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ABSTRACT
This paper introduces a new p-dependent coercivity condition
through which Lp-moments for solutions can be obtained for a large
class of SPDEs in the variational framework. If p = 2, our condition
reduces to the classical coercivity condition,whichonly yields second
moments for the solution. The abstract result is shown to be optimal.
Moreover, the results are applied to obtain Lp-moments of solutions
for several classical SPDEs such as stochastic heat equations with
Dirichlet and Neumann boundary conditions, Burgers’ equation and
theNavier–Stokes equations in two spatial dimensions. Furthermore,
we can recover recent results for systems of SPDEs and higher-order
SPDEs using our unifying coercivity condition.
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1. Introduction

In this paper, we introduce a new coercivity condition through which one can obtain esti-
mates for higher ordermoments for stochastic partial differential equations (SPDEs) of the
form

du(t) = A(t, u(t)) dt + B(t, u(t)) dW(t), u(0) = u0. (1)

HereW is aU-cylindrical Brownianmotion.We will be concerned with the so-called vari-
ational ormonotone operator approach to SPDEs inHilbert spaces. In particular, we assume
that (V ,H,V∗) is a Gelfand triple, where H is a separable Hilbert space and V a reflexive
Banach space.

The variational approach for SPDEs was introduced in 1972 by Bensoussan and Temam
using time discretization methods [5]. Pardoux improved the latter via Lions’ approach
for PDEs in [19]. In this approach, Galerkin approximations are used together with a
priori energy estimates to obtain existence and uniqueness. Since then, both Krylov and
Rozovskii [13] and Liu and Röckner [15,16] have extended this approach even further by
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allowingmonotone and locally monotone operators, respectively, as the driving part of the
equation.

An advantage of the variational approach is that it directly applies to nonlinear equa-
tions.Another key property is that it typically gives global existence anduniqueness at once,
and there is often no need to check any further blow-up criteria for the solution. When
combined with other approaches this can be very effective (see e.g. [3] for the stochastic
Navier–Stokes equations).

Each of the above papers assumes a coercivity condition on (A,B) of the form (see
Section 2 for explanation on the notation):

2〈A(t, v), v〉 + ‖B(t, v)‖2L2(U,H) ≤ −θ‖v‖2V + K‖v‖2H + f (t). (2)

Note that B(t, ·) is allowed to be defined on the smallest space V. In the above mentioned
results for the variational approach to (1) one obtains estimates for

E sup
t∈[0,T]

‖u(t)‖pH and E‖u‖pL2(0,T;V), (3)

but only for p = 2. Estimates for p>2 are not available unless the growth of B is assumed
to be uniformly bounded in the V-norm (see [16, Section 5]). An attempt to treat more
general p ≥ 2 (and even p<2) was made in [8] by Brzeźniak and the third author. Here
it also turned out that the classical coercivity condition is not strong enough to obtain
finite Lp-moments. The paper [8], only considers a simplified setting. Therefore, it was
enlightening to see that in [18] by Neelima and Šiška, some results can be proved in a
general monotone setting. However, the Lp-bounds proved there are only sub-optimal (see
Remark 2.6 for details), and the coercivity condition they used seems too restrictive in
some cases, which becomes clear further below and in the presented applications.

In the current paper, we obtain a complete generalization of the classical monotone
operator framework leading to estimates for (3) for p>2. From [8] it follows that the terms
in (3) are infinite for p>2. Therefore, a restriction is necessary. The key ingredient turns
out to be the following p-dependent coercivity condition:

2〈A(t, v), v〉 + ‖B(t, v)‖2L2(U,H) + (p − 2)
‖B(t, v)∗v‖2U

‖v‖2H
≤ −θ‖v‖αV + Kc‖v‖2H + f (t).

(4)
Ourmain result (Theorem 2.4) states that under (4) and the usual conditions in the mono-
tone operator framework, one can estimate the norms in (3). Note that (4) reduces to (2) if
p = 2. In Example 2.5 we use a specific choice suggested in [8] to show that (4) is optimal.
The proof of themain result is elementary, but quite tedious. In some cases, we give explicit
constants in the obtained estimates for the moments.

An interesting special case occurs if B(t, v)∗v = 0, since then the p-dependent term
in (4) vanishes and we get estimates for all p ≥ 2. This typically occurs for differential
operators of odd order with suitable boundary conditions. In some cases, we can even let
p → ∞ to obtain uniform estimates in�.

In Section 4 we consider applications to the stochastic heat equation with Dirichlet and
Neumann boundary conditions, Burgers’ equation, the stochastic Navier–Stokes equations
in dimension two, systems, higher order equations, and the p-Laplace equation.
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2. Setting andmain result

Before we state our main result we fix our notation and terminology. For further details on
Gelfand triples and stochastic integration theory, we refer to [16].

Throughout this paper (U, (·, ·)U) and (H, (·, ·)H) denote real separable Hilbert spaces
and (V , ‖ · ‖V) is a reflexive Banach space embedded continuously and densely in H. The
dual ofV (relative toH) is denoted byV∗ and the duality pairing betweenV andV∗ by 〈·, ·〉.
The probability space (�,A,P) and filtration (Ft)t≥0 will be fixed. The progressive σ -
algebra is denoted byP . Furthermore, suppose that (W(t))t≥0 is aU-cylindrical Brownian
motion with respect to (Ft)t≥0.

2.1. Assumptions

The main assumptions on the nonlinearities are as follows:

Assumption 2.1: Let

A : [0,T] ×�× V → V∗, and B : [0,T] ×�× V → L2(U,H)

both be P ⊗ B(V)-measurable. Suppose that there exist finite constants

α > 1, β ≥ 0, p ≥ β + 2, θ > 0, Kc, KA, KB, Kα ≥ 0

and f ∈ L
p
2 (�; L1([0,T])) such that for all t ∈ [0,T] a.s.

(H1) (Hemicontinuity) For all u, v,w ∈ V , ω ∈ �, the following map is continuous:

λ �→ 〈A(t, u + λv,ω),w〉.
(H2) (Local weak monotonicity) For all u, v ∈ V ,

2〈A(t, u)− A(t, v), u − v〉 + ‖B(t, u)− B(t, v)‖2L2(U,H)

≤ K(1 + ‖v‖αV)(1 + ‖v‖βH)‖u − v‖2H .
(H3) (Coercivity) For all v ∈ V , v = 0,

2〈A(t, v), v〉 + ‖B(t, v)‖2L2(U,H) + (p − 2)
‖B(t, v)∗v‖2U

‖v‖2H
≤ −θ‖v‖αV + f (t)+ Kc‖v‖2H .

(H4) (Boundedness 1) For all v ∈ V ,

‖A(t, v)‖
α
α−1
V∗ ≤ KA(f (t)+ ‖v‖αV)(1 + ‖v‖βH).

(H5) (Boundedness 2) For all v ∈ V ,

‖B(t, v)‖2L2(U,H) ≤ f (t)+ KB‖v‖2H + Kα‖v‖αV .
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Most conditions are standard and appear in previous works that treat the variational
approach to SPDEs (see [14,16,19]). The case of Lévy noise is treated in [7]. The condi-
tion p ≥ β + 2 is needed for a priori bounds for involving the L

α
α−1 (�× [0,T])-norm of

‖A(t, u(t))‖ for u ∈ Lp(�;C([0,T];H)) ∩ L
pα
2 (�; Lα([0,T];V)) needed in the existence

proof. Often it can be avoided by a localization argument. Our hypothesis (H3) is new
and will allow us to obtain estimates for Lp-moments. It reduces to the classical coercivity
assumption if p = 2. The function f can be used to include inhomogeneous terms in A
and B.

After these preparations, we can define solutions to (1).

Definition 2.2: Suppose that Assumption 2.1 hold and let u(0) : � → H be F0-
measurable. An adapted, continuous H-valued process u is called a solution to (1) if
u ∈ Lα(0,T;V) a.s. and for every t ∈ [0,T], a.s.,

u(t) = u(0)+
∫ t

0
A(s, u(s)) ds +

∫ t

0
B(s, u(s)) dW(s).

Note that due to (H4), t �→ A(t, u(t)) ∈ L
α
α−1 (0,T;V∗) a.s. and thus the above Bochner

integral is well-defined. Due to (H5), t �→ B(t, u(t)) ∈ L2(0,T;L2(U,H)) a.s. and thus the
stochastic integral is also well-defined.

The following can be checked by elementary arguments involving Young’s inequality
and inequalities for convex functions:

Remark 2.3: Let φ ∈ L
pα

2(α−1) (�; L
α
α−1 (0,T;V∗)) and ψ ∈ Lp(�; L2(0,T;L2(U,H))) If

(A,B) satisfies Assumption 2.1, then (A + φ,B + ψ) satisfies Assumption 2.1 with the
same α,β , p, and f replaced by

f̃ = f + ‖φ‖
α
α−1
V∗ + ‖ψ‖2L2(U,H).

2.2. Main result

The main result of this paper is the following well-posedness result with higher-order
moments:

Theorem2.4: Suppose that Assumption 2.1 hold and let u(0) ∈ Lp(�,F0;H). Then (1) has
a unique solution u, and there exists a constant C depending on α, β, θ , p, Kc, KA, KB, Kα
such that

E sup
t∈[0,T]

‖u(t)‖pH + E

(∫ T

0
‖u(t)‖αV dt

) p
2

≤ CeCT
⎡⎣E‖u(0)‖pH + E

(∫ T

0
f (t) dt

) p
2

⎤⎦ .

(5)

The proof is given in Section 3. The main novelty is the a priori estimate (5). The exis-
tence and uniqueness can be obtained by standard Galerkin approximation techniques.
In Corollary 3.4 in case KB = Kc = 0, the p-dependence in the estimate (5) will be made
explicit.



STOCHASTICS 5

The following example is taken from [8] and implies optimality of Theorem 2.4 with
respect to p in the sense that if p is replaced by some number q>p, then it can happen that
E‖u(t)‖qH = ∞.

Example 2.5 (Optimality): On the torus T consider the equation

du(t) = �u(t) dt + 2γ (−�) 12 u(t) dW(t), u(0) = u0. (6)

Here γ ∈ R, u0 ∈ Lp(�,F0; L2(T)) andW is a real-valuedWiener process (thusU = R).
In [8] it is proved that (6) has a unique solution in Lp(�; L2(0,T;H1(T))) if 2γ 2(p − 1) <
1. Indeed, setting V = H1(T), H = L2(T), A = �, and B = 2γ (−�)1/2, Assumption 2.1
(H1), (H2), (H4), (H5) hold with α = 2, β = 0 and f = 0 and suitable constantsK,KA and
KB. To check (H3) note that

2〈�v, v〉 + ‖B(v)‖2L2(T) + (p − 2)
|B(v)∗v|2
‖v‖2L2(T)

≤ 2〈�v, v〉 + (p − 1)‖B(v)‖2L2(T)

≤ −2‖∇v‖2L2(T) + 4γ 2(p − 1)‖v‖2H1(T)

≤ −θ‖v‖2H1(T) + 2‖v‖2L2(T),

where θ := 2 − 4γ 2(p − 1) > 0. This proves (H3) and thus the well-posedness follows
from Theorem 2.4. On the other hand, it follows from [8, Theorem 4.1(ii)] that there exists
an initial datum u0 ∈ C∞(T) such that if q>p and γ > 0 is such that 2γ 2(p − 1) < 1
and 2γ 2(q − 1) > 1, then there is a t>0 such that E‖v(t)‖qL2(T) = ∞. Moreover, even
E‖v(t)‖qHs(T) = ∞ for all s ∈ R.

