condition, the displacement is nearly as inefficient as if no foam were present at all for 

both injection schemes and both relative-permeability models examined. 

 Foam models that represent foam collapse at the limiting capillary pressure as a function of 

water saturation should ensure that they do not imply finite foam strength at Sw = Swr, 

where capillary pressure is extremely high. In real foams, foam bubbles collapse at Swr 

because of high capillary pressure. The failure to represent this mechanism properly in 
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models leads to misleading prediction of success in SAG foam processes. However, foam 

collapse at Swr is not so crucial to modeling foam-injection processes. 

 Incorporating foam collapse at Swr results in the failure of a gas-injection cycle of a SAG 

process in cases examined in this chapter, regardless of the reservoir initial condition and 

foam sensitivity to Sw and So, for the relative-permeability models we examined. Ignoring 

foam collapse at Swr leads to success in a gas-injection cycle of SAG in several occasions. Our 

findings for these processes may not apply to real-field applications with a complete SAG 

process (i.e., combination of surfactant-injection and gas-injection cycles) and other 

relative-permeability and foam models. 

 If foam collapse at Swr is incorporated into the linear-relative-permeability model, foam 

flood is always preferred over waterflood and is considered successful for So(I) < So*. A foam 

flood is successful for any initial condition if foam is only weakened (not killed) by low Sw 

and not affected by So. 

 If foam collapse at Swr is incorporated into the nonlinear relative-permeability model, foam 

flood is always preferred over waterflooding and considered successful if foam is not killed 

at the initial condition because of high oil saturation.  

 Based on this study, it is not recommended to start a foam EOR process at early stages of the 

reservoir life for a foam formulation that is sensitive to high oil saturation; specifically when 

So(I) > So*, because high initial oil saturation causes the foam EOR process to fail.  

 Therefore, the effect of low Sw and high So on foam must be well understood and 

represented accurately to avoid spurious decisions leading to failure based on unrealistic 

foam models and parameter values. 

 Oil viscosity does not affect the overall conclusions for the nonlinear relative-permeability 

model tested. As expected, oil is recovered much faster with lower oil viscosity. 

 It must be noted, however, that because of its simplifying assumptions, the MOC cannot be 

used in complex real-world applications where many of its assumptions are violated. Its 

usefulness is in the insights it offers, not as a quantitative, predictive tool for real reservoirs. 



 

 
 

 

 

Chapter 4 

Numerical Simulation of Foam EOR

 
 

4.1. Introduction 

There are two general approaches for incorporating the effect of foam in commercial 

simulators. The first approach is to apply fully mechanistic models such as a population-

balance model or a percolation model. This approach allows for explicit representation of 

foam dynamics such as generation, propagation, and coalescence in porous media as observed 

in core-scale experiments. The second approach is through using mobility-reduction factors 

(§1.4.3.2), in which the foam dynamics are implicitly incorporated in correlations that are 

multiplied to the gas mobility to modify it. These empirical correlations are dimensionless and 

determine the gas-mobility reduction in the presence of foam. A general overview of these 

models with their advantages and disadvantages is given in Chapter 1.  

The STARSTM simulator has both the mechanistic models and models based on mobility-

reduction factor implemented in it for modeling foam. As for the mobility-reduction factor 

models that is of our interest, a number of empirical correlations are defined in this simulator. 

These correlations do not include different types of sensitivities to water saturation (Sw) and 

oil saturation (So). They only include the weakening effect at low Sw (in the 1998 version) and 

killing effect at high So (modified in the 2007 version). Moreover, some of the correlations 

used there (e.g., killing effect of oil and sensitivity to surfactant concentration) are not 

differentiable at certain points. These limitations and shortcomings are discussed in detail in 

Appendix C. There, we have provided a new differentiable correlation for sensitivity to 

surfactant concentration and stated a condition for the correlation for the killing effect of oil, 

for which the correlation is differentiable. Further, new correlations are introduced for the 

sensitivity types to Sw and So that are not available in STARSTM (i.e., a killing effect at low Sw 

and a weakening effect at high So). Although we have adopted some of the empirical 

correlations from this simulator, we have not, however, used this simulator in any of our 
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simulations. In this simulator, surfactant is treated as an extra component and an extra flow 

equation is employed for modeling its transport (Computer Modeling Group 2009).  

The Modular Reservoir Simulator (MoReS) developed by Shell has a comprehensive 

simulation capability. Mobility-reduction factor for foam modeling can be easily implemented 

in it by the user. Therefore, it has the flexibility to accept any type of empirical correlations. 

These correlations can be provided in two different ways: one can implement the exact 

correlations in the input file, or generate a table of a mobility-reduction factor based on the 

correlations and use that instead. Modeling surfactant transport is also possible in two 

different ways: it is possible to model it as a passive tracer or as an extra component. Based on 

the ultimate goal of the user (simulation and/or optimization), one can choose the available 

option for incorporating foam and modeling surfactant transport. At this point, limited 

options are available for these purposes in combination with the adjoint-based optimization 

routine in MoReS.  

All the simulations from this chapter onwards are performed with MoReS (hereafter referred 

to as the simulator). Although it has been significantly validated, some of the newer features 

and especially the combination of various advanced options have not yet been fully tested 

(Dynamo/MoReS Online User Documentation 2010). Consequently, this chapter partly 

focuses on validating this simulator with the analytical solutions obtained by the method of 

characteristics (MOC) in Chapter 3 for the one-dimensional (1D) oil displacement by foam.  

In the simulator, the model equations are solved at discrete time intervals on a user-specified 

spatial grid, with a fully implicit Newton-Raphson scheme and one-point upstream mobility 

weighting (Dynamo/MoReS Online User Documentation 2010). 

In this chapter, we first introduce the available three-phase relative-permeability models for 

this work. Next, different options in the simulator for incorporating foam (used in Chapters 4 

and 5) and modeling surfactant transport (only used in Chapter 5) are introduced and their 

limitations are discussed. Finally, the performance of the simulator in modeling foam 

displacement in 1D is validated against the available MOC analytical solutions in Chapter 3 

(i.e., with the linear relative-permeability model).  

4.2. Three-Phase Relative-Permeability Models 

The most commonly used models in commercial simulators are Stone’s models (Stone 1970, 

1973). The Stone I model introduced in 1970 is based on a channel-flow approach in which it 

is assumed that at most one mobile fluid can flow in any flow channel. The water relative-

permeability function (krw) and the gas relative-permeability function (krg) are functions of 
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their own saturations. However, the oil relative-permeability function (kro) is based on the 

two-phase relations for oil/water and gas/water systems and is a function of both Sw and Sg. 

(Since the sum of the saturations adds up to one, the dependence of So can be eliminated.) The 

Stone I model has a difficulty in estimating the three-phase residual oil saturation. A modified 

model, known as the Stone II model, was introduced by Aziz and Settari (1979) and is more 

commonly used. Later, Baker (1988) proposed a model that uses saturation-weighted 

interpolation of oil relative-permeability functions from two-phase water/oil and gas/oil 

relative-permeability data. The segregated model in ECLIPSETM and the saturation-weighted 

model in MoReS (Masalmeh and Wei 2010) are variations on this approach. Heiba (1984) 

suggested a model in which a linear interpolation between the two-phase data is performed 

[see Yuen et al. (2008) and Ahmadloo et al. (2009) for the details of the models]. MoReS 

accommodates a similar model entitled linear-isoperms model, in which the isoperms lines 

connecting the water/oil data and gas/oil data are straight lines on a volume-fraction phase 

diagram (see Fig. 1) (Masalmeh and Wei 2010).  

Baker’s saturation-weighted model has proven useful in matching the experimental data in 

several studies and it is shown to be superior to the Stone’s models (Baker 1988; Delshad and 

Pope 1989; Baker 1993; Blunt 2000; Pejic and Maini 2003; Yuen et al. 2008). In this work, 

the linear-isoperms model is applied (Masalmeh and Wei 2010).  

Here, we confine ourselves to review those models that are available for this work. 

Nevertheless, there are many other relative-permeability models available in literature 

(Delshad and Pope 1989; Sahni et al. 1996; Helset et al. 1998; Blunt 2000).  

4.2.1. Linear Model 

We applied a linear Corey-type relative-permeability model for the 1D-MOC analysis in this 

work, in which the relative permeability of each phase is a function of its own saturation: 

, , ,
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where Sαr is the residual saturation and Krα is the end-point relative permeability of phase α. 

See Table B-1 for parameters used in the above equation. This model is used in Chapter 3 and 

§4.5 to validate the performance of the simulator in modeling foam displacement by 

comparing its results with the available 1D-MOC solutions in Chapter 3. This model is 

discussed in more detail in §3.2.1. 
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4.2.2. Two-Phase Relative-Permeability Models Used in Linear-Isoperms and 

Saturation-Weighted Models  

In the saturation-weighted and linear-isoperms models discussed below, the relative 

permeabilities of the water (wetting) and gas (non-wetting) phases are a function of only their 

own phase saturation. The three-phase relative permeability of the intermediate phase (oil) or 

kro is based on the saturations of the two other phases and is constructed by a certain type of 

interpolation between the existing two-phase relative-permeability data (Eqs. 1 and 2). In this 

work, the water/oil and gas/oil functions are available. We used the MAKECOREY function in 

the simulator to create the two-phase relative-permeability tables (i.e., krw, krow, krg, and krog 

tables) according to Corey’s correlations.  

For the two-phase water/oil system (Sg = 0) we have: 
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where Krw is the end-point relative permeability of water, and Krow is the end-point relative 

permeability of oil at Swr. The residual oil saturation to waterflood is denoted by Sorw. The 

Corey exponents for water is represented by nw.  

For the two-phase gas/oil system (Sw = Swr) we have: 
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where Krg is the end-point relative permeability of gas, and Krog is the end-point relative 

permeability of oil at Sgr. The residual oil saturation to gas flood is denoted by Sorg. The Corey 

exponents for gas is represented by ng. It is very important to note that the two-phase tables 

must be consistent: krow (Sw = Swr) = krog (Sg = 0), i.e., Krow must be equal to Krog. Also, kro 

must be zero when So equals zero; therefore, krow (Sw = 1) = krog (Sg = 1 - Swr) = 0. 

4.2.3. Saturation-Weighted Model 

The saturation-weighted model is a variation of the model of Baker (1988). The water and gas 

phase relative-permeability functions (i.e., krw and krg) are the same as those in Corey’s model 

in Eqs. 1 and 2. This model uses saturation-weighted interpolation for the prediction of the 

oil (intermediate phase) relative permeability (kro) from two-phase water/oil (krow) and 



4: Numerical Simulation of Foam EOR 57 

 
 

gas/oil (krog) relative-permeability data (Masalmeh and Wei 2010): 
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where (Sw-Swr) and (Sg-Sgr) are the weighting factors. The weighting factors of krow and krog 

are zero for Sw < Swr and Sg < Sgr, respectively. For consistency, krow (Sw = Swr) = krog (Sg = 0) = 

kro (Sw = Swr, Sg = 0). 

The procedure shown here is slightly different from Baker (1988). There, he used (1-So) 

instead of Sw for determining krow and (1-So) instead of Sg for calculating krog in Eqs. 1 and 2. 

Another variation from Baker’s model is that normalized saturations (i.e., Sw* and Sg*) are 

used in krow and krog functions in Eqs. 1 and 2 instead of Sw and Sg: 
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 (4) 

This model can be used in combination with the adjoint method in the simulator*. 

4.2.4. Linear-Isoperms Model 

In the linear-isoperms model, the points with equal relative permeability in the water/oil and 

gas/oil tables are connected with straight lines. These lines are called isoperms; see Fig. 1.  

The difference between saturation-weighted and linear-isoperms models for the prediction of 

kro is small when one uses small values for nog. However, the saturation-weighted model 

predicts larger values of kro for larger nog values at small values of oil saturation due to the 

weighting factors used in this model that lead to higher oil recovery. This effect may or may 

not be real, i.e., based on measurements. Without any experimental data, it is recommended 

to use the saturation-weighted model†. The saturation-weighted model is computationally 

more robust and efficient, because it is mathematically represented in a more straightforward 

way; however, we do not use it in Chapter 5, because for nog = 3, the oil recovery is deemed too 

optimistic for the range of oil saturations encountered in the simulations.  

                                                                    
* This requires setting a certain flag (i.e., RLPDATA.RLPCALC_BEFORE_2008_1) to ON in the 2010.1 
version of the simulator. If this flag is set to OFF, the derivatives of the oil relative-permeability function 
(kro) are not calculated correctly for the saturation-weighted model in the 2010.1 version. This problem is 
entirely solved in the 2011 version and does not require the flag. 

† Personal communication L. Wei, Shell Global Solutions International, Rijswijk. 
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Fig. 1: Concept of the linear-isoperms model. For consistency, kro (Sw = Swr, Sg = 0) = krow (Sw = Swr) =  

krog (Sg = 0). This point is represented by a star on the ternary diagram (adapted from Dynamo/MoReS 

Online User Documentation 2010). 

4.3. Incorporating the Effect of Foam 

The presence of foam reduces gas-phase mobility dramatically (Bernard and Holm 1964; Huh 

and Handy 1989). However, the water and oil relative-permeability functions, to a reasonable 

approximation, remain unaltered in the presence of foam (Bernard and Jacobs 1965; Huh and 

Handy 1989; Vassenden and Holt 2000). It is computationally equivalent to alter the gas 

mobility for foam by modifying the gas viscosity (μg) and/or the gas relative permeability (krg) 

(Shan and Rossen 2004). In the simulator, μg or the gas relative mobility (λrg) is altered based 

on the choice made for incorporating foam in the model (see §4.3.1 and §4.3.2 for details). 

Here, we confine ourselves to discussing the case in which the gas relative mobility in the 

absence of foam ( nf
rg ) is rescaled to the gas relative mobility in the presence of foam ( f

rg ) by 

multiplying nf
rg by a dimensionless interpolation factor (fmr)*: 

                                                                    
* fmr is referred to as MRF or FM elsewhere. 
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where fmr is the mobility-reduction factor and fmmob represents the normalized resistance to 

flow of a foam of minimum-size bubbles, in the absence of factors increasing bubble size 

(Surguchev et al. 1995) and Fw and Fo are the functions describing the stability of lamellae in 

the presence of water and oil, respectively. Similarly, to rescale gas viscosity in the absence of 

foam ( nf
g ) to gas viscosity in the presence of foam ( f

g ), the term nf
g is divided by fmr. 

There are two approaches in the simulator for incorporating the effect of foam: by monitors 

and by plugging tables. Both approaches for incorporating the effect of foam are examined 

here and the simulator capability to match the analytical MOC solution is investigated.  

4.3.1. Monitors 

The simulator is equipped with a powerful input command language with the possibility to 

define monitors. A monitor is a piece of command language, similar to a function that is 

executed at predefined times or conditions (Dynamo/MoReS Online User Documentation 

2010). This offers additional flexibility to customize the simulations. This approach modifies 

the gas viscosity. 

fmr can be defined by a monitor. fmr is calculated based on Fw and Fo functions, explicitly 

defined by a command language in the monitors, as functions of Sw and So. The foam monitor 

solves for fmr immediately before a time step (and also before the first time step). In other 

words, the fmr applied at each time step is evaluated at the saturations in the previous time 

step (explicit implementation). In contrast, in the plugging table (§4.3.2), fmr is extracted from 

the table based on the saturations at the current time step (implicit implementation).  

4.3.2. Plugging Tables 

fmr can be defined by a plugging table generated based on Fw and Fo functions for various 

combinations of Sw and So. The plugging table directly modifies the gas mobility as a function 

of Sw and So from which the plugging table factor (fmr) is applied to the gas mobility. As 

mentioned earlier, the fmr value is implicitly extracted from the table during each time step 

(i.e., fmr is evaluated at the saturations of the same time step).  

Every plugging table is defined once for a certain set of foam parameters (see the last two rows 

of Table B-1 for the foam parameters). This pre-defined table is included in the input file and 

remains fixed unless the foam parameters are changed. 

Special care must be taken in creating the plugging tables. Fw and Fo curves must be refined 
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well enough in terms of Sw and So to fully capture all the sharp changes and corners in these 

functions. Failure to create an accurate table leads to erroneous results. However, the table 

generation may take excessive time if too much refinement is involved. The table-generation 

time grows exponentially with the table size [e.g., 4 hours for a table with 1 million rows, 8.5 

hours for 1.7 million rows, 16 hours for 2.4 million rows, and 20 hours for 2.6 million rows on 

an Intel Core 2 Duo E8400 (6M Cache, 3.00 GHz Processor)]. 

When the plugging table is dependent on more than two parameters, the tradeoff between the 

level of refinement, accuracy, and table-generation time becomes even more important. Thus, 

a balance between the level of refinement and accuracy is necessary for achieving correct 

results. Table 1 gives the only two formats of the plugging table that are acceptable to the 

simulator for a case where each of the Fw and Fo curves can be fully represented by three 

points, i.e., two line segments. This simplistic representation is only for illustration purposes 

and is unrealistic. Note that the values in the Sw and So vectors must be in ascending order. 

Table 1: Two samples of a plugging table for the saturations shown in Fig. 2. 

Sw So fmr  So Sw fmr 

aw ao fmr (aw,ao)  ao aw fmr (aw,ao) 

bw ao fmr (bw,ao)  bo aw fmr (aw,bo) 

cw ao fmr (cw,ao)  co aw fmr (aw,co) 

aw bo fmr (aw,bo)  ao bw fmr (bw,ao) 

bw bo fmr (bw,bo)  bo bw fmr (bw,bo) 

cw bo fmr (cw,bo)  co bw fmr (bw,co) 

aw co fmr (aw,co)  ao cw fmr (cw,ao) 

bw co fmr (bw,co)  bo cw fmr (cw,bo) 

cw co fmr (cw,co)  co cw fmr (cw,co) 

It is important to note that in the tables both Sw and So must range from zero to one, inclusive: 

although some combinations of Sw and So might add up to a value larger than one, they should 

be still included in the table. Otherwise, the simulator fills out the table for the missing points. 

This increases the computational time and can also introduce wrong values for fmr (calculated 

by extrapolation) leading to incorrect results. Thus, the table must always have 

dim(Sw)×dim(So) rows, where dim(Sw) and dim(So) are the dimensions of Sw and So vectors.  

Multi-dimensional tables are always interpolated linearly in the simulator. By multi-

dimensional we mean that the target function (fmr here) is a multivariate (Sw, So, etc.) 

function. Sometimes, Fw and/or Fo curve(s) might include linear segments. It is important to 

note that an extremely coarse representation of the linear segment(s) may introduce error into 

the calculation of fmr by linear interpolation as shown in Fig. 2 for a simple case. Therefore, 

sufficient refinement is required even in this case. 
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The foam models (i.e., Fw and Fo functions) and parameters used in this chapter are identical 

to those used in Chapter 3. (See Table B-1 for model parameters.)  

 

 (a) (b) (c) 

Fig. 2: Coarse representation of the linear segments in Fw and Fo curves has introduced an error in the fmr 

calculation through linear interpolation, where fmr = (1+FwFo)-1. Each of the Fw and Fo curves are 

represented with only three points, called by aα, bα, and cα (Figs. 2a and 2b). If we introduce two 

additional points on the Fw and Fo curves (i.e., the white-filled circle and triangle), the fmr for the 

corresponding saturation pairs is calculated by linearly interpolating between the existing fmr values in 

Fig. 2c resulting in the black-filled circle and triangle in this figure. However, the white-filled markers in 

Fig. 2c are the correct values of fmr at those additional points. Although Fw and Fo curves are linear from aα 

to bα and from bα to cα, however, fmr varies nonlinearly in these regions. Consequently, linear interpolation 

on the fmr curve results in 10% and 7% error in the interpolated value of fmr at the saturation pairs 

corresponding to the black circle and triangle in Fig. 2c, respectively. 

4.3.3. Comparing the Monitor and Plugging Table  

A plugging table must be refined sufficiently to be able to fully capture the behavior of the 

sensitivity functions. This can be investigated by comparing the results of two identical input 

decks one with a plugging table and another one with the corresponding monitor. The oil 

production profiles should coincide. An instance of this comparison is shown in Fig. 3. It is 

clear from the oil production profiles in the figure that the plugging table used is a good 

representation of the monitor. Therefore, in all our simulations in Chapter 5, replacing the 

monitor with a plugging table is of no harm to the quality of the results, due to the sufficient 

refinement of the table. 

4.3.4. Compatibility with the Optimization Routine 

The adjoint routine* in the 2010.1 version of the simulator is not capable of handling the foam 

monitor. We provide all the foam sensitivity functions (i.e., Fw, Fo, and Fs) in terms of exact 

functions in the monitor, and then all these functions are combined into the gas mobility-
                                                                    
* The adjoint routine provides analytical gradients used in the optimization routine for finding optimum 
control settings and is discussed in detail in Chapter 5. 
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reduction factor (Eq. 5). The present adjoint routine is not able to cope with monitors that 

cause state-dependent changes. For instance, foam monitor changes gas viscosity as a 

function of phase saturations. Future versions of the adjoint-based optimization routine in the 

simulator will be able to cope with this type of monitors and will require the user to provide 

the analytical derivatives of those functions. However, plugging tables are compatible with the 

present adjoint routine. As a result, the only option left at this point is applying plugging 

tables for incorporating the effect of foam in Chapter 5.  

 
(a) (b) 

Fig. 3: Comparing different foam and surfactant models. In this figure, the switching time* is 30 days and 

the foam model is nonlinear (water weakens and oil kills foam and epsurf = 100; see §C.5 for the 

definition of epsurf). (a) Oil-production rate versus time. (b) Cumulative oil production versus time. Both 

injection and production wells are operating at constant prescribed bottomhole pressures. The foam front 

has not reached the production well at 200 days in any of the cases. Note that plugging tables are not 

compatible with passive tracers, so there is no plot corresponding to this combination. 

 4.4. Modeling Surfactant Transport  

Surfactants serve as foaming agents for foam generation. Surfactants are generally injected 

into the reservoir in two different ways: injection in a SAG mode where foam is then generated 

as surfactant solution contacts gas inside the reservoir; and coinjection of aqueous surfactant 

solution and gas, i.e., foam injection. However, coinjection is operationally more challenging 

(Blaker et al. 2002). Blaker et al. (2002) performed a field-scale foam-assisted water-

alternating-gas (FAWAG) project on the Snorre field with the purpose of gas mobility control. 

They list three parameters as the main factors describing the foam properties:  

 surfactant molecular structure, 

 surfactant concentration (Cs), 

 foam quality (i.e., gas fraction of foam at reservoir conditions). 

                                                                    
* At the switching time, surfactant solution injection is terminated and gas injection begins.  
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Various experimental studies (Svorstøl et al. 1996; Vassenden and Holt 1998; Mannhardt and 

Svorstøl 1999) revealed that foam strength was only sensitive to surfactant concentration at 

very low Cs. In addition, the mobility-reduction factor was invariant for foam qualities less 

than 95% (Cheng et al. 2000; Alvarez et al. 2001) [see also Yin et al. (2009) for an extensive 

study on the effect of optimum foam quality and surfactant adsorption behavior on CO2-foam 

flooding]. Blaker et al. also name three additional criteria for the selection of surfactant: 

 low surfactant loss, 

 small minimum surfactant concentration (Cs,min) for foam generation, 

 adequate mobility reduction. 

Surfactant loss is mainly associated with three causes: irreversible adsorption to the rock 

surface, partitioning to the oil phase, and chemical or microbial degradation. The effect of the 

latter was minor. However, surfactant adsorption to the rock significantly limited the extent of 

foam propagation for a specific volume of injected surfactant in their case. They reported 

adsorption of 0.5 mg/g rock for a sandstone rock in the Snorre field. Their simulations 

showed that adsorption and Cs,min have the largest impact on the foam efficiency. In their case, 

the critical-micelle concentration (CMC) of the surfactant was of the order of 0.01 wt.%. The 

CMC is the surfactant concentration above which micelles are spontaneously formed.  

In our simulations in Chapter 5, we took the critical-surfactant concentration (Cs*) for foam 

generation half the injected concentration; Cs,inj = 0.24 wt.%. This choice is based on a 

strategy to minimize the effects of numerical dispersion; see §C-5 for more detail. Note that 

Cs* is different from the CMC and CMC Cs*. A 0.24 wt.% (or 2400 ppm) surfactant solution 

means that there is 2.4 kg of surfactant in every 1000 kg of the surfactant solution.  

In the simulations performed in this work, for the sake of simplicity, we do not consider the 

adsorption of surfactant on the rock surface. We assume that there has been a surfactant 

preflush into the reservoir prior to the start of the foam flooding process to satisfy adsorption. 

However, from the economical point of view, the cost of this surfactant preflush might exceed 

the oil revenue and make the entire process uneconomical. In order to have an economically 

sound foam EOR process, the cost of the surfactant preflush must be much lower than the oil 

revenues. The procedure for calculating the surfactant preflush size is explained in Appendix 

A of Renkema and Rossen (2007). Based on that, the following inequality must hold: 

         

oil revenue  cost of surfactant preflush or

oil price/bbl 1- kg surf. ads./kg rock surf. cost/kg surf. ,
0.159 100

res o I org

rock res

V S S RF
V


 


   




(6) 

where SoI is the initial oil saturation in the reservoir before the preflush, Sorg is the residual oil 



64 4: Numerical Simulation of Foam EOR  

 

saturation to gas flood, RF is the percentage of movable oil* produced after preflush, Vres is 

the reservoir volume, φ is porosity, ρ is density, and 0.159 is the conversion factor for 

converting m3 to barrels. Note that we used Sorg as the lowest reachable saturation after foam 

EOR, because gas is the major displacing agent in foam EOR processes. We can reformulate 

Eq. 6 in the more clear format as follows: 

 
   rock0.159 1oil price/ bbl 100

kg surf. ads./kg rock .
surf. cost/ kg surf. oI orgRF S S

 



  




 
(7) 

This inequality is independent of the reservoir volume Vres, which vanishes from both sides of 

Eq. 6. It is also independent of injected surfactant concentration, since it is based entirely on 

adsorption. Foam EOR processes usually start when waterflooding is no longer economical, 

and SoI is the average water saturation at this stage. This formula is derived under two implicit 

assumptions: first, surfactant comes into contact with the entire rock surface in the reservoir; 

and secondly, it ignores the surfactant left in the fluids at the end of the process. Therefore, 

Eq. 7 is just a rough estimate, and over-estimates adsorption, since sweep is not complete. For 

a typical water-wet sandstone reservoir with SoI = 0.3, Sorg = 0, φ = 0.2, ρrock = 2650 kg/m3, 

and the above-mentioned adsorption value of 0.5 g surfactant per kg of rock, the right side of 

Eq. 7 is approximately equal to 280/RF. Thus, the above inequality holds if the oil price per 

barrel is at least (280/RF) times higher than the surfactant cost per kg. An average-quality 

surfactant (those injected with water) generally costs 3-10 $/kg. Specialized surfactants 

designed for specific purposes may cost up to 30 $/kg†. With these parameters, if surfactant 

costs 6 $/kg on average, the oil price must be very much higher than (1680/RF) $/bbl. With 

the current oil price of 110 $/bbl‡, the entire oil revenue pays off for only the cost of the 

surfactant adsorbed to the rock surface, if RF = 15%. We also emphasize that there is a cost 

associated with the surfactant preflush as well. Thus, an economical SAG process is the one 

that its total oil revenue is well above the surfactant cost adsorbed to the rock surface plus the 

cost of the surfactant preflush (plus the cost of the injected gas, operational costs, etc.).  

This brief analysis reveals the crucial role of surfactant cost on the economics of a foam EOR 

process and the importance of optimizing its use. We note that higher oil prices result in more 

expensive surfactants, as their ingredients are manufactured from oil. One way to make this 

process more profitable is by reducing the surfactant retention due to adsorption on the rock 

surface, for instance by applying alkali agents (Flaaten et al. 2009, 2010). We optimize the 

                                                                    
* By that we mean the movable oil in place before the start of surfactant preflush, i.e., φ Vres (SoI - Sorg). 

† Personal communication T. Matsuura, Shell Global Solutions International, Rijswijk. 

‡ Average OPEC basket price in May 2011. 
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amount of the injected surfactant in Chapter 5 to maximize the oil-recovery factor in a SAG 

process. However, optimizing the net-present value (by considering the surfactant cost) may 

result in a different optimum. 

There are two approaches for modeling surfactant transport in the simulator which are 

applied later in Chapter 5 but not in the simulations shown later in §4.5. One is through 

defining the surfactant as a passive tracer and the other one is by modeling it as an active 

component. An active component is the normal type of component used in simulations. We 

specifically use the brine option in Chapter 5, that allows for the injection of saline water into 

the reservoir and we imagine that salt is representing the surfactant in the simulations.  

4.4.1. Passive Tracer 

A passive tracer can be regarded as a dye in a fluid. It does not influence the properties of the 

fluid that carries it, contrary to a normal component. Currently, a passive tracer must be 

attached to one component (H2O, HEAVY, or LIGHT) in the simulator (Dynamo/MoReS 

Online User Documentation 2010). We inject surfactant together with water (H2O 

component) into the reservoir and the amount of dissolved surfactant in the aqueous solution 

is so small that it does not change the properties of water (though it does affect the transport 

of gas by imposing the foam model). Thus, surfactant is well represented by a passive tracer. 

In order to have a proper definition of surfactant as a passive tracer, surfactant must stay in 

the same phase as the host fluid. This is automatically taken care of when surfactant is 

attached to H2O, because H2O is only present in the water phase. However, it is not always 

possible to inject surfactant with gas, since surfactant must be attached to the LIGHT 

component that can be present in both oil and gas phases. Injecting surfactant with gas is only 

possible if there is no LIGHT component in the oil phase. 

Passive-tracer fluxes are computed with a dedicated solver that reduces numerical dispersion. 

This solver is separate from the one that solves the material balance for the normal 

components in water, oil, and gas phases. This dedicated solver employs a high-order-

accurate discretization scheme for computing the tracer fluxes. The tracer solver is based on 

the fact that passive tracer is transported by the host fluid without altering its properties. At 

every time step, the fluxes of the normal components are calculated first and the tracer 

equation is solved next (Dynamo/MoReS Online User Documentation 2010).  

It is also important to note that plugging tables are incompatible with passive tracers, because 

plugging tables do not accept passive-tracer concentration (TRC) as an input. In the Fs 

function defined in the monitor, TRC directly replaces the surfactant concentration.  
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4.4.2. Brine 

The brine option in the simulator represents the surfactant as a normal active component. 

Therefore, it suffers from stronger numerical dispersion than when treating surfactant as a 

passive tracer (Fig. 4). Numerical dispersion results in artificial mixing of the fluids and 

faster propagation of the leading edge of the entire surfactant bank. As a result, surfactant 

breaks through faster when numerical dispersion exists. The brine option was originally 

designed for injecting water into the reservoir with a salinity so much different from the 

original water in the reservoir that it makes the property differences important. Thus, the 

water phase comprises two components: H2O and INJECTED_H2O. The H2O component 

refers to the in-situ reservoir water and the INJECTED_H2O indicates the injected water with 

different salinity. The density and viscosity of the water phase in each gridblock is dependent 

on the relative amounts of its two components. The water relative permeability is independent 

of the water phase composition. The INJECTED_H2O component only exists in the water 

phase and is solved as a fully coupled component adding an extra equation to be solved 

(Dynamo/MoReS Online User Documentation 2010).  

Here, we imagine that salt is our surfactant and we incorporate its concentration as the 

surfactant concentration in our foam model. We further assume that the original water in the 

reservoir has zero salinity (as there is no surfactant initially present in the reservoir). 

