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Abstract

With the advancement of 5G/6G radio networks, the demand for high-performance power
amplifiers (PAs) with clean spectra and compact constellations has increased significantly.
To address these challenges, Atrtificial Intelligence (Al)-based digital predistortion (DPD) has
emerged as a promising approach to linearize radio-frequency (RF) PAs. However, existing
state-of-the-art Al-based architectures rely on computationally expensive online feature ex-
traction to achieve satisfying linearization performance, resulting in complicated algorithm
data paths and difficulty in energy-efficient hardware implementation. This thesis proposes
a new deep recurrent neural network (RNN)-based DPD architecture, called Skip Gated Re-
current Unit (SGRU), with precise offline baseband signal feature extraction to bypass the
need for complex online feature extraction while still maintain high linearization performance.
The proposed RNN architecture employs the end-to-end (E2E) learning framework to imple-
ment an efficient DPD model. By combining the offline feature extraction and E2E framework,
we achieved a more streamlined and faster training method for wideband RF power ampli-
fier (PA) DPD. With a simplified neural network architecture and fewer parameters, our ap-
proach utilizes 394 parameters to achieve adjacent channel power ratio (ACPR) (lower/upper)
of -45.16/-44.31 dBc for 100 MHz orthogonal frequency division multiplexing (OFDM) signal,
ACPR (lower/upper) of -38.44/-42.09 dBc for 200 MHz OFDM signal. Compared to previous
state-of-art phase gated just-another-network (PG-JANET) [1] and decomposed vector rotation
just-another-network (DVR-JANET) [2], our approach has better ACPR and error vector magni-
tude (EvM) performance with parameters around 400. Compared to vector decomposition
long-short term memory (VDLSTM) [3], our approach achieves a better lower/upper band bal-
ance.
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Introduction

RF PAs face the problem of generating in-band distortion and out-of-band spurious emissions
due to operating in the saturation region. To mitigate this issue, the DPD module is incor-
porated into the wireless transmitter system’s baseband digital signal processor. The core
concept of DPD is to identify an inverse PA function to compensate for the nonlinearity of PA. In
traditional wireless systems, DPD has been approved as a better method to improve linearity
than feedforward and ”linear amplification with nonlinear components” methods [4]. However,
in next-generation (5G/6G) wireless systems, the requirement of high-performance DPD has
been increased because of the wideband spectrum. Wideband spectrum with high-order mod-
ulation limits PA at serious back-off and causes severe nonlinearity.

Before Neural Networks (NNs), GMP is regarded as a state-of-the-art model to implement
DPD and is currently still the fact standard in the industry. GMP was invented based on Volterra
series methods and other special cases, such as parallel Hammerstein [5]. Even if GMP
showed good performance in prior works, their ability to catch the non-linearity faces more
and more challenges when operating at high peak-to-average power ratio (PAPR) and with
large bandwidth signals [6]. To overcome the model capability challenge, NNs are gradually
adopted to implement non-linear DPD due to their ability to fit arbitrary nonlinear functions.

This thesis focuses on creating a high-performance Al-based DPD framework for next-
generation RF PA. The new framework contains an E2E learning architecture and a SGRU
DPD model. Previous learning architecture ILA holds the assumption that RF PAs are com-
muted, which is not practical. The proposed learning architecture should waive this assump-
tion. Meanwhile, it should decrease the computational cost. The proposed DPD Neural Net-
work (NN) model should have competitive calculation complexity when operating wideband
signal on RF PA

1.1. Problem Statement and Research Questions

1.1.1. Problem Statement

Based on the literature review of prior DPD works, the challenges and problems faced by Al-
based DPD tasks are explored and concluded in this subsection.

Firstly, there was no unitary standard to compare the performance of different DPD methods,
given that most prior works used different PAs. Moreover, PA non-linear characteristics, learning
architecture, and the experimental setup could also be factors that lead to better linearization
performance of a DPD method besides the algorithmic model. Studying these factors helps to
find more insights for the evaluation of different DPD methods.

Secondly, the traditional learning architecture of DPD has a complex procedure or has im-
practical assumptions, such as the PA is commuted while finding the ideal input. It is worth
finding a learning architecture that can bypass these two problems at the same time.
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1.2. Thesis Contributions 2

Thirdly, the number of parameters and the computational complexity of prior DPD methods
are not friendly to cost-efficient hardware design. Although the latest works generate better
ACPR and normalized mean-square error (NMSE) than before, their performance gain still relies
on substantially increasing the number of parameters and computational complexity. The
complicated online feature extraction layer can increase the training time of the model and
decrease the operations that can be parallel, making it difficult to realize an energy-efficient
hardware implementation of the DPD method. Therefore, it is essential to try to decrease the
complexity of NN DPD architectures while maintaining satisfactory performance.

1.1.2. Research Questions
This thesis mainly focuses on the following questions.

1. What are the variables that must be identified in the work of DPD? That is, in the test
of the DPD performance, what are the variables that may decisively affect the test result?

2. Can a simpler and more practical learning architecture be found with the help of neu-
ral networks in modeling the time-domain behaviors of PAs?

3. Instead of capturing important features of DPD through complex input layers, Could
we find a new NN architecture to simplify the computational complexity of Al-based DPD
and improve its hardware friendliness?

1.2. Thesis Contributions
The main contribution of this thesis is summarized below.

1. We introduce a new E2E learning architecture that waives the assumption that PA is
commuted and eliminates the complex calculation in iterative learning control (ILC). This
new E2E learning architecture firstly digitizes RF PA by a NN model. Then cascade DPD
NN and frozen digital PA NN to train DPD through backpropagation.

2. We proposed a NN-based DPD architecture, called SGRU, that demonstrates better
NMSE and ACPR performance than previous state-of-art architecture when linearizing 100
MHz and 200 MHz oFDM signal on specific Class-AB (CGH40006s-AMP1) and Doherty
(Ampleon C5H38110AX) PAs. From analysis, this architecture also decreases the com-
putation complexity.

1.3. Thesis Outline
The rest of the thesis is organized as follows.

Chapter 2:Back Ground and Related Works: This chapter first introduces the back-
ground of DPD in Section 2.1 and 2.2. Then cites GMP as a baseline model in Section 2.3.
In the third Section 2.4, different NNs architecture shows milestone techniques in NN-based
DPD. Decisive variables of Al-based DPD are discussed at the end of section 2.7.

Chapter 3:Methods: This chapter introduces the proposed E2E learning architecture in the
first Section 3.1. Secondly, Section 3.2 shows motivations and details of the SGRU architecture.
The third section 3.3 explains how we chose four features for the proposed architecture.

Chapter 4 Experimental Setup and Results: This chapter introduces the experimental
settings and results of different validation platforms. Section 4.1 introduces the early valida-
tion on the simulated platform. RF WebLab online validation platform results in Section 4.2
offers results that can be rebuilt and compared on an open-source platform. Section 4.3 and
Section 4.4 validate the performance of the proposed architecture on Class-AB and Doherty
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1.3. Thesis Outline 3

test boards with commercial instruments, respectively. Finally, Section 4.5 discussed the spe-
cial data preprocessing step in the RFWebLab experiment, the reason analysis for different
results from previous work, and the computational complexity analysis.

Chapter 5: Conclusion, Limitation, and Outlook: This Chapter concludes the advan-
tages and disadvantages of the proposed architecture and framework. At the end of this
thesis, we look forward to the possible improvement of our work, the new topic we found in
the related systems, and possible cooperation with PA design.
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Background and Related Work

In the beginning, this chapter explains the requirement of linearity in RF PA in Section 2.1 and
introduces the DPD concept in wireless systems in Section 2.2. Subsequently, we will present
GMP as a baseline model, a performance comparison standard for this chapter in Section 2.3.
The following three sections 2.4, 2.5 and 2.6 introduce the design of the NN architecture, the
choice of learning architecture, and the different validation experimental platforms, respec-
tively. These three sections help to gain insight into the DPD design and implementation
process. Finally, section 2.7 includes comparing performance and arguments of three imple-
mentation steps. A summary of related work is given at the end.

2.1. Nonlinearity in RF Power Amplifier

RF PA operates near the saturation region to gain efficient signal transmission, but this comes
at the cost of unwanted growth of the spectrum out of the allocated channel. This unwanted
growth of the spectrum reflects the nonlinear behavior introduced near the transferring per-
formance. PAs’ nonlinear behavior generates harmonic and intermodulation distortion by op-
erating the input signal. While harmonic distortion can be mitigated using post-PA filtering,
intermodulation distortion requires the application of linearization techniques such as DPD.

To accurately model distortion, DPD techniques must take into account various contributing
factors. On the one hand, the active components in the system have a dynamic transfer func-
tion. The complex gain of PAs can’t be a stable, unique value for different inputs in practice.
The variance of gain introduces Amplitude Modulation (AM) non-linearity and Phase modula-
tion (PM) non-linearity simultaneously. These two modulation non-linearities are often reflected
by AM-AM and AM-PM curves.

On the other hand, the system’s previous state impacts its current behavior as a result
of the presence of active components. For example, the thermal effect that generates heat
affects the characteristic of PA, leading to what is commonly known as the memory effect.

Further insights into the RF PA nonlinearity analysis that can contribute to the design of the
DPD model will be shown in the section 3.2.1.

2.2. DPD and Its Metrics in Wireless Systems

The fundamental idea behind DPD is to determine an inverse function of PA transfer function,
which serves to compensate for the non-linear behavior exhibited by the PA as depicted in
Figure 2.1. Based on this simple concept, the challenges of DPD revolve around identifying an
appropriate model, an effective learning architecture, and low-cost hardware for the realization
of high-performance DPD.
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2.2. DPD and Its Metrics in Wireless Systems 5
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Figure 2.1: Concept of DPD.

When evaluating the effectiveness of such techniques, there are four common metrics,
NMSE, ACPR, EVM, and the number of parameters, to assess the performance of Al-based
DPD.

The first, NMSE, reflects the precision of the Al model. When all previous works use I(n)
and Q(n) as target output, NMSE calculation function is shown in Function 2.1. N is the number
of test data samples.

N 2 N
NMSE =10 x loglo(¥ Lot (ot Loutin)* + (Qoutin = Qoutn)”)
% Zn:l((IOUt,n)2 + (Qout,n)Z)

Under the same learning architecture and the same NMSE calculation, ACPR is hoped to
have the same trend as NMSE. However, different works always use different methods to ob-
tain the ideal input signal, affecting the PA modeling accuracy. For commercial measurement
instruments, the ACPR shows a discrepancy between the radio frequency signal and the col-
lected baseband signal. ACPR is regarded as one of the most important metrics of RF PA DPD.
The definition of ACPR is 10 x log10(2dacent Channel Power )

Third, EVM can evaluate the performance of digital transmitters. This metric holds sig-
nificance to demodulate the signal and transmit information accurately. Take 4-Quadrature
amplitude modulation (QAM) in Figure 2.2 for example, the EVM is defined as the root mean

square error average amplitude of error vector normalized the ideal input amplitude.

) @)
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Figure 2.2: Constellation for 4-QAM and EVM.

Finally, the computational complexity can seriously impact the hardware cost. To accu-
rately reflect the calculation complexity, it's essential to consider the operation details and hard-
ware implementation performance. Although the number of parameters can partially serve as
a representative metric, it may not precisely reflect computational complexity.

