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1
Introduction
The main topic of this thesis is large deviations for stochastic processes in a geo-
metric setting, such as a sphere. Large deviations is a mathematical theory that is
concerned with quantifying the exponentially small probabilities of rare events, in
particular deviations from the typical behaviour.
This chapter serves the purpose of providing a panoramic overview of the subjects
treated in this thesis. Before we give an outline of the thesis, we embark on a
journey to get an understanding of what large deviations are. We start with some
fundamental examples and results. Based on these, we explain how to extend the
problems to a geometric setting, which are studied in this thesis. Besides that, we
also refer to other related directions which have been investigated in this area.

1.1. Large deviations for random walks

Arguably the most well known example of a probabilistic experiment is the tossing
of a coin. Suppose we play a game in which we win 1 euro if the coin lands on
heads, while we lose 1 euro if it lands on tails. If we keep on playing this game, we
can win quite some money, but we can also lose it. Hence, we are interested in the
behaviour of our profit after a (large) number of games. We explain how to study
this in a variety of ways.
First, let us state the problem mathematically. We denote by Xn our winnings for
the n-th toss. Since the coin is fair, we have

PpXn “ 1q “ PpXn “ ´1q “ 1
2 .

Our profit after n tosses is then given by the sum Sn “
řn
i“1Xi. Such a sum is

often referred to as a random walk. To understand why, we can plot the value of
Sn against the time n. At each time step, the value of Sn either moves up 1 or
moves down 1. After n steps, we then have a trajectory moving up and down. The
randomness comes from the fact that we toss a coin to decide if we move upwards
or downwards.
The goal is to study the behaviour of Sn. A first way to do this is to consider the
average profit 1

n

řn
i“1Xi. Intuitively, if we perform a large number of tosses, we

3



4 1. Introduction

expect approximately an equal amount of heads and tails. This translates to an
equal amount of times gaining or losing 1 euro, so that the profit will be close to 0.
This result is known as the law of large numbers. More precisely, it states that

1
n

n
ÿ

i“1
Xi Ñ 0.

The law of large numbers shows that the probability for Sn to deviate order n from
the expected behaviour goes to 0 when n becomes large.
We can of course also study fluctuations of different sizes around the expected be-
haviour. In the law of large numbers, the limit is deterministic, which shows that
the variance has vanished. Since Sn consists of n independent tosses, its variance is
precisely n times the variance of a single toss. Since the variance measures the ex-
pected squared deviation from the mean, it follows that 1?

n
Sn has constant variance.

The central limit theorem states that

1
?
n

n
ÿ

i“1
Xi Ñ Z,

where Z has a normal distribution with mean 0 and variance equal to the variance
of a single toss. The central limit theorem allows us to study the probability of
deviations of Sn from its expectation of order

?
n.

In contrast to the law of large numbers, the central limit theorem provides us with
more specific information on the probabilities of deviations of order

?
n. One can

wonder whether this is also possible on the scale of the law of large numbers, i.e.,
for deviations of order n. Such deviations are referred to as large deviations, since
a sum of n terms typically has a size of at most order n. Where the law of large
numbers only tells that the probability of large deviations goes to 0, the theory of
large deviations is concerned with how fast this convergence is. More precisely, it
quantifies the limiting behaviour of the exponentially small probabilities.
For the coin flipping example with which we started, one can show that

P

˜

1
n

n
ÿ

i“1
Xi « x

¸

« e´nIpxq (1.1.1)

where Ipxq “ 1
2 p1 ` xq logp1 ` xq ` 1

2 p1 ´ xq logp1 ´ xq. This result should be
interpreted as follows: the probability that the average profit 1

n

řn
i“1Xi is close to

x decays exponentially in n with rate Ipxq. In particular, we have that Ip0q “ 0,
meaning that the probability that 1

n

řn
i“1Xi is close to 0 converges to 1. This is

exactly what the law of large numbers tells us. Furthermore, the farther we go
from x “ 0, the larger I gets. This confirms our common sense that the larger the
deviation from 0, the less likely it is to occur.
The result in (1.1.1) is a special case of a more general result known as Cramér’s
theorem, see Theorem 2.1.10. Moreover, Cramér’s theorem shows how to compute
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the function I from the distribution of the random variables tXnuně1. Furthermore,
the result also holds when the Xn are d-dimensional vectors. The large deviations
for empirical averages were first proven in [25] and improved upon in [20] to hold
for more general distributions of the random vectors. In all these cases, the random
variables tXnuně1 have to be independent and have the same distribution. This
was relaxed in [50] and further generalized in [34]. This result is known as the
Gärtner-Ellis theorem, see Theorem 2.1.12 for the version from [50].

1.1.1. Areas of application
To explain the relevance of large deviations, we continue with the example we in-
troduced in the previous section, i.e., we have random variables tXnuně1 with

PpXn “ 1q “ PpXn “ ´1q “ 1
2 .

Now consider the random variable

Zn “
n
ź

i“1
2Xi .

One can think of Zn as follows: If the coin flip lands on heads we multiply by
2, and if it comes up tails, we multiply by 1

2 . Since we expect approximately an
equal amount of heads and tails, we expects Zn to be approximately 1. However,
the expectation of 2Xi is 5

4 , so that the expected value of Zn is p 5
4 q
n. We thus

see that Zn is expected to be exponentially large, and certainly not close to 1. To
understand what happens, note that we can write Zn “ 2Sn , where Sn “

řn
i“1Xi.

This shows that the large deviation events of the sum Sn control the behaviour of
the expectation of Zn. The reason for this is that, although the large deviations
for Sn have an exponentially small probability to occur, they have an exponentially
large contribution to the expected value of Zn. Even though this is a toy-example,
the observations we make are certainly relevant. For example, they play a role in the
entropy-energy balance in statistical mechanics, a field of research which provides a
wealth of applications of large deviation theory, see e.g. [90].
Another, fairly early area of application in which one is interested in large deviations
is information theory, which was introduced by Shannon in [84]. The idea is that we
want to transmit information over a noisy channel. We can think of this information
as a string of zeros and ones, and for each bit there is a certain probability that we
make an error in its transmission. Too many errors in the transmission can result
in a wrong transmission of the message, and the risk of this happening is relevant
to know. Early results in this direction can be found in [43].
One can also use large deviations in risk assessment, for example in the context of
insurance claims, see [78] among others. Let us sketch a simplified version of this
application. For this, let Xn be the amount of the n-th insurance claim done by
any of the customers. Assume that all insurance claims have the same distribution,
and are independent of each other. The sum Sn “

řn
i“1Xi now represents the

total amount of the first n insurance claims. If this value is excessively large, it
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is impossible for the insurance company to pay out all claims, with bankruptcy
following. It is therefore worthwhile to know the risk of an excessive number of high
claims, which can be estimated with the large deviations for 1

n

řn
i“1Xi.

Finally, we also want to mention the area of statistics, in which we try to estimate for
example parameters based on a certain amount of data. These estimators converge
to the true value if we let the amount of data grow. However, the estimator is still
random, and we would like to understand the probability that our estimate is far
off. In a certain way, this quantifies the risk of a ‘wrong’ estimate.

1.2. Large deviations for trajectories

Large deviations can also be studied for objects other than empirical averages. In
general, as long as some version of a law of large numbers is satisfied, one can ask
the question if there is also some form of large deviations. We will explain large
deviations for trajectories of processes. More specifically, we consider trajectories of
random walks and of Brownian motion.

1.2.1. Large deviations for trajectories of random walks
Sometimes we are not only interested in the end point of a random walk, but also
want to understand how we got there. In order to study the behaviour of the
trajectory of a random walk, we define for every t P r0, 1s the random variable

Znptq “
1
n

tntu
ÿ

i“1
Xi.

Note that the path Znptq is constant on time-intervals r i´1
n , in q, and steps occur at

times ti,n “ i
n .

If we assume that the random variables tXnuně1 are independent, identically dis-
tributed with mean 0, then the law of large numbers gives us that

Znp¨q Ñ 0.

More precisely, the trajectories Znp¨q converge to the trajectory which is constant 0.
Likewise, we also have an analogue of the central limit theorem. This is called the
invariance principle, which states that

1
?
n

tn¨u
ÿ

i“1
Xi ÑW p¨q

in distribution, where W is a Brownian motion, see e.g. [12]. This is one of the
reasons why Brownian motion is sometimes viewed as the path-space analogue of
the normal distribution.
Since the trajectories Znp¨q satisfy the law of large numbers, we can also study their
large deviation behaviour. We explain heuristically how these can be obtained from
the large deviations for random walks.
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For every individual time t P r0, 1s, we obtain from the large deviations for random
walks that

PpZnptq « xq « e´nItpxq.

Since the increments of the random walk are independent and identically distributed,
one can prove that Itpxq “ tIpt´1xq, where I “ I1.
For two times t1, t2 P r0, 1s with t1 ă t2, the tuple pZnpt1q, Znpt2qq also satisfies the
large deviation principle:

PpZnpt1q « x1, Znpt2q « x2q « e´nIt1,t2 pxq.

Since Znpt2q depends on Znpt1q, the rate function It1,t2 is not the sum of It1 and It2 .
However, since the increments of the random walk are independent, the increment
Znpt2q ´Znpt1q is independent of Znpt1q. Furthermore, the increments all have the
same distribution, so that Znpt2q ´Znpt1q has the same distribution as Znpt2´ t1q.
Therefore, heuristically we have

PpZnpt1q « x1, Znpt2q « x2q “ PpZnpt1q « x1, Znpt2q ´ Znpt1q « x2 ´ x1q

“ PpZnpt1q « x1qPpZnpt2q ´ Znpt1q « x2 ´ x1q

“ PpZnpt1q « x1qPpZnpt2 ´ t1q « x2 ´ x1q

« e´nIt1 px1qe´nIt2´t1 px2´x1q.

Remembering that Itpxq “ tIpt´1xq, we thus find that

It1,t2px1, x2q “ It1px1q ` It2´t1px2 ´ x1q “ t1I

ˆ

x1

t1

˙

` pt2 ´ t1qI

ˆ

x2 ´ x1

t2 ´ t1

˙

.

Continuing this idea, for a curve γ and partition 0 “ t0 ă t1 ă ¨ ¨ ¨ ă tk ď 1 we find
that

PpZnpt1q « γpt1q, . . . , Znptkq « γptkqq « e´nIt1,...,tk pγpt1q,...,γptkqq,

where

It1,...,tkpγpt1q, . . . , γptkqq “
k
ÿ

i“1
pti ´ ti´1qI

ˆ

γptiq ´ γpti´1q

ti ´ ti´1

˙

.

Under some conditions on γ, if we let the mesh-size of the partition tend to 0, we
have

k
ÿ

i“1
pti ´ ti´1qI

ˆ

γptiq ´ γpti´1q

ti ´ ti´1

˙

Ñ

ż 1

0
Ip 9γptqqdt.

This suggest that
PpZnp¨q « γq « e´n

ş1
0 Ip 9γptqq dt. (1.2.1)

This can be made precise, and was proven in [74]. The result is known as Mogulskii’s
theorem, see Theorem 2.1.13.
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The form of the rate function in Mogulskii’s theorem is a special case of a more
general form given by

Ipγq “
ż 1

0
Lpγptq, 9γptqqdt.

The function L is called the Lagrangian, and the function I is then interpreted as
an ‘action’. When considering Brownian motion in the next section, we will see this
form again.

1.2.2. Large deviations for Brownian motion with small vari-
ance

On the level of processes, arguably the most important stochastic process is Brown-
ian motion. As mentioned earlier, it acts as the analogue of the normal distribution
on process level, as is for example justified by the invariance principle.
The increments of Brownian motion are independent, stationary and have a normal
distribution. Therefore, if we take an appropriate scaling Wnptq “ apnqW ptq of a
Brownian motion W ptq, it should be possible to approximate Wnptq by

Znptq “
1
n

tntu
ÿ

i“1
Xi,

where tXnuně1 is a sequence of independent, standard normal random variables.
To find the correct scaling apnq, observe that by the invariance principle we have

?
nZnptq “

1
?
n

tntu
ÿ

i“1
Xi ÑW ptq

in distribution. This implies that for n large, Znptq is approximately equal to
1?
n
W ptq in distribution. We thus should take apnq “ 1?

n
. This is also supported

when we study the increments of Znptq and Wnptq. Indeed, with this specific choice
of apnq, Wnp

i
n q ´ Wnp

i´1
n q has a normal distribution with mean 0 and variance

apnq2 1
n “

1
n2 . The increments of Znptq also follow this distribution, so that Znptq is

a piecewise constant approximation of Wnptq.
It is possible to prove that Znptq approximates Wnptq well enough, such that their
limiting behaviour on an exponential scale is the same, i.e., they follow the same
large deviation principle. It is therefore enough to understand the large deviations
of Znp¨q, which follow from Mogulskii’s theorem. One can compute that the function
I in Mogulskii’s theorem is given by Ipxq “ 1

2 |x|
2 in the case of standard normal

random variables. As a consequence, we have

P
ˆ

1
?
n
W p¨q « γ

˙

« PpZnp¨q « γq « e´n
1
2
ş1
0 | 9γptq|

2 dt.

This result is due to Schilder, see [83]. We also give the precise statement in Theorem
2.1.14. Observe that the rate of a trajectory γ is given by the action 1

2
ş1
0 | 9γptq|

2 dt
obtained from the kinetic energy. More precisely, the higher the action, the less
likely the trajectory.
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1.3. Random walks in curved spaces

Large deviations for random walks have been studied in a variety of settings. In
theoretical context, the result of Cramér’s theorem also holds in Banach spaces, see
[31]. Furthermore, one can also consider large deviations for empirical measures,
the result on which is known as Sanov’s theorem, see e.g. [56, 29]. Recently,
a lot of attention has also gone to large deviations for random walks in random
environments, see e.g. [94, 100] for some initial results. Finally, we mention the
recent development of obtaining large deviations for Markov processes based on
convergence of non-linear semigroups and viscosity solutions of Hamilton-Jacobi
equations. This method was introduced in [39]. Among a wealth of applications, it
is for example applied to obtain results concerning empirical measures of Markov
jump processes, see [62]. We will also make use of this method to obtain some of
our results.
In this thesis, we consider random walks in curved spaces, i.e., manifolds. Such
random walks are mainly studied in the context of approximating diffusions on
manifolds. The origin of this can be found in [58], where the central limit problem is
considered. This result has been extended to a time-inhomogeneous setting in [64].
Other recent results concerning approximating solutions to stochastic differential
equations on manifolds can be found in [1].
However, it seems that the large deviations of such random walks have not been
considered. Therefore, our aim is to obtain results similar to those in (1.1.1) and
(1.2.1) for random walks in manifolds. In order to do this, we first have to define
random walks in manifolds. Indeed, if we would simply copy the approach from the
Euclidean case, a problem we immediately run into is that we cannot add points
in a manifold together and rescale by a factor. This problem already occurs when
one considers the sphere, which is the prototypical example of a manifold. We thus
need to find a suitable generalization of 1

n

řn
i“1Xi in such spaces. For this, we will

use the viewpoint of random walks.

1.3.1. Geodesic random walks
The increments tXnuně1 of the random walk

řn
i“1Xi may be thought of as vectors.

The addition of such a vector then amounts to following the straight line in the
direction of the vector for time 1 to assure that we add the entire vector. See the
left picture in Figure 1.1 for a visualization of this interpretation.
On a manifold, vectors providing directions are precisely the tangent vectors. There-
fore, to make a ‘step’ of the random walk, we take a random tangent vector. We
then have to follow the ‘straight line’ in that direction. In Euclidean space, straight
lines are lines of shortest distance between points, i.e., they are geodesics. This ex-
plains that in the manifold, following the ‘straight line’ means that we have to follow
the geodesic in that direction. We again do this for time 1, to ‘add’ the entire vec-
tor. We now construct a random walk by concatenating a number of random steps.
Since each time we are at a different point, we need for every point on the manifold
a distribution on the tangent space to tell us how to sample the next direction. In
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S0

S1

X1

S2

X2

S3

X3

x

y

S0

X1
S1

X2

S2
X3S3

Figure 1.1: Visualization of the construction of geodesic random walks. On the left, we see the
interpretation of a random walk in Euclidean space as repeatedly following straight lines in the
direction of vectors. On the right, this idea is extended to the sphere, where we follow geodesics
in the direction of tangent vectors.

Figure 1.1 this construction is shown for the sphere.
To summarize, to construct a random walk on a manifold, we first take on every
tangent space a probability distribution. Then, to take a step, we sample a tangent
vector at the point where the random walk is, and then follow the geodesic in that
direction for time 1. We will denote the random walk after n steps by Sn. Since we
‘walk’ along geodesics, we will refer to Sn as a geodesic random walk.
What remains is to define how we can rescale the random walk by a factor 1

n . Since
we cannot rescale Sn, what we do, is we rescale the tangent vectors we sample
instead. Equivalently, we can also follow the geodesics for time 1

n instead of time 1.
We denote the rescaled random walk by p 1

n ˚ Sqn.

Example: the sphere
As an example, we can consider the sphere as a 2-dimensional manifold, see Figure
1.1. To start the random walk, we need to select a point S0 “ x0 on the sphere.
Furthermore, we have to define a probability distribution on every tangent space.
For this, we can for example say we always take a tangent vector with a uniformly
random direction and a fixed length. Since geodesics on the sphere are the great
circles, the geodesic random walk then consists of following pieces of great circles of
equal length, in random directions. This approach of defining random walks on a
sphere agrees with early definitions made specifically in this case, see e.g. [81].

Random walks using grids
For completeness, we also shortly discuss another approach to defining random walks
in curved spaces. For this, one takes a collection of points tpiui in the manifold,
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which together form a grid. To define a random walk on the manifold now reduces
to defining a random walk on the grid. One can do this by assigning to each pair of
points ppi, pjq a probability to jump from point pi to point pj .
In Euclidean space, we usually take an equidistant grid, for example consisting of
all points with integer coordinates. If we then want to consider random walks with
small stepsize, we can take the grid containing points with coordinates which are
multiples of 1

n . For general curved spaces, such regular grids do not necessarily exist,
and choosing appropriate grids is more involved. Also, in order to obtain a grid with
small stepsizes, we cannot simply rescale, and must for example add points to the
grid to make sure that grid points tend to be closer to each other.
Grids for manifolds naturally arise when we have a collection of data points from a
certain manifold. Laplacian based machine learning algorithms rely on the conver-
gence of the discrete Laplacian on the approximating grid to the Laplace-Beltrami
operator on the manifold. We refer to [85] and references therein. Furthermore,
grids may be used to study interacting particle systems on manifolds, see e.g. [45].

1.3.2. Applications of probability theory in manifolds
A question we have to ask ourselves is whether it is necessary to complicate matters
and take curvature into account. Indeed, while the Earth is spherical, if we look
around us, we perceive it as flat. If we would then zoom in enough, we may just as
well locally approximate our curved space with a flat one.
However, our perception of the Earth as flat is a matter of scale. If we for example
would like to predict the trajectory of a hurricane or of streams in the ocean, the
curvature does become relevant. Scale is also important if we study the behaviour
of systems in nano-biology. Limit results then help us to understand macroscopic
behaviour from the (stochastic) microscopic behaviour of the system.
Furthermore, as already mentioned above, manifolds occur naturally when consid-
ering data. The problem of manifold learning or visualization is concerned with
retrieving the manifold structure of the data, which is usually of a much lower di-
mension than the data itself. This is for example treated in [89, 101] among others.
Related to this problem is the problem of sampling from a distribution on a manifold.
In Euclidean space, this can often be done effectively using Markov Chain Monte
Carlo. The idea is essentially to construct a Markov chain which has the target
distribution as its invariant distribution. This approach can also be taken in the
manifold setting, see e.g. [16].
Finally, we also mention the role probability theory and geometry play in shape
analysis. One can for example consider an object, such as a human organ, that
deforms over time. This deformation may be modelled as a stochastic process.
However, since we cannot measure continuously, the problem is now that given
observations at different time points, we would like to reconstruct the underlying
process of deformation. This can for example be done by constructing diffusion
bridges. We refer to [4] among others.
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1.4. Brownian motion in Riemannian manifolds

In addition to Cramér’s and Mogulskii’s theorem, we also wish to extend Schilder’s
theorem to a geometric setting. For this, it is necessary to have a notion of Brownian
motion in curved spaces.
In the Euclidean setting, Brownian motion W ptq is usually defined as the unique
continuous process with independent, stationary increments such that W ptq´W psq
has a normal distribution with mean 0 and variance t ´ s. Since there is no clear
way to define increments of a manifold-valued process, this approach is not suitable
to define a Brownian motion in a manifold.
It is thus necessary to consider other characterizations of Brownian motion. As we
have seen before, it follows from the invariance principle that Brownian motion is
the limit of random walks of the form

Znptq “
1
?
n

tntu
ÿ

i“1
Xi.

Furthermore, since Brownian motion is a Markov process, we can also consider
its generator. The generator of a Markov process describes in a certain way the
infinitesimal evolution of the process. For Brownian motion, the generator is given
by 1

2∆, where ∆ is the Laplacian, i.e.,

∆ “

d
ÿ

i“1

B2

Bx2
i

.