The brine option is an alternative to the passive tracers but is not equivalent. The brine option 

has two main shortcomings:  

 Salt is defined as a normal component in the water phase: hence, it changes the water 

properties (i.e., density, viscosity), contrary to the passive tracer. A simple pressure 

dependent linearization with zero reference pressure is performed in the simulator to 

calculate both water-phase density and viscosity. The density of the injected brine solution 

with 2400 ppm of salt at zero reference pressure is 985.04 kg/m3 as opposed to the zero-

salinity water density of 983.3 kg/m3 (i.e., less than 0.18% change in density). The water 

viscosity in the absence of salt is 4.667E-4 Pa·s and the viscosity of the brine solution is 

4.678E-4 Pa·s (i.e., less than 0.24% viscosity change). Therefore, for our case, changes in 

both density and viscosity are negligible and this shortcoming does not raise a concern. The 

difference could be made even smaller by using a lower salinity to represent the injected 

surfactant concentration. 

 It suffers from higher numerical dispersion than the passive-tracer option: therefore, the 

brine front is more dispersed and travels ahead of the passive-tracer front (Fig. 4). This can 

greatly affect the solutions and the oil production in the ways discussed in §4.4.3. 
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Overall, the brine option is less accurate than the passive-tracer option in the case 

investigated in Chapter 5. It is preferable to incorporate the surfactant transport by a passive 

tracer, unless optimization by the adjoint routine is the ultimate aim (see §4.4.4 for 

compatibility issues).  

Both monitors and plugging tables are compatible with the brine option for incorporating the 

effect of foam. Plugging tables directly accept the brine composition in the water phase as an 

input. When defining a plugging table, the brine composition must be multiplied by the 

concentration of the injected brine (i.e., 0.0024 here) to retrieve the value of Cs in Fs function. 

4.4.3. Comparing the Passive-Tracer and Brine Option 

As mentioned earlier, the brine option suffers from worse numerical dispersion than treating 

surfactant as a passive tracer in the case investigated in Chapter 5. Therefore, the leading edge 

of the surfactant front modeled with the brine option (surfbrine) travels ahead of the 

surfactant front modeled with the passive-tracer option (surftracer). However, Fig. 4 illustrates 

that the foam front obtained from the brine option (foambrine) is behind the foam front 

obtained from the passive-tracer option (foamtracer). (In Fig. 4, foam fronts are represented by 

heavy-black lines.) We discuss the cause of this paradox in the paragraph below. It should be 

noted that dispersion would not affect the position of the foam front (triggered at half the 

injected surfactant concentration) if the dispersed surfactant concentration profile were 

symmetric. It is not, for two reasons: radial flow, and the change in water saturation at the 

foam front (Cheng 2002).  

In the formulation of our foam model, foam forms abruptly when Cs exceeds Cs*. The amount 

of injected surfactant is identical for both the brine and passive-tracer option (0.216 PV). 

Thus, since the advance of the surftracer front is less than the surfbrine front, there is a chance to 

meet Cs ≥ Cs* criterion in more gridblocks with the passive-tracer option than the brine 

option. This is clearly seen in Fig. 4 by comparing the location of the white and black fronts.  

Since the foamtracer front stays ahead of the foambrine front, oil is swept more efficiently with 

the passive-tracer option resulting in higher oil recovery (Fig. 3). In addition, less gas is 

injected, and less gas is produced from the reservoir with the passive-tracer option. To 

elaborate, both wells are operating at constant prescribed bottomhole pressures; hence, the 

overall pressure drop in the reservoir is fixed. The overall gas mobility is lower with the tracer 

option (foam is present in more gridblocks with the passive-tracer option compared to the 

brine option). Therefore overall, less gas is injected into the reservoir with the further advance 

of foam to conform with the fixed overall pressure drop. 
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 Passive Tracer Brine 

 
 Passive Tracer Brine 

Fig. 4: Comparing the surfactant-concentration profiles for the passive-tracer and brine option  

(epsurf = 100 and Cs* = 0.0012; see §C.5 for more details). The simulations are in 3D, but only the top 

layer is shown for the sake of clarity. The foam/no-foam boundary in each figure is shown by a heavy-

black line; whereas the heavy-white line corresponds to the location of the boundary at the same time but 

with the other surfactant-flow modeling option. For instance in the top-left figure, the black boundary 

corresponds to the passive-tracer option and the white boundary corresponds to the brine option, both at 

50 days. This figure shows that the foam front with the passive-tracer option is ahead of the foam front 

with the brine option. In both cases, foam is modeled by the monitor option. Both wells are operating at 

constant prescribed bottomhole pressures. The total simulation time is 200 days and we inject 0.216 PV 

of surfactant solution during the first 30 days, after which surfactant injection stops and gas injection 

starts. The foam front has not reached the production well at 200 days in any of the cases. 

4.4.4. Compatibility with the Optimization Routine 

The adjoint routine in the 2010.1 version of the simulator is not compatible with passive 

tracers (passive-tracer flux is computed by a dedicated solver and the adjoint algorithm is not 

yet extended to deal with that). Therefore, the only choice is applying the brine option for 

modeling surfactant transport in Chapter 5. Brine is considered as another component in the 
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model and hence it does not have the same advantage as the passive tracer, that is the limited 

dispersion (i.e., numerical dispersion is higher with the brine option). We have compared 

these two options in detail in §4.4.3.  

Application of the brine option clearly affects the results and lowers the cumulative oil 

production compared to the passive-tracer option (also seen in Fig. 3) in ways discussed in 

§4.4.3. One has to be aware of this drawback of the brine option when interpreting the results.  

4.5. 1D Simulations 

The reservoir (Fig. 5) is a 100×1×1 m horizontal, homogeneous block with one injection and 

one production well located at the center of the first and last gridblock, respectively. It has a 

porosity of 20% and a horizontal permeability of 100 mD. Flow is rectilinear and one-

dimensional in the reservoir and gravity effects are disregarded.  

 
Fig. 5: 1D reservoir. 

The foam model used in this chapter incorporates only the effect of water and oil saturations 

on foam strength and foam strength is not affected by surfactant concentration (i.e., it is 

assumed that there is enough surfactant everywhere in the reservoir at all times). Thus, 

surfactant transport is not modeled here. It is further assumed that enough surfactant is 

already injected into the reservoir to satisfy adsorption. 

Verifying the simulator results with the 1D analytical solutions obtained by the MOC in 

Chapter 3 requires as close as possible the exact representation of the assumptions behind the 

MOC in the simulator. Here, we compare the MOC solutions obtained in Chapter 3 with the 

results obtained from the simulator at identical conditions. The MOC solutions in Chapter 3 

are based on the linear relative-permeability model described in §3.2.1. Foam strength is 

sensitive only to water and oil saturations, through the Fw and Fo functions in Eq. 5. All the 

phases are assumed incompressible (i.e., no density change with pressure change). In the 

MOC solution, the phases are assumed to be completely immiscible (i.e., there is no mixing of 

any kind between the phases). We do not allow for any miscibility or phase behavior between 

the phases. All the properties are taken from Table B-1.  

We investigate two different injection conditions (J): the gas-injection cycle (fg = 1) of a SAG 

flood (hereafter referred to as gas/SAG) and continuous coinjection of surfactant solution and 

gas (fg ≈ 2 ⁄3, fw ≈ 1 ⁄3), hereafter referred to as foam flood.  
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In Chapter 3, comparisons were based on the parameter tD,final (final recovery time) defined as 

the dimensionless time to produce all the movable oil (oil in excess of residual saturation). For 

instance, tD,final = 200 means that it takes 200 PV of the injected fluid to recover all the 

movable oil. For the sake of comparing this dimensionless parameter with the outcome of the 

simulator, we need to translate tD,final to dimensional injection rates. For instance, it takes  

200 years to produce all movable oil for a process with tD,final = 200 when injecting 1 PV of 

fluid per year. This is equivalent to injecting a total of 0.055 m3/day of fluid (in foam flood 

with fg ≈ 2 ⁄3, this implies injecting 0.03645 m3/day of gas and 0.01855 m3/day of water).  

For both injection conditions, a constant total injection rate must hold for the entire 

simulation to match the MOC solutions and maintain a fixed ratio with physical time. This 

condition is met only if the injection well operates at a constant injection rate as the active 

constraint during the entire simulation. If the maximum bottomhole pressure of the injection 

well ( inj
wf,maxP ) is exceeded for any reason (such as formation of strong foam near the well), the 

active constraint will change into inj
wf,maxP and the well will no longer operate at the prescribed 

constant injection rate until the bottomhole pressure drops below inj
wf,maxP again. To avoid this 

complexity, we set inj
wf,maxP at a relatively high value that is never reached. The production well 

operates at a constant prescribed bottomhole pressure ( prod
wf,minP ). 

Moreover in foam flood, the constant volumetric gas/water ratio of (2 ⁄3)/(1 ⁄3) = 2 must be 

also maintained at all times to ensure matching the analytical solution. This is done by 

specifying the mass fractions of the injected phases, corresponding to a volumetric gas/water 

ratio of 2. In this case, the injected mass fraction of water is approximately 0.982 and for gas 

is one minus this value. Since the phases are incompressible, maintaining a constant mass 

ratio is equivalent to maintaining a constant volumetric ratio. As a result, the saturations 

corresponding to the injection state must match the saturations at J in Chapter 3 in every 

case. This is also a good test for examining whether the foam model defined by a plugging 

table is indeed a good representation of the exact functions or not.  

In all the cases studied below, the total injection rate is set to 1 PV/year. This injection rate 

might be unrealistic in a real field application. However, the purpose of this chapter is 

examining whether or not the simulator is capable of accurately simulating a foam process by 

matching the MOC solutions in Chapter 3.  

4.5.1. Choice of Time-Step and Gridblock Size 

In general, the time-step (∆t) and gridblock size (∆x) cannot be chosen independently. Proper 

choice of ∆t and ∆x is of extreme importance in simulating foam processes. Numerical 

simulations can only capture the correct displacement behavior, if choices of ∆t and ∆x suit 
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the nature of the problem of interest. The foam EOR process introduced in Chapter 3 has a 

complex nature due to the structure of the foam model and its effect on gas mobility in the 

presence of foam. Foam dries out and partially collapses abruptly in the absence of enough 

water. In addition, it might be also destroyed in the presence of too much oil. Both of these 

effects can introduce drastic changes in gas mobility (the larger is fmmob, the sharper the 

changes are) leading to complex displacements including shocks. If the MOC solution is in the 

proximity of the boundaries at which gas mobility changes drastically, numerical dispersion 

may introduce oscillations over this boundary leading to incorrect solution for an improper 

choice of ∆t and ∆x.  

Apart from the accuracy of the foam plugging tables (if applied), the appropriate choice of 

∆t/∆x (and also individual ∆t and ∆x) can significantly improve the match of the simulation to 

the analytical solution. For the sake of illustration and clarity, we elaborate on the effects of 

the choices of ∆t, ∆x, and ∆t/∆x ratio for a single case. In this particular case shown in Fig. 6, 

foam is killed at Sw ≤ Sw* (Sw* = 0.316). Thus, Sw = Sw* line is a foam/no-foam boundary. 

There is low-mobility foam on one side (Sw > Sw*) and high-mobility gas or no foam on the 

other side (Sw ≤ Sw*). Thus, there is a drastic change in gas mobility over the foam/no-foam 

boundary. The injected foam quality is 2/3 and the initial oil saturation So(I) is 0.73 (point I). 

According to the MOC solution, the displacement route consists of only two rarefaction waves 

(i.e., slow and fast) meeting at the constant-state region IJ in Fig. 6 (i.e., J-slow-IJ-fast-I). 

Although So(I) is too high for the start of a foam flood, we picked this specific case because of 

the interesting behavior of its numerical solution. We observed that numerical simulators may 

have difficulty in converging to the correct solution in displacements in which part of the 

solution is extremely close to the foam/no-foam boundary (see Fig. 5a in Chapter 3 for the 

MOC solution of this case). This problem is more pronounced when the changes in properties 

(gas mobility here) over the boundary are significant.  

Fig. 6 illustrates the sensitivity of the numerical solution obtained by the simulator for various 

choices of ∆t/∆x ratio while keeping ∆x = 1 m. Oscillations occur for ∆t/∆x > 0.04 day/m and 

the solution is scattered around the MOC solution (Figs. 7a and 7c). However, simulations 

exhibit no oscillations, and they closely follow the MOC solution, for ∆t/∆x  0.04 day/m 

(Figs. 6 and 7b). We see from Fig. 7b that at fixed ∆x = 1 m, the saturation profiles overlay for 

∆t/∆x  0.04 day/m and reducing ∆t further does not make a visible improvement in the 

solution. The numerical dispersion caused by time discretization at ∆t  0.04 day is negligible 

compared to the numerical dispersion introduced by ∆x = 1 m. This is the closest that one can 

get to the MOC solution with ∆x = 1 m, since the remaining mismatch between the numerical 

and the MOC solution corresponds to the numerical dispersion due to spatial discretization.  
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Fig. 6: Numerical simulations do not always find the correct solution and may sometimes exhibit 

oscillations. The reservoir is initially at (0.27, 0.73, 0) and foam is killed at Sw ≤ Sw* (Sw* = 0.316) and oil 

has no effect on foam strength, and the solutions shown are for a foam flood with an injection condition at 

(0.32335, 0.1, 0.57665) or foam quality of 2/3 (fg = 2/3). The simulator results are shown for various 

∆t/∆x ratios with constant ∆x = 1 m (reservoir is 100 m long). For ∆t/∆x   0.04 day/m (see Table 2), 

simulations closely follow the MOC solution in Fig. 8a in Chapter 3. Foam is modeled with a monitor. 

Water-saturation profiles are shown in Fig. 7.  

Table 2: Oil-recovery factors (RFsim) for various choices of ∆t at ∆x = 1 m for the case shown in Fig. 6. 

RFsim is obtained from the simulator at tend,MOC that is the time at which all the mobile oil is recovered from 

the reservoir according to the MOC solution. Fig. 7 shows that for ∆t/∆x  0.04 day/m, the saturation 

profiles coincide but do not perfectly match the MOC solution. RFsim exhibits the same behavior and it 

remains unchanged for ∆t/∆x  0.04 day/m. For ratios exceeding 0.04, the solution is no longer valid due 

to oscillations. Also, high RF values at ∆t/∆x > 0.04 day/m are misleading and one should not take that as 

an indication of finding the match with the MOC solution by the simulator. 

∆t (day) 
∆t /∆x 

(day/m) 
RFsim(%) 

(at tend,MOC) 
0.001 0.001 97.2 

0.01 0.01 97.2 

0.04 0.04 97.2 

0.1 0.1 97.9 

0.5 0.5 98.3 

1 1 99.2 
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This is also observed for oil-recovery factors for this case shown in Table 2 in which further 

refinement in time does not change the recovery factor. In short, reducing ∆t beyond a certain 

limit at a fixed ∆x does not lead to any further improvement.  

We also performed the same practice as in Table 2 for ∆x = 0.25 m. We still found the same 

ratio, ∆t/∆x = 0.04 day/m, as the threshold between the valid and invalid numerical solution. 

It should be noted however that, this threshold ratio is case dependent and might be smaller 

or larger than 0.04 for the other cases studied in this chapter. 

The source of oscillations observed in Figs. 6 and 7 is numerical dispersion. Numerical 

dispersion is mainly a function of ∆t and ∆x and is also proportional to total velocity and also 

the derivative of the fractional-flow function with respect to saturation dfα/dSα (Salimi and 

Bruining 2011; also see Appendix D for more details). The proximity of the MOC solution to 

the foam/no-foam boundary at Sw* = 0.316 (see Fig. 6) makes this case extremely sensitive to 

the magnitude of numerical dispersion. Therefore, an inappropriate choice of ∆t and ∆x 

magnifies the numerical dispersion term, leading to an inaccurate flux approximation and 

consequently to incorrect saturations. A small error in saturation approximation might cause 

the solution to fall on the wrong side of the boundary (no-foam side with Sw ≤ Sw*).  

With ∆x = 1 m (Table 2), choices of ∆t > 0.04 day are inappropriate and lead to fluctuations. 

However, the numerical solution closely follows the MOC solution with ∆t ≤ 0.04 day as seen 

in Figs. 7b and 7d. We illustrate the typical shape of the fluctuations in Sw over time for  

∆t = 1 day and ∆x = 1 m in Fig. 7c. We elucidate the cause of these oscillations in the first 

gridblock. This gridblock is initially at Sw(I) = 0.27 and we start injecting foam into this 

gridblock with fg = 2/3, which corresponds to Sw(J) = 0.32335 [note that Sw(J) > Sw*]. 

According to the MOC solution in Fig. 7d, Sw must rise monotonically from Sw(I) and 

eventually reach Sw(J) without oscillations. At the injection point J, water and gas mobilities 

are 280 and 535 (Pa·s)-1, respectively. Thus, gas is more mobile than water at J and moves 

more easily out of the first gridblock. Accordingly, Sw rises in this gridblock (not in agreement 

with the MOC due to numerical dispersion) until exceeding Sw* at which foam forms for the 

first time in gridblock 1 (Fig. 8) at time step 21 or 1.05 day and λg drops to 3 (Pa·s)-1 while 

water mobility is 290 (Pa·s)-1. As mentioned earlier, numerical dispersion is proportional to 

dfα/dSα: the higher is dfα/dSα, the higher the numerical dispersion is. At this moment, 

dfw/dSw > dfg/dSg, so the numerical dispersion effect is larger for water. Thus, the water 

output flux is overestimated due to numerical dispersion, leading to an artificial decrease in 

Sw and artificial increase in Sg. This numerical artifact continues to reduce Sw until it falls 

below Sw* where foam collapses and dfg/dSg > dfw/dSw (time step 22). Thus, gas output flux is 

overestimated and Sw starts to rise until it exceeds Sw* for the second time (time step 23).  
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(a)  (b) 

      

(c)  (d)  

Fig. 7: (a) Water-saturation profiles at t = 300 days for the case shown in Fig. 6. ∆t = 1 day and ∆x = 1 m 

(∆t/∆x=1 day/m); the simulator is not finding the correct solution; details of the MOC solution is more 

visible in Fig. 7b. The black markers on the ∆t = 1 curve correspond to gridblocks 1, 10, 21, and 26.  

(b) Water-saturation profiles at 300 days at various (small) time-step sizes (∆x = 1 m). Simulation results 

for ∆t/∆x  0.04 day/m have no oscillations and are close to the MOC solution. At t = 300 days, only the  

J-slow-IJ segment of the entire displacement route is visible. J is visible from 0 to 24.5 m, slow path from 

24.5 to 85.2 m, and IJ from 85.2 m onwards. The relatively flat part of the profile in the middle is not a 

constant state but corresponds to the corner in the slow path magnified in the inset of Fig. 6.  

(c) Fluctuations in water saturation over time in the gridblocks depicted by black markers in Fig. 7a 

between 400 and 410 days. The saturation in each of the gridblocks constantly fluctuates back and forth 

between an upper and a lower bound from one time step to the next. This behavior lasts forever and never 

returns to the injected value. (d) Saturation change over time in the absence of oscillations (∆t = 0.01 day 

and ∆x = 1 m). In Fig. 7d, Sw in all gridblocks finally reverts to the injected value. Note that the vertical 

scales of the figures are not the same. 

This oscillating behavior repeats itself forever to keep the numerical scheme mass 

conservative in the gridblock and water saturation in the gridblock never reverts to Sw(J). In 

short, the inaccurate estimation of Sw is illustrated by fluctuating across the foam/no-foam 

boundary as observed in Fig. 7c. As the front moves, other gridblocks inherit this symptom 
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and start to fluctuate. As mentioned earlier, this symptom is observed for ∆t > 0.04 day at  

∆x = 1 m (see Table 2). However, the numerical solution closely follows the MOC solution with 

∆t ≤ 0.04 day (Figs. 7b and 7d). 

 

Fig. 8: Sw profile per time step in the first gridblock for the case shown in Figs. 6 and 7. The oscillating 

profile corresponds to ∆t = 1 day and ∆x = 1 m, and the solid-black line is for ∆t = 0.01 day and ∆x = 1 m. 

As mentioned earlier, it is not possible to improve the solution beyond a certain limit at a 

fixed ∆x by refining ∆t (Fig. 7b). The solution can be improved in two ways:  

(1) by fixing ∆t and reducing ∆x: By reducing ∆x at a fixed ∆t, the ∆t/∆x ratio increases. 

Consequently, ∆x must stay above a certain limit (that is case dependent) in order to prevent 

oscillations caused by a relatively large ∆t/∆x ratio. With ∆t = 0.01 day, oscillations are 

observed for ∆x < 0.2 m or ∆t/∆x > 0.05 day/m and we could not obtain a close match with 

∆x > 0.2 m. However, there is more stability at a smaller ∆x if ∆t is smaller. Results for  

∆t = 5E-4 day are shown in Fig. 9, in which we get very close to the MOC solution at  

∆x = 0.033 m (∆t/∆x = 0.015 day/m) and the solution is still free from oscillations. 

 

Fig. 9: Sw profiles at 300 days for various choices of ∆x (m) at ∆t = 5E-4 day for the case in Fig. 6. 
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(2) by fixing ∆t/∆x and reducing both ∆x and ∆t with the same proportions: For a fixed ∆t/∆x 

ratio of 0.01 day/m (Fig. 10), the solution improves significantly by refining both ∆x and ∆t 

proportionally. 

 

Fig. 10: Water-saturation profiles at 300 days for selected cases in Table 3 at ∆t/∆x =0.01 day/m. 

We also investigated the effect of different choices of ∆t and ∆x at a fixed ∆t/∆x ratio of  

0.01 day/m on the oil-recovery factor (see Table 3). For all the choices studied, the numerical 

solution closely follows the analytical solution without oscillations; however, the accuracy in 

predicting the oil-recovery factor differed. Smaller choices of ∆t and ∆x lead to more accurate 

predictions, as also shown in Fig. 10. However, the simulation time increases significantly for 

the smaller choices of ∆t and ∆x, whereas the accuracy of RFsim (at tend,MOC) is not improved 

that much after a certain limit. Therefore, we need to preserve a balance between the runtime 

(i.e., choice of the ∆t and ∆x) and the acceptable error in RFsim. 

Table 3: Effect of the choice of ∆t and ∆x at a constant ratio of ∆t/∆x =0.01 day/m for the case in Fig. 6. 

At this ratio, the simulator results are without oscillations and the RFsim estimate approaches 100% upon 

refining ∆t and ∆x. Water-saturation profiles for selected cases are shown in Fig. 10. 

∆t (day) ∆x (m) 
RFsim(%) 

(at tend,MOC) 

0.1 10 88.68 

0.01 1 97.22 

0.005 0.5 98.27 

0.0025 0.25 98.98 

0.001 0.1 99.55 

0.0005 o.05 99.79 

4.5.2. Simulation Results 

The simulation results are divided into two sections based on the way that the effect of foam is 

incorporated in the model, i.e., monitor or plugging table. Each section has two subsections 

based on the two injection conditions investigated: foam flood (fg ≈ 2 ⁄3, fw ≈ 1 ⁄3) and gas/SAG 

(fg = 1). In all the cases shown below, a sensitivity analysis similar to that above is performed 
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for finding the best choice of time-step and gridblock size that matches the MOC analytical 

solution. However, the simulator is unable to find a match in some cases.  

In all the cases, the injection rate is equal to 1 PV/year. tend,MOC represents the time required in 

years to produce all the movable oil, as calculated by the MOC. RFsim is the oil-recovery factor* 

obtained from the numerical simulations at tend,MOC. We terminate the simulations in the 

simulator at tend,MOC. The MOC solution gives 100% oil-recovery factor at this time. In some 

cases that will be elaborated on later in this section, the simulator gives a value of RFsim at 

tend,MOC very close to 100% (i.e., RFMOC at tend,MOC); even though the solution shows oscillations 

around the MOC solution. As a result, mere closeness of RFsim to 100% is not always a correct 

indicator that the simulator has found the correct solution (see §4.5.2.1.2).  

In the tables below, only the choice of ∆t and ∆x leading to the match with the MOC is given. A 

match is indicated between the simulator result and the MOC solution if all the following 

conditions are met: (1) the numerical solution (saturation and pressure) is free from any 

oscillations, (2) saturation profile from the simulator closely follow the MOC solution (e.g., see 

Figs. 6 and 7), and (3) the value of RFsim at tend,MOC is close to 100% (i.e., RFMOC at tend,MOC). For 

instance, in the case discussed in §4.5.1, the simulator had no oscillations for ∆t ≤ 0.04 day at 

∆x = 1 m. Fig. 7b and Table 2 show that the solutions found for ∆t ≤ 0.04 day are not exactly 

matching the MOC solution, but approximating it to a reasonable extent. The error in 

approximating RFsim for the choice of ∆x = 1 m and ∆t ≤ 0.04 day is less than 3%. This order of 

error is acceptable for our purpose and we claim that the match is found with the MOC 

solution with this choice of ∆t and ∆x. Of course, one can find a more accurate match if 

required by following either of the two strategies mentioned at the end of §4.5.1. For most of 

the cases examined below, we found a match with ∆x = 1 m and ∆t = 0.01 day.  

4.5.2.1. Foam Modeled by a Monitor 

4.5.2.1.1. Foam Flood 

As mentioned earlier in this chapter, the functions Fw and Fo are explicitly defined by a 

command language in the monitors, as a function of Sw and So. It can be seen that except for 

one case where even our own fine-grid numerical simulator did not find the correct solution 

(similar to Fig. C-5), the simulator does an acceptable job in matching the MOC solution 

(Table 4). We see later in this chapter that using a monitor greatly improves the results 

without the need of exhaustive effort for refining the plugging tables to match with the MOC. 

                                                                    
* RFsim is equal to the percentage of mobile oil (oil in excess of residual saturation) produced at tend,MOC. 
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Table 4: The simulator’s performance in matching the MOC solution for foam flood. 
(foam modeled by a monitor) 

Water  Oil So(I) 
∆x  
(m) 

∆t  
(day) 

tend,MOC  
(years)  

RFsim(%) 

(at tend,MOC) 
Match with 

MOC found? 

Weakens 

No effect 
0.17 

1 

0.01 
1.96 95.5 

Yes 

0.73 1.96 98.5 

Weakens 
0.17 0.1 1.99 89.8 

0.73 

0.01 

2.95 96.2 

Kills 
0.17 2.7 98.1 

0.73 8.4 100 

Kills 

No effect 
0.17 3.35 96.7 

0.73 3.35 97.2 

Weakens 
0.17 3.32 99.4 

0.73 
0.2 

3.69 99.3 

Kills 
0.17 3.5 99.4 

0.73 

1 

8.7 99.9 

No effect 

Weakens 
0.17 1.5 100 

0.73 2.23 100 

Kills 
0.73 0.1 1 8.1 100 

0.17 -* 2.1 -* No 

4.5.2.1.2. Gas/SAG 

Results from Chapter 3 clearly showed that incorporating foam collapse at Swr (i.e., Fw = 0 at 

Sw = Swr) results in the failure of gas/SAG in the cases examined, regardless of the reservoir 

initial condition, relative-permeability model, and foam sensitivity to Sw and So. Therefore, 

gas/SAG is nearly as inefficient as if no foam were present at all; if Fw = 0 at Sw = Swr. In both 

of the cases where Sw influences foam strength in this chapter (i.e., weakening or killing 

effect), complete foam collapse at Swr is incorporated. Thus, the performance of these 

unsuccessful cases is not of practical interest and we only examine the simulator’s 

performance for the cases that are considered successful according to Chapter 3 (Table 5). 

Table 5: The simulator’s performance in matching the MOC solution for  
successful gas/SAG (foam modeled by a monitor). 

Water  Oil So(I) tend,MOC 
(years)  

Match with 
MOC found? 

No effect 
Weakens 

0.17 
1 No 

Kills 1.8 No 

                                                                    
* We couldn't find a satisfactory simulation result for this case and therefore we leave this space blank. 
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Despite various choices of ∆t and ∆x examined, the simulator was unable to find the match for 

the only two successful gas/SAG cases due to oscillations across the So = So* line. For the case 

where oil kills foam, our fine-grid simulator was also unable to find the correct solution  

(Fig. C-5). In both of these cases, the displacement route consists of (S)(S) wave group and the 

simulator was unable to find the match (see Table A-1 for information about the wave groups). 

Fig. 11 is the simulator’s solution for the case where oil weakens the foam for ∆t = 0.01 day 

and ∆x = 1 m. This choice of ∆t and ∆x is selected because it has the highest RFsim among the 

others. At early times (Fig. 11b), the simulator finds the correct IJ at (0.1, 0.2982, 0.6018); 

however, as time proceeds, oscillations around IJ become the dominant feature and last to the 

end. Consequently, the oil-recovery prediction is significantly impaired (82.85%). 

  
 (a) (b) 

 Fig. 11: Numerical simulations do not always find the correct solution and may sometimes exhibit 

oscillations. (a) Simulator results for ∆x = 1 m and ∆t = 0.01 days. Reservoir is initially at (0.83, 0.17, 0) 

and foam is weakened at So > So* (So* = 0.2) and water has no effect, and the solution shown is for 

gas/SAG. The small unfilled circles along the saturation paths are inflection points (see the last paragraph 

in §3.4 for more information). (b) Sg profile at different times; the MOC solution at t = 200 days is shown 

as a solid-black line. IJ found by the MOC is located at (0.1, 0.2982, 0.6018); however, the solution 

oscillates around this value and does not find a constant state (RFsim = 82.85%). We could not find a 

match with the MOC solution with the choices of ∆t and ∆x examined in this case.  

4.5.2.2. Foam Modeled by a Plugging Table 

4.5.2.2.1. Foam Flood 

As discussed earlier in §4.3.2, the plugging table must be refined enough to capture all the 

specifics of the original functions Fw and Fo. Otherwise, it leads to spurious results and failure 

to match the MOC solution. Table 6 summarizes the simulator’s performance when using the 
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plugging tables for defining the foam model. dim(Sα) is the number of saturation points used 

to refine the Fα(Sα) curve. Ideally, a larger dim(Sα) results in a solution closer to the case with 

monitors. However, excessive refinement takes extremely long times for the simulator to 

generate the tables. As a result, dim(Sα) must be chosen such that the table-generation time is 

affordable and the accuracy is not compromised.  

Table 6: The simulator’s performance in matching the MOC solution for foam flood. 
 (foam modeled by a plugging table) 

Water Oil So(I) dim(Sw) dim(So) 
∆x 
(m) 

∆t 
(day) 

tend,MOC 
(years) 

RFsim(%) 

(at tend,MOC) 

Match with 
MOC 

found? 

Weakens 

No effect 
0.17 

1,064 - 

1 

0.01 
1.96 95.4 

Yes 

0.73 1.96 98.5 

Weakens 
0.17 

1,064 1,580 
0.1 1.99 99.72 

0.73 

0.01 

2.95 96.2 

Kills 
0.17 

1,064 1,013 
2.7 95.9 

0.73 8.4 100 

Kills 

No effect 
0.17 

151 - 0.1 0.1 
3.35 98.9 

0.73 3.35 99.3 

Weakens 
0.17 

225 113 
1 0.01 3.32 99.4 

0.73 0.1 0.1 3.69 99.6 

Kills 
0.17 

978 1,013 
0.2 

 

0.01 

3.5 99.4 

0.73 

1 

8.7 99.9 

No effect 

Weakens 
0.17 

- 15,752 
1.5 100 

0.73 2.23 98.8 

Kills 
0.73 

- 10,013 
0.1 0.1 8.1 100 

0.17 - 2.1 - No 

In the case where foam is weakened by oil [So(I) = 0.17, ∆x = 0.1 m, and ∆t = 0.01 day], a very 

high oil-recovery factor (RFsim = 99.96%) is achieved for dim(So)=14,262. However, this high 

RF value is misleading and does not indicate that the simulator has found the match with the 

MOC. This is due to a similar behavior observed in Fig. 11 (oscillations around IJ is dominant 

here as well). Even refining the gridblock and time-step size to 5E-3 m and 5E-5 day does not 

result in an accurate match. However, further refinement of the plugging table by increasing 

the dim(So) to 15,572 resolved this problem and led to RFsim = 100% without oscillations.  

