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Preface

The Comparison of remotely sensed and OpenStreetMap registered water reser-
voirs is performed in partial fulfillment of the requirements for the degree of
Master of Science in Geomatics. The research is assigned by Deltares institute
for applied research in the fields of water, subsurface and and infrastructure.
This document describes the graduation thesis proposal as submitted to the
Delft University of Technology. The document starts with providing a short in-
troduction to the problem definition of the defined topic (Chapter 1). Hereafter
the related work is presented (Chapter 2), followed by the research objectives
and the proposed methodology that is necessary to derive the desired results
(Chapter 3,4). Finally the preliminary results and project timeplan are pro-
vided (Chapters 5,6).

1 Introduction

Water is one of the most vital elements on earth. It is of high importance for
the preservation of all forms of life, humans, animals, and plants [20]. To man-
age these water resources, accurate maps that provide reliable information on
the spatial distribution, interannual and annual changes of surface water are
essential [40]. Satellite imagery has been used extensively for water detection
purposes to support hydrological and ecological processes but also flood risk
analysis, agricultural and industrial usage, food and health safety [29, 21].

Remote sensing techniques are based on the principle of measuring the reflected
and emitted radiation from the Earth’s surface by using several parts of the
Electromagnetic spectrum that is not visible to the human eye, such as near-
infrared, shortwave infrared, mid-wave infrared, and thermal. The reflectance of
a surface depends on its material, and it varies with the wavelength of the elec-
tromagnetic energy, which is what makes it possible to identify Earth’s surface
features differently by analyzing their spectral reflectance signatures. Water de-
tection is mainly based on its characteristic of significantly lower reflectance in
the infrared part of the electromagnetic spectrum compared to other landcover
types [15]. The foremost advantage of Remote sensing-based techniques is that
they provide an effective way of monitoring the surface of Earth continuously
on a global scale. This is due to the ease of data access that is offered freely
and openly in different temporal and spatial resolutions [17, 14, 2]. However,
there are some factors that affect the final accuracy and lead to the missclas-
sification of water pixels (error of omission and commission). Optical Earth
observation imagery is easily affected by cloud obstructions, terrain and cloud
shadows, snow, ice and ”dark” vegetation as they present similar spectral prop-
erties with surface water [41]. Moreover, other limitations lie within the remote
sensing methods of extracting waterbodies. More specifically, the use of water
indices, which are computed from two or more bands, to separate water from
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non water features [15] are challenged by the need for an automated optimal
threshold method [23]. On the other hand, supervised (with training samples)
and unsupervised (without training samples) classification techniques are based
on rules that are not easily formed and possibly not robust enough to be applied
on a global scale [15].

Another supplementary source of information for the surface water extraction,
are the Digital Elevation Models. DEMs are being used to eliminate the confu-
sion that is created by cloud/terrain shadows [41]. Their most valuable charac-
teristic is that it describes the Earth’s surface, by indicating the elevation, i.e
the height above/below a certain reference point [16]. The morphology of the
terrain is also closely related to the flow path of water from higher to lower areas
[15]. More specifically DEM derived drainage networks support the delineation
of water reservoir areas by forming a flow accumulation map. DEM errors,
however, related to the spatial resolution, the implemented algorithm, and the
physical properties of the water features, can propagate into the drainage net-
work models causing the need for error correction in the elevation data [22, 1,
13]. Therefore, DEM processing might lead to unrealistic results due to large
depressions and subtle elevation differences that exist locally [6].

OpenStreetMap (OSM) is currently the biggest freely available geodata plat-
form, that has been used in a wide range of Geographic Information Systems
(GIS) and applications as an alternative or supplementary with other author-
itative datasets [5]. It is based on the collection of Geographic Information
gathered and updated by volunteers [4]. These data are provided from sources
such as Global Positioning System (GPS) devices, cadastral data, through man-
ual digitizing using medium and high-resolution satellite and aerial imagery or
form knowledge about an area [12, 3]. The most significant advantage of this
provider is its global coverage and up to date nature. Many studies, however,
are questioning the OSM data quality [19], as they are created without any for-
mal qualifications. This is the main reason why the use of these georeferenced
data have not been extensively adopted by GIS professionals [30].