2.3. Baseline: Generalized Memory Polynomial Model
NN-based DPD model widely use GMP as performance baseline. Before adopting the deep
learning technique, GMP was a state-of-art model because of its good performance compared
with earlier models, such as adaptive linearizer [7] and look-up-tables (LUTs) [8]. This good
performance is mainly generated by considering the memory effect of PA. Beyond its perfor-
mance, the well-defined physical meaning of GMP is also a significant advantage.

The formulation of the GMP model is provided below:

Ko—1Ls—1
yomp(n) = > Y apz(n—1) |z(n— 1) (2.2)
k=0 (=0
Ky Ly—1 M,
33D b =) Jz(n — 1 —m)[*
k=1 1=0 m=1
Ke L.—1 M.

+ Z Z Z cimx(n —1) |x(n —1 +m)\k

k=1 1=0 m=1

Here, K is the highest envelope power that is alias-free. L is the memory length. M is
the inserted delayed memory length. [ stands for the tapped delay, and m is the number of
inserted delay samples. ay;,bi;, and ¢, are coefficients, respectively, corresponding to the
aligned signal and envelope, the signal and lagging envelope, and the signal and leading
envelope. In practical application, GMP often keeps the odd order due to the characteristic of
RF PA operating signals and the number of samples:
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Kqo—1 Lg—1
yomp(n) = > apz(n—1)|z(n - 1) (2.3)
k=0 =0
k odd
K, Ly—1 M,

+ Z ZZbklmx(n—l)]x(n—l—m)!k
k=

=1 =0 m=1
k odd

Le—1 M.

K.
+ Z Z chlmw(n—l)‘x(n_l_'_m”k'

k=1 =0 m=1
k odd

When we consider the input of | and Q separately, the number of parameters pg,p of the
GMP model referred to 2.2 is given as:

PcMP = QKGLQ + 2KbLbe + QKCLCMC (24)

K, L and M have the same definition as in 2.2.

2.4. Neural Network Architectures

This section introduces various NNs architectures applied to RF PA DPD, following the order pre-
sented in table 2.1. Neural networks based on Multilayer Perception (MLP) model are shown in
subsection 2.4.1. Moving on to subsection 2.4.2, Deep Neural Networks (DNNs) with time-delay
technique are introduced. Subsection 2.4.3 shows architectures based on basic recurrent
neural networks (RNNs) and based on gated technique. Finally, subsection 2.4.4 contains the
architectures based on Convolutional Neural Networks (CNNs).

Sec. 2.4.1: Basic Multilayer Perception structure
Modified Radial-Basis Function NN

Multilayer Perception | Multilayer Perception | Residual NN
Sec. 2.4.2: Real-Valued Time-Delay NN

Augmented Real-Valued Time-Delay NN
Time-Delay Vector decomposition time-delay NN
Neural Networks Augmented Vector Decomposition Time-Delay NN
Sec. 2.4.3: Basic RNNs

Long-Short Term Memory
Recurrent Gated Recurrent Unit
Neural Networks Customized Cell
Sec. 2.4.4: Convolutional Neural Networks

Table 2.1: The structure of NN literature review Section 2.4.

2.4.1. Multilayer Perception: Feedforward Artificial Neural Networks

From the foundation of complex neural networks, MLP NN architecture is firstly widely applied
for DPD. MLP is an artificial neural network structure having an input layer, one or more hidden
layers, and one following output layer. It uses non-linearity activation to connect layers and
uses the backpropagation technique for training. Figure 2.3 shows the structure of MLP.
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MLP architecture is regarded as a basic NN architecture because it utilizes fully-connected
feedforward Artificial Neural Networks (ANNs) structure. Moreover, MLP shows NN’s ability to
model non-linearity according to the universal approximation theorem [9].

7

X, ( 0/ .

I(n)

K hidden Layers

M neurons in each Layer | Output Layer

Input Layer

Figure 2.3: The general structure of MLP [10].

Researchers have experimented with various modifications on the MLP structures from the
simplest model to achieve better performance. Two important techniques in DPD are intro-
duced into MLP. The first one is to use different input layer structures. Figure 2.3 shows the
most popular input choice in-phase and out-phase (I and Q) [11]. Amplitude and phase can be
another input choice to consider AM/AM and AM/PM distortion rather than | and Q imbalance.
The second technique is the shortcut [12], which connects the input layer and the output layer
to make the hidden layers focus on non-linearity. The NN architecture built on the shortcut
technique is named residual NN. Figure 2.4 shows the residual NN schematic.

7

I(n) I(n)
AV 7w N
Q) /’ \ % Q(n)

Figure 2.4: The general structure of residual MLP [13].
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Other intuitive methods are also considered. For example, papers [10] and [14] utilized
different sizes for input and output nodes. Paper [13] uses multivariate Gaussian function
as transformation between the input layer and hidden layer rather than traditional activation
function, such as sigmoid and tanh function.

In Figures 2.3 and 2.4, M is the number of neurons of each hidden layer. K is the number
of hidden layers.

2.4.2. Time-delay Neural Networks

As for high-frequency and high-bandwidth operated signals in the 5G wireless system, the
memory effect becomes more influential in DPD. Expanding the input signal of the MLP-based
structure to a time-sequential signal is a valuable and direct way to consider the memory
effect. This section shows five time-delay neural network (TDNN) structures: RVTDNN, aug-
mented RVTDNN,residual real-valued time-delay neural network (R2TDNN),VDTDNN and aug-
mented VDTDNN.

Paper [15] adds tapped delay lines in its | and Q inputs. Adding time-delay inputs is one
of the ways to consider the memory effect in NNs. As shown in Figure 2.5, this structure also
expands the number of hidden layers to two and considers the nonlinearity imbalance | and Q
based on MLP. All these methods help to fit PA's nonlinearity more accurately.

I(n) ‘§
" 7
—>e ’ VAN ()
N\ Q)
—>e
Input Layer K hidden Layers Output Layer

M neurons in each Layer
Figure 2.5: The block diagram of RVTDNN [15].

Based on the RVTDNN, the ARVTDNN [16] uses not only the time-delayed | and Q inputs but
also time-delayed 1~3th power order amplitude inputs. The architecture of ARVTDNN is shown
in Figure 2.6. The R2TDNN [17] expands the number of hidden layers further, as well as adding
the shortcut method is mentioned in residual NN in the section 2.4.1.
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K hidden Layers
M neurons in each Layer

Output Layer

Figure 2.6: The block diagram of ARVTDNN [15].

On the other hand, paper [18] proposed the VDTDNN structure to use time-delay amplitude
signals and then use a phase recovery layer to recover the phase information. The block
diagram is shown in Figure 2.7.

PRB

PRB 1(n)

i&ikiii}

Q)
PRB

M Vi

w \I PRB | ]

Hn—M
| Hidden i Phase

' | O t L
Input Layer | Neuron | Recovery block uput Layer

Figure 2.7: The block diagram of VDTDNN [18].

The VDTDNN has an augmented edition that utilizes higher power order time-delay am-
plitude inputs, named AVDTDNN. The phase recovery block is also modified by splitting the
coefficients of the cos(0) and sin(#) parts. The combination of AVDTDNN and modified phase
recovery block is shown in Figure 2.8.
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Figure 2.8: The block diagram of AVDTDNN [18].

2.4.3. Recurrent Neural Networks

As shown in Section 2.4.2, introducing techniques that consider the long-term memory effect
from 1/Q and amplitude aspects is one of the most important goals of TDNN. However, increas-
ing the memory length in TDNN means expanding the number of neurons of the input layer,
which can cause the number of coefficients to increase rapidly. This is non-ideal for both of
the NNs complexity and hardware cost. To address this condition, RNNs are applied for RF
PA DPD. RNNs can take infinite memory samples into account, which makes itself an efficient
structure to model the nonlinearity of PA.

Besides, when we try to improve the performance by increasing the number of layers, deep
layers in feedforward DNNs face vanishing gradient problems resulting from limited sensitivity
and saturation of nonlinear activation. Gating techniques in RNNs are proposed to solve van-
ishing gradient problems and are now efficiently applied for RF PA DPD.

This section firstly introduces basic RNN applied to DPD. Secondly, two critical cells using
gate techniques to control information flow through RNNs, LSTM, and gated recurrent unit (GRU)
are introduced. Then four different architectures generated from these two cells and two ar-
chitectures with customized cells are shown.

Basic RNN

RNNs add feedback connection on feedforward NNs. By taking the sequence-to-sequence
regression mode, RNNs can adapt to different lengths of input time sequences using internal
states while not affecting the number of parameters. The details of sequence-to-sequence
regression mode are shown in sub-section 2.4.3. The paper [19] firstly implemented the Full
recurrent neural network (FRNN) structure in RF PA DPD. The paper [20] adds 1Q imbalance
and tapped-delay line to the FRNN model to build a real value full recurrent neural network
(RVFRNN). The block diagram of RVFRNN is shown in Figure 2.9. However, the experiment
results of paper [20] observed that the recurrent neural network didn’t perform better than
the feedforward one. This can result from the direct connection of the feedback loop. Since
feedback information without filtering can even hurt the performance, gate techniques gain the
second reason to be applied for DPD.
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K hidden Layers

Input Layer M neurons in each Layer

Output Layer

Figure 2.9: The block diagram of RVFRNN and RVFTDNN [20].

RNN with gating technique
The popular schematic for RNN with gating technique is shown in Figure 2.10. The input can

be different types of input signals at present, such as I(n) and Q(n), or amp(n), cos(n), and
sin(n).

Input

12D JI0MIaN [eInaN

h(m)

I

hidden
Layer

Input Layer Cell Layer Output Layer

Figure 2.10: The common schematic of RNN with gating technique.

Two regression training modes are always used in RNN training. One is the sequence-to-
one training mode. The other is the sequence-to-sequence training mode. During sequence-
to-one training mode, the cell layer only generates one output vector u(n) after all input time
steps from Input(n—T) to Input(n). Then the output vector passes the fully connected to gen-
erate output. The progress of the sequence-to-one regression mode is shown in Figure 2.12.
T stands for the length of every training sequence.

TU Delft/DRASTIC Confidential under NDA



2.4. Neural Network Architectures 13

T Output(n — T + 1)
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Figure 2.11: The progress of sequence-to-sequence regression mode.

During sequence-to-sequence regression training mode, every time the input passes through
the cell layer, the cell layer generates an output vector u(n —T") for this time point and a hidden
activation h(n — T') for the next time point. Every output vector u(n) is fully connected to the
output layer to generate the final output at this time point. The hidden activation is fed back
to help the next time point to collect information from this time point. After all input signals
during the sequence pass through the cell layer, an out layer with the sequence length is built.
Finally, We minimize the mean square error (MSE) between output and target to optimize the
parameters in NN. The progress of the sequence-to-sequence regression mode is shown in
Figure 2.12. T still represents the length of every training sequence.

T Output(n —T) T Output(n — T + 1) T Output(n — T + 1)
Linear Linear « o . Linear
Iy -~
un-"T) un-T+1) u(n)
h(initial hin—T
(mitia)) cop [PE=D ) o Cell
Tlnput(n -7 Tlnput(n -T+1) ‘[ Input(n)

Figure 2.12: The progress of sequence-to-sequence regression mode.