 4.5.2.2.2. Gas/SAG 

The performance of the simulator in this case is similar to the case with monitors, hence it is 

not repeated here. In all the cases examined, it is not possible to match the MOC with 

plugging tables if the match is not found with the monitors. If the match is found by monitors, 
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it is still possible not to find a match with plugging tables, if inaccurate tables are used.  

In Chapter 5, we model a complete SAG displacement process (including both surfactant-

injection and gas-injection cycles) in 3D with a nonlinear relative-permeability model, in 

which foam is weakened at low Sw (Fw = 0 at Swr), killed at high So, and is sensitive to 

surfactant concentration. We did not validate the performance of the 1D simulation in the 

similar case here (water weakens, oil kills, without sensitivity to surfactant concentration, and 

with linear relative-permeability model), because it was not successful under our definition. 

However, the simulator is able to find the match with the MOC solution in that case. In 

Chapter 5, we have validated the 3D simulation results in §5.2.1 in ways discussed in §4.6. 

4.6. Validating the Simulations in the Absence of an Analytical Solution 

So far, we validated the 1D simulations of the simulator with the analytical solution obtained 

by the MOC. In some cases such as 3D simulations with gravity (Chapter 5), the MOC solution 

is not available and we require to validate the results. Although there is no MOC solution in 

these circumstances, the insights obtained from the 1D analysis can provide valuable 

measures for detecting wrong simulations. In the 1D simulations in this chapter, the major 

symptom of wrong simulations was wild, spurious fluctuations in saturations. Therefore, in 

the absence of the MOC solution, one way of identifying wrong results is to look for similar 

symptoms in the saturation (Fig. 12) and/or pressure profiles. If these symptoms disappear 

after sufficient refinement in space or time or both, then the results exhibiting the symptoms 

are obviously wrong. This is comparable but not equivalent to detecting the oscillations in 1D. 

 
 ∆t = 1 day ∆t = 0.01 day  

Fig. 12: Oil-saturation profiles for identical cases with different ∆t. High-saturation gridblocks in the 

profile with ∆t = 1 day vanish by using the smaller ∆t = 0.01 day. Therefore, the solution with ∆t = 1 day is 

obviously wrong and those high-saturation gridblocks are symptoms of an improper choice of ∆t.  
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Fig. 12 also suggests that proper choices of ∆t and ∆x must be found by performing sensitivity 

analysis on these parameters. In our case, we define the proper choice as a choice with which 

symptoms as in Fig. 12 do not occur, and for which further refinement of time and spatial 

grids would not significantly influence the results (e.g., cumulative oil production). This 

procedure gives some assurance (if not perfect assurance) in the absence of the MOC solution. 

4.7. Conclusions 

All hydrocarbon reservoirs are in 3D. However, there is no analytical solution for a real 3D 

displacement (with gravity) to evaluate the correctness and accuracy of the numerical 

simulations. The MOC provides exact solutions for benchmarking the accuracy and numerical 

artifacts of numerical simulators. Therefore, it is essential to evaluate the performance of the 

numerical simulator in 1D with the available analytical solutions from the MOC, prior to 

performing simulations in higher dimensions (i.e., 2D and 3D). This analysis elucidates many 

important aspects: 

Appropriate choice of ∆t and ∆x:  

 In finding an accurate numerical solution that matches the MOC solution, some 

displacements are more sensitive to the choice of ∆t and ∆x than others. If a part of the 

solution (e.g., rarefaction wave and/or constant-state region) is in the proximity of the 

foam/no-foam boundary at which drastic changes in gas mobility occur, the simulator may 

exhibit oscillations across the boundary with an improper choice of ∆t and ∆x and fail to 

find the correct solution. In some cases, we were unable to obtain a correct numerical 

solution with the choices of ∆t and ∆x examined. 

 At fixed ∆x, once the numerical dispersion due to time discretization becomes negligible 

compared to the numerical dispersion introduced by spatial discretization, it is impossible 

to improve the solution by refining ∆t. At this stage, the remaining mismatch between the 

numerical and the MOC solution corresponds to numerical dispersion caused by ∆x. 

 An inappropriate choice of ∆t and ∆x leads to erroneous results that might be hard to 

identify in 3D simulations in the absence of the MOC solution. One needs to look for 

symptoms to identify them and find the proper choices of ∆t and ∆x by performing 

sensitivity analysis on these parameters. In our case, we define the proper choice as a choice 

with which symptoms as in Fig. 12 do not occur, and for which further refinement of time 

and spatial grids would not significantly influence the results. This procedure gives some 

assurance (if not perfect assurance) in the absence of the MOC solution. 
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Verifying the accuracy of the plugging table:  

 Prior to moving to simulations in higher dimensions, it is crucial to validate the accuracy of 

the plugging table by comparing the simulation results with the MOC. A plugging table is the 

backbone of the foam model and inaccurate representation of the foam model in it leads to 

erroneous results. 

 In the absence of an analytical solution, it is possible to verify the accuracy of a plugging 

table by comparing the simulation results (e.g., flow rates) to the results obtained by 

monitors for the same case. They must match if the plugging table is accurate.  

 It is always advised to use monitors instead of plugging tables when possible. This prevents 

the possible introduction of errors in the model by inaccurately defining the tables. It also 

eliminates the exhaustive task of trading off between the table accuracy and table-generation 

time. 

Range of validity of the simulator: 

 If a part of the solution (rarefaction wave, constant-state region) is located very close to the 

foam/no-foam boundary over which the gas mobility changes drastically, the simulator 

might be unable to find the correct solution. 

 In all the cases examined, it is not possible to find a match with the MOC using plugging 

tables, if the match is not found by the monitors.  

 For foam flood, the simulator matches the MOC solution well with both approaches for 

incorporating the effect of foam (monitors and plugging tables). It fails to find the correct 

solution in only one case (similar to Fig. C-5) where even our fine-grid simulator used in 

Chapter 3 is unable to find the solution.  

 For gas/SAG, only the successful cases in Chapter 3 are examined and the simulator was 

unable to match the MOC with the choices of ∆t and ∆x examined. We did not examine the 

case similar to the one investigated in Chapter 5 here (water weakens, oil kills), because it 

was considered unsuccessful under our definition; however, the simulator is able to find the 

match with the MOC solution in that case.  

 With the insight that we gained through the validation of the simulator’s performance 

against the MOC solution, we concluded to apply simpler physics for the foam model in the 

3D simulations in Chapter 5 to ensure finding the correct solution.  





 

 
 

 

 

Chapter 5 

Optimization of Foam EOR 

 

 

5.1. Introduction 

Once a hydrocarbon reservoir comes into production, we deal with a dynamic system that 

needs to be produced in an economically feasible manner. This requires an optimal control 

strategy dictating the injection and production policy that results in minimizing or 

maximizing a specific objective function. The optimal control strategy is designed to result in 

the best displacement efficiency or best economic performance, which is reflected in the 

chosen objective function. The objective function in the former case is the ultimate oil 

recovery and in the latter case is the net present value.  

Our objective is maximizing the cumulative oil production by finding the optimum switching 

time between the surfactant and gas injection cycles in surfactant-alternating-gas (SAG) 

processes. In these EOR processes, foam is a means of improving sweep efficiency that 

reduces the gas mobility by capturing gas in foam bubbles and hindering its movement. We 

also investigate the capability of a gradient-based optimization routine applied to these EOR 

processes. The simulations are carried out by the Shell in-house reservoir simulator MoReS 

(hereafter referred to as the simulator). This work is a first attempt to apply optimal control 

theory to foam EOR processes.  

In this work, we restrict ourselves to optimal control theory (OCT) where we calculate the 

gradients using adjoint equations. (Sometimes a wider class of methods is used in OCT, but in 

this thesis we do not consider those other methods.) Adjoint-based schemes are very efficient 

for gradient calculations and are particularly useful in optimization problems where a large 

number of controllable parameters must be optimized. However, their implementation is 

complex and time-consuming and requires considerable code development. The adjoint code 

depends on the forward model. Therefore, every time that the forward model is modified, the 

adjoint code must be updated and one needs access to the simulator’s source code to do it 
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(Sarma et al. 2005; Chen et al. 2009; Jansen 2011). The adjoint routine in the simulator has 

been extensively validated for waterflooding (Kraaijevanger 2007; van Essen 2010) and also 

recently for polymer flooding (Van Doren et al. 2011). In principle, it could be applied to many 

other oil-recovery mechanisms and optimization problems after being validated first for the 

new applications.  

In this chapter, we first introduce the simulation model. Then, we investigate the effect of the 

switching time* on our objective function in three different scenarios in which different 

injection-well constraints and end-time constraints are applied. We continue with a brief 

overview of the history and application of optimal control theory in petroleum engineering. 

We discuss three methods of gradient calculation and we elaborate on the adjoint method 

which is used in this chapter. The application of the adjoint method for calculating the 

gradient with respect to switching time is discussed in detail afterwards. Finally, we 

investigate the capability of a gradient-based optimization routine applied to foam EOR 

processes in finding the switching time that maximizes the cumulative oil production. We 

examine the optimization routine in four cases varying in the simulation mode (i.e., 1D or 3D) 

and the foam model (i.e., linear or nonlinear). We end this chapter with concluding remarks. 

5.2. Problem Statement 

We model a foam-displacement process in 1D and 3D. In particular, we optimize the duration 

of the surfactant slug injection in SAG flooding, that maximizes the cumulative oil production. 

We represent the duration of the surfactant slug by the switching time (ts). Initially, surfactant 

solution (surfactant dissolved in water) is injected into the reservoir for ts days. At ts, 

surfactant injection is terminated and gas injection starts.  

The 3D reservoir is rectangular, 100×100×30 m, with one injection and one production well, 

located on the opposite sides of the reservoir (see Fig. 1b). Both wells are vertical, located in 

the middle of the corner gridblocks, and are perforated in the entire interval. Both wells 

operate at constant prescribed bottomhole pressures [i.e., maximum-bottomhole-pressure 

constraint for the injection well ( inj
wf,maxP ) and minimum bottomhole pressure constraint for 

the production well ( prod
wf,minP )], unless otherwise is stated. In the 3D simulations, we have used 

1000 gridblocks (i.e., 10×10×10), unless otherwise is stated.  

Some of the simulations are in 1D. In the 1D simulations (Fig. 1a), the reservoir is 100×1×1 m 

                                                                    
* The switching time is our control variable and is defined as the time at which surfactant injection is 
terminated and gas injection begins. 
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and we have used 100×1×1 gridblocks, unless otherwise is stated. In the 1D simulations, wells 

are positioned in the middle of the first and last gridblocks.  

 

 (a) (b) 

Fig. 1: Reservoir geometry in (a) 1D and (b) 3D simulations. 

We aim at investigating the gas performance in sweeping oil. Thus, we would like to minimize 

the effect of water in displacing oil. In addition, EOR processes usually come after a period of 

waterflooding. Therefore, we set the initial oil saturation in the reservoir before starting the 

foam EOR (prior to surfactant injection, to be precise) at the residual oil saturation to 

waterflood (Sorw). This way, water is unable to displace oil unless the oil saturation exceeds 

Sorw. Therefore, oil is not displaced nor produced before the switching time. After the 

switching time, gas injection begins. We further assume that gas, though immiscible, is 

capable of displacing oil leading to oil production; specifically, we set the residual oil 

saturation to gas flood (Sorg) lower than Sorw. Setting Sorg equal to zero implies that gas is able 

to displace all the oil in the reservoir, not by miscibly displacing oil, but by immiscibly 

displacing oil to a low residual saturation.  

The two-phase relative-permeability curves are shown in Fig. 2. We use the linear-isoperms 

model (§4.2.4) as the three-phase relative-permeability model in this chapter.  

 
Fig. 2: Two-phase relative-permeability curves used in Chapter 5 with parameters in Table B-2. The 

three-phase relative permeabilities are obtained from the linear-isoperms model (§4.2.4). 
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Simulation parameters are summarized in Tables B-2 and B-3. There is initially no gas 

present in the reservoir. Initial oil and water saturations are equal t0 0.3 and 0.7, respectively. 

The injected surfactant concentration is 0.24 wt.%. In other words, there is 2.4 kg of 

surfactant in every 1000 kg of the surfactant solution. The gas phase is slightly compressible 

in the simulations (i.e., cg = 1.68E-8 Pa-1).  

Our foam model incorporates the effects of water saturation, oil saturations, and surfactant 

concentration on foam strength according to Fig. 3. In the nonlinear foam model shown in 

Fig. 3, foam is weakened at low water saturations according to Eq. C-2. Note that foam 

strength is equal to zero at the connate water saturation according to this equation. In 

addition, foam is killed at high oil saturations as in Eq. C-4. The foam sensitivity to surfactant 

concentration is defined by Eq. C-8 (see Appendix C for more details). According to the 

nonlinear foam model, foam strength changes abruptly with small changes in water 

saturation, in agreement with laboratory data. It also changes abruptly with changes in 

surfactant concentration, for reasons discussed in Appendix C. In fact, laboratory data suggest 

an even sharper change in foam strength with water saturation (Cheng et al. 2000), but as 

shown below, the function we use here already causes problems for a gradient-based 

optimization routine.  

These types of functions can lead to drastic changes in gas mobility in individual gridblocks as 

fronts pass, in the ways discussed in §5.3.1. These abrupt changes in properties may challenge 

a gradient-based optimization routine as discussed in detail in §5.9.  

 
 (a)  (b)  (c) 

Fig. 3: Foam models: The linear foam model is illustrated by dashed lines and the nonlinear foam model 

by solid lines. (a) Foam sensitivity to water saturation; nonlinear model: foam is weakened at Sw ≤ Sw* 

(Eq. C-2: Sw* = fmdry = 0.316, epdry = 1000). (b) Foam sensitivity to oil saturation; nonlinear model: 

foam is killed at So ≥ So* (Eq. C-4: So* = fmoil = 0.4, epoil = 1.5, floil = 0). (c) Foam sensitivity to surfactant 

concentration; nonlinear model: Fs = 1 for Cs ≥ Cs* (Eq. C-8: Cs* = 1.2E-3, epsurf = 100). Note that all these 

nonlinear functions are differentiable. The nonlinear foam model is discussed in detail in Appendix C.  

Since this model will be also used with the adjoint routine, the effect of foam is incorporated 
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by plugging tables, and surfactant transport is modeled by the brine option, because the 

combination of other options introduced in §4.3 and §4.4 is not compatible with the adjoint 

routine in the 2010.1 version of the simulator. (See §4.3.4 and §4.4.4 for more detail about the 

compatibility issues with the adjoint routine). 

In general, optimization of an objective function is carried out by combining the adjoint 

routine and an optimization routine for finding the optimum. The adjoint routine is employed 

for efficiently calculating the analytical gradient of the objective function with respect to 

various static and dynamic parameters. Gradients always point to the direction of the 

maximum growth of the objective function and a gradient-based optimization routine utilizes 

the gradients to search for the optimum. Some of the static variables are the permeability and 

porosity. The dynamic control variables include: 

 well-control variables such as active constraints (e.g., bottomhole pressure, surface and 

reservoir volume rates of the phases, and mass rates of the components), 

 downhole valve settings, 

 the injection composition, 

 the switching time. 

We aim at investigating the capability of a gradient-based optimization routine applied to 

foam EOR processes. Our objective is finding the switching time (ts,opt) that maximizes the 

cumulative oil production. We choose a simple case with only one control variable (i.e., the 

switching time between the surfactant and gas injection cycles) for this investigation. Having 

only one control variable, the global trend of the objective function  (i.e., the cumulative oil 

production) can be easily constructed by a reasonable number of perturbation runs. Once the 

global trend of  is available, ts,opt can be easily identified. This way, we have a solid reference 

case against which to evaluate the performance of the optimization routine. 

5.2.1. Validating the 3D Simulations 

We validated the performance of the simulator for 1D simulations against the MOC solution in 

Chapter 4 for several cases. Since there exists no MOC solution for the 3D case (including 

gravity) studied in this chapter, we require to take additional measures to ensure the 

correctness of the 3D-simulation results. In addition to the procedure described in §4.6, we 

also simplified the physics of the problem as follows. 

We observed in the 1D numerical simulations in Chapter 4 that having sharp changes in 

properties over the foam/no-foam boundary challenges the simulator’s performance. Since it 

is not possible to validate the 3D-simulation results against an analytical solution, at least one 
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can use a weaker foam with a much lower value of fmmob than the one used in Chapters 3 

and 4* (i.e., 55,000). Setting a smaller value of fmmob smoothens the sharp changes in 

properties to a large extent. In addition, it minimizes the effect of abrupt changes in the gas 

mobility, to ensure finding the correct solution in the forward run with a reasonable time-step 

and gridblock size for a 3D simulation. This is of special importance for 3D simulations in 

which one cannot afford a large number of gridblocks and extremely small ∆t. Because of this 

reason, we use fmmob = 1,000 in this chapter for both 1D and 3D simulations. 

Furthermore, if a foam represented by a high value of fmmob (e.g., 55,000) were to form near 

the injection well, it would cause a significant drop in the injection rate in an injection well 

operating at a constant prescribed bottomhole pressure. In the case of injecting at a fixed rate, 

the presence of a very-low-mobility foam near the injection well leads to extremely high 

bottomhole pressure values that may lead to fracturing the formation around the wellbore.  

Moreover, it is important to note that we are not claiming that the solutions obtained from 3D 

simulations with 10×10×10 gridblocks in this chapter are an accurate description of a real 

foam process, only that they provide a case study for testing a gradient-based optimization 

routine. We neither claim that it falls under the successful category, according to the 

definition in Chapter 3.  

5.3. Switching Time 

The switching time (ts) is the time at which surfactant solution injection is terminated and gas 

injection begins. In other words, ts is the duration of the surfactant injection. Prior to ts, there 

is no foam in the reservoir due to the absence of gas. However, once gas injection begins, foam 

formation and coalescence are initiated in the reservoir. In the simulations, this sudden 

change in the injection composition from 100% surfactant solution to 100% gas at the 

switching time produces a period of wild fluctuations in the gas-injection rate (Qg) or the 

bottomhole pressure (Pwf) of the injection well (based on the active well constraint) right after 

the switch. These fluctuations do not vanish if we take (much) smaller time steps, so are due 

to the spatial discretization scheme used in the simulator. The nonlinear foam model in Fig. 3 

is applied all through §5.3. Nevertheless, there is no fluctuation in the gas-injection rate when 

applying the linear foam model. 

                                                                    
* We note that the gas mobility-reduction factor is inversely related to fmmob. However, gas mobility is 
reduced by a factor of 1/(1+fmmob) only if other factors such as water saturation, oil saturation, and 
surfactant concentration are not influencing the foam strength. If foam strength is sensitive to these 
parameters, gas mobility is reduced to a lesser extent; nevertheless, the reduction in gas mobility in a SAG 
process can still be significant (Shan and Rossen 2004). 
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5.3.1. Effects of Switch on Injection Well Performance 

In this section, we first discuss the behavior of the Qg profile in a foam-free case (i.e., without 

switch: ts = 0). This means that only gas is injected throughout the simulation. Then, we 

elaborate on a case in the presence of foam with the switching time (i.e., with surfactant 

injection prior to gas injection). Both the injection and production wells operate at a constant 

prescribed bottomhole pressures ( inj
wf,maxP and prod

wf,minP ), unless otherwise is stated. 

5.3.1.1. Without Switch (Foam-Free Case) 

Fig. 4a illustrates the Qg profile in a 3D reservoir for the foam-free case and Fig. 4b magnifies 

the Qg trend at early times. The general shape of the curve shrinks and expands both vertically 

and horizontally by varying inj
wf,maxP and prod

wf,minP while keeping the initial reservoir pressure 

constant. In these variations, the location of points A, B, C, and D in Fig. 4b (i.e., maximum, 

minimum, maximum, and minimum in Qg) may change but they do not vanish from the 

profile. The existence of the two declining segments of the profile (i.e., AB and CD) depends 

on the relative-permeability model (see Fig. 2 and §4.2.4), initial phase saturations, and on 

the injected fluid (water/gas). The behavior seen in Fig. 4 can be explained by the variations in 

the total mobility (i.e., λtot = λw + λo + λg) in the gridblocks containing the injection and 

production wells, and the competition between λw and λg in those gridblocks* (see the footnote 

for the discussion about the treatment of phase mobilities in the well model). We base our 

discussion on the fixed pressure drop between the injection and production wells, i.e., 
inj prod

wf,max wf,minP P and we emphasize that the injection rate is sensitive to both wells, in the ways 

that will be discussed below. We elaborate on the behavior of each segment by first stating the 

observed trend and then explaining its cause. 

 AB segment:  

o Observations: There is a very sharp decline in Qg from A to B. In this time interval (about 

4 hours), λg < λw in the injection-well gridblocks. Moreover, λtot in the injection-well 

gridblocks (   inj
  tot ) is dropping, while λtot in the production-well gridblocks (   prod

  tot ) is almost 

constant (0.005% change).  
                                                                    
* In the well model used in the simulator, the well inflow (outflow) model is based on the Peaceman 
(1983) model, and the injection (production) rate depends on the mobility of the flowing phase: 

 For gridblocks containing the injection well, the phase mobility depends on both wellbore and 
gridblock conditions: It is a product of the phase saturations of the fluid present in the wellbore and the 
total mobility of the fluids in the gridblock (this term incorporates the resistance applied by the fluids 
displaced from the gridblocks containing the injection well). 

 For gridblocks containing the production well, viscosity and relative permeability are evaluated at 
gridblock conditions (Dynamo/MoReS Online User Documentation 2010). 
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 (a) (b) 

Fig. 4: (a) Gas-injection-rate profile versus time in the absence of the switching time (ts = 0). Simulation 

lasts for 540 days. The 3D reservoir consists of 1000 (10×10×10) gridblocks. (b) Magnification of Fig. 4a 

at early times. The injection well operates at a constant prescribed bottomhole pressure ( inj
wf,maxP ). 

o Cause: There is a fixed pressure drop between the wells; hence, reduction in   inj
  tot results in 

a declining Qg. The cause of decline in   inj
  tot can be explained by looking at krw and krg 

curves in Fig. 2. Initially, Sw = 0.7 and Sg = 0 in the reservoir. With the start of gas 

injection in this time interval, Sw begins to drop from 0.7 and Sg starts to rise from zero, 

while So remains relatively unchanged at 0.3 (for absolute values of ∆Sw and ∆Sg we have 

∆Sw ≈ ∆Sg ≈ 0.125). However, Fig. 2 reveals that the change in krw is much larger than the 

change in krg in the range of saturation changes in this time interval (i.e., Sw = [0.7: 0.575] 

and Sg = [0: 0.125]), even though μg is 50 times less than μw and one would expect to have 

λg larger than λw. However, since Sg is not high enough in this time interval, λw stays larger 

than λg in the AB segment and krw is at least 50 times larger than krg (krw/krg ≥ 50). Water 

and gas mobilities become equal at point B in the injection-well gridblocks; i.e., λw = λg at 

B (krw = 50 krg). Moreover, the rise in krg cannot compensate the drop in krw and 

consequently   inj
  tot declines in this segment as Sg rises in the injection-well gridblocks. In 

this segment,   inj
  tot is dominated by λw. 

 BC segment:  

o Observations: Qg rises from B to C. λg > λw in the injection-well gridblocks and   inj
  tot is 

rising, while   prod
  tot remains relatively unchanged (0.04% change). 

o Cause: As mentioned in the AB segment, λw becomes equal to λg at B. From point B 

onwards, Sg is sufficiently high that krw/krg < 50. Therefore, λg is always larger than λw in 

the injection-well gridblocks after point B. Consequently, the growth in λg caused by 

increase in Sg is significantly larger than the decline in λw caused by declining Sw. 

Therefore,   inj
  tot and consequently Qg rise from point B forwards. 
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 CD segment:  

o Observations: Qg declines from C to D and λg < λw in the production-well gridblocks.   prod
  tot

starts to decline, while   inj
  tot is still rising.  

o Cause: Until point C, the trend in Qg was under the influence of the injection well, because 
  prod
  tot was relatively constant. However, after point C,   prod

  tot starts to decline considerably 

and from this moment on, the trend in Qg is under the influence of the production well, 

because there has been no change in the increasing trend of   inj
  tot . This segment includes 

two sub-segments. One with a moderate slope and the other one with a steep slope. In the 

segment with the moderate slope, decline in   prod
  tot is not significant (0.2%), therefore, the 

decline in Qg is moderate as well. However, once gas reaches the production well,   prod
  tot

declines significantly (35%). This behavior is explained by the same reason discussed in 

the AB segment: Although Sg increases in the production-well gridblocks once gas breaks 

through to the production well; however, the corresponding rise in λg cannot compensate 

for the steep decline in λw, because Sg is not yet sufficiently high to have krw/krg < 50  

(i.e., λg is lower than λw in this segment). Therefore, the ability of the production well to 

produce fluids is reduced and since the overall pressure drop is fixed, the injection well 

must regulate (reduce) Qg to accommodate this change. This decline continues until Sg 

becomes sufficiently high (i.e., krw/krg < 50) in the highest gridblock of the production well 

such that λg overcomes λw. The water and gas mobilities become equal at D. The gas cut is 

around 1% at this point. Moreover,   prod
  tot is controlled by λw in this segment. 

o D onwards: In this segment, λg is larger than λw in the production-well gridblocks and gas 

has found a continuous path between the wells. Since it has gained a very high mobility in 

the production well, gas is easily produced from this end. Again, having a fixed overall 

pressure drop enables the injection well to inject more gas into the reservoir, hence, Qg 

rises continuously afterwards and   prod
  tot is dominated by λg in this segment. 

In short, one might expect an increasing trend of Qg in the absence of foam. However, we have 

two separate declining segments in the Qg profile. In the AB segment, λw is larger than λg in 

the injection-well gridblocks, and in the CD segment, the same behavior is observed in the 

production-well gridblocks. This behavior is caused by the fact that there is not yet enough gas 

in the corresponding well gridblocks to dominate λw. Sg continues to rise in those gridblocks 

until it reaches a point at which the two mobilities become equal in each of the wells (B, D). 

Point B corresponds to this competition in the injection-well gridblocks and point D to the 

same phenomenon in the production-well gridblocks. Once λg exceeds λw in the corresponding 

well gridblocks, we observe the increasing trend of Qg as expected. Therefore, the two minima 

in Qg at B and D originate from the competition between λw and λg in the wells.  
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5.3.1.2. With Switch (Foam Case)  

Operating at a constant prescribed bottomhole pressure in the injection well ( inj
wf,maxP ) implies 

injecting with the maximum possible flow rate at the prescribed inj
wf,maxP . If foam (low-mobility 

fluid) forms in the gridblocks around the wellbore*, the gas flow rate must be regulated 

(lowered) to conform with this constraint. In contrast, when foam is weakened substantially in 

those gridblocks, the flow rate is increased. Therefore, fluctuations in Qg are caused by drastic 

changes in gas mobility as a result of foam formation and coalescence in the gridblocks 

adjacent to the well. Fig. 5 illustrates the Qg profile for a 3D reservoir in this case and the 

fluctuations caused by the presence of foam (ts = 66 days). One observes that the general 

shape of the profile is similar to the foam-free case in Fig. 4 discussed in §5.3.1.1, but the 

fluctuations are new. The tip of the first spike (see the inset in Fig. 5) corresponds to the initial 

gas-injection rate at inj
wf,maxP . At this moment, favorable conditions for foam generation are 

present in the reservoir [i.e., Sw (= 0.7) > Sw*, So (= 0.3) < So*, and Cs > Cs*]. Thus, as soon as 

the smallest amount of gas enters the reservoir, foam is created around the wellbore, and Qg 

drops immediately as a result. Gas injection causes water saturation to drop around the 

wellbore and once the first gridblock around the wellbore dries out sufficiently (i.e., Sw ≤ Sw*, 

according to the nonlinear foam model in Fig. 3a), foam strength drops drastically in this 

gridblock and provides an escape path for the gas to the adjacent gridblocks, causing a jump in 

the injection rate. This produces the second spike in the gas-injection profile in Fig. 5. This 

phenomenon repeatedly occurs in the rest of the gridblocks around the wellbore causing 

further spikes, but with smaller amplitude. Once Sw drops below Sw* in all those gridblocks, no 

further spikes are observed. It is easier to observe and investigate the details of this 

phenomenon in 1D.  

The relationship between the spikes in the Qg and water-saturation drop in the gridblocks is 

more obvious in 1D simulations. In a 1D reservoir, there is merely one flow path between the 

injection and production wells, as opposed to 3D with numerous flow paths. Gas can flow into 

the next gridblock only if Sw drops below Sw* in that gridblock. Gas breakthrough occurs after 

0.42 PV of gas injection, shortly before Sw drops below Sw* in the last gridblock. Consequently, 

we observe as many spikes as the number of gridblocks in the gas-injection rate profile in 1D 

(Fig. 6). The first 5 spikes of the profile with 100 gridblocks in Fig. 6 are magnified in Fig. 7. 

We have also plotted the saturation profiles in the first 5 gridblocks. The moment at which the 

nth spike in Qg occurs corresponds to the moment at which water saturation in the nth 

gridblock drops below Sw* = 0.316.  

                                                                    
* The gridblocks in the vertical column containing the well and a few gridblocks adjacent to that column. 
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Fig. 5: Gas-injection-rate profile versus time for a 3D displacement. Simulation ends after 540 days and 

ts = 66 days. The inset magnifies the fluctuations right after the switching time. The reservoir consists of 

1000 (10×10×10) gridblocks.  

 

Fig. 6: Period of fluctuating gas-injection rate in a 1D displacement with ts = 66 days. The reservoir is 

100x1x1 m. All the simulation parameters are similar to the 3D simulations above. The injection well is 

operating at a constant prescribed bottomhole pressure. The number of spikes is equal to the number of 

gridblocks in the 1D case. This figure also illustrates the effect of spatial discretization on the fluctuations. 

Finer grids lower the amplitude of the spikes and shrinks the fluctuation interval to a region very close to 

the switching time at ts = 66 days. 
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Figs. 6 and 7a clearly show that Qg is affected as Sw drops below Sw* in each successive 

gridblock in a 1D reservoir. Such a drop in Sw in a gridblock results in a sudden increase in λg 

in that gridblock, producing a sudden change in the pressure of every gridblock including the 

well gridblock. Here, we first explain that how the fluctuations in gridblock pressure are 

introduced in a 1D reservoir, then we discuss how this mechanism affects the well-gridblock 

pressure (P1), and we finally relate the fluctuations in P1 to the fluctuations in Qg. 

We consider the well gridblock (i.e., n = 1) in a 1D reservoir. Initially, conditions are favorable 

for foam formation in this gridblock [i.e., Sw (= 0.7) > Sw*, So (= 0.3) < So*, and Cs > Cs*]. Once 

gas injection is initiated, Sw drops and foam formation lowers the total mobility in this 

gridblock and Qg and P1 decline accordingly (Fig. 7b). This decline continues until Sw drops 

below Sw* in this gridblock, causing a significant reduction in foam strength and a substantial 

increase in gas mobility of gridblock 1. The simulator uses the upwind* finite-difference 

scheme for inter-grid spatial discretization. As a result, the pressure drop between gridblock n 

and n+1 must diminish to avoid excessive outflow from gridblock n. Consequently, the 

pressure of all the gridblocks downstream of gridblock 1 (i.e., n > 1) suddenly increases 

significantly. This behavior repeats itself in the remaining gridblocks until Sw drops below Sw* 

in the last gridblock and gas breaks through to the production well. The reason that Pn (n > 1) 

does not rise as a result of Sw dropping below Sw* in gridblock n is that Pn is dependent on 

phase mobilities in gridblock n-1 that has not changed significantly.  

We notice small pressure drop in gridblocks at the upstream side of gridblock n (the gridblock 

that Sw has dropped below Sw* in it). These are attributed to the fact that the scheme is mass 

conservative. The increase in total flux flowing out of gridblock n is compensated by an 

increase in total flux flowing into gridblock n. This increase subsequently results in an 

increase in Qg (the most upstream point) and a minor decline in P1. (This is because the 

bottomhole pressure in the injection well is constant; therefore, P1 is the only parameter in the 

injection-rate equation that can be adjusted to accommodate this increase in Qg.) These minor 

declines in P1 (not visible at the scale of the figure, but similar to those in the pressure profile 

of e.g., gridblock 2) happen every time that Sw drops below Sw* in any gridblock.  