The dynamic nature of the water extend both in space and time along with
the limitations mentioned above in the various water detection methods and
datasets, make it very hard to create an accurate high-resolution waterbody
map [44]. To overcome these problems and to be able to extract more accurate
and precise water reservoir shapes, the fusion of different datasets is suggested
by incorporating Earth observations with OpenStreetMap and DEMs. This way
the status of registration of water reservoirs in OSM can be simulated in terms
of completeness and positional accuracy by comparing it with the water features
derived from the combination of different datasets.

4



2 Related work

Several surface water extraction methods have been developed in the past to
separate water from non water features. McFeeters [25] created the NDWI (Nor-
malised Difference Water Index) based on the difference of water reflectance val-
ues in NIR and green bands, followed later by the modified NDWI (MNDWI)
of Xu (2006) where NIR was replaced by the SWIR band (short-wave infrared)
[33, 43]. Most of the early developed optical Earth observation methods that
used different water indices (NDWI, MNDWI, etc.) relied on the use of a sin-
gle threshold segmentation [41]. In more recent studies Donchyts (et al., 2016)
amongst other researchers, focused on the creation of an adaptive thresholding
for more automated water detection algorithms [7, 42]. Supervised or unsuper-
vised classification techniques were used as an alternative from Manavalan (et
al., 1993) and Ozesmi and Bauer (2002) to create land cover maps in which
water features were mapped.

To identify areas with a higher probability of water Renno et al. (2008) cre-
ated the Height Above the Nearest Drainage (HAND). The HAND is a modified
DEM that aims to exclude pixels that are falsely classified as water due to terrain
shadows. Gallant and Downling (2003) introduced the Multi-resolution Valley
Bottom Flatness (MrVBF) to identify valley areas, i.e topographic features of
low gradient depressions. Donchyts (2018) and Huang et al. (2017) integrated
in their implementations these DEMs to get more reliable water monitoring re-
sults. Satellite imagery has been also used in combination with DEM datasets
for the delineation of watershed areas in flat terrains by Li et al. (2019).

Cloud obstructions are another significant problem when analyzing satellite im-
agery. Donchyts (2016) [8] and Hansen et al.(2013) proposed the creation of
cloudless composite images that are based on average cloud-free reflectance val-
ues [41]. Another approach was introduced by Donchyts (2018), who uses mul-
tiple cloud-free images and a probability density function to accurately detect
large-sized water reservoirs that present only small changes in their shape. The
view angle of the satellite, and the position of the sun, have been used by Zhu
and Woodcock (2014) for cloud shadow and snow detection. This technique was
adapted by Tan et al. (2013) in combination with a DEM for terrain shadow
detection.

Multi-temporal images are equally important with the analysis of higher res-
olution imagery for more accurate water body mapping. Mueller, N. et al.
implemented an algorithm to map the surface water extend across Australia,
(2016) by analysing 25 years of Landsat imagery using a decision tree classi-
fier and logistic regression that compares the water classification results with
ancillary datasets. This way it was possible to identify the areas where the
occurrence of water is more persistent (e.g reservoirs) and where more temporal
(e.g floodplains). Yamazaki et al. (2015) created a global 90 m resolution water
body map from multi-temporal Landsat satellite images. Feng and Bai (2019)
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created a global land cover map produced through integrating multi-source in-
stead of mulitemporal, satellite imagery datasets [11].

OSM geographic information has assisted several mapping procedures. Yang et
al. (2017) [45] combined OSM and Earth observations for landuse classification.
The OSM data offering global coverage and up to date information were used as
training samples for he classification procedure, making this way posssible the
creation of a land use map at a large/regional scale. Integrating Openstreetmap
Data in Object Based Landcover and Landuse Classification for Disaster Re-
covery was also proposed by Kato and Vedasto (2018) [19].