The cell layer is the core layer in gated RNNs, which helps to capture the long-term memory
effect of PA. Being different from direct feedback on all information, gated input in the cells de-
termines how the input information is forgotten, preserved, and updated to output information.
Therefore, the details of the cells should be clarified. LSTM and GRU are two main kinds of
RNN cell layer. The LSTM cell schematic is shown in Figure 2.13 and the GRU cell schematic is
shown in Figure 2.14.
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Figure 2.13: The schematic of LSTM cell.
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Figure 2.14: The schematic of GRU cell.

As shown in Figure 2.13 and 2.14, both LSTM and GRU cells contain a "forget gate layer” to
determine forgetting part and preserving part of past information, a "reset gate layer” to update
new information, and an "output layer” to decide how to output information. Corresponding to
the symbol in two Figures, the formulations of LSTM cell are given as:

z(n) = o(W.x(n) + b,)
r(n) = o(W,x(n) +b,)

f(n —1) =tanh(Wyx(n) + U, (r(n) @ Bi(n — 1)) + by,)
h(n)=(1-2z(n)) @h(n=1) +

O'(WfX( ) + th(n — 1) + bf)

= tanh(W,x(n) + R,h(n — 1) + b,)

U(WX( )+th(n—1)—|—bz)
— o(W,x(n) + R,h(n — 1) + by)
i(n) @g(n)

=fn)®@c(n—-1) +
= o(n) ® tanh(c(n))

z(n) ® h(n)

(2.5)
(2.6)
(2.7)
(2.8)
(2.9)
(2.10)

(2.11)
(2.12)
(2.13)
(2.14)

The first difference between LSTM and GRU cells is that candidate activation h(n) affects
the final memory maintained in LSTM cell. On the contrary, the previous activation h(n — 1)
is independent of the candidate activation i(n) in GRU. The second one is that the previous
activation is directly introduced into the memory cell in the LSTM cell, while the GRU cell controls
the amount of information flowing from the previous time step by the reset gate r. The last is:

TU Delft/DRASTIC Confidential under NDA



2.4. Neural Network Architectures 15

LSTM has an independent forget gate and input gate, while the forget gate is one minus the
input gate in GRU Model [21].

According to the special function of the LSTM cell shown in Figure 2.13, the paper [22] uses
LSTM cells as a core layer of NN with a tap-delayed | and Q input layer, a batch normalization
layer, an attention layer, and a full-connected output layer. Paper [23] and paper [3] also utilize
LSTM cells. The special variation in paper [23] is trying the bidirectional LSTM cell to consider
the memory effect from two directions. The structure in paper [3] changes the fully connected
layers between the input and phase recovery in VDTDNN to a recurrent LSTM cell to fit the
vector decomposition input into the LSTM architecture.

For GRU cell, Paper [24] uses modified GRU cells as core layers to build an RNN as shown
in Figure 2.15.
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=
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Figure 2.15: The structure of GRU layer [24].

To save energy for DPD, the GRU cell in paper [24] is modified and simplified to IGIRNN cell,
which means the candidate activation h(n) does not depend directly on input but utilizes the
input information from the previous activation h(n— 1) indirectly. However, IGIRNN uses tapped
delay line input, which dramatically increases the number of neurons in the input layer. It's not
an ideal choice because the function of the tapped delay line overlaps the function of RNN.

When implementing RNN in DPD, some architectures also try to solve the problem from
the AM/AM and AM/PM perspectives. Paper [1] tried another way to deal with the imbalance
between amplitude and phase. It decomposes the input into the amplitude part and phase part
and then lets them pass through the "update gate,” respectively. The customized cell named
just-another-network (JANET) [25] simplifies the GRU cell by keeping the "update gate layer”
and "output gate layer” only.

All architectures mentioned use a relatively traditional way to deal with the nonlinearity
of signal. The non-linearity learning capability mainly depends on the number of layers, the
activation function, and the recurrent gate. To improve the non-linearity learning capability
without increasing the number of parameters, paper [2] introduces a powerful technique named
decomposed vector rotation (DVR) to the input of JANET architecture. DVR method has two main
differences from conventional methods. The first is it introduces three thresholds for linear
weighted amplitude. This makes sense for wireless systems where the non-linearity varies
for different amplitude intervals. The second difference is that it considers different kinds of
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amplitude and phased memory effects and their influence on each other.

For the complexity of DPD models, RNN is not the ideal choice to decrease the number of
coefficients, especially when the architecture uses time-delay input like IGIRNN. However, both
IGIRNN and PG-JANET show that finding other ways to extract input features helps to achieve
better performance. This upper bound of the nonlinearity modeling capability is much higher
for RNNs compared with GMP. On the other hand, DVR-JANET remarkably decreases the number
of coefficients in the cost of processing complexity.

2.4.4. Convolution Neural Networks

As another major branch of neural networks, convolution neural networks have also been con-
sidered since the running speed of DPD and the area has become increasingly important. Pa-
per [26] proposed a two-dimensional real-value time-delay convolution neural network (RVT-
DCNN) structure, whose architecture is shown in Figure 2.16.

Im | Im-1 |- M
em | em-1 |--fem-m | <L
kol | bmotT | | ool o
lx@I? | lx@m-DP | - | lx@=—d) ‘ '
x@P | lx@-DF | | lm- P
fe

Figure 2.16: The architecture of RVTDCNN [26].

The RVTDCNN makes features and tap-delay points two-dimension matrix so that the Convolutional
Neural Network (CNN) can capture the relationship between features and short-term memory
as a local characteristic. When PA has a short memory effect, the RVTDCNN can significantly
decrease the number of parameters.

2.5. Learning Architectures

Learning architecture is the method that determines how to extract DPD parameters. The target
of all different learning architectures is to make the output of DPD get close to the "real” ideal
input of PA. This ideal input of PA compensates as much as PA nonlinearity. Therefore, the
different learning architectures used to extract parameters of DPD have an impact on the NMSE
and ACPR performance and the consistency between NMSE and ACPR. It should be determined
carefully when training NN based DPD model. This section gives an introduction to popular
learning architecture, ILA, DLA, and ILC.

2.5.1. Indirect Learning Architecture

ILA tries to model the inverse function of PA. During training, it uses the down-converted output
LC’}) of PA as the DPD input and uses the PA input u(n) as DPD output. The scheme of ILA is
shown in Figure 2.17. ILA is a simple method compared to the DLA and ILC. However, we as-
sumed that the PA model has a valid commutation under this condition. This assumption does
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not hold in practice. On the other hand, measurement noise and limited feedback bandwidth
affect the accuracy of the predistorter.

~
;

x(m) ) u(n) Power y(n)
— Pre-distorter .
Amplifier
// i 4
Ir/ ) e(n)
! + 4 1
i an)
i Parameter
. estimation

[
Figure 2.17: Scheme of ILA [27].

2.5.2. Direct Learning Architecture

DLA firstly have a close model of the PA itself based on the collection of the PA characteristic
information. By combining this PA model with the NN-based DPD model, the system pushes
its output signal to the linear amplified input signal. When the training system has a relatively
accurate PA model, and the error is small enough. The output of the DPD is the ideal input of the
PA. The DLA scheme is shown in Figure 2.18. Under this condition, we need more information
about PA itself [28].

;

x(m) u(n) )
Pre-distorter ———— Power

Amplifier

Adaptive e(n) -
Algorithm Y

Ya(n)

Figure 2.18: Scheme of DLA [27].

2.5.3. lterative Learning Control

The key idea of ILC-based DPD is to evaluate an optimal PA input that can generate the ideal PA
output. After selecting the ideal output signal of PA, the ILC learning algorithm guarantees that
the newly calculated input generates a smaller error between the output and the ideal output.
ILC-based learning architecture can be used to directly get the ideal input or be a step before
DLA as shown in Figure 2.19.
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Figure 2.19: Scheme of ILC [29].

For basic ILA and DLA, papers [27] and [29] showed that DLA works best, then ILC, then ILA
based on Memory polynomial (MP) or GMP model. DLA has the best performance by increasing
the complexity of the identification process.

2.6. Validation Experiment Platforms

No matter what learning architecture is used, the data pair used for the training DPD model can
not exhaust all input and output situations of a real PA. Moreover, under DLA and two-step learn-
ing architecture, calculating ideal inputs will also introduce errors. These reasons cause that
NMSE performance can’t stand for ACPR performance. A validation platform is used to verify this
consistency between model convergence performance and adjacent channel power suppres-
sion performance. The validation platform has main components shown in Figure 2.20: DPD,
DPD parameter extraction, signal generator, Digital-to-Analog converter (DAC), up-conversion,
PA, Analog-to-Digital converter (ADC), down-conversion, spectrum analyzer, and attenuator.
Taking into account how these components are implemented, DPD verification platforms are
divided into three types.

Data Resource DPD

DPD Parameter
estimation ADC De-Modulator Attenuator

i

Figure 2.20: A schematic diagram of a validation platform.

Baseband
Input

Baseband
Output

The first one is simulation software based DPD. This type of DPD relies on the computational
ability of MATLAB/PyTorch. A corresponding mathematical model implements all the steps of
validation. PA is a coefficients matrix simplified from a real PA in this validation type. Based on
PA characteristic simplification, proposed DPD NN architecture working well on the simulation
platform is the foundation of validation on real PA.

The second is commercial measurement and instruments based on DPD. This type utilizes
a commercial signal generator and a spectrum analyzer with digitizing capability. The data
pairs also come from commercial PA while DPD parameter extraction and DPD are still finished

TU Delft/DRASTIC Confidential under NDA



2.7. Comparison and Argumentation 19

on a personal computer.

The final type is the digital and analog hardware evaluation board-based DPD platform. For
example, FPGA is popular for achieving board-based DPD. The second and third validation
platform types are more popular for the NNs based DPD.

2.7. Comparison and Argumentation

This section first compares the NNs architectures from operating signal bandwidth, NMSE, ACPR,
and theoretical computation complexity. Second, we show the comparison difficulties caused
by learning architecture and validation platforms. Third, we analyze the reason for perfor-
mance differences to emphasize important factors in the NN DPD structures design and valida-
tion. Finally, we list some existing questions and look forward to possible future developments.

2.7.1. Performance Comparison
To control the variables and avoid potential influence, the architectures, and experiment results
are chosen to show in Table 2.2 following these four rules:

1. All come from the 100 MHz test signal. The 100 MHz test signal is a fair wide-band
signal suitable for the 5G wireless system application. Furthermore, the test signal band-
width has an obvious impact on both NMSE and ACPR performance according to work [1]
and [2].

2. They are tested on four specific experiment platforms. These results are obtained
from the papers [1] [2] [24] [26] instead of the original paper that proposed the corre-
sponding architecture. Moreover, PG-JANET and DVR-JANET should have very similar ex-
periment environments so that at least two groups can be compared relatively accurately.

3. We show improved ACPR and relative coefficients of different NN architectures com-
pared to the GMP model given in their corresponding articles. These two metrics are
shown to try to decrease the influence of different PAs, RF, and sampling rates.