Finally, Brownian motion is also uniquely characterized as the martingale W ptq
having quadratic variation rW st “ t.
We will explain how each of these characterizations can be used to define Brownian
motion in manifolds. Furthermore, we also introduce a geometric construction.

It turns out that in order to define Brownian motion in a manifold, we need some
additional structure. A Riemannian metric on a manifold is a smooth selection
of inner-products on the tangent spaces. A Riemannian manifold is a manifold,
together with a Riemannian metric. It is possible to define a notion of Brownian
motion in a Riemannian manifold. However, in contrast to the Euclidean case, this
process can blow up in finite time. One can define Riemannian Brownian motion
either geometrically or in a probabilistic way. We discuss both approaches.

Geometric construction of Brownian motion
Firstly, we discuss a purely geometric way of defining Brownian motion in Rieman-
nian manifolds. This method is due to Eells-Elworthy-Malliavin, see [35, 71, 57].
For simplicity, we again consider the sphere, which is a two-dimensional manifold.
The entire procedure explained works equally well in general Riemannian manifolds.
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The idea is that we transfer a curve γ from the plane R2 to the sphere by rolling the
sphere along the curve, without slipping. The contact point between the plane and
the sphere then traces a curve along the sphere, which we call the development of γ
onto the sphere. In this rolling procedure, ‘without slipping’ intuitively means that
the motion of the contact point between the plane and sphere is only influenced by
the velocity of the curve γ and the curvature of the sphere. This procedure can be
made mathematically precise, the details of which can be found in Section 2.3.
The idea is now to start with a Brownian motion Bptq in the plane, and develop this
onto the sphere. Unfortunately, as described above, we need to know the velocity
of a curve if we want to develop it onto the sphere. An insight by Malliavin, called
Malliavin’s transfer principle shows that in a suitable way, the same procedure may
also be carried out for stochastic processes. The ‘velocity’ of the stochastic process
is then replaced by the Stratonovich differential. This is extensively explained in
Section 2.4. A Brownian motion on the sphere is now obtained by considering the
development of a Brownian motion in the plane.

A probabilistic approach to Riemannian Brownian motion
It is also possible to define Brownian motion in a Riemannian manifold in a prob-
abilistic way. The different probabilistic approaches are based on the characteriza-
tions of Brownian motion in the Euclidean case.
In the Euclidean setting, Brownian motion is a Markov process generated by 1

2∆.
A Riemannian manifold possesses a natural analogue of the Laplacian, namely the
Laplace-Beltrami operator, which we denote by ∆M . Since the notion of a generator
can be extended to manifold-valued Markov processes, we can define Riemannian
Brownian motion as the continuous process generated by 1

2∆M .
Furthermore, it was shown in [58] that the invariance principle also holds in Rie-
mannian manifolds. Therefore, Brownian motion can be obtained as the limit of
geodesic random walks which are scaled by 1?

n
.

Finally, we also mention the extension of the idea that Brownian motion is a martin-
gale W ptq with quadratic variation rW st “ t. For this, one first defines a notion of
manifold-valued semimartingales and a notion of quadratic variation. One then uses
the Levi-Civita connection of the Riemannian manifold to define manifold-valued
martingales. Finally, Brownian motion is then characterized as a martingale with a
specific quadratic variation in terms of the Riemannian metric. For details on this
approach, see [36, 57].

1.4.1. Schilder’s theorem for Riemannian manifolds
With a Riemannian Brownian motion at hand, we can pose the question if an
analogue of Schilder’s theorem also holds in Riemannian manifolds. For this, we
first of all should notice that ifW ptq is Riemannian Brownian motion, then 1?

n
W ptq

is not defined. Instead, observe that in the Euclidean case, 1?
n
W ptq “ W p 1

n tq in
distribution. This motivates that in order to study large deviations, we should
consider the processes Wnptq “W p 1

n tq.
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Let us motivate the generalization of Schilder’s theorem. As a Markov process,
Brownian motion in Euclidean space Rd possesses a transition density ppt, x, yq
given by

ppt, x, yq “
1

p2πtq d2
e´

1
2t |x´y|

2
.

From this it follows that

lim
tÑ0

t log ppt, x, yq “ ´1
2 |x´ y|

2,

which describes the short time behaviour of the transition density of Brownian
motion.
A Riemannian Brownian motion also possesses a transition density pM pt, x, yq. How-
ever, contrary to the Euclidean case, we cannot give an explicit expression. Nonethe-
less, Varadhan studied the short time behaviour of the transition density in [93],
obtaining that

lim
tÑ0

pM pt, x, yq “ ´
1
2dpx, yq

2.

Here, dpx, yq is the so called Riemannian distance between points x and y, which in
the Euclidean case is precisely |x´ y|.

Recall that in Euclidean space we can prove the large deviation principle for Brow-
nian motion by approximating with polygonal paths over meshes with size tending
to zero. The similarity in the short time behaviour of the transition densities then
suggests that in the Riemannian setting, we should be able to obtain a similar large
deviation result for Riemannian Brownian motion. More precisely, if W ptq is a
Riemannian Brownian motion, then for Wnptq “W p 1

n tq we have

PpWnp¨q « γq « e´n
1
2
ş1
0 | 9γptq|

2
gpγptqq dt.

Here, g denotes the Riemannian metric, and | 9γptq|gpγptqq is the norm of 9γptq with
respect to the inner product gpγptqq.
The rate function Ipγq “ 1

2
ş1
0 | 9γptq|

2
gpγptqq dt is again given by the action of the path

γ. Different from the Euclidean case is that we evaluate the norm of 9γptq with
respect to the inner product gpγptqq. The precise statement is given in Theorem
5.1.3 and can also already be found in [9, 41]. We also refer to [13] for related
results. Although the result is already known, we provide several novel approaches
for proving it, see Chapter 5. While developed to prove Schilder’s theorem for
Riemannian Brownian motion, the approaches are interesting in itself and can be
applied to a wider variety of problems.

1.4.2. Brownian motion in evolving manifolds
The final generalization we consider in this thesis is Riemannian Brownian motion
in a time-evolving manifold. More precisely, this means that we study manifolds
with a Riemannian metric which changes over time. One can for example think of



1.5. Outline of the thesis 15

a sphere, whose radius varies in time. Furthermore, one could think of studying
the random movements of proteins in cell membranes. Cells usually deform over
time, and this influences the stochastic process that describes the movement of the
proteins. Additionally, it is also possible that the parameter space of some model
forms a manifold, and the relation between different parameters changes over time.
We describe the time-evolution of the Riemannian manifold by letting the Rie-
mannian metric gptq depend on time. The geometric and probabilistic approaches
to define Riemannian Brownian motion in the time-homogeneous setting may be
adapted to the time-inhomogeneous case, see Chapter 7. In this way we can define
Riemannian Brownian motion in an evolving manifold.
It was recently shown in [64] that the invariance principle for geodesic random walks
also holds in this time-inhomogeneous setting. Other work in this direction mainly
focusses on functional estimates, such as gradient estimates for the heat semigroup,
to characterize curvature and solutions to the Ricci flow. A selection of references
includes [18, 19, 54]. A result in the direction of large deviations can be found in
[24], where the probability for Brownian motion to be in a small band around some
given curve is studied.
To find the analogue of Schilder’s theorem in this time-inhomogeneous setting, we
cannot simply consider the process Wnptq “ W p 1

n tq for W ptq a Riemannian Brow-
nian motion with respect to the evolving metric gptq. Indeed, in the limit of n to
infinity, we will only notice the contribution of the metric gp0q. To solve this, we also
have to scale the time-dependence of the metric. More precisely, we first define W̃nptq
as a Riemannian Brownian motion with respect to the evolving metric gnptq “ gpntq.
We can then study the large deviations for the processes Wnptq “ W̃np

1
n tq. This is

done in Chapter 7. It turns out that the idea of the rate function being the action
of the path carries over, i.e.,

Ipγq “ 1
2

ż 1

0
| 9γptq|2gptqpγptqq dt.

The difference with the time-homogeneous case is that we evaluate the norm of 9γptq
with respect to the metric gptq.

1.5. Outline of the thesis

We conclude the introduction by providing an outline of the thesis, and shortly
summarizing the content of each chapter. The thesis consists of three main parts:

I Introduction: The current chapter with a general introduction to the topics
studied, and a chapter providing some necessary mathematical background.
(Chapters 1 & 2)

II Large deviations for processes in Riemannian manifolds: Extensions
of classical large deviation result to a geometric setting. (Chapters 3-5)
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III Large deviations in a time-inhomogeneous setting: Large deviations for
random walks with time-inhomogeneous increments in the Euclidean setting,
and Brownian motion with respect to a time-evolving metric in the geometric
setting. (Chapters 6 & 7)

In addition to the general introduction to the topic we have given here, Chapter 2
gives a more rigorous introduction to the mathematical concepts used in this thesis.
We introduce the concept of large deviations, and provide some basic results from
the literature. Furthermore, we discuss the relevant notions from (Riemannian) ge-
ometry. Additionally, we explain the notion of horizontal lift and (anti-)development
of curves via the frame bundle over a manifold. We conclude by extending these
notions to hold also for stochastic processes.

In part II we treat extensions of classical large deviation results to the geometric
setting. We start in Chapter 3 by extending Cramér’s theorem to random walks
in Riemannian manifolds. For this, we first introduce geodesic random walks in
Riemannian manifolds. To prove the analogue of Cramér’s theorem for geodesic
random walks, we show how to identify the random walk in the manifold with a
process in some tangent space. This way, we can use Cramér’s theorem in vector
spaces. To get this identification, we perform a careful geometric analysis of geodesic
random walks.
Chapter 4 is also concerned with random walks in manifolds, but now specifically
in Lie groups. The additional group structure allows for a slightly different and
simpler definition of a random walk. In some cases, this coincides with the notion of
a geodesic random walk. We discuss when exactly this is the case. With or without
this identification, we show that a roughly similar approach as taken for geodesic
random walks also results in the large deviations for random walks in Lie groups.
However, the estimates we have to make for this are different from the ones for
geodesic random walks.
In Chapter 5 we focus on path-space large deviations for processes in Riemannian
manifolds. More precisely, we study the analogues of Mogulskii’s and Schilder’s
theorem. We take two approaches of studying such large deviations. The first ap-
proach is based on the convergence of non-linear semigroups and viscosity solutions
for Hamilton-Jacobi equations as introduced in [39]. Without going into details, we
only state the results we need for our purposes. The second approach relies on lifting
the process in the manifold to the frame bundle, and is only used for the analogue
of Schilder’s theorem. For Riemannian Brownian motion, the lifted process satisfies
a globally defined stochastic differential equation. We prove the large deviations for
this by embedding the frame bundle in Euclidean space and using Freidlin-Wentzell
theory.

In part III, we generalize classical large deviation results to a time-inhomogeneous
setting. In Chapter 6 we start by studying random walks in Euclidean space with
time-inhomogeneous increments. Under suitable condition on the time-dependence,
we prove the analogues of Cramér’s and Mogulskii’s theorem. As a step up towards



1.5. Outline of the thesis 17

the next chapter, we also prove the large deviation principle for processes generated
by weighted Laplacians, where the weight depends (only) on time.
The latter is a special case of a Riemannian Brownian motion with respect to a time-
evolving metric. We study the large deviations for such processes in Chapter 7. In
order to do this, we extend the notions of horizontal lift and (anti)-development to
time-dependent connections. We then show that the embedding approach used in
the time-homogeneous case can also be used in the time-inhomogeneous setting.





2
Mathematical background
This chapter serves the purpose of introducing the various mathematical topics that
are necessary in the main part of this work. Furthermore, it allows us to fix the
notation. Before we get to the individual topics, we first discuss some generalities
that do not belong to any of the treated subjects in particular.

First of all, we use Einstein’s summation convention whenever there is no confusion.
This means that if an index occurs twice in an expression, once as subscript and
once as superscript, this index is summed over. For example, if te1, . . . , edu denotes
the standard basis of Rd, then for v P Rd we write

v “ viei.

Furthermore, we define the function spaces that we will encounter. For the set of
bounded, measurable function on Rd we write L8pRdq. We denote by CpRdq the
set of continuous functions and we write CbpRdq for the set of bounded, continu-
ous functions. Furthermore, we denote by CppRdq the set of p-times continuously
differentiable functions, and by C8pRdq the set of smooth functions, i.e., infinitely
differentiable functions. A subscript c denotes that we only consider functions with
compact support, i.e., we write CcpRdq, Cpc pRdq and C8c pRdq. If we work in a space
different from Rd, but in which any of the notions make sense (think of a manifold
M , see Section 2.2), we use the same notation, with Rd replaced by the given space.

Additionally, we also need to define spaces of curves. For an interval ra, bs Ă R we
write L8pra, bs;Rdq for the set of bounded, measurable curves γ : ra, bs Ñ Rd. We
denote the continuous curves by Cpra, bs;Rdq. Furthermore, we write L1pra, bs;Rdq
for the set of integrable curves.
We say a curve γ : ra, bs Ñ Rd is absolutely continuous if for every ε ą 0 there exists
a δ ą 0 such that for any partition a ď s1 ă t1 ď ¨ ¨ ¨ ď sn ă tn ď b satisfying
řn
i“1pti ´ siq ă δ it holds that

n
ÿ

i“1
|γptiq ´ γpsiq| ă ε.

Equivalently, a curve γ : ra, bs Ñ Rd is absolutely continuous if γ is almost every-

19
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where differentiable with 9γ P L1pra, bs;Rdq and such that

γptq “ γpaq `

ż t

a

9γpsqds.

We write ACpra, bs;Rdq for the set of absolutely continuous curves γ : ra, bs Ñ Rd.
Finally, we define the space H1pra, bs;Rdq by

H1pra, bs;Rdq :“
#

γ : ra, bs Ñ Rd
ˇ

ˇ

ˇ

ˇ

ˇ

γ differentiable a.e.,
ż b

a

| 9γptq|2 dt ă 8
+

.

In the case of curves, if we only consider curves γ with a given initial point γpaq “ x,
we write Cxpra, bs;Rdq, ACxpra, bs;Rdq, H1

xpra, bs;Rdq. Again, whenever each notion
makes sense for spaces other than Rd, we replace Rd in the notation accordingly.

In the remainder of this chapter we provide a mathematical introduction to the top-
ics we are studying. In Section 2.1 we discuss the large deviation principle, together
with some useful and noteworthy results. Section 2.2 is devoted to introducing the
necessary basics from (Riemannian) geometry, and most importantly, fixing the no-
tation we will use. In Section 2.3 we study the frame bundle over a manifold, and
define the notions of horizontal lift, development and anti-development of curves.
Finally, in Section 2.4 we discuss some stochastic calculus in manifolds.

2.1. Large deviations

The theory of large deviations is concerned with the limiting behaviour on an ex-
ponential scale of a sequence of random variables tXnuně1 in some state space
X . Examples of sequences for which this problem can be studied include empirical
averages and diffusions with decreasing variance.
In this chapter, we define the notion of a large deviation principle in general. We
also collect some useful results from the theory that will be of later use. Finally,
we state the classical results concerning large deviations for empirical averages and
diffusions with decreasing variance, the extensions of which to geometric and time-
inhomogeneous settings are the main topic of this thesis.

2.1.1. Large deviation principle
We begin with the basic definition of a large deviation principle. For our purposes,
we will restrict ourselves to processes taking values in a metric space X .

Definition 2.1.1 (Rate function). A rate function is a lower-semicontinuous func-
tion I : X Ñ r0,8s. A rate function is good if its level sets tx P X |Ipxq ď αu are
compact. The domain DI of a rate function I is the subset of X where I is finite,
i.e., DI “ tx P X |Ipxq ă 8u.

The rate function governs the exponential rate of decay in the large deviation prin-
ciple, which we define next.
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Definition 2.1.2 (Large deviation principle). Let tXnuně1 be a sequence of random
variables with values in X . The sequence tXnuně1 satisfies the large deviation
principle (LDP) in X with rate function I if the following are satisfied:

1. (Upper bound) For any F Ă X closed we have

lim sup
nÑ8

1
n

logPpXn P F q ď ´ inf
xPF

Ipxq.

2. (Lower bound) For any G Ă X open we have

lim inf
nÑ8

1
n

logPpXn P Gq ě ´ inf
xPG

Ipxq.

Remark 2.1.3. The large deviation principle is in a way the exponential version of
the notion of weak convergence. Indeed, by Portmanteau’s theorem (see e.g [12]),
Xn converges weakly to X if and only if for all closed sets F we have

lim sup
nÑ8

PpXn P F q ď PpX P F q,

or equivalently,
lim inf
nÑ8

PpXn P Gq ě PpX P Gq

for all open sets G.
Furthermore, the infimum occurs in the upper and lower bound of the large deviation
principle, since only the largest exponential contribution will determine the rate.
This follows from the Laplace principle, which states that

lim
nÑ8

1
n

logpena ` enbq “ maxta, bu.

Theoretical results in large deviation theory
We now discuss some theoretical results that will help us in proving large deviation
principles. Furthermore, we discuss how to obtain new large deviation principles
from old ones.
In many cases, it is easier to prove the upper bound for compact sets, rather than
general closed sets. If the lower bound of the large deviation principle holds, and
the upper bound holds only for compact sets, we say the sequence tZnuně1 satisfies
the weak large deviation principle. If the mass of the random variables is then con-
centrated enough on compact sets, then the upper bound may actually be extended
to all closed sets. We have the following definition.

Definition 2.1.4 (Exponential tightness). A sequence tXnuně1 is exponentially
tight if for every α ą 0 there exists a compact set Kα Ă X such that

lim sup
nÑ8

1
n

logPpZn P Kc
αq ă ´α.
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We have the following proposition, which can for example be found in Section 1.2
in [29].

Proposition 2.1.5. Let tXnuně1 be a sequence of random variables satisfying the
weak large deviation principle in X with rate function I. Assume furthermore that
the sequence is exponentially tight. Then tXnuně1 satisfies the (full) large deviation
principle in X with the same rate function I.

One can obtain new large deviation principles from given ones by applying contin-
uous functions to them. The following is Theorem 4.2.1 in [29].

Theorem 2.1.6 (Contraction principle). Let X and Y be metric spaces and let
f : X Ñ Y be continuous. Suppose I : X Ñ r0,8s is a good rate function.

1. Define I 1 : Y Ñ r0,8s by

I 1pyq “ inftIpxq|x P X , fpxq “ yu.

Then I 1 is a good rate function on Y. Here, the infimum of the empty set is
taken to be infinite, as usual.

2. Suppose tXnuně1 satisfies the large deviation principle in X with rate function
I. Then tfpXnquně1 satisfies the large deviation principle in Y with rate
function I 1.

Finally, there are also conditions under which two different sequences of random
variables satisfy the same large deviation principle.

Definition 2.1.7 (Exponential equivalence). Let pX , dq be a metric space, and
let tXnuně1 and tYnuně1 be two sequences of random variables with values in X .
The sequences tXnuně1 and tYnuně1 are exponentially equivalent if there exists a
sequence tPnuně1 of joint distributions of tXnuně1 and tYnuně1 such that

lim sup
nÑ8

1
n

logPn pdpXn, Ynq ą δq “ ´8

for every δ ą 0.

If two sequences of random variables are exponentially equivalent, then in the limit
they are indistinguishable on an exponential scale. The following is Theorem 4.2.13
in [29].

Theorem 2.1.8. Suppose tXnuně1 satisfies the large deviation principle with good
rate function I and let tYnuně1 be exponentially equivalent to tXnuně1. Then
tYnuně1 also satisfies the large deviation principle with rate function I.

2.1.2. Large deviations for empirical averages
Let tXnuně1 be a sequence of independent, identically distributed random variables
taking values in Rd. Define Sn “

řn
i“1Xi and consider the sequence

 1
nSn

(

ně1 of
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empirical averages. If EpX1q ă 8, then by the law of large numbers we have

1
n

n
ÿ

i“1
Xi Ñ EpX1q

in probability.
Cramér’s Theorem is concerned with the large deviations for the sequence

 1
nSn

(

ně1.
Define Mpλq “ E

`

exλ,X1y
˘

, the moment generating function of X1 and set Λpλq “
logMpλq. Λ is called the log-moment generating function, and is also known as the
cumulant generating function.
The rate of the large deviation principle for t 1

nSnuně1 is governed by the Legendre
transform of the log-moment generating function, which we define next.

Definition 2.1.9 (Legendre transform). The Legendre transform Λ˚ : Rd Ñ r0,8s
of a function Λ : Rd Ñ R is defined by

Λ˚pxq “ sup
λPRd

txλ, xy ´ Λpλqu .

The following is Cramér’s theorem, see e.g. Theorem 2.2.3 in [29] or Theorem 1.4
in [56].

Theorem 2.1.10 (Cramér). Let tXnuně1 be a sequence of independent, identically
distributed random variables taking values in Rd. Denote by Λ the log-moment
generating function of X1 and assume that Λ is everywhere finite. Then

 1
nSn

(

ně1
satisfies the large deviation principle in Rd with good rate function I given by

Ipxq “ Λ˚pxq “ sup
λPRd

txλ, xy ´ Λpλqu .

The conditions on Λ in Theorem 2.1.10 may be weakened significantly. It can be
shown that it suffices to assume that 0 is in the interior of the domain of Λ.