As OSM data have been criticized about their inherent variable quality amongst
locations, several studies have put them to test to quantify the differences with
authorative datasets. Brovelli et al. (2017) developed an automated compari-
son algorithm of OSM and authorative road datasets, and later in 2018 together
with Molinari et al. Brovelli et al. (2018) performed also a map matching and
similarity check analysis for buildings to estimate the completeness of building
registrations in the OSM database [5]. Bhattacharya (2012) [4] attempted to
find similarities and dissimilarities between the OSM and Dutch topographic
map Top10 NL. The quality assessment and object matching was performed
in terms of the positional accuracy and the shape of OSM polygons (e.g water
polygons) however without evaluating the geometry of the boundary curves.
Following the same mindset, Fairbairn et al. (2013) assessed the positional and
shape quality (geometric similarity analysis) of OSM and other large scale data
with ultimate goal to evaluate if the integration of these type of datasets is
feasible in terms of accuracy and precision.

Jakovljevic et al. (2019) performed a waterbody mapping comparison of re-
motely sensed and GIS open data sources. As another application of waterbody
mapping, Donchyts et al. (2016) produced a 30 m resolution surface water mask
by using Landsat satellite imagery, Shuttle Radar Topography Mission (SRTM)
DEM and OSM data. As a result of his comparison it was stated that 50%
of the OSM linear water features agreed with the water extend extracted from
Landsat 8 and the drainage network created by using the SRTM.
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3 Research objectives

3.1 Problem definition

The prevailing majority of the methods developed in the studies mentioned
above, try to either implement some type of waterbody mapping technique or
to assess the completeness and shape fidelity of OSM features. However, the
point of discussion shouldn’t be not only that, but also the improvement of the
geometry of these features. In the case of water reservoirs specifically, creat-
ing a permanent, more accurate waterbody database is of high importance. To
do this, the different types of challenges need to be tackled, since even in situ
observations, are only point-based and cannot give a representative idea of the
spatial distribution of water in time and in large scale.

The amount of Earth observations and other geospatial information is constantly
increasing, but instead of using every dataset separately it would be more bene-
ficial to create a new higher level dataset by combining the strengths of various
datasets. Therefore, we need a generic solution in higher resolution to get more
detailed shapes of water reservoirs. Fusion of high resolution raster and vector
datasets might be able to systematize the challenges and provide an automatic
geometry specification. Since however all datasets contain uncertainties(e.g Fig-
ure 1) we an need objective confidence map of every water mask depending on
topographic and other conditions. Combining high resolution EO with alterna-
tive sources could possibly gives us an indication of how confident we are that a
specific pixel represents water. Consequently, the issue of better reconstruction
of the actual surface dynamics e.g in case of floods, but also questions regarding
the location and the geometric quality of water reservoirs is addressed, with
ultimate goal the attempt to improve the existing database.
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Figure 1: Example of OSM inconsistencies

3.2 Research question

The research question defines the scientific goals this study aims to explore and
provide an answer to. The chosen general direction of this thesis on which the
main focus will be, is the question:

To which extend can Remote Sensing and VGI be combined to accu-
rately identify water reservoir features?

The main research question for this project is composed of the following sub-
questions:

• How can multi-source datasets be combined to derive an optimal extend
of water reservoirs?

• How complete is the registration of water reservoirs in the OSM database
?

• How valid are the OSM water vector data in terms of location and geom-
etry?

8



3.3 Use cases

As a study area 10 distictive cases where choosen in total, which are considered
sufficiently representative of the variability/diversity of errors in the estimation
of the surface water extend (Figures:2,3,4).

(a) Laayoune, Algeria
(b) Changro Dandh, Pakistan

(c) Nai Gaj, Pakistan
(d) Sidi, Algeria

Figure 2: Use Cases
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(a) Hamal Lake, Pakistan (b) Zeddine, Algeria

(c) Barrage Harraza, Algeria (d) Lake Volta, Gana

Figure 3: Use Cases
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(a) Barrage Boughzoul, Algeria (b) Zehrez Chergui, Algeria

Figure 4: Use Cases

The selected use cases show the difference between the estimated JRC Global
Surface Water occurence map based on 35 years of Landsat imagery and OSM
surface water extend. Subfigures 2.a,c show presence of water reservoirs in the
OSM database which were not detected with the JRC water occurence, whereas
subfigure 2.b is not registered as an OSM water body although water was de-
tected in a big extend with high frequency. The rest of the use cases show the
discrepancies between the two datasets. With the combination of all the OSM,
JRC, Sentinel 2 and ALOS PALSAR datasets to overcome false positive and
false negative water classification results.