Remark 2.6: In [18] the following coercivity condition was proposed:

2〈A(t, v), v〉 + (p − 1)‖B(t, v)‖2L2(U,H) ≤ −θ‖v‖αV + f (t)+ Kc‖v‖2H , v ∈ V . (7)

The latter is more restrictive than (H3), since ‖B(t,v)∗v‖2U
‖v‖2H

≤ ‖B(t, v)‖2L2(U,H). Replacing our
condition (H3) by (7), the main result in [18] states that

sup
t∈[0,T]

E‖u(t)‖p ≤ C

⎡⎣E‖u(0)‖pH + E

(∫ T

0
f (t) dt

) p
2

⎤⎦ ,

E sup
t∈[0,T]

‖u(t)‖rp ≤ Cr

⎡⎣E‖u(0)‖pH + E

(∫ T

0
f (t) dt

) p
2

⎤⎦ ,

where r ∈ (0, 1). Both estimates are sub-optimal. The result (5) shows that the supremum
can actually be inside the expectation and thus one can take r = 1. In [18] the growth
condition (H5) on B is not explicitly assumed, but as far as we can see (H5) is used in their
estimate (13).

Similar results were obtained in [7], under a different coercivity condition. A detailed
comparison with (7) can be found in [18, Remark 6.1].
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3. Proof of themain result

In [16, Theorem 4.2.5, p. 91] the following version of Itô’s formula is obtained for p = 2.
The p>2 version can be obtained from the p = 2 version combined with the real case by
considering (‖Xt‖2 + ε)p/2 and letting ε ↓ 0 or by applying [21, Theorem 3.2, p. 73].

Lemma 3.1 (Itô’s formula for ‖ · ‖pH): Let p ∈ [2,∞), α ∈ (1,∞), X0 ∈ Lp(�;F0;H)
and Y ∈ L

α
α−1 ([0,T] ×�; dt ⊗ P;V∗), Z ∈ L2([0,T] ×�; dt ⊗ P;L2(U,H)) both pro-

gressively measurable. If X ∈ Lα([0,T] ×�; dt ⊗ P;V) and for a.e. t ∈ [0,T] E(‖Xt‖2H) <
∞, and a.s.

Xt = X0 +
∫ t

0
Ys ds +

∫ t

0
Zs dWs, t ∈ [0,T]

is satisfied in V∗, then X is a continuous H-valuedFt-adapted process and the following holds
a.s.:

‖Xt‖pH = ‖X0‖pH + p
∫ t

0
‖Xs‖p−2

H Z∗
s Xs dWs

+ p(p − 2)
2

∫ t

0
‖Xs‖p−4

H ‖Z∗
s Xs‖2U ds

+ p
2

∫ t

0
‖Xs‖p−2

H

(
2〈Ys,Xs〉 + ‖Zs‖2L2(U,H)

)
ds, t ∈ [0,T],

where ‖Xs‖p−4
H is defined as zero if Xs = 0.

The main step in the proof of Theorem 2.4 is the following new a priori estimate, where
we note that the condition p ≥ β + 2 in Assumption 2.1 is not needed.

Theorem3.2: Suppose u is a solution of Equation (1)with initial condition u(0) ∈ Lp(�;H)
and (H3), (H4) and (H5) from Assumption 2.1 hold with f ∈ L

p
2 (�; L1([0,T])). Then, there

exists a constant C depending on α, β, θ , p, Kc, KA, KB, Kα such that

E sup
t∈[0,T]

‖u(t)‖pH + E

(∫ T

0
‖u(t)‖αV dt

) p
2

≤ CeCT
⎡⎣E‖u(0)‖pH + E

(∫ T

0
f (t) dt

) p
2

⎤⎦ .

(8)

Proof: Step 0: Stopping time argument.
For n ≥ 1 consider the following sequence of stopping times:

τn = inf{t ∈ [0,T] : ‖u(t)‖H ≥ n} ∧ inf{t ∈ [0,T] :
∫ t

0
‖u(s)‖αV ds ≥ n},

where we set inf ∅ = T. Then τn → T a.s. as n → ∞ by Definition 2.2. Since u solves (1)
in the sense of Definition 2.2, Lemma 3.1 implies the following:

‖u(t ∧ τn)‖pH = ‖u(0)‖pH + p
∫ t∧τn

0
‖u(s)‖p−2

H B(s, u(s))∗u(s) dW(s)
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+ p
2

∫ t∧τn

0
‖u(s)‖p−2

H

(
2〈A(s, u(s)), u(s)〉 + ‖B(s, u(s))‖2L2(U,H)

+(p − 2)
‖B(s, u(s))∗u(s)‖2U

‖u(s)‖2H

)
ds.

Using the coercivity assumption (H3), the latter implies

‖u(t ∧ τn)‖pH + θp
2

∫ t∧τn

0
‖u(s)‖p−2

H ‖u(s)‖αV ds

≤ ‖u(0)‖pH + p
∫ t∧τn

0
‖u(s)‖p−2

H B(s, u(s))∗u(s) dW(s)

+ p
2

∫ t∧τn

0
‖u(s)‖p−2

H
(
f (s)+ Kc‖u(s)‖2H

)
ds. (9)

Taking expectations in (9), the stochastic integral cancels and we find

E‖u(t ∧ τn)‖pH + θp
2

E

∫ t∧τn

0
‖u(s)‖p−2

H ‖u(s)‖αV ds

≤ E‖u(0)‖pH + p
2
E

∫ t∧τn

0
‖u(s)‖p−2

H f (s) ds + p
2
KcE

∫ t∧τn

0
‖u(s)‖pH ds.

(10)

Estimates (9) and (10) will be used several times to derive new estimates which ultimately
lead to (8).

Step 1: Estimating the supremum term E supt∈[0,T] ‖u(s)‖pH .
Taking suprema and expectations in (9), we obtain the following estimate

E sup
r∈[0,t]

‖u(r ∧ τn)‖pH ≤ E‖u(0)‖pH + pE sup
r∈[0,t]

∫ r∧τn

0
‖u(s)‖p−2

H B(s, u(s))∗u(s) dW(s)

+ p
2
E

∫ t∧τn

0
‖u(s)‖p−2

H f (s) ds + pKc

2
E

∫ t∧τn

0
‖u(s)‖pH ds. (11)

Let ε1 > 0. Then

E sup
r∈[0,t]

∫ r∧τn

0
‖u(s)‖p−2

H B(s, u(s))∗u(s) dW(s)

(i)≤ 2
√
2E
(∫ t∧τn

0
‖u(s)‖2p−2

H ‖B(s, u(s))‖2L2(U,H) ds
) 1

2

(ii)≤ 2
√
2

(
E sup

r∈[0,t]
‖u(r ∧ τn)‖pH

) 1
2 (

E

∫ t∧τn

0
‖u(s)‖p−2

H ‖B(s, u(s))‖2L2(U,H) ds
) 1

2

(iii)≤ √
2ε1E sup

r∈[0,t]
‖u(r ∧ τn)‖pH +

√
2
ε1

E

∫ t∧τn

0
‖u(s)‖p−2

H ‖B(s, u(s))‖2L2(U,H) ds



8 M. V. GNANN ET AL.

(iv)≤ √
2ε1E sup

r∈[0,t]
‖u(r ∧ τn)‖pH

+
√
2
ε1

E

∫ t∧τn

0
‖u(s)‖p−2

H (f (s)+ KB‖u(s)‖2H + Kα‖u(s)‖αV) ds,

where in (i) we have applied the Burkholder–Davis–Gundy inequality with constant 2
√
2

(see [20, Theorem 1]), in (ii) Hölder’s inequality, in (iii) Young’s inequality and in (iv)
hypothesis (H5). Using the latter estimate in (11), we find(

1 − p
√
2ε1
)

E sup
r∈[0,t]

‖u(r ∧ τn)‖pH

≤ E‖u(0)‖pH + p

(√
2
ε1

+ 1
2

)
E

∫ t∧τn

0
‖u(s)‖p−2

H f (s) ds

+ p

(√
2KB

ε1
+ Kc

2

)
E

∫ t∧τn

0
‖u(s)‖pH ds + pKα

√
2

ε1
E

∫ t∧τn

0
‖u(s)‖p−2

H ‖u(s)‖αV ds.

(12)

Using estimate (10) for the last term of (12) leads to(
1 − p

√
2ε1
)

E sup
r∈[0,t]

‖u(r ∧ τn)‖pH

≤
(
1 + Kα

2
√
2

ε1θ

)
E‖u(0)‖pH + p

(√
2
ε1

+ 1
2

+ Kα

√
2

ε1θ

)
E

∫ t∧τn

0
‖u(s)‖p−2

H f (s) ds

+ p

(√
2KB

ε1
+ Kc

2
+

√
2KαKc

ε1θ

)
E

∫ t∧τn

0
‖u(s)‖pH ds. (13)

It remains to absorb the integrals of u on the right-hand side of (13). To this end, let ε2 > 0.
By Hölder’s inequality and Young’s inequality we obtain

E

∫ t∧τn

0
‖u(s)‖p−2

H f (s) ds ≤ E sup
r∈[0,t]

‖u(r ∧ τn)‖p−2
H

∫ t

0
f (s) ds

≤
(
ε2E sup

r∈[0,t]
‖u(r)‖pH

) p−2
p
⎛⎝ε 2−p

2
2 E

(∫ t

0
f (s) ds

) p
2

⎞⎠
2
p

≤ p−2
p ε2E sup

r∈[0,t]
‖u(r ∧ τn)‖pH + 2

pε
2−p
2

2 E

(∫ t

0
f (s) ds

) p
2
.

(14)

Setting φ(ε1, ε2) = p
√
2ε1 + (p − 2)ε2(

√
2
ε1

+ 1
2 + Kα

√
2

ε1θ
) and using (14) in (13) we

obtain:

(1 − φ(ε1, ε2))E sup
r∈[0,t]

‖u(r ∧ τn)‖pH ≤
(
1 + Kα 2

√
2

ε1θ

)
E‖u(0)‖pH
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+ 2ε
2−p
p

2

(√
2
ε1

+ 1
2

+ Kα

√
2

ε1θ

)
E

(∫ t

0
f (s) ds

) p
2

+ p

(√
2KB

ε1
+ Kc

2
+

√
2KαKc

ε1θ

)
E

∫ t∧τn

0
‖u(s)‖pH ds.

(15)

First choosing ε1 small enough, and then ε2 such that φ(ε1, ε2) = 1
2 , it follows that there

is a constant C>0 (only depending on α, β , θ , p, Kc, KA, KB, Kα) such that

E sup
r∈[0,t]

‖u(r ∧ τn)‖pH ≤ C

⎛⎝E‖u(0)‖pH + E

(∫ t

0
f (s) ds

) p
2

+ E

∫ t

0
1[0,τn](s)‖u(s)‖pH

⎞⎠ .

(16)

Applying Gronwall’s inequality to v(t) := supr∈[0,t] ‖u(r ∧ τn)‖pH we find

E sup
t∈[0,T]

‖u(t ∧ τn)‖pH ≤ CeCT
⎛⎝E‖u(0)‖pH + E

(∫ T

0
f (s) ds

) p
2

⎞⎠
By Fatou’s lemma, this leads to

E sup
t∈[0,T]

‖u(t)‖pH ≤ CeCT
⎛⎝E‖u(0)‖pH + E

(∫ T

0
f (s) ds

) p
2

⎞⎠ . (17)

and completes the proof of the supremum estimate.
Step 2: Estimating the V-norm E(

∫ T
0 ‖u(s)‖αV ds)

p
2 .