Beyond independent, identically distributed increments
Apart from weakening the condition on Λ in Theorem 2.1.10, it is also possible
to weaken the conditions on the sequence tXnuně1. To this end, we present a
more general result, which includes the case of empirical averages of a sequence of
increments which are not necessarily independent and identically distributed.
Let tZnuně1 be a sequence of random variables in Rd. For every n ě 1, define

Λnpλq “ logE
´

exλ,Zny
¯

,

the log-moment generating function of Zn.

Assumption 2.1.11. For every λ P Rd,

Λpλq “ lim
nÑ8

1
n

Λnpnλq

exists and Λ is differentiable.
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Theorem 2.1.12 (Gärtner-Ellis). Let tZnuně1 be a sequence of Rd-valued random
variables. Suppose that Assumption 2.1.11 is satisfied. Then tZnuně1 satisfies the
large deviation principle in Rd with rate function I given by

Ipxq “ Λ˚pxq “ sup
λPRd

txλ, xy ´ Λpλqu

As for Cramér’s theorem, the conditions on Λ in Assumption 2.1.11 can be weakened
in order for Theorem 2.1.12 to still hold. This relies on some intricate convex
analysis, which is beyond the scope of this exposition. We refer to Section 2.3 in
[29].

2.1.3. Path-space large deviations
The study of large deviations is not restricted to empirical averages of sequences of
random variables. We will also study large deviations on the level of trajectories.
We do this for trajectories of random walks, as well as trajectories of diffusions with
small variance.

Path-space large deviations for empirical averages
For a sequence tXnuně1 of Rd-valued random variables, the sum Sn “

řn
i“1Xi may

be considered as a random walk in Rd. Therefore, the sequence of empirical averages
 1
nSn

(

may also be considered as a random walk of n steps with size of order 1
n .

Cramér’s theorem can now also be used to obtain the large deviations for other
points of this random walk, not simply the endpoint. More generally, for every
t P r0, 1s, Cramér’s theorem gives the large deviations for

Znptq “
1
n

tntu
ÿ

i“1
Xi, (2.1.1)

where txu denotes the largest integer below x. Given times 0 ď t1 ă t2 ă ¨ ¨ ¨ tl ď 1,
we can use the Gärtner-Ellis theorem to obtain the large deviations for the sequence
tpZnpt1q, ¨ ¨ ¨ , Znptlqquně1. By making the partition ever finer, we finally obtain the
large deviations for tZnp¨quně1 as random variables in L8pr0, 1s;Rdq. This is known
as Mogulskii’s theorem, see e.g. Theorem 5.1.2 in [29].

Theorem 2.1.13 (Mogulskii). Let tXnuně1 be a sequence of independent, identi-
cally distributed random variables in Rd. Assume that the log-moment generating
function Λ of X1 is everywhere finite. Define Znptq for t P r0, 1s as in (2.1.1).
Then tZnp¨quně1 satisfies the large deviation principle in L8pr0, 1s;Rdq with good
rate function I given by

Ipγq “

#

ş1
0 Λ˚p 9γptqqdt, γ P AC0pr0, 1s;Rdq
8 otherwise.
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Large deviations for Brownian motion with small variance
Let tW ptqutě0 be a standard Brownian motion in Rd. Note that for every t we can
write

W ptq “W ptq ´W

ˆ

tntu

n

˙

`

tntu
ÿ

i“1

"

W

ˆ

i

n

˙

´W

ˆ

i´ 1
n

˙*

.

Since the increments W
`

i
n

˘

´W
`

i´1
n

˘

are independent with a normal distribution
with mean 0 and variance 1

n , we find that
?
n
`

W
`

i
n

˘

´W
`

i´1
n

˘˘

follows a standard
normal distribution. Hence, Mogulskii’s theorem (Theorem 2.1.13) implies that
tZnp¨quně1, where

Znptq “
1
?
n

tntu
ÿ

i“1

"

W

ˆ

i

n

˙

´W

ˆ

i´ 1
n

˙*

, (2.1.2)

satisfies the large deviation principle in L8pr0, 1s;Rdq with rate function

Ipγq “

#

1
2
ş1
0 | 9γptq|

2 dt, γ P AC0pr0, 1s;Rdq
8 otherwise.

Here, the form of the rate function follows from the fact that for a standard normal
distribution we have Λpλq “ 1

2 |λ|
2, so that Λ˚pxq “ 1

2 |x|
2.

Now define Wnptq “
1?
n
W ptq. Then Znptq in (2.1.2) can be written as

Znptq “

tntu
ÿ

i“1

"

Wn

ˆ

i

n

˙

´Wn

ˆ

i´ 1
n

˙*

.

It can be shown that tWnp¨quně1 and tZnp¨quně1 are exponentially equivalent in
L8pr0, 1s;Rdq. As a consequence, we obtain the large deviations for tWnp¨quně1 in
L8pr0, 1s;Rdq. Since the paths of Brownian motion are almost surely continuous,
the large deviation principle actually holds in Cpr0, 1s;Rdq, see Lemma 4.1.5 in [29].
This result was proved in [83] and is known as Schilder’s theorem.

Theorem 2.1.14 (Schilder). Let tW ptqutě0 be a standard Brownian motion in Rd.
For every n ě 1 and t P r0, 1s, define Wnptq “

1?
n
W ptq. Then tWnp¨quně1 satisfies

the large deviation principle in Cpr0, 1s;Rdq with good rate function I given by

Ipγq “

#

1
2
ş1
0 | 9γptq|

2 dt, γ P H1
0 pr0, 1s;Rdq

8 otherwise.

Freidlin-Wentzell theory
Brownian motion with small variance is an example of a diffusion process with a
small diffusion constant. The study of the large deviations for diffusions with small
variance is known as Freidlin-Wentzell theory, see [41].
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Let tW ptqutě0 be a standard Brownian motion in Rd, and let b : Rd Ñ Rd be
Lipschitz continuous. LetXnptq be the solution of the stochastic differential equation

dXnptq “ bpXnptqq dt` 1
?
n

dW ptq, Xnp0q “ 0.

Define the map F : C0pr0, 1s;Rdq Ñ Cpr0, 1s;Rdq given by F pgq “ f , where f is the
solution of the integral equation

fptq “

ż t

0
bpfpsqqds` gptq,

for all t P r0, 1s. Then Xn “ F pWnq and it can be shown (see Theorem 5.6.3 in
[29]) that F is continuous. It now follows from the contraction principle (Theorem
2.1.6) together with Schilder’s theorem that tXnp¨quně1 satisfies the large deviation
principle in Cpr0, 1s;Rdq with good rate function I given by

Ipγq “

#

1
2
ş1
0 | 9γptq ´ bpγptqq|

2 dt, γ P H1
0 pr0, 1s;Rdq

8, otherwise.

We conclude the discussion by also considering the case where the diffusion constant
depends on space, i.e., it is a map σ : Rd Ñ Rdˆd. Assume furthermore that σ is
Lipschitz continuous. Let Ynptq be the solution of

dYnptq “ bpYnptqqdt`
1
?
n
σpYnptqqdW ptq, Ynp0q “ y P Rd. (2.1.3)

In this case, Yn is no longer a continuous function of a rescaled Brownian motion.
However, it can be approximated well enough by processes which are a continuous
function of rescaled Brownian motion. This is shown in the proof of Theorem 5.6.7
in [29], which states the following.

Theorem 2.1.15 (Freidlin-Wentzell). Let b : Rd Ñ Rd and σ : Rd Ñ Rdˆd be
Lipschitz continuous and bounded. Fix y P Rd and for every n ě 1, let Ynptq be the
process defined by (2.1.3). Then tYnp¨quně1 satisfies the large deviation principle in
Cpr0, 1s;Rdq with good rate function I given by

Ipγq “ inf
"

1
2

ż 1

0
| 9ϕptq|2 dt

ˇ

ˇ

ˇ

ˇ

ϕ P H1pr0, 1s;Rdq,

γptq “ y `

ż t

0
bpγpsqqds`

ż t

0
σpγpsqq 9ϕpsqqds

*

.

2.2. Some differential geometry

In this section we introduce the required notions from differential geometry, see for
example [86] for a general introduction. Our main focus is towards Riemannian
geometry, for which we refer to [69] among others.
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2.2.1. Generalities
A topological space M is a manifold if for every point x P M there is a neighbour-
hood U which is homeomorphic to some Euclidean space. Such a neighbourhood,
together with the homeomorphism is called a chart, which provides coordinates for
the points in U . A collection of charts covering M is called an atlas. We call a
manifold second countable if there exists an atlas of countably many charts. The di-
mension of the manifold at a point x PM is given by the dimension of the Euclidean
space to which it is locally homeomorphic. We say the manifold M has dimension
d if it has dimension d at every point. Finally, a manifold is called smooth if the
transition maps between different charts are all smooth. In what follows, whenever
we consider a manifold, we always consider it to be smooth, second countable and
of finite dimension, unless otherwise stated.
For x P M , the tangent space TxM consists of all possible derivatives of curves
through x. Elements of TxM are called tangent vectors. In coordinates, if we write
te1, . . . , edu for the standard basis of Rd, then we define B

Bxi to be the tangent
vector of a curve whose coordinates only move in the direction of ei. For notational
purposes, we often write Bi for B

Bxi . The tangent vectors B
Bx1 , . . . ,

B
Bxd

form a basis
for TxM . This allows us to write v P TxM as

v “ vi
B

Bxi
.

This shows that equivalently, we can define tangent vectors in TxM as derivations
at x.
We define the tangent bundle TM to be the vector bundle with fibres TxM , i.e.

TM “
ğ

xPM

TxM.

Here, the
Ů

denotes the disjoint union. To avoid cumbersome notation, we will
consider an element v P TxM also as element of TM , where the base point x P M
is implicit in the notation when considering v P TM . A section of TM is a map
v : M Ñ TM such that vpxq P TxM for every x P M . A smooth section of TM is
called a vector field. The set of all vector fields on M is denoted by ΓpTMq.
The dual of TxM , i.e., the set of linear functions on TxM , is denoted by T˚xM . We
refer to T˚xM as the cotangent space, and to the elements as cotangent vectors. The
vector bundle

T˚M “
ğ

xPM

T˚xM

is called the cotangent bundle. Smooth section of the cotangent bundle are called
1-forms.
Finally, consider a smooth function f : M Ñ N between two manifolds. The
derivative of f , also called the differential, is a map df : TM Ñ TN defined as

dfpxqpvq “ d
dt

ˇ

ˇ

ˇ

ˇ

t“0
fpγptqq,
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where γ : p´ε, εq ÑM is such that γp0q “ x and 9γp0q “ v. In particular, for every
x P M we have that dfpxq : TxM Ñ TfpxqN . Furthermore, for every vector field v
on M , wpxq :“ dfpxqpvpxqq defines a vector field on N . We denote this vector field
by dfpvq (and sometimes also by f˚pvq) and it is called the push-forward of v along
f .

2.2.2. Connections, geodesics and parallel transport
Let π : E Ñ M be a vector bundle over M . A connection on E is a way to
differentiate smooth sections of E, which we denote by ΓpEq. We have the following
definition.

Definition 2.2.1 (Connection). Let π : E Ñ M be a vector bundle over M . A
connection on E is a map ∇ : ΓpTMq ˆ ΓpEq Ñ ΓpEq, denoted by pX,Y q ÞÑ ∇XY
satisfying the following:

1. ∇XY is C8-linear in X, i.e., for all X P ΓpTMq, Y P ΓpEq and f P C8pMq
we have

∇fXY “ f∇XY.

2. ∇XY is linear in Y .

3. ∇ satisfies the Leibniz rule:

∇XpfY q “ pXfqY ` f∇XY

for all f P C8pMq.

We call ∇XY the covariant derivative of Y in the direction of X.

If we take E “ TM in Definition 2.2.1, we obtain a connection ∇ on TM , which is
sometimes also referred to as a linear connection. It provides a way to differentiate
vector fields onM . When there is no confusion, we say that ∇ is a connection onM .
In coordinates around x PM , writing Bi “ B

Bxi P TxM , we have that ∇BiBj P TxM .
Since tB1, . . . , Bdu is a basis for TxM , there exist coefficients Γkijpxq such that

∇BiBj “ ΓkijpxqBk.

We refer to the coefficients Γkijpxq as the connection coefficients. It follows from
the Leibniz-rule and linearity of the connection that we can use the connection
coefficients to express ∇vw in coordinates for general vector fields v, w P ΓpTMq.
Indeed, if we write v “ viBi and w “ wjBj , then

∇vw “ pvpw
kq ` viwjΓkijqBk.

Example 2.2.2. As example, let us consider the canonical connection on M “ Rd.
For vector fields v, w on Rd we can write vpxq “ vipxq

B
Bxi

and likewise wpxq “
wipxq

B
Bxi

. We then define the connection ∇ on Rd by

∇vwpxq :“ vipxq
Bw

Bxi
pxq “ vipxq

Bwj
Bxi

pxq
B

Bxj
.



2.2. Some differential geometry 29

In particular, writing Bi “ B
Bxi , we have

∇BiBj “ 0.

This shows that the connection coefficients of ∇ are 0.

A curve in M is a map γ : I ÑM , where I is some real interval. Curves are always
assumed to be smooth, unless otherwise stated. A vector field along γ is a smooth
map v : I Ñ TM with vptq P TγptqM for all t P I. We denote the space of vector
fields along γ by ΓpTγq. A connection ∇ on TM allows us to differentiate vector
fields v along γ. The following is Lemma 4.9 in [69].
Proposition 2.2.3. Let ∇ be a connection on M , and let γ : I Ñ M be a curve.
There exists a unique linear map Dt : ΓpTγq Ñ ΓpTγq satisfying the following:

1. Dt satisfies the Leibniz rule

Dtpfvq “ f 1v ` fDtv

for all f P C8pIq.

2. If v P ΓpTγq extends to a vector field ṽ P ΓpTMq on M , then

Dtvptq “ ∇ 9γptqṽ

Abusing notation, we sometimes write ∇ 9γptqvptq even if the vector field v along γ
does not extend to a vector field on M . Furthermore, we sometimes write 9vptq
instead of Dtvptq.
Using the derivative of vector fields along a curve, we define parallel vector fields
and geodesics.
Definition 2.2.4. A vector field v along a curve γ : I Ñ M is called parallel if
Dtvptq “ 0 for all t P I. A curve γ is called a geodesic if the vector field 9γ is parallel
along γ.

Equivalent to having a connection is having a notion of parallel transport. Given
a curve γ : ra, bs Ñ M and v P TγpaqM , we can consider the solution vptq of the
differential equation

∇ 9γptqvptq “ 0, vp0q “ v. (2.2.1)
In coordinates, equation (2.2.1) is a system of linear differential equations, so that
the solution is unique, and exists for all time. This allows us to define a linear map

τγpaqγptq;γ : TγpaqM Ñ TγptqM

by setting τγpaqγptq;γv “ vptq. The map τγpaqγptq;γ is called parallel transport along
γ. We omit the reference to the curve γ when it is understood.
We can use parallel transport to compute covariant derivatives. To this end, let
v, w P ΓpTMq be vector fields and x P M . Let γ be a curve with γp0q “ x and
9γp0q “ vpxq. Then

∇vwpxq “ lim
hÑ0

τ´1
xγphqwpγphqq ´ wpxq

h
. (2.2.2)



30 2. Mathematical background

2.2.3. Riemannian geometry
For every x PM , we can equip TxM with an inner product gpxq, which is a positive
definite, symmetric bilinear form. For v, w P TxM we write gpxqpv, wq “ xv, wygpxq.
The reference to the point x is omitted whenever the tangent space is understood.
In coordinates, the inner product gpxq is given by a matrix Gpxq “ pgijpxqq such
that

gpxqpv, wq “ gijpxqv
iwj ,

where v “ viBi and w “ wjBj . A Riemannian metric on M is a smooth selection
g “ tgpxquxPM of inner products on the tangent spaces. More precisely, for every
v, w P ΓpTMq, the map x ÞÑ xv, wygpxq is smooth. A manifold M with Riemannian
metric g is called a Riemannian manifold and is denoted by pM, gq.
For general vector spaces, an inner product can be used to identify the dual of the
vector space with the vector space itself. Using the Riemannian metric, this allows
us to identify T˚xM with TxM for every x PM . For an element ω P T˚xM , we define
ω# P TxM as the unique element satisfying

ωpvq “ xω#, vygpxq

for all v P TxM . This procedure is sometimes referred to as ‘raising an index’, which
has to do with the fact that coefficients of cotangent vectors are written with lower
indices, while for tangent vectors the coordinates are written with upper indices.
Likewise, for w P TxM we can define w5 P T˚xM by setting

w5pvq “ xw, vygpxq

for all v P TxM . This procedure is known as ‘lowering an index’ for the same reasons
as explained above.
By identifying T˚xM with TxM via the inner product gpxq, we can define an inner
product on T˚xM . Indeed, for ω, η P T˚xM we define

xω, ηygpxq :“ xω#, η#ygpxq.

If Gpxq “ pgijpxqq are the coordinates of the inner product gpxq on TxM , one can
show that the coordinates of the inner product on T˚xM are given by G´1pxq “
pgijpxqq, i.e., we have

xω, ηygpxq “ gijpxqωiηj ,

where ω “ ωidxi and η “ ηjdxj .
Finally, the identification of cotangent vectors with tangent vectors may also be
used to define parallel transport of cotangent vectors. For ω P T˚xM and a curve γ
with γp0q “ x and γp1q “ y we define τxy;γω P T

˚
yM by the relation

pτxy;γωq
# “ τxy;γpω

#q.

In particular, this implies that

pτxy;γωqpvq “ ωpτ´1
xy;γvq

for all v P TyM .
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The Levi-Civita connection
Associated to a Riemannian metric is a unique connection onM which behaves well
with respect to the metric. This is stated in the following theorem, see e.g. Theorem
5.4 in [69].

Theorem 2.2.5 (Fundamental lemma of Riemannian geometry). Let pM, gq be a
Riemannian manifold. There exists a unique connection ∇ on M satisfying the
following:

1. Compatibility: for all X,Y, Z P ΓpTMq,

XxY,Zyg “ x∇XY, Zyg ` xY,∇XZyg.

2. Symmetric: for all X,Y P ΓpTMq,

∇XY ´∇YX “ rX,Y s.

Here, rX,Y s “ XY ´ Y X, the commutator of X and Y .

This connection is called the Levi-Civita connection of g.

The symmetry property of the Levi-Civita connection is sometimes also referred to
as the Levi-Civita connection being torsion-free. Since the Levi-Civita connection
is compatible with the metric g, the inner product of parallel vector fields along a
curve is constant. In particular, this implies that the associated parallel transport is
an isometry, see e.g. Lemma 5.2 in [69]. Finally, we call the connection coefficients
of the Levi-Civita connection Christoffel symbols.

Given a Riemannian metric g on M , we define the length of v P TxM by its usual
formula

|v|gpxq “
b

xv, vygpxq.

We omit the reference to the point x PM whenever the tangent space is understood.
Given a curve γ : ra, bs ÑM , we define its length by

Lpγ; ra, bsq “
ż b

a

| 9γptq|gpγptqq dt.

Using this length function, we define the Riemannian distance d on M as

dpx, yq :“ inftLpγq|γ : ra, bs ÑM,γpaq “ x, γpbq “ y, γ piecewise smoothu. (2.2.3)

One can prove that the Riemannian distance d is a metric on M , which generates
a topology which coincides with the topology of M as manifold, see Lemma 6.2 in
[69]. In particular, this shows that all Riemannian distances onM generate the same
topology. Furthermore, it can be shown (Theorem 6.6 in [69]) that optimal paths
for the distance between points in M are geodesics with respect to the Levi-Civita
connection.
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Riemannian exponential map
Given x P M , define for every v P TxM the geodesic γv satisfying γvp0q “ x and
9γvp0q “ v. By Theorem 4.10 in [69] geodesics are unique, but generally only exist
on a small time interval. We say that the manifold M is geodesically complete if
every such geodesic can be extended indefinitely. By the Hopf-Rinow theorem (see
e.g. Theorem 6.13 in [69]), this is equivalent to the completeness of M as a metric
space with the Riemannian distance d defined in (2.2.3).
We define the Riemannian exponential map Expx : Epxq Ñ M by setting Expxv “
γvp1q, where Epxq Ă TxM contains all v P TxM for which γv as above exists at
least on r0, 1s. If M is complete, we have Epxq “ TxM . If additionally M is simply
connected, it holds that Expx is surjective.
However, due to curvature, the exponential map is not necessarily injective. For
x PM we define the injectivity radius ιpxq P p0,8s as

ιpxq “ sup tδ ą 0|Expx is injective on Bp0, δqu .

That ιpxq ą 0 for all x PM follows from the fact that the Riemannian exponential
map is a local diffeomorphism.
Given a set A ĂM , the injectivity radius of A is defined by

ιpAq “ inf tιpxq|x P Au . (2.2.4)

We have the following result, which can be found in e.g. [59].

Proposition 2.2.6. The injectivity radius ιpxq depends continuously on x. In par-
ticular, this implies that if K ĂM is compact, then ιpKq ą 0.