4 Methodology

The approach of the methodology combines different input datasets and analysis
techniques to provide a water map for all uses cases by estimating the confidence
level for the results. The methodology was based on the assumption that the
accuracy of the chosen datasets is similar.

4.1 Workflow

The following workflow describes the steps that form the suggested methodology
to create more accurate and precise waterbody estimates.
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Pre	Processing

OSM	water	features
(Vector)

ALOS	PALSAR	
DEM,	10	m
(Raster)

Sentinel	2,	10	m
(Raster)

Input	Data

JRC	
Global	Surface	Water

(GSW),	30	m
(Raster)

Resampling		to	10	m
resolution	with	bicubic

interpolation

Water	occurence	[0,1]
based	on	historical
Cloudless	Composite

Satellite	images

MNDWI	index
calculation

Conversion	to	Raster	10	m
(	0	:	no	feature,	1:	feature)	

Canny	edge
detector	

Otsu
Thresholding

Cloud	-free
percentile	images

calculation

Drainage	network
extraction

Compute	HAND	by
thresholding	flow
accumulation

Sum	all	binary	images
and	divide	all	pixel
values	with	total
amount	of	images

Eliminate	pixels	<
threshold	of	low

occurence

Resampling		to	10	m
resolution	with	bicubic

interpolation

Compute	slope	map

Compute	local	flow
direction

Pit	removal

Compute	flow
accumulation	grid

If	HAND	>	Hmax	
(minimum	HAND	value)
	remove	pixel	as	shadow
of	hilly	terrain

Select	all	water
related	key	tags
from	OSM		tag
information
database

Watermask	2 Watermask	4Watermask 3Watermask	2

Convert	OSM	water
data	to	shapefile

format

Reproject	to
WGS/UTM	Zone	x
(depending	on	the
location	on	earth)



Processing	

Logistic	(Binary)	Regression
(Comparison	of	input	datasets
water	classification	results)	

	Water	Probability/confidence
map	

based	on	Logistic	Regression

Minimum	extend	of
water	reservoir	:
pixels	with	high
confidence	values

Selection	of	range	for
moderate		water
confidence	values

Vectorize	pixels	with
moderate		water
confidence	values	

Convert	Lines	to	points

Vectorize	water	masks
1,2,3,4

Selection	of	range	for
low	water	confidence

values

Vectorize	pixels	of
minimum	extend	

Find	which	vector
warmasks	intersect
with	moderate	water

polygon

Convert	intersecting
vector	watermasks
from	lines	to	points

Iterate	through	points
of	minimum	extend
boundary	and	find	
neighbors	from	the
intersecting	points

within	a	search	radius		

Perform	IDW	and
weighted	average	to

calculate	coordinates	of	
boundary	points	of		new	

water	polygon

Compute	Centerline
(Voronoi-based

skeletonization)	of	
water	polygon	

Calculate	Euclidean
distance	map	

Calculate	width
(distance	from
boundaries)

and	mean	of	all	derived
widths

-	Calculate	variance
-	If	variance	with	
	distance	is	small,

remove		this	points	as
river	points

Adjust	boundary	and
derive	final	water

polygon	

Validation	of	OSM	water	polygons	

1.	Completness:

Is	water	polygon	derived	from
fusion	of	datasets	present	in	OSM

or	not?