In order to estimate this quantity, by Lemma 3.1 we find

‖u(t)‖2H = ‖u(0)‖2H +
∫ t

0

(
2〈A(s, u(s)), u(s)〉 + ‖B(s, u(s))‖2L2(U,H)

)
ds

+ 2
∫ t

0
B(s, u(s))∗u(s) dW(s).

By the coercivity condition (H3) we find that

‖u(t)‖2H +
∫ t

0

(
(p − 2)

‖B(s, u(s))∗u(s)‖2U
‖u(s)‖2H

+ θ‖u(s)‖αV
)

ds

≤ ‖u(0)‖2H +
∫ t

0

(
f (s)+ Kc‖u(s)‖2H

)
ds + 2

∫ t

0
B(s, u(s))∗u(s) dW(s).

Selecting just the term θ‖u(s)‖αV and evaluating at t = τn gives
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θ

∫ τn

0
‖u(s)‖αV ds ≤ ‖u(0)‖2H +

∫ t

0

(
f (s)+ Kc‖u(s)‖2H

)
ds

+ 2
∫ τn

0
B(s, u(s))∗u(s) dW(s). (18)

Applying the function | · | p2 to both sides of (18) and taking expectations, we obtain

θ
p
2

ap
E

(∫ τn

0
‖u(s)‖αV ds

) p
2 ≤ E‖u(0)‖pH + E

(∫ T

0
f (s) ds

) p
2

+ K
p
2
c E

(∫ T

0
‖u(s)‖2H ds

) p
2

+ 2
p
2 E

∣∣∣∣∫ τn

0
B(s, u(s))∗u(s) dW(s)

∣∣∣∣
p
2
, (19)

where ap = 2p−2. The ‖u(s)‖2H-terms can be estimated with help of (17) by

E

(∫ T

0
‖u(s)‖2H ds

) p
2

≤ T
p
2 E sup

t∈[0,T]
‖u(t)‖pH

≤ CT
p
2 eCT

⎛⎝E‖u(0)‖pH + E

(∫ T

0
f (s) ds

) p
2

⎞⎠ . (20)

Thus it remains to estimate the B-term. We obtain:

E

∣∣∣∣∫ τn

0
B(s, u(s))∗u(s) dW(s)

∣∣∣∣
p
2

(i)≤ CpE

(∫ T

0
‖u(s)‖2H1[0,τn](s)‖B(s, u(s))‖2L2(U,H) ds

) p
4

(ii)≤ CpE

(
sup

t∈[0,T]
‖u(t)‖2H

∫ τn

0
‖B(s, u(s))‖2L2(U,H) ds

) p
4

(ii)≤ Cp

(
E sup

t∈[0,T]
‖u(t)‖pH

) 1
2
(

E

(∫ τn

0
‖B(s, u(s))‖2L2(U,H) ds

) p
2
) 1

2

(iii)≤ Cp
1
2ε

E sup
t∈[0,T]

‖u(t)‖pH + Cp
ε

2
E

(∫ τn

0
‖B(s, u(s))‖2L2(U,H) ds

) p
2
, (21)

where in (i) we have applied the Burkholder–Davis–Gundy inequality, (ii) follows from
Hölder’s inequality, and (iii) is a consequence of Young’s inequality. Applying (H5), the
B-term can be estimated as

E

(∫ τn

0
‖B(s, u(s))‖2L2(U,H) ds

) p
2 ≤ E

(∫ τn

0

(
f (s)+ KB‖u(s)‖2H + Kα‖u(s)‖αV

)
ds
) p

2

≤ bpE
(∫ T

0
f (s) ds

) p
2

+ bpK
p
2
B E

(∫ T

0
‖u(s)‖2H ds

) p
2

+ bpK
p
2
αE

(∫ τn

0
‖u(s)‖αV ds

) p
2
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≤ bpE
(∫ T

0
f (s) ds

) p
2

+ bpK
p
2
B T

p
2 E sup

t∈[0,T]
‖u(t)‖pH + bpK

p
2
αE

(∫ τn

0
‖u(s)‖αV ds

) p
2
,

where bp = 3
p−2
2 . Recombining this estimate with (17) and (21), we obtain:

E

∣∣∣∣∫ t

0
B(s, u(s))∗u(s) dW(s)

∣∣∣∣
p
2

≤
(
Cp

1
2ε

+ bpK
p
2
B CpT

p
2
ε

2

)
E sup

t∈[0,T]
‖u(t)‖pH

+ bpCp
ε

2
E

(∫ T

0
f (s) ds

) p
2

+ bpK
p
2
α Cp

ε

2
E

(∫ τn

0
‖u(s)‖αV ds

) p
2

≤ Cε(1 + T
p
2 )eCT

⎡⎣E‖u(0)‖pH + E

(∫ T

0
f (s) ds

) p
2

⎤⎦
+ bpK

p
2
α Cp

ε

2
E

(∫ τn

0
‖u(s)‖αV ds

) p
2
.

Using this and (20) in (19), it follows that

θ
p
2 E

(∫ τn

0
‖u(s)‖αV ds

) p
2 ≤ C′

ε(1 + T
p
2 )eCT

⎡⎣E‖u(0)‖pH + E

(∫ T

0
f (s) ds

) p
2

⎤⎦
+ apbp2

p−2
2 K

p
2
α CpεE

(∫ τn

0
‖u(s)‖αV ds

) p
2
.

Therefore, choosing ε > 0 small enough, we obtain

E

(∫ T

0
‖u(s)‖αV ds

) p
2

≤ C′′eC′′T

⎛⎝E‖u(0)‖pH + E

(∫ T

0
f (s) ds

) p
2

⎞⎠ .

Since we have estimated all three terms in the above steps, this finishes the proof. �

Remark 3.3: One can also prove an estimate for the integral of ‖u(s)‖p−2
H ‖u(s)‖αV . Indeed,

by Hölder’s and Young’s inequality

E

∫ T

0
‖u(s)‖p−2

H ‖u(s)‖αV ds ≤ E sup
s∈[0,T]

‖u(s)‖p−2
H

∫ T

0
‖u(s)‖αV ds

≤ p−2
p E sup

t∈[0,T]
‖u(t)‖pH + 2

pE

(∫ T

0
‖u(t)‖αV dt

) p
2

,

where the last line is bounded by the left-hand side of (8).

If KB = Kc = 0 in Assumption 2.1 (H3) and (H5), it is possible to improve the depen-
dency on p in estimate (8). Here the condition p ≥ β + 2 is not needed.
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Corollary 3.4: Suppose u is a solution of Equation (1) with initial condition u(0) ∈
Lp(�;H) and (H3), (H4), (H5) from Assumption 2.1 hold with KB = Kc = 0 and f ∈
L

p
2 (�; L1([0,T])). Then there exists a constant C only depending on α,β , θ ,KA,Kα such that

‖u‖Lp(�;C([0,T];H)) + p− 1
2 ‖u‖Lp(�;L2([0,T];V)) ≤ C

[
‖u(0)‖Lp(�;H) + ‖f ‖

1
2
Lp(�;L1(0,T))

]
.

(22)

Moreover, if B(v)∗v = 0 for all v ∈ V, then the above estimates hold for all p ∈ [2,∞], and
p−1/2 can be omitted.

The main point is that C does not depend on p and T. In particular, we can let T → ∞
in (22) if f is integrable over R+.

Proof: Estimate (15) gives for every ε1, ε2 > 0:

(1 − φ(ε1, ε2))E sup
t∈[0,S]

‖u(t ∧ τn)‖pH

≤
(
1 + Kα

2
√
2

ε1θ

)
E‖u(0)‖pH + 2ε

2−p
p

2

(√
2
ε1

+ 1
2

+ Kα

√
2

ε1θ

)
E

(∫ τn

0
f (s) ds

) p
2
,

(23)

where φ(ε1, ε2) = p
√
2ε1 + (p − 2)ε2(

√
2
ε1

+ 1
2 + Kα

√
2

ε1θ
). Choosing

ε1 = 1
2
√
2p

, ε2 = 1

2(p − 2)
(
8p + 1 + Kα

8p
θ

)
gives φ(ε1, ε2) = 1

4 . Moreover,

1
ε2

≤ 16p2
(
1 + Kα

1
θ

)
+ p2 + 1 ≤ Ap2,

where A is a constant depending on Kα and θ . Therefore, we get:

1
4
E sup

t∈[0,S]
‖u(t ∧ τn)‖pH ≤

(
1 + Kα

8p
θ

)
E‖u(0)‖pH + (Ap2 + 1)

p−2
p E

(∫ τn

0
f (s) ds

) p
2
.

Taking 1/pth powers, the supremum of (22) follows since for every γ > 0,

sup
p∈[2,∞)

p
γ
p = sup

p∈[2,∞)

(1 + (p − 1))
γ
p ≤ sup

p∈[2,∞)

e
γ (p−1)

p = eγ .

Under the additional assumption B(v)∗v = 0, it follows that condition (H3) holds for all
p ∈ [2,∞). Therefore, we can let p → ∞ in (22).

In order to derive the estimate (22) for the V-term, we use (19) and the assumption
Kc = 0 to find that

θ
p
2

ap
E

(∫ T

0
‖u(s)‖αV ds

) p
2

≤ E‖u(0)‖pH + E

(∫ T

0
f (s) ds

) p
2
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+ 2
p
2 E

∣∣∣∣∫ T

0
B(s, u(s))∗u(s) dW(s)

∣∣∣∣
p
2

, (24)

where ap = 2p−2. If B(v)∗v = 0 for all v ∈ V , then the stochastic integral vanishes and
thus (24) already implies the required result.

It remains to prove estimate (22) for the V-norm in the case the stochastic integral
in (24) does not vanish. For this we use the Burkholder–Davis–Gundy inequality with
γp = (2p)p/4

2 as in (21) (see [9, Theorem A]), giving for all ε > 0

E

∣∣∣∣∫ T

0
B(s, u(s))∗u(s) dW(s)

∣∣∣∣
p
2

≤ γp

ε
E sup

t∈[0,T]
‖u(t)‖pH

+ γpεE

(∫ T

0
‖B(s, u(s))‖2L2(U,H) ds

) p
2

,

where ε > 0 is arbitrary. Using assumption (H5), we additionally obtain

E

(∫ T

0
‖B(s, u(s))‖2L2(U,H) ds

) p
2

≤ 2
p−2
2 E

(∫ T

0
f (s) ds

) p
2

+ 2
p−2
2 K

p
2
αE

(∫ T

0
‖u(s)‖αV ds

) p
2

.

Recombining all terms with inequality (24) we find

θ
p
2

ap
E

(∫ T

0
‖u(s)‖αV ds

) p
2

≤ E‖u(0)‖pH + (1 + γpε2p−1)E

(∫ T

0
f (s) ds

) p
2

+ 2
p
2 γp
ε E sup

t∈[0,T]
‖u(t)‖pH + 2p−1K

p
2
α γpεE

(∫ T

0
‖u(s)‖αV

) p
2

.

Therefore, setting ε = θ
p
2 /(ap2p+1K

p
2
α γp) we obtain

θ
p
2

2ap
E

(∫ T

0
‖u(s)‖αV ds

) p
2

≤ E‖u(0)‖pH + (1 + γpε2p−1)E

(∫ T

0
f (s) ds

) p
2

+ 2
p
2 γp
ε E sup

t∈[0,T]
‖u(t)‖pH .