4. The architecture should have special techniques to deal with PA non-linearity.

NMSE | Relative Relative
Type Model (dB) | ACPR(%) #Coef. Coef.
DNN[30] | -36.42 | -17.67 | 801 07
Real RVIDNN[15] | -35.00 | -14.8 387 1.8
MLP | Tapped Value ARVTDNN [16] | -36.47 | -1852 | 393 1.8
_Delay Vector VDTDNN [18] | -37.59 | 19.71 | 12202 | 85.9
_Decomposed | AVDTDNN [18] | -39.59 | 53.15 | 1506 | 0.9
RNN[24] | -37.21 | 17.92 | 13600 | 636
Gated RNN LSTM [31] | -36.27 | -17.23 | 467 22
. VDLSTM[3] | -41.88 | 344 | 1532 | 09
RNN Fig't'zfe IGIRNN [24] | 41.09 | -23.88 | 14100 | 99.3
Etaotion PG-JANET[1] | 4342 | 769 | 1514 | 09
DVR-JANET [2] | -40.27 | -30.68 | 509 15
CNN RVTDCNN [26] | -36.44 | 216 801 0.7

Table 2.2: Comparison of results when the test signal is 100 MHz OFDM signal. Relative ACPR equals
Model —CMP Relative coefficient equals 2224<! The improved ACPR is compared to the GMP model in the following
referred paper. Data of VDTDNN,RNN and IGIRNN are referred to paper [24]. Data from AVDTDNN,VDLSTM and
PG-JANET are referred to paper [1]. Data for DNN, RVTDNN, ARVTDNN, LSTM, RVTDCNN are referred to paper [26].

Data of DVR-JANET is referred to paper [2].
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Firstly, we directly compare the value shown in Table 2.2. Here, VDTDNN, RNN, and IGIRNN
shown should be considered weaker because their number of coefficients is too large than
ground GMP while only IGIRNN generates better ACPR results. The model PG-JANET shows the
best NMSE results and also shows the highest efficiency to improve NMSE results by adding
coefficients. Model DVR-JANET shows the best relative ACPR compared to the baseline model.
RVTDCNN shows the best efficiency in improving ACPR by adding coefficients. At the same time,
what should be mentioned is that the paper [26] uses +/- 20 MHz as adjacent channels. This
calculation can affect ACPR results. Even if it cannot be determined whether this improved
ACPR is a valid metric or not, these data still reflect the improvement in the performance of the
NN structure compared to the traditional structure in a sense.

Secondly, the techniques of different models are analyzed on the basis of performance.

» Real-Valued Time-Delay input: The biggest advantage of real-valued TDNN is their low
complexity. This advantage can be further enhanced by combining with CNN.

* Vector decomposition: The performance difference between real-valued TDNN and vector-
decomposed TDNN shows that vector decomposition is not efficient in feedforward mod-
els. With a larger number of coefficients, vector-decomposed models generate worse
ACPR.

+ Gated RNNs: Gated RNNs with input feature extraction layer show the best NMSE and
ACPR improvement performance. They also control the number of coefficients efficiently.
However, the complicated processing can be problematic when applied to hardware.

Some prior work mentioned training time as one of the metrics. We didn’t consider it
a major metric because it is assumed that the digital pre-distorter only needs a few times
training processes during its lifetime. Finally, even if CNN performed well from the number
of coefficients with good ACPR performance, this statement can be overturned if we want to
pursue a higher NMSE and use an input layer with higher memory depth. The paper [26] only
considered the memory depth of 2 to 5. The number of coefficients can not stay competitive
when the memory depth increases. The assumption that increasing memory depth can help
increase NMSE is based on the result of the paper [24]. Under the same definition of memory
depth, IGIRNN gave much better NMSE with 15 memory depth and a simple input 1/Q.

2.7.2. Key Factors in NNs Architecture
This subsection will analyze the critical points in NNs models and the training process that
affect DPD performance. These factors should be carefully determined in future work.

» Feature selection: The RF PA model contains both 1Q and amplitude/phase imbalance.
Some models put their focus on 1Q imbalance, which takes two advantages. First, the
| and Q data are easier to collect in practice. Second, using | and Q as input features
lets models waive complex coefficients. Amplitude and phase also have the real-valued
coefficient advantage but are weak in preprocessing. They need to calculate more re-
sources in the hardware design. As for performance, the amplitude and phase feature
method "vector decomposition” shows better results when they are applied to RNNs, such
as VDLSTM and PG-JANET, than MLP-based NNs, such as VDTDNN and AVDTDNN.

» Tapped-delay signal: Tapped-delay input signal and the tapped-delay feedback signal is
a direct way to consider memory effect in MLP-based model. With a large memory length,
the tapped delay method causes a long delay between input and output and rapidly
increases the number of coefficients. In RNN, adding tapped delay isn’'t a good choice
because of the above disadvantages and its function overlapping with the feedback loop.
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* Augmented input: Whether to introduce the higher order magnitude and how to introduce
the higher order magnitude should be determined for DPD. Models ARVTDNN, AVDTDNN,
and RVTDCNN used augmented structures. It helps to learn the non-linearity of the model
more accurately at the cost of the complexity of the model.

» Feature extraction: DVR-JANET and PG-JANET get their good results from more compli-
cated feature preprocessing routes before the input features pass the RNN. Considering
different ways to add other features and extract relevant features can be the key point
of improving NN-based DPD performance. Moreover, two JANET based architectures are
built by introducing the physical characteristic of PA into the input of RNNs, which can be
one of the efficient ways to find the most suitable cell.

« Structure of a gated RNN cell: The difference in results between the LSTM-based model
and the GRuU-based model verified the way that forgetting and updating information af-
fects DPD performance and complexity. Two GRU-based models showed that simplifying
in cells can help reduce complexity without too much performance degradation. The
competitive results of PG-JANET and DVR-JANET. On the one hand, show the validation
of a simpler cell structure JANET.

» Skip-connection: Radial-Basis Function Neural Network (RBFNN) structure introduced
a direct connection between the input and output layer. This method is also used in
ARVTDNN, which helps the hidden layer to focus on non-linearity.

« Activation function: The choice of activation function in the feature extraction layer, the
input layer, and the output layer can be one of the factors that affect performance. In
VDTDNN model experiments, the activation function does not significantly affect the perfor-
mance after adding linear terms. However, 1D-CNN in paper [32] prefers ReLUG6 over
the sigmoid function for CNN models. RVTDCNN in paper [26] prefers T'anh activation
function.

» Learning architecture: From the characteristics of different learning architecture, the
main advantage of ILC is its simplicity. However, the experimental results show it was
not competitive NMSE. Taking into account the performance metrics, first, the DLA may
be preferred in future work.

 Validation details: Many technical details in the validation steps can influence the final
performance. For example, OFDM modulation settings, sampling rate, basic linear PA
performance, and radio frequency can all be the reasons for variances in performance
results.

2.8. Al-based DPD Summary

To summarize, this section compared 15 different NNs models applied for the DPD of RF PAs.
This comparison helps to find issues of previous work and future challenges. The first problem
exposed in the comparison is that we don’t have fixed experimental variables. Even if all
the works show their NMSE and ACPR results, it is hard to determine that the better results
are generated by the better NN architecture. Too many variables can affect the DPD results:
learning architecture, tested PA, signal generating method, and training process. The absolute
value of NMSE and ACPR can show conflict when the training process is not 100% clarified,
especially for RNN. Moreover, the number of coefficients and the complexity of the calculation
should be one of the most important metrics when DPD is implemented on the hardware. A
new standard should also be considered to ensure that increasing the number of coefficients
is worth increasing performance or that decreasing the number of coefficients has a better
influence on hardware.
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Methods

This chapter explains the methods of the proposed DPD learning framework. Firstly, Section 3.1
introduces E2E learning architecture. The learning architecture offers ideas to find unknown
ideal input of PA and suitable parameters for DPD. Secondly, the motivation, the mathematical
details, and the evaluation of the proposed SGRU architecture are shown in Section 3.2. Finally,
we analyze the selected features in 3.3.

3.1. E2E Learning Architecture
Our project is the first to apply E2E learning architecture to RNN. Figure 3.1 shows that the E2E
learning architecture has two steps. The first step is generating a baseband input signal and
collecting output data from RF PA.

x A .
Data » D » Mod > P
Step | v y
PA Parameter A De- |, Att.
Extract D | _Mod |
L :
] Frozen_______
Parameters :
1
A 4
step Il X | DPD Parameter J PA Gx
Extract Model

Figure 3.1: Stages of E2E learning architecture.

For the OFDM signal, the generating process is shown in Figure 3.2. We set the number
of subcarriers in one channel, the FFT length as K, the guard band length as G, the number
of pilot values as P, and the QAM type as M. While generating the multi-channel OFDM signal,
we first generate a K — 2+ G — 1 — P random integers in [1, M| for each channel. According to
the QAM constellation map, we find the corresponding complex value for each subcarrier and
transfer it to the time domain by Inverse Fast Fourier Transform (IFFT).

TU Delft/DRASTIC Confidential under NDA 22



3.2. Proposed RNN Architecture 23

FFT Length: K Q
Guard Band: G o1 11
i 7 L4 7@
Pil\:/tl Valu?.]vl: { OFDM
R = T IFFT Cyclic Prefix
K-2*G-P t } i
t Value

Integers in [1, M]

Figure 3.2: OFDM signal generation process.

Based on the one channel OFDM signal generation, We can get a multi-channel OFDM
signal by adding signals of different channels together after up-converting to different radio
frequencies.

After we get the training data set, we use it to build a PA transfer model using a NN. The
input signal z and output target signals ¢ are baseband input and output signals collected
from the measurement instrument. With small simulated NMSE, a digital model with acceptable
accuracy of the PA measurement system can be built. Then we froze the PA model parameters
in the first step and connected the DPD training block to it. During the second step, the linear
downconverted output signal % passes DPD and PA to try to generate the output signal . While
the output of PA is converging to g, the system is becoming more and more linear. The output
of DPD finally converges to an ideal input of PA because the system is almost linear, and the
digital PA model is very close to the real PA.

This learning architecture avoids ILA’'s assumption that the PA system is commuted. More-
over, compared to traditional DLA, the biggest advantage of this learning architecture is an
easier way to find PA model. Finally, E2E learning architecture used an intuitive and simple
logic to find the ideal input of PA, avoiding ILC and transferring signal multiple times between
personal computer (PC) and the measurement instrument.

3.2. Proposed RNN Architecture
In this section, we first analyze the behavior of RF PA to emphasize the function of DPD unit.
Secondly, We propose our RNN DPD architecture based on the requirements.

3.2.1. Analysis of RF Power Amplifier

The power transfer function of an RF PA can be visualized as Figure 3.3 a). Three components
comprise the nonlinearity of an RF PA. The first is the memory effect, which brought the red
dotted line various outputs in 3.3 a). The second is a non-linear trend before saturation, which
multiple combinations may cause. The third is the gain clip after saturation. In most cases,
the amount of gain compression that DPD can handle is limited, so we combine the first and
second types. The combined non-linear trend is the blue curve in 3.3 a).
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Figure 3.3: schematic diagram of RF PA nonlinearity: a) The power transfer function of an RF PA. b) Memory
effect of an RF PA vs. Normalized Input power. c) Output Power vs. Normalized Input Power. d) Difference
between Input and Output of PA vs. Normalized Input power.

Due to the memory effect, an RF PA will produce different outputs under the same input.
Figure 3.3 b) shows the difference between the varying output and the ideal output as a function
of the normalized input power. The nonlinear relationship between input and output power is
expressed in Figure 3.2 c). With increasing PA input power, the gain of PA compresses and
then saturates. Specifically, the nonlinear trend of an RF PAs means they have different gains
with input power changing. By complementing nonlinear trends in Figure 3.2 a) and 3.2 b), the
DPD unit can improve the ACPR performance of PA output signal.