Qg is proportional to the pressure difference between the wellbore and P1. Since inj
wf,maxP is 

constant, this pressure difference reflects the fluctuations in P1. Consequently, Qg exhibits 

fluctuations as in Fig. 7 as a result of water-saturation drop below Sw* in every gridblock. 

                                                                    
* In the upwind scheme, the flux of phase α in gridblock n+1 is dependent on the mobility of phase α in 
gridblock n, located upstream of gridblock n+1. 
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(a) 

 

(b) 

Fig. 7: Magnification of the first 5 spikes in Fig. 6 (1D displacement with 100 gridblocks). The moment at 

which the nth spike in Qg occurs is the moment at which Sw in the nth gridblock drops below Sw* = 0.316 

along a shock from the initial condition Sw (I) = 0.7.  
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It is important to note that although the well gridblock is located upstream of all the other 

gridblocks and hence the fluctuations in its pressure are small and not noticed in Fig. 7b, once 

those small pressure differences are multiplied by the large total mobility in the well 

gridblock, the product produces noticeable fluctuations in the gas-injection rate. 

Fig. 6 also illustrates that fluctuations get smaller as the foam front advances. This is mainly 

attributed to gas compressibility and the fact that the pressure difference between the 

wellbore and well gridblock gets smaller as the time proceeds (P1 is influenced less by the 

gridblocks faraway).  

We observe in Fig. 7a that there is a shock in Sw (and also in So and Sg, not shown in Fig. 7a) 

from the initial condition to a state at which Sw ≤ Sw* and foam is weakened substantially*. 

Fig. 8a illustrates how the water-saturation profile looks like for different numbers of 

gridblocks. For all grid resolutions, the shock front is two gridblocks wide, because of 

numerical dispersion, and has lower mobility than the foam bank behind it (Fig. 8b); in 

reality, its width should approach zero. In this case, foam has not broken completely behind 

the shock and there is some control on gas mobility behind the shock†. As the foam front 

advances, a more significant contribution of the mobility reduction comes from the foam bank 

and the artifact at the shock front becomes less important.  

  

 (a) (b) 

Fig. 8: Results from 1D simulations with ts = 66 days at 74 days. The total amount of surfactant solution 

injected is 1.9 PV and total amount of gas injected is 0.27 PV for the simulation with 1000 gridblocks. The 

injection well is located on the left and the production well is positioned on the right side. (a) Water-

saturation profile for different numbers of gridblocks (Nx). (b) Mobilities at 74 days for Nx = 1000. The 

inset shows λtot of the artificial low-mobility bank at the shock front (2 gridblocks wide) that is an artifact 

of numerical dispersion. In these simulations, there is enough surfactant present in the reservoir, such 

that the foam strength is not affected by surfactant concentration (i.e., Cs > Cs* everywhere). 

                                                                    
* Here, enough surfactant is injected and foam strength is not influenced by shortage of surfactant. 

† This SAG process builds a low mobility foam bank in contradiction to the cases examined in Chapter 3. 
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The profile of Qg in Fig. 9 reflects the mobilities shown in Fig. 8b. Gas injection rises abruptly 

as the shock front is produced from the reservoir at 79.573 days. From the magnitude of the 

sudden rise in injection rate at about 79.573 days, one might estimate that 16% of the total 

resistance to flow across the medium was from the shock front, i.e., an artifact of numerical 

dispersion. Once the shock front disappears, injection rate rises gently as the foam bank 

slowly dries out and mobility rises throughout the medium. 

  

Fig. 9: Gas injection-/production-rate profiles versus time in a 1D displacement with 100 gridblocks with 

ts = 66 days. This figure is similar to Fig. 6 except that it extends until 86 days and it also includes the gas 

production- rate profile. The arrow points to the moment at which the shock leaves the reservoir. 

 

Fig. 10: Effect of spatial discretization on the fluctuations in the gas-injection profile in a 3D 

displacement shown in Fig. 5. Finer grids lower the amplitude of the spikes and shrink the fluctuation 

interval to a region very close to the switching time at ts = 66 days. In the refined case, each gridblock is 9 

times smaller than the original gridblock. 
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In 3D, the number of spikes is related to the number of gridblocks around the wellbore; the 

number of spikes grows with grid refinement (Fig. 10). The duration of the time interval in 

which the fluctuations occur is mainly dependent on the gridblock size if ∆t is small enough. 

The smaller is the gridblock size, the shorter is the time interval of fluctuations. This is 

because the water content of a smaller gridblock is smaller and the water-saturation drop 

occurs faster accordingly. In a real reservoir, there is no spatial discretization: foam 

coalescence occurs within a narrow traveling wave at the shock front (Ashoori et. al. 2011b).  

If Qg is prescribed, fluctuations occur in the inj
wfP profile to accommodate the prescribed Qg. 

5.3.2. Effect of Switching Time on Oil Recovery 

The cumulative oil production can be significantly affected by the total amount of surfactant 

solution (Qsurf,cum) injected into the reservoir, which is controlled by varying the switching 

time ts (Fig. 11). At the switching time, the surfactant injection cycle is terminated and the gas 

injection cycle begins. Fig. 11 illustrates the cumulative oil produced (Qo,cum) and cumulative 

gas injected (Qg,cum,inj) versus switching time for different scenarios. At each switching time, 

an independent simulation is performed and Qo,cum and Qg,cum,inj values are recorded at the 

end of the simulation. Thus, each point on the curves represents a single, independent 

simulation at the corresponding switching time (ts). One needs to be careful when interpreting 

the results in Fig. 11: the curves are not plotted versus time but are plotted with respect to ts.  

We investigate the effect of ts (or Qsurf,cum) on the cumulative oil production in three scenarios. 

The difference between the scenarios is after ts; i.e., in the gas injection cycle. These scenarios 

differ in the active injection-well constraint and the duration of the gas-injection cycle (tgas). 

In Scenario 1, we prescribe Qg. In addition, we inject gas for a fixed period of time after ts; i.e., 

tgas is identical for all the switching times and tend varies (tend = tgas + ts).  

In Scenario 2, the injection well operates at a constant prescribed bottomhole pressure. 

Similar to Scenario 1; tgas is identical for all the switching times and tend varies (tend = tgas + ts). 

Scenario 3 is similar to Scenario 2, except that tend is fixed and tgas varies; i.e., tgas = tend - ts.  

The injection well is operating at a constant prescribed Pwf prior to ts. Since Sg = 0 prior to ts, 

there is no foam to obstruct the flow into the reservoir, hence, Qsurf,cum varies linearly with ts*.  

                                                                    
* Qsurf,cum (kg) = 428,985 ts (days). The total amount of the injected surfactant is equal to Qsurf,cum times the 
surfactant concentration in the injected surfactant solution (i.e., 2.4E-3; see §4.4). 
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5.3.2.1. Scenario 1—Prescribed Gas-injection Rate, Fixed Gas-Injection Interval 

As mentioned earlier, the gas-injection rate is prescribed in this scenario and there is no 

explicit bottomhole pressure constraint. We prescribe a fluctuation-free gas-injection-rate 

profile identical to the profile in the foam-free case (ts = 0) similar to the one shown in Fig. 4. 

Due to the presence of foam, we observe some mild oscillation in Pwf of the injection well. 

These oscillations are mild because the prescribed gas-injection-rate profile itself is obtained 

at a constant prescribed bottomhole pressure ( inj
wf,maxP ). We set tgas = 250 days; the gas-

injection-rate profile and the cumulative gas injected (Qg,cum,inj) are independent of the 

switching time in this scenario. In other words, the duration of surfactant injection has no 

effect on the prescribed gas-injection rate. Therefore, foam formation and coalescence do not 

alter the gas-injection rate in this scenario. As a result, the behavior of the cumulative oil 

production (Qo,cum) of Scenario 1 in Fig. 11a merely reflects the foam performance in 

recovering oil from the reservoir as a function of the cumulative surfactant injected into the 

reservoir since foam does not influence the gas-injection rate. We emphasize that each point 

in Fig. 11 represents a single, independent simulation and that curves are plotted with respect 

to the switching time. 

Looking at the Qo,cum curve of Scenario 1 in Fig. 11a, we distinguish 5 zones on the curve 

separated by 4 specific switching times. We refer to these switching times as moments T1, T2, 

T3, and T4. In this scenario T1 = 5 days, T2 = 44 days, T3 = 52 days, and T4 = 66 days. These 

moments are indicated by black markers on the curves corresponding to Scenario 1 in Fig. 11.  

In this scenario, the first moment (T1) represents the switching time below which no  

low-mobility foam bank forms during the displacement to improve sweep efficiency over gas 

flood. The second moment (T2) corresponds to the switching time at which the foam front is at 

verge of reaching the production well at the end of the simulation. Moment T3 represents the 

switching time above which foam front gradually starts to reach and sweep the gridblocks on 

the two far sides of the reservoir sharing the production well. The fourth moment (T4) is the 

switching time at which foam fills the entire reservoir at the end of the simulation. We 

emphasize again that the gas-injection rate in this scenario is not affected by foam (Fig. 11b). 

In zone 1 with ts < T1, the relatively flat trend of Qo,cum in Fig. 11a is due to the absence of a  

low-mobility foam bank in the reservoir. As a result, foam is unable to efficiently reduce the 

gas mobility to improve sweep efficiency over gas flood. We have illustrated the gradual 

formation of the low-mobility foam bank in Fig. 12 as a function of the switching time. In this 

figure, foam exists only inside the region confined by the black border. We call the part of the 

border separating the foam side from the no-foam side as the foam/no-foam boundary. 
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(a) 

 

(b) 

Fig. 11: (a) Cumulative oil produced (Qo,cum) and (b) cumulative gas injected (Qg,cum,inj) versus switching 

time for different scenarios. At each switching time, a simulation is performed and Qo,cum and Qg,cum,inj 

values are recorded at the end of the simulation. Thus, each point corresponds to a single, independent 

simulation at the corresponding switching time. Note that 1PV is equal to 6E4 m3. 
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In zone 1, for ts < T1 (e.g., ts = 3 days), there is no significant difference in gas mobility on the 

two sides of the foam/no-foam boundary. For ts = T1, two low-mobility gridblocks are visible 

in Fig. 12; nevertheless, a complete bank has not yet formed. For ts > T1 (e.g., ts = 8 days), 

there is a visible contrast in gas mobility on the two sides of the foam/no-foam boundary 

(shades of blue on one side, shades of pink on the other side) and a complete low-mobility 

foam bank is clearly visible in shades of blue on the foam side of the foam/no-foam boundary. 

The gas mobility in the low-mobility foam bank is, on average, 0.8 times less than that on the 

no-foam side of the boundary. Even though foam forms in the displacements with ts ≤ T1; 

however, foam is not successful in controlling the gas mobility and improving sweep efficiency 

in the absence of a low-mobility bank. As a result, injecting surfactant into the reservoir for  

ts ≤ T1 leads to no improvement in Qo,cum over gas flood. 

 

 ts = 3 days ts = T1 = 5 days ts = 8 days 

Fig. 12: Gas mobility at the top reservoir layer at the end of the simulation for different switching times 

in Scenario 1. The middle figure corresponds to T1. Black border confines the region in which Cs > Cs* and 

foam exists only inside this region. 

In zone 2 with T1 < ts < T2, a low-mobility foam bank is formed in the reservoir and foam is 

able to improve sweep efficiency over gas flood. For the simulation with ts = T2, the foam front 

is at the verge of reaching the production well at the end of the simulation period but has not 

yet reached it. If the switching time is shorter than T2, foam does not reach the production 

well at the end of the simulation. Otherwise, the surfactant concentration (Cs) exceeds Cs* (see 

Fig. 3c) in the lowest gridblock with the production well before the end of the simulation.  

In zone 3 with T2 < ts < T3, increase in oil recovery is insignificant with increasing the 

switching time and Qo,cum is nearly independent of ts. This is caused by the fact that in this 

zone, foam mostly forms in the rest of the gridblocks containing the production well in which 

there is not much oil left to sweep; therefore, Qo,cum is nearly independent of ts in this interval. 

In zone 4 with T3 < ts < T4, with switching times longer than T3, Qo,cum increases with  
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increasing switching time until reaching T4. If the switching time is longer than T3, the foam 

front reaches and sweeps the gridblocks on the two far sides of the reservoir sharing the 

production well. These gridblocks are not swept if the switching time is shorter than T3 and oil 

saturation at these gridblocks is high (above 0.3). In this zone, foam gradually fills out those 

gridblocks with increasing ts. At the switching time corresponding to T4, foam covers the 

entire reservoir at the end of the simulation (i.e., Cs ≥ Cs* in all the gridblocks; see Fig. 3c).  

In zone 5 with ts > T4, the gas mobility-reduction factor component corresponding to Cs (Fs) 

has reached its maximum of one at Cs* (see Fig. 3c) in all the gridblocks, and increasing Cs 

beyond Cs* by injecting more surfactant does not increase Fs above one. Therefore, there is no 

benefit in increasing the switching time beyond T4 since it does not alter the foam strength 

anywhere. Thus, Qo,cum becomes independent of ts after T4 and injecting more surfactant by 

increasing ts is no longer beneficial and results in significant loss of surfactant. 

In Scenario 1, if ts > T1, a low-mobility foam bank forms and injecting surfactant into the 

reservoir leads to improved Qo,cum over gas flood (i.e., Qo,cum at ts = 0 day). Therefore, one must 

avoid ts < T1. On the other hand, if foam covers the entire reservoir during the simulation (i.e., 

for ts > T4), no additional oil recovery is obtained by increasing ts. Thus, it is only beneficial to 

choose T1 < ts < T4. For T1 < ts < T4, increasing the switching time results in higher oil recovery; 

economics would identify the switching time resulting in the most profitable process.  

5.3.2.2. Scenario 2—Fixed Bottomhole Pressure, Fixed Gas-Injection Interval 

The difference between Scenarios 1 and 2 is the active injection-well constraint. In Scenario 1, 

the gas-injection rate was prescribed, but there was no constraint on inj
wf,maxP after the switching 

time. Whereas in this scenario, inj
wf,maxP is prescribed and fixed and gas-injection rate is 

regulated to conform with the active inj
wf,maxP constraint. In both scenarios, the gas-injection 

interval is fixed and equal to 250 days.  

The difference in the active constraint of the injection well between Scenarios 1 and 2 affects 

the cumulative gas injected into the reservoir in this scenario. Since the production well is also 

operating at a constant prescribed bottomhole pressure ( prod
wf,minP ), the overall pressure drop 

between the wells is fixed in this scenario (∆P = inj prod
wf,max wf,minP -P ). Therefore, according to 

Darcy’s law, the gas-injection rate must be regulated in accordance with the changes in the 

overall gas mobility due to the presence of foam. Thus, the gas-injection rate must decline as 

long as gas mobility declines in the reservoir; especially in the gridblocks containing the two 

wells (see §5.3.1.1), impairing the gas-injection rate. This is directly reflected in the value of 

the cumulative gas injected (Qg,cum,inj) at the end of the simulation. The overall trend of 

Qg,cum,inj versus the switching time is declining because of the active constraint on inj
wf,maxP : Gas 
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mobility is lowered to a larger extent at longer switching times since more surfactant is 

injected into the reservoir and foam can penetrate more deeply into the reservoir. As a result, 

the longer the switching time is, the smaller is Qg,cum,inj because less gas is injected into the 

reservoir. This decline may or may not influence oil recovery in the ways discussed below. 

We remind that the trend of Qo,cum in Scenario 1 was merely reflecting the effect of foam 

performance in recovering oil, since Qg was not influenced by ts (or foam) in Scenario 1. 

Although tgas is identical in both scenarios, the total gas-injection volumes are not: Qg,cum,inj in 

this scenario is influenced by the presence of foam and it varies with the switching time. 

Therefore, the difference between the overall trend of Qo,cum in Scenarios 1 and 2 in Fig. 11a is 

attributed to the difference in the active constraints of the injection well in these scenarios 

leading to the declining trend of Qg,cum,inj in Scenario 2 (Fig. 11b).  

The trend of the Qo,cum curves in Scenario 2 reveals an interesting phenomenon caused by the 

competition between foam performance and declining Qg,cum,inj. Similar to Scenario 1, we 

distinguish 5 zones in the Qo,cum curve, separated by moments T1, T2, T3, and T4. These 

moments are indicated by gray markers on the curves corresponding to Scenario 2 in Fig. 11. 

The origin of these moments is similar to the moments described in Scenario 1; however, the 

changes in the trend of Qo,cum are more significant in this scenario compared to Scenario 1. In 

this scenario, T1 = 10 days, T2 = 44 days, T3 = 54 days, and T4 = 70 days.  

We repeat the definitions of T1, T2, T3, and T4 from Scenario 1 in §5.3.2.1 here. The first 

moment (T1) represents the switching time below which no low-mobility foam bank forms in 

the reservoir to improve sweep efficiency over gas flood. The second moment (T2) corresponds 

to the switching time at which the foam front is at the verge of reaching the production well at 

the end of the simulation. Moment T3 represents the switching time above which foam front 

gradually starts to reach and sweep the gridblocks on the two far sides of the reservoir sharing 

the production well. The fourth moment (T4) is the switching time at which foam fills the 

entire reservoir at the end of the simulation. 

In zone 1 with ts < T1, the moderate decline of Qo,cum reflects the fact that at these switching 

times, the low-mobility foam bank has not yet formed in the reservoir to improve sweep 

efficiency over gas flood. As a result, it is not reasonable to have switching times shorter than 

T1. However, there is enough foam near the injection well to impair the gas injectivity. As a 

result, Qo,cum declines as Qg,cum,inj declines until the low-mobility foam bank forms shortly after 

T1 to improve sweep efficiency despite the declining Qg,cum,inj.  

In zone 2 with T1 < ts < T2, Qo,cum increases with increasing the switching time with a trend 

similar to that observed in Scenario 1; despite the fact that the cumulative gas injected is 
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declining in this scenario as ts increases. This shows that foam performance overcomes the 

declining Qg,cum,inj in this zone. Further increase in ts allows injecting more surfactant into the 

reservoir leading to a further advance of the foam front in the reservoir and improved sweep 

efficiency in the reservoir, despite the declining trend of Qg,cum,inj.  

In zone 3 with T2 < ts < T3, however, we observe the only substantial difference between the 

behavior of Qo,cum in Scenarios 1 and 2. We observe a rapid decline in Qo,cum for ts > T2. Foam 

breaks through to the production well for the switching time slightly longer than T2, as 

observed in Scenario 1. In addition, maximum Qo,cum is achieved at the simulation with ts = T2 

at which 0.3 PV of surfactant solution is injected into the reservoir prior to ts. For switching 

times longer than T2, a continuous foam path connects the wells, causing a significant drop in 

the overall gas mobility. As a result, Qo,cum drops significantly as well and gas productivity is 

impaired once the foam front reaches the production well. Thus, drop in gas productivity that 

consequently leads to the decline in Qo,cum is the dominant mechanism in zone 3.  

In zone 4 with T3 < ts < T4, foam performance dominates once again and the decline in 

Qg,cum,inj is moderate. Qo,cum starts to rise again in zone 4 with increasing the switching time 

because foam can sweep the gridblocks on the two far sides of the reservoir sharing the 

production well. As mentioned in Scenario 1, these regions are not swept by foam in 

simulations with switching times shorter than T3; hence, the oil saturation in these regions is 

high and increasing the switching time improves the sweep of these regions leading to an 

increase in Qo,cum. 

In zone 5 with ts > T4, foam performance is the dominant mechanism as in zone 4. In the 

simulations with ts > T4, foam covers the entire reservoir in the simulation period. In addition, 

foam strength remains unchanged and independent of surfactant concentration in zone 5 (see 

Scenario 1 for more detail). Thus, average gas mobility and overall pressure drop in Darcy’s 

law become constant, dictating a fixed cumulative gas-injection rate in zone 5 (Fig. 11b). As a 

result, Qo,cum remains unchanged in zone 5 and becomes independent of the amount of 

injected surfactant represented by the switching time; as also observed in Scenario 1 in this 

zone. Therefore, it is not beneficial to choose the switching times in this zone as it results in 

significant surfactant loss and no increase in Qo,cum. 

It is important to note that injecting surfactant into the reservoir does not necessarily lead to 

improved Qo,cum over a gas flood (i.e., Qo,cum at ts = 0 day). In this scenario, the switching time 

must be longer than 16 days in order to observe an improvement in oil recovery over gas flood 

and one must certainly avoid ts < 16 days. Besides, increasing the switching time in this 

scenario does not necessarily lead to higher Qo,cum: it leads to a lower oil recovery in zones 1 
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and 3, and it results in no improvement in zone 5. Improved oil recovery by increasing the 

switching time is only observed in zones 2 and 4. Qo,cum has its maximum at the border of 

zones 2 and 3 and it corresponds to the switching time at which the foam front is at the verge 

of reaching the production well at the end of the simulation. If the foam front reaches the 

production well during the simulation, oil recovery is damaged significantly and is lower than 

the maximum Qo,cum. Therefore, if one can destroy foam in the production well, more oil will 

be produced at the maximum Qo,cum (see the last paragraph in §5.3.2.4). 

5.3.2.3. Scenario 3—Fixed Bottomhole Pressure, Fixed End Time 

In this scenario, the injection well operates at a constant prescribed bottomhole pressure  

( inj
wf,maxP ) after ts similar to Scenario 2, and gas injectivity is reduced by increasing the 

switching time and accordingly increasing Qsurf,cum (Fig. 11b). The difference between 

Scenarios 2 and 3 is that the end time (tend) is fixed in this case. Therefore, the gas-injection 

interval (tgas) shrinks as the switching time increases; i.e., tgas = tend - ts. Consequently, the 

cumulative gas injected and cumulative oil produced are always lower than those observed in 

Scenario 2. Similar to Scenario 2, moments T1, T2, T3, and T4 exist in this scenario and they are 

indicated by black markers on the Scenario 3 curves in Fig. 11 (T1 = 12 days; T2 = 44 days;  

T3 = 54 days; T4 = 62 days). The behaviors observed in this scenario are explained by the same 

mechanisms described in Scenario 2, except for what happens in zone 5. For the simulations 

with switching times longer than T4, foam covers the entire reservoir in the simulation period. 

However, contrary to Scenario 2, where Qo,cum was independent of ts in zone 5, Qo,cum declines 

with increasing the switching time in this scenario. This is due to the fixed end-time 

constraint in this scenario; the period of gas injection is shortened as the switching time 

increases. Thus, less gas is injected into the reservoir by increasing the switching time, 

resulting in a declining trend in Qo,cum as well. 

Injecting surfactant into the reservoir results in an improvement in oil recovery over gas flood 

(i.e., Qo,cum at ts = 0 day), only if 24 days < ts < 50 days, and one must certainly avoid choosing 

switching times outside this interval. Otherwise, Qo,cum is less than that for gas flood. The 

maximum Qo,cum is located inside this interval at the border of zones 2 and 3. It corresponds to 

the switching time at which the foam front is at the verge of reaching the production well at 

the end of the simulation. As a result, if foam formation in the production well can be delayed, 

more oil will be produced at the maximum Qo,cum (see the last paragraph in §5.3.2.4).  

5.3.2.4. Concluding Remarks and Recommendations on Scenarios 1 to 3 

 All the scenarios share the same Qg,cum,inj and the same Qo,cum at ts = 0. This point 
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corresponds to the foam-free case with a constant prescribed bottomhole pressure ( inj
wf,maxP ) 

without any surfactant injection prior to the gas-injection cycle. The injection profile of the 

foam-free case is prescribed as the gas-injection profile in Scenario 1. In all the three 

scenarios, the production well operates at a constant prescribed bottomhole pressure. 

 The injection well is operating at a prescribed gas-injection rate (Scenario 1): 

 If the switching time is longer than T1, injecting surfactant into the reservoir leads to 

improved Qo,cum over gas flood (i.e., Qo,cum at ts = 0 day). Thus, one must avoid switching 

times shorter than T1. 

 Increasing the switching time beyond T1 improves Qo,cum, until foam sweeps the entire 

reservoir at T4.  

 If foam covers the entire reservoir during the simulation (i.e., for ts > T4), no additional 

oil recovery is obtained by increasing the switching time. Therefore, it is only beneficial 

to choose T1 < ts < T4.  

 For T1 < ts < T4, increasing the switching time results in higher oil recovery; economics 

would identify the switching time resulting in the most profitable process.  

 The injection well is operating at a constant prescribed bottomhole pressure (Scenarios 2, 3): 

 Injecting surfactant into the reservoir does not necessarily lead to improved Qo,cum over a 

gas flood. With a fixed gas-injection interval, no improvement is obtained for ts < 18 

days. With a fixed end time, the situation is worse: improvement is achieved only at 

intermediate switching times (i.e., 24 days < ts < 50 days). Therefore, one must avoid 

switching times that lead to Qo,cum lower than gas flood.  

 Injecting less gas (smaller Qg,cum,inj) as a result of increasing the switching time does not 

necessarily result in lower cumulative oil production.  

 If the foam front reaches the production well during the process, the whole process is 

inferior to the situation described above. Further increase in ts not only results in lower 

Qo,cum but also leads to wastes of surfactant.  

In all the scenarios, the switching time (ts,opt) at which the maximum cumulative oil is 

produced, is the switching time at which the foam front is at the verge of reaching the 

production well at the end of the simulation period but has not yet reached it. Therefore, if 

foam can be destroyed only in the proximity of the production well, more oil will be produced 

at the maximum Qo,cum. One possible way of destroying foam in that zone, is by reducing the 

surfactant concentration well below Cs*. This can be done by injecting sufficient amount of 
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water in the production well, such that water would not flow beyond that zone and only lowers 

Cs in the desired region. It is also possible to use foam breaking agents instead of water, but it 

certainly increases the costs. 

5.4. Optimal Control Theory 

Optimal control theory, which has its roots in the classic calculus of variation, is a 

mathematical optimization method for finding optimal control policies. “The objective of 

optimal control theory is to determine a control policy that will cause a process to satisfy the 

physical constraints and at the same time minimize (or maximize) some performance 

criterion” (Kirk 2004). Our objective is maximizing the cumulative oil production by foam 

EOR within the simulation period.  

5.4.1. A Literature Review 

Optimal control theory was developed for optimally controlling the trajectories of satellites 

and rockets during the 1950s and 1960s (Jansen 2011). Optimal control theory has been 

applied in various disciplines since then for optimization of dynamic systems.  

In petroleum engineering, it has three major applications: history matching, EOR 

optimization, and waterflood optimization. This theory was first applied to history matching 

problems in the 1970s by Chavent et al. (1973), Chen et al. (1974), and Dougherty and 

Khairkhah (1975) for single-phase flow. This application and its further developments are 

discussed in the book by Oliver et al. (2008). In the 1980s, Ramirez and his coworkers applied 

it for optimization of EOR processes: surfactant flooding, micellar/polymer flooding, carbon 

dioxide miscible flooding, and later to steamflooding in the 1990s. Application of optimal 

control theory to waterflood optimization was initiated by Asheim (1987, 1988). Jansen (2011) 

has recently reviewed the history and developments of the adjoint-based optimization of 

multi-phase flow in porous media. These methods were not applied in industry until the 

introduction of the concept of smart well technology into waterflooding (Brouwer 2004; 

Brouwer and Jansen 2004; Sarma et al. 2005).  

Ramirez and his coworkers are the pioneers in the application of optimal control theory to 

EOR processes. They first discussed the theory and computational strategies in Ramirez et al. 

(1984). Fathi and Ramirez (1984) then applied it for designing an optimal surfactant flooding 

injection policy for maximizing oil recovery while minimizing the chemical cost in 1D. They 

allowed for surfactant adsorption to the rock and partitioning of surfactant between the 

phases in their model in addition to the convective and dispersive mechanisms of mass 

transfer. They defined two types of hypothetical interfacial-tension behavior (i.e., between 
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water and oil) and they considered water viscosity as a function of surfactant concentration. 

They applied the steepest-descent method to search for the optimum. They found a unique 

optimum for the amount of surfactant needed to maximize the oil recovery while minimizing 

the surfactant cost for each type of the interfacial-tension function used independent of the 

initial guess of the injection policy. A non-unique solution implies having several local optima. 

Ramirez (1987) also employed optimal control theory to 1D and 2D (i.e., 2D areal section) 

optimization of the micellar/polymer EOR processes. They applied both the steepest-descent 

and modified conjugate-gradient method as an optimization routine. The less-efficient 

steepest-descent method always worked satisfactorily. However, the rapid convergence of the 

conjugate-gradient algorithm near the optimum was undermined by requiring a good initial 

guess (starting point for the control variable) to ensure solution stability. They reported that 

the optimal injection policy was a function of the initial guess, but the optimum performance 

was very similar in some instances.  

Ramirez (1987) and Mehos and Ramirez (1989) also applied optimal control theory to 2D  

(i.e., 2D areal section) optimization of carbon dioxide EOR processes. They considered a 

three-component (i.e., H2O, Oil, and CO2), two-phase, miscible system in a homogeneous 

reservoir. They investigated three different injection strategies (i.e., slug*, simultaneous, and 

WAG), neglecting gravity and capillary effects. Water and CO2 injection rates and producer’s 

bottomhole pressure as a function of time were chosen as the control variables. As they 

reported earlier for polymer/micellar floods, their optimal injection strategy was affected by 

the initial guess of the control variables. In the three cases investigated (slug, simultaneous, 

and WAG), they reported that the optimal total injected volume of CO2 was unique between all 

the three cases, but the optimum injection strategy was not. In all these optimal control 

policies, they found similar cumulative oil recoveries.  

Liu et al. (1993) and Liu and Ramirez (1994) applied this theory to 2D and 3D steamflood 

optimization, respectively.  

Various studies are focusing on waterflood optimization. It was first applied by Asheim (1987, 

1988) and then followed by Vironovsky (1991), Zakirov et al. (1996), Sudaryanto (1998), and 

Sudaryanto and Yortsos (2000, 2001). It was later used by Brouwer (2004), Brouwer and 

Jansen (2004), Sarma et al. (2005, 2008), Zandvliet et al. (2007), Kraaijevanger et al. (2007), 

and van Essen et al. (2010).  

                                                                    
* A single CO2 slug followed by water injection. 
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5.4.2. Complications 

Optimal control theory provides a tool to find optimal control strategies for maximizing oil 

production. However, applying the theory may involve certain complications as discussed 

below. A certain method may work well for simple examples; however, it might result in 

suboptimal solution in more complex systems (Brouwer 2004).  

Fathi and Ramirez (1984) had difficulty in solving the adjoint PDEs backward in time, in 

surfactant flooding optimization. The adjoint equation had non-smooth coefficients caused by 

the physical nature of the original PDE, making it difficult to find a stable numerical adjoint 

scheme. They associated this problem with the discontinuity in the adjoint equation 

coefficients caused by two shocks (the first shock was a Buckley-Leverett shock and the 

second shock was at the surfactant front). They modified the adjoint formulation to deal with 

this problem. They tried various numerical schemes to solve the continuous adjoint equation 

(i.e., the system equations, adjoint equations, and objective function are discretized as the last 

step); however, none of them resulted in a stable solution. They discovered that using smooth 

approximations of the non-smooth coefficients results in a stable scheme. Later, Fathi and 

Ramirez (1987) applied optimal control theory to micellar/polymer flooding with both 

continuous and discrete formulations (i.e., the equations are discretized from the beginning). 

They encountered serious problems in the application of optimal control theory arising from 

the complexity of the immiscible flow equations. They further proposed that numerical 

dispersion can be used to replace the physical dispersion, if physical dispersion is represented 

by the numerical dispersion. This can both simplify the problem and remove some of the 

computational problems they encountered with surfactant flooding optimization.  