Example 2.2.7. As an example, we derive the injectivity radius for points on a
sphere of radius R. For any point x on the sphere, the antipodal point is responsible
for the Riemannian exponential map failing to be injective. This implies that Expx
is injective on Bp0, πRq, but not on any larger set. We conclude that ιpxq “ πR.
Since the injectivity radius is independent of x, we find that ιpAq “ πR for every
subset A of the sphere.

2.2.4. Curvature
The idea of differential geometry is that it allows us to study non-flat spaces. Curva-
ture is introduced as a measure of how non-flat a space is. This can be quantified in
different ways, which we discuss here. However, first we should say what we consider
to be a flat space. A Riemannian manifold is called flat if it locally isometric to
Euclidean space with the usual Euclidean inner product. Not only Euclidean space
is flat, but for example a cylinder is as well.
It turns out that a space is flat if and only if we have that (see e.g. [69, Theorem
7.3])

∇X∇Y Z ´∇Y ∇XZ ´∇rX,Y sZ “ 0, (2.2.5)
where rX,Y s “ XY ´ Y X is the commutator of X and Y . This leads us to define
the Riemann curvature endomorphism R : ΓpTMq ˆ ΓpTMq ˆ ΓpTMq Ñ ΓpTMq
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given by
RpX,Y qZ “ ∇X∇Y Z ´∇Y ∇XZ ´∇rX,Y sZ.

The Riemann curvature endomorphism can be visualized as the way a tangent vector
changes when it is parallel transported along an infinitesimal parallelogram. Using
the result in (2.2.5) we find that a manifold is flat if and only if the Riemann
curvature endomorphism is 0.
Associated to the Riemann curvature endomorphism is the Riemann curvature ten-
sor, obtained by lowering an index of the Riemann curvature endomorphism. More
precisely, it is the map Rm : ΓpTMq ˆΓpTMq ˆΓpTMq ˆΓpTMq Ñ C8pMq given
by

RmpX,Y, Z,W q “ xRpX,Y qZ,W yg.

By taking the trace of the Riemann curvature tensor on its first and last index, we
obtain the Ricci curvature. More precisely, the Ricci curvature is defined as the
map Ric : ΓpTMq ˆ ΓpTMq Ñ C8pMq, where RicpY,Zq is given as the trace of
the linear map X ÞÑ RpX,Y qZ. The Ricci curvature measures how the volume of a
small piece of a geodesic ball differs from its Euclidean counterpart. Here, a geodesic
ball around x PM of radius ε ą 0 is defined as the set ExpxpBp0, εqq.
Finally, by taking the trace of the Ricci-curvature, we obtain a function on M
which is called the scalar curvature which is denoted by S. More precisely, for every
X P ΓpTMq we have that RicpX, ¨q P ΓpT˚Mq and hence RicpX, ¨q# P ΓpTMq. The
scalar curvature S is then given as the trace of the linear map X ÞÑ RicpX, ¨q#. In
particular, this shows that the scalar curvature depends on the Riemannian metric,
since we raise an index. In two dimensions, positive scalar curvature means that
the surface bends away from the outward facing normal, while negative curvature
means exactly the opposite. The sphere is a prototypical example of a manifold
with constant positive curvature.

2.3. Horizontal lift to the frame bundle

In order to study trajectories in a d-dimensional manifold M , it can be worthwhile
to identify curves in M with curves in Rd. However, not any such identification will
be useful, since we want to preserve certain properties of the curves.
A natural way of transferring a curve from a manifold to Rd is by ‘rolling’ the
manifold over Rd along the curve. The curve in the manifold serves as the contact
points on the manifold. The curve of contact points in Rd is then the resulting curve
with which we identify our original curve in M . This procedure should only be
influenced by the velocity of the curve and the curvature properties of the manifold.
Therefore, the displacement of the contact point should only be caused by these
properties, and should not be influenced by any external forces. Hence, we have to
roll the manifold along the curve without ‘slipping’.
To state this mathematically, the aim is to identify a curve γ in a d-dimensional
manifold M with a curve w in Rd and vice versa. As mentioned above, the velocity
of γ should be one of the determining factors for the velocity of w. Note that
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9γptq P TγptqM . Hence, if we are given a basis uptq “ tu1ptq, . . . , udptqu of TγptqM , we
can identify 9γptq with its vector of coordinates in the basis uptq. We then define 9wptq
to be exactly this vector of coordinates. The curve w is then obtained by integration
(which makes sense in Rd). For this procedure, we need to choose bases uptq for
every tangent space TγptqM . Since we require the procedure to furthermore only
depend on the curvature of M , uptq cannot be chosen freely. Instead, when moving
along the curve, we should not ‘twist’ the coordinate system. Therefore, the bases
uptq should be parallel along γptq.
A coordinate system uptq for TγptqM will be called a frame. The curve γptq with a
parallel collection of frames uptq attached to it will be called the horizontal lift of γ.
The curve w in Rd is called the anti-development. It turns out that this procedure
is invertible. More precisely, if we start with a curve w in Rd, we can find a curve
γptq in M and a parallel collection of frames uptq attached to γptq such that 9wptq
are the coordinates of 9γptq in the frame uptq. In this section we define these notions
and the sketched procedure rigorously. References include [61, 87, 57].

2.3.1. Frame bundle
For x P M , a frame for TxM is a linear isomorphism u : Rd Ñ TxM . This can be
thought of as providing a basis for the tangent space TxM . Indeed, if we denote
by e1, . . . , ed the standard basis of Rd, then ue1, . . . , ued is a basis for TxM . The
collection of frames for TxM is denoted by FxM , i.e.,

FxM “ tu : Rd Ñ TxM |u linear isomorphismu.
Denote by GLpd,Rq the general linear group over R, i.e., the group of invertible dˆd
matrices with real entries. If g P GLpd,Rq and u P FxM , then the composition ug is
again a frame for TxM . Therefore, GLpd,Rq acts on FxM by right multiplication.
The frame bundle FM over M is the bundle with fibres FxM , sometimes denoted
as

FM “
ğ

xPM

FxM.

Here
Ů

denotes the disjoint union. The frame bundle can be made into a manifold
of dimension d ` d2, with the projection π : FM Ñ M being a smooth map.
Furthermore, its tangent bundle can be split in two parts, namely in directions in
M and in the direction of the frames, i.e., vectors tangent to the fibres of FM .
If V P TuFM is tangent to the fibre FπuM , then V is said to be vertical. More
precisely, V P TuFM is vertical if and only if it is the tangent vector of a curve that
remains inside FπuM . We denote the vertical subspace of TuFM by VuFM . Since
FπuM has dimension d2 (as manifold), we find that VuFM is a subspace of dimension
d2. Now consider left multiplication Lu : GLpd,Rq Ñ FπuM defined as Lug “ ug.
Then dLupIq : TIGLpd,Rq Ñ TuFπuM , where we note that TIGLpd,Rq “Mpd,Rq,
the set of all d ˆ d-matrices (which is the Lie algebra of GLpd,Rq). Using this, a
basis of VuFM is given by

Vijpuq “ rdLupIqspEijq, (2.3.1)
where Eij is the matrix of all zeros, except for a 1 in position pi, jq.
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Horizontal lift
Since the subspace VuFM of vertical vectors has dimension d2, there are still d
independent directions left in TuFM . These will represent the directions along M
in the frame bundle FM , and we want to call these directions horizontal. However,
different choices of d independent vectors in TuFM , independent of VuFM , span
different subspaces of TuFM . We will explain how to make an appropriate choice if
we are given a connection ∇ on M . In Section 2.3.2 we show that conversely, every
choice of horizontal subspaces satisfying certain consistency assumptions gives rise
to a connection on M .
We now define the notion of horizontal curves, which we need to define horizontal
vectors.

Definition 2.3.1. Let ∇ be a connection onM and γ : r0, 1s ÑM a curve inM . A
horizontal lift of γ (with respect to ∇) is a curve u : r0, 1s Ñ FM with πuptq “ γptq
and

∇ 9γptquptqa “ 0 (2.3.2)

for all t P r0, 1s and all a P Rd. A curve u : r0, 1s Ñ FM is said to be horizontal if
it is a horizontal lift of the curve πuptq in M .

Since locally, uptq satisfies a system of ordinary differential equations, we have local
existence, and uniqueness once an initial frame u0 P Fγp0qM is given. As we will see
in Section 2.3.3, the horizontal lift actually exists for all time. In what follows now,
the local existence is sufficient.

If uptq is a horizontal lift of γ, then for every a P Rd the condition in (2.3.2) implies
that uptqa is parallel along γ. As a consequence, uptqa P TγptqM is the parallel
transport of up0qa P Tγp0qM . We thus see that the horizontal lift encodes parallel
vector fields along γ by a single vector in Rd. Moreover, since equation (2.2.1) has
a unique solution, we find that parallel transport along γ is given by

τγp0qγptq;γ “ uptqup0q´1. (2.3.3)

Using horizontal lifts of curves, we can define a notion of horizontal lifts of tangent
vectors.

Definition 2.3.2. For p P M , let X P TpM and u P FpM . Let γ be a curve in
M with γp0q “ p and 9γp0q “ X and denote by uptq its horizontal lift satisfying
up0q “ u. Then the horizontal lift of X via the frame u, denoted by X˚puq, is
defined as X˚puq “ 9up0q.

A vector W P TuFM is said to be horizontal if W “ X˚puq for some X P TπuM .
Equivalently,W is horizontal if it is the tangent vector of a horizontal curve through
u. We writeHuFM for the set of horizontal vectors in TuFM and refer to this as the
horizontal subspace of TuFM . Note that this definition depends on the connection
∇, and that in general different connections lead to different horizontal subspaces.
The following lemma justifies this definition.
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Lemma 2.3.3. For every u P FM we have that TuFM “ HuFM ‘ VuFM .

Proof. Since VuFM is d2-dimensional, and TuFM has dimension d`d2, it suffices to
prove thatHuFM is a subspace of at least dimension d, which is linearly independent
from VuFM .
First of all, note that for every X P TπuM we have that dπpX˚puqq “ X. Indeed,
let γptq be a curve with γp0q “ πu and 9γp0q “ X and denote by uptq its horizontal
lift with up0q “ u. By definition of X˚puq, 9up0q “ X˚puq. From this it follows that

dπpX˚puqq “ d
dt

ˇ

ˇ

ˇ

ˇ

t“0
πpuptqq “

d
dt

ˇ

ˇ

ˇ

ˇ

t“0
γptq “ X.

This proves that HuFM is at least d-dimensional. Furthermore, it shows that if
W P HuFM is such that dπpW q “ 0, then W “ 0. A similar computation shows
that for all V P VuFM we have that dπpV q “ 0. Combining everything, we find
that HuFM X VuFM “ t0u.

Finally, given a P Rd and u P FpM , we have that ua P TpM , so that we can define
its horizontal lift. We denote this by Hpuqa, which is thus given by

Hpuqa :“ puaq˚puq. (2.3.4)

If we again denote by e1, . . . , ed the standard basis of Rd, then the horizontal vectors
H1puq, . . . ,Hdpuq given by

Hipuq :“ Hpuqei (2.3.5)

form a basis for HuFM . The vector fields H1, . . . ,Hd so defined are referred to as
the canonical horizontal vector fields.

Development and anti-development
A horizontal lift of a curve assigns to a curve γ in M a horizontal curve u in FM .
For every t, uptq is a frame for the tangent space TγptqM . This allows us to convert
the velocity of γ to a velocity in Rd. This observation can be used to associate to a
curve in M a curve in Rd and vice versa. We have the following definition.

Definition 2.3.4. Let γ : r0, 1s Ñ M be a curve in M and let uptq be a horizontal
lift of γ. The anti-development of γ is defined as the curve w : r0, 1s Ñ Rd given by

wptq “

ż t

0
upsq´1 9γpsqds. (2.3.6)

If we fix a frame u P Fγp0qM , we can speak about the anti-development of γ via u
since in that case the horizontal lift of γ satisfying up0q “ u is unique.

If wptq is the anti-development of γptq via the horizontal lift uptq, then (2.3.6) implies
that

9wptq “ uptq´1 9γptq,
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which rewrites to
9γptq “ uptq 9wptq.

Since both sides are elements of TγptqM , we can consider their horizontal lifts, which
must be equal (see (2.3.4) for a definition of Hpuptqq):

Hpuptqq 9wptq “ puptq 9wptqq˚ “ p 9γptqq˚ “ 9uptq. (2.3.7)

Here, the last equality holds because uptq is the horizontal lift of γ. We thus obtained
a differential equation for the horizontal lift uptq in terms of the anti-development w.
This shows how to invert the operation of taking the anti-development of a curve.
We make the following definition.

Definition 2.3.5. Let w : r0, 1s Ñ Rd be a curve in Rd and fix u0 P FpM . Let
u : r0, 1s Ñ FM be the solution of

9uptq “ Hpuptqq 9wptq

with up0q “ u0, where Hpuptqq is as defined in (2.3.4). Then the curve γptq “ πuptq
is called the development of w onto M .

Sometimes, the curve u is referred to as the development of w, rather than the
projection of u onto M .

To summarize, given a curve γ in M and frame u0 P Fγp0qM , there exists a unique
horizontal curve u in FM with with up0q “ u0 and πuptq “ γptq for all t. The curve
u is the horizontal lift of γ via the frame u0. Using the horizontal lift, we can define
the curve w in Rd by

wptq “

ż t

0
u´1psq 9γpsqds.

The curve w is the anti-development of γ.
Conversely, given a curve w in Rd and u0 P FxM , there exists a unique horizontal
curve u in FM with up0q “ u0 and satisfying

9uptq “ Hpuptqq 9wptq

for all t. Here H is as defined in (2.3.4). The curve γ given by γptq “ πuptq for all
t is the development of w onto the manifold M .

2.3.2. Connection on the frame bundle
In the previous section we have seen how to define horizontal tangent vectors in
FM when we are given a connection on M . In this section we show that these two
approaches are equivalent, in the sense that we can also first define a suitable notion
of horizontal tangent vectors on FM , and use these to define a connection on M .
Using a connection on M we defined the collection tHuFMuuPFM of horizontal
subspaces by

HuFM “ tX˚puq|X P TπuMu. (2.3.8)
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One can show that these subspaces depend smoothly on u.
For every g P GLpd,Rq, let Rg : FM Ñ FM denote right-multiplication by g, i.e.
Rgu “ ug for all u P FM . The collection tHuFMuuPFM satisfies the following
consistency property.

Proposition 2.3.6. Let g P GLpd,Rq and u P FM . Then dRgpHuFMq “ HugFM .

Proof. Let γ be a curve in M with γp0q “ πu and 9γp0q “ X and let uptq be its
horizontal lift with up0q “ u. For a P Rd we have ga P Rd, and hence

∇ 9γptquptqga “ 0,

because uptq is horizontal. It follows that uptqg is again a horizontal lift of γ. From
this, it follows that

dRgpX˚puqq “
d
dt

ˇ

ˇ

ˇ

ˇ

t“0
Rguptq “

d
dt

ˇ

ˇ

ˇ

ˇ

t“0
uptqg P HugFM,

where the latter holds since up0qg “ ug. We conclude that dRgpHuFMq Ă HugFM .
In the same way we find that dRg´1pHugFMq Ă HuFM . Since

dRgpdRg´1pHugFMqq “ dpRg ˝Rg´1qpHugFMq “ HugFM,

we find that HugFM Ă dRgpHuFMq, concluding the proof.

Collecting everything, it turns out the collection tHuFMuuPFM of horizontal sub-
spaces defines a so-called principal connection which we define next (see e.g. [61,
Chapter 2] or [87, Chapter 8]).

Definition 2.3.7 (Principal connection). For every u P FM , let Hu Ă TuFM be
a subspace. The collection tHuuuPFM is called a (principal) connection on FM if
the following hold:

1. TuFM “ Hu ‘ VuFM for all u P FM ,

2. dRgpHuq “ Hug for all u P FM, g P GLpd,Rq,

3. Hu depends smoothly on u.

The subspaces Hu are called horizontal. For X P TuFM we write X “ hpXq`vpXq
for the unique decomposition in a horizontal and vertical vector.

Now the notion of horizontal lift of curves and tangent vectors can also be defined in
terms of a principal connection on FM . A curve u : r0, 1s Ñ FM is called horizontal
if 9uptq P Huptq for all t P r0, 1s. A horizontal lift of a curve γ : r0, 1s Ñ M is a
horizontal curve u : r0, 1s ÑM such that πuptq “ γptq for all t P r0, 1s. This notion
of horizontal lift coincides with the notion of a horizontal lift in Definition 2.3.1
if we take the collection tHuFMuuPFM of horizontal subspaces defined in (2.3.8).
Therefore, existence of horizontal lifts for all time with respect to a connection ∇ on
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M follows from the existence for all time of horizontal lifts defined via a principal
connection on FM . We sketch how to prove the latter. We refer to [61, Chapter 2]
or [87, Chapter 8] for the details.
Given a curve γ inM , by working locally and patching pieces smoothly together, we
can find a curve v : r0, 1s Ñ FM with vp0q “ u0 and πvptq “ γptq for all t P r0, 1s.
However, vptq need not be horizontal and hence, we need to adapt the curve. More
precisely, we look for a curve a : r0, 1s Ñ GLpd,Rq such that uptq “ vptqaptq is
horizontal. By the Leibniz rule we have

9uptq “ dLvptqpaptqqp 9aptqq ` dRaptqpvptqqp 9vptqq. (2.3.9)

For 9uptq to be horizontal, the vertical part of the right-hand side in (2.3.9) has to
vanish. Since dLvptqpaptqqp 9aptqq is vertical, we must have

dLvptqpaptqqp 9aptqq “ ´vpdRaptqpvptqqp 9vptqqq P VvptqaptqFM.

Using that VvptqaptqFM can be identified with Mpd,Rq using the map dL´1
vptqaptqpIq,

we obtain a differential equation for aptq in Mpd,Rq. It can be shown (see e.g. [61,
Lemma on p.69]) that this differential equation has a unique solution which exists
for all t P r0, 1s and takes values in GLpd,Rq. But then uptq “ vptqaptq also exists
for all time, and by construction, this is a horizontal lift of γ, which concludes the
sketch of the proof.

Finally, we can also define a connection on M when starting with a principal con-
nection on FM . By (2.2.2) it is sufficient to define parallel transport along curves.
For this, let u be the horizontal lift of γ. Inspired by (2.3.3), we define the map
τγp0qγptq;γ : Tγp0qM Ñ TγptqM by

τγp0qγptq;γ “ uptqup0q´1.

It can be shown (although this is not trivial, see again [61, 87]) that this defines a
genuine parallel transport, meaning that it defines a connection on M (in the sense
of Definition 2.2.1) via formula (2.2.2).

2.3.3. Principal bundles
The notion of a horizontal lift can also be defined in a more general setting than
the frame bundle. It suffices to have a bundle over M and a Lie group (see Chapter
4) that acts on the fibres of the bundle by right multiplication. More precisely, we
have the following definition, see for example [61].

Definition 2.3.8 (Principal bundle). Let M and P be manifolds. Furthermore, let
G be a Lie group (see Chapter 4). The manifold P is called a principal bundle over
M with structure group G if the following are satisfied:

1. G acts freely on P by right multiplication, i.e. pu, gq P P ˆG implies ug P P
and if ug “ u for all u P P then g “ e, the identity element of G.



40 2. Mathematical background

2. M is diffeomorphic to the quotient P {G under the equivalence relation „ given
by u „ v if and only if there exists a g P G such that u “ vg, and the induced
projection π : P ÑM is smooth.

3. P is locally trivial: for all x PM there exists a U ĂM open and a diffeomor-
phism ψ : π´1pUq Ñ U ˆ G of the form ψpuq “ pπpuq, ϕpuqq with ϕ a map
ϕ : π´1pUq Ñ G satisfying ϕpuaq “ ϕpuqa for all u P π´1pUq and a P G.

Adapting Definition 2.3.7 by replacing FM with P and GLpd,Rq with the Lie group
G gives us the definition of a principal connection on P . Following the same proce-
dure as in Section 2.3.2, a principal connection gives rise to a notion of horizontal
lift of a curve in M to a curve in P .

We conclude this section with some examples of principal bundles that we will
encounter in future chapters. The frame bundle FM is a prototypical example of a
principal bundle over M , its structure group being GLpd,Rq.
If M is equipped with a Riemannian metric, for every p P M we can consider the
collection of orthonormal frames given by

OpM :“ tu P FpM |u : Rd Ñ pTpM, gq isometryu.

Here, we consider Rd to carry the standard Euclidean inner product. The bundle
OM with fibres OpM is called the orthonormal frame bundle and is also denoted as

OM “
ğ

pPM

OpM.