Taking pth powers and observing that the leading term is γ 2/p
p ≤ C√p, we arrive at the

desired inequality. �

Given the a priori estimates of Theorem 3.2, one can now complete the proof of
Theorem 2.4 by showing existence and uniqueness as in the classical case p = 2. Details are
standard and can be found in [15]. As our assumptions differ from the latter some changes
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are required, and in particular, we require p ≥ β + 2, which is needed for technical rea-
sons in the existence proof, but can often be avoided by a localization argument. Note that
it was not used in Theorem 3.2. For details we refer to the existence and uniqueness proofs
in [7,18].

4. Applications

In this section, we apply our framework to

• linear scalar second-order parabolic equations, namely the stochastic heat equationwith
both Dirichlet (Section 4.1) and Neumann boundary conditions (Section 4.2), in which
the p-dependent term in the coercivity condition (H3) reduces to the classical setting in
certain cases.

• semilinear second-order parabolic equations, namely the stochastic Burgers’ equation
(Section 4.3) and the stochastic Navier–Stokes equations in two dimensions
(Section 4.4),

• systems of SPDEs (Section 4.5) and higher-order SPDEs (Section 4.6) as treated in
[11,22],

• the fully nonlinear evolution induced by the p-Laplacian influenced by noise
(Section 4.7).

The treated examples demonstrate the wide range of applicability of our unifying
abstract framework. In several cases, the regularity estimates in Lp(�) for p>2 seem new.
In all cases, the approach to prove them via our Theorem 2.4 also seems new. The variety of
the examples will hopefully be enough to explain the reader how to apply our framework
to concrete SPDEs.

4.1. Stochastic heat equationwith Dirichlet boundary conditions

We consider a stochastic heat equation with additive noise and Dirichlet boundary condi-
tions.

du(t) =
⎛⎝ d∑

i,j=1
∂i(aij∂ju(t))+ φ(t)

⎞⎠ dt +
∞∑
k=1

( d∑
i=1

bik∂iu(t)+ ψk,t

)
dWk(t). (25)

Here theWk(t) are real-valued Wiener processes. In what follows, we use:

Assumption 4.1: LetD ⊆ R
d be an open set. Let

(V ,H,V∗) = (H1
0(D), L2(D),H−1(D))

and U = �2. Suppose that aij ∈ L∞(�× [0,T] × D) for 1 ≤ i, j ≤ d and (bik)
∞
k=1 ∈

L∞(�× [0,T];W1,∞(D; �2)) for 1 ≤ i ≤ d. Furthermore, we assume that the coefficients
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are progressively measurable. Define

σ ij =
∞∑
k=1

bikb
j
k, i, j ∈ N (26)

and suppose that the uniform ellipticity condition on aij and bik:

d∑
i,j=1

(
2aij − σ ij) ξ iξ j ≥ θ |ξ |2 for all ξ ∈ R

d (27)

holds true where θ > 0. Furthermore, assume φ ∈ Lp(�; L2([0,T];H−1(D))),ψ ∈
Lp(�; L2([0,T]; L2(D; �2))), and u0 ∈ Lp(�; L2(D)), where p ≥ 2.

Equation (25) can be reformulated as a stochastic evolution equation of the form

du(t) = A(t, u(t)) dt +
∞∑
k=1

Bk(t, u(t)) dWk(t),

with the deterministic linear operator A(t) : H1
0(D) → H−1(D) defined by

〈A(t, u), v〉 = −
d∑

i,j=1

∫
D
aij∂iu ∂jv dx + 〈φ(t), v〉 for u, v ∈ H1

0(D),

and stochastic operators Bk(t) : H1
0(D) → L2(D) given by

Bk(t, v) =
d∑

i=1
bik∂iv + ψk,t for v ∈ H1

0(D).

It turns out that the p-dependent term in the coercivity condition (H3) vanishes. Therefore,
the solution admits moment estimates of all orders p ≥ 2, only limited by the integrability
of the additive noise and the initial condition:

Proposition 4.2: Suppose that Assumption 4.1 are satisfied. Then, a unique variational
solution u of Equation (25) in the sense of Definition 2.2 exists and the following estimates
hold:

E sup
t∈[0,T]

‖u(t)‖pL2(D) + E

(∫ T

0
‖u(t)‖2H1

0(D)
dt
) p

2

≤ CeCT
⎛⎝E‖u(0)‖pL2(D) + E

(∫ T

0
‖φ(t)‖2H−1(D) dt

)p
2

+ E

(∫ T

0
‖ψ(t)‖2L2(D;�2) dt

)p
2

⎞⎠
where C depends on θ , p, aij and bik for all i, j, k ∈ N.
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Remark 4.3: Assuming thatD is bounded and all bk are not space dependent, we can use
Corollary 3.4 to obtain p-independent constants, and even take p = ∞. That is, there exists
a constant C such that for all p ∈ [2,∞]

‖u‖Lp(�;C([0,T];L2(D))) + ‖u‖Lp(�;L2(0,T;H1
0(D)))

≤ C
[‖u(0)‖Lp(�;L2(D)) + ‖φ‖Lp(�;L2(0,T;H−1(D))) + ‖ψ‖Lp(�;L2(0,T;L2(D;�2)))

]
where C only depends on θ , aij, bik for all i, j, k,∈ N.

Remark 4.4: A version of Proposition 4.2 holds if we only assume (bik)
∞
k=1 ∈ L∞(�×

[0,T] × D; �2). However, in this case we can only use ‖B(t,v)∗v‖2U
‖v‖2H

≤ ‖B(t, v)‖2L2(U,H) which
leads to the p-dependent coercivity condition

d∑
i,j=1

(
2aij − (p − 1)σ ij) ξ iξ j ≥ θ |ξ |2 for all ξ ∈ R

d.

Proof of Proposition 4.2: By Remark 2.3 and Theorem 2.4, it suffices to show Assump-
tion 2.1, (H1)–(H5), for (A,B)with α = 2, φ = 0,ψ = 0, and f = 0. Hemicontuinty (H1)
is immediate from the definition of A. For local weak monotonicity (H2), observe that
it suffices to prove the inequality for v ∈ H1

0(D) and u = 0 by linearity. Using uniform
ellipticity (27), it follows:

2〈A(t, v), v〉 + ‖B(t, v)‖2L2(�2,L2(D)) = −
∞∑

i,j=1

∫
D
2aij∂iv ∂jv dx +

∞∑
k=1

∫
D

d∑
i,j=1

bikb
j
k∂iv ∂jv dx

=
d∑

i,j=1

∫
D
(−2aij + σ ij) ∂iv ∂jv dx

≤ −θ‖v‖2H1
0(D)

+ θ‖v‖2L2(D), (28)

that is, (H2) is satisfied with K = θ (if D is bounded one can take K = 0 by Poincaré’s
inequality). For coercivity (H3), observe that the first two terms in (H3) form the first line
of (28). Therefore, it remains to derive an expression for ‖B(t, v)∗v‖2

�2
/‖v‖2L2(D), where

v ∈ H1
0(D). Integration by parts gives

(B(t, v)∗v)k =
∫
D
bik∂ivv dx = 1

2

∫
D
∂ibikv

2 dx.

Using the spatial regularity of bik, we obtain:∥∥∥∥∥k �→
d∑

i=1

∫
D
(bik∂iv)v dx

∥∥∥∥∥
�2

=
∥∥∥∥∥k �→

d∑
i=1

∫
D
1
2
(∂ibik)v

2 dx

∥∥∥∥∥
�2

≤ 1
2

∫
D

‖ div(b)‖�2v2 dx
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≤ ‖ div(b)‖L∞(D;�2)‖v‖2L2(D).
Therefore,

2〈A(t, v), v〉 +
∞∑
k=1

∥∥∥∥∥
d∑

i=1
bik∂iv

∥∥∥∥∥
2

L2(D)
+ (p − 2)

‖(Bt(v)∗v)‖2�2
‖v‖2L2(D)

≤ −θ‖v‖2H1
0(D)

+ C(p − 2)‖v‖2L2(D),

that is, (H3) is satisfied with f = 0 and Kc = C(p − 2). For the boundedness condition
(H4), let u, v ∈ H1

0(D). Then,

|〈A(t, u), v〉| ≤
d∑

i,j=1
‖aij‖L∞(D)‖u‖H1

0(D)‖v‖H1
0(D),

that is, ‖A(t, u)‖2H−1(D) ≤ (
∑ ‖aij‖L∞(�×[0,T]×D))2‖u‖2H1

0(D)
, implying (H4) for α = 2,

β = 0, and KA = (
∑ ‖aij‖L∞(�×[0,T]×D))2/2. Similarly, because of (26),

‖B(t, v)‖2L2(D;�2) ≤
∥∥∥∥∥∥

d∑
i,j=1

σ ij

∥∥∥∥∥∥
L∞(D)

‖v‖2H1
0(D)

.

Hence condition (H5) holds with Kα = ‖∑d
i,j=1 σ

ij‖L∞(�×[0,T]×D) and KB = 0. �

From the above proof it follows that the regularity condition on b in Assumption 4.1 can
actually be weakened to b ∈ L∞(�× [0,T] × D; �2) and div(b) ∈ L∞(D; �2), and where
the divergence only needs to exist in distributional sense.

4.2. Stochastic heat equationwith Neumann boundary conditions

The second equation we consider is the same stochastic heat equation as before, but
now with Neumann boundary conditions on a domain D ⊆ R

d. For completeness, this
equation is:

du(t) =
⎛⎝ d∑

i,j=1
∂i(aij∂ju(t))+ φ(t)

⎞⎠ dt +
( ∞∑
k=1

d∑
i=1

bik∂iu(t)+ ψt,k

)
dWk(t). (29)

Most assumptions and computations will be similar as before, though some special care is
needed to derive the coercivity condition in the Neumann setting.

Assumption 4.5: Let p ∈ [2,∞). LetD ⊆ R
d be a bounded C1-domain, and consider

(V ,H,V∗) = (H1(D), L2(D),H1(D)∗).
Suppose that aij ∈ L∞(�× [0,T] × D) for 1 ≤ i, j ≤ d and (bik)

∞
k=1 ∈ L∞(�× [0,T];

W1,∞(D; �2)) for 1 ≤ i ≤ d. Furthermore, we assume that the coefficients are progressively
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measurable. Define

σ ij =
∞∑
k=1

bikb
j
k, i, j ∈ N (30)

and suppose that the uniform ellipticity condition on aij and bik:

d∑
i,j=1

(
2aij − σ ij − (p − 2)C2

b
)
ξiξj ≥ θ |ξ |2 for all ξ ∈ R

d (31)

holds true where θ > 0, and Cb = ‖b · n‖L∞(∂D;�2). Furthermore, assume u0 ∈ Lp(�;
L2(D)),

φ ∈ Lp(�; L2([0,T];H1(D)∗)) and ψ ∈ Lp(�; L2([0,T];H1(D; �2))).