2.	Geometric	Accuracy:

Compute	distance,	granularity
and	compactness	differences	of
OSM	polygon	and	new	derived

water	polygon	

if	distance	of	centerline
from	boundaries	<		70	m	

Rasterize	new	water
polygon



4.2 Input Datasets

Dataset Type Resolution (m) Notes
Sentinel-2 Raster 10 -60 Available from 23-06-2015
JRC Global Surface
Water (GSW)

Raster 30 Water occurence based on
Landsat satellite observa-
tions from 1984 to 2015

OpenStreetMap Vector 1-100 Selection of all water re-
lated tags

ALOS PALSAR
DEM

Raster 12.5 Drainage Network and
HAND creation

Table 1: Input Datasets

4.3 Sentinel - 2 Water occurrence

Sentinel-2 being the latest temporal resolution and highest spatial resolution
data available, is very useful for detailed water surface boundary extraction.
The frequency of water presence in a pixel can be described with historical
observations of the same area in different moments in time, namely water oc-
curence. The approach is based on the sampling of different cloudless historical
images, to compute a single image that presents where and how often water oc-
cured. The values of this composite image vary from 0 (no detection of water)
to 1 (detection in all samples).

Cloudless composite images can be generated by employing percentile images to
estimate the average cloud-free reflectance values. Cloud coverage is estimated
by exploiting the statistical properties of the image and more specifically the
reflectance property of clouds, i.e the brightness in SWIR band which is ideal
for cloud detection. The main idea is that the more bright the pixel appears in
this band, the more likely it is that it is covered by clouds. For this, a quantile
analysis of the pixel distribution in the whole image can be performed, just
to choose the first quantile that is considered cloud free [2]. The percentile
images can be computed according to Donchtyts (2016) on a per pixel and
per-band basis using top of atmosphere (TOA) reflectance values, to avoid the
confusion created by different atmospheric correction algorithms of satellites
[8]. To generate the water occurrence image, all cloudless binary images will
be summed and the values of all pixels will be devided by the total amount of
images [41].
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4.3.1 Spectral indices

The water pixels present in the cloudless historical composites will be extracted
with the help of the following water indices (Eq:1,2,3):

The Normalized Difference Water Index (NDWI) is found from the normalized
difference between the green and near-infrared bands to assign each pixel a value
between -1 and 1, calculated using the McFeeters (1996) equation [26]:

NDWI =
GREEN −NIR
GREEN +NIR

(1)

The Modified Difference Water Index (MNDWI) of Xu (2006) is considered more
reliable in urban areas than the Normalized Difference Water Index (NDWI)
[43]. However the limitation of MNDWI is that it cannot discriminate water
from snow. It is expressed by the Eq:2:

MNDWI =
GREEN − SWIR1

GREEN + SWIR1
(2)

The resulting positive values represent the water features because of their higher
TOA reflectance in GREEN and SWIR bands, while non-water features have
negative values.

The Normalised Difference Vegetation Index will be used to exclude dark vege-
tated areas (Eq:3) with a high threshold of 0.3 [8]:

NDVI =
NIR−RED
NIR+RED

(3)

4.3.2 Canny edge detector

The Canny edge detector is a widely used method for accurate edge detection
in images [9]. The edge filter can assist in the detection of boundaries between
water and non water pixels, which helps further to reduce the extend of the area
where the Otsu thresholding is applied. The detected sharp edges between wa-
ter and land will be expanded with a buffer zone to make sure that all probable
water and land pixels around the boundary are captured. This way we it will
be possible to obtain a bimodal distribution which will assist the distinction of
the two classes in the derived histogram of MNDWI values.
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The algorithm consists of the following stages:

1. Image Smoothing: Edge detectors are prone to noise and therefore they
are firstly smoothed with a square-sized Gaussian structural kernel usually
of size 5× 5 [23].

2. Gradient intensity calculation: The gradient direction defines the orienta-
tion of an edge, whereas the gradient magnitude indicates the intensity of
a change in the reflectance values. High gradient magnitudes reveal the
detection of an edge.

G =

√
Gx

2 +Gy
2 (4)

θ = tan−1Gx
Gy

(5)

where Gx and Gy the x,y derivatives of the current pixel. θ is rounded to 0
(horizontally),45 (diagonally), 90 (vertically) or 130 (diagonally) degrees.

3. Non-maximum suppression: All pixels are checked to see if they are a local
maximum in certain neighborhood. If they are not, they are suppressed,
resulting in very thin edges.