Here,
Ů

denotes the disjoint union. The orthonormal frame bundle is a principal
bundle with structure group Opdq, the orthogonal group.
Finally, the frame bundle can also be considered as bundle over M :“ RˆM . More
precisely, we consider the bundle F with fibres given by

Fpt,pq “ FpM

for all p PM and t P R. This is a principal bundle with structure group GLpd,Rq. In
this case, the time-coordinate does not really add anything new. However, suppose
we are given a collection of Riemannian metrics tgptqutPR. Then for every t P R, the
orthonormal frame bundle is different. Let us set

Opt,pq “ tu P FpM |u : Rd Ñ pTpM, gptqq isometryu

for all p PM and t P R. The bundle O with fibres Opt,pq, also denoted by

O “
ğ

pt,pqPM
Opt,pq,

is a principal bundle over M with structure group Opdq. This bundle will be impor-
tant when we study large deviations for diffusions in evolving Riemannian manifolds,
see Chapter 7.
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2.4. Stochastic analysis in manifolds

One way of studying stochastic processes in manifolds, is to generalize the notion
of horizontal lift and anti-development of curves to processes. The idea is that we
can then derive properties of the process from its anti-development. Since the anti-
development is a process in some Euclidean space, this is either easier to study, or
has already been studied extensively.
The Malliavin transfer principle (see e.g. [72]) states that any construction for
smooth curves in a manifold can be extended to processes by replacing the ordi-
nary differential equations by Stratonovich stochastic differential equations. This
is a heuristic principle which is motivated by the fact that Stratonovich stochastic
differential equations satisfy the usual fundamental theorem of calculus.
First, we discuss how to define Stratonovich stochastic integrals in Euclidean space
in terms of Itô integrals. In a similar way, we also define Stratonovich stochastic
differential equations, and explain some of its properties. These properties inspire
the definition of stochastic differential equations on manifolds, which we give next.
We then use these to generalize the notion of horizontal lift and (anti-)development
to stochastic processes. We conclude by defining Riemannian Brownian motion. For
further reading, we refer to [57, 36]

2.4.1. Stochastic differential equations on Rd

In this section we consider stochastic calculus in Euclidean space. For a general
introduction, we refer to [38].
Let Xt be an Rd-valued semimartingale, i.e., the sum of a martingale and a process
of bounded variation. By Itô’s formula, we have for f P C8c pRdq that

fpXtq “ fpX0q `
d
ÿ

i“1

ż t

0

Bf

Bxi
pXsqdZis `

1
2

d
ÿ

i,j“1

ż t

0

B2f

BxiBxj
pXsqdrXi, Xjss. (2.4.1)

Here, rXi, Xjss is the quadratic variation of Xi and Xj . It is defined as the limit
in probability of

k
ÿ

l“1
pXi

tl
´Xi

tl´1
qpXj

tl
´Xj

tl´1
q

when the mesh-size of 0 “ t0 “ 0 ă t1 ă ¨ ¨ ¨ ă tk “ s tends to zero.
The stochastic integrals in (2.4.1) are Itô-integrals. We see that such integrals do
not follow the ordinary rules of calculus, since we have to correct with a quadratic
variation term. The idea is to define an alternative stochastic integral in terms of
the Itô integral which does satisfy the ordinary fundamental theorem of calculus.
We refer to Chapter 6 in [38].

Definition 2.4.1. Let Xt be an Rd-valued semimartingale and let V : Rd Ñ Rd be
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smooth. We define
ż t

0
V pXsq ˝ dXs :“

ż t

0
V pXsqdXs `

1
2

d
ÿ

i,j“1

ż t

0

BVi
Bxj

pXsqdrXi, Xjss.

The stochastic integral so defined is called the Stratonovich stochastic integral.

In Definition 2.4.1 we interpret V pxq as a row vector. This is in order to match the
dimensions of the integrand and the integrator in the stochastic integrals.
For f P C8c pRdq, we can consider the vector field V “ ∇f , where we view the
gradient as row vector. The following is an immediate consequence of the definition
of the Stratonovich integral for this particular vector field and Itô’s formula in
(2.4.1).
Proposition 2.4.2. Let Xt be an Rd-valued semimartingale, and let f P C8c pRdq.
Then

fpXtq ´ fpX0q “

ż t

0
∇fpXsq ˝ dXs.

Next, we want to consider a Stratonovich stochastic differential equation of the form

dXt “ V pXtq ˝ dWt, (2.4.2)

where Wt is a standard, Rl-valued Brownian motion and V : Rd ÞÑ Rdˆl. We can
think of the columns of V as a collection of l vector fields V1, . . . , Vl. A precise
definition of such an equation is given in [38]. For our purposes, it suffices to know
to which Itô stochastic differential equation the equation in (2.4.2) is equivalent.
The following theorem can be found in [38].
Theorem 2.4.3. Let Wt be a standard Brownian motion with values in Rl and let
V : Rd Ñ Rdˆl be smooth. Denote by Vj the j-th column of V . A process Xt is a
solution of the Stratonovich stochastic differential equation

dXt “ V pXtq ˝ dWt

if it is a solution of the Itô stochastic differential equation

dXt “ V pXtqdWt `
1
2

l
ÿ

j“1
DVjpXtqVjpXtqdt.

The following result is an extension of Proposition 2.4.2.
Proposition 2.4.4. Let Wt be a standard, Rl-valued Brownian motion and let
V : Rd Ñ Rdˆl be smooth. Suppose Xt satisfies

dXt “ V pXtq ˝ dWt.

Then for every f P C8c pRdq we have

dfpXtq “ V fpXtq ˝ dWt.

Here V f should be interpreted as pV1f, . . . , Vlfq P Rl, where V1, . . . , Vl are the
columns of V .
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Proof. By Proposition 2.4.2 we have that

dfpXtq “ ∇fpXtq ˝ dXt.

Since dXt “ V pXtq ˝ dWt, we thus find

dfpXtq “ ∇fpXtqV pXtq ˝ dWt “ V fpXtq ˝ dWt,

concluding the proof.

The generator of a solution
Let A be an operator on CbpRdq with domain DpAq containing C8c pRdq. A Markov
process Xt solves the martingale problem for A if for all initial distributions of X0
and all f P C8c pRdq the process

Mf
t :“ fpXtq ´ fpX0q ´

ż t

0
AfpXsqds

is a martingale. In this case, we say that Xt is generated by A, or that A is the
generator of Xt. For more details, we refer to [37].
For solutions of Stratonovich stochastic differential equations, the generator has a
particularly simple form.

Proposition 2.4.5. Let Wt be a standard, Rl-valued Brownian motion and let
V : Rd Ñ Rdˆl be smooth. Let Xt be the solution of

dXt “ V pXtq ˝ dWt.

Then Xt has generator A given by

A “
l
ÿ

i“1
V 2
i ,

where Vi is the i-th column of V . Here V 2
i f is given by

V 2
i fpxq “ xVipxq,∇xVipxq,∇fpxqyy.

Proof. By Theorem 2.4.3, Xt solves the Itô stochastic differential equation

dXt “ V pXtqdWt `
1
2

l
ÿ

i“1
DVipXtqVipXtqdt.

From this it follows that the generator A of Xt is given by

Afpxq “
d
ÿ

j“1

˜

1
2

l
ÿ

i“1
DVipxqVipxq

¸

j

Bf

Bxj
pxq `

d
ÿ

k,m“1
pV pxqV pxqT qkm

B2f

BxkBxm
pxq



44 2. Mathematical background

“
1
2

l
ÿ

i“1
∇fpxqDVipxqVipxq `

l
ÿ

i“1
Vipxq

THfpxqVipxq.

Here, Hf denotes the Hessian of f .
We now compute V 2

i f . From the product rule it follows that

∇xVipxq,∇fpxqy “ ∇fpxqDVipxq `HfpxqVipxq.

It follows that

V 2
i fpxq “ xVipxq,∇xVipxq,∇fpxqyy “ ∇fpxqDVipxqVipxq ` VipxqTHfpxqVipxq.

Comparing to the expression we found for Af , we conclude that

Af “
l
ÿ

i“1
V 2
i f.

Finally, like for Itô stochastic differential equations, one can also consider Stratonovich
stochastic differential equations with a drift. Since the integral occurring in the drift
has nothing to do with being a Stratonovich or Itô integral, this is defined in exactly
the same way as usual.

2.4.2. Stochastic differential equations on manifolds
Before we can define stochastic differential equations on a manifold, we first have
to define M -valued semimartingales. Since the expectation of a manifold-valued
random variable is not well-defined, we cannot use the usual definition. However, a
real-valued process Xt is a semimartingale if and only if fpXtq is a semimartingale
for all smooth functions f . Following [57, 36], we make the following definition.

Definition 2.4.6. Let M be a manifold, pΩ,F ,Pq a filtered probability space and
τ a stopping time with respect to the filtration F . An M -valued semimartingale is
a continuous M -valued process Xt on r0, τq such that fpXtq is a real-valued semi-
martingale on r0, τq for all f P C8pMq.

Remark 2.4.7. The approach for defining manifold-valued semimartingales is not
suitable for defining martingales with values in M . Indeed, in general fpXtq is not
a martingale when Xt is a (real-valued) martingale. However, it is possible to define
martingales on a manifold once the manifold is equipped with a connection. In that
case, different connections generally give different martingales. We refer to [36] and
[57, Section 2.5].

Semimartingales with values in M will serve as solutions of stochastic differential
equations onM , which we define next. Let V1, . . . , Vl be l vector fields onM and let
Z be an Rl-valued semimartingale. We consider the stochastic differential equation

dXt “ VipXtq ˝ dZit , (2.4.3)
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where X0 is given, and may be random. The notion of a solution to (2.4.3) is
inspired by Proposition 2.4.4.

Definition 2.4.8. Let Zt be an Rl-valued semimartingale and let V1, . . . , Vl be d
vector fields on M . An M -valued semimartingale Xt defined up to a stopping time
τ is a solution of

dXt “ VipXtq ˝ dZit (2.4.4)

up to time τ if

dfpXtq “

ż t

0
VifpXsq ˝ dZis

for all f P C8pMq.

In general, a solution to (2.4.4) only exists up to some stopping time epV,Zq, called
its explosion time. However, since V1, . . . , Vl are smooth, we can show that the
solution is unique. For this we use the fact Stratonovich stochastic differential
equations as in (2.4.4) behave well under push-forward via a diffeomorphism. This
illustrates well why we need to consider Stratonovich stochastic differential equations
rather than the Itô variant. The following is Proposition 1.2.4 in [57].

Proposition 2.4.9. Let φ : M Ñ N be a diffeomorphism and suppose that X is a
solution of

dXt “ Vi ˝ dZit

on M with given initial value X0. Then Y “ φpXq is a solution of

dYt “ φ˚Vi ˝ dZit

on N with given initial value Y0 “ φpX0q. Here, φ˚Vi denotes the push-forward of
Vi via φ, which is sometimes also written as dφpViq.

To show that equation (2.4.4) has a unique solution, we take the following approach.
First observe that by Whitney’s embedding theorem, we can embed M into some
Euclidean space RN . We denote this embedding by ι. Since ι is a diffeomorphism,
using Proposition 2.4.9, we have that Xt is a solution of (2.4.4) if and only if ιpXtq

is a solution of
dYt “ ι˚Vi ˝ dZit .

Since ιpMq is closed in RN , we can extend the vector fields ι˚Vi to vector fields
Ṽi on RN . Since these vector fields are locally Lipschitz, the solution of the so
obtained stochastic differential equation on RN is unique. Since the vector fields
Ṽi are tangent to ιpMq, every solution started in ιpMq will remain inside ιpMq.
Because the solutions of the equation in RN are in one to one correspondence with
solutions of (2.4.4), the uniqueness carries over.
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2.4.3. Stochastic horizontal lift and development
Given a smooth curve w : r0, 1s Ñ Rd, its development onto the frame bundle of M
is the solution of the differential equation

9uptq “ Hpuptqq 9wptq,

see Definition 2.3.5. Using the canonical horizontal vector fields defined in (2.3.5),
we can also write this equation as

9uptq “ Hipuptqq 9wiptq.

Here, 9wi denotes the i-th coordinate of 9w.
Now, let Zt be a semimartingale with values in Rd. With the transfer principle of
Malliavin in mind (see e.g. [72]), we consider the stochastic differential equation on
the frame bundle FM given by

dUt “
d
ÿ

i“1
HipUtq ˝ dZit . (2.4.5)

In analogy to the case of smooth curves, the solution Ut to (2.4.5) should be a
horizontal process. We use this as our definition, see also [57].

Definition 2.4.10. An FM -valued semimartingale Ut is called horizontal if there
exists an Rd-valued semimartingale Zt such that (2.4.5) is satisfied. The process Zt
is called an anti-development of Ut. Furthermore, we call Ut the development of Zt
onto FM and Xt :“ πUt the development of Zt onto M .

It follows from Theorem 2.3.4 in [57] that the anti-development Zt of a horizontal
semimartingale Ut is unique once Z0 is fixed.
With a notion of a horizontal process at hand, we can define what we mean by a
horizontal lift of a process in M .

Definition 2.4.11. Let Xt be a semimartingale with values inM . A semimartingale
Ut in FM is a horizontal lift of Xt if Ut is horizontal and πUt “ Xt.

Following the relation between parallel transport and a horizontal lift in (2.3.3), we
can use the stochastic horizontal lift to define parallel transport along a semimartin-
gale.

Definition 2.4.12. Let Xt be a semimartingale with values in M and let Ut be a
horizontal lift. We define parallel transport along Xt as the map τX0Xt : TX0M Ñ

TXtM by
τX0Xt “ UtU

´1
0 .

2.4.4. Riemannian Brownian motion
In Euclidean space, a standard Brownian motion is generated by 1

2∆, where ∆
denotes the Laplacian. In order to have a notion of a Laplacian on a manifold, we
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need a Riemannian metric. A Riemannian manifold possesses a natural analogue of
the Laplacian, namely the Laplace-Beltrami operator. It is denoted by ∆M and is
defined in coordinates by

∆M “
1

?
detG

B

Bxi

ˆ

?
detGgij B

Bxj

˙

.

Here G “ pgijq is the matrix of coefficients of the Riemannian metric with inverse
denoted by G´1 “ pgijq. One can show that the definition of ∆M is independent of
the coordinates used.
With the Laplace-Beltrami operator defined, we make the following definition, in-
spired by the Euclidean setting.

Definition 2.4.13 (Riemannian Brownian motion). A continuousM -valued process
Wt is a Riemannian Brownian motion if for all f P C8c pMq,

fpWtq ´ fpW0q ´
1
2

ż t

0
∆MfpWsqds

is a local martingale up to the explosion time of Wt.

Note that a priori there is no guarantee that Riemannian Brownian motion is defined
for all times t ą 0. It turns out that this depends on the geometry of M . We make
the following definition.

Definition 2.4.14 (Stochastic completeness). We say that a Riemannian manifold
is stochastically complete if the explosion time of its Riemannian Brownian motion
is almost surely infinite.

The following proposition gives an important sufficient geometric condition for
stochastic completeness (see e.g. [57, Section 4.2]).

Proposition 2.4.15. Let pM, gq be a Riemannian manifold. Assume there exists a
finite constant L P R such that Ric ě L. Then M is stochastically complete.

Using the stochastic development, it is possible to develop a standard Euclidean
Brownian motion onto M . In order for the resulting process in M to be a Rieman-
nian Brownian motion, we need to restrict the development procedure to only use
orthonormal frames. The reason for this is that the equality in (2.4.6) only holds
for orthonormal frames.
For this, we define the set of orthonormal frames for pTxM, gpxqq by

OxM “ tu P FxM |u : Rd Ñ pTxM, gpxqq isometryu.

The orthonormal frame bundle is the bundle OM with fibres OxM . It is a principal
bundle with structure group Opdq, the orthogonal group. As explained in Section
2.3.3, all constructions of horizontal lift, development and anti-development are also
valid in OM .
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If Wt is a standard Euclidean Brownian motion, then its stochastic development
onto OM satisfies the equation

dUt “ HipUtq ˝ dW i
t

with U0 P OM almost surely. Recalling Proposition 2.4.5, we see that the process
Ut has a generator given by

∆OM :“ 1
2

d
ÿ

i“1
H2
i ,

which is known as Bochner’s horizontal Laplacian. It is the horizontal lift of the
Laplace Beltrami operator ∆M in the following sense: for all f P C8pMq we have
(see [57, Proposition 3.1.2])

∆Mf ˝ π “ ∆OM pf ˝ πq (2.4.6)

on OM . This motivates the following result, which is Proposition 3.2.1 in [57].

Proposition 2.4.16. Let Wt be a standard Euclidean Brownian motion, and let
Ut be a stochastic development of Wt onto OM . Then the process Xt :“ πUt is a
Riemannian Brownian motion in pM, gq.

If Xt is the development ofWt ontoM , thenWt is the anti-development of Xt. This
observation gives the following result.

Proposition 2.4.17. A continuous semimartingale Xt with values in M is a Rie-
mannian Brownian motion if and only if its anti-development via OM is a standard
Brownian motion in Rd.
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3
Large deviations for geodesic
random walks
In this chapter we prove a generalization of Cramér’s theorem (Theorem 2.1.10) to
the setting of a Riemannian manifold pM, gq. For this, we define the appropriate
analogue of a random walk in RN , namely a geodesic random walk. The result is
proven by performing a careful analysis of the geometry behind geodesic random
walks, in conjuction with the Gärtner-Ellis theorem (Theorem 2.1.12) in Euclidean
space. The results presented here are based on:

Rik Versendaal. “Large deviations for geodesic random walks”. In: Electron. J.
Probab. 24 (2019), Paper No. 93, 39 pp.

Random walks are among the most extensively studied discrete stochastic processes.
Given a sequence of random variables tXnuně1 in some vector space V , one defines
the random walk with increments tXnuně1 as the random variable

Sn “
n
ÿ

i“1
Xi.

When rescaled by a factor 1
n , one can study large deviations for the so obtained

sequence t 1
nSnuně1. Recall from Section 2.1.2 that when the increments are in-

dependent and identically distributed, Cramér’s theorem (Theorem 2.1.10) states
that the sequence t 1

nSnuně1 satisfies the large deviation principle. Intuitively, this
means that there is some rate function I : V Ñ r0,8s such that

P

˜

1
n

n
ÿ

i“1
Xi « x

¸

« e´nIpxq.

More specifically, the rate function is given as the Legendre transform of the log
moment generating function of the increments, i.e.,

Ipxq “ sup
λPV

txλ, xy ´ Λpλqu ,

51
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where Λpλq “ logEpexλ,X1yq. One may weaken the independence assumption to
obtain for example the Gärtner-Ellis theorem, see Theorem 2.1.12 in Section 2.1.2.
Also, Cramér’s theorem can be generalized to the setting of topological vector spaces
or Banach spaces. Furthermore, Cramér’s theorem provides a basis for path space
large deviations, such as Mogulskii’s theorem (random walks) and Schilder’s theo-
rem (Brownian motion), see e.g. [29, 88, 30].

However, the analogue of Cramér’s theorem in the Riemannian setting was originally
obtained as a consequence of the generalization of Mogulskii’s theorem, as explained
in Section 5.1. Indeed, since evaluation in the end point of trajectories is a continuous
map, Cramér’s theorem then follows from Mogulskii’s theorem by an application of
the contraction principle (Theorem 2.1.6). The results in Chapter 5 are obtained
via a general approach using convergence of non-linear semigroups and viscosity
solutions to Hamilton Jacobi equations as initiated in [39]. A drawback of this
approach is that it is only suitable for Markov processes. Therefore, it does not
allow for extensions to a setting where the increments of the random walk may
be dependent. This causes an obstruction in finding a Riemannian analogue of
the Gärtner-Ellis theorem for example. Additionally, the order of first proving
Mogulskii’s theorem and then deducing Cramér’s theorem is historically unnatural.
It is thus a fair question to ask whether there is a more direct approach to proving
Cramér’s theorem to fix this discrepancy.
It turns out that it is possible to only study the underlying geometry of a geodesic
random walk in order to prove Cramér’s theorem. This gives us new insight in what
geometrical aspects allow us to still obtain the large deviation principle for rescaled
geodesic random walks, even though the geodesic random walk is in general no
longer a simple function of its increments. Apart from large deviations, the geomet-
ric results also allow us to obtain Gaussian concentration inequalities for geodesic
random walks. Furthermore, this geometric approach does not rely on the fact that
the random walk is a Markov process, and thus seems suitable to be extended to
random walks with dependent increments for example.

The main difficulty in the Riemannian setting, is that we lack a vector space struc-
ture to define a random walk as sum of increments. The appropriate analogue is
a geodesic random walk as introduced by Jørgensen in [58]. To define a geodesic
random walk, we need to find a replacement for the additive structure, as well as a
generalization of the increments. It turns out that as increments one uses tangent
vectors, while the additive structure is replaced by an application of the Riemannian
exponential map.
More precisely, we introduce a family of probability measures tµxuxPM such that
for each x P M , µx is a measure on TxM , the tangent space at x. These measures
tµxuxPM provide the space-dependent distribution of the increments. Now we start
a random walk at some initial point Z0 “ x0 P M . Then recursively, we define for
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k “ 0, . . . , n´ 1 the random variable

Zk`1 “ ExpZk

ˆ

1
n
Xk`1

˙

,

where Xk`1 is distributed according to µZk . Hence, the random variable Zn takes
values in M and is the natural analogue of the empirical average of the increments
X1, . . . , Xn. In Euclidean space, this definition reduces to the usual one, because
the Riemannian exponential map is simply vector addition, i.e.,

Expxv “ x` v.