Equation (29) can be reformulated as a stochastic evolution equation of the form

du(t) = A(t, u(t)) dt +
∞∑
k=1

Bk(t, u(t)) dWk(t),

with the deterministic linear operator A(t) : H1(D) → H1(D)∗ defined by

〈A(t, u), v〉 = −
d∑

i,j=1

∫
D
aij(t, x)∂iu ∂jv dx + 〈φ(t), v〉 for u, v ∈ H1(D), (32)

and stochastic operators Bk(t) : H1(D) → L2(D) given by

Bk(t, v) =
d∑

i=1
bik∂iv + ψk,t for v ∈ H1(D). (33)

Unlike Section 4.1, the p-dependent term in the coercivity condition (H3) does not vanish
completely and enters through the term b · n|∂D . If b · n vanishes at the boundary of D,
then the solution admits moment estimates of all orders p ≥ 2, only limited by the inte-
grability of the additive noise and the initial condition. The main result of the Neumann
case is:

Proposition 4.6: Suppose Assumption 4.5 hold. Then, a unique solution u of Equation (29)
exists and the following estimate holds:

E sup
t∈[0,T]

‖ut‖pL2(D) + E

(∫ T

0
‖ut‖2H1(D) dt

) p
2

≤ CeCT
⎛⎝E‖u0‖pL2(D) + E

(∫ T

0
‖φ(t)‖2H1(D)∗ dt

) p
2

+ E

(∫ T

0
‖ψ(t)‖2L2(D;�2) dt

) p
2

⎞⎠
where C depends on θ , p, aij and bik for all i, j, k ∈ N.
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Remark 4.4 applies in theNeumann case as well, and thus this gives an alternative to (31)
which additionally works without the smoothness of b.

Before starting the proof of the proposition, we state a lemma that is needed to show the
coercivity condition (H3).

Lemma 4.7: Consider Assumption 4.5 and B as defined in (33). For every ε ∈ (0, 1) there
exists a constant Cε > 0 such that for every nonzero v ∈ H1(D) one has

‖B(t, v)∗v‖2
�2

‖v‖2L2(D)
≤ (1 + ε)C2

b‖∇v‖2L2(D) + Cε(C2
b + D2

b)‖v‖2L2(D), (34)

where C2
b = ‖b · n‖2L∞(∂D;�2) and D2

b = ‖ div(b)‖2L∞(D;�2), where n is the outer normal and
div denotes the divergence.

Proof: Observe that Tr(φu) = φTr(u) for φ ∈ C1(D) and u ∈ W1,1(D). Indeed, for u ∈
C1(D) this is clear, and the general case follows by approximation and boundedness of
Tr : W1,1(D) → L1(∂D). Thus, by integration of parts∫

D
bik(∂iv)v dx = 1

2

∫
D
bik(∂iv2) dx = 1

2

∫
∂D

bikTr(v2)ni dS + 1
2

∫
D
(∂ibik)v2 dx,

where n denotes the outer normal ofD. Taking sums over i and �2-norms in k for the last
term we can write∥∥∥∥∥k �→

d∑
i=1

∫
D
(∂ibik)v2 dx

∥∥∥∥∥
�2

≤
∫
D

‖div(b)‖�2v2 dx ≤ D2
b‖v‖2L2(D).

For the boundary term, we obtain∥∥∥∥∥k �→
d∑

i=1

∫
∂D

bikTr(v2)ni dS

∥∥∥∥∥
�2

≤
∫
∂D

‖b · n‖�2Tr(v2) dS ≤ Cb‖Tr(v2)‖L1(∂D)

By [17, Theorem 2.7] for every ε ∈ (0, 1) there exists a constant Cε > 0 such that

‖Tr(v2)‖L1(∂D) ≤ (1 + ε)‖∇(v2)‖L1(D) + Cε‖v2‖L1(D)
≤ 2(1 + ε)‖v∇v‖L1(D) + Cε‖v‖2L2(D)
≤ 2(1 + ε)‖∇v‖L2(D)‖v‖L2(D) + Cε‖v‖2L2(D),

Therefore, for v = 0∥∥∥k �→∑d
i=1
∫
D bik(∂iv)v dx

∥∥∥
�2

‖v‖L2(D)
≤ (1 + ε)Cb‖∇v‖L2(D) + (CεCb + Db)‖v‖L2(D).

Taking squares we obtain the desired estimate by using (x + y)2 ≤ (1 + ε)x2 + C′
εy2, and

by redefining ε. �
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Proof of Proposition 4.6: We show that Assumption 4.5 (H1)–(H5) hold, where we set
φ = 0,ψ = 0. Application of Theorem 2.4 gives the result. We see that (H1), (H4) and
(H5) are similar to the proof of Proposition 4.2. To prove (H2), we require an extra step
in inequality (28). Note that the same sequence of inequalities holds since we only use
the uniform ellipticity condition. This condition also follows from the new uniform ellip-
ticity condition in Assumption 4.5. By linearity of the operators, it suffices to consider
v ∈ H1(D). Using inequality (28), this results in:

2〈A(t, v), v〉 +
∞∑
k=1

∥∥∥∥∥
d∑

i=1
bik∂iv

∥∥∥∥∥
2

L2(D)
≤ −θ

d∑
i=1

∫
D

|∂iv|2 dx ≤ −θ‖v‖2H1(D) + θ‖v‖2L2(D).

We are left to prove (H3). It only remains to inspect the term ‖Bt(v)∗v‖/‖v‖2 where v ∈
H1(D). Let ε ∈ (0, 1) and invoke Lemma (4.7) to produce the bound

2〈A(t, v), v〉 +
∞∑
k=1

∥∥∥∥∥
d∑

i=1
bik∂iv

∥∥∥∥∥
2

L2(D)
+ (p − 2)

‖Bt(v)∗v‖2�2
‖v‖2L2(D)

≤ (−θ + (p − 2)εC2
b)‖∇v‖2L2(D) + Cε(C2

b + D2
b)‖v‖2L2(D)

≤ (−θ + (p − 2)εC2
b)‖v‖2H1(D) + (−(1 + ε)C2

b + θ + Cε(C2
b + D2

b))‖v‖2L2(D),

where v = 0. Since Cb ∈ L∞(�), we can choose ε > 0 such that (p − 2)εC2
b) ≤ θ/2, and

this gives (H3). Applying Theorem 2.4 the required statement follows. �

4.3. Stochastic Burgers’ equationwith Dirichlet boundary conditions

We consider Burgers’ equation withmultiplicative gradient noise in dimension one, that is,

du(t) = (∂2u(t)+ u(t)∂u(t)
)
dt + γ ∂u(t) dW(t), x ∈ (0, 1), (35)

where W(t) is a real-valued Wiener process. Equation (35) was first studied in [6] and
subsequently in [10] with space-times white noise. We consider the same setting treated in
[18, Example 6.3] of a one-dimensional gradient noise term. Generalizations of the above
problem (35) are considered in [16, 5.1.3], but for nonlinearities of the above type, it is
natural to consider d = 1 as it is needed for the monotonicity condition (H2). The novelty
is that our main abstract theorem allows us to treat arbitrary moments in � using the
classical parabolicity condition.

Assumption 4.8: Let γ ∈ (−√
2,

√
2), T>0, and

(V ,H,V∗) = (H1
0(0, 1), L

2(0, 1),H−1(0, 1))

and take U = R.
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Now (35) can be reformulated as a stochastic evolution equation

du(t) = A(u(t)) dt + B(u(t)) dW(t),

where A : H1
0(D) → H−1(D) is given by

〈A(u), v〉 = −
∫ 1

0
∂u ∂v dx +

∫ 1

0
u ∂u v dx for u, v ∈ H1

0(0, 1), (36)

and B : H1
0(0, 1) → L2(0, 1) is defined by

B(v) = γ ∂v for v ∈ H1
0(0, 1). (37)

Note that in order to align with our abstract framework, we would have to take
B : H1

0(0, 1) → L2(R, L2(0, 1)) but we do not distinguish between the through the mul-
tiplication operation trivially isomorphic spaces L2(R, L2(0, 1)) and L2(0, 1).

Sincewe can allow p = ∞ in the above, it will turn out that we are able to obtain uniform
estimates in � for this particular example. This is in correspondence with what has been
shown in [6], albeit obtained in a different way.

Proposition 4.9: Suppose that Assumption 4.8 are satisfied. Let p ∈ [4,∞]. Then, for any
u0 ∈ Lp(�; L2(0, 1))Equation (35) has a unique solution u, and the following energy estimate
holds

‖u(t)‖Lp(�;C([0,T];L2(0,1))) + ‖u‖Lp(�;L2(0,T;H1
0(0,1)))

≤ C‖u0‖Lp(�;L2(0,1)),

where C only depends on γ .

Proof: As in previous instances, it suffices to verifyAssumption 2.1, (H1)–(H5),with f = 0
and KB = Kc = 0, so that the proposition follows from Theorem 2.4 and Corollary 3.4.
Hemicontinuity (H1) is obvious. In order to prove local weak monotonicity (H2), note
that for u, v ∈ H1

0(0, 1) we have

〈A(u)− A(v), u − v〉 (36)= −
∫ 1

0
∂(u − v) ∂(u − v) dx +

∫ 1

0
(u ∂u − v ∂v) (u − v) dx

= −‖u − v‖2H1
0(0,1)

− 1
2

∫ 1

0
(u − v) ∂(u2 − v2) dx.

Integration by parts then entails

−1
2

∫ 1

0
(u − v) ∂(u2 − v2) dx = 1

2

∫ 1

0
(u2 − v2) ∂(u − v) dx

= 1
6

∫ 1

0
∂(u − v)3 dx +

∫ 1

0
v (u − v) ∂(u − v) dx

=
∫ 1

0
v(u − v) ∂(u − v) dx,
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so that

〈A(u)− A(v), u − v〉 = −‖u − v‖2H1
0(0,1)

−
∫ 1

0
v(u − v) ∂(u − v) dx

≤ −‖u − v‖2H1
0(0,1)

+ ‖v‖L4(0,1)‖u − v‖L4(0,1)‖u − v‖H1
0(0,1)

.

We employ the Sobolev–Gagliardo–Nirenberg and Poincaré inequalities to obtain

‖v‖L4(0,1) ≤ C‖v‖
3
4
L2(0,1)‖v‖

1
4
H1
0(0,1)

≤ C′‖v‖
1
2
L2(0,1)‖v‖

1
2
H1
0(0,1)

,

so that

〈A(u)− A(v), u − v〉 ≤ −‖u − v‖2H1
0(0,1)

+ ‖v‖L4(0,1)‖u − v‖
1
2
L2(0,1)‖u − v‖

3
2
H1
0(0,1)

(i)≤ (ε − 1)‖u − v‖2H1
0(0,1)

+ Cε‖v‖4L4(0,1)‖u − v‖2L2(0,1)
(ii)≤ (ε − 1)‖u − v‖2H1

0(0,1)
+ Cε‖v‖2L2(0,1)‖v‖2H1

0(0,1)
‖u − v‖2L2(0,1),

where (i) follows from Young’s inequality for some ε ∈ (0, 1) and (ii) is a consequence of
the Sobolev–Gagliardo–Nirenberg inequality. Now we combine with (37) to get

2〈A(u)− A(v), u − v〉 + ‖B(u)− B(v)‖2L2(0,1)
≤ (γ 2 + 2ε − 2)‖u − v‖2H1

0(0,1)
+ Cε

(
1 + ‖v‖2L2(0,1)

) (
1 + ‖v‖2H1

0(0,1)

)
‖u − v‖2L2(0,1),

where u, v ∈ H1
0(0, 1). Noting that γ ∈ (−√

2,
√
2) and taking ε = 2−γ 2

2 , (H2) holds with
K = Cε , α = 2, and β = 2.