4. Double thresholding: Removal of small pixel noises, based on two thresh-
old values of the intensity gradient. It is applied to detect strong edges
only.

5. Hysteresis thresholding: Pixels below a certain threshold are discarded.
This way edges that are weak are suppressed.

4.3.3 Otsu Thresholding

In order to separate water from non water features, a threshold value for MNDWI
will be estimated. Dynamic local thresholding will help avoiding errors in the
surface water extraction procedure. Otsu thresholding [36] is based on a his-
togram of all MNDWI values in a certain area. The goal of this method is to
create a binary image 0,1 of two different classes, white (no water) and black
(water) pixels. The general idea of the method is to find the threshold that
minimizes the weighted within-class variance which is equal to the weighted
sum of variances of the two classes Eq:6. This is done by exploring all possible
threshold values and calculating the variance of all pixels on each side of the
threshold.

σw
2(t) = ω0

2(t) ∗ σ02(t) + ω1
2(t) ∗ σ12(t) (6)
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where σw the intra-class variance, ω0 and ω1 the probabilities of the two classes
separated by the threshold t and σ0 and σ1 variances of the two classes.

ω0 =

t−1∑
i=0

P (i) (7)

ω1 =

L∑
i=t

P (i) (8)

The class means µ0, are given by the following equations:

µ0(t) =

∑t−1
i=0 iP (i)

ω0(t)
(9)

µ1(t) =

∑L−1
t iP (i)

ω1(t)
(10)

Yousefi (2011) proved that maximizing the between-class variance, instead of
minimizing the within-class variance has a higher performance [46]. Therefore,

σb
2(t) = σ2 − 2σw = ω0(t) ∗ ω1(t) ∗ (µ0(t)− µ1(t))

2
(11)

4.4 Drainage network

Drainage networks will be extracted from the gridded elevation data DEMs [32].
Firstly the slopes will me computed providing a slope map, in order to estimate
the flow directions of water (multi-D8 algorithm). Afterwards, the artificial
pits will be removed by filling the depressions on the slope, to extract only the
major drainage paths and compute the drainage accumulation areas. Then the
drainage network will be extracted by means of a threshold for the flow accu-
mulation [28].

The extraction of surface drainage features is however in problematic in flat
reliefs as they create parallel lines during processing. Therefore, a need drainage
direction in flat surfaces can be assigned by modifying the DEM elevations to
enforce two gradients: one away from higher terrain, and one towards lower
terrain.

4.4.1 Multi-D8 algorithm

The Multi-D8 algorithm described by Qin et. al will be used to determine the
direction of the flow direction and accumulation of water on a terrain [37]. The
flow direction is the direction the water would naturally flow towards, which
is from each cell to its downslope neighbor or neighbors on the DEM [18]. To
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describe this flow direction per DEM cell, eight discrete flow angle values towards
the eight neighbours of the pixel (left, right, up, down and the diagonals [23]
will be used. The flow accumulation at a given DTM cell can be estimated by
the area that drains to it [34].

Figure 5: Multi-D8 algorithm [23]

Figure 6: Flow direction and accumulation of water reservoir using multi-D8
[23]

4.4.2 HAND

The Height Above Nearest Drainage (HAND) dataset can be derived from the
ALOS PALSAR Digital Elevation Model (DEM). It will be used as a topo-
graphic mask to detect and exclude pixels where potential errors occur due to
the spectral similarity of terrain shadows to water especially in mountainous ar-
eas but also flood areas. HAND is a normalised version of the DEM, calculated
based on the extracted drainage network. Basically it is a map that describes
the vertical distance to the nearest drainage, i.e it the elevation difference of
every pixel to its nearest drainage pixel. In order to extract HAND the flow
accumulation of the drainage network needs to be thresholded with a maximum
number of upstream cells. The HAND values, as proposed by Renno et al.
(2008), can be estimated by classifying the pixels according to their drainage
potential, as drainage or non drainage pixels [38]. Then the HAND values are
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derived from the difference of the height of the pixel from the original DEM and
the height of the drainage pixel that is closer to this (non drainage) pixel.