To obtain an analogue of Cramér’s theorem, we also need to generalize the notion of
the increments of the random walk being identically distributed, since the increments
are no longer in the same space. To compare two distributions µx and µy, we need
to identify the tangent spaces TxM and TyM . We do this by taking a curve γ
connecting x and y and using parallel transport along γ. Because different curves
lead to different identifications, we say that the distributions µx and µy are identical
if for all curves γ connecting x and y we have

µx “ µy ˝ τ
´1
yx;γ .

Here, τ denotes parallel transport. Equivalently, one can characterize this property
by assuming that the log moment generating functions are invariant under parallel
transport, i.e.,

Λxpλq “ Λypτxy;γλq,

where Λxpλq “ log
ş

TxM
exλ,vyµxpdvq.

In Euclidean space, the end point of the random walk is a simple function of the
increments. In the Riemannian setting, curvature ensures that this is in general
no longer the case. For example, the endpoint in general depends on the order of
the increments. Nonetheless, it is possible to utilize the vector space structure of
the tangent spaces. Denote by 1

n

řn
i“1 X̃i the empirical average of the appropri-

ately transported increments in Tx0M , were x0 is the starting point of the random
walk. By controlling the error induced by the curvature, the large deviations for the
geodesic random walk Zn can be obtained from the large deviations for 1

n

řn
i“1 X̃i.

To support this claim, we can also define an alternative random walk in M . For
this, we take a sequence of independent, identically distributed random variables
tYnuně1 in Tx0M with distribution µx0 and consider the process

Z̃n “ Expx0

˜

1
n

n
ÿ

i“1
Yi

¸

.

In general, Z̃n is different from Zn, even in distribution. Although our method
of proving the large deviation principle for Zn does not immediately allow us to
conclude that Zn and Z̃n are exponentially equivalent, the main idea of our proof
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does rely on the fact that we can (in some sense) relate and compare the geodesic
random walk to a sum of independent, identically distributed random variables in
the tangent space at x0, following the distribution µx0 .

This chapter is organised as follows. In Section 3.1 we introduce Jacobi fields, which
are essential for the geometric approach we take in this chapter. Section 3.2 intro-
duces the geodesic random walks, which are the main objects of interest. In Section
3.3 we give the precise statement of Cramér’s theorem for geodesic random walks.
Additionally, we provide an overview of the various steps that are needed for the
proof. In Section 3.4 we obtain a Taylor expansions of the Riemannian exponential
map with appropriate error bound. Furthermore, we compare the differential of the
exponential map to parallel transport. We also provide bounds for how far geodesics,
possibly starting at different points, can spread in a given amount of time. Finally,
we show that convex functionals which are invariant under parallel transport are
minimized by geodesics. These geometric results are key ingredients in the proof
of Cramér’s theorem, which is given in Section 3.5. We conclude this chapter with
some Gaussian concentration inequalities for geodesic random walks in Section 3.6.

3.1. Some additional Riemannian geometry

In this chapter, we work in a complete Riemannian manifold pM, gq of dimension
N . Let d be the associated Riemannian distance, and ∇ the Levi-Civita connection.
For a curve γ : ra, bs Ñ M , we write τγpaqγpbq;γ for parallel transport along γ. For
the sake of readability, we omit the reference to γ when the curve is understood.
Since M is complete, we have that for every x P M the Riemannian exponential
map Expx is defined on all of TxM . Recall that for x P M , the injecitivity radius
ιpxq P p0,8s is defines as

ιpxq “ sup tδ ą 0|Expx is injective on Bp0, δqu .

For a set A ĂM , the injecitivity radius of A is defined by

ιpAq “ inf tιpxq|x P Au . (3.1.1)

It follows from Proposition 2.2.6 in Section 2.2 that if K Ă M is compact, then
ιpKq ą 0.

3.1.1. Calculus of variations
Calculus of variations is often used in optimizing functionals over trajectories, such
as finding trajectories of minimum length or minimum energy. For our exposition,
we follow roughly the approach taken in [69]. Other references include [86, 40].
We start out by defining what we mean by a variation of a curve.

Definition 3.1.1. Let γ : r0, 1s ÑM be a piecewise smooth curve, i.e., γ is contin-
uous and there exist 0 “ a0 ă a1 ă ¨ ¨ ¨ ă ak “ 1 such that γ is smooth on rai´1, ais
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for all i “ 1, . . . , k. A variation of γ is a continuous map Γ : p´ε, εq ˆ r0, 1s Ñ M
which is smooth on every rectangle p´ε, εq ˆ rai´1, ais and such that Γp0, tq “ γptq
for all t P r0, 1s.

A variation Γ of a curve γ induces two types of curves. We refer to the curves
Γsptq :“ Γps, tq as main curves and to Γtpsq :“ Γps, tq as transverse curves.
We write

BsΓps, tq :“ d
dsΓtpsq and BtΓps, tq :“ d

dtΓsptq.

We use variations of curves to find optima of functionals of curves. For this, we
would like to differentiate the functional. We therefore need the rate of change of
the variation of curves in the transverse direction. We make the following definition.

Definition 3.1.2. Let Γ be a variation of a curve γ. The vector field V along γ
defined by

V ptq :“ BsΓp0, tq

is called the variational vector field of Γ.

Furthermore, given a continuous map Γ : p´ε, εq ˆ r0, 1s Ñ M , we define a vector
field along Γ as a continuous map V : p´ε, εqˆ r0, 1s Ñ TM with V ps, tq P TΓps,tqM
for every ps, tq P p´ε, εqˆr0, 1s and such that V is smooth wherever Γ is. Whenever
well-defined, we write DsV , respectively DtV for the covariant derivative of V in
the direction of the main curves and the transverse curves of Γ. More precisely, we
define

DsV ps, tq :“ ∇BsΓps,tqV ps, tq and DtV ps, tq :“ ∇BsΓps,tqV ps, tq.

Because the Levi-Civita connection is symmetric, we obtain the following symmetry
lemma, see e.g. [69, Lemma 6.3] or [40, Theorem 10.1].

Lemma 3.1.3 (Symmetry lemma). Let γ : r0, 1s Ñ M be a smooth curve and
Γ : p´ε, εq ˆ r0, 1s Ñ M a variation of γ. If M is equipped with the Levi-Civita
connection, then

DsBtΓps, tq “ DtBsΓps, tq.

3.1.2. Jacobi fields
Suppose γ : r0, 1s Ñ M is a geodesic. Let Γ : p´ε, εq ˆ r0, 1s Ñ M be a variation
of γ such that for every s P p´ε, εq, the curve Γsptq “ Γps, tq is a geodesic. We call
Γ a variation of geodesics, and the corresponding variational vector field is called a
Jacobi field along γ.
It is possible to derive a second order differential equation satisfied by Jacobi fields.
One can show (see e.g. [69, Theorem 10.2] or [40, Section 10.1]) that a Jacobi field
Jptq along a geodesic γ satisfies

D2
t Jptq `RpJptq, 9γptqq 9γptq “ 0. (3.1.2)
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Here, R denotes the Riemann curvature endomorphism, see Section 2.2.4. Equation
(3.1.2) is called the Jacobi equation.

If Jp0q “ 0 and 9Jp0q is given, we can give an explicit formula for the Jacobi field
along γ satisfying these conditions. Note that for every v P TxM , the curve γvptq “
Expxptvq is a geodesic. Since a Jacobi field is intuitively the derivative of a variation
of geodesics, it is not surprising that the differential of the Riemannian exponential
map plays a role in the theory of Jacobi fields.
The differential dpExpxq of the Riemannian exponential map at x is a linear map
from T pTxMq into TM . Upon identifying TvpTxMq with TxM , we find that for any
v P TxM we have

dpExpxqv : TxM Ñ TExpxvM.

This map is sometimes also written as dpExpxqpvq. We can use this map to write
down Jacobi fields with Jp0q “ 0.

Proposition 3.1.4. Let γ be a geodesic. Then

Jptq “ dpExpγp0qqt 9γp0qptvq (3.1.3)

defines a Jacobi field along γ with Jp0q “ 0 and 9Jp0q “ v.

Proof. Consider the variation of geodesic of γ given by

Γpt, sq “ Expγp0qptp 9γp0q ` svqq.

Using the chain rule, we find that

Jptq “
d
ds

ˇ

ˇ

ˇ

ˇ

s“0
Expγp0qptp 9γp0q ` svqq “ dpExpγp0qqpt 9γp0qqptvq.

Furthermore, we have that

9Jp0q “ lim
hÑ0

τγphqγp0qdpExpγp0qqh 9γp0qphvq ´ Jp0q
h

“ lim
hÑ0

τγphqγp0qdpExpγp0qqh 9γp0qpvq

“ dpExpγp0qq0pvq

“
d
ds

ˇ

ˇ

ˇ

ˇ

s“0
Expγp0qpsvq

“ v.

Here we used in the second line that Jp0q “ 0 and that τγphqγp0qdpExpγp0qqh 9γp0q is a
linear map. In the third line we used continuity, together with the fact that τγp0qγp0q
is the identity.

In Euclidean space, the Jacobi field in (3.1.3) reduces to Jptq “ t 9Jp0q, which is
indeed the variation field of the variation Γpt, sq “ γp0q ` tp 9γp0q ` s 9Jp0qq.
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Properties of Jacobi fields
We conclude this section by collecting some properties of Jacobi fields that we need
later on.

Proposition 3.1.5. Let γ : r0, 1s Ñ M be a geodesic and Jptq a Jacobi field along
γ. Then

xJptq, 9γptqy “ tx 9Jp0q, 9γp0qy ` xJp0q, 9γp0qy

for all t P r0, 1s.

Proof. Define fptq “ xJptq, 9γptqy. Then

f 1ptq “ xDtJptq, 9γptqy ` xJptq, Dt 9γptqy “ xDtJptq, 9γptqy,

because γ is a geodesic. We are done once we show that f2ptq “ 0. For this, notice
that, using (3.1.2)

f2ptq “ xD2
t Jptq, 9γptqy “ ´xRpJptq, 9γptqq 9γptq, 9γptqy “ 0.

Here, the last step follows from the symmetry properties of the Riemann curvature
tensor.

Proposition 3.1.6. Let γ : r0, 1s Ñ M be a geodesic and Jptq a Jacobi field along
γ. For every t P r0, 1s there exists ξt P p0, tq such that

| 9Jptq| “ | 9Jp0q| ´ t 1
| 9Jpξtq|

xRpJpξtq, 9γpξtqq 9γpξtq, 9Jpξtqy.

Proof. Define fptq “ | 9Jptq|. We have

f 1ptq “
1

| 9Jptq|
x :Jptq, 9Jptqy

“ ´
1

| 9Jptq|
xRpJptq, 9γptqq 9γptq, 9Jptqy.

The statement now follows from the mean-value theorem.

3.2. Geodesic random walks

In order to generalize Cramér’s theorem to the setting of Riemannian manifolds, we
first need to introduce the appropriate analogue of the sequence t 1

n

řn
i“1Xiuně0 for

a sequence of increments tXnuně1. In order to do this, we introduce geodesic random
walks, following the construction in [58]. Furthermore, we generalize the notion
of identically distributed increments to geodesic random walks and characterize it
using log moment generating functions. We conclude by providing some examples
of geodesic random walks with identically distributed increments.
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3.2.1. Definition of geodesic random walks
We start by defining a geodesic random walk tSnuně0 onM with increments tXnuně1.
For this we need to generalize how to add increments together. This is achieved by
using the Riemannian exponential map. Because the space variable determines in
which tangent space the increment should be, we have to define the random walk
recursively, which is the main difficulty in the definition below.

Definition 3.2.1. Fix x0 in M . A pair ptSnuně0, tXnuně1q is called a geodesic
random walk with increments tXnuně1 and started at x0 if the following hold:

1. S0 “ x0,

2. Xn`1 P TSnM for all n ě 0,

3. Sn`1 “ ExpSnpXn`1q for all n ě 0.

In what follows, the sequence tXnuně1 of increments will usually be omitted and
we simply write that tSnuně0 is a geodesic random walk with increments tXnuně1.
Note that in the above definition, we fix nothing about the distribution of the
increments tXnuně1. The distribution is allowed to depend both on the space
variable, as well as on time.
For M “ RN , the Riemannian exponential map can be identified with addition,
i.e., Expxpvq “ x ` v. Hence, a geodesic random walk in RN reduces to the usual
random walk, i.e. Sn “

řn
i“1Xi.

Next, we introduce the concept of time-homogeneous increments for geodesic ran-
dom walks. For this, we need to fix the distribution of the increments independent
of the time variable. Because the increments can take values in different tangent
spaces, we need a collection of measures tµxuxPM such that µx is a probability mea-
sure on TxM for every x P M . We denote the set of probability measures on TxM
by PpTxMq. We have the following definition.

Definition 3.2.2. Let tSnuně0 be a geodesic random walk with increments tXnuně1
and started at x0. Let tµxuxPM be a collection of measures such that µx P PpTxMq
for every x P M . We say the random walk ptSnuně0, tXnuně1q is compatible with
the collection tµxuxPM if Xn`1 „ µSn for every n ě 0.

Essentially, the collection of measures provides the distributions for the increments
of the geodesic random walk. Because the collection of measures is independent of
n, the increments are time-homogeneous.

Next, we want to define what it means for the increments of a geodesic random walk
to be independent. Because the distribution of increment Xn`1 depends on Sn, we
have that Xn`1 is in general not independent of An “ σptX1, . . . , Xnuq in the usual
sense. However, this dependence is purely geometric, as Sn simply determines in
which tangent space we have to choose Xn`1. If this is the only dependence of Xn`1
on An, we say the increments of tSnuně0 are independently distributed. We make
this precise in the following definition.
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Definition 3.2.3. Let tµxuxPM be a collection of measures such that µx P PpTxMq
for every x PM . Let tSnuně0 be a geodesic random walk with increments tXnuně1,
compatible with tµxuxPM . For every n ě 1, define the σ-algebra Fn by

Fn “ σ ptpS0, X1q, . . . , pSn´1, Xnquq .

We say the increments of tSnuně0 are independent if for every n ě 1 and all
bounded, continuous functions f : Mn Ñ R we have

E pfpX1, . . . , Xnq|Fn´1q “

ż

TSn´1M

fpX1, . . . , Xn´1, vqµSn´1pdvq.

Remark 3.2.4. Because Sn “ ExpSn´1Xn, we have that Sn is Fn-measurable. From
this it follows that σptS0, . . . ,Snuq Ă Fn. However, equality need not hold. Indeed,
if the Riemannian exponential map Expx is not injective, one cannot retrieve the
increments X1, . . . , Xn from S0, . . . ,Sn.
Remark 3.2.5. Let tµxuxPM be a collection of measures such that µx P PpTxMq
for all x P M . Let tSnuně0 be a geodesic random walk with increments tXnuně1
compatible with tµxuxPM . Suppose furthermore that the increments are indepen-
dent. Then tSnuně0 is a time-homogeneous, discrete time Markov process on M
with transition operator

Pfpxq “ E pfpS1q|S0 “ xq “

ż

TxM

fpExpxpvqqµxpdvq.

This is the point of view taken in Chapter 5, in particular in Section 5.3.

Rescaled geodesic random walks
In Euclidean space, one commonly encounters rescaled versions of a random walk,
for example for laws of large numbers and central limit theorems. On a general
manifold, this rescaling cannot be achieved by multiplication.
Before we define the appropriate analogue of

 1
n

řn
i“1Xi

(

ně0, we first need to define
how to rescale a geodesic random walk by a factor α ą 0 independent of n. Note
that in Euclidean space we can write α

řn
i“1Xi “

řn
i“1pαXiq. This shows that we

should rescale the increments of the random walk, which is possible in a manifold
because the increments are tangent vectors.

Definition 3.2.6. Fix x0 in M and α ą 0. A pair ptpα ˚ Sqnuně0, tXnuně1q is
called an α-rescaled geodesic random walk with increments tXnuně1 and started at
x0 if the following hold:

1. pα ˚ Sq0 “ x0,

2. Xn`1 P Tpα˚SqnM for all n ě 0,

3. pα ˚ Sqn`1 “ Exppα˚SqnpαXn`1q for all n ě 0.
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As with geodesic random walks, we will often omit the sequence of increments
and simply write that tpα ˚ Sqnuně0 is an α-rescaled geodesic random walk with
increments tXnuně1.
Note that an α-rescaled geodesic random walk can itself be considered as a geodesic
random walk. Indeed, if pα ˚ Sqn is an α-rescaled geodesic random walk with incre-
ments tXnuně1, then it is a geodesic random walk with increments tαXnuně1.
As for geodesic random walks, we say that an α-rescaled geodesic random walk
tpα ˚ Sqnuně0 with increments tXnuně1 is compatible with a collection of proba-
bility measures tµxuxPM if Xn`1 „ µpα˚Sqn for every n ě 0. It follows that when
considered as geodesic random walk, tpα˚Snquně0 is compatible with the collection
of measures tµαxuxPM given by

µαx “ µx ˝m
´1
α

where mα : TxM Ñ TxM denotes multiplication by α, i.e., mαpvq “ αv.

Empirical average process
We conclude this section by introducing the analogue of the sequence of empirical
averages t 1

n

řn
i“1Xiuně0 for a sequence tXnuně1 of random variables.

Fix x0 P M and let tµxuxPM be a collection of measures such that µx P PpTxMq
for all x P M . For every n ě 1, let t

` 1
n ˚ S

˘

j
ujě0 be a 1

n -rescaled geodesic ran-
dom walk started at x0 with increments tXn

j ujě1, compatible with the measures
tµxuxPM . By considering the diagonal elements of t

` 1
n ˚ S

˘

j
uně1,jě0, we obtain for

every n ě 1 a random variable
` 1
n ˚ S

˘

n
in M . If we now set the initial value of

the sequence t
` 1
n ˚ S

˘

n
uně0 to be x0, we obtain the Riemannian analogue of the

sequence t 1
n

řn
i“1Xiuně0. We refer to this process as the empirical average process

started at x0, compatible with the collection of measures tµxuxPM .

3.2.2. Identically distributed increments
For our purposes, we also need a notion of identically distributed increments. In
general, the increments of a geodesic random walk do not live in the same tangent
space. In order to overcome this problem, we use parallel transport to identify tan-
gent spaces. Because the identification via parallel transport depends on the curve
along which the vectors are transported, we need to make the following definition.

Definition 3.2.7. Let tµxuxPM be a collection of measures such that µx P PpTxMq
for all x P M . Let tSnuně0 be a geodesic random walk with increments tXnuně1,
compatible with tµxuxPM . We say the increments tXnuně1 are identically dis-
tributed if the measures satisfy the following consistency property: for any y, z PM
and any smooth curve γ : ra, bs ÑM with γpaq “ y and γpbq “ z we have

µz “ µy ˝ τ
´1
yz;γ .

By the transitivity property of parallel transport, one can equivalently define the
consistency property to hold for all piecewise smooth curves.
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Note that in Euclidean space, our definition of independent increments implies that
the measures are independent of the space variable, because parallel transport is
the identity map. Hence, our definition reduces to the usual one, as we obtain that
every increment has some fixed distribution µ.
In Section 3.2.3 we provide some examples of families of measures tµxuxPM satisfying
the consistency property in Definition 3.2.7. Here, we state a noteworthy property
of the expectations of such a collection of measures.

Proposition 3.2.8. Let tµxuxPM be a collection of measures satisfying the con-
sistency property in Definition 3.2.7. Then for every x, y P M and every curve
γ : r0, 1s ÑM with γp0q “ x and γp1q “ y we have

τxy;γ

ˆ
ż

TxM

v µxpdvq
˙

“

ż

TyM

w µypdwq.

Proof. Since parallel transport is linear, we have

τxy;γ

ˆ
ż

TxM

v µxpdvq
˙

“

ż

TxM

τxy;γv µxpdvq “
ż

TyM

w µx ˝ τ
´1
xy;γpdwq.

Since the collection of measures satisfies the consistency property in Definition 3.2.7,
we have

ż

TyM

w µx ˝ τ
´1
xy;γpdwq “

ż

TyM

w, µypdwq

which concludes the proof.

The consistency property in Definition 3.2.7 may also be characterised by a con-
sistency assumption for the corresponding log-moment generating functions Λx :
TxM Ñ R of µx given by

Λxpλq “ log
ż

TxM

exλ,vyµxpdvq.

This is recorded in the following proposition.

Proposition 3.2.9. Let tµxuxPM be a collection of measures such that µx P PpTxMq
for every x P M . Assume that Λxpλq ă 8 for all x P M and all λ P TxM . The
following are equivalent:

(a) The collection tµxuxPM satisfies the consistency property in Definition 3.2.7.

(b) For all x, y P M and all smooth curves γ : ra, bs Ñ M with γpaq “ x and
γpbq “ y and for all λ P TxM we have

Λxpλq “ Λypτxy;γλq.

Proof. We first prove that (a) implies (b). Fix x, y PM and γ : ra, bs ÑM a smooth
curve with γpaq “ x and γpbq “ y. Let λ P TxM . Writing τxy “ τxy;γ we find

Λxpλq “ log
ż

TxM

exλ,vyµxpdvq
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“ log
ż

TxM

exτxyλ,τxyvyµxpdvq

“ log
ż

TyM

exτxyλ,wyµypdwq

“ Λypτxyλq.