For coercivity (H3), we first inspect the quantity ‖B(v)∗v‖2U
‖v‖2H

with v ∈ H1
0(0, 1) and v = 0.

Now, note that the following holds by using integration by parts

‖B(v)∗v‖2U = γ

∫ 1

0
v ∂v dx = γ

2

∫ 1

0
∂(v2) dx = 0.

By (36) and (37), this leads to

2〈A(v), v〉 + ‖B(v)‖2L2(0,1) + (p − 2)
‖B(v)∗v‖2U

‖v‖2H
= −2‖v‖2H1

0(0,1)
+
∫ 1

0
v2 ∂v dx + γ 2‖v‖2H1

0(0,1)
.

Since
∫ 1
0 v2 ∂v dx = 1

3
∫ 1
0 ∂(v

3) dx = 0, we get

2〈A(v), v〉 + ‖B(v)‖2L2(0,1) + (p − 2)
‖B(v)∗v‖2U

‖v‖2H
= (−2 + γ 2)‖v‖2H1

0(0,1)
.

Therefore, (H3) holds with θ = 2 − γ 2 > 0, α = 2, f = 0, and Kc = 0
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Let u, v ∈ H1
0(0, 1). For the boundedness condition (H4), observe

|〈A(u), v〉| ≤
∫ 1

0
|∂u| |∂v| dx +

∣∣∣∣∫ 1

0
u ∂u v dx

∣∣∣∣ ,
where ∫ 1

0
|∂u| |∂v| dx ≤ ‖u‖H1

0(0,1)
‖v‖H1

0(0,1)

by the Cauchy–Schwarz inequality and∣∣∣∣∫ 1

0
u ∂u v dx

∣∣∣∣ (i)= ∣∣∣∣∫ 1

0

1
2
(u2) ∂v dx

∣∣∣∣ (ii)≤ 1
2
‖u‖2L4(0,1)‖v‖H1

0(0,1)

(iii)≤ C‖u‖L2(0,1)‖u‖H1
0(0,1)

‖v‖H1
0(0,1)

,

where we have applied integration by parts in (i), Hölder’s inequality in (ii), and the
Sobolev–Gagliardo–Nirenberg inequality in (iii). This results in

|〈A(u), v〉| ≤
(
‖u‖H1

0(0,1)
+ C‖u‖L2(0,1)‖u‖H1

0(0,1)

)
‖v‖H1

0(0,1)
,

Using α = 2 as in (H2) and (H3), we obtain

‖A(u)‖2H−1(0,1) ≤ C′‖u‖2H1
0(0,1)

(
1 + ‖u‖2L2(0,1)

)
,

proving (H4) with KA = C′ and β = 2. Finally, for v ∈ H1
0(0, 1), ‖B(v)‖2L2(0,1) =

γ 2‖v‖2H1
0(0,1)

, so that (H5) is satisfied with KB = 0 and Kα = γ 2. �

4.4. Stochastic Navier–Stokes equations in 2D

Consider the stochastic Navier–Stokes equations in two space dimensions withmultiplica-
tive gradient noise

du(t) = (ν�u(t)− (u,∇)u) dt +
∞∑
k=1

[(bk,∇)u] dWk(t)− (∇p) dt. (38)

Here, (Wk(t))t≥0 is a collection of independent real Wiener processes indexed by k ∈ N.
The components bk are set to be vectors of divergence-free vector fields (see Assump-
tion 4.10 below). Equation (38) was considered in [6] using semigroup methods, and
later on in many other papers (see [3] and references therein). For simplicity we do
not consider additional forcing terms, but they can be included without difficulty (see
Remark 2.3). We note that the restriction to two dimensions is imposed to be able to use
the Sobolev–Gagliardo–Nirenberg inequality with suitable exponents in the proof for (H2)
below. For dimensions d ≥ 3, local well-posedness holds, see [3].

In what follows, we use:

Assumption 4.10: Suppose D ⊆ R
2 is a bounded domain. Furthermore, assume ν >

0, T>0, (bk)k∈N ∈ L∞((0,T)×�× D; �2(N;R2×2)) which is progressively measurable,
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and satisfies div bk = (
∑2

i=1 ∂ib
iγ
k )

2
γ=1 = 0 in the sense of distributions for all k ∈ N. We

impose the coercivity condition that there exists κ > 0 such that⎛⎝2ν 2∑
i,γ=1

(ξ i,γ )2 −
∞∑
k=1

2∑
γ ,γ ′=1

2∑
i,j=1

biγk bjγ
′

k ξ
i,γ ξ j,γ

′
⎞⎠ ≥ κ

2∑
i,γ=1

(ξ i,γ )2, (39)

for all ξ ∈ R
2×2. Set U := �2 and define (V ,H,V∗) by

V = {v ∈ W1,2
0 (D;R2) : ∇ · v = 0 a.e. onD}, ‖v‖V :=

(∫
D

|∇v|2 dx
) 1

2
,

and where H is the closure of V with respect to the norm

‖v‖H :=
(∫

D
|v|2 dx

) 1
2
.

Defining the Helmholtz–Leray projection PHL as the orthogonal projection

PHL : L2(D;R2) → H,

Equation (38) turns into a stochastic evolution equation

du(t) = (Lu(t)+ F(u(t))) dt +
∞∑
k=1

Bk(u(t)) dWk(t), (40)

where L : H2,2(D;R2) ∩ V → H is given by

Lu = νPHL(�u), u ∈ H2,2(D;R2) ∩ V

and can be extended to amapL : V → V∗ such that ‖Lu‖V∗ ≤ ‖u‖V , u ∈ V . Furthermore,
set F to be a nonlinear operator F : V → V∗ given by

F(u) = −PHL[(u,∇)u] = −PHL[div(u ⊗ u)], u ∈ V .

Finally, define B : V → L2(U,H) by

B(u)ek = Bk(u) = PHL[(bk,∇)u], u ∈ V .

Theorem 4.11: Suppose Assumption 4.10 holds and let p ∈ [2,∞]. Then, for any u0 ∈
Lp(�;H), there exists a unique solution u to Equation (40) and there exists a constant C
only depending on κ such that

‖u‖Lp(�;C([0,T];H)) + ‖u‖Lp(�;L2(0,T;V)) ≤ C‖u0‖Lp(�;H)

Remark 4.12: The special case of periodic boundary conditions in case of rough initial
data was recently considered in [3], where high-order regularity was proved. There the
monotone operator setting (in L2(�)) was combined with a new approach to SPDEs based
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on maximal regularity techniques (see [1,2]). The main difficulty to prove high order reg-
ularity for the solution to (38) is that the nonlinearity is critical for the space L2(0,T;V).
Therefore, classical bootstrapping arguments do not give any regularity.

Proof of Theorem 4.11: It suffices to use Theorem 2.4 and Corollary 3.4 with A(u) :=
Lu + F(u), for which (H1)–(H5) under the assumption KB = Kc = 0 have to be shown.
We will only show (H2), (H3) and (H5). For the other assumptions, we refer to [7,16]. In
order to show local monotonicity (H2), let u, v ∈ V . The quantity 〈Lu − Lv, u − v〉 can be
computed from the definition

〈Lu − Lv, u − v〉 = −ν‖u − v‖2V . (41)

Next, we compute

〈F(u)− F(v), u − v〉 = −〈div((u − v)⊗ v), u − v〉 − 〈div(u ⊗ (u − v)), u − v〉,
where

〈div(u ⊗ (u − v)), u − v〉 = −1
2
〈∇|u − v|2, u〉 = 0 (42)

and the Sobolev–Gagliardo–Nirenberg inequality entails

−〈div((u − v)⊗ v), u − v〉 ≤ C‖u − v‖
3
2
V‖u − v‖

1
2
H‖v‖L4(D;R2)

for a constant C, so that by Young’s inequality

〈F(u)− F(v), u − v〉 ≤ κ‖u − v‖2V + C′

κ3
‖v‖4L4(D;R2)‖u − v‖2H (43)

for a constant C′. Finally, the contribution (H2) coming from the stochastic integral is

∞∑
k=1

‖Bk(u)− Bk(v)‖2H
(i)≤

∞∑
k=1

‖[(bk,∇)(u − v)]‖2H

(ii)=
∞∑
k=1

2∑
γ ,γ ′=1

2∑
i,j=1

∫
D
biγk bjγ

′
k ∂i(u − v)γ ∂j(u − v)γ

′
dx, (44)

where (i) follows since projections are contractive and (ii) is the first line written out.
By (41), (43), (44) and the coercivity condition (39) we obtain

2〈Lu + F(u)− (Lv + F(v)), u − v〉 +
∞∑
k=1

‖Bk(u)− Bk(v)‖2H

≤ C′

κ3
‖v‖4L4(D;R2)‖u − v‖2H

(i)≤ C′′

κ3
‖v‖2V‖v‖2H‖u − v‖2H

≤ C′′

κ3
(1 + ‖v‖2V)(1 + ‖v‖2H)‖u − v‖2H ,
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with a constant C′′ and (i) follows from the Sobolev–Gagliardo–Nirenberg inequality. The
above implies that (H2) holds with α = β = 2 and K = C′′

κ3
.

In order to show (H3), note that

〈Lv, v〉 (41)= −ν‖v‖2V , v ∈ V .

We also note that 〈F(v), v〉 (42)= 0(42) for v ∈ V . Therefore, the only term that remains to
be estimated is ‖B∗(u)u‖2U

‖u‖2H
. This will also turn out to be 0, by using that the components of

bk are divergence-free vector fields. Indeed, we obtain for k ∈ N,

(B∗(v)v)k =
∫
D
[(bk,∇)v] · v dx

=
∫
D

(
(b11k ∂1v

1)v1 + (b12k ∂2v
1)v1

)
dx︸ ︷︷ ︸

A

+
∫
D

(
(b21k ∂1v

2)v2 + (b22k ∂2v
2)v2

)
dx.

By redefining indices, it suffices to treat
A . Using integration by parts, we see:

A = 1
2

∫
D

(
b11k ∂1(v

1)2 + b12k ∂2(v
1)2
)
dx = 1

2

∫
D
(∂1b11k + ∂2b12k )(v

1)2 dx = 0

and thus (B∗(v)v)k = 0 for all k ∈ N. We therefore conclude that the coercivity condition
(H3) is as follows:

2〈Lv + F(v), v〉 +
∞∑
k=1

‖Bk(v)‖2H ≤ −ν‖v‖2V , v ∈ V ,

that is, we can choose θ = κ , f (t) = 0, and Kc = 0.
In order to show (H5), we use (39) and (44) once more and arrive at

∞∑
k=1

‖Bk(v)‖2H ≤ (2ν − κ)‖v‖2V ,

showing that also (H5) holds on choosing KB = 0 and Kα = 2ν − κ . �

4.5. Systems of second order SPDEs

The authors of [11] develop a C2+δ theory for systems of SPDEs. This relies on integral
estimates for amodel systemof SPDEs (see [11, Theorem3.1]).Wewill show that one of the
underlying assumptions, which the authors of [11] call themodified stochastic parabolicity
condition, fits naturally in our framework. Sharpness follows from [11, Example 1.1] which
is based on [12, Section 3].
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Consider a random field

u = (u1, . . . , uN)′ : R
d × [0,∞)×� → R

N

described by the following linear system of SPDEs:

duα =
(
aijαβ∂iju

β + φα

)
dt +

(
σ i
k,αβ∂iu

β + ψk,α

)
dWk(t) (45)

where the collection {Wk}k≥1 are countably many independent Wiener processes.
In this section, we use Einstein’s summation convention with

i, j = 1, 2, . . . , d; α, β = 1, 2, . . . ,N; k = 1, 2, . . .