However, the transferring signal is always complex, which means amplitude is affected by
nonlinearity, and the phase between input and output signals also changes along the input
power. To consider the phase nonlinearity shown in Figure 3.3 d), DPD helps to improve the
system’s EVM performance.

According to the characteristics of the transfer function of an RF PA, We proposed a RNN-
based architecture have three functions: (1) The proposed architecture has a specific structure
to concentrate on modeling the memory effect. (2) The proposed architecture can model the
varying gain trend between output and input power. (3) The proposed architecture considers
characteristic information, concluding amplitude, phase, and complex vector information.
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3.2.2. Architecture of SGRU

The proposed SGRU model is shown in Figure 3.4.
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Figure 3.4: Schematic of SGRU model.

This model has three layers, one input layer, one GRU layer, and one fully connected output
layer. The input layer has four parallel input features 1(n), Q(n),|z(n)|?, and §(n). I(n) and
Q(n) are used to offer information about modulation constellation so that the DPD unit can
find corresponding output to improve EVM. |z(n)|? is the feature to offer amplitude information.
6(n) is the feature to offer phase information. During sequence-to-sequence training, the GRU
layer saves all relevant information from previous time steps of input features and helps to
find the relationship between output and input memory. The output layer combines the hidden
states of each time step to generate | and Q output sequences linearly. To make the GRU cell
concentrate on the complicated memory effect, a skip path is added to model the nonlinearity

trend.

The proposed SGRU operation function is shown in 3.7.

Here Feat(n) = [I(n),Q(n), |x(n)|2,0(n)]
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z(n) = o(W.Feat(n) + b.) (3.1)
r(n) = o(W,Feat(n) + b,) (3.2)
h(n — 1) = tanh(WyFeat(n) + U, (r(n) @ h(n — 1)) + by,) (3.3)
h(n) = (1-2z(n)) @ h(n—1) +z(n) ® h(n) (3.4)
g(n) = o(W,Feat(n) +b,) (3.5)
u(n) = g(n) @ z(n) (36)
out(n) = Ws.u(n) + by, (3.7)
3.2.3. Complexity of SGRU with Offline Normalized Feature Extraction
Assume that the hidden size of SGRU is H. Therefore:
Parametersinz(n) layer dx H+H
Parametersinr(n)layer dx H+H
Parametersinh(n —1)layer :4x H+H x H+ H (3.8)
Parametersing(n)layer dx H+H
Parameters in outlayer 22X H+2

Finally, the number of real-valued parameters in H-hidden SGRU is 22 x H + H? +2.

3.3. Feature Engineering

Feature extraction is one of the most important factors determining the performance of NN-
based DPD. Now NN-based DPD uses two types of feature extraction: offline feature extraction
and online feature extraction. Offline feature extraction means the system calculates the cho-
sen feature set and gives them to DPD as input. Offline feature selection mainly depends on the
known characteristics of RF PA systems. For example, NN-based DPD firstly uses the ordinary
and standard real-value inputs 7(n) and Q(n) [15]. Then according to the nonlinearity char-
acteristic, amplitude and phase are also applied [3] [18]. Based on GMP model, higher power
order amplitude is chosen to augment the architecture [16][18]. To summary, wildly used of-
fline features are I(n), Q(n), |z(n)|*(k = 1,2,3...), cosf(n), sinf(n). Conversely, online feature
extraction directly passes basic features to a feature extraction NN layer. The feature extraction
layer will output suitable input features automatically with the help of Al techniques [1] [2].

According to the comparison in Sec. 2.7, online feature extraction architecture performs
over the off-line feature extraction. However, the online feature extraction layer in PG-JANET
and DVR-JANET add barriers to hardware design.

Our work finally chose |z(n)|? to alternate |z (n)| because it can avoid a square root opera-
tion. For phase perspective, 6(n) is the alternation pairs sinf(n), cosf(n) to eliminate trigono-
metric and inverse trigonometric functions. I(n) and Q(n) are kept because they are important
for improving of EVM. Therefore, the final set of characteristics is 1(n), Q(n), |z(n)|?,0(n).
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Experimental Results

In this Chapter, we validate the proposed SGRU model and E2E learning architecture on four
different experimental validation platforms. Section 4.1 offers the validation foundation on
simulated MATLAB platform. Section 4.2 shows the results on an online platform named RF
WebLab, which can help researchers control the variables of the experiment and get relatively
fair results. Section 4.3 and Section 4.4 exhibit the results on commercial Class-AB and Do-
herty PA.

4.1. Matlab Simulated Validation Platform

Before validation on real PA, simulated PA is a validation fundamental. If the new proposed DPD
architecture cannot work on a simple simulation validation platform, getting a good result on
a physical validation platform is impossible. This chapter shows validation experiment results
from the MATLAB simulation platform. The results in this section show that:

1. The effectiveness of E2E learning architecture.

2. SGRU architecture is able to deal with the wideband OFDM signal distortion.

4.1.1. Experimental Setup

The simulation validation platform uses a 5 x 5 GMP matrix PA model operated at 3.7 GHz.
The test signal is a 100 MHz oFDM-like signal with PAPR sampled at 860 MHz. This 64-QAM
type modulation 100 MHz OFDM signal has 4096 subcarriers, 440 length guardbands, and 288
length cyclic prefix. The MATLAB simulated validation architecture is shown in Figure 4.1.

Toggle the switch to enableldisable DPD

Upconversion
t0 3.7 GHz

to 500 MHz

ouport IF
v
-J Downconversion

Copyright 2017-2022 The MathWorks, Inc

Figure 4.1: Block diagram of MATLAB simulated DPD validation platform.
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180000 samples with 40 batch sizes are used for this simulated experiment. Unless other-
wise mentioned, the data set is always divided into training, test, and validation sets according
to the ratio of 14 : 3 : 3. The first step, "training,” uses 7/10 of data. The training step uses the
sequence-to-sequence regression mode shown in Figure 2.12. After calculating MSE loss and
backpropagation, the ADAM optimization algorithm [33] helps to find the optimal parameters.
Both the validation and the test steps use the NMSE Function 2.1 as their evaluation function.
The learning rate uses a mode of stepping-decreasing adjustment as the validation results
change. The initial value of the learning rate is 5 x 1074,

4.1.2. Experimental Results

We show the time-domain comparison results of PA modeling in 4.2. This result is generated
from SGRU model with nine hidden neurons and 110 frame length. The PA modeling NMSE
shown in the Figure is —30.42. It is observed that the predicted signal is very close to the
ground truth signal from any perspective. With this PA NN model, we trained a bPD model
with the same configuration. The DPD NMSE is —46.54. With this convergence precision, we
obtained the lower band ACPR as —36.09 and the upper band ACPR as —36.65. The PA ACPR
without DPD is —28.92/28.54 (lower /upper). The ACPR before and after DPD are collected with
an output power of 40 dBm.
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Figure 4.2: Time domain comparison of PA modeling prediction and true signals.

4.2. RFWebLab Online Validation Platform

After validating on the MATLAB simulated platform, we came to a more practical and conve-
nient environment, RF WebLab online measurement platform. In practical cases, the modula-
tion mode, the PA nonlinear characteristic, and the measurement instrument noise can all be
the reason that generates different performance results. One public measurement resource
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is a good choice when we want to control variables between different works. There, the RF
WebLab online RF PA measurement platform at Chalmers University is a good choice.

The experimental results in this section show that the SGRU can work as well as or even
better than other complex DPD architectures with roughly the same number of parameters and
easier operation.

4.2.1. Experimental Setup

RF WebLab measurement platform uses PXI chassis embedded PC accept, feedback data,
and control measurement instruments. A Vector Signal Transceiver (PXle-5646R VST) is
used to up-convert the baseband signal to 2.14 GHz and down-converted 2.14 GHz signal
to the baseband. The up-converted signal is passed to a linear driver amplifier, a GaN PA
DUT, and a 30dB RF attenuator and then fed back to the VST. A MATLAB function helps
customers to upload and download data pairs at the 200 MHz sampling rate. The first test
signal is a 64-QAM modulation 50 MHz OFDM-like signal with 11.2 dB PAPR generated with
2048 subcarriers, 121 length guardbands and no cyclic prefix. The second test signal is a 64-
QAM modulation 10 MHz oFDM-like signal with 11.2 dB PAPR generated with 64 subcarriers,
6 length guardbands, and without cyclic prefix. One million data samples are saved for each
NN training. The architecture of RF WeblLab validation platform is shown in Figure 4.3.

Data Resource RF WebLab

DPD Parameter
estimation

Baseband
Input

Baseband
Output

Figure 4.3: RF WebLab validation platform architecture.

1000000 data samples are used for each test. During model training, the data set is split
into training, test and validation sets according to the 8 : 1 : 1 ratio. The training criterion is
NMSE and the optimizer is ADAM. The learning rate starts from 5e¢ — 4 to decrease following
the criterion.

4.2.2. Experimental Results
In this experiment, we compare the GMP, VDLSTM, DVR-JANET, PG-JANET and SGRU when each
model has parameters around 150. The results are shown in Table 4.1.

ACPR (dBc Number of Parameters

Model Type | NMSE (dB) (IowerltgppeZ') (real-valued)
Without DPD -33.84 -33.24/-32.57 N/A
GMP [34] -48.51 -38.09/-37.32 150
VDLSTM [3] -50.07 -38.81/-37.65 182
PG-JANET [1] -44.71 -37.97/-37.77 154
CNN [32] N/A average -33.92 to -38.88 N/A
SGRU (Ours) -52.74 -38.49/-38.12 150

Table 4.1: Performance Comparison of Different Architectures for the 50 MHz OFDM Signal
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Table 4.1 shows that the SGRU model achieves the best NMSE and ACPR results. The ACPR
performance keeps consistent with their NMSE performance. Based on this consistency, we
can conclude that the PA model is close enough to the real PA with PA modeling NMSE of —33.84.

Sikp path structure comparison
According to papers [6] and [12], the skip path can help the RNN to focus on the nonlinear
characteristics of RF PA. Based on this idea, we try to add a skip path to cover the non-linear
trend except the memory effect so that the RNN can utilize most of the modeling capability on
the memory effect. This subsection shows the verification results of three different skip path
structures.

The SGRU architecture without skip path has a classic fully connected output layer as:

out(n) =Wy (h(n) + by, 4.1)

For the proposed SGRU architecture, the output layer is:

{g(n) = o(W,Feat(n) + b,,) 42)

out(n) =W;y.(g(n)®z(n)) + by,

The skip path also has another location to add, which is to concatenate the input features
and hidden neurons to control the skip path:

{g(n) = o(W,,[Feat(n), h(n)] + b,,) 43)

out(in) =W;.(g(n)®z(n))+ by
In the schematic, these three structures are shown in Figure 4.4. The black path connecting

input features and hidden neuron of RNN cell refers to Equation 4.2. Equation 4.3 is the red
skip path shown in Figure 4.4.
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Figure 4.4: Schematic of different GRU models. The black skip path refers to Equation 4.2. The red skip path
refers to Equation 4.3.

The NMSE and ACPR results are shown in Table 4.2. The result of the feature-controlled
skip path (Function 4.2) shows the best average ACPR. Even if this kind of skip path decreases
the lower band ACPR, it achieves balanced results while improving the lower and upper band
ACPR.