Here, the second line follows from the fact that the inner product is invariant under
parallel transport and the third line follows from the consistency assumption of the
collection of measures.
For the reverse implication, fix x, y P M and let γ : ra, bs Ñ M be a smooth curve
with γpaq “ x and γpbq “ y. A similar argument as above shows that the log moment
generating function of µx ˝ τ´1

xy coincides with the log moment generating function
of µy. Because the moment generating function determines the distribution, we
conclude that µx ˝ τ´1

xy “ µy as desired.

The Legendre transform Λ˚x : TxM Ñ R of Λx is defined by

Λ˚xpvq :“ sup
λPTxM

xλ, vy ´ Λxpλq.

If the collection of log-moment generating functions tΛxuxPM satisfies the consis-
tency property in (b) of Proposition 3.2.9, then so does the collection tΛ˚xuxPM of
their Legendre transforms.

3.2.3. Examples
We give some examples of collections of measures tµxuxPM satisfying Definition 3.2.7

Example 3.2.10 (Uniform distribution on a ball). Fix r ą 0. For any x P M ,
let µx be the uniform distribution on tv P TxM | |v|g ď ru Ď TxM . To see that
this collection of measures satisfies the consistency property, observe that parallel
transport is an isometry between tangent spaces. From this it follows that parallel
transport maps balls of same radii in different tangent spaces bijectively onto each
other.

The next example will be used in a later chapter to indicate the connection between
Mogulskii’s theorem and Schilder’s theorem.

Example 3.2.11 (Normal distribution). We now want to consider geodesic random
walks with normally distributed increments. For this, we define what we consider to
be a standard normal distribution on TxM and show that it satisfies the consistency
property. We say that V has a standard normal distribution if for some basis
(equivalently, all bases) e1, . . . , eN of TxM it holds that

pV 1, V 2, . . . , V N q „ N p0, G´1pxqq

where V “ V iei and Gpxq is the matrix of the metric tensor at x with respect to the
basis e1, . . . , eN . This is well-defined, because G´1pxq transforms tensorially under
coordinate transformations.
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To show that this collection of measures satisfies the consistency property in Defini-
tion 3.2.7, we make use of Proposition 3.2.9. We compute the log moment generating
function Λx of µx. For this, we will show that

xλ, V ygpxq „ Np0, |λ|2gpxqq.

for any λ P TxM . To this end, write v “ V iei and λ “ λjej . Then

xλ, V ygpxq “ λjV igijpxq

Note that this has a normal distribution with mean 0 and variance

λTGpxqG´1pxqGpxqλ “ |λ|2gpxq.

Using this, the log moment generating function becomes

Λxpλq “ log
ż

TxM

exλ,vyµxpdvq “
1
2 |λ|

2
gpxq.

Because parallel transport along any smooth curve is an isometry, we find that (b) of
Proposition 3.2.9 is satisfied and as a consequence, the collection tµxuxPM satisfies
the consistency property in Definition 3.2.7.

Remark 3.2.12. The previous example shows that if we have for all x P M that
Λxpλq “ F p|λ|gpxqq for some function F , independent of x, then the measures
tµxuxPM satisfy the consistency property in Definition 3.2.7. This is for exam-
ple the case if µx conditioned on the norm is uniformly distributed, and the norm
is distributed according to a distribution ν independent of x.

Finally, we will show that if a geodesic random walk has identically distributed
increments, it is sufficient to know the probability distribution in a given tangent
space. This leads to an equivalent characterization of a geodesic random walk.

Example 3.2.13 (Equivalent characterization of a geodesic random walk). Suppose
we have fixed an initial point x0 PM and a measure µ on Tx0M with the following
property: For every smooth loop γ : ra, bs Ñ M with γpaq “ γpbq “ x0 it holds that
µ “ µ ˝ τγpaqγpbq;γ , i.e., µ is invariant under parallel transport along any loop.
Given such a measure µ, we can construct a family of measures tµxuxPM which
satisfies Definition 3.2.7. Indeed, given x P M , we take a smooth curve γ : ra, bs Ñ
M with γpaq “ x0 and γpbq “ x and define µx “ µ ˝ τγpaqγpbq;γ . The assumption
on µ implies that this is well-defined, i.e. independent of the curve γ, and that the
given collection of measures satisfies the consistency property. More precisely, by
arguing in a chart around x and x0 respectively, one can make sure to concatenate
a smooth curve from x to x0 to the one from x to x0 in a smooth way to create a
smooth loop.
Now if tX̃nuně1 is a sequence of Tx0M -valued random variables with distribution
µ, one can parallelly transport these along the path of the geodesic random walk to
obtain the sequence tXnuně1 of the geodesic random walk.
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3.3. Sketch of the proof of Cramér’s theorem for
Riemannian manifolds

In this section we provide a sketch of the proof of Cramér’s theorem for geodesic
random walks and stress what observations and properties are important to make
the proof work. Before we get to this, let us first state the exact theorem we wish
to prove.

3.3.1. Statement of Cramér’s theorem
Cramér’s theorem is concerned with the large deviations for the empirical average
process tp 1

n ˚ Sqnuně1 with independent, identically distributed increments.
Along with the large deviation principle, we need to identify the rate function. In
Euclidean space, the rate function is given by

Ipxq “ Λ˚pxq,

the Legendre transform of the log moment generating function of an increment.
Note here that one can consider the vector x as the tangent vector of the straight
line from the origin to the point x. Using this viewpoint, the analogue of the rate
function in the Riemannian setting should be

Ipxq “ inf
 

Λ˚x0
pvq|Expx0v “ x

(

.

Here, we have to take the infimum, because the Riemannian exponential map is not
necessarily injective, i.e., there may be more than one geodesic connecting x0 and
x. We will show that this is indeed the correct rate function, as collected in the
following theorem.

Theorem 3.3.1 (Cramér’s theorem for Riemannian manifolds). Let pM, gq be a
complete Riemannian manifold. Fix x0 P M and let tµxuxPM be a collection of
measures such that µx P PpTxMq for all x PM . For every n ě 1, let tp 1

n ˚ Sqjujě0
be a 1

n -rescaled geodesic random walk started at x0 with independent increments
tXn

j ujě1, compatible with tµxuxPM . Let tp 1
n ˚ Sqnuně0 be the associated empiri-

cal average process started at x0. Assume the increments are bounded and have
expectation 0. Assume furthermore that the collection tµxuxPM satisfies the consis-
tency property in Definition 3.2.7. Then tp 1

n ˚ Sqnuně0 satisfies the large deviation
principle in M with good rate function

IM pxq “ inf
 

Λ˚x0
pvq|Expx0v “ x

(

.

Due to geometrical influences, which become apparent when sketching the proof,
we prove Cramér’s theorem only in the case when the increments are bounded.
This allows for a less technical proof of the theorem, but nevertheless introduces all
geometrical obstructions that have to be dealt with. The details of the proof can be
found in Section 3.5.
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Like in the Euclidean setting, we prove Cramér’s theorem for geodesic random walks
by separately proving the upper and lower bound for the large deviation principle
of tp 1

n ˚Sqnuně0. In Section 3.3.2 we give an overview of the steps one needs to take
to prove the upper bound, while in Section 3.3.3 we sketch how to prove the lower
bound.

3.3.2. Sketch of the proof of the upper bound
In the Euclidean case, one proves the upper bound in Cramér’s theorem by using
Chebyshev’s inequality. More precisely, the key step is to show that for Γ Ă Rd
compact one has (see e.g. [56, 29])

lim sup
nÑ8

1
n

logP
ˆ

1
n
Sn P Γ

˙

ď ´ inf
xPΓ

sup
λPRd

"

xλ, xy ´ lim sup
nÑ8

1
n

logE
´

enxλ,
1
nSny

¯

*

.

The upper bound is then extended to all closed sets by proving exponential tightness.
The idea is to follow a similar procedure in the Riemannian case. However, because
p 1
n ˚ Sqn is M -valued, its moment generating function is not defined.

Step 1: Analogue of the moment generating function Epenxλ, 1
nSnyq

To overcome the problem of not having a moment generating function of p 1
n ˚ Sqn,

we want to identify points in M with tangent vectors in Tx0M . For this we use the
Riemannian exponential map. However, this map is not necessarily injective. Hence,
we first assume that for each n ě 1, the 1

n -rescaled geodesic random walk stays
within the injectivity radius ιpx0q of its initial point x0 up to time n. Because Expx0
is injective on Bp0, ιpx0qq Ă Tx0M , we can uniquely define vnk P Tx0M satisfying
|vnk | ă ιpx0q and

Exp´1
x0
pvnk q “

ˆ

1
n
˚ S

˙

k

.

Ideally, we would like to prove the large deviation principle for tp 1
n ˚ Sqnuně0 by

proving the large deviation principle for tvnnuně0 in Tx0M and then apply the con-
traction principle (see e.g. [29, Chapter 4]) with the continuous function Expx0 . For
this to work, we would need to show that

lim
nÑ8

1
n

logE
´

enxλ,v
n
ny
¯

“ Λx0pλq.

Unfortunately, using the estimate for Epenxλ,vnnyq found in Step 2 as explained below,
we are only able to show that

lim sup
nÑ8

1
n

logE
´

enxλ,v
n
ny
¯

ď Λx0pλq ` C|λ| (3.3.1)

and likewise
lim inf
nÑ8

1
n

logE
´

enxλ,v
n
ny
¯

ě Λx0pλq ´ C|λ|, (3.3.2)

where the constant only depends on the curvature and the uniform bound of the
increments.
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Step 2: Upper bound for the moment generating function of vnn
In Rd we simply have vnn “ 1

n

řn
i“1Xi and hence its moment generating function is

given by

E
´

enxλ,v
n
ny
¯

“

n
ź

i“1
E
´

exλ,Xiy
¯

“ E
´

exλ,X1y
¯n

.

Here we use the fact that we can write vnk “ vnk´1 `
1
nXk. This fails in the Rie-

mannian setting, which results in the fact that we can only estimate Epenxλ,vnnyq as
mentioned above in (3.3.1) and (3.3.2).

In a Riemannian manifold we replace the identity vnk “ vnk´1 `
1
nXk by the Taylor

expansion of Exp´1
x0

(see Section 3.4.1, Proposition 3.4.4). This results in

vnk “ vnk´1 `
1
n

dpExpx0q
´1
vn
k´1

Xn
k `O

ˆ

1
n2

˙

. (3.3.3)

Here one needs to be careful that the constant in the error term may depend on
curvature properties of the manifold around p 1

n ˚ Sqk´1. Because we assume the
increments are uniformly bounded, there exists a compact set K ĂM such that for
all n ě 1 and all 0 ď j ď n we have p 1

n ˚ Sqj P K. This allows us to control the
constant in the error term.
However, the problem arises that this expression does not yet allow us to use the
assumption that the increments of the geodesic random walk are identically dis-
tributed, which essentially means that the distribution of the increments is invariant
under parallel transport.
Therefore, we need to argue that dpExpx0q

´1
vn
k´1

can be approximated well enough by
parallel transport. It turns out there exists a constant C ą 0 such that

|dpExpx0q
´1
vn
k´1

Xn
k ´ τ

´1
x0

1
nSk´1

Xn
k | ď C|vnk´1|

2|Xn
k |, (3.3.4)

see Section 3.4.2 for details, in particular Corollary 3.4.8. By the same reasoning as
before, the constant C may be controlled independent of k.
Combining (3.3.3) and (3.3.4) and using that vnn “

řn
k“1 v

n
k ´ v

n
k´1, we have

ˇ

ˇ

ˇ

ˇ

ˇ

vnn ´
1
n

n
ÿ

k“1
τ´1
x0

1
nSk´1

Xn
k

ˇ

ˇ

ˇ

ˇ

ˇ

À
1
n
` 1. (3.3.5)

Using the Cauchy-Schwarz inequality, we now find

Epenxλ,v
n
nyq ď eC|λ|enC|λ|E

ˆ

e

řn
i“1xλ,τ

´1
x0 1
n

Sn´1
Xnk y

˙

“ eC|λ|enC|λ|E
´

exλ,X1y
¯n

.

(3.3.6)

Here, the last line uses that the increments are independent and identically dis-
tributed. From this it follows that

lim sup
nÑ8

1
n

logEpenxλ,v
n
nyq ď C|λ| ` Λx0pλq,
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so that

lim sup
nÑ8

1
n

logPpvnn P F q ď ´ inf
vPF

sup
λPTx0M

txλ, vy ´ Λx0pλq ´ C|λ|u.

It remains to get rid of the C|λ| term. In the next step we show how to reduce
the order n term in the upper bound in (3.3.6), so that we can still use the above
estimating procedure to obtain the upper bound of the large deviation principle for
tp 1
n ˚ Sqnuně0.

Step 3: Reducing the upper bound in Step 2 by splitting the random
walk in pieces
The problematic factor in estimate (3.3.6) arises from the replacement of the differ-
ential of the exponential map with parallel transport as done in Step 2. This error
depends on |vnk |, i.e., the distance from x0 to p 1

n ˚ Sqk. Note that in Step 2, we
simply estimated |vnk | uniformly in k. However, if we write r for the uniform bound
on the increments, we actually have |vnk | ď k

nr. Consquently, we can reduce the
upper bound if the amount of steps for which we need to compare parallel transport
and the differential of the exponential map becomes smaller.
To do this, the idea is to cut the random walk in finitely many pieces, say m,
each consisting of (roughly) m´1n steps. We can then consider each of these pieces
as separate random walks which we need to identify with a vector in some tangent
space. In the end, we can then let the amount of pieces tend to infinity by considering
the limit m Ñ 8, so that the part of the upper bound which we want to reduce
vanishes entirely.
More precisely, fix m P N, and define for l “ 0, . . . ,m´ 1 the indices nl “ ltm´1nu

and set nm “ n. This divides the random walk in m pieces, where a piece starts
in p 1

n ˚ Sqnl and consists of tm´1nu increments. Now recall there is a compact set
K Ă M such that for all n and all 0 ď j ď n we have p 1

n ˚ Sqj P K. Because
ιpKq ą 0, we can choose m sufficiently large, such that for all n, all l “ 1, . . . ,m
and all k “ 1, . . . , tm´1nu we have

ˆ

1
n
˚ S

˙

nl´1`k

P B

˜

ˆ

1
n
˚ S

˙

nl´1

, ι pKq

¸

.

We may thus follow the same procedure as in Step 1, so that for every l “ 1, . . . ,m
and every k “ 1, . . . , tm´1nu we can uniquely define ṽn,m,lk P Tp 1

n˚Sqnl´1
M such that

ṽn,m,lk P Exp´1
p 1
n˚Sqnl´1

˜

ˆ

1
n
˚ S

˙

nl´1`k

¸

and |ṽn,m,lk | ă ιpp 1
n ˚ Sqnl´1q. Finally, we define vn,m,lk P Tx0M by

vn,m,lk “ τ´1
x0p

1
n˚Sqnl´1

ṽn,m,lk ,
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where the parallel transport can be taken along any path connecting x0 and
` 1
n ˚ S

˘

nl´1
,

as long as it is measurable with respect to Fnl´1 “ σpX1, . . . , Xnl´1q.
This associates to p 1

n ˚ Sqn PM a tuple
´

vn,m,1
tm´1nu

, . . . , vn,m,m
tm´1nu

¯

P pTx0Mq
m.

Following the procedure in Step 2, apart from some technical details, we find

lim sup
nÑ8

1
n

logE
ˆ

e
nxλ,vn,m,l

tm´1nu
y

˙

ď C|λ|
1
m3 `

1
m

Λx0pλq,

for all λ P Tx0M . From here it is possible to show that

lim sup
nÑ8

1
n

logE
ˆ

e
n
řm
l“1xλl,v

n,m,l

tm´1nu
y

˙

ď C
1
m3

m
ÿ

l“1
|λl| `

1
m

m
ÿ

l“1
Λx0pλlq

for all pλ1, . . . , λmq P pTx0Mq
m. We conclude that

lim sup
nÑ8

1
n

logP
´´

vn,m,1
tm´1nu

, . . . , vn,m,m
tm´1nu

¯

P F
¯

ď ´ inf
pv1,...,vmqPF

1
m

m
ÿ

l“1
sup

λPTx0M
txλ,mvly ´ Λx0pλq ´

1
m2C|λ|u.

Step 4: Upper bound for the large deviation principle of tp 1
n ˚ Sqnuně0

To prove the large deviation upper bound for tp 1
n ˚Sqnuně0, we notice that the map

sending pvn,m,1
tm´1nu

, . . . , vn,m,m
tm´1nu

q to p 1
n ˚Sqn is continuous. Hence, if F ĂM is closed,

there exists a closed set F̃ Ă pTx0Mq
m such that

P
ˆˆ

1
n
˚ S

˙

n

P F

˙

“ P
´´

vn,m,1
tm´1nu

, . . . , vn,m,m
tm´1nu

¯

P F̃
¯

.

From this it follows that

lim sup
nÑ8

1
n

logP
ˆˆ

1
n
˚ S

˙

n

P F

˙

ď ´ inf
pv1,...,vmqPF̃

1
m

m
ÿ

l“1
sup

λPTx0M

"

xλ, vly ´ Λx0pλq ´
1
m2C|λ|

*

.

Now note that for every v P Exp´1
x0
F we have that p 1

mv, . . . ,
1
mvq P F̃ . Furthermore,

by convexity, the infimum in the upper bound is attained when all vi are equal.
Therefore, the upper bound reduces to

lim sup
nÑ8

1
n

logP
ˆˆ

1
n
˚ S

˙

n

P F

˙

ď ´ inf
vPExp´1

x0 F
sup

λPTx0M

"

xλ, vy ´ Λx0pλq ´
1
m2C|λ|

*

.

The desired upper bound now follows by considering the limit mÑ8.
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3.3.3. Sketch of the proof of the lower bound
To prove the lower bound of the large deviation principle for tp 1

n ˚Sqnuně0, it suffices
to show that if G ĂM is open, then

lim inf
nÑ8

1
n

logP
ˆˆ

1
n
˚ S

˙

n

P G

˙

ě ´IM pxq,

for all x P G. Because IM pxq “ infvPExp´1
x0 x

Λ˚x0
pvq, it is in fact sufficient to show

that
lim inf
nÑ8

1
n

logP
ˆˆ

1
n
˚ S

˙

n

P G

˙

ě ´Λ˚x0
pvq

for any v P Exp´1
x0
G. Therefore, we again need to transfer the problem to the

tangent space Tx0M .

Transfer to the tangent space Tx0M

Similar to how estimate (3.5.2) is derived, we find that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

vntm´1nu ´
1
n

tm´1nu
ÿ

k“1
τ´1
x0

1
nSk´1

Xn
k

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

À
1
nm

`
1
m3 .

As a consequence, by choosing m sufficiently large, we can get vn
tm´1nu

arbitrarily

close to 1
n

řtm´1nu

k“1 τ´1
x0

1
nSk´1

Xn
k . The latter is a sum of independent random variables

with distribution µx0 , which is a consequence of the fact that the increments of
the geodesic random walk are independent and identically distributed. Hence, by
Cramér’s theorem for vector spaces we obtain that for every m P N the sequence
t 1
n

řtm´1nu

k“1 τ´1
x0

1
nSk´1

Xn
k uně0 satisfies the large deviation principle in Tx0M with

good rate function Ipvq “ 1
mΛ˚x0

pmvq.
Putting everything together, after some technicalities, we find that if ε ą 0 is small
enough, there exists a constant c P p0, 1q such that for m large enough

lim inf
nÑ8

1
n

logPpvntm´1nu P Bpv, εqq

ě lim inf
nÑ8

1
n

logP

¨

˝

1
n

tm´1nu
ÿ

k“1
τ´1
x0

1
nSk´1

Xn
k P Bpv, cε

2q

˛

‚

ě
1
m

Λ˚x0
pmvq.

(3.3.7)

In order to make use of this fact, we again need to divide the random walk in pieces,
like in Step 3 in Section 3.3.2. To this end, we again first identify p 1

n ˚Sqn PM with
a tuple

´

ṽn,m,1
tm´1nu

, . . . , ṽn,m,m
tm´1nu

¯

P Tp 1
n˚Sqn0

M ˆ ¨ ¨ ¨ ˆ Tp 1
n˚SqnmM.
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However, this time we need to be careful how we transport these vectors to Tx0M .
Indeed, we wish to do this in such a way that

´

vn,m,1
tm´1nu

, . . . , vn,m,m
tm´1nu

¯

P Bpv, cε2qm ñ

ˆ

1
n
˚ S

˙

n

P BpExpx0v, εq. (3.3.8)

The key to making the correct choice is given by Proposition 3.4.10, which gives us
control over how far geodesics can spread in a short time when starting in different
points of the manifold. This result shows us how to choose the parallel transport
based on the vector v, so that the curvature has only little effect. Essentially, one
first transports a vector to an associated point on the geodesic with speed v which
connects x0 and x. After that, one transports the vector along this geodesic to x0.
More precisely, we do the following:

1. Consider the geodesic γptq “ Expx0ptvq and for i “ 0, . . . ,m define the points
yi “ γp im q. Note that y0 “ x0.

2. For every i “ 0, . . . ,m and every x PM , choose a geodesic of minimal length
connecting yi and x and define τyix to be parallel transport along this geodesic.