The assumptions are:

Assumption 4.13: Let p ∈ [2,∞), d ≥ 1 and N ≥ 1. Let

(V ,H,V∗) = (Hm+1(Rd;RN),Hm(Rd;RN),Hm−1(Rd;RN))

and U = �2. Further assume that aijαβ ∈ L∞(�× [0,T]) for all 1 ≤ i, j ≤ d, 1 ≤ α,β ≤ N
and (σ i

k,αβ)
∞
k=1 ∈ L∞(�× [0,T]; �2) for all 1 ≤ i ≤ d, 1 ≤ α,β ≤ N. and suppose that the

following modified stochastic parabolicity condition is satisfied:

(MSP) The coefficients a = (aijαβ) and σ = (σ i
k,αβ) are said to satisfy themodified stochas-

tic parabolicity (MSP) condition if there are measurable functions λik,αβ : R
d ×

[0,∞)×� → R with λik,αβ = λik,βα such that for

Aij
αβ = 2aijαβ − σ i

k,γασ
j
k,γβ − (p − 2)(σ i

k,γα − λik,γα)(σ
j
k,γβ − λ

j
k,γβ)

there exists a constant κ > 0 with

Aij
αβξiξjη

αηβ ≥ κ|ξ |2|η|2 ∀ ξ ∈ R
d, η ∈ R

N

everywhere on R
d × [0,∞)×�.

Suppose that u0 ∈ Lp(�,F0;H) and

φ ∈ Lp(�; L2([0,T];Hm−1(Rd;RN))),

ψ ∈ Lp(�; L2([0,T];Hm(Rd; �2(N;RN)))).

Remark 4.14: The above ellipticity condition Aij
αβξiξjη

αηβ ≥ κ|ξ |2|η|2 is known as the
Legendre–Hadamard condition. In case the coefficients depend on the space variable some
smoothness is required if onewishes to assume this type of ellipticity. Alternatively, one can
considermeasurable coefficients with amore restrictive ellipticity condition. For details on
these matters, we refer to [4].

In the MSP condition, one typically takes λik,αβ = (σ
j
k,αβ + σ

j
k,βα)/2 or λ

i
k,αβ = 0.
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We can reformulate (45) as a stochastic evolution equation

du(t) = A(u(t)) dt +
∞∑
k=1

Bk(u(t)) dWk(t). (46)

For this, define the deterministic part of the equation as an operator

A : Hm+1(Rd;RN) → Hm−1(Rd;RN)

such that for any u, v ∈ Hm+1(Rd;RN)

〈A(u), v〉 = −
∫

Rd
aijαβ∂iu

β∂juα dx. (47)

The stochastic part of the equation is defined as an operator

B : Hm+1(Rd;RN) → L2(�
2;Hm(Rd;RN))

such that for any u ∈ Hm+1(Rd;RN) and

B(u)ek = Bk(u) with Bk,α(u) = σ i
k,αβ∂iu

β . (48)

We are now in a position to recover [11, Theorem 3.1]:

Proposition 4.15: Let m ≥ 0, and suppose that Assumption 4.13 are satisfied. Then, (45)
has a unique solution

u ∈ Lp(�;C([0,T];Hm(Rd;RN))) ∩ Lp(�; L2([0,T];Hm+1(Rd;RN))).

Moreover, for any multi-index s with |s| ≤ m, there exists a constant C depending on d, κ
and K such that

E sup
t∈[0,T]

‖∂su(t)‖pL2(Rd ;RN)
+ p−1/2

E

(∫ T

0
‖∂s∂xu(t)‖2L2(Rd ;RN)

dt
) p

2

≤ C

⎛⎝E‖∂su0‖pL2(Rd ;RN)
+ E

(∫ T

0
‖∂sφ(t)‖2H−1(Rd ;RN )

dt
) p

2

+E

(∫ T

0
‖∂sψ(t)‖2L2(Rd ;�2(N;RN))

dt
) p

2

⎞⎠ .

Proof of Proposition 4.15: Without loss of generality, one can restrict to the case m = 0,
since the other cases can be obtained by differentiation. We will check the conditions of
Theorem 2.4 and Corollary 3.4. We proceed by showing that Assumption 2.1 (H1)–(H5)
hold. By Remark 2.3 we may assume φ = ψ = 0. We only verify coercivity (H3), since
(H1), (H2), (H4) and (H5) are very similar to the stochastic heat equation, to which
equation (45) reduces on setting N = 1, and which was treated in Subsections 4.1 on
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arbitrary domains. To this end, let v ∈ H1(Rd;RN) and consider the following (using the
summation convention):

2〈A(v), v〉 = −2
∫

Rd
aijαβ∂iv

β∂jvα dx.

Next, we use definition (48) to consider the term ‖Bt(v)‖2:

‖Bt(v)‖2L2(Rd ;�2(N;RN))
=
∫

Rd
σ i
k,γασ

j
k,γβ∂iv

β∂jvα dx

Considering ‖Bt(v)∗v‖2�2/‖v‖2L2(Rd ;RN)
, for v ∈ H1(Rd;RN), v = 0, we have:

‖Bt(v)∗v‖2�2 =
∞∑
k=1

|(Bt(v)∗v)k|2 =
∞∑
k=1

(∫
Rd
σ i
k,γβ(∂iv

β)vγ dx
)2

. (49)

Note that the following identity holds:

σ i
k,γβ∂iv

βvγ = (σ i
k,γβ − λik,γβ)v

γ ∂ivβ + 1
2
λik,γβ∂i(v

γ vβ).

Integrating both sides of the above expression over R
d, by Equation (49) we find:

‖Bt(v)∗v‖2�2 =
∞∑
k=1

(∫
Rd
(σ i

k,γβ − λik,γβ)(∂iv
β)vγ dx

)2

(i)≤
∞∑
k=1

⎛⎜⎝∫
Rd

⎛⎝ N∑
γ=1

(vγ )2
⎞⎠

1
2
⎛⎝ N∑
γ=1

((σ i
k,γβ − λik,γβ)∂iv

β)2

⎞⎠
1
2

dx

⎞⎟⎠
2

(i)≤
∞∑
k=1

‖v‖2L2(Rd ;RN)

(∫
Rd
((σ i

k,γβ − λik,γβ)∂iv
β)2 dx

)

= ‖v‖2L2(Rd ;RN)

∫
Rd
(σ i

k,γβ − λik,γβ)(σ
j
k,γα − λ

j
k,γα)∂iv

β∂jvα dx,

where the Cauchy–Schwarz inequality is applied at (i). This leads to

‖Bt(v)∗v‖2�2
‖v‖2L2(Rd ;RN)

≤
∞∑
k=1

(∫
Rd
(σ i

k,γβ − λik,γβ)(σ
j
k,γα − λ

j
k,γα)∂iv

β∂jvα dx
)
.

Therefore, the coercivity condition (H3) can be derived from (MSP) as:

2〈A(v), v〉 + ‖(Bt(v))‖2L2(Rd ;�2(N;RN ))
+ (p − 2)

‖Bt(v)∗v‖2�2
‖v‖2L2(Rd ;RN)

≤
∫

Rd

(
−2aijαβ + σ i

k,γασ
j
k,γβ + (p − 2)(σ i

k,γβ − λik,γβ)(σ
j
k,γα − λ

j
k,γα)

)
∂ivβ∂jvα dx

≤ −κ‖v‖2H1(Rd ;RN)
+ κ‖v‖2L2(Rd ;RN )

,

which shows that (H3) holds with θ = κ , f = 0, and Kc = κ . �
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4.6. Higher-order SPDEs

In this section, we consider the following on R
d:

du(t) =
⎡⎣(−1)m+1

∑
|α|,|β|=m

∂β(Aαβ)∂αu(t))+ φ(t)

⎤⎦ dt

+
∞∑
k=1

⎡⎣ ∑
|α|=m

Bk,α∂αu(t)+ ψk,t

⎤⎦ dWk(t), (50)

where (Wk(t))t≥0 are countably many independent Wiener processes.
The above equation was considered in [22], and below we will show that the p-

dependent well-posedness results can be obtained within our abstract framework. Addi-
tionally, our coefficients are space dependent. The assumptions are:

Assumption 4.16: Let d ≥ 1,m ≥ 1 and let

(V ,H,V∗) = (Hm(Rd), L2(Rd),H−m(Rd)).

and take U = �2. Further assume that the coefficients Aαβ ∈ L∞(�× [0,T] × D) for all
1 ≤ α,β ≤ d. Suppose that

(Bk,α)∞k=1 ∈
{
L∞(�× [0,T] × R

d; �2), ifm is even;
W1,∞(Rd; �2), ifm is odd.

Assume that the coefficients satisfy the following coercivity condition:

2
∑

|α|,|β=m

Aαβξαξβ − p + (−1)m(p − 2)
2

∞∑
k=1

∣∣∣∣∣∣
∑

|α|=m

Bk,αξα

∣∣∣∣∣∣
2

≥ λ
∑

|α|=m

|ξα|2, (51)

where λ > 0. Furthermore, suppose u0 ∈ Lp(�,F0;H),

φ ∈ Lp(�; L2([0,T];H−m(Rd))) and ψ ∈ Lp(�; L2([0,T]; L2(Rd; �2))).

Next, we reformulate SPDE (50) into a stochastic evolution equation

du(t) = A(t, u(t)) dt +
∞∑
k=1

Bk(t, u(t)) dWk(t).

The drift part of the equation is defined as a time-dependent linear operator

A(t) : Hm(Rd) → H−m(Rd),

where for all u, v ∈ Hm(Rd):

〈A(t, u), v〉 = −
∑

|α|,|β|=m

〈Aαβ∂αu, ∂βv〉 = −
∑

|α|,|β|=m

∫
Rd

Aαβ(∂αu)(∂βv) dx. (52)
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Similarly, the stochastic part is defined as a time-dependent linear operator

B : Hm(Rd) → L2(�
2, L2(Rd)),

where for all u ∈ Hm(Rd)

B(u)ek = Bk(u) =
∑

|α|=m

Bk,α(t)∂αu.

Proposition 4.17: Suppose that Assumption 4.16 is satisfied. Then, (50) has a unique
solution in

u ∈ Lp(�;C([0,T]; L2(Rd))) ∩ Lp(�; L2([0,T];Hm(Rd))).

Furthermore, there exists a constant C only depending on λ, d and p such that

E sup
t∈[0,T]

‖u(t)‖pL2(Rd)
+ E

(∫ T

0
‖u(t)‖2Hm(Rd)

dt
) p

2

≤ CeCT
⎛⎝E‖u0‖pL2(D) + E

(∫ T

0
‖φ(t)‖2H−m(Rd)

dt
)p

2

+ E

(∫ T

0
‖ψ(t)‖2L2(Rd ;�2) dt

)p
2

⎞⎠.
Remark 4.18: If the coefficients are not space-dependent, one can shift the regularity as
in Section 4.5. Moreover, in that case, the estimate can be obtained with more explicit
constants independent of p and T as in Corollary 3.4.

Remark 4.19: For m even, no smoothness assumptions on B have been made. In case m
is odd one can also deal with the non-smooth case, but this will require a p-dependent
coercivity condition as in the even case.

Before starting the proof, we state a lemma needed for the coercivity condition.