Figure 7: HAND value extraction based on Local Drainage Directions (LLD)[38]

4.5 Resampling with bicubic interpolation

Conversion from raster to vector might cause inconsistencies between the created
polygons, due to the varying resolution of the datasets. A way to avoid this, is
by resampling the raster image. Image resampling is a mathematical process of
creating a new version of the raster cell grid with a with a different width and/or
height in pixels. The value of each cell in the new raster will be computed
by sampling or interpolating in a neighborhood of cells of this pixel in the
original raster object [39]. Bicubic interpolation is considered to be slower in
computation speed, but it is supposed to have better smoothing results when
upsampling.

f(x, y) =

3∑
i=0

3∑
j=0

aijx
iyj (12)

where x and y the coordinates of the new location, f(x,y) the value of the pixel
and aij the 16 coefficients for the 16 neighbors.

4.6 Logistic Regression

Logistic Regression as described by Hestie et. al (2009) and Mueller et al. (2016)
is a statistical method that describes the relationship between a dependent vari-
able (Y) and one or more independent (X1, X2, ..., XN ), in our case the input
datasets [31]. The dependent variable takes only two values, 0 or 1. The goal
of the logistic regression is to provide confidence intervals (probability scores)
on the predicted values of 0 or 1. From the inpute datasets, OSM will be in
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binary form , Sentinel-2 and JRC water occurence in the range [0,1], where 0
represents a negative response and the 1 represents a positive response (water
or no water feature). The slope will be also considered in the process as a real
value in the range [0,90]. The mean of the dependent variable (pixel) will be the
proportion of positive responses. If P is the proportion of the input data with
value 1, then 1-P is the probability of an outcome of 0. Therefore the logistic
regression can estimate the log odds of the event that Y=1 from the Equation:

log
P (Y = 1)

1− P (Y = 1)
= β0 + β1X1 + β2X2 + ...+ βnXn (13)

By exponentiating the log odds and with a simple algebraic manipulation we can
derive the odds that a pixel represents water according to the input datasets:

P (Y = 1) =
1

1 + e−(β0+β1X1+β2X2+...+βnXn
= (14)

where β0 the intercept from the linear regression equation and β1..n the coeffi-
cients that maximize the likelihood of predicting a high probability for training
data belonging to class 1 while predicting a low probability for data actually
belonging to class 0. More simply explained these coefficients are chosen to
maximize the likelihood of observing the sample data that have been given as
input.

Each of the input dataset (Sentinel water occurrence, JRC water occurrence,
OSM, slope map from ALOS PALSAR, drainage network) will be used as indi-
cation of the reliability/confidence of water presence in a certain pixel p. For
example, a pixel with high slope classified as water is probably incorrect. The
probability of the pixel being an actual water pixel, will be defined by certain
threshold value:

P (Y = 1) > k (15)

4.7 Inverse weighted Distance (IDW)

IDW is an interpolation method that uses distance to identify the neighbours of
a point, and to assign to them weights. The specified neighborhood determines
how far and where to look for the measured values to be used in the prediction.
A ’searching circle’ with a defined radius or a certain number of the closest
neighbors can be used to select the data points involved in the interpolation at
desired location [35].
The weight assigned to each point p at the interpolated location x is:

wi(x) = |xp|−h (16)
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where h is the power to be used, and |xp| is the distance between the location
x and the point p. The value of h determines how quickly/slowly the weight
decreases with distance.

Afterwards the weighted average of the neighbors can be computed:

f(x) =

∑k
i=1 wi(x) ∗ ai∑k
i=1 wi(x)

(17)

where wi(x) is the weight of each neighbour p (with respect to the interpolation
location x) and ai the attribute of pi. A neighbour p is a sample point that is
used to estimate the value of location x. In this implementation the attribute
are the x,y coordinates of the neighbors of the interpolated location. This way
the weighted average value of x and of y for the location x can be computed.