ACPR (dBc) | Number of Parameters
Model Type NMSE (dB) (lower/upper) (real-valued)
Without DPD -33.84 -33.24/-33.57 N/A
GRU -52.90 -39.02/-37.59 354
SGRU(Equation 4.2) -52.09 -38.82/-38.05 368
SGRU(Equation 4.3) -50.72 -38.91/-37.74 426

Table 4.2: Performance Comparison of GRU Architectures with different skip paths.
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4.3. Commercial Class-AB Testboard

This section shows the DPD performance of wideband signal on the other Class-AB test board
PA used in the RF WebLab platform. Compared to RF WebLab online platform, this chapter
mainly works on the following:

1. This section shows the comparison between the proposed SGRU model and four
different DPD architectures under 100 MHz and 200 MHz OFDM signals on Class-AB RF
PA.

2. This section clarifies the details during the commercial measurement and instrument
DPD validation platform setting up and data collection.

4.3.1. Experimental Setup

The commercial instrument validation platform consists of a test computer (PC), an Arbitrary
Waveform Generator (Keysignt M8190A), a linear driver amplifier, a Doherty PA test board
(CGH40006s-AMP1), -30dB RF attenuators, and a Signal and spectrum analyzer (FSW8)
from Rohde & Schwarz. The setup is shown in Figure 4.5.

Figure 4.5: Commercial instrument validation platform for a Class-AB RF PA.

During the experiment, PC first generates a digital OFDM-like baseband signal, samples
it at 8GH z, and upconverts it to the RF frequency 2 GHz. The up-converted signal is emit-
ted from the arbitrary waveform generator. The signal then passes through the linear driver
amplifier, the DUT, and a -30dB RF attenuator, then is fed to the spectrum analyzer. The mea-
surements have been conducted with different test signals that are 1024-QAM modulation 100
and 200 MHz oFDM signals with a peak-to-average power ratio of 7.7 dB (PAPR). The channel
bandwidth of the test signal is fixed at 20 MHz. Therefore, the 100 MHz signal has five chan-
nels, and the 200 MHz signal has ten channels. Each channel has 1024 subcarriers and 110
guardbands. 800000 samples were recorded for training with four times baseband bandwidth
frequencies, 400M Hz and 800MHz, respectively. Other 200000 samples were used to test
the ACPR. Before and after adding DPD, the output power of PA is 24 dBm. Unless otherwise
mentioned, the learning rate uses a mode of stepping-decreasing adjustment as the validation
results change. The initial value of the learning rate is 5 x 10~
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4.3.2. Experimental Results

According to the E2E learning architecture, we first train the PA model to find the most accurate
digital model. Here, the final used fixed-parameter PA model is a SGRU with a hidden size of
nine.

Measurement Results with 100 MHz OFDM Signal

This part shows results from a 100 MHz OoFDM-like signal test signal. All NN based DPD ar-
chitecture are cascade to this PA model for training. We swept parameters from around 150
to around 400. We train all NN configurations five times at each hidden size. The average
simulated NMSE results in Figure 4.6. Figure 4.7 reflect the results of ACPR from the trained
models that are most close to their average NMSE.
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Figure 4.6: Simulated NMSE (dB) of the compared models for 100-MHz OFDM test of a Class-AB PA.
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Figure 4.7: ACPR (dBc) of the compared models for 200-MHz OFDM test of a Class-AB PA.

The NMSE results show the capability of DPD NN to inverse the PA model. Here, the SGRU
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offers a distinct convergence performance. The SGRU also shows the best average ACPR
results at around 150 parameters. Table 4.3 digs into the results of these smallest parameters.

ACPR (dBc) | Number of Parameters
Model Type NMSE (dB) (Iowerllippe:) (real-valued)

Without DPD -22.21 -32.4/-31.66 N/A
GMP [34] -49.51+0.05 | -36.53/-36.04 150
VDLSTM [3] -49.104+0.28 | -37.71/-36.14 182
PG-JANET [1] | -45.16+£2.16 | -37.63/-36.19 154
DVR-JANET [2] | -42.21+3.12 | -36.67/-36.12 145
SGRU (Ours) | -52.09+0.11 | -37.86/-36.17 150

Table 4.3: Performance Comparison of Different Architectures for the 100M Hz OFDM Signal

In Table 4.3, the "without DPD NMSE” result is the PA modeling NMSE results. PG-JANET,
DVR-JANET and SGRU are test with hidden size of 4. The VDLSTM is tested with the hidden size
of 5. The GMP model uses the first two terms shown in Function 2.3 with a memory depth
of 6 and a degree of 5. From the NMSE results, we can find that the GRU and LSTM models
are more stable from training to training. For different PA and customers, it's easier to rebuild
the outcome of these two configurations. The SGRU and PG-JANET results are competitive for
ACPR.

Measurement Results with 200 MHz OFDM Signal

To validate the DPD capability with wider bandwidth, We also test the proposed architecture
under 200 MHz oFDM-like signal test signal. Being similar to the 100 MHz experiments, We
swept parameters from around 150 to around 400 and trained all the NN configurations five
times at each hidden size. Figure 4.8 shows simulated NMSE results. Figure 4.9 reflects the
results of ACPR from the trained models that are most close to their average NMSE.

-37.5 - . : . - .
PG-JANET

—a— DVR-JANET

400 F —=— VDLSTM -

.\.\.;SGR:
-42.5

)

o

) . - - -

L -45.0 | E

)]

=

Z s} i
500 - ‘\\‘\1\‘ ]
_52‘5 1 L L

100 200 300 400

Number of real-valued parameters

Figure 4.8: Simulated NMSE (dB) of the compared models for 200-MHz OFDM test of a Class-AB PA.
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Figure 4.9: ACPR (dBc) of the compared models for 200-MHz OFDM test of a Class-AB PA.

From NMSE and ACPR trend Figures, we can verify that SGRU is still competitive among
before state-of-art DPD configurations. The special red point on the line of PG-JANET reveals the
problem caused by the unstable training process. For the proposed E2E learning architecture,
the large NMSE standard deviation can cause outliers in the performance of ACPR. To clarify
further, Table 4.4 specifies the details of the results with parameters around 150.

ACPR (dBc) | Number of Parameters

Model Type NMSE (dB) (lower/upper) (real-valued)
Without DPD -18.52 -31.98/-30.59 N/A
GMP [34] -49.29+0.04 | -34.25/-31.74 150
VDLSTM [3] -44.41+0.06 | -35.16/-32.58 182
PG-JANET [1] | -44.711£0.58 | -34.68/-32.64 154
DVR-JANET [2] | -41.09+0.46 | -34.73/-32.45 145
SGRU(Ours) | -49.88%0.10 | -35.03/-32.71 150

Table 4.4: Performance Comparison of Different Architectures for the 200 MHz OFDM Signal on a Class-AB PA.

In Table 4.4, the configuration PG-JANET has the highest standard deviation. This means
that the practical results will fluctuate more wildly than other NN architectures. The proposed
SGRU got better upper band ACPR compared to VDLSTM while its’ lower band ACPR is a little
lower. It is worth noting that under the simple AMAM and AMPM characteristic, GMP exhibits
outstanding capabilities in the wideband DPD of Class-AB compared to the results previously
shown in Doherty. However, since the difference in the results of ACPR is very small, we still
found that SGRU is quite competitive at least.

4.4. Commercial Doherty Testboard
In the last part of our experiment, we finally come to Doherty PA, which is used as a standard
in previous works. Compared to the online Class-AB platform, this section mainly works on:

1. The new training process and performance with data normalization.
2. The influence of training frame length.
3. The EVM performance with proposed DPD architecture.
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4. The proposed SGRU model has competitive performance and simpler architecture
compared with four different DPD architectures under wideband 100 MHz and 200 MHz
on Doherty RF PA.

4.4.1. Experimental Setup

The Doherty validation platform consists of a test computer (PC), an Arbitrary Waveform Gen-
erator (Keysignt M8190A), a linear driver amplifier (Amplifier Researcher Model 10S1G4A),
a Doherty PA test board (Ampleon C5H38110AX), -40dB RF attenuators, and a Signal and
spectrum analyzer (FSW8) from Rohde & Schwarz. The setup is shown in Figure 4.10.
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Figure 4.10: Commercial instrument validation platform for Doherty PA.

This experiment is based on 100 and 200 MHz OFDM-like signals. Both signals use 20
MHz for one channel. Each channel is encoded with 16-QAM, 1024 subcarriers, and 60 sub-
carriers as a guard band. To cooperate with the working characteristics of the PA and show
the maximum effect of DPD as much as possible, we made a clip on the signal in the time
domain. Naturally generated OFDM signals in our setup have PAPR greater than 10dB, while
we reduced it to around 7.5dB. This can make the distribution of the OFDM signal more uni-
form, allowing the region where the gain is close to saturation to be fully reflected. However,
this approach also improves the EVM around 1 d B before processing. A better EvM makes the
signal easier to handle than a completely naturally generated signal.

The OFDM signal is sampled at 8 GHz and then up-converted to 3.5 GHz in MATLAB. The
signal generator passes the RF signal to the linear driver amplifier, the Doherty PA, and the
—40 dB attenuator. The spectrum analyzer reads and analyzes the signal and feedback output
signal in 1Q format. Before and after adding DPD, the output power of PA is 39 d Bm.

In the training, validation, and test process, 200000 samples were recorded for training
with 400 M H z for 100 M H = signal and 800 M H z for 200 M H z signal. Other 50000 samples
were used to test the ACPR and EVM. Unless otherwise mentioned, the learning rate uses a
mode of stepping-decreasing adjustment from 5 x 10~

4.4.2. Experimental Results

In this subsection, we first emphasize the special process of Doherty training. That is, all the
data used are normalized data. In combination with the normalization process, we clarify a
new training process. In the second part, we show how an important parameter of the training
process, Frame Length, is determined. In the third and fourth sections, we show results based
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on 100MHz and 200MHz OFDM signals. According to the E2E learning architecture, we first
train the PA model to find the most accurate digital model. Here, the final used fixed-parameter
PA model is a SGRU with a hidden size of 32, DVR-JANET with a hidden size of 23, PG-JANET
with a hidden size of 23, vDLSTM with a hidden size of 29. All of them have parameters around
4000 and are trained with 100 epochs.

Data Normalization

In our proposed NN architecture, the features want to consider the 1/Q imbalance and the
amplitude/phase imbalance at the same time, so I(n), Q(n),|z(n)|,0(n) are used as parallel
features in the input layer. However, the range and distribution of these four features are dif-
ferent. The variance in Feature range will cause NN to attach different importance to them.
The different distribution may lead to differences in the speed and effect of training, especially
the distribution of 6. To reduce the impact of range and distribution on performance, we nor-
malized both input and output data. After normalization, for training data pairs whose EVM is
about 20 d B, the PA modeling NMSE can increase by 1dB. And for training pairs whose EVM
is about 24 dB, simulated NMSE can still improve by 0.1 dB. The specific training process is
shown in Figure 4.11.

X — Uy

— Ox D A > Mod

Step | PA Parameter ] ;yﬂy A De-
EXtTact ; D — Mod l— Att.
I : Frozen
xome F _aFa:rﬁét_eFS_ _ﬁ_: ’: x_ _ _i o P
Step I L parla):‘IDeter M:ﬁel =
Extract

Figure 4.11: The training process with normalized data.