Application of this theory to 2D steamflood optimization by Liu et al. (1993) revealed that 

finding a stable adjoint solution could be a significant mathematical problem. This problem 

needs special attention for complex EOR processes. Liu and Ramirez (1994) extended the 

analysis of steamflood optimization described above to 3D and they found that a too large 

time-step size (∆t) can cause non-smooth optimal control strategies. They claimed that 

refinement of ∆t should smooth the control strategies.  

Sudaryanto (1998) applied a finite-difference formulation for simulating the forward and 

adjoint equations in miscible EOR and faced problems in finding the optimum switching time 

(terminating water injection at one injector and starting it in another injector) for a 

displacement with variable mobility. The gradient of the objective function was equal to zero 

at a switching time other than the one that was maximizing the objective function. However, 
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the gradient of the objective function must equate to zero at the internal* optimum (maximum 

here). He stated that this problem is caused by round-off errors in solving large system of 

state and adjoint equations. The numerical errors build up over hundreds of time steps and 

they may become significant, affecting the solutions. They were able to solve this problem by 

applying smaller ∆t to avoid instability problems in the adjoint equation.  

Regarding the time-step size, the adjoint may not necessarily find correct gradients with the 

same time-step sizes with which the forward simulation can find the correct solution. It is 

sometimes necessary to reduce ∆t in the forward simulation when it is ultimately used for 

optimization with the adjoint routine. Liu and Ramirez (1994) indicated that although ∆t is 

controlled in the forward simulation to limit the changes in states to the maximum allowed 

changes, the changes in the adjoint states may not necessarily match the changes in the states. 

They suggested that a different ∆t control might be required for the adjoint run. They used a 

smaller, constant ∆t for the adjoint equation.  

We did not encounter the complications stated above; however, we faced other issues. The 

main issue was the magnitude of the relative tolerance for the adjoint linear solver. The 

default value in the simulator for this term (1E-7) was too large for our problem. We required 

to use much smaller values (i.e., 1E-12 in the simpler cases and 2.25E-16 for the most complex 

case) to obtain accurate adjoint gradients. The default value of the relative tolerance in our 

problem led to wrong adjoint gradients in some instances (see Fig. 20). We have discussed 

this in the last paragraph of §5.7.3.  

In addition, we encountered non-smooth adjoint gradients with various fluctuations in this 

chapter. We attributed them to the nature of the nonlinear foam model (Fig. 3) applied. This 

model produces abrupt changes in gas mobility as a result of changes in water saturation, oil 

saturation, and surfactant concentration. We did not observe these symptoms with the linear 

foam model (Fig. 3) that did not introduce abrupt changes in gas mobility. This behavior of 

the nonlinear foam model resulted in major differences between the local and global trends of 

the objective function and made it impossible for the gradient-based optimization routine 

(steepest-ascent) to find the optimum. This issue is discussed in detail in §5.9. 

Gradient-based methods only provide local information about the objective function in the 

neighborhood of the current value of the control vector (u). Therefore, if the objective 

function has multiple local optima (distinguished by having the optimum dependent on the 

                                                                    
* By internal we mean that if the switching time is limited to a certain interval, then a necessary condition 
for optimality of a point inside that interval is that the gradient at that point is zero. 
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initial guess of u), it is highly probable to find a local optimum instead of a global optimum. In 

order to avoid this, it is advised to try a wide range of different choices of u as the starting 

guess (Dynamo/MoReS Online User Documentation 2010). However in either case, this 

method does not ensure finding the global optimum. 

5.5. Objective Function 

The objective function here is defined as the cumulative oil production at the end of the 

simulation (T): 

0
( )d ,

T

oQ t t    (1) 

where Qo is the surface volume rate of the oil phase. It should be noted that when performing 

life-cycle optimization, the achieved optimal control strategy may strongly differ based on the 

choice of . For instance, the optimal control strategy obtained when optimizing the 

cumulative oil production may be very different from the strategy obtained when optimizing 

the net present value.  

Our aim is finding the optimum duration of the surfactant slugs in a SAG foam process for 

which is maximized. This duration is represented by the optimum switching time (ts,opt). 

5.6. System Equation 

Any dynamic system is controlled by the inputs to the system. Any variation in the inputs 

leads to variation in the states of the system; hence, the states are functions of the inputs. The 

dynamic system of our interest is a producing reservoir and its wells, described by a set of 

coupled algebraic and differential equations. The discrete dynamic system equations in Eq. 2 

are obtained after discretizing in space and time. The equations which are internally solved by 

the simulator during time-stepping are a combination of reservoir equations and well 

equations. The reservoir equations are formulated per gridblock and consist of a flow equation 

(or mass-balance equation) for each component, and a volume balance equation per 

gridblock. The well equations consist of constraint equations, rate (or mass) balance equations 

and pressure-drop equations (Dynamo/MoReS Online User Documentation 2010). All these 

equations are combined into 

1( , , ) ( 1, ...., ),k k k k k N  g x x u 0   (2) 

where k is the time-step index and N is the number of time steps. At every time step k, the 

inputs or the control vector (uk) contains the well control for all wells (one or more of the 

dynamic variables mentioned in §5.2), and the state vector (xk) essentially contains the 
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saturations, pressures, and compositions of all reservoir gridblocks and well discretization 

nodes. xk and uk are column vectors and we denote their dimensions by m and n, respectively. 

gk is also a column vector of dimension m. During the forward run (i.e., normal simulation 

run), xk is successively calculated by solving Eq. 2, starting with the initial condition, i.e., x0 at 

t0. In each transition from tk-1 to tk, uk must be specified. In the derivations below, we follow 

the approach of Kraaijevanger et al. (2007). 

It is convenient to combine all the control vectors at different time steps in one super control 

vector u and all the state vectors at different time steps in one super state vector x in the form 

of 

N N

   
   
       
      
   

 

1 1

2 2, ,

x u

x u
x u

x u

  (3) 

where x and u are column vectors with dim(x) = N×m and dim(u) = N×n. We rewrite Eq. 2 in 

the form of the super function g defined by 

1 0 1 1

2 1 2 2

-1

( )

( )
( , ) , where ( , ) ,

( )N N N N

 
 
    
  
 

g x ,x ,u

g x ,x ,u
g x u 0 g x u

g x ,x ,u


 (4) 

where g is a column vector and dim(g) = dim(x) = N×m. 

5.7. Gradient Calculation 

All the following formulations are based on the assumption that x is a function of u, i.e., 

 ( ).x x u   (5) 

A small variation in u causes a small variation in x, or 

d d where and ,     x u x u
g gg x g u 0 g gx u

  (6) 

where gx and gu are the Jacobian matrices with respect to x and u, respectively. gx is a block 

bi-diagonal matrix with dim(x) rows and dim(x) columns and each of its block elements has 

m rows and m columns (see Fig. 13 and Eqs. 14 and 15 for more details). gu is a block-

diagonal matrix with dim(x) rows and dim(u) columns and each of its block elements has m 

rows and n columns (Fig. 13).  
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We want to obtain the total derivative of the scalar objective function with respect to u: 

       
d ( ), d

where and ,
d du x u u

x u u x
u xu u

        (7) 

wherex andu are the Jacobian matrices of with respect to x and u.x andu are row 

vectors of dimension dim(x) and dim(u), respectively. Here dx/du is the Jacobian matrix 

containing the partial derivatives of x with respect to u, and is called the sensitivity matrix S. 

Matrix S has dim(x) rows and dim(u) columns with its block elements defined by  

k
k l

l

k l N 
, ( , 1,2,..., ).xS
u

 

Each block element of S has m rows and n columns. Since xk does not depend on uk with l > k,  

we have Sk,l = 0 for all k, l with l > k. Therefore, matrix S is a block lower triangular matrix. 

 Assuming that gx is invertible, the sensitivity matrix is derived from Eq. 6: 

 -1d
.

d x u

x
g g

u
   (8) 

Thus, the total derivative d/du in Eq. 7 is written as: 

  -1d
.

d u x ug g
u x


 


    (9) 

Note that d/du is a row vector with the same dimension as u; i.e., dim(d/du) = dim(u). 

The gradient d/du is used to construct a new, improved control vector that leads to a higher 

value of . It is important to note that d/du reflects the behavior of only in the 

neighborhood of u.  

There are different ways for the calculation of the total derivative d/du. It can be calculated 

numerically (perturbation method), or analytically (forward method and adjoint method). In 

the forward method and the adjoint method, all the partial derivatives on the right side of  

Eq. 9 are calculated analytically from the discrete dynamic system equations in Eq. 2 and  

(the discrete version of) the objective function in Eq. 1. These analytical derivatives must be 

available in the source code. 

5.7.1. The Perturbation Method 

The perturbation method is a numerical gradient-calculation method. As mentioned earlier 

(§5.7), dim(d/du) = dim(u), and each element of the total derivative vector d/dui is 

provided by a single forward perturbation run (i.e., the normal simulation run). In each run, 
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one of the elements of the control vector ui is slightly perturbed by ∆ui (while keeping the 

other elements fixed), leading to the calculation of 
 i. The term d/dui is then calculated by 

the finite-difference method: 

i

i i





d

,
du u

  
   (10) 

where is obtained from the forward run with the original guess of u. This method is very 

easy to implement, but it has a severe drawback that makes it inefficient if dim(u) is large, 

because the number of perturbation runs is equal to dim(u).  

In addition, finding the appropriate choice of ∆ui is nontrivial (Nocedal and Wright 1999). 

This method is not accurate if ∆ui is too large or too small. The perturbation must be 

sufficiently small to minimize the effects of nonlinearity, but too small perturbations may also 

lead to inaccurate gradients due to numerical round-off errors.  

5.7.2. The Forward Method 

The forward method computes the gradient d/du analytically, as all the partial derivatives 

on the right side of Eq. 9 are also calculated analytically. This method is a logical step towards 

the adjoint method (gradient-calculation method in the simulator); hence, it is discussed here. 

The difference between the forward and the adjoint method is in the way they handle the 

computation of the term -1
x x ug g in Eq. 9 (Fig. 13). In the forward method, the term -1

x u-g g , 

i.e., the sensitivity matrix S is first evaluated by solving the system of linear equations  

, x ug S g    (11)  

and then S is multiplied byx to give the total derivative in Eq. 9.  

This method suffers from the same scaling of computational effort with dim(u) as the 

perturbation method. This can be seen from Eq. 11, in which the number of columns in matrix 

gu on the right-side of this equation is equal to dim(u); hence, this method is computationally 

very expensive for large control vectors. However, it is more robust than the perturbation 

method in the sense that the forward method computes the exact derivative of d/du; 

however, the perturbation method approximates this term and there is always a question 

about the proper choice of the perturbation size to arrive at an accurate derivative 

(Kraaijevanger 2007).  
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It is important to emphasize that the major part of the computational effort in this method 

corresponds to the calculation of the sensitivity matrix from Eq. 11. The number of equations 

to be solved in Eq. 11 for calculating S is dim(x)×dim(u), which is a function of dim(u).  

 

Fig. 13: Computation steps in the adjoint and forward methods. x is a row vector, gx is a block  

bi-diagonal matrix, and gu is a block-diagonal matrix. The term block matrix means that the matrix has 

been partitioned into smaller matrices called blocks or block elements. gx and gu have N block elements in 

each block row and N block elements in each block column. Each block element of gx is a square matrix 

with a dimension of m×m. Each block element of x is a row vector of dimension m, and each block 

element of gu is an m×n matrix [usually n < m].  

5.7.3. The Adjoint Method* 

Gradients in the simulator are calculated by the adjoint method. The adjoint method is also 

based on the analytical calculation of the gradient. This method is an efficient way of 

computing the -1
x x ug g term in Eq. 9. The drawback of the forward method is that it first 

computes the -1
x ug g term (by computing S from Eq. 11) which is dependent on dim(u) and 

hence very computationally demanding. The magic of the adjoint method is that, instead, the
-1

x xg term is calculated first (by computing λ from Eq. 13) which is independent of dim(u) 

(Fig. 13). This seemingly minor difference makes the adjoint method extremely efficient for 

large control vectors in the way discussed below.  

                                                                    
* In this work, a self-contained elementary derivation of the adjoint method is presented that follows 
Rodrigues (2006) and Kraaijevanger et al. (2007). This derivation is different from but equivalent to the 
well-known derivation based on the Lagrange formalism. Jansen (2010) reviews three different ways to 
derive and interpret the adjoint equations.  

Forward-Step 1

Forward-Step 2

Adjoint-Step 2

Adjoint-Step 1

(gx)-1

-1
0

0

gu

x

0

0
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In the adjoint method, the factor dx/du in Eq. 7 is eliminated using Eq. 8, leading to Eq. 12. 

   1d
where .

d u u x xg g
u

 


     (12) 

Then, the term λ (or the so-called adjoint vector); which is a row vector with dim(x) columns 

and independent of dim(u), is computed from the following system of equations or the  

so-called adjoint equation 

T T T or equivalently .x x x xλg g      (13) 

It is more convenient to use the transposed form in Eq. 13. The coefficient matrix of this 

equation (i.e., T
xg ) is just the transpose of the coefficient matrix in Eq. 11. The computation of 

the latter Eq. 13 is more efficient than Eq. 11, because the right-side of this equation ( T
x or 

the gradient of  with respect to x) is independent of dim(u). In other words, the total number 

of equations to be solved for computing λ from Eq. 13 is equal to dim(x), whereas the total 

number of dim(x)×dim(u) equations needs to be solved for computing S from Eq. 11. 

Therefore, computing λ is clearly less expensive than computing S [unless dim(u) = 1]. 

The matrix gx is a block bi-diagonal matrix  
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where 

k k
k k

k k
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where Ak and Bk are square matrices with m rows and m columns. Thus, Eq. 13 is written as 

k k k k
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   (16) 
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x




   (17) 

where k is the time-step index and λk is a row vector of dimension m*.  

                                                                    
* The adjoint variables λk coincide with the Lagrange multipliers if the optimality condition is satisfied 
(i.e., d/du = 0). [See Kraaijevanger et al. (2007) and Brouwer (2004) for more details.] 
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After the forward run, the linear system of adjoint equations is solved backward in time. 

During the backward run, all adjoint equations must be constructed first based on the 

computed super state vector x during the forward run*. The reason that the adjoint equation is 

solved backward in time is clearly visible from Eq. 17. The only solvable equation in the above 

system of equations is Eq. 17 at the last time step, having only one unknown vector λN. As soon 

as this equation is solved for λN, the rest of the equations in Eq. 16 with lower k are 

successively solved backward to construct the complete adjoint vector λ. Once λ is calculated, 

λ is multiplied by gu to provide the total derivative d/du from Eq. 12. A very small example 

of constructing the adjoint equation is given in Appendix E. 

The linear system of adjoint Eqs. 16 and 17 is solved by an iterative method. In iterative 

methods, one starts with a system of equations Ax=b (with x as an unknown vector). Then, a 

start value x0 is chosen and the residual ro = b - Axo is computed. Then, xo is improved by 

adding a correction vector co to get a new estimate x1 = xo + co. The new residual r1 is usually 

smaller than ro. This process is repeated until a certain norm of the residual is sufficiently 

small (van Kan et al. 2005). In the simulator, the convergence criterion is that the norm of the 

residual has become smaller than the relative tolerance† for solving the adjoint linear system, 

times the norm of the initial residual. If convergence is not reached after the maximum 

number of iterations, a warning is given but the backward run is not stopped. Having a few of 

these warnings does not necessarily mean that the gradients are inaccurate. On the other 

hand, the absence of this warning does not guarantee accurate gradients either. As a result, it 

is necessary to try a number of non-default values‡ for the relative tolerance and investigate 

their effect on the convergence behavior and gradient accuracy (Dynamo/MoReS Online User 

Documentation 2010). 

5.7.3.1. Validation of the Adjoint Gradients 

If the gradient changes sign at points not corresponding to an internal optimum, this 

demonstrates that the gradient is not correctly calculated. It might also happen that despite 

the correct sign of the gradient, its magnitude is not right. Both of these imply that the 

calculated gradient is wrong and hence cannot be trusted.  
                                                                    
* The adjoint method requires storing all the state and control vectors at every time step during the 
forward run. 

† The keyword used in the simulator for the relative tolerance is ADJLINDATA.REL_TOLERANCE. 

‡ In the simulator, the default value of the relative tolerance depends on the simulation mode (i.e., 
fractured, non-fractured and thermal, and non-fractured and non-thermal). The highest value that is 1E-7 
belongs to the non-fractured and non-thermal category that our problem also belongs to it. However, this 
value is too large for our problem and using the default value leads to wrong gradients in some instances. 
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The accuracy of the computed gradients by the adjoint method needs to be validated against a 

reference solution. The best choice is validating the adjoint gradients against an analytical 

gradient obtained from the original partial differential equation, if available. However, 

analytical gradients are usually only available for simple systems, whereas our system is a 

complex one.  

We validate the gradients calculated with the adjoint method by comparing them to the 

gradients obtained with the perturbation method, discussed in §5.7.1. There are few papers in 

the petroleum engineering community that have also used the perturbation method for 

validating the gradients obtained with the adjoint method (applied to history matching). Wu 

et al. (1999) found the differences smaller than 1%. Wu and Datta-Gupta (2001) found similar 

differences. However, in Brouwer (2004) the agreements between the two varied from case to 

case. He observed a growing inconsistency between the two at early times but a good 

agreement at late times (i.e., a growing inconsistency in backward time).  

5.7.4. Time Gradient 

In this chapter, the goal is finding the switching time (ts,opt) that maximizes the cumulative oil 

production (). Therefore, the relevant gradient type here is the time gradient and the 

corresponding control variable is the switching time (ts). Here, we first describe how the time 

gradient (d/dtk) is calculated, and then we focus on computing the time gradient at the 

switching time (d/dts), which requires special attention. 

5.7.4.1. Computing the Time Gradient 

The time gradient at the time point tk (i.e., d/dtk) represents the amount of change in the 

objective function when tk slightly varies, but other times do not (Fig. 14). In other words, all 

the times except tk (i.e., t0, t1, …, tk-1, tk+1, …, tN-1, tN) are kept fixed for the computation of the 

time gradient at each time step k.  

 

Fig. 14: Schematic for calculation of the time gradient d/dtk in the simulator. All the times except tk 

(i.e., t0, t1, …, tk-1, tk+1, …, tN-1, tN) are kept fixed in the computation of the time gradient at each time step k. 

Fig. 15 schematically shows how the plot of d/dt versus time should ideally look for our 

problem with the switching time. Large values of d/dt are only expected at the end time (T) 

and those times at which a change occurs in control settings like constraint type, constraint 

value, injection composition, etc. The value of d/dt at T immediately reflects the effect of 

t0 = 0 tN = Ttk tk+1tk-1
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changing the length of the simulation*. Since the injection composition changes from 100% 

surfactant solution to 100% gas at ts, this is considered as a change in the control settings. The 

sign of the gradient at ts indicates the effect of prolonging or shortening the surfactant 

injection period on . If it is positive, prolonging the surfactant injection cycle leads to an 

increased . Conversely, if it is negative, it is not beneficial to extend the surfactant injection 

cycle and it should be shortened. 

 
Fig. 15: Schematic of the ideal time-gradient plot in the simulator in our problem. 

Apart from the large gradients at ts and T, further spikes are not generally expected†. The 

value of d/dt at the intermediate‡ times should be small as they only represent the effect on 

when one changes the time grid, so they represent the time discretization error. In other 

words, small gradient values at intermediate times indicate that the simulated value of  is 

only slightly dependent on the chosen time-step sizes. If one observes relatively large 

gradients at the first few time steps§, that often corresponds to time-discretization effects 

(Dynamo/MoReS Online User Documentation 2010).  

Considering the gradient type as the time gradient and the switching time as the control 

variable, the discrete dynamic system equations (gk) are represented in terms of time as a 

function of tk-1 and tk as follows: 

1 1( , , , ) ( 1, ...., ).k k k k kt t k N   g x x 0   (18) 

  

                                                                    

* Having the cumulative oil production as our objective function, the positive sign indicates that it is 
beneficial to produce longer. 

† Spikes are sometimes caused due to the physical behavior of the forward run discussed in §5.3.1. The 
behavior of the time gradient in this case is discussed in more detail at the end of §5.7.4.3. 

‡ Times other than T and times at which control settings change. In our case, it corresponds to 0 < t < ts 
and ts < t < T. 

§ The first few time steps in the simulator are not fixed by default. The time step starts from a specified 
∆tstart and automatically grows by a certain factor (i.e., 2 in this chapter) until reaching the ∆tmax after 
which it stays fixed and equal to the ∆tmax.  

d
dt


ts TTime
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We can rewrite Eq. 12 for the time gradient of the objective function as follows:  

 

1

1

2 2

1 21
1 1

1

d d
, , , , , , .

d d N
N N

N N

N N

t

t t
t t t t

t t

 
  
  

      
             

 
  

   

g

g g

g g

0

0

  
 

   
    (19) 

Since gk is a function of both tk and tk-1, the Jacobian matrix gu is a block bi-diagonal matrix, 

as opposed to the block-diagonal matrix gu in Fig. 13 for control variables other than time. We 

can rearrange Eq. 19 as: 
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We can directly compute the d/dtk element of the total derivative vector from Eq. 20. Note 

that all partial derivatives on the right side of Eq. 20 are calculated analytically from Eq.18. 

In order to have a better understanding of the procedure for calculating the gradient at ts, it is 

necessary to become familiar with the original time grid, i.e., the time grid in the absence of ts.  

5.7.4.2. Original Time Grid 

In the simulator, two variables control the time-step size in the absence of convergence 

problems: the start time-step size (∆tstart) and the maximum time-step size (∆tmax). The time-

step size starts from a specified ∆tstart and automatically grows by a certain factor (i.e., 2 in 

this chapter) until reaching the ∆tmax after which it stays fixed and equal to the ∆tmax. At times 

when control settings change (in our case, at ts), and at the end of the simulation, the time 

step must land exactly on the specified time. Therefore, the time step might be smaller than 

∆tmax in the last time step before the switching time and in the last time step. If we assume 

that there is no switching time, the time grid that is generated according to the above is called 

the original time grid. A sample of the original time grid is shown in Fig. 16. 

 

Fig. 16: Original time grid in the absence of the switching time. Here, ∆tstart = 0.1 day, ∆tmax = 1 day, and 

T = 10 days. Note that the steps are not equisized.  
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5.7.4.3. Computing the Time Gradient at the Switching Time 

The switching time (ts) is the time at which surfactant solution injection is terminated and gas 

injection begins. Prior to ts, there is no foam in the reservoir due to the absence of gas, and no 

oil is displaced in the reservoir*. However, once gas injection begins, foam formation and 

coalescence are initiated in the reservoir, introducing a substantial change in the process (see 

§5.3.1 for more detail). In addition, gas is capable of displacing oil† leading to oil production. 

The cumulative oil production is significantly affected by the total amount of the injected 

surfactant (Qsurf,cum) into the reservoir. Therefore, a slight change in ts and accordingly in 

Qsurf,cum may result in a considerable change in  (see §5.3.2 for more detail; in §5.3.2, is 

denoted by Qo,cum). The optimization routine searches for the optimum based on the sign and 

magnitude of d/dts. As a result, the accuracy of d/dts is of crucial importance for computing 

the correct optimum switching time (ts,opt). A positive sign of d/dts means that increasing ts 

(i.e., prolonging the surfactant injection cycle) leads to an increased and vice versa. 

Neglecting time discretization errors, one might hope that d/dts ≈ d/dtk|tk=ts; but 

unfortunately, d/dts is not always equal to d/dt at ts. What one should take for d/dts 

depends on the time-step strategy in the forward run. Based on the selected time-step 

strategy, the original time grid (§5.7.4.2) is altered, affecting the value of d/dts. The general 

expression for d/dts is  

1

dd d
.

d d d

N
k

ks k s

t

t t t

 
  

 
    (21) 

The term dtk/dts is nonzero anywhere that the original time grid (see Fig. 16) is disturbed after 

inserting ts into it, in other words, at those times that are not present in the original time grid 

after inserting ts. In Figs. 17 and 18 with ts = 4.7 days, the time points in bold are the 

disturbed points not present in the original grid. We elaborate more on this issue below.  

Having tj corresponding to ts, Eq. 21 retrieves d/dts = d/dtj only if dtj/dts = 1 and dtk/dts = 0 

(for k ≠ j). This is the case in Fig. 17 with ts = 4.7 days where the step-size strategy is chosen 

such that ∆tk + ∆tk+1 = ∆tmax = 1 and the original time grid is disturbed the least (i.e., the time 

point at ts = 4.7 days is the only point added to the original time grid in Fig. 16). To maintain 

this condition, the time points in the original time grid right before and after ts (i.e., 4.5 and 

5.5 days in Fig. 16) must stay fixed and only ts varies between these two time points.  

                                                                    
* The initial oil saturation So(I) in the reservoir is taken equal to the residual oil saturation to waterflood 
(Sorw). Thus, water is unable to displace oil prior to ts. 

† The residual oil saturation to gas flood (Sorg) is lower than Sorw and gas is capable of displacing oil. 
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Fig. 17: Simple example for calculating d/dts where ts = 4.7 days. The time point in bold is not present in 

the original time grid in Fig. 16.The step-size strategy is chosen such that ∆tk + ∆tk+1 = ∆tmax = 1. Note that 

the steps are not equisized.  

Fig. 18 shows another example with ts = 4.7 days. In this step-size strategy one starts again 

with ∆tstart right after the switching time, and doubles the step size each time step until 

reaching ∆tmax once again. Here, if the summation of the intermediate gradients (i.e., ts < t < T) 

is large compared to the gradients at ts and T, it can be generally concluded that the time-

discretization error is too large. In that case, a different step-size strategy should be 

considered. On the other hand, large intermediate gradients might be sometimes caused due 

to the physical behavior of the forward run as seen in §5.3.1 that will be discussed below. 

 

Fig. 18: Simple example for calculating d/dts where ts = 4.7 days. The time points in bold are not 

present in the original time grid in Fig. 16. The term dtj/dts is nonzero and equal to unity at these points. 

The time-step strategy is to start from ∆tstart= 0.1 day and double it until reaching ∆tmax = 1 day. Note that 

the steps are not equisized.  

In our problem with the switching time, the time-step sizes in the vicinity of ts must be refined 

compared to the rest of the time grid. This causes a more accurate simulation in the hectic 

period right after the switch (see §5.3.1 and Figs. 5 and 6). As mentioned in §5.3.1, the start of 

gas injection at ts introduces a substantial change in the process due to initiation of foam 

formation and coalescence in the reservoir. Therefore, a finer time grid is required during that 

time period to capture the sudden changes more accurately. For instance, the following time-

step strategy was used to generate Fig. 7. We took ∆t of 1E-4 day in the vicinity of the 

switching time. For 0 ≤ t ≤ (ts - 0.5), we set ∆tstart = 1E-6 day and ∆tmax = 1E-2 day. For  

(ts - 0.5) < t ≤ (ts + 10), we defined ∆tstart = ∆tmax = 1E-4 day, and for (ts + 10) < t ≤ T, we 

applied ∆tstart = 1E-4 day and ∆tmax = 1E-3 day. 
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Large nonzero gradients are sometimes observed at times after ts when there is no change in 

the control settings. If they are not resulting from an inappropriate step-size strategy, they 

might correspond to the physical nature of the displacement as discussed in detail in §5.3.1. 

This can be verified by checking the injection/production profiles (rates, pressures). If there 

are hectic regions in the profiles as well (even after sufficient refinement of ∆t and ∆x), they 

would most probably correspond to the real physics of the problem. In our problem, if the 

injection well operates at a constant prescribed bottomhole pressure, such a hectic region 

occurs in the gas-injection rate profile right after the switching time (see Figs. 5 and 6). Fig. 7a 

clearly illustrates the sequence that Sw drops below Sw* in the gridblocks in a 1D displacement 

resulting in a significant drop in foam strength of those gridblocks (see Fig. 3a). As soon as Sw 

drops below Sw* in a gridblock, an escape path is provided for the injected gas to escape to the 

next gridblock. This behavior is repeated until Sw drops below Sw* in the last gridblock. This 

effect consequently influences the gas-injection-rate profile as illustrated in Fig. 7. Fig. 19 

illustrates that if dropping below Sw* in a certain gridblock produces a spike in the Qg profile, 

this behavior is also reflected in the time-gradient plot in the form of a spike at the same 

moment that saturation has dropped below Sw* in that gridblock. However, our analysis in 

§5.9.1 reveals that these spikes are not influencing the accuracy of the adjoint gradients at ts.  

 

Fig. 19: Magnification of the first 5 spikes in Fig. 6. Fig. 7 showed that the moment at which the nth spike 

in the gas-injection rate occurs corresponds to the moment at which water saturation in the nth gridblock 

drops below Sw* = 0.316. In this figure, we observe that the spikes in the time-gradient plot also occur at 

the same moments. For clarity, we have denoted the gridblock number corresponding to each spike 

beneath the spike in the time-gradient curve. 
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5.8. Optimization Routines 

There are various optimization routines for finding the optimum. These routines perform 

various iterations and in each iteration, a search direction is computed. Based on that, the 

step length (how far to move along that direction) is evaluated (Nocedal and Wright 1999). 

These routines improve the control variable(s) (e.g., ts). The steepest-descent method is a 

gradient-based optimization routine and is the first and the most well-known one; it goes back 

to Gauss (Nocedal and Wright 1999). We investigate the applicability of the steepest-ascent 

method in finding the optimum switching time between the surfactant and gas slug.  

5.9. Optimization in the Simulator* 

We investigate the capability of a gradient-based optimization routine applied to foam EOR 

processes. Our objective is maximizing the cumulative oil production by optimizing the 

switching time.  

The majority of optimization problems involves a large number of control variables; thus, 

constructing the response surface of  is a very cumbersome task, if not impossible. 

Therefore, looking for the optimum is more like searching in the dark in these cases. 

Specifically for foam EOR processes involving sharp changes in gas mobility, the behavior of  

with respect to the changes in the control settings can be very irregular. One might find a local 

optimum in these cases far from the global one, in the absence of proper knowledge about the 

behavior of the objective function with respect to the changes in the control settings. Having a 

better understanding of the behavior assists in having a better initial guess for the control 

settings and ruling out the local optimums.  

We picked a simple case with only one control variable (i.e., the switching time) for this 

investigation. Having only one control variable, the global trend of the objective function  

can be easily constructed with a reasonable number of perturbation runs. Once the global 

trend of  is available, the global optimum switching time (ts,opt) can be easily identified. This 

way, we have a solid reference case against which to evaluate the performance of the 

optimization routine. In addition, we investigated the behavior of  with respect to the 

switching time in §5.3 in 3D simulations and related ts,opt to the physics of the process. 

                                                                    

* The forward model used is according to §5.2 with the same parameters used in the simulations in §5.3 
summarized in Tables B-2 and B-3. The simulator uses the procedure described in §5.7.4.1 during the 
backward run for computing the time gradients d/dt by the adjoint method. The time gradient at the 
switching time d/dts is computed by the user based on the applied time-step strategy in the forward run 
according to the procedure explained in §5.7.4.3.  
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Regarding the time-step strategy, we applied slightly different time-step sizes for 1D and 3D 

simulations; 1D simulations required smaller ∆t due to having smaller ∆x compared to 3D 

simulations to avoid convergence problems (see Table 1).  

Table 1: Time-step strategy for 1D and 3D simulations in §5.9. 

Time Interval 
1D 3D 

∆tstart (day) ∆tmax (day) ∆tstart (day) ∆tmax (day) 

           0       ≤ t ≤ (ts - 0.5) 1E-6 1E-2 1E-6 1E-1 

(ts - 0.5) < t ≤ (ts + 10) 1E-4 1E-4 5E-3 5E-3 

    (ts +  10) < t ≤      T 5E-3 5E-2 5E-3 1E-1 

In order for the optimization routine to successfully find the optimum, the following 

conditions are desirable (but not strictly necessary): 

 Having accurate adjoint gradients. 