4.8 Euclidean Distance Transform MAP (EDM)

To create the Euclidean Distance Transform map the new optimal polygon needs
to be rasterised. Afterwards, according to Meijster (2004) , the distance of
a pixel to the closest boundary point can be calculated with the Euclidean
Distance Transform for binary images [27]:

EDT (x, y) = min(x− i)2 +G(i, y)

(18)

G(i, y) = min(y − j)2 where F (i, j) = 0 (19)

where F(i,j) the input image, i,j the rows and columns of the image array re-
spectively.

The algorithm works as follows: The image is stored in an array of columns and
rows. Afterwards, the algorithm iterates through all pixels from top to bottom
and then bottom to top to, to compute the minimum distances in this dimension
G(x,y) to the closest boundary pixel. Then the array G is scanned from left to
right and right to left to calculate again the minimum distance to the closest
boundary point [41].

4.9 Voronoi based skeletonization

The Voronoi diagram consists of cells of points p, in which all points are closer
to the point p than to any other point. Considering this, the Voronoi Diagram
can be extracted based on the the Euclidean Distance map, to compute the
skeleton, i.e the medial axis of the water polygon. The approximation of the
skeleton, will be done from the Voronoi diagram of the points sampled along
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the boundary of the water polygon. The Voronoi diagram consists of convex
polygon which are formed by vertices. By removing those vertices that intersect
with the boundary of the water polygon, we can acquire the skeleton. As also
presented by Thissen (2019) the derived centerline can be intersected with values
of the EDM. This way we can acquire the centerline where every pixel has the
information of the euclidean distance to the nearest boundary. The width can
be obtained by multiplying by two [41] exploiting this way the equidistance
property of the centerline from the boundaries.

4.10 Geometric Accuracy of OSM water polygons

To compare the OSM water polygons with the computed optimal water poly-
gon, the surface distance and compactness of the polygons will be computed.
The surface distance as described by Vauglin (1997) is [10]:

dS = 1− S(A ∩B)

S(A ∪B)

(20)

where A, B the polygons to be compared, and dS takes values in the range of
[0,1]. If distance is 0 then the polygons are equal and if 1 they are disjoint.
The distance is calculated by dividing the intersection area of the polygons with
their union.

Apart from the positional differences of the two polygons, also the geometric
ones need to be evaluated. For this, the compactness of the polygons can be
calculated according to MacEachren (1985) using the equation [24]:

C = 2π × area/perimeter2 (21)
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4.11 Tools

The following tools are considered useful to fulfill the current research:

1. Google Earth Engine cloud computing platform for Satellite data process-
ing

2. Python for processing

3. ArcGIS for GIS operations

4. GDAL, Shapely, Fiona, rasterio libraries for processing of vector and raster
data

5. ArcHydro for HAND extraction

6. Osmose and JOSM validator for detection of geometric, topological error
dertection of OSM data

5 Preliminary results

The JRC water occurrence layers were scaled from [0,100] values to [0,1] and
resampled with bicubic interpolation, resulting in an new image where output
pixels appear more smooth relatively to the original image (Figure 8).

(a) (b)

Figure 8: JRC resampling 30 to 10 m resolution
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Figure 9 shows a cloudless Sentinel-2 image, generated by masking clouds and
cirrus over one year of data and afterwards by taking the median. For this
Sentinel-2 TOA reflectance data were pre-filtered to get less cloudy granules.
Then the Modified Normalized Difference Water Index (MNDWI) was calcu-
lated.

(a) Sentinel-2 Image after masking clouds
and cirrus (b) MNDWI index calculation

Figure 9: Surface water detection from Sentinel 2 Imagery
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To compute the slope map, Digital elevation data from ALOS PALSAR were
downloaded and processed to create slope values for every pixel in the raster
image 10. The area in blue color represents the part with low slope values (<1
%), as an indication of accumulation of water.

(a) Water reservoir from Sentinel Imagery

(b) Digital elevation Model (c) Extraction of slope map

Figure 10: Calculation of slopes from DEM

25



6 Timeplan

A GANTT chart is constructed to present how the project, and more specifically
the time-related progress of each of phase of the project parts, the deadlines and
the delivery of reports are organized (Page 27).
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