Lemma 4.20: Suppose that m = 2n+ 1 with n ∈ N0, and that Assumption 4.16 is satisfied.
Let ζ ∈ W1,∞(Rd; �2). Let α ∈ N

d be such that |α| ≤ m. Then for every ε > 0 there exists
a Cε > 0 depending on m such that for all v ∈ Hm(Rd)∥∥∫

Rd ζv∂αv dx
∥∥
�2

‖v‖L2(Rd)

≤ ε‖v‖Hm(Rd) + Cε‖v‖L2(Rd).

Proof: By density, it suffices to consider v ∈ C∞
c (R

d). If |α| = m, then we reduce the
number of derivatives by one order. Integrating by parts |α| times we obtain∫

Rd
ζkv∂αv dx = −

∫
Rd
ζkv∂αv dx + R,

where Rk is a linear combination of terms of the form
∫

Rd ∂α̃ζk∂
βv∂γ v dxwith |̃α| + |β| +

|γ | = |α| and |̃α| = 1. Therefore,
∫

Rd ζkv∂αv dx = 1
2Rk is of lower order in v. Moreover,
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note that ∥∥∥∥∫
Rd
∂α̃ζ ∂βv∂γ v dx

∥∥∥∥
�2

≤ ‖ζ‖W1,∞(D;�2)

∫
Rd

|∂βv| |∂γ v| dx.
From the above, it follows that it remains to show that for every |β| + |γ | ≤ m − 1,∫

Rd |∂βv| |∂γ v| dx
‖v‖L2(Rd)

≤ ε‖v‖Hm(Rd) + Cε‖v‖L2(Rd). (53)

By Cauchy–Schwarz’s inequality and standard interpolation estimates we find that∫
Rd

|∂βv| |∂γ v| dx ≤ ‖v‖H|β|(Rd)‖v‖H|γ |(Rd)

≤ C‖v‖
|β|
m
Hm(Rd)

‖v‖1−
|β|
m

L2(Rd)
‖v‖

|β3|
m

Hm(Rd)
‖v‖1−

|γ |
m

L2(Rd)

= C‖v‖
�
m
Hm(Rd)

‖v‖2−
�
m

L2(Rd)
,

where we have set � := |β| + |γ | ≤ m − 1. Therefore, by Young’s inequality we obtain that
for every ε > 0 there exists a Cε > 0 such that∫

Rd |∂βv| |∂γ v| dx
‖v‖L2(Rd)

≤ C‖v‖
�
m
Hm(Rd)

‖v‖1−
�
m

L2(Rd)
≤ ε‖v‖Hm(Rd) + Cε‖v‖L2(Rd),

which is (53). �

Proof of Proposition 4.17: Furthermore, set φ = ψ = 0 by Remark 2.3. We only check
coercivity (H3), since the other conditions are similar to the stochastic heat equation
treated in Subsections 4.1 and 4.2 in case of bounded domains. From now on, consider
an arbitrary v ∈ Hm(Rd). From (52), we see that

2〈A(t, v), v〉 = −2
∑

|α|,|β|=m

∫
Rd

Aαβ(∂αv)(∂βv) dx.

For ‖B(t, v)‖2L2(Rd ;�2) we obtain

‖B(t, v)‖2L2(Rd ;�2) =
∞∑
k=1

∥∥∥∥∥∥
∑

|α|=m

Bk,α∂αv

∥∥∥∥∥∥
2

L2(Rd)

=
∞∑
k=1

∫
Rd

∑
|α|,|β|=m

Bk,αBk,β(∂αv)(∂βv) dx.

The last term that needs to be inspected is ‖B(t, v)∗v‖2
�2
, which is inspected for the casesm

odd and m even separately. If m is odd, write m = 2n+ 1 for n ∈ N0. By Lemma 4.20 we
obtain

‖B(t, v)∗v‖2
�2

‖v‖2L2(Rd)

≤ ε‖v‖2Hm(Rd)
+ Cε‖v‖2L2(Rd)

, (54)

where we are free to choose ε > 0, and Cε depends on B. Therefore, if m is odd, the
following inequalities for the coercivity condition (H3) hold:

2〈A(t, v), v〉 + ‖B(t, v)‖2L2(Rd ;�2) + (p − 2)
‖B(t, v)∗v‖2

�2

‖v‖L2(Rd)
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≤
∑

|α|,|β|=m

∫
Rd

(
−2Aαβ +

∞∑
k=1

Bk,αBk,β

)
(∂αv)(∂βv) dx

+ ε(p − 2)‖v‖2Hm(Rd)
+ Cε(p − 2)‖v‖2L2(Rd)

≤ (−λ+ ε)‖v‖2Hm(Rd)
+ Cε‖v‖2L2(Rd)

.

Choosing ε small enough, the coercivity condition (H3) holds with θ = λ− ε(p − 2),
f = 0 and Kc = ε(p − 2).

Ifm is even, we use the Cauchy–Schwarz inequality to show

‖B(t, v)∗v‖2
�2

‖v‖2L2(Rd)

≤ ‖B(t, v)‖2L2(Rd ;�2).

Using the condition (51) on the coefficients of Assumption 4.16, we can combine all terms
to get the following inequalities for the coercivity condition (H3):

2〈A(t, v), v〉 + ‖B(t, v)‖2L2(Rd ;�2) + (p − 2)
‖B(t, v)∗v‖2

�2

‖v‖L2(Rd)

≤
∑

|α|,|β|=m

∫
Rd

(
−2Aαβ + (p − 1)

∞∑
k=1

Bk,αBk,β

)
(∂αv)(∂βv) dx ≤ −λ‖v‖2Hm(Rd)

.

In this case, the coercivity condition (H3) holds with θ = λ, f = 0, and Kc = 0. �

4.7. Stochastic p-Laplacianwith Dirichlet boundary conditions

We consider the following stochastic version of the p-Laplace equation:

du(t) = ∇ · (|∇u(t)|α−2∇u(t)) dt +
∞∑
k=1

Bk(u(t)) dWk(t), (55)

where (Wk(t))t≥0 are countably many independent Wiener processes. Since we reserve p
for the moment in probability, we use α > 2 instead of p in the p-Laplacian.

We will prove existence, uniqueness and an energy estimate. The arguments are similar
to [18], who consider a slightly different leading order operator in (55). Moreover, they
have an additional nonlinear term f (u)dt, which can also be included in our setting.

Assumption 4.21: Let D ⊂ R
d be a bounded domain, α > 2, γ 2 ≤ 8α−1

α2
and p ∈

[2, 2
γ 2

+ 1) and u0 ∈ Lp(�; L2(D)). Consider

(V ,H,V∗) = (W1,α
0 (D), L2(D),W1,α

0 (D)∗),
and set U = �2. Let B : W1,α

0 (D) → L2(�
2, L2(D)), where for u ∈ W1,α

0 (D) and we have
B(u)ek = Bk(u) andBk : W1,α

0 (D) → L2(D) satisfiesBk(0) = 0 and for allu, v ∈ W1,α
0 (D):

‖Bk(u)− Bk(v)‖2L2(D) ≤ γ 2
k

∥∥∥|∇u| α2 − |∇v| α2
∥∥∥2
L2(D)

+ C2
k‖u − v‖2L2(D), (56)

where we assume
∑∞

k=1 γk ≤ γ 2 and
∑∞

k=1 C
2
k < ∞.
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Next, we turn SPDE (55) into a stochastic evolution equation of the form

du(t) = A(u(t)) dt +
∞∑
k=1

Bk(u(t)) dWk(t),

where A : W1,α
0 (D) → W−1,α(D) is given by

〈A(u), v〉 = −
∫
D

|∇u|α−2∇u · ∇v dx for all u, v ∈ W1,α
0 (D).

Proposition 4.22: Given Assumption 4.21, there exists a unique solution to Equation (55).
Furthermore, there exists a constant C depending on γ , α and p such that the following
estimate holds:

E sup
t∈[0,T]

‖u(t)‖pL2(D) + E

(∫ T

0
‖u(t)‖α

W1,α
0 (D) dt

) p
2

≤ CeCTE‖u0‖pL2(D).

Remark 4.23: An admissible choice for Bk is Bk(u) = γk|∇u| α2 .

Proof: We show that (H1)–(H5) hold for Equation (55) and can therefore apply
Theorem 2.4. Hemicontinuity (H1) can be found in [16, p. 82]. For local weak monotonic-
ity (H2), take u, v ∈ W1,α

0 (D) and consider the following inequality which follows from
[16, p. 82]:

2〈A(u)− A(v), u − v〉 ≤ −2
∫
D

(|∇u|α−1 − |∇v|α−1) (|∇u| − |∇v|) dx (57)

We now consider the other term for (H2). By (56) we obtain

‖B(u)− B(v)‖2L2(�2,L2(D)) ≤
∞∑
k=1

‖Bk(u)− Bk(v)‖2L2(D)

≤
∞∑
k=1

γ 2
k

∥∥∥|∇u| α2 − |∇v| α2
∥∥∥2
L2(D)

+
k∑

i=1
C2
k‖u − v‖2L2(D)

≤ γ 2‖|∇u| α2 − |∇v| α2 ‖2L2(D) + C‖u − v‖2L2(D). (58)

The bounds (57) and (58) combine to

2〈A(u)− A(v), u − v〉 + ‖B(u)− B(v)‖2L2(�2,L2(D))

≤ −
∫
D

(
(|∇u|α−1 − |∇v|α−1|)(|∇u| − |∇v|)+ γ 2(|∇u| α2 − |∇v| α2 )2

)
dx

+ C‖u − v‖2L2(D).
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Now (H2) follows from the inequality (which holds since γ 2 ≤ 8α−1
α2

):

2
(
xα−1 − yα−1) (x − y)− γ 2

(
x
α
2 − y

α
2

)2 ≥ 0 for all x, y ≥ 0.

In order to show coercivity (H3) note that for v ∈ W1,α
0 (D) we have

2〈A(v), v〉 = −2
∫
D

|∇v|α dx = −2‖v‖α
W1,α

0 (D)

and using the Cauchy–Schwarz inequality, we obtain

‖Bt(v)∗v‖2�2
‖v‖2L2(D)

≤ ‖Bt(v)∗‖2L2(L2(D),�2) = ‖Bt(v)‖2L2(�2,L2(D)).

Therefore, we conclude with the following p-dependent condition for (H3):

2〈A(v), v〉 + ‖Bt(v)‖2L2(�2,L2(D)) + (p − 2)
‖Bt(v)∗v‖2�2
‖v‖2L2(D)

≤ ((p − 1)γ 2 − 2
) ‖v‖αW1,α(D) + C‖v‖2L2(D).

The first term on the RHS is negative by assumption. Therefore, (H3) holds with θ = 2 −
(p − 1)γ 2 and f = 0.

We are only left to show the boundedness conditions (H4) and (H5). For v ∈ W1,α
0 (D),

we use Hölder’s inequality to obtain:

|〈A(u), v〉| ≤
∣∣∣∣∫D |∇u|α−2∇u · ∇v dx

∣∣∣∣
≤
(∫

D
|∇u|α dx

) α−1
α
(∫

D
|∇v|α dx

) 1
α ≤ ‖u‖α−1

W1,α
0 (D)‖v‖W1,α

0 (D).

Therefore, it follows for all v ∈ W1,α
0 (D) that ‖A(v)‖

α
α−1
W−1,α(D) ≤ ‖v‖α

W1,α
0 (D), which entails

(H4) with KA = 1
2 and β = 0. We omit (H5), since it is clear by assumption. �
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