 Having a convex* objective function times minus one (-).  

We investigate the validity of these two conditions in our case below. 

5.9.1. Validating the Adjoint Gradients 

We validated the gradients calculated with the adjoint routine in the simulator by comparing 

them to the numerical gradients obtained with the perturbation method applying sufficiently 

small† perturbation sizes. We use the central-difference scheme for this purpose. We 

discovered that an inappropriate choice of the relative tolerance for the adjoint linear solver is 

the main source of getting wrong gradients in our problem. (We discussed about the adjoint 

linear solver in the last paragraph in §5.7.3.) We found the appropriate choices of the relative 

tolerance for each case by a thorough validation of the adjoint gradients by comparing them to 

the numerical gradients. However, we do not go into the details of this examination (two 

similar investigations are presented in §5.9.6). We found that 1E-12 is the proper choice for 

our 1D simulations, but this value results in wrong gradients in our 3D simulations using the 

nonlinear foam model as shown in Fig. 20. We had to tighten the relative tolerance to its 

smallest possible value of 2.25E-16 to obtain accurate adjoint gradients in this case.  

                                                                    

* A convex objective function is a function for which the epigraph, i.e., the set of all points above the graph 
of , forms a convex set. A convex set is defined as a collection of points such that a line connecting any 
two points of the set is entirely within the set. We deal with a maximization problem here; hence, it is 
desirable to have - as a convex function. 

† The perturbation must be sufficiently small to minimize the effects of nonlinearity and agree with the 
adjoint gradient. A too-small perturbation results in inaccurate gradients due to numerical round-off 
errors. 
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After validating the adjoint gradients, we are confident that all the adjoint gradients calculated 

by the simulator with the appropriate choice of the relative tolerance are accurate. However, 

we emphasize that the gradients predict only the local behavior of in the neighborhood of 

the switching time to which they correspond. This issue is discussed in §5.9.5 and §5.9.6. 

 
Fig. 20: Adjoint gradients are calculated incorrectly at three switching times indicated by white-filled 

circles with the default relative tolerance equal to 1E-7. Both the sign and magnitude of the gradient are 

incorrect at these three points. For instance, the trend of the objective function is decreasing around  

46 days and the gradient must be negative, however, the incorrect gradient is positive. The accurate 

gradients are shown on the curve with the relative tolerance of 2.25E-16. These simulations use the 

nonlinear foam model in 3D. Each simulation ends after 540 days. Note that this case is identical to the 

one shown in Fig. 25. The procedure of constructing this figure is mentioned in the footnote*. 

5.9.2. Convexity of the Objective Function 

We see later in Figs. 22, 23, 24a, and 25, that the objective functions under study in this 

chapter has multiple optima and -is not convex in the range of switching times shown in the 

figures. They have multiple minima and maxima. The objective-function curve times minus 

one (-) in Fig. 24a might appear convex; however, having a closer look at Fig. 24b reveals 

that - is indeed a non-convex function.  

                                                                    

* This figure and the similar figures below are constructed as follows. For every switching time (ts), a 
backward/adjoint run is performed after a forward run. The forward run gives the cumulative oil 
production (), and the backward run provides the total gradient at ts, i.e., d/dts. The curve 
corresponding to the numerical gradient is acquired by the perturbation method discussed in §5.7.1.  
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5.9.2.1. Local and Global Trends of the Objective Function 

Fig. 21 illustrates a schematic of global and local trends of . From the practical point of 

view, by global we mean a trend of  that is obtained by coarsely sampling of the objective 

function, by choosing user-defined large perturbation sizes that are of the order of 1 day in the 

coming examples. The local trend of , however, is a close approximation of the true behavior 

of  that is obtained by choosing much smaller perturbations sizes than those used for 

constructing the global trend. In Fig. 21, the global trend of  around the two black squares 

appears to be increasing with increasing ts; however, the local trend of  focusing on the 

region between the two black squares reveals details that were not noticeable on the global 

trend. We also note that the local and global trends of  are dependent on the time scale that 

we choose for the perturbations to construct the figures below. 

 

Fig. 21: Schematic of global and local trends of  between the two black squares. The local trend of  

differs from the global trend of  and reveals details that were not noticeable on the global trend. 

Objective-function curves shown in Figs. 22, 23, 24a, and 25 represent the global trend of , 

whereas Figs. 24b, 26, 27, and 28 illustrate the local trend. Since both the global and local 

trends are not the exact representation of the objective-function trend, connecting the points 

by lines might not be the correct representation of the behavior of  between the points. 

Therefore, these figures are better represented by scattered points. Nevertheless, we 

connected the points on each curve in order to make it easier for the reader to follow the 

trends of .  
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The numerical gradients in Figs. 22, 23, 24a, and 25 act as a tool for locating major differences 

between the local and global trends of  as the one shown in Fig. 21. When the local and 

global trends of  are analogous, the numerical gradient curve is in a close agreement with the 

adjoint-gradient curve both in sign and magnitude. On the other hand, if the signs of the 

numerical and adjoint gradient are different at a certain switching time, this indicates a 

behavior similar to the one in Fig. 21. Having different gradient signs may involve the entire 

range of switching times or only a part of it. This sign difference indicates that the numerical 

gradients are not accurate in that region, and that the chosen perturbation sizes for 

constructing the global trend of  were not sufficiently small in those regions; hence, the 

numerical gradients do not accurately represent the local trend of  and do not agree with the 

adjoint gradients (§5.7.1). We will show in §5.9.6 that the proper perturbation size can get as 

low as 1E-7 day at some switching times, in our problem. 

Later in the chapter, we show that the local and global trends of  in the case with the linear 

foam model are analogous, whereas some major differences (as in Fig. 21) are observed 

between the local and global trends for the nonlinear foam model (see Fig. 3 for the behavior 

of the foam models).  

In addition to the non-convexity of , having major differences between the local and global 

trends of  also hampers the performance of a gradient-based optimization routine. We 

investigate the performance of the optimization routine (steepest-ascent) in finding the 

optimum switching time in the following cases: 

 Linear foam model in a 1D reservoir 

 Linear foam model in a 3D reservoir 

 Nonlinear foam model in a 1D reservoir 

 Nonlinear foam model in a 3D reservoir 

5.9.3. Optimization with the Linear Foam Model in a 1D Reservoir 

A simplified linear foam model is defined for this case (Fig. 3). The foam sensitivity functions 

(Fw, Fo, and Fs) are linear functions of their corresponding variable (i.e., Sw, So, and Cs). The 

reason for defining this foam model is to examine the performance of the optimization routine 

with a foam model without abrupt changes as occur in properties in the nonlinear model. The 

reservoir geometry is 1D (horizontal) and the reservoir length is 100 m and the width and 

height of the reservoir are 1 m (see Fig. 1a). We used 1oo gridblocks to model this 

displacement. The appropriate relative tolerance for the adjoint linear solver in this case 

leading to correct gradients is equal to 1E-12 (see the last paragraph in §5.7.3 for more 

information). 
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Fig. 22: The local and global trends of  for the linear foam model in a 1D reservoir (100 gridblocks or 

 ∆x = 1 m).  is the cumulative oil production, the total simulation time is 200 days, and the injection well 

operates at a constant prescribed bottomhole pressure. The plot for switching times less than 5 days is 

magnified in the inset. Both plots share the same axis titles. Except for the initial point at ts = 0.2 day, the 

numerical (central-difference) and analytical (adjoint) gradients are in good agreement. There is no 

adjoint gradient at ts = 0 day, because we start gas injection from the beginning and there is no switch. 

Gradients always point to the direction of the maximum growth of . They must be positive in 

the ascending part of  and negative in the descending part. The gradient must equate to zero 

at the optima; hence there must be a sign change at the locations of the optima. The global 

trend of in this case is shown in Fig. 22.  has a global maximum at ts = 8 days, a local 

maximum at ts = 1 day, and a global minimum at ts = 2.5 days (the last two are magnified in 

the inset of Fig. 22). We observe that the sign of the adjoint gradients is consistent with the 

global trend of . Also, the adjoint-gradient sign changes at all three optima. Except for the 

initial point at ts = 0.2 day, there is a good agreement between the numerical and analytical 

gradients. This indicates that the local and global trends of are analogous and that the 

chosen perturbation sizes for constructing the global trend of  are sufficiently small in this 

case (varying from 0.2 day at the beginning to 2 days after ts = 8 days). Optimizing ts in this 

process by the steepest-ascent method also leads to the same ts,opt at 8 days. Since there are 

more than one maximum point here, we may need to try different choices of initial guess for 

ts. In general, if different values of the initial guess result in different ts,opt, it implies that - is 

not convex (as is the case here) and has several local optima. Therefore, it is important to try 

different initial guesses for ts to reduce the risk of finding a local optimum. 

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 5 10 15 20 25 30 35 40

ts (days)


(m

3
)

T
im

e
 G

ra
d

ie
n

t 
a

t 
t s

(m
3
/d

a
y)

Adjoint Gradient

Numerical Gradient



1.5

1.6

1.7

1.8

1.9

2

-0.1

0

0.1

0.2

0.3

0 1 2 3 4 5



132 5: Optimization of Foam EOR  

 

5.9.4. Optimization with the Linear Foam Model in a 3D Reservoir 

We extend the 1D case discussed above to a 3D reservoir (involving gravity) as shown in  

Fig. 1b. The foam model is the linear foam model as in §5.9.3 shown in Fig. 3. 

 

Fig. 23: Local and global trends of  for the linear foam model in a 3D reservoir.  is the cumulative oil 

production, the total simulation time is 200 days, and the injection well operates at a constant prescribed 

bottomhole pressure. Except for the initial point at ts = 1 day, the numerical (central-difference) and 

analytical (adjoint) gradients are in good agreement. The middle part of the plot around the maximum is 

magnified in the inset. Both plots share the same axis titles. There is no adjoint gradient at ts = 0 day, 

because we start gas injection from the beginning and there is no switch. 

The appropriate relative tolerance for the adjoint linear solver in this case leading to correct 

gradients is equal to 1E-12. The global trend of in this case is shown in Fig. 23.  has a 

global minimum at ts = 6 days and a global maximum at ts = 28.5 days (magnified in the inset 

of Fig. 23). Similar to the 1D case above, the sign of the adjoint gradients is consistent with the 

global trend of . Also, the adjoint-gradient sign changes at both global optima. Except for the 

initial point at ts = 1 day, there is a good agreement between the numerical and analytical 

gradients. This illustrates that the local and global trends of are analogous and that the 

chosen perturbation sizes for constructing the global trend of  in Fig. 23 are sufficiently 

small in this case (1 day before the global maximum and 2 days after it). Optimizing the 

switching time in this process by the steepest-ascent method also leads to the same optimum 

switching time at 28.5 days.  
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Figs. 22 and 23 clearly show that the global and local trends of are analogous for the linear 

foam model. The steepest-ascent method can successfully find the optimum switching times 

in both cases. We replace the linear foam model with the nonlinear foam model in the 

following sections (§5.9.5 and §5.9.6), while keeping the rest of the model unchanged. 

5.9.5. Optimization with the Nonlinear Foam Model in a 1D Reservoir  

The nonlinear foam model is shown in Fig. 3. According to this model, gas mobility changes 

abruptly with small changes in water saturation and/or surfactant concentration, in 

agreement with laboratory data. The 1D reservoir is horizontal as shown in Fig. 1a. The 

appropriate relative tolerance for the adjoint linear solver in this case leading to correct 

gradients is equal to 1E-12.  

The only difference between this case and the case in §5.9.3 is the foam model. Fig. 24 

illustrates that replacing the linear foam model with the nonlinear foam model introduces 

fluctuations and jumps in the adjoint gradient (for ts < 10 days) that were not present with the 

linear foam model in Fig. 22. The numerical-gradient curve is a representative of the global 

trend of  and it varies smoothly. However, it differs (both in sign and magnitude) from the 

adjoint-gradient at certain switching times. This difference originates from the fact that the 

local and global trends of are not analogous as in Fig. 21. As a result, the numerical gradient 

does not represent the local trend of  in that range. 

Fig. 24a illustrates the global trend of  in which the global maximum is at ts,opt = 8.25 days. 

As already mentioned, the numerical gradients are inaccurate for ts < 10 days, indicating that 

the global and local trends are not analogous in this region. This also shows that the 

perturbation size in this interval is not sufficiently small to match the adjoint gradients, as 

discussed in §5.9.2.1. For instance, we observe a negative adjoint gradient and a positive 

numerical gradient at ts = 7 days. The global trend of  appears to be monotonically increasing 

before ts,opt, and a negative gradient is not consistent with this trend. A closer look at this 

interval in Fig. 24b (by running more simulations in this interval) reveals that the global and 

local trends of are not analogous and there are two local minima and one local maximum in 

this interval. The magnitude of the numerical and adjoint gradients differ around ts,opt shown 

in Fig. 24c, because perturbation sizes in this interval are not sufficiently small. 

With regards to the performance of the optimization routine in this case, the global and local 

trends of are analogous for ts > 10 days. Therefore, if one approaches the optimum with an 

initial guess greater than 10 days, the steepest-ascent method can get very close to the 

optimum. It can even find the global optimum if there are no local optima after ts,opt. However, 

if the initial guess of ts is less than ts,opt, for which the global and local trends of  are not 
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analogous (Fig. 24b), the correct adjoint gradients may not accurately reflect the global trend 

of  that is of our interest in finding ts,opt. Therefore, a gradient-based optimization routine 

might encounter serious problems. 

 

(a) 

    

 (b) (c) 

Fig. 24: (a) Global trend of  for the nonlinear foam model in a 1D reservoir (100 gridblocks;  

∆x = 1 m). is the cumulative oil production, the total simulation time is 200 days, and the injection well 

operates at a constant prescribed bottomhole pressure. (b) Magnification of the switching time interval 

from 7 to 7.12 days. Point 7 days is indicated by arrows in Fig. 24a. (c) Magnifying the region around the 

global maximum at ts = 8.25 days. Point 8 days is indicated by arrows in Fig. 24a. The adjoint gradient 

changes sign at this point. Figs. 24b and 24c share the same axis titles as in Fig. 24a; we removed them to 

avoid clutter. There is no adjoint gradient at ts = 0 day, because we start gas injection from the beginning 

and there is no switch. 
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To clarify, if the initial guess is at ts = 7.015 days (3rd point from left in Fig. 24b), the negative 

sign of the adjoint gradient suggests that reducing ts results in a higher value of , which leads 

towards a local optimum away from the global one. As a result, the optimization routine may 

fail with the initial guess in the region with different local and global trends. The strategy of 

using different values for the initial guess (discussed at the end of §5.4.2) does not always 

work if there are major differences as in Fig. 21 between the local and global trends of , as 

observed here and in §5.9.6.  

5.9.6. Optimization with the Nonlinear Foam Model in a 3D Reservoir  

In §5.9.5, we investigated the performance of the optimization routine with a nonlinear foam 

model in 1D. We now extend it to 3D simulations in the presence of gravity (see Fig. 1b for the 

reservoir geometry). We note that the adjoint linear solver was giving wrong gradients at 

some points with a relative tolerance of 1E-12 used in §5.9.3, §5.9.4, and §5.9.5. We had to 

tighten the tolerance to its lowest value of 2.25E-16 to obtain accurate gradients.  

As we mentioned earlier in §5.9, understanding the physics behind the process is very helpful. 

In the absence of proper knowledge about the behavior of the objective function with respect 

to the changes in the control settings, one might find the local optimum instead of the global 

one. Therefore, having a better understanding of the behavior, assists in having a better initial 

guess for the control settings and reducing the chance of ending up in a local optimum. For 

this reason, we investigated the effect of the switching time on oil recovery in detail in §5.3.2 

for 3D simulations in three scenarios. The scenarios studied in §5.3.2 varied in the active 

constraint of the injection well and the end-time constraint. Therefore, their optimum 

switching times were not the same. However, the procedure for finding the optimum in all the 

scenarios is the same. Thus, we confine ourselves to illustrate our findings in only one case. In 

the case under study, the simulation ends after 540 days (i.e., tend = 540 days). Therefore, the 

gas-injection interval is dependent on the switching time (i.e., tgas = tend - ts). The injection well 

operates at a constant prescribed bottomhole pressure. 

For this case, we discovered that ts,opt is the switching time at which the foam front is just 

short of the production well but has not yet reached it at the end of the simulation. If the 

switching time grows slightly above ts,opt, the foam front breaks through to the production well 

during the simulation, leading to a cumulative oil production smaller than its value at ts,opt. 

We can identify the presence of foam in the production well by monitoring the surfactant 

concentration (Cs) in the gridblocks containing the well. Exceeding Cs* (see Fig.3) in any of the 

well gridblocks is an indication that foam front has reached the production well. Therefore, if 

Cs ≥ Cs* in the well gridblocks at the optimum found by the optimization routine, that 
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optimum is clearly off from the global one (i.e., ts > ts,opt) and is rejected. Conversely, if the 

foam front is far from the well at the optimum, it is a clear indication that we are still not at 

the global optimum and we have to increase the switching time (i.e., ts < ts,opt).  

 

Fig. 25: Global trend of  for the nonlinear foam model in a 3D reservoir. is the cumulative oil 

production, the total simulation time is 540 days, and the injection well operates at a constant prescribed 

bottomhole pressure. The sign of the adjoint and numerical gradients (central-difference) are different at 

40 days and 66 days. The adjoint gradient and at these two points are indicated by arrows. There is no 

adjoint gradient at ts = 0 day, because we start gas injection from the beginning and there is no switch. 

We observed in §5.9.4 that in the 3D reservoir with the linear foam model, the gradient-based 

optimization routine was able to successfully find the optimum switching time, because the 

local and global trends of the objective function were analogous. However, Fig. 25 illustrates 

differences between both the sign and the magnitude of the numerical and adjoint gradients at 

certain switching times. These differences are more pronounced in the 3D reservoir, 

compared to the 1D reservoir with the nonlinear foam model discussed in §5.9.5. On the 

global trend, we observe a difference in sign of the two gradients near all the optima; i.e., at  

5, 40, 57, and 66 days. Having major differences between the global and local trends of  in 

the neighborhood of the optima seriously challenges the optimization-routine’s performance. 

These trends are analogous only after the last local optima at 66 days. We investigate the local 

trend for two of these points: the apparent global maximum at ts,opt = 40 days and the local 

maximum at ts = 66 days, indicated by arrows in Fig. 25.  
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Time 
Point Switching Time 

1 39 
2 39.5 
3 39.9 
4 39.99 
5 39.999 
6 39.9999 
7 39.99999 
8 39.999999 
9 40 
10 40.000001 
11 40.00001 
12 40.0001 
13 40.001 
14 40.01 
15 40.1 
16 40.5 
17 41 

           (a)              (b) (c) 

Fig. 26: Trend of  around ts = 40 days. (a) versus the switching time. There are 17 switching times 

(column 2 of table c) in this figure. However, since the middle points are very closely spaced, their trend is 

not visible in this figure. The correct ts,opt is at 40.1 days and not at 40 days. (b) versus time points 

(column 1 of table c) in the vicinity of 40 days (i.e., time point 9). (c) Table of switching times and time 

points used to construct Figs. 26a and 26b. 

Fig. 26 shows the behavior of  very close to ts = 40 days. Right after this point, the global 

trend appears to be decreasing, but the adjoint gradient is positive (Fig. 25). However, the 

local trend around 40 days in Fig. 26a reveals that ts,opt is at 40.1 days and not at 40 days. 

Further, the increasing trend of  just after ts = 40 days (Fig. 26b) is consistent with the 

positive sign of the adjoint gradient at this point (see Fig. 25). In addition, Fig. 25 shows that 

the numerical gradient is inaccurate at this point; hence, the perturbation size used is not 

sufficiently small.  

Table 2 shows the effect of the perturbation size (∆ts) on the accuracy of the numerical 

gradients around ts = 40 days. The numerical gradient at ts = 40 days in Fig. 25 is calculated 

by the central-difference scheme, and ∆ts right before and after 40 days are 2 and 1 days, 

respectively. According to Table 2 at ts = 40 days, ∆ts = 1 day results in 105% error in the 

numerical gradient and the smallest error is obtained with ∆ts = 1E-5 day. Therefore, an 

improper choice of ∆ts causes the difference between the analytical (adjoint) and numerical 

gradients at ts = 40 days. Table 2 also reveals that at ∆ts = 1E-6 day, the error has started to 

grow. Thus, ∆ts is too small causing inaccurate gradients.  
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Table 2*: Finding the suitable perturbation size 
at ts = 40 days. 

Table 3: Finding the suitable perturbation size 
at ts = 66 days. 

 

∆ts 
(day) 

Adjoint 
d/dts 

(m3/day) 

Central 
∆/∆ts 

(m3/day) 

Error 
(%) 

1 

17.729 

-0.963 -105 

5E-1 8.107 -54 

1E-1 16.289 -8 

1E-2 17.329 -2.3 

1E-3 17.851 0.7 

1E-4 17.703 -0.1 

1E-5 17.729 -1E-3 

1E-6 17.728 -1E-2 
 

∆ts 
(day) 

Adjoint  
d/dts 

(m3/day) 

Central 
∆/∆ts 

(m3/day) 

Error 
(%) 

1 

0.457 

-2.57 -662 

1E-3 1.332 191 

1E-4 1.035 126 

1E-5 0.795 74 

1E-6 0.43 -4.3 

1E-7 0.457 4.5E-3 

1E-8 0.455 -0.4 

We now investigate the cause of the difference observed at the local maximum at ts = 66 days. 

At this point, the global trend appears to be decreasing after 66 days but the adjoint gradient 

is positive as seen in Fig. 25. However, the local trend of  shown in Fig. 27 is increasing; 

contradicting the global trend.  

  

 

Time 
Point Switching Time 

1 65.999 
2 65.9999 
3 65.99999 
4 65.999999 
5 65.99999999 
6 65.999999999 
7 66 
8 66.000000001 
9 66.00000001 
10 66.000001 
11 66.00001 
12 66.0001 
13 66.001 

                  (a)                 (b)             (c) 

Fig. 27: Trend of  around ts = 66 days. (a) versus switching time. There are 13 switching times 

(column 2 of table c) in this figure. However, since the middle points are very closely spaced, their trend is 

not visible in this figure. (b) versus time points (column 1 of table c). Table of switching times and time 

points used to construct Figs. 27a and 27b. 

  

                                                                    

* The time-step strategy that we used is similar to the strategy shown in Fig. 14, in which d /dts = d /dtj. 
In this strategy, the step-size strategy is chosen such that the original time grid is disturbed the least  
(i.e., the time point ts is the only point added to the original time grid). In order to maintain this 
condition, the time points in the original time grid right before and after ts (i.e., 39.995 and 40.005 days) 
stay fixed and only ts varies between these two time points.  
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Fig. 28 illustrates the local trend around this point in a wider range. Moreover, Table 3 

clearly shows that the choice of the perturbation size (i.e., 1 day) was not right around this 

point, causing a very large error in the numerical gradient. Thus, both the differences between 

the global and local trends of  and the improper perturbation size are causing the difference 

between the two gradients at this point. At ts = 66 days, the lowest error is obtained with  

∆ts = 1E-7 day, and ∆ts = 1E-8 day is considered to be too small. 

Tables 2 and 3 imply that an appropriate choice of perturbation size (∆ts) is case dependent. 

∆ts with the lowest error for ts = 66 days is 100 times smaller than that for ts = 40 days. 

 

Fig. 28: The local trend of  around ts = 66 days, different from the global descending trend after  
66 days. This figure shows the local trend in a wider range than the one in Fig. 27a. The left and right 
limits in Fig. 27a are indicated by filled symbols here. 

5.9.7. Cause of the Differences Between Local and Global Trends of   

Comparing Figs. 22 and 24 for the 1D reservoir on one side, and comparing Figs. 23 and 25 for 

the 3D reservoir on the other side, reveal that all the symptoms (major differences between 

the global and local trends of the objective function and fluctuations in the adjoint gradient) 

are introduced once the linear foam model is replaced with the nonlinear foam model. We 

conjecture that in most simulation models, the fluctuations on the local trend of  and the 

fluctuations in its gradient are small, so that they remain unnoticed. In our case with the 

nonlinear foam model, where small perturbations in the switching time are noticed in terms 

of wild fluctuations, the symptoms are much more pronounced, to an extent that can reverse 

the sign of the gradient and the adjoint gradients cannot be trusted any more. Therefore, the 

adjoint method gives correct gradients, but it should be realized that these correct gradients 

may not accurately reflect the global trend of  that is of our interest in finding ts,opt. 
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Another indication that relates the symptoms to the nonlinear foam model is that once foam 

covers the entire reservoir during the simulation time (i.e., for ts ≥ 10 days in Fig. 24 in 1D and 

for ts ≥ 70 days in Fig. 25 in 3D), all the symptoms disappear and the local and global trends 

become analogous. This is due to the fact that foam dynamics becomes inactive after a certain 

moment within the simulation period, because the reservoir reaches and maintains favorable 

conditions for foam survival (i.e., Sw > Sw*, So < So*, and Cs > Cs*) after a certain time (within 

the simulation period)*. Therefore, foam formation and coalescence stop after this moment; 

hence, there is no abrupt change in gas mobility afterwards. To elaborate, for shorter 

switching times (i.e., for ts < 10 days in 1D and for ts < 70 days in 3D), foam continuously 

forms throughout the entire simulation period, introducing abrupt changes in gas mobility 

throughout the entire simulation. However, for longer switching times, foam covers the entire 

reservoir within the simulation period. As a result, the simulation is entirely free from abrupt 

changes in gas mobility after the moment that foam covers the entire reservoir and foam 

dynamics become inactive. 

Appendix F shows that these symptoms are not caused by the non-differentiabilities in the 

foam tables. 

Overall, we conjecture that the abrupt changes in gas mobility caused by the nonlinear foam 

model are the main suspect for causing the symptoms. However, verifying that as the main 

source of fluctuations on the local trend and finding a remedy for relaxing them requires 

further comprehensive investigation.  

5.9.8. Recommendations 

In the cases studied in this chapter with the nonlinear foam model, we concluded that due to 

the existence of major differences between the local and global trends of , the correct adjoint 

gradients may not accurately reflect the global trend of  that is of our interest in finding the 

optimum switching time. For the majority of the switching times in the nonlinear foam model, 

the global and local trends were not analogous. Therefore, although the adjoint gradients were 

accurate, but they were unable to represent our user-defined, scale-dependent global trend. 

On the other hand, the user-defined perturbation sizes for constructing the numerical 

gradients were sufficiently small in our case and the resulting numerical gradients provided 

an acceptable representation of the global trend of . Therefore, those numerical gradients 

can be trusted in our problem in searching for the optimum switching time. As a result, for the 

                                                                    
* We also note that foam does not collapse after this moment within the time scale of our simulations. 
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cases with the nonlinear foam model studied in this chapter, the numerical gradients are 

preferred over the adjoint gradient* to be used in the steepest-ascent method for finding the 

optimum switching time.  

This sort of challenges that we encountered with the nonlinear foam model in foam EOR 

processes can be also present in other applications. Having abrupt changes in properties may 

cause similar symptoms challenging gradients-based optimization routines in these 

applications. Therefore, a thorough understanding of the process in such applications is 

necessary to be able to find a proper optimization routine for the process. Obviously, if these 

symptoms are also observed in those applications, gradient-based optimization routines 

might not be suitable and other options must be considered for optimizing these processes. 

In higher dimensions (having more than one control variable), however, a gradient-based 

optimization routine might be able to escape from a valley (local minimum) or a peak (local 

maximum) on the local trend of . In multi dimensions, the problematic zone could be a 

narrow valley or peak with steep sides (along which you cannot easily escape), but maybe 

almost flat in the other direction such that with a small perturbation you may move out to 

another region. In multi-dimensional space, there may be many more directions in which the 

objective function is hardly increasing. We tend to think about local optima as isolated 

mountain peaks, but quite likely they are more like mountain ridges. 

5.10. Summary, Conclusions, and Recommendations 

Our objective in this chapter was maximizing the cumulative oil production within the 

simulation period by finding the optimum switching time (ts,opt) between the surfactant and 

gas injection cycles. We also investigated the capability of a gradient-based optimization 

routine applied to foam EOR processes. This work is a first attempt to apply optimal control 

theory to foam EOR processes.  

Applying the nonlinear foam model introduced fluctuations in the gas-injection rate (Qg) at 

early times. These fluctuations are caused by drastic changes in gas mobility as a result of 

foam formation and coalescence in the gridblocks adjacent to the well. We found that there is 

a relationship between the spikes in Qg and the water-saturation drop in specific gridblocks. 

We showed in 1D simulations that the moment at which the nth spike in Qg occurs corresponds 

to the moment at which water saturation in the nth gridblock drops below Sw* = 0.316. We 

illustrated that if dropping below Sw* in a certain gridblock produces a spike in the Qg profile, 

                                                                    
* Provided that the right scale for perturbation sizes is used. 
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this behavior is also reflected in the time-gradient plot in the form of a spike at the same 

moment that saturation has dropped below Sw* in that gridblock. Nevertheless, our analysis 

revealed that these spikes are not influencing the accuracy of the adjoint gradients at the 

switching time. In other words, the spikes in the adjoint gradients reflect an accurate solution 

of the process once space is discretized.  

We investigated the behavior of our objective function (cumulative oil production) with 

respect to one control variable, the switching time (ts), in a SAG process in three scenarios: 

 The injection well is operating at a prescribed gas-injection rate (Scenario 1): 

 If ts > T1, injecting surfactant into the reservoir leads to improved Qo,cum over gas flood 

(i.e., Qo,cum at ts = 0 day). Thus, one must avoid switching times shorter than T1. 

 Increasing ts beyond T1 improves Qo,cum, until foam sweeps the entire reservoir at T4.  

 If foam covers the entire reservoir during the simulation (i.e., for ts > T4), no additional 

oil recovery is obtained by increasing ts. Thus, it is only beneficial to choose T1 < ts < T4.  

 For T1 < ts < T4, increasing the switching time results in higher oil recovery; economics 

would identify the switching time resulting in the most profitable process.  

 The injection well is operating at a constant prescribed bottomhole pressure (Scenarios 2, 3): 

 Injecting surfactant into the reservoir does not necessarily lead to improved Qo,cum over a 

gas flood. With fixed tgas, no improvement is obtained for ts < 18 days. With fixed tend, the 

situation is worse: improvement is achieved only at 24 days < ts < 50 days. Therefore, 

one must avoid switching times that lead to Qo,cum lower than gas flood.  

 Injecting less gas as a result of increasing ts does not necessarily result in lower Qo,cum.  

 If the foam front reaches the production well during the process, the whole process is 

inferior to the situation described above. Further increase in ts not only results in lower 

Qo,cum but also leads to wastes of surfactant.  

In all the scenarios, the switching time (ts,opt) at which the maximum cumulative oil is 

produced, is the one at which the foam front is at the verge of reaching the production well at 

the end of the simulation period but has not yet reached it. Therefore, if foam can be 

destroyed only in the proximity of the production well, more oil will be produced at the 

maximum Qo,cum. One possible way of destroying foam in that zone, is by reducing the 

surfactant concentration well below Cs*. This can be done by injecting sufficient amount of 

water in the production well, such that water would not flow beyond that zone and only lowers 

Cs in the desired region. It is also possible to use foam breaking agents instead of water, but it 
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certainly increases the costs. 

We examined the capability of a gradient-based optimization routine to find the switching 

time that maximizes the cumulative oil production in four cases varying in the simulation 

mode (i.e., 1D or 3D) and the foam model (i.e., linear or nonlinear). We showed that an 

inappropriate choice of the relative tolerance for the adjoint linear solver is the source of 

getting wrong gradients in our problem. We gained the following insights from the analysis: 

Linear foam model (1D and 3D): 

 The local and global trends of are analogous. 

 The chosen perturbation sizes for constructing the numerical gradients are sufficiently small 

for accurate determination of the gradient of , and they match the adjoint gradients.  