In the first training step, we directly change the training data pair to normalized input and
output. However, in the second step, because the DPD better generates the ideal input without
post-processing, we need to add a normalization step between the DPD model and the PA
model. In this normalization block, we assume that the distribution of the ideal input « is close
to the input x.

Frame Length Influence

The frame length is defined as the length of the time step in regression. This value may sig-
nificantly affect the test results. In order to test the influence of frame length on the training
results, we did a cross-validation for hidden size and frame length in the process of PA model-
ing. The total amount of data used by the model for training is controlled by adjusting the total
number of epochs in the process. The Table 4.5 .
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Hidden size
Frame
#epochs length 4 8 16 32
480 10 -34.492 | -34.848 | -34.935 | -34.985
240 20 -34.126 | -34.888 | -34.967 | -34.98
120 40 -34.261 | -34.83 | -34.971 | -34.98
60 80 -34.596 | -34.892 | -34.954 | -34.98
30 160 -34.482 | -34.835 | -34.925 | -34.957

Table 4.5: The NMSE (dB) of training frame length in PA modeling.

The unstable results of hidden sizes 4 and 8 show that the small hidden size limits the
influence of the frame length. When the hidden size is 32, the NN modeling capability is close
to the maximum. The frame length of 10 offers the best results.

Mearsurement results with 100 MHz OFDM Signal

This part shows results based on 100 MHz oFDM-like signal test signal. The number of swept
parameters starts from around 150 to around 2500. All the NN configurations five times at
each hidden size to show the stability of different architecture.

Table A.1 shows the performance of the proposed SGRU architecture. In this table, 150
parameter results validate the modeling ability of SGRU with a very small number of parameters.
Average ACPR, NMSE and EVM performance of 150 parameter are only 1.4dB, 0.59dB and
0.51 dB worse than the 2330 parameters. In addition, SGRU is a relatively stable architecture
because most of the standard deviation is smaller than 0.2. This means that we can achieve
fast retraining to achieve good performance when the system is adjusted.

Table A.2 offers the performance of DVR-JANET. To keep the setup consistent with the
set-up of paper [2], the amplitude is considered as three segments. DVR-JANET in this experi-
ment shows a gap between the smallest number of parameter results and other results. The
DVR-JANET shows a better ability to deal with in-band nonlinearity and a weaker ability to deal
with out-of-band nonlinearity. Moreover, DVR-JANET has more imbalance between the lower
adjacent channel and the upper adjacent channel. For stability, the DVR-JANET model with 145
and 397 parameters have a large ACPR standard deviation compared to the SGRU model.

Table A.3 is the summary of PG-JANET performance results. PG-JANET has the worst per-
formance with parameters around 150. Increasing the number of parameters of PG-JANET can
improve performance mainly compared to other models. The parameter range that gener-
ates unstable results of PG-JANET is further expanded to the 530 parameters model. Due to
instability, PG-JANET with 530 parameters even shows worse results than with 415 parameters.

VDLSTM achieve the best ACPR (lower) and the best EVM with a stable training process in
this experiment, as shown in Table A.4. However, VDLSTM has two shortcomings in the results.
The first one is the imbalance between the upper and lower adjacent channels. The second
is that VDLSTM has overfitting with parameters larger than 1142. This means that performance
cannot be improved more with increasing NN size.

To compress the number of parameters as much as possible, we choose SGRU with 394
parameters, DVR-JANET with 397 parameters PG-JANET with 415 parameters, and VDLSTM with
310 parameters to compare the specific value. The comparison is shown in Table 4.6. In the
following, we refer to data in Table 4.6 as comparison points.
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Model NMSE (dB) | ACPR_L (dBc) | ACPR_R (dBc) | EVM (dB) | #params
w/o DPD -34.98 -30.5 -28.89 2458 N/A
DVR-JANET [2] | -37.17£0.28 | -45.04+0.92 4322+1.00 | -37.70£0.26 | 397
PG-JANET [1] | -36.85£0.28 | -44.52%0.92 4274+100 | -37.62t026 | 415
VDLSTM [3] | -37.33%0.14 | -45.97+0.25 -43.39:0.66 | -38.1620.20 | 310
SGRU (Ours) | -37.1720.62 | -45.16%0.39 -443120.21 | -37.72:0.15 | 394

Table 4.6: Performance comparison for 100 MHz OFDM signal.

Figure 4.12 shows the NMSE performance comparison. Here we found that NMSE and
other performances are not consistent. This experiment also has not achieved NMSE better
than —40/, dB, as shown in previous work. There are three reasons for this result. The first
is that the equipment in the actual test is different from previous works. The noise of the
equipment may make the NMSE less than —40 dB but still achieve very good ACPR and EVM
performance. The second reason is that we choose the ideal amplification gain for calculating
NMSE is chosen by ourselves, and the fluctuation of this value can also change the NMSE
value. The third is because our performance without DPD is the first test result that embodies
Doherty’s gain compression. This means that when the target gain is constant, the result of
NMSE will increase. It is worth mentioning that SGRU still achieves the best target gain, which
is 0.1 dB larger than the other three structures.
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Figure 4.12: NMSE (dB) of the compared models for 100-MHz OFDM test of Doherty PA.

Figure 4.13 shows the ACPR performance comparison. At comparison points, four archi-
tectures improve ACPR by 15.04dB, 14.96dB, 13.85dB, and 14.9dB on the order of SGRU,
DVR-JANET, PG-JANET and DVR-JANET-JANET.
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Figure 4.13: ACPR (dBc) of the compared models for 100-MHz OFDM test of a Doherty PA.

Figure 2.2 is the EVM performance comparison. At the comparison point, SGRU still shows
better performance than DVR-JANET and PG-JANET, while VDLSTM has the best EVM perfor-
mance. The DPD can improve the EVM by around 14 dB
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Figure 4.14: EVM(dB) of the compared models for 100-MHz OFDM test of a Doherty PA.

Figure 4.15 shows the AM/AM and AM/PM characteristics with and without DPD. The figure
with DPD is generated from SGRU with 394 parameters.
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Figure 4.15: AM/AM and AM/PM with and without DPD.

Mearsurement results with 200 MHz OFDM Signal
For 200 MHz OFDM test, we also compare the architectures at the parameters shown in 4.7.

Model NMSE (dB) | ACPR_L (dBc) | ACPR_R (dBc) | EVM (dB) | #params
w/o DPD -23.73 -28.89 -29.86 -21.28 N/A
DVR-JANET [2] | -23.25+0.16 -33.95+0.11 -39.47+0.23 -23.88+0.10 397
PG-JANET [1] | -23.79+£0.28 -37.60+0.47 -40.88+0.27 -24.03+0.03 415
VDLSTM [3] -24.1+0.09 -38.33+0.30 -42.01+0.13 -24.21+0.05 310
SGRU (Ours) | -23.61+0.32 -37.85+0.44 -41.55+0.13 -24.09+0.07 394

Table 4.7: Performance comparison for 200 MHz OFDM signal.

In this table, it can be observed that the vDLSTM shows the best results. The proposed

SGRU architecture shows close performance to vDLSTM. Comparing VDLSTM and SGRU, we
tried three ways to improve the performance of SGRU architecture: replace the |x|? feature
with |z| feature, replace the 6 feature with cos(0), sin(#) features and replace the GRU kernel
with LSTM kernel. The SGRU with I, Q, |z|, 6 features finally works better. As shown in Table 4.8,
SGRU improved the ACPR from —28.89/ — 29.86 dB to —38.44/ — 42.09 dB and decrease the
EVM by 2.94dB. For both upper and lower band, SGRU generated better ACPR with I, Q, |z|, 0
features.

Model NMSE (dB) | ACPR_L (dBc) | ACPR_R (dBc) | EVM (dB) | #params
VDLSTM [3] -24 1 -38.33 -42.01 -24.21 310
SGRU (Ours) -23.85 -38.44 -42.09 -24.22 394

Table 4.8: Performance comparison for VDLSTM and SGRU with amplitude as feature signal.

Figure 4.16 shows the AM/AM and AM/PM characteristics with and without DPD for 200
MHz. The figure with DPD is generated from SGRU with 394 parameters. Compared to 100
MHz test, we can observe that the memory effect after DPD still affect the performance a lot.
However, in our experiment setup, the ACPR floor of input signal is only —42 dB. With a better
white noise condition, SGRU can generate a more clean AM/AM figure and better EvMm.
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Figure 4.16: AM/AM and AM/PM with and without DPD.

The detailed results of the four structures tested on 200MHzOFDM signals are shown in
Tables A.5, A.6, A.7, and A.8.

4.5. Discussion
This section further discusses the following issues revealed in the results.

1. Special data pre-processing for the RFWebLab online validation platform.
2. Analysis of the reasons for the difference from the previous works.
3. Analysis of the calculation complexity of different NN architecture.

4.5.1. Data preprocessing of RFWebLab

RF Weblab has fixed settings that customers cannot change. These settings reveal two prob-
lems when we collect wide-band data sets. Firstly, popular signal analyzers such as the FSW
series from Rohde & Schwarz can only cancel their internal noise while testing power. When
the signal analyzer feedback baseband output | and Q signal of PA, the noise can cause con-
vergence problems under small signals. As shown in Figure 4.17, the red points are collected
from the input signal without a modified input range. The fluctuation range of gain exceeds the
normal range. Moreover, under normal encoding conditions, these sampling points represent
a large proportion of the total sampling points. It's difficult for PA modeling NN to find accurate
results with too much random noise.
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Figure 4.17: Gain vs Normalized input power with and without data preprocessing.

To solve this noise problem, two intuitive methods can be used. The first one is: Adding
a filter to do denoise to close the collect signal to the actual signal. Here, we find the second
problem. Under RF WebLab settings, we did not know the real ACPR of the signal at Radio
Frequency. This unknown situation not only makes the denoising method hard to implement,
but also causes the untrusted base band ACPR calculation results.

To avoid these two problems on the RF WeblLab, we took a similar approach to improve
the smallest input signal power as in Paper [32]. An in-band impulse is added to the frequency
domain to add a constant to the time domain. The normalized power spectrum density before
and after adding a constant is shown in Figure 4.18.
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Figure 4.18: The normalized power spectrum density before and after adding a constant.
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This impulse will change the center of the constellation plot but not the distribution. After
adding this impulse, the data set became the blue points shown in Figure 4.17. Without any
other changes, we can observe that the data became much more clean.

During the experiment, the PA modeling step got NMSE of around —19 from raw data while
it got NMSE of around —33 from data with impulse.

4.5.2. Reasons Analysis for the Difference from the Previous Works

Although SGRuU with |z2| are not the best architecture in the finished hidden swept experiment
for 200 MHz oFDM test of Doherty PA, we can still find some important information from the
results difference from previous works.

Figure 4.19 shows the ACPR performance for 200 MHz OFDM test of Doherty PA. Fig-
ure 4.20 shows the EVM performance for 200 MHz OFDM test of Doherty PA. DVR-JANET shows
weak performance compared to other three architectures. This can be generated for two rea-
sons: The first one is that we still use three amplitude threshold for DVR-JANET while paper [2]
use five amplitude threshold for 200 MHz test. The second reason is that we choose the num-
ber of training epochs based on the convergence speed of SGRU, which is only 100. However,
paper [1] used 750 training epochs, and paper [2] used 500 training epochs.
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Figure 4.19: ACPR (dBc) of the compared models for 200-MHz OFDM test of Doherty PA.
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Figure 4.20: EVM(dB) of the compared models for 200-MHz OFDM test of Doherty PA.