 The gradient-based optimization routine is capable of finding the optimum switching time. 

Nonlinear foam model (1D and 3D): 

 Replacing the linear foam model with the nonlinear foam model introduced major 

differences between the local and global trends of  and fluctuations in the adjoint gradient 

in both 1D and 3D simulations at some switching times. The local and global trends are 

analogous and the adjoint gradient is free from fluctuations only at switching times for 

which foam covers the entire reservoir within the simulation period. In those cases, the gas 

mobility-reduction factor remains relatively unchanged (without any abrupt changes) once 

Cs exceeds Cs* in all the reservoir gridblocks, until the end of the simulation. We note that 

these symptoms were not present for the linear foam model in both 1D and 3D simulations. 

 The symptoms observed in the 1D case worsened in the 3D simulations.  

 The chosen perturbations (i.e., 1 day) for constructing the global trend of in the 

fluctuating zones were not sufficiently small (to match the adjoint gradients) except for large 

switching times, for which the local and global trends of were analogous. Nevertheless, the 

user-defined numerical gradients gave an acceptable representation of the global trend of . 

 An appropriate choice of the perturbation size is case dependent. The perturbation size with 

the lowest error for one switching time can be several orders of magnitude smaller/larger 

than that for another switching time.  

 In 1D, gradient-based optimization is not suitable for finding the optimum switching time, 

unless the initial guess is larger than ts,opt.  
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 In 3D, there were major differences between the global and local trends of  in the 

neighborhood of the optima that would seriously challenge the optimization-routine’s 

performance. As a result, gradient-based optimization is not suitable for finding the 

optimum switching time in this case. 

 We conjecture that in most simulation models, the fluctuations on the local trend of  and 

the fluctuations in its gradient are small, so that they remain unnoticed. In our case with the 

nonlinear foam model, where small perturbations in the switching time are noticed in terms 

of wild fluctuations, the symptoms are much more pronounced, to an extent that can reverse 

the sign of the gradient and the gradients cannot be trusted any more. Therefore, the adjoint 

method gives correct gradients, but it should be realized that these gradients may not 

accurately reflect the global trend of the objective function that is of our interest.  

 With the nonlinear foam model, even though the numerical gradients differed from the 

accurate adjoint gradients for the chosen perturbation sizes; however, they gave an 

acceptable representation of the global trend of . As a result, in the case studied in this 

work, the numerical gradients are preferred over the adjoint gradient to be used in the 

steepest-ascent method for finding the optimum switching time with the nonlinear foam 

model.  

 We conjecture that the abrupt changes in gas mobility caused by the nonlinear foam model 

are the main suspect for causing the symptoms. However, verifying that as the main source 

of fluctuations on the local trend of and finding a remedy for relaxing them requires 

further comprehensive investigation.  

 This sort of challenges that we encountered with the nonlinear foam model in foam EOR 

processes can be also present in other applications. Having abrupt changes in properties 

may cause similar symptoms challenging gradients-based optimization routines in these 

applications. Therefore, a thorough understanding of the process in such applications is 

necessary to be able to find a proper optimization routine for the process. Obviously, if these 

symptoms are also observed in those applications, gradient-based optimization routines 

might not be suitable and other options must be considered for optimizing these processes. 

 All these complexities and challenges are yet for the case in which only one control variable 

is involved. In higher dimensions (having more than one control variable), however, a 

gradient-based optimization routine might be able to escape from local optima. Having a 

different objective function such as net present value makes the physical analysis harder and 

more complex. 



 

 
 

 

 

Chapter 6 

Conclusions and Recommendations 

 

 

6.1. Method of Characteristics 

We extend the method of characteristics (MOC) to foam flow with oil. We examine the effects 

of foam quality, initial oil saturation, foam sensitivity to high oil saturation (So) and low water 

saturation (Sw), and relative-permeability models on oil displacements with foam in one 

dimension (1D) using the MOC. The effect of low Sw and high So on foam must be well 

understood and represented accurately to avoid spurious decisions leading to failure based on 

unrealistic foam models and parameter values. Foam models that represent foam collapse at 

the limiting capillary pressure as a function of Sw should ensure that they do not imply finite 

foam strength at connate water saturation (Swr). Incorporating foam collapse at Swr results in 

the failure of a gas-injection cycle of a SAG process in cases examined in Chapter 3, regardless 

of the reservoir initial condition and foam sensitivity to Sw and So, for the relative-

permeability models we examined. The failure to represent this mechanism properly in 

models (having finite foam strength at Swr) may lead to misleading prediction of success in 

surfactant-alternating-gas (SAG) foam processes. However, Chapter 5 presents a foam model 

where foam collapses at Swr and yet successful mobility control at the foam bank is predicted. 

This topic deserves fuller study.  

Based on this study, it is not recommended to start foam EOR at early stages of the reservoir 

life for a foam formulation that is sensitive to high So. If foam is destroyed by oil at the initial 

condition (regardless of whether foam is sensitive to Sw), the displacement is nearly as 

inefficient as if no foam were present at all for both injection schemes (i.e., pure gas injection 

and foam flood, i.e., coinjection of water and gas). Failing to do so causes the foam EOR 

process to fail.  

Foam collapse at Swr is not so crucial to modeling foam-injection processes. If foam collapse at 

Swr is incorporated into the linear-relative-permeability model, foam flood is always preferred 
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over waterflood and is considered successful for the initial oil saturation smaller than the 

critical oil saturation. A foam flood is successful for any initial condition if foam is only 

weakened (not killed) by low Sw and not affected by So.  

6.2. Validating the 1D Simulations Against the MOC Solutions 

All hydrocarbon reservoirs are in 3D. However, there is no analytical solution for a real 3D 

displacement (with gravity) to evaluate the correctness and accuracy of the numerical 

simulations. The MOC provides exact solutions for benchmarking the accuracy and numerical 

artifacts of numerical simulators. Therefore, it is essential to evaluate the performance of the 

numerical simulator in 1D with the available analytical solutions from the MOC, prior to 

performing simulations in higher dimensions (i.e., 2D and 3D). This analysis elucidates many 

important aspects.  

In finding an accurate numerical solution that matches the MOC solution, some 

displacements are more sensitive to the choice of ∆t and ∆x than others. If a part of the 

solution (e.g., rarefaction wave, constant-state region) is in the proximity of the boundary at 

which drastic changes in gas mobility occur, the simulator may exhibit oscillations across the 

boundary with an improper choice of ∆t and ∆x and fail to find the correct solution. In some 

cases, we were unable to obtain a correct numerical solution with the choices of ∆t and ∆x 

examined.  

An inappropriate choice of ∆t and ∆x leads to erroneous results that might be hard to identify 

in 3D in the absence of the MOC solution. One needs to look for symptoms to identify them 

and find the proper choices of ∆t and ∆x by performing sensitivity analysis on these 

parameters. This procedure gives some assurance (if not perfect assurance) in the absence of 

the MOC solution. With the insight that we gained through the validation of the simulator’s 

performance against the MOC solution, we concluded to apply simpler physics for the foam 

model in the 3D simulations to ensure finding the correct solution.  

6.3. Simulation and Optimization of Foam EOR Processes 

6.3.1. Simulation 

Applying the nonlinear foam model introduced fluctuations in the gas-injection rate (Qg) at 

early times. These fluctuations are caused by drastic changes in gas mobility as a result of 

foam formation and coalescence in the gridblocks adjacent to the well. We found that there is 

a relationship between the spikes in Qg and the water-saturation drop in specific gridblocks. 

These gridblocks include the gridblocks adjacent to the injection well in 3D, and the entire set 
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of gridblocks in 1D. We showed for the 1D simulations that the moment at which the nth spike 

in Qg occurs corresponds to the moment at which water saturation in the nth gridblock drops 

below Sw* = 0.316. We illustrated that if dropping below Sw* in a certain gridblock produces a 

spike in the Qg profile, this behavior is also reflected in the time-gradient plot in the form of a 

spike at the same moment that saturation has dropped below Sw* in that gridblock. 

Nevertheless, our analysis revealed that these spikes are not influencing the accuracy of the 

adjoint gradients at the switching time. In other words, the spikes in the adjoint gradients 

reflect an accurate solution of the process once space is discretized.  

We investigated the effect of the switching time (ts) on oil recovery for 3D simulations of a 

SAG process in three scenarios. The scenarios varied in the active constraint of the injection 

well and the end-time constraint. We distinguished five zones in all these scenarios, separated 

by the following switching times: T1, T2, T3, and T4. For switching times shorter than T1, a  

low-mobility foam bank does not form in the reservoir to efficiently reduce the gas mobility 

and improve sweep efficiency over gas flood. The low-mobility foam bank forms for  

ts > T1. At a simulation with a switching time equal to T2, the maximum cumulative oil 

production (Qo,cum) was obtained. At this switching time, the foam front was at the verge of 

reaching the production well at the end of the simulation, but has not yet reached it. Once 

foam breaks through at the end of the simulation with the switching time longer than T2, 

Qo,cum declines dramatically. As a result, the cumulative oil production is impaired once foam 

appears in the production well for switching times longer than T2. This decline ends once the 

switching time becomes longer than T3. For the simulations with ts > T3, foam gradually 

sweeps the gridblocks at the two far sides of the reservoir sharing the production well. 

However, for ts > T4, foam sweeps the entire reservoir during the simulation. For the 

simulations with these switching times, the cumulative oil production either stays the same 

(with fixed gas-injection interval) or declines (with fixed end time) after T4.  

For the injection well operating at a prescribed gas-injection rate, one must avoid switching 

times shorter than T1. Increasing the switching time beyond T1 improves Qo,cum, until foam 

sweeps the entire reservoir at T4. If foam covers the entire reservoir during the simulation 

(i.e., for ts > T4), no additional oil recovery is obtained by increasing the switching time. 

Therefore, it is only beneficial to choose T1 < ts < T4. In this interval, increasing ts results in 

higher oil recovery; economics would identify the switching time resulting in the most 

profitable process.  

For the injection well operating at a constant prescribed bottomhole pressure, injecting 

surfactant into the reservoir does not necessarily lead to improved Qo,cum over a gas flood. 

With a fixed gas-injection interval, no improvement is obtained for switching times shorter 
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than a certain value. With a fixed end time, the situation is worse: improvement is achieved 

only at intermediate switching times. Therefore, one must avoid switching times that lead to 

Qo,cum lower than gas flood. Increasing the switching time does not necessarily lead to higher 

Qo,cum. Injecting less gas (smaller Qg,cum,inj) as a result of increasing ts does not necessarily 

result in lower cumulative oil production.  

In all the scenarios, the switching time (ts,opt) at which the maximum cumulative oil is 

produced, is the switching time at which the foam front is at the verge of reaching the 

production well at the end of the simulation period but has not yet reached it. Therefore, if 

foam can be destroyed only in the proximity of the production well, more oil will be produced 

at the maximum Qo,cum. One possible way of destroying foam in that zone, is by reducing the 

surfactant concentration well below Cs*. This can be done by injecting sufficient amount of 

water in the production well, such that water would not flow beyond that zone and only lowers 

Cs in the desired region. It is also possible to use foam breaking agents instead of water, but it 

certainly increases the costs. 

6.3.2. Optimization 

We aimed at maximizing the cumulative oil production by finding the optimum switching 

time (ts,opt) between the surfactant and gas injection cycles. We examined the capability of a 

gradient-based optimization routine in finding ts,opt in four cases varying in the simulation 

mode (i.e., 1D or 3D) and the foam model (i.e., linear or nonlinear). We showed that an 

inappropriate choice of the relative tolerance for the adjoint linear solver is the source of 

getting wrong gradients in our problem and a very tight relative tolerance is required for the 

simulator to obtain accurate gradients in 3D for the nonlinear foam model.  

For the linear foam model in both 1D and 3D simulations, the local and global trends of 

were analogous and the gradient-based optimization routine was capable of finding ts,opt. 

In both our 1D and 3D simulations, replacing the linear foam model with the nonlinear foam 

model introduced major differences between the local and global trends of  and fluctuations 

in the adjoint gradient at some switching times. The local and global trends are analogous and 

the adjoint gradient is free from fluctuations only at switching times for which foam covers the 

entire reservoir within the simulation period. In those cases, once foam forms in the entire 

reservoir, the gas mobility-reduction factor remains relatively unchanged (without any abrupt 

changes) until the end of the simulation. We emphasize that these symptoms were not present 

for the linear foam model in both 1D and 3D simulations.  

For the nonlinear foam model in 1D simulations, the gradient-based optimization routine was 
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not suitable for finding ts,opt, unless the initial guess was larger than ts,opt. 

For the nonlinear foam model in 3D simulations, there were major differences between the 

local and global trends of  in the neighborhood of the optima. This seriously challenged the 

performance of the gradient-based optimization routine and made it inappropriate for finding 

ts,opt. 

We conjecture that in most simulation models, the fluctuations on the local trend of  and the 

fluctuations in its gradient are small, so that they remain unnoticed. In our case with the 

nonlinear foam model, where small perturbations in the switching time are noticed in terms 

of wild fluctuations, the symptoms are much more pronounced, to an extent that can reverse 

the sign of the gradient and the gradients cannot be trusted any more. Therefore, the adjoint 

method gives correct gradients, but it should be realized that these gradients may not 

accurately reflect the global trend of the objective function that is of our interest. Even though 

the numerical gradients differed from the accurate adjoint gradients for the chosen 

perturbation sizes; however, the numerical gradients gave an acceptable representation of the 

global trend of . As a result, in the case studied in this work, the numerical gradients are 

preferred over the adjoint gradient to be used in the steepest-ascent method for finding the 

optimum switching time with the nonlinear foam model.  

This sort of challenges that we encountered with the nonlinear foam model in foam EOR 

processes can be also present in other applications. Having abrupt changes in properties may 

cause similar symptoms challenging gradients-based optimization routines in these 

applications. Therefore, a thorough understanding of the process in such applications is 

necessary to be able to find a proper optimization routine for the process. Obviously, if these 

symptoms are also observed in those applications, gradient-based optimization routines 

might not be suitable and other options must be considered for optimizing these processes. 

All these complexities and challenges are yet for the case in which only one control variable is 

involved. In higher dimensions (having more than one control variable), however, a gradient-

based optimization routine might be able to escape from local optima. Having a different 

objective function such as net present value makes the physical analysis harder and more 

complex. 





 

 
 

 

 

Nomenclature 

 

 

1D = one-dimensional 

3D = three-dimensional 

cp = centipoise, unit of dynamic fluid viscosity (1 cp = 10−3 Pa·s) 

Cs = surfactant concentration 

Cs* = critical surfactant concentration for foam stability 

CMC = critical micelle concentration 

dim = dimension 

dim(Sα) = number of saturation points used to represent the function Fα (for plugging tables) 

d/dts = total derivative of the objective function with respect to time at the switching time 

dSα = saturation increment of phase α 

epdry = regulates the slope of the krg curve near fmdry in Eqs. C-1 and C-2 

epdry′ = controls krg dependence on Sw in Eq. C-3 

epoil = controls krg dependence on So in Eq. C-4 

epoil′ = regulates the slope of the krg curve near fmoil in Eq. C-5 

EOR = enhanced oil recovery 

f = vector of fractional flows (fw, fo) 

fα = fractional-flow function of phase α (volume fraction) 

fαβ = (∂fα/∂Sβ)Sα 

fmr = mobility-reduction factor 

FAWAG = foam assisted water alternating gas  

floil = lower oil saturation (volume fraction) for the effect of oil on foam in Eq. C-4 

fmdry = critical water saturation (volume fraction) for foam stability in Eqs. C-1 to C-3 

fmmob = reference mobility-reduction factor  

fmoil = critical oil saturation (volume fraction) for foam stability in Eqs. C-4 and C-5 

fudry = the upper water saturation above which k
wF  is no longer affected by Sw  

Fα = function describing the effect of Sα or Cs on lamellae stability 

g = nonlinear vector-valued function 

h = time-step size, the same as ∆t 

I = initial condition 
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IJ = constant-state region 

J = injection condition 

 = objective function 

J = Jacobian matrix 

k = absolute permeability of the porous medium in Chapter 2 

k = counter (time step) in Chapter 5 

krα = relative permeability of phase α 

rk 
0  = end-point relative permeability of phase α 
f

rgk  = gas relative permeability in the presence of foam 
nf
rgk  = gas relative permeability in the absence of foam 

kg = kilograms 

L = length of the reservoir 

mD = millidarcies, unit of absolute rock permeability (1 mD  10−12 m²)  

MOC = method of characteristics 

MoReS = Modular Reservoir Simulator, Shell in-house reservoir simulator 

ODE = ordinary-differential equation 

ppm = part per million 

P = pressure 

Pwf = well bottomhole pressure 

Pc* = limiting capillary pressure for gas-water system 

Pref = reference pressure in the reservoir 

PDE = partial-differential equation 

PVI = pore volume injected 

Qsurf,cum = total amount of surfactant solution injected into the reservoir 

r = eigenvector of Eq. 6 in Chapter 2 

R = rarefaction wave 

RF = oil-recovery factor at the end of simulation (oil in excess of residual saturation) 

RF1PVI = RF after injecting one pore volume of the injected fluid  

RFsim = RF at tend,MOC computed by the numerical simulator 

s = vector of saturations (Sw, So) 

S = shock wave 

S = sensitivity matrix 

Sα = saturation of phase α (volume fraction) 

Sα* = critical saturation of phase α (i.e., water or oil) (volume fraction) 

Sαr = residual saturation of phase α (volume fraction) 

SAG = surfactant alternating gas 
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t = time 

tD,final = dimensionless time required to produce all movable oil in the reservoir  

tend,MOC = time in years to produce all movable oil in the reservoir computed by the MOC 

ts = switching time; time at which the fluid composition at the injection well changes  

TRC = passive-tracer concentration array in the simulator 

u = vector of control variables (column vector) 

vshock  = velocity across the shock 

Vres = reservoir volume 

wt. = weight 

WAG = water alternating gas  

x = position; x coordinate 

x = vector of state variables (column vector) 

y = y coordinate 

z = z coordinate 

Greek 

φ = porosity 

η = arc length 

λ = mobility 

λ = adjoint vector 

μ = viscosity 

σ = characteristic speed 

ξ = self-similarity variable; eigenvalues of Eq. 6 in Chapter 2. 

Math Signs and Operators 

| | = absolute value 

≈ = almost equal to 

√ = square root 

d = differential 

∂ = partial differential 

π = pi (math constant = 3.1416) 

∆ = delta (difference operator) 

Subscripts 

cum = cumulative 

d = downstream of the shock 
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D = dimensionless 

g = gas phase 

gb = gridblock 

inj = injected 

I = initial condition 

J = injection condition 

max = maximum 

min = minimum 

o = oil phase 

opt = optimum 

res = reservoir 

s = switch in ts/surfactant in Cs 

surf. inj. = surfactant solution injected 

tot = total 

u = upstream of the shock 

w = water phase 

x = x coordinate 

y = y coordinate 

z = z coordinate 

α = water/oil/gas phase 

 = water/oil/gas phase  

Superscripts 

* = critical 

d = downstream of the shock 

f = in the presence of foam 

full = full-strength foam  

inj = injection well 

k = killed 

max = maximum 

min = minimum 

nf = in the absence of foam 

prod = production well 

u = upstream of the shock 

w = weakened 
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Appendix A 

The MOC Displacement Routes 

 

 

 

Fig. A-1: Schematic tree of possible displacement routes encountered in Chapter 3. Solid black circles are 

the constant states, and each wave group is confined between two of them. (S), (R), (RS), and (SR) refer to 

shock, rarefaction, rarefaction/shock, and shock/rarefaction wave groups, respectively. Subscripts slow 

and fast represent the wave family to which they belong.  
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Appendix B 

Model Parameters 

 

 

Table B-1: Model parameters in Chapters 2, 3, and 4. For each phase α, Eq. 1 in Chapter 3 gives the 

relative permeability in the absence of foam. 

Swr Sor Sgr μw (cp) μo (cp) μg (cp) 

0.1 0.1 0 1 5 0.02 

0
rwk  0

rok  rgk0  

1 1 1 

fmmob 

55,000 

fmdry (Sw*) epdry epdry′ fudry 

0.316 1,000 2 0.532 

fmoil (So*) epoil epoil′ floil 

0.2 2 1,000 0.1 

* epoil′ is equal to 100 if oil weakens and water kills foam. 

 
Table B-2: Model parameters in Chapter 5. Relative-permeability parameters correspond to the 

nonlinear relative-permeability model introduced in §4.2.4. Foam parameters are related to the nonlinear 

foam model (water weakens foam and oil kills foam). 

Swr Sorw Sorg Sgr μw (cp) μo (cp) μg (cp) 

0.1 0.3 0 0 
computed by 

MoReS 
5 0.02 

rwK  rowK  rogK  rgK  

0.3 0.8 0.8 0.94 
nw now nog ng 
4 2 3 3 

fmmob 

1,000 

fmdry (Sw*) epdry fmoil (So*) epoil floil 

0.316 1,000 0.4 1.5 0 

fmsurf (Cs*)  epsurf 

1.2E-3  100 
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Table B-3: Reservoir and well parameters for the 3D simulations in Chapter 5. Same parameters apply to 

1D simulations in Chapter 5 except the length and number of gridblocks: the 1D reservoir is 100x1x1 m 

with 1oox1x1 gridblocks (i.e., ∆x = ∆y = ∆z = 1 m); unless otherwise is stated. 

Length (m) Width (m) Height (m) Depth(m) ∆x (m) ∆y (m) ∆z (m) 

100 100 30 1,600 10 10 10 

φ kx (mD) ky (mD) kz (mD) 

0.2 100 100 10 

Cs,inj = 2Cs* Pref (bar) inj
wf,maxP (bar) prod

wf,minP (bar) 

2.4E-3* 165 250 145 

* 2.4 kg surfactant in 1000 kg surfactant solution.



 

 

 

 

Appendix C 

Foam Models 

 

 

C.1. Introduction 

This appendix introduces the functions we used to incorporate foam sensitivity to water 

saturation (Sw), oil saturation (So), and surfactant concentration (Cs). We assume that foam 

could be weakened or killed as a result of low Sw or high So, and its strength is dependent on Cs 

below a critical concentration. We denote the functions representing foam sensitivity to Sw, So, 

and Cs by Fw, Fo, and Fs, respectively. In case of foam sensitivity to Sw and So, if foam is 

weakened, we add superscript w (e.g., w
wF , w

oF ) and if it is killed, we add superscript k  

(e.g., k
wF , k

oF ).  

We applied only two of the built-in functions of STARS™ (i.e., w
wF in Eq. C-1 from the 1998 

version and k
oF  from the 2007 version). Some of these functions (e.g., k

oF  in Eq. C-4 and Fs in 

Eq. C-7) are not differentiable at certain points. Non-differentiable foam-sensitivity functions 

result in non-differentiable fractional-flow functions at those points, leading to problems in 

solving PDEs. This problem exists for both the MOC solution procedure and numerical 

simulators, but it is serious for the MOC solution. Therefore, we did not apply the Fs function 

provided by STARS™ and we introduced a new differentiable correlation instead. We also 

stated the condition for which k
oF is differentiable.  

New correlations are introduced for the sensitivity types to Sw and So (i.e., k
wF  and w

oF ) that 

are not available in STARSTM. Although we have adopted some of the empirical correlations 

from this simulator, we have not, however, used this simulator in any of our simulations. 

Each of the functions w
wF , k

oF , k
wF , w

oF , and their combinations [( w
wF , k

oF ); ( w
wF , w

oF );  

( k
wF , k

oF ); ( k
wF , w

oF )] are used in Chapters 3 and 4. Nevertheless, the combination of w
wF   

(Eq. C-2) and k
oF is the only choice used in Chapter 5. Therefore, the foam-parameter values 

mentioned in this appendix correspond to those used in Chapters 3 and 4, unless otherwise is 
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stated. Table B-1 summarizes the foam-parameter values applied in Chapters 3 and 4, whereas 

Table B-2 gives the parameter values used in Chapter 5. 

C.2. Effect of fmmob 

fmmob corresponds to the normalized resistance to flow of a foam of minimum-size bubbles, 

in the absence of factors increasing bubble size (Surguchev et al. 1995). Cheng et al. (2000) 

fitted the oil-free core-flood data of Alvarez (1998) for foam without oil in Berea core at room 

temperature [also in Alvarez et al. (2001)] to Eq. C-1. They found a match with fmdry equal to 

0.316 and fmmob approximately equal to 55,000. In Chapters 3 and 4 we use this value of 

fmmob for the 1D analytical and numerical simulations. In Chapter 5, we set fmmob = 1,000 

to minimize the effect of abrupt changes in the gas mobility, to ensure finding the correct 

solution in the forward run with a reasonable time-step and gridblock size in 3D simulations. 

In addition, if a foam represented by a high value of fmmob such as 55,000 were to form near 

an injection well, it would cause a significant drop in the injection rate in an injection well 

operating at a constant prescribed bottomhole pressure. In the case of injecting at a fixed rate, 

the presence of a very low mobility foam near an injection well leads to an extremely high 

bottomhole pressure that can even lead to fracturing the formation around the wellbore.  

 

Fig. C-1: Effect of fmmob on oil recovery and cumulative gas injected in Scenario 3 in Chapter 5 

(§5.3.2.3) at the optimum switching time equal to 44 days. Values in the figure are after 250 days of 

simulation. Gas is injected only after the switching time. The injection well operates at a constant 

prescribed bottomhole pressure. The larger is fmmob, the stronger the foam is. Stronger foam hampers 

gas injection and subsequently oil production drops for fmmob above a certain value (7,000 here). 
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Moreover, a higher value of fmmob and therefore a stronger foam does not necessarily 

correspond to higher oil production. In our simulations in Chapter 5 at which the injection 

well operates at a constant prescribed bottomhole pressure, a larger value of fmmob (larger 

than 100) causes reduced gas injection because of limits on the bottomhole pressure. We find 

an optimum value for fmmob that leads to the highest oil production, above which oil 

production declines due to the formation of too-strong foam. For the choice of parameters 

used in Chapter 5 where water weakens foam and oil kills foam, the optimum value of fmmob 

is approximately 7,000 (Fig. C-1). Since in this chapter we assume that SoI = Sorw, gas is the 

only displacing fluid unless So goes above Sorw.  

C.3. Effect of Low Water Saturation on Foam 

C.3.1. Foam is Weakened at Low Water Saturations 

We use the STARS™ (1998 version) function [see Cheng et al. (2000)] for this purpose (see 

Fig. C-2a): 

 arctan ( )
0.5 (1 ),ww

w wr w or

epdry S fmdry
F S S S




      (C-1) 

where fmdry corresponds to Sw* and epdry regulates the slope of the krg-function curve near 

fmdry. The larger is the epdry, the more abrupt the transition is between strong foam and 

foam collapse. 

 
 (a) (b) 

Fig. C-2: Effect of foam on gas relative permeability. Note the logarithmic scale of the vertical axes. The 

gray-filled region represents the region with foam. The curves in the absence of foam are according to the 

linear relative-permeability model in Chapter 3 and the parameters are based on Table B-1. (a) Foam is 

weakened at low water saturations (i.e., Sw ≤ Sw*) according to Eq. C-1 and oil has no effect. Note that 

foam strength does not approach zero at Sw = Swr as it should. (b) Foam is killed at high oil saturations 

(i.e., So ≥ So*) according to Eq. C-3 and water has no effect.  
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As mentioned earlier, Cheng et al. (2000) fitted the oil-free core-flood data of Alvarez (1998) 

to Eq. C-1 and found a match with fmdry = 0.316. We choose the same values in our model 

since we could not find a data set having both the water- and oil-related parameters available 

in the same data set. We set epdry to 1,000, smaller than the value Cheng et al. (2000) 

selected. We used the same values for fmdry and epdry in Chapter 5. 

One shortcoming of Eq. C-1 is that foam does not collapse completely at Sw = Swr (Fig. C-2a), 

despite the very high capillary pressure at Sw = Swr; for our parameter choices in Table B-1, krg 

is reduced by a factor of 82 at Swr in the absence of any oil effect. One way to deal with that is 

by making w
wF a function of capillary pressure, choosing another function, or choosing 

parameter values that set w
wF to zero at Sw = Swr. A subtle change in Eq. C-1 makes foam 

strength approach zero at Swr: 

 
 

,
arctan ( )1

( ) ( ) (1 ).
arctan ( )

ww new w w
w w w w wr wr w or

wr

epdry fmdry

epdry fmdry

S
F F S F S S S S

S

  
        

 (C-2) 

This change hardly affects w
wF except near Swr, but applying this equation significantly alters 

the behavior observed from Eq. C-1 for gas/SAG processes.  

C.3.2. Foam is Killed at Low Water Saturations 

For this purpose, we need a continuous function equal to zero for Sw ≤ fmdry and gradually 

increasing to unity for Sw > fmdry. This function must also be differentiable at Sw = fmdry. 

Manipulating Eq. C-1 for this purpose (by introducing a new function that is equal to zero at 

Swr ≤ Sw ≤ fmdry and equal to Eq. C-1 for Sw > fmdry) results in a function that is 

discontinuous and not differentiable at Sw = fmdry. Therefore, we introduced a function that 

is differentiable at Sw = fmdry; this is similar to Eq. C-4 for foam sensitivity to oil saturation 

(see below): 

 

 

    
   

'

0

1 (1 )

wr w

epdry

k w
w w

w or

S S fmdry

S fmdry
F fmdry S fudry

fudry fmdry

fudry S S

, (C-3) 

where fmdry corresponds to Sw*, fudry is the upper water saturation above which k
wF  is no 

longer affected by Sw and k
wF  becomes equal to unity, and epdry′ controls the krg dependence 

on Sw and should be larger than unity; otherwise, function k
wF will not be differentiable at  

Sw = fmdry. This function is not differentiable at Sw = fudry, but our MOC results are not 

affected by it because the solutions always shock past this region. In order to plot the 
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saturation paths for the MOC solution including Sw = fudry (Fig. 6a in Chapter 1), we plot the 

saturation paths from one side of the diagram until reaching the point of discontinuous 

derivative (i.e., fudry), at which we stop using the expression for k
wF  that applies on that side 

of the discontinuity. We switch to a new expression for k
wF on the other side of the 

discontinuity and continue constructing the paths on the other side of the discontinuity. We 

set fudry equal to 0.532 and epdry′ equal to 2 in order to have a smooth, rounded corner at 

fmdry, and we keep fmdry equal to 0.316.  

The SAG success design criterion developed from the MOC without oil (Shan and Rossen 

2004) focuses on the mobility of the foam bank behind a shock identified on the gas/water 

fractional-flow curve without mobile oil. Our models in Chapter 3 (with the linear relative-

permeability model in Eq. 1 of Chapter 3 and parameters in Table B-1) give the following 

behavior for gas injection in the absence of mobile oil (So = Sor). For full-strength foam 

(fmmob = 55,000; Fw = 1), the fractional-flow curve fw(Sw) has a corner at Sw = 0.1 and rises 

steeply for Sw > 0.1. Therefore, with no mobile oil present, the fractional-flow solution for gas 

injection in a SAG process (Zhou and Rossen 1995; Dong and Rossen 2007) gives a shock 

from Sw = (1 - Swr) to Sw = 0.1, with full-strength (low-mobility) foam behind the shock. If  

Eq. C-1 applies instead, for gas injection in a SAG process there is a shock from Sw = (1 - Swr) 

to Sw = 0.1, with gas mobility reduced by a factor of 82 in the gas bank. If Eq. C-2 applies, 

there is a shock to Sw = 0.1454, with gas mobility reduced by a factor of 22.6; total mobility is 

more than twice that of water alone at residual oil saturation. This case would not be 

considered really satisfactory for a SAG process (Shan and Rossen 2004), but it is significantly 

better than a gas flood without foam. If Eq. C-3 applies, there is a shock from Sw = (1 - Swr) to 

a point of tangency at Sw just above 0.316, with nearly complete foam collapse throughout the 

gas bank. (Gas mobility is reduced by only 1% at the point of tangency.) Although there is a 

point of tangency rather than a corner in the fw(Sw) curve, Eq. C-3 is essentially like cases 

described by Zhou and Rossen (1995) and Dong and Rossen (2007), with a shock to nearly 

complete foam collapse behind the gas front. Thus, none of our examples in Chapter 3 include 

both foam collapse at Swr and a low-mobility foam bank predicted without mobile oil. Among 

several foam models we tested, none satisfied this second criterion with the linear relative-

permeability model (Eq. 1 in Chapter 3). The nonlinear relative-permeability model used  

(Eq. 2 in Chapter 3), which does not produce elliptic regions, does not satisfy this second 

criterion. However, Chapter 5 presents a foam model where foam collapses at Swr (Eq. C-2) 

and yet successful mobility control at the foam bank is predicted (Fig. 8 in Chapter 5). In this 

case, there is a shock from the initial condition [Sw(I) = 0.7] to a foam bank with a mobility 

just slightly less than that of the water ahead of it (in time). This topic deserves fuller study. 
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C.4. Effect of High Oil Saturation on Foam 

It is generally accepted that foam is destabilized by oil. However, foam strength is influenced 

by the compositions of oil, surfactant and aqueous phase (Li et al. 2008). The most widely 

known mechanism of foam destruction by oil is that foam films rupture, as oil droplets enter 

and spread at the air/water interface of the foam films (Koczo et al. 1992). The foam/oil 

interactions and the effect of oil on foam stability and the mechanisms involved are widely 

investigated in Nikolov et al. (1986), Manlowe (1990), Schramm and Novosad (1992), Koczo 

(1992), and Vikingstad (2006).  

Here, we only incorporate the effect of oil saturation on foam strength, based on the following 

experiments. Law et al. (1992) presented the results of 1D foam-generation experiments inside 

a sandpack in the presence of oil. For So ≥ 0.25, foam collapsed and pressure gradient was the 

same as when there was no foam. They also stated that determining So* is very difficult and 

dependent on the surfactant. For a certain surfactant, results indicated a range of 0.15 to 0.25 

for So*. Hatziavramidis et al. (1995) used a value of 0.3 for So*, determined experimentally, for 

their simulations. Svorstøl et al. (1996) found that So affects foam performance in their 

experiments at Snorre reservoir conditions. Svorstøl et al. (1996) and Mannhardt and Svorstøl 

(1999) have shown that apparent foam viscosity is strongly reduced at high So at Snorre 

reservoir conditions. However, foam was still present for So > So* in their experiments. They 

reported apparent foam viscosities of the order of 1,000 cp for 0.08 < So < 0.13, 200 cp at  

So = 0.19 and 60 cp at So= 0.42. Mannhardt and Svorstøl (1999) also found that apparent 

foam viscosity decreased steeply for So between 0.13 and 0.15. Above So*, strong foams with 

apparent viscosities of about 200 cp were still formed with the same surfactant, compared to 

the apparent gas viscosity in the absence of surfactant of 0.5 to 0.7 cp. Considering these 

observations, we set So* = 0.2 in our models in Chapters 3 and 4. In Chapter 5, we set So* equal 

to 0.4. 

C.4.1. Foam is Killed at High Oil Saturations 

We use the STARS™ function (2007 version) for this purpose (see Fig. C-2b): 
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,

0 (1 )
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epoil

k o
o o

o wr

S floil

fmoil S
F floil S fmoil

fmoil floil

fmoil S S



 

    
   

 (C-4) 

where fmoil corresponds to So*, floil is the lower oil saturation at which oil affects foam, and 

epoil controls the krg dependence on So. k
oF is differentiable at So = fmoil only if epoil is larger 
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than unity. We set epoil equal to 2 and floil equal to Sor. In Chapter 5, we set epoil equal to 1.5 

and floil equal to zero. 

C.4.2. Foam is Weakened at High Oil Saturations 

We used a function similar to w
wF (Eq. C-1) for defining the weakening effect of oil: 

  ,old
arctan '

0.5 (1 ),ow
o or o wr

epoil fmoil S
F S S S


 

      (C-5) 

where fmoil corresponds to *
oS and epoil′ regulates the slope of the krg curve near fmoil. 

C.4.2.1. Enhancement 

Eq. C-5 has a shortcoming that Fo does not equate to zero in the absence of any oil. This 

shortcoming is fixed in the following equation, in which Fo (So = 0) = 1: 

 ,new ,old ,old1 ( 0) 0 (1 ).w w w
o o o o o wrF F F S S S        (C-6) 

C.5. Effect of Low Surfactant Concentration on Foam 

Surfactants serve as foaming agents for foam generation. Various experimental studies 

(Svorstøl et al. 1996; Vassenden and Holt 1998; Mannhardt and Svorstøl 1999; Apaydin and 

Kovscek 2000) revealed that foam strength was reduced only at relatively low surfactant 

concentrations (Cs) (Fig. C-3).  

 
Fig. C-3: Schematic of the foam sensitivity to surfactant concentration: foam strength is affected for  

Cs < Cs*. The black-dotted line correspond to epsurf = 1. The black-solid curve represents epsurf > 1 and 

the light-gray dashed curve is for epsurf < 1. 

The effect of Cs on foam strength is represented in STARSTM (2007 version) by the following 

function: 
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where Cs* is the critical surfactant concentration above which foam is at its full strength in the 

absence of any other factors influencing foam strength (Fig. C-3). However, this function is 

not differentiable at Cs*. Instead, we use another function that is smooth (i.e., continuous and 

differentiable) at every Cs: 

   tanh ,
c

b

s sF a aC  (C-8) 

where a, b, and c are the parameters regulating the Fs curve. In our simulations, we took Cs* 

half the injected concentration; i.e., Cs*=0.0012 and epsurf = 100. By adjusting the above 

parameters (see Table C-1) we can get very good matches with Eq. C-7 as shown in Fig. C-4: 

 

Fig. C-4: Comparing Eqs. C-7 and C-8 with the regulating parameters in Table C-1 for Cs* = 0.0012. 

Table C-1: Regulating parameters in Eq. C-8 for matching Eq. C-7 with Cs* = 0.0012 or 0.12 wt.%. 

 
a b c 

epsurf = 10 750 50 0.23 

epsurf = 100 800 130 1 

As mentioned earlier, we took Cs* half the injected concentration (Cs,inj). In reality, foam 

strengthens more than linearly with Cs (epsurf < 1 in Fig. C-3). However, if one implements 

the corresponding physical relationship into the simulator, the surfactant front spreads out 

due to numerical dispersion. Therefore, foam forms in the regions that surfactant would not 

have reached in the absence of numerical dispersion. To reduce this effect and move the foam 

bank back to nearly where it should be, we pick Cs* = ½ Cs,inj and we choose a high value of 

0

0.2

0.4

0.6

0.8

1

0 0.0005 0.001 0.0015 0.002

F
s

Cs

epsurf=10,
epsurf=100,
epsurf=10,
epsurf=100,

Eq. C-8
Eq. C-8
Eq. C-7
Eq. C-7



Appendix C: Foam Models 179 

 

epsurf (100 in our case) to make foam suddenly form at Cs* (Fig. C-4). The strategy of setting 

Cs* = ½ Cs,inj was first mentioned in Rossen et al. (1999) and explored in depth in Cheng 

(2002). We have illustrated and discussed the effect of this choice (i.e., epsurf = 100) in 

reducing the effect of numerical dispersion in §4.4.3. If one uses epsurf = 1, then Cs* must be 

taken equal to Cs,inj or a physically measured concentration at which full-strength foam is 

attained. Using Cs*= ½ Cs,inj and epsurf = 1 results in foam bank acceleration by dispersion. 

C.6. Complications in Implementing Foam Models in a Ternary Diagram* 

In the absence of foam, all the saturation paths are straight lines (see Fig. 1a in Chapter 3) and 

there is no inflection point along them, using the linear relative-permeability model in  

Eq. 1 in Chapter 3. In this case, the only umbilic point is along the Swr line. The solution here 

is of type (R)(R); that is, both waves are rarefaction waves. 

By incorporating only fmmob in Eq. 3 in Chapter 3, the ideal case of full-strength foam occurs, 

where nf
rgk is reduced 55,001-fold everywhere (see Fig. 2a). The single umbilic point is on the 

Sor line, and there is no inflection point along the saturation paths on the ternary diagram. 

Because of the presence of strong foam and hence reversal of the direction of the arrows along 

the path from J to I compared to what we see in the no-foam case in Fig. 1a, the only possible 

solution for the injection schemes appearing in this work is of type (S)(S): That is, both waves 

are shock waves. Note the small segment of fast path close to the injection point in the inset of 

Fig. 2a. Such a small segment also exists in Fig. 3 and Fig. C-5a.  

If foam is killed at low water saturations (i.e., Sw ≤ Sw*) and oil has no effect, two distinct 

zones appear on each side of the Sw = Sw* line (see Fig. 6a). The zone with Sw ≤ Sw* is exactly 

similar to the same zone in the no-foam case in Fig. 1a. As Sw exceeds Sw*, paths shift abruptly 

from the no-foam to full-strength-foam pattern. Moreover, inflection points emerge in this 

case, but only along the fast paths. The inflection locus is a straight line at Sw = Sw* = fmdry. 

There are three umbilic points in this case, one along each residual-saturation line.  

Implementing the weakening effect of water on foam according to Eq. C-1 (oil has no effect) 

again divides the ternary diagram into two zones at Sw = Sw* (see Fig. 6b). However, the zone 

at Sw ≤ Sw* no longer resembles the same zone in Fig. 1a because the umbilic point along the 

Swr line is gone. As in the preceding paragraph, inflection points appear only along the fast 

paths, but the inflection locus is no longer a straight line. The only umbilic point in this case is 

along So = Sor and the only possible solution is of type (R)(S).  

                                                                    
* All the figures that we refer to in this section belong to Chapter 3. 
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On the other hand, if foam is affected only by high oil saturations [i.e., killed (Fig. 3a) or 

weakened (Fig. 3b) at So ≥ So*], and not affected by low water saturations, inflection points 

occur only along the slow paths. The inflection locus is a straight line at So = So*. Note the 

abrupt turns in Fig. 3a along the slow paths at So* because of the sharp change in foam 

strength across the foam/no-foam boundary at So*. In this case and all the cases following, 

there is one umbilic point along every residual-saturation line.  

In cases where foam strength is affected by both high oil and low water saturations, the 

ternary diagram becomes more complicated because of the occurrence of several inflection 

points along the saturation paths. Inflection points would occur on both fast and slow paths 

passing through the foam/no-foam boundary or on those located in the regions where foam 

exists. In all these cases, there is at least one inflection point along the slow paths passing 

through the line at So = So* at or around So*. There might be multiple inflection points along 

the slow paths in some cases (e.g., Figs. 5 and 6). No inflection point emerges along the slow 

path, if So < So* along the entire path. However, there is always a single inflection point along 

the fast paths passing through Sw = Sw* located in the region with foam present. 

Fig. C-5 shows a challenging case in which our fine-grid numerical simulator did not find the 

solution. This figure shows the result of the numerical simulation for the gas-injection cycle of 

a SAG process. The correct displacement route consists of two shocks with IJ along the Swr 

line at (0.1, 0.1957, 0.7043). The reason for the failure of the numerical simulation appears to 

be that point IJ is very close to So* and a very small perturbation may cause the solution to fall 

to the right of the foam/no-foam boundary, where krg changes drastically. Thus, the numerical 

solution had numerous oscillations across this boundary (Figs. C-4a and C-4b), and it was 

unable to find IJ. We have discussed the cause of these oscillations in §4.5.1. In this case, we 

used the analytical procedure to find IJ (Fig. C-5a). In principle, it should be possible to 

overcome these oscillations by sufficiently reducing the time-step and gridblock size; however, 

it would be computationally very expensive. (We could not find a solution free from 

oscillations even with ∆t = 1E-6 day and ∆x = 0.01 m in a 100 m long reservoir.) In Fig. C-5, 

the value of fmmob is equal to 55,000. This results in a very sharp transition in gas mobility 

over the foam/no-foam boundary leading to the situation where the numerical simulation 

does not find the correct solution. However, the numerical simulator finds the correct solution 

for the smaller values of fmmob in ranges lower than 1,000 (a much weaker foam), leading to 

a smoother transition in gas mobility over the foam/no-foam boundary. 

These complexities make the task of finding the displacement route more difficult. We used 

the numerical simulator in a number of cases to find the approximate trajectory of the routes 

before applying the analytical criteria to confirm the solution. 
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(a) 

 

(b) (c) 

Fig. C-5: Numerical simulations do not always find the correct solution, and, in this example, they are in 

substantial error. Here, foam is killed at So(I) ≥ So* (So* = 0.2) and water has no effect. The displacement 

route found analytically for gas-injection cycle of SAG with I at (0.83, 0.17, 0) consists of two shocks with 

IJ along the Swr line at (0.1, 0.1957, 0.7043). However, the numerical solution cannot find the correct 

solution. (a) Saturations (based on the numerical solution) across the reservoir at different values of tD 

plotted on the ternary diagram depicted by small, dark-gray circles. Note the oscillations across the 

foam/no-foam boundary at So = So*. The MOC solution is shown by the thick gray, dotted lines connecting 

points J, IJ, and I. (b) Water-saturation profile at various values of tD, obtained numerically. Water 

saturation is alternating wildly from one gridblock to the next. Note that saturations in individual 

gridblocks do not fluctuate versus tD (not shown here). (c) Water-saturation profile at various values of tD 

according to the MOC solution.   
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Appendix D 

Numerical Dispersion 

 

 

The numerical dispersion coefficient is derived for two-phase immiscible equations in one 

dimension neglecting capillary pressure. A similar concept applies for three-phase equations. 

w wS f
u

t x

 

 
 

0,   (D-1) 

where Sw is water saturation, fw is water fractional-flow function, φ is porosity, t is time, x is 

the x-coordinate, and u is the total velocity. We discretize Eq. D-1 upwind in space and we use 

a backward Euler time approximation (implicit).  
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Taylor’s expansion: 
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The discretized terms in Eq. D-2 are substituted with Eq. D-3 and Eq. D-4: 
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We derive the following auxiliary expressions by differentiating Eq. D-1 with respect to time 

(Eq. D-6) and space (Eq. D-7): 
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We substitute Eq. D-6 in Eq. D-5: 

w w w w w w

w w

S f f S f St u x
u u

t x x S t x S x
 


          

        
          

d d
... .

2 d 2 d
 

Applying chain rule: 
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We substitute Eq. D-7 in Eq. D-8: 
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After some manipulations and rearranging Eq. D-9 in terms of ∂2Sw/∂x2 we finally get: 
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The expression preceding ∂2Sw/∂x2 term in Eq. D-10 is called the numerical dispersion 

coefficient. 



 

 

 

 

Appendix E 

Simple Example of Adjoint Equation 

 

 

We construct the adjoint equation in Eq. 13 in Chapter 5 here for a very small example. We 

consider a 1D reservoir including 3 gridblocks with a single-phase, isothermal flow for only 

one time step. There is an injection well operating at a constant prescribed rate (i.e., Qinj) and 

a production well operating at a constant prescribed bottomhole pressure (i.e., prod
wf,minP ). These 

wells are located at the opposite sides of the reservoir. Therefore, we have: 

 N = 1 (number of time steps) 

 Ngb = 3 (number of gridblocks) 

 dim(u1) = dim(u) = 2 (i.e., Qinj and prod
wf,minP ) 

 dim(x1) = dim(x) = 3 [i.e., phase pressures in each gridblock (p1, p2, p3); we ignored the state 

variables corresponding to well discretization nodes to avoid further complexity.] 

 dim (g1) = dim(x1) = 3 [i.e., 3 pressure equations in each gridblock ( g g g31 2
1 1 1, , ); we ignored 

the well equations to avoid further complexity.] 

Therefore, we have 

1 1
1

2 2
1 1 1 1
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P

p g

   
              
    

   

x x u u g g  

where in j
kg , k and j are the time-step and gridblock index, respectively. We aim at 

constructing the adjoint equation: 

T T T .x xg    (E-1) 
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Having only one time step, T
xg is a block matrix with only one block T

1A (see Eqs. 14 and 15 in 

Chapter 5), and this element has a dimension of dim(x1)×dim(x1): 

1
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The adjoint vector λT and T
x are column vectors with dim(x). Therefore, Eq. E-1 reads: 
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 (E-2) 

where in j
k , k and j are the time-step and gridblock index, respectively. Eq. E-2 has 3 

unknowns (i.e., 31 2
1 1 1, ,   ) that are solved from the above system of equations. It is important 

to note that 1A is known and is constructed after the convergence of the Newton-Raphson 

iterations during the forward run and x is computed based on the state vector computed in 

the forward run. Eq. E-2 corresponds only to one time step (k = N = 1). It is similar to Eq. 17 in 

Chapter 5. 



 

 

 

 

Appendix F 

Are Local Fluctuations in the Objective 

Function Caused by Foam Tables? 

 

 

Another important issue to discuss is the source of fluctuations (peaks and valleys) on the 

local trend of that are not noticed on the global trend in Chapter 5. At first, they might be 

attributed to the discontinuities of the plugging table interpolation (see §4.3.2) used instead of 

analytical expressions to represent the foam model. Tables introduce non-differentiabilities 

(i.e., discontinuities in the derivatives of gas mobility with respect to Sw, So, and Cs) that might 

lead to the fluctuations on the local trend of . In order to examine this idea, the source code 

of the simulator was adapted and the plugging table was replaced with the analytical 

expression for the foam model and its exact analytical derivatives. The resulting source code is 

implicit and applies the exact derivatives. However, similar fluctuations are still evident as 

shown in Fig. F-1. Therefore, the local fluctuations are not caused by foam tables.  

 
Fig. F-1: A peak on the local trend of and a possible discontinuity in the time gradient still exist after 

implementing the exact foam functions in the source code of the simulator. 
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Summary 

 

 

Chemical enhanced oil recovery (EOR) is relatively expensive due to the high cost of the 

injected chemicals such as surfactants. Excessive use of these chemicals leads to processes 

that are not economically feasible. Therefore, optimizing the volume of these injected 

chemicals is of extreme importance. We intend to maximize the long-term cumulative oil 

production (Qo,cum) through optimizing the volume of the injected surfactant (represented by 

the switching time between surfactant and gas slugs) in a surfactant-alternating-gas (SAG) 

process in a 3D reservoir using a commercial simulator. Evaluating the correctness and 

accuracy of the numerical simulator is an essential step towards achieving reliable results. 

However, since no analytical solution exists for a real 3D displacement (with gravity), the 

performance of the simulator in 1D is evaluated against the exact analytical solutions provided 

by the method of characteristics (MOC). 

The MOC has proved useful in highlighting key mechanisms and strategies for improving 

foam performance. We extended the MOC to foam flow with oil and examined the effects of 

foam quality, initial oil saturation So(I), and foam sensitivity to high oil saturation (So) and 

low water saturation (Sw) on oil recovery in 1D. In the cases examined, our analysis revealed 

the following insights. Regardless of whether foam is sensitive to Sw, if foam is destroyed by 

oil at the initial condition, the displacement is nearly as inefficient as if no foam were present 

at all. In real foams, foam bubbles collapse at the residual water saturation (Swr) because of 

high capillary pressure. The failure to represent this mechanism properly in models leads to 

misleading prediction of success in SAG foam processes. Incorporating foam collapse at Swr 

results in the failure of a gas-injection cycle of a SAG process, regardless of the reservoir initial 

condition and foam sensitivity to Sw and So, for the relative-permeability models we 

examined. A foam flood is successful for any initial condition if foam is only weakened  

(not killed) by low Sw and not affected by So. Based on this study, it is not recommended to 

start foam EOR at early stages of the reservoir life for a foam formulation that is sensitive to 

high oil saturation, because high So(I) causes the foam EOR process to fail. Thus, the effect of 

low Sw and high So on foam must be well understood and represented accurately to avoid 

spurious decisions leading to failure based on unrealistic foam models and parameter values. 
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The MOC solutions developed earlier are utilized to evaluate the performance of the simulator 

in 1D. In finding an accurate numerical solution that matches the MOC solution, some 

displacements were found to be more sensitive to the choice of time-step (∆t) and gridblock 

size (∆x) than others. For instance, if a part of the solution (e.g., rarefaction wave, constant-

state region) is in the proximity of the foam/no-foam boundary at which drastic changes in 

gas mobility occur, the simulator may exhibit oscillations across the boundary with an 

improper choice of ∆t and ∆x and fail to find to the correct solution. Moreover, an 

inappropriate choice of ∆t and ∆x leads to erroneous results that might be hard to identify in 

3D in the absence of the MOC solutions. One needs to look for symptoms, such as gridblocks 

with unexpected high/low saturation/pressure, to identify artifacts and find a proper choice of 

∆t and ∆x by performing sensitivity analysis on these parameters. Insights achieved from this 

analysis led to applying simpler physics for the foam model in the 3D simulations to ensure 

finding the correct solution. 

The effect of the switching time (ts) between surfactant and gas slugs on Qo,cum was examined 

for 3D simulations of a SAG process in scenarios varying in the active constraint on the 

injection well and the end-time constraint. For all the scenarios, the highest oil recovery was 

obtained at a value of ts for which the foam front was on the verge of breaking through to the 

production well, but has not yet broken through, at the end of the simulation. Moreover, the 

cumulative oil production was impaired once foam appeared in the production well. 

Therefore, if foam can be destroyed in the proximity of the production well, the optimal oil 

recovery increases. On the other hand, for an injection well operating at a constant prescribed 

bottomhole pressure, injecting surfactant into the reservoir did not necessarily lead to 

improved Qo,cum over a gas flood. Further, increasing ts did not result in higher Qo,cum under 

certain conditions. In addition, injecting less gas as a result of increasing ts did not lower 

Qo,cum in many occasions. 

An investigation was conducted on the capability of a gradient-based optimization routine 

applied to foam EOR processes. We concluded that an inappropriate choice of the relative 

tolerance for the adjoint linear solver is the source of getting wrong gradients in our problem, 

and a very tight relative tolerance was required for the simulator to obtain accurate gradients 

in certain problems. We applied two types of foam models in this investigation: a linear model 

introducing gradual changes in gas mobility and a nonlinear model leading to abrupt changes 

in gas mobility. For the linear foam model (both in 1D and 3D simulations), the local and 

global trends of the objective function (Qo,cum) were analogous and the optimization routine 

was capable of finding the optimum switching time (ts,opt). However, replacing the linear foam 

model with the nonlinear foam model introduced inconsistencies between the local and global 
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trends of the objective function and fluctuations in the adjoint gradient, in both 1D and 3D 

simulations. For the nonlinear foam model, the local and global trends were analogous and 

the adjoint gradient was free of fluctuations only at switching times for which the entire 

reservoir was swept by foam within the simulation period. For the 1D-nonlinear foam model, 

the gradient-based optimization routine was not suitable for finding ts,opt, unless the initial 

guess is larger than ts,opt. For the 3D-nonlinear foam model, there were major differences 

between the local and global trends of  in the neighborhood of the optima that would 

seriously challenge the performance of the optimization routine. As a result, a gradient-based 

optimization routine was not suitable for finding ts,opt.  

Overall, it is shown that accurate representation of the physics of the process in the simulation 

model and also careful examination of the mechanisms controlling the displacement process 

elucidate many valuable aspects of the foam EOR processes. Their inaccurate representation 

in simulations or neglecting them may result in a prediction of success for a process that will 

be unsuccessful in a real reservoir. Moreover, formation of foam may introduce abrupt 

changes in gas mobility that might challenge the performance of the simulator and also the 

gradient-based optimization routines.  

 





 

 

 

 

Samenvatting 

 

 

Chemisch-verbeterde oliewinning (“enhanced oil recovery”; EOR) kost relatief veel geld 

vanwege de hoge kosten van de geïnjecteerde chemicaliën zoals oppervlakteactieve stoffen. 

Overmatig gebruik van deze chemische stoffen leidt tot processen die niet economisch 

haalbaar zijn. Het is daarom van belang om het volume van deze chemische stoffen te 

optimaliseren. Ons doel is de cumulatieve olieproductie over een langere termijn (Qo,cum), 

berekend m.b.v. een commerciële driedimensionale (3D)-reservoir simulator, te 

maximaliseren. Dit doen we door de schakeltijden in een proces van alternerende injectie van 

van oppervlakteactieve stoffen en gas (het z.g. “surfactant-altenating-gas” (SAG) proces) te 

optimaliseren. Er is echter geen analytische oplossing die de juistheid en nauwkeurigheid van 

een 3D numerieke verplaatsing (met de zwaartekracht) kan evalueren. De methode van 

karakteristieken (“method of characteristics”; MOC) geeft exacte oplossingen in 1D waarmee 

de juistheid en numerieke artefacten van numerieke simulatoren kunnen worden getoetst. 

Het is essentieel om eerst de prestaties van de numerieke simulator in 1D te evalueren voordat 

de simulaties in meerdere dimensies worden uitgevoerd.  

De MOC heeft zijn nut bewezen in het benadrukken van de belangrijkste mechanismen en 

strategieën voor het verbeteren van de prestatie van schuim. We hebben de MOC uitgebreid 

met stromingseffecten van schuim in combinatie met olie, en daarbij gekeken naar de effecten 

op oliewinning in 1D simulaties. Daarbij is gekeken naar de kwaliteit van het schuim, de 

initiële olieverzadiging So(I), de gevoeligheid van het schuim voor hoge olieverzadiging (So) en 

lage waterverzadiging (Sw). De analyse van de onderzochte gevallen resulteerde in de volgende 

inzichten. Als het schuim wordt afgebroken door olie bij de initiële condities, dan is de 

verplaatsing bijna net zo inefficiënt als in het geval dat er geen schuim aanwezig is; dit is 

onafhankelijk van de gevoeligheid van het schuim voor de watersaturatie. In echt schuim 

bezwijken schuimbellen bij een residuele waterverzadiging (Swr) vanwege de hoge capillaire 

druk. Deze processen zijn niet goed weer te geven in het model, hetgeen leidt tot misleidende 

voorspellingen van het succes van het SAG proces met schuim. Uitbreiding van het model met 

het bezwijkmechanisme van schuimbellen bij residuele watersaturatie resulteert in het 

mislukken van een gas-injectie cyclus van een SAG proces, ongeacht de begincondities van het 
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reservoir en de gevoeligheid van het schuim voor water- en oliesaturaties van de onderzochte 

relatieve permeabiliteitmodellen. Het produceren van olie door middel van SAG is succesvol 

onder alle condities als het schuim alleen wordt verzwakt maar niet wordt vernietigd. Het is 

echter niet succesvol bij lage watersaturaties en voor het geval dat het niet wordt beïnvloed 

door de oliesaturatie. Op basis van deze studie kan worden is het niet aan te bevelen om 

schuim EOR te beginnen in een vroeg stadium van de olieproductie, met een 

schuimformulering die gevoelig is voor hoge oliesaturatie, omdat een hoge So(I) ervoor zorgt 

dat het schuim EOR-proces mislukt. Daarom moet het effect van lage watersaturatie en hoge 

oliesaturatie op schuim goed worden begrepen en nauwkeurig worden weergegven om 

verkeerde beslissingen te vermijden die een verhoging van de olieproductie tegengaan. 

De uitgebreide MOC oplossing zijn toegepast voor het evalueren van de prestaties van de 

simulator. In het bepalen van een numerieke oplossing die overeenkomt met het resultaat van 

de MOC zijn sommige verplaatsingen gevoeliger voor de keuze van ∆t en ∆x. Oscillaties in de 

oplossing kunnen optreden bij incorrecte keuzes van ∆t en ∆x als een deel van de oplossing 

zich bevindt in de nabijheid is van de schuim/geen-schuim grens waar drastische 

veranderingen in de mobiliteit van het gas optreden. Bovendien leiden een incorrecte keuze 

van ∆t en ∆x tot onjuiste resultaten die misschien moeilijk te identificeren zijn in 3D 

simulaties bij gebrek aan MOC oplossingen. Men moet op zoek naar symptomen, zoals 

roosterpunten met een onverwacht hoge of lage saturatie of druk, om numerieke artefacten te 

identificeren en de juiste keuze van ∆t en ∆x te maken. Inzichten uit deze analyse hebben 

geleid tot het toepassen van een simplificaties in het model van het schuim in de 3D-

simulaties om te verzekeren dat de oplossing convergeert naar de juiste oplossing.  

Het effect van de schakeltijd (ts) tussen het injecteren van oppervlakte-actieve stof en gas op 

Qo,cum is bekeken voor 3D-simulaties van een SAG proces in scenario’s met verschillend 

controlestrategiën voor de injectie put en de eindtijd. De hoogste oliewinning in alle 

simulaties werd verkregen met een waarde van ts waarbij het schuimfront op het punt staat 

door te breken bij de productieput aan het einde van de simulatie. De cumulatieve 

olieproductie vermindert zodra schuim geproduceerd wordt. Zodoende vermeerdert de 

optimale olie productie als het schuim bezwijkt in de nabijheid van de productieput. Aan de 

andere kant leidt het injecteren van een oppervlakteactieve stof in een injectieput opererend 

bij constante bodemdruk niet noodzakelijkerwijs tot een verhoging van Qo,cum in vergelijking 

met het injecteren van gas. Ook het verhogen van de schakeltijd leidt niet noodzakelijkerwijs 

tot een hogere Qo,cum. Verder leidt het verminderen van de geïnjecteerde hoeveelheid gas, door 

het verhogen van de schakeltijd, niet noodzakelijkerwijs tot een lagere Qo,cum. 
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De mogelijkheden van de gradiënt-gebaseerde optimaliseringmethode in de simulator zijn 

onderzocht voor schuim EOR processen. We laten zien dat een verkeerde keuze van de 

relatieve toleranties van de geadjugeerde lineaire oplosroutine (de “adjoint linear solver”) 

leidt tot verkeerde gradiënten in ons probleem en dat zeer strenge relatieve toleranties vereist 

zijn voor het verkrijgen van nauwkeurige gradiënten in 3D simulaties voor een niet-lineair 

schuim model. De lokale en globale richtingen van de doelfunctie vallen samen in het lineaire 

schuim model (1D en 3D) en de optimalisatieroutine is in staat om de optimale schakeltijd te 

bepalen. Het vervangen van het lineaire model door het niet-lineaire model introduceert 

inconsistenties tussen de lokale en globale richtingen van de doelfunctie en leidt tot 

schommelingen in de geadjugeerde gradiënt. De lokale en globale richtingen vallen alleen 

samen zonder schommelingen in de geadjugeerde gradiënt voor schakeltijden waarin het 

schuim het gehele reservoir bestrijkt gedurende de simulatieperiode. 

De gradiënt-gebaseerde optimaliseringsmethode is niet geschikt voor het vinden van de 

optimale schakeltijd in het 1D nietlineaire schuim model, tenzij de beginschatting groter is 

dan de optimale schakeltijd. Inconsistenties in de nabijheid van de optima in het 3D 

nietlineaire model zijn een grote uitdaging voor de optimaliseringmethode. Daardoor is de 

gradiënt-gebaseerde optimalisatie niet geschikt voor het vinden van de optimale schakeltijd.  

Samenvattend, het is aangetoond dat een nauwkeurige weergave van de fysica in het simulatie 

model in combinatie met een gedetailleerde analyse van de mechanismes die het 

verplaatsingproces bepalen vele waardevolle aspecten van schuim EOR processen 

verduidelijken. Onzorgvuldige of afwezige weegave in simulaties kan leiden tot een 

voorspelling waarbij toepassing van schuim EOR zal leiden tot een hogere olieproductie 

terwijl dat in een werkelijk reservoir niet zal gebeuren. Bovendien kan de vorming van schuim 

leiden tot abrupte veranderingen in de mobiliteit van het gas die de prestatie van de simulator 

en gradiënt-gebaseerde optimaliseringsmethodes nadelig kunnen beïnvloeden.  
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