4.5.3. Calculation Complexity Analysis

First, we plot the Power spectral density (PSD) under 100 and 200 MHz test signal of Class-AB
PAin Figure 4.21. Atthe comparison points mentioned in 4.4.2, the normalized PSD is shown in
Figure 4.22. We can observe that all NN architectures show close results compared to the PSD
without DPD. The difference between the ACPR can’t determine a significant advantage of any
configuration. Therefore, we consider that all tested DPD models have similar pre-distortion
ability in this experiment environment. At this point, the focus of our comparison shifts to the
computational and practical difficulty of different architectures.
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Figure 4.21: Normalized Power Spectrum Density (dB) comparison on Class-AB PA.
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Figure 4.22: Normalized Power Spectrum Density (dB) comparison on Doherty PA.

The practical difficulty for the GMP model is that the parameters are complex. Moreover,
the input features in all configurations except SGRU need to calculate square root results for
magnitude. VDLSTM, DVR-JANET and PG-JANET also need to calculate the cosine and sine
value. These two features will add barriers to the hardware implementation of DPD. SGRU
used alternative |z(n)|?, #(n) to skip both the square root and sine calculation. For this reason,
the hardware implementation for SGRU is more positive than other architectures.
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Conclusion, Limitation, and Outlook

5.1. Conlusion
After the analysis of the results, it can be concluded that the proposed methodology has com-
petitive performance with previous state-of-art work.

1. The proposed SGRU can achieve a good out-of-band nonlinearity improvement of
the wideband OFDM signal for both Class-AB and Doherty PA with smaller parameters.
In section 4.3 and section 4.4, SGRU shows better improved ACPR than DVR-JANET and
PG-JANET with parameters less than 400. Even if vDLSTM always offers the best lower
adjacent channel ACPR, proposed SGRU is good at balancing upper and lower adjacent
channels.

2. Proposed SGRU can improve the in-band linearity of Doherty a lot. In section 4.4, the
proposed SGRU with 394 parameters improved the EvM by 13.2 dB for 100MHz OFDM
signal.

3. NMSE is not one of the ideal metrics. In the actual validation process, it is affected by
many complex factors and cannot fully reflect the model’s ability to deal with non-linearity.
Therefore, the results of EVM should be provided as much as possible.

4. The E2E learning architecture greatly reduces the parameters required for Al-based
DPD. In the process of PA modeling, the accuracy will increase with the increase in
the number of parameters. However, in the final application, the PA model does not
participate. Even if we use a large-size NN for PA modeling, small-size NNs can still
calculate a relatively accurate inverse model for DPD application.

5.2. Limitations

There are still many deficiencies in our work. From the perspective of the experimental setup,
due to the offset of the constellation in OFDM signal generation, the results shown in the class-
AB section may not be our best results. In addition, we use |z|? instead of |x| for the 200
MHz hidden size scan for the following reasons: 1. DVR-JANET is the previous state-of-the-art
NN model for DPD. After we checked that SGRU performed better than DVR-JANET, we did the
final test directly. 2. We made SGRU produce better results than vDLSTM at 100 MHz. 3. In
Paper [1], VDLSTM has been verified to perform weaker than PG-JANET. In fact, different test
platforms, different bandwidths, and even different OFDM signal settings are definitely likely to
affect the final result. If we use SGRU, we should test different combinations of Features first.
On the basis of the results of the feature test, the best combination of the test platform and
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bandwidth can be selected. For the architecture design, the main limitation of this work is that
the proposed SGRU’s ability to improve EVM is not the best of all architectures.

5.3. Outlook

For the future of this work, there are several points to explore. The firstis how to absorb the EvM
improvement ability of vDLSTM and understand why the position in which phase information
is added is so important for EvM. The second is about the process of using normalized data.
We selected the same distribution parameters for the ideal input as the general input signal,
but their distributions are not the same in practice. Exploring the influence of distribution
parameters further may help to improve the performance of DPD. The third is whether we
can make DPD handle more situations by adding other parameters, such as different PAPR or
different loads.

For other feasible topics derived from this topic, reducing the PAPR of OFDM by Al method
and keeping the constellation unchanged can be significant for the accuracy of signal demod-
ulation.

For the whole system of RF PA, we found that the designers of Doherty PA are more con-
cerned about the gain compression caused by the increase of input power. To make DPD
able to handle the gain compression above 3 dB is the work that DPD can cooperate with the
designers of other components of the RF system. Finally, DPD may also be embedded in a
multiway Doherty PA system.
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Details of Performance Results for
Doherty PA

SGRU
NMSE (dB) | ACPR_L (dBc) | ACPR R (dBc) | EVM (dB) | #params
N/A -28.89 305 2458 | wio DPD
36.57£051 | -43.88:0.13 | -43.83t0.86 |-37.33:t0.40 | 150
37.17:0.62 | -44.31%0.21 4516+0.39 | -37.72¢0.15 | 394
37.15:0.21 | -44.35:022 | -4558+0.21 | -37.77+0.14 | 552
37.05:0.19 | -44.43t020 | -4562+0.24 |-37.80:0.17 | 1170
-36.94+0.08 | -44.87+0.18 | -45.79x0.33 | -37.82£0.01 | 1702
37.16%0.12 | -44.89:032 | -45.610.18 | -37.84+0.10 | 2330

Table A.1: The test results of SGRU for 100 MHz OFDM signal on Doherty PA.

DVR-JANET
NMSE (dB) | ACPR_L (dBc) | ACPR_R (dBc) | EVM (dB) | #params
-36.55+0.63 | -42.53+0.79 | -42.99+1.11 | -37.05t059 | 145
3717028 | -4322+1.00 | -45.04t0.92 | -37.70t0.26 | 397
-36.98:0.14 | -43.36x0.34 | -45.22%0.26 | -37.71%0.14 | 509
-36.93:0.08 | -43.62+0.33 | -45.28:0.24 | -37.91%0.15| 1097
-36.96:0.09 | -43.66x0.34 | -45.59+0.13 | -37.94%0.23 | 1909
37.04+0.40 | -44.16x0.48 | -45.45:0.16 | -37.96%0.16 | 2450

Table A.2: The test results of DVR-JANET for 100 MHz OFDM signal on Doherty PA.

PG-JANET

NMSE (dB) | ACPR_L (dBc) | ACPR R (dBc) | EVM (dB) | #params
34.95:0.34 | -40.36:048 | -40.34%0.71 | -35.62+t0.46 | 154
36.85£0.28 | -42.74+1.00 | -44.52t0.92 |-37.62:t0.26 | 415
36.50£0.26 | -43.20t0.95 | -43.29t1.28 |-37.43:0.29 | 530
37.10£0.14 | -43.09%0.41 4557+0.41 | -37.99+0.10 | 1130
37.23:t0.10 | -43.12t0.63 | -45.99+0.08 | -37.98+0.09 | 1727
-36.98+0.17 | -43.36£0.24 | -45.97+0.51 | -37.91:0.05| 2450

Table A.3: The test results of PG-JANET for 100 MHz OFDM signal on Doherty PA.
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VDLSTM

NMSE (dB) | ACPR_L (dBc) | ACPR_R (dBc) | EVM (dB) | #params
-37.38£0.23 | -43.20:0.67 | -45.77t0.24 |-38.23+0.30 | 130
-37.33t0.14 | -43.39:0.66 | -45.97t0.25 |-38.16:0.20 | 310
-37.75:0.17 | -44.23:0.30 | -46.02t0.40 | -38.20+0.16 | 562
37.87t0.19 | -44.27+044 | -46.40:0.34 | -38.14:t0.23 | 1142
-37.29t0.40 | -44.19+0.75 | -46.25:020 | -37.81x0.17 | 1922
-37.01:0.71 | -43.95:0.54 | -46.11x0.26 | -37.01x0.61 | 2290

Table A.4: The test results of VDLSTM for 100 MHz OFDM signal on Doherty PA.

SGRU

NMSE (dB) | ACPR_L (dBc) | ACPR R (dBc) | EVM (dB) | #params

23.73 -28.89 -29.86 2128 | wio DPD
2355026 | -37.84t037 | -41.43x0.31 | -24.09t0.16 | 150
23.61£0.32 | -37.85:044 | -41.55x0.13 | -24.00t0.07 | 394
23.72#0.19 | -37.96:042 | -41.82t0.29 | -24.14t0.10 | 552
23.74+0.07 | -38.06£0.48 | -41.82+0.14 | -24.20%0.30 | 1170
23.82t0.42 | -38.18£0.34 | -41.87x0.10 | -24.23t0.02 | 1702
23.9120.04 | -38.31#0.42 | -41.95x0.24 | -24.24+0.06 | 2330

Table A.5: The test results of SGRU for 200 MHz OFDM signal on Doherty PA.

DVR-JANET
NMSE (dB) | ACPR_L (dBc) | ACPR_R (dBc) | EVM (dB) | #params
2310019 | -33.94+0.24 | -39.07+1.21 | -23.87+0.05 | 145
23.25+0.16 | -33.95+0.11 -39.47+0.23 | -23.880.10 | 397
-23.64:0.07 | -34.02¢0.12 | -39.70:0.26 | -23.99+0.09 | 509
-23.89:0.05 | -34.10£0.29 | -39.83:0.19 | -24.03:0.02 | 1097
-23.90:0.05 | -34.1620.23 | -39.90+0.18 | -24.06+0.03 | 1909
23.92:0.02 | -34.30£0.15 | -39.93:t0.20 | -24.06+0.02 | 2450

Table A.6: The test results of DVR-JANET for 200 MHz OFDM signal on Doherty PA.

PG-JANET
NMSE (dB) | ACPR_L (dBc) | ACPR_R (dBc) | EVM (dB) | #params
23141051 | -3577+134 | -38.22¢1.84 |-23.91x022 | 154
23.79t0.28 | -37.60t047 | -40.88£0.27 | -24.03:t0.03 | 415
23.81:0.14 | -37.98:0.17 | -41.57+0.32 | -24.05t0.05 | 530
23.89:0.05 | -37.91£0.18 | -41.77x0.27 | -24.1x0.05 | 1130
23.99:0.7 | -38.16t0.63 | -41.78£0.16 | -24.11£0.08 | 1727
23.99:0.04 | -38.52+0.51 -41.86£0.17 | -24.1120.07 | 2450

Table A.7: The test results of PG-JANET for 200 MHz OFDM signal on Doherty PA.
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VDLSTM
NMSE (dB) | ACPR_L (dBc) | ACPR_R (dBc) | EVM (dB) | #params
23.81£0.07 | -38.16:0.25 | -41.89+0.44 | -24.11x0.07 | 130
241+0.09 | -38.33t0.30 | -42.01#0.13 | -24.21x0.05 | 310
242+0.03 | -38.48+049 | -42.06£0.28 | -24.29t0.05 | 562
2418010 | -38.52:t051 | -42.08t0.25 | -24.32+0.30 | 1142
24.19:0.05 | -38.42+0.42 | -42.06£027 | -24.24+0.04 | 1922
24.20£0.05 | -38.24%0.3 -41.96:0.09 | -24.18£0.05 | 2290

Table A.8: The test results of VDLSTM for 200 MHz OFDM signal on Doherty PA.
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