3. Now define for i “ 1, . . . ,m the vector vn,m,1
tm´1nu

P Tx0M by

vn,m,i
tm´1nu

“ τ´1
y0yiτ

´1
yip

1
n˚Sqni´1

ṽn,m,i
tm´1nu

Now, given G ĂM open, x P G and v P Exp´1
x0
x, by (3.3.8) we have

P
ˆˆ

1
n
˚ S

˙

n

P G

˙

ě P
´´

vn,m,1
tm´1nu

, . . . , vn,m,m
tm´1nu

¯

P Bpv, cε2qm
¯

.

Using this, an approach similar to the one used to obtain (3.3.7), also using that
the increments are independent and identically distributed, gives us that

lim inf
nÑ8

1
n

logP
ˆˆ

1
n
˚ S

˙

n

P G

˙

ě lim inf
nÑ8

1
n

logP
´´

vn,m,1
tm´1nu

, . . . , vn,m,m
tm´1nu

¯

P Bpv, cε2qm
¯

ě ´Λ˚x0
pvq

which is as desired.

3.4. Some geometric results

This section focuses on geometric results needed for the proof of Cramér’s theorem
for geodesic random walks as sketched in Section 3.3. We obtain a Taylor expan-
sion for the inverse Riemannian exponential map and estimate the residual term.
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Furthermore, we bound the difference between the differential of the Riemannian
exponential map and parallel transport. This heavily relies on the theory of Jacobi
fields, which have been introduced in Section 3.1.2. We also show how far geodesics
can spread in a short time interval when starting in different points on the mani-
fold. We conclude this section by proving that convex functionals are minimized by
geodesics.

3.4.1. Taylor expansion of the inverse Riemannian exponential
map

The Riemannian exponential map Expx : TxM Ñ M is a local diffeomorphism
around 0. More precisely, it is a diffeomorphism between Bp0, ιpxqq Ă TxM and
ExpxpBp0, ιpxqqq. Now suppose γptq is a curve in ExpxpBp0, ιpxqqq. There exists
a unique curve wptq in Bp0, ιpxqq Ă TxM such that Expxwptq “ γptq. Our aim is
to find a Taylor expansion for wptq around t “ 0. Although this seems to be folk-
lore, we also find a precise estimate of the residual term of the Taylor approximation.

Before we can do this, we first need two lemmas that will help us control the er-
ror term in the first order Taylor polynomial for the inverse of the Riemannian
exponential map.

Lemma 3.4.1. Let K Ă M be compact and for any x P K, let Kx Ă TxM be
compact. Assume the Riemannian exponential map Expx is defined on Kx for all
x P K. Assume furthermore there exists a C ą 0 such that Kx Ă Bp0, Cq for any
x P K. Then

sup
xPK

sup
vPKx

|dpExpxqv| ă 8

Proof. Because the sets Kx are uniformly bounded and K is compact, it follows
that

K̃ :“ tpx, vq P TM | x P K, v P Kxu

is compact. By assumption, K̃ is contained in the domain U Ă TM of the Rieman-
nian exponential map.
Let π : TM ÑM be the canonical projection and define the vertical tangent bundle
TV TM Ă TTM as the kernel of dπ : TTM Ñ TM . Furthermore, define

D :“ tpv, wq P TM ˆ TM | πpvq “ πpwqu Ă TM ˆ TM.

Then TV TM is isomorphic to D via the isomorphism ι : D Ñ TV TM given by

ιpv, wq “
d
dt

ˇ

ˇ

ˇ

ˇ

t“0
v ` tw.

Now consider the set

BV K̃ :“ tpv, wq P D| v P K̃, |w|g ď 1u Ă D » TV TM.

Since K̃ is compact, so is BV K̃.
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Now, for Exp : U ÑM ˆM we have dExp : TU Ñ TM ˆ TM given by

dExpppx, vqqpw̃q “ p0,dpExpxqvwq,

where ιpv, wq “ pv, w̃q. From this it follows that the map ppx, vq, wq ÞÑ |dpExpxqvw|g
is continuous on D, and as a consequence it is bounded on BV K̃. This implies that

sup
xPK

sup
vPKx

sup
wPTxM,|w|gď1

|dpExpxqvw|g ă 8,

from which the claim follows, since

sup
wPTxM,|w|gď1

|dpExpxqvw|g “ |dpExpxqv|g.

As long as one restricts to a set where the inverse of the Riemannian exponential
map is well-defined, one obtains in a similar way a bound for the differential of the
inverse Riemannian exponential map.

Lemma 3.4.2. Let K Ă M be compact and for any x P K, let Kx Ă Bp0, ιpxqq Ă
TxM be compact. Assume that there exists a constant C ą 0 such that Kx Ă Bp0, Cq
for any x P K. Then

sup
xPK

sup
vPKx

|dpExpxq´1
v | ă 8.

Remark 3.4.3. When we take K “ tx0u in Lemma 3.4.2, the statement simplifies as
follows: If K̃ Ă Bp0, ιpx0qq is compact, then

sup
vPK̃

|dpExpx0q
´1
v | ă 8.

We are now in a position to find a first order Taylor expansion of the inverse Rie-
mannian exponential map and control the error term appropriately.

Proposition 3.4.4. Fix x0 P M and let K Ă Bp0, ιpx0qq be compact. Define
K̃ “ Expx0K and let x P K̃ and v P TxM . Consider the geodesic γv : r0, T s Ñ M
defined by γvptq “ Expxptvq, where T is such that the image of γv is contained in
K̃. Restrict Expx0 to K and set wptq “ Exp´1

x0
pγvptqq P K Ă Tx0M . Then there

exists a constant C ą 0 such that

|wptq ´ wp0q ´ tdpExpx0q
´1
wp0qpvq|gpx0q ď Ct2|v|2gpx0q

for all t P r0, T s. Here, the constant C only depends on the compact set K̃ (and the
dimension of M).

Proof. Let te1, . . . , edu be an orthonormal basis of Tx0M and consider the associated
normal coordinates around x0. Since K Ă Bp0, ιpx0qq, these normal coordinates are
defined in a neighbourhood of K̃.
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Writing γkv ptq for the coordinates of γvptq, we have that wptq “ γkv ptqek. Further-
more, by the chain rule we have

9wp0q “ dpExpx0q
´1
wp0qp 9γvp0qq “ dpExpx0q

´1
wp0qpvq.

As a consequence, we find that

|wptq ´ wp0q ´ tdpExpx0q
´1
wp0qpvq|gpx0q “ |wptq ´ wp0q ´ t 9wp0q|gpx0q

ď

d
ÿ

k“1
|γkv ptq ´ γ

k
v p0q ´ t 9γkv p0q|.

Now, by Taylor’s theorem we have for all k “ 1, . . . , d that

|γkv ptq ´ γ
k
v p0q ´ t 9γkv p0q| ď

1
2 t

2|:γkpξt,kq|

for some ξt,k P p0, tq.
Because γv is a geodesic, its coordinates satisfy the geodesic equations

:γkv ptq ` 9γivptqγ
jptqΓkijpγvptqq “ 0.

In particular, we find that

|:γkv ptq| ď | 9γ
i
vptqγ

jptqΓkijpγvptqq|.

Now observe that px, vq ÞÑ vivjΓkijpγvptqq is continuous, and therefore bounded on
the compact set

tpx, vq P TM | x P K̃, |v|gpxq “ 1u.

In particular, this implies that there exists a constant C ą 0 such that

|vivjΓkijpγvptqq| ď C|v|2g

for every k “ 1, . . . , d. Using this, we obtain that

|:γkv ptq| ď C| 9γvptq|
2
g “ C|v|2g,

where we used that γv is a geodesic with 9γvp0q “ v.
Combining everything, we find that

|wptq ´ wp0q ´ tdpExpx0q
´1
wp0qpvq|gpx0q ď

d
ÿ

k“1
|γkv ptq ´ γ

k
v p0q ´ t 9γkv p0q| ď dCt2|v|gpx0q

as desired.
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3.4.2. Differential of the Riemannian exponential map and par-
allel transport

Next, we wish to understand the relation between the differential of the Riemannian
exponential map and parallel transport. Before we can make the appropriate com-
parison, we first need a version of Taylor’s theorem suitable for vector fields along
a curve on a manifold.

Proposition 3.4.5 (Taylor’s theorem). Let γ be a curve in M and v a vector field
along γ. Define Dtvptq :“ ∇ 9γptqvptq and Dk

t as the k-th covariant derivative in this
way. Fix n P N. For every t ą 0 there exists ξt P p0, tq such that

vptq “
n
ÿ

k“0

tk

k! τγp0qγptqD
k
t vp0q `

tk`1

pk ` 1q!τγpξtqγptqD
k`1
t vpξtq.

Proof. Consider the map fptq “ τ´1
γp0qγptqvptq, mapping into Tγp0qM . Because f is

smooth, by Taylor’s theorem, given n P N and t ą 0, there exists ξt P p0, tq such
that

fptq “
n
ÿ

k“0

tk

k!f
pkqp0q ` tk`1

pk ` 1q!f
pk`1qpξtq.

Let us compute the derivatives of f . Note that

f 1ptq “ lim
hÑ0

fpt` hq ´ fptq

h

“ lim
hÑ0

τ´1
γp0qγpt`hqvpt` hq ´ τ

´1
γp0qγptqvptq

h

“ τ´1
γp0qγptq lim

hÑ0

τ´1
γptqγpt`hqvpt` hq ´ vptq

h

“ τ´1
γp0qγptqDtvptq.

Using induction, one can show that

f pkqptq “ τ´1
γp0qγptqD

k
t vptq

for all k P N. But then we find that

τ´1
γp0qγptqvptq “

n
ÿ

k“0

tk

k!D
k
t vp0q `

tk`1

pk ` 1q!τ
´1
γp0qγpξtqD

k`1
t vpξtq.

Applying τγp0qγptq to both sides and observing that t ą ξt gives the desired result.

We are now able to compare the differential of the Riemannian exponential map
and parallel transport. The Taylor series of the differential of the exponential map
may be found in e.g [98, Appendix A]. The error term for finite Taylor polynomials
seems to belong to folklore, but we insert a proof here for the reader’s convenience.
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Proposition 3.4.6. Let x0 P M and take w, u P Tx0M . Consider the geodesic
γw : r0, 1s Ñ M given by γwptq “ Expx0ptwq. For every t P r0, 1s there exists
ξt P p0, tq such that

dpExpx0qtwpuq

“ τγwp0qγwptqu`
1
2 tτγwpξtqγwptqRγwpξtqpdpExpx0qξtwpξtuq, 9γwpξtqq 9γwpξtq.

Proof. Consider the vector field Jptq “ dpExpx0qtwptuq along γwptq. It follows from
Proposition 3.1.4 that Jptq is a Jacobi field along γptq with Jp0q “ 0 and 9Jp0q “ u.
By the Jacobi equation (3.1.2), the second derivative is given by

D2
t Jptq “ ´RγwptqpJptq, 9γwptqq 9γwptq.

Therefore, by Proposition 3.4.5 we find there exists some ξt P p0, tq such that

Jptq “ tτγwp0qγwptqu´
1
2 t

2τγwpξtqγwptqRγwpξtqpdpExpx0qξtwpξtuq, 9γwpξtqq 9γwpξtq.

The result now follows after dividing by t.

This proposition allows us to obtain the following estimate.

Corollary 3.4.7. Fix x0 PM and let w P Bp0, ιpx0qq Ă Tx0M . Define the geodesic
γw : r0, 1s Ñ M by γwptq “ Expx0ptwq. There exists a constant C ą 0 only
depending on some compact set containing γw such that

|dpExpx0qwpuq ´ τγwp0qγwp1qu|gpγwp1qq ď C|u|gpx0q|w|
2
gpx0q

for all u P Tx0M .

Proof. By Proposition 3.4.6 there exists ξ P p0, 1q such that

dpExpx0qwpuq ´ τγwp0qγwp1qu

“ ´
1
2τγwpξq,γwp1qRγwpξqpdpExpx0qξwpξuq, 9γwpξqq 9γwpξq.

Now taking norms on both sides, we first observe that the norm of the Riemann
curvature endomorphism is bounded on compact sets, because it is continuous (in
coordinates the norm can be expressed as a continuous functions of the coefficients).
Furthermore, by Lemma 3.4.1 we have that w ÞÑ |dpExpx0qw| is bounded on compact
sets. We thus obtain constants C1, C2 ą 0, only depending on some compact set
containing the curve γw such that

|dpExpx0qwpuq ´ τγwp0qγwp1qu|gpγwp1qq

ď
1
2 |RγwpξqpdpExpx0qξwpξuq, 9γwpξqq 9γwpξq|gpγwpξqq

ď C1|dpExpx0qξwpξuq|gpγwpξqq| 9γwpξq|
2
gpγwpξqq

ď C1C2|u|gpx0q|w|
2
gpx0q

.

Here, in the last line we used that ξ ă 1 and the fact that γw is a geodesic.
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The result in the latter corollary can also be used to compare the inverse of the
differential of the exponential map to the inverse of parallel transport, which itself
is parallel transport, but in the opposite direction.

Corollary 3.4.8. Let x0 PM and fix w P Bp0, ιpx0qq Ă Tx0M . Define the geodesic
γw : r0, 1s Ñ M by γwptq “ Expx0ptwq. Then there exists a constant C ą 0 only
depending on some compact set containing γw, such that

|dpExpx0q
´1
w puq ´ τ

´1
γwp0qγwp1qu|gpγwp1qq ď C|u|gpγwp1qq|w|

2
gpx0q

for all u P Tγwp1qM .

Proof. Fix u P Tγwp1qM and consider dpExpx0q
´1
w u P Tx0M . By Corollary 3.4.7,

there exists a constant C ą 0 only depending on a compact set containing γw such
that

|u´ τγwp0qγwp1qdpExpx0q
´1
w u|gpγwp1qq ď C|dpExpx0q

´1
w u|gpx0q|w|

2
gpx0q

.

Because parallel transport is an isometry, the left hand side is equal to

|τγwp1qγwp0qu´ dpExpx0q
´1
w u|gpγwp1qq.

For the right hand side, we observe that by Lemma 3.4.2 there exists a constant
C̃ ą 0, only depending on some compact set containing γw such that

|dpExpx0q
´1
w u|gpx0q ď C̃|u|gpγwp1qq.

Putting everything together, we find

|τγwp1qγwp0qu´ dpExpx0q
´1
w u|gpγwp1qq ď CC̃|u|gpγwp1qq|w|

2
gpx0q

as desired.

3.4.3. Spreading of geodesics
We conclude this section with a result on how far geodesics, possibly starting in
different points, can spread in a given amount of time. To shed some light on the
upcoming result, we first consider the Euclidean case. For this, let γptq “ γp0q`t 9γp0q
and φptq “ φp0q ` t 9φptq be two straight lines. Then

|γptq ´ φptq|2 “ |γp0q ´ φp0q|2 ` 2tx 9γp0q ´ 9φp0q, γp0q ´ φp0qy ` t2| 9γptq ´ 9φptq|2.

It turns out that in a Riemannian manifold, this formula is analogous up to first
order. The curvature terms show up in the second order term. Before we prove this,
we first need a lemma.

Lemma 3.4.9. Let K Ă M be compact and fix L ą 0. Let 0 ă r ă ιpKq. Let
φ : r0, T s Ñ M and γ : r0, T s Ñ M be two geodesics contained in K. Assume that
dpφp0q, γp0qq ď r

2 and | 9φp0q|, | 9γp0q| ď L. Then there exists a t0 ą 0, only depending
on K,L and r, such that for all 0 ď t ď t0 we have

dpφptq, γptqq ă r.
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Proof. Because d : M ˆM Ñ R is continuous, and K ˆ K is compact, dp¨, ¨q is
uniformly continuous on K ˆ K. We can thus pick ε ą 0 such that |dpx, yq ´
dpx1, y1q| ă r

2 , whenever dpx, x
1q ă ε and dpy, y1q ă ε.

Now observe that dpφptq, φp0qq ď t| 9φp0q| ď tL and likewise dpγptq, γp0qq ď tL.
Hence, if we take t0 ă εL´1, then for all 0 ď t ď t0 we have dpφptq, φp0qq ă ε and
dpγptq, γp0qq ă ε. By the choice of ε, it follows that

|dpφp0q, γp0qq ´ dpφptq, γptqq| ă r

2 .

Since dpφp0q, γp0qq ď 1
2r, the above then implies that dpφptq, γptqq ă r as desired.

Proposition 3.4.10. Let K Ă M be compact and fix L ą 0. Let 0 ă r ă ιpKq
and fix t0 ą 0 as in Lemma 3.4.9. Let φ : r0, t0s Ñ M and γ : r0, t0s Ñ M be two
geodesics in K such that dpγp0q, φp0qq ď r

2 and | 9φp0q|, | 9γp0q| ď L. Finally, let K̃ be
a compact set containing all geodesics of minimal length between points in K. Then
for all 0 ď t ď t0 we have

dpγptq, φptqq2

ď dpγp0q, φp0qq2 ` 2txτ´1
φp0qγp0q 9γp0q ´ 9φp0q,Exp´1

φp0qγp0qy ` t
2Cp| 9γp0q| ` | 9φp0q|q,

where the constant C ą 0 only depends on K̃, L and r.

Proof. Define fptq “ dpγptq, φptqq2. By the choice of t0, Lemma 3.4.9 gives us that

dpφptq, γptqq ă r ă ιpKq

for every 0 ď t ď t0. This implies that φptq and γptq may be joined by a unique
geodesic of minimal length. Moreover, by restricting Exp, we have fptq “ |Exp´1

φptqγptq|
2.

Using this, we can compute

f 1ptq “
d
dt |Exp´1

φptqγptq|
2

“ 2x∇ 9φptqExp´1
φptqγptq,Exp´1

x0
γptqy.

Now define the variation of curves Γ : r0, t0s ˆ r0, 1s ÑM by

Γpt, sq “ ExpφptqpsExp´1
φptqγptqq.

Then for each t, the curve s ÞÑ Γpt, sq is the geodesic of minimal length between
φptq and γptq. Hence, Γpr0, t0s ˆ r0, 1sq Ă K̃. Furthermore, because Γ is a variation
of geodesics, the vector field

Jtpsq “ BtΓpt, sq

is a Jacobi field along the curve Γtpsq :“ Γpt, sq for all 0 ď t ď t0.
Now note that by the Symmetry Lemma (Lemma 3.1.3), we have

∇ 9φptqExp´1
φptqγptq “ DtBsΓpt, 0q “ DsBtΓpt, 0q “ 9Jtp0q.
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From this, we obtain

f 1ptq “ 2x 9Jtp0q,Exp´1
x0
γptqy “ 2x 9Jtp0q, BsΓpt, 0qy.

By Proposition 3.1.5 we find

f 1ptq “ 2x 9Jtp0q, BsΓpt, 0qy
“ 2xJtp1q, BsΓpt, 1qy ´ 2xJtp0q, BsΓpt, 0qy
“ 2x 9γptq,´Expγptqφptqy ´ 2x 9φptq,Exp´1

φptqγptqy

“ 2xτ´1
φptqγptq 9γptq ´ 9φptq,Exp´1

φptqγptqy.

In particular, we have

f 1p0q “ 2xτ´1
φp0qγp0q 9γp0q ´ 9φp0q,Exp´1

φp0qγp0qy.

By Taylor’s theorem, we find that

dpγptq, φptqq2

ď dpγp0q, φp0qq2 ` 2txτ´1
φp0qγp0q 9γp0q ´ 9φp0q,Exp´1

φp0qγp0qy `
1
2 t

2 sup
ξPr0,ts

|f2pξq|.

We now turn to estimating the residual term. For this, we compute f2ptq as follows:

1
2f
2ptq “

d
dtx 9γptq,´Expγptqφptqy ´

d
dtx

9φptq,Exp´1
φptqγptqy

“ ´x 9γptq,∇ 9γptqExp´1
γptqφptqy ´ x

9φptq,∇ 9φptqExp´1
φptqγptqy

“ x 9γptq, BtΓpt, 1qy ´ x 9φptq, BtΓpt, 0qy
“ x 9γptq, 9Jtp1qy ´ x 9φptq, 9Jtp0qy.

Here we used that ∇ 9φptq
9φptq “ ∇ 9γptq 9γptq “ 0, since φ and γ are geodesics. It follows

that
1
2 |f

2ptq| ď | 9γptq|| 9Jtp1q| ` | 9φptq|| 9Jtp0q| “ | 9γp0q|| 9Jtp1q| ` | 9φp0q|| 9Jtp0q|,

where we again used that γ and φ are geodesics. It follows that we are done once
we can bound | 9Jtp0q| and | 9Jtp1q|. For this, we first obtain a more specific expression
for the Jacobi field Jt. To this end, we define for every 0 ď t ď t0 the vector fields

J1
t psq “ dpExpφptqqsBsΓpt,0qps 9J1

t p0qq

and
J2
t psq “ dpExpγptqq´sBsΓpt,1qps 9J2

t p0qq,

where
9J1
t p0q “ dpExpφptqq´1

Exp´1
φptq

γptq
9γptq P TφptqM
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and likewise
9J2
t p0q “ dpExpγptqq´1

Exp´1
γptq

φptq
9φptq P TγptqM.

It follows from Proposition 3.1.4 that J1
t and J2

t are Jacobi fields along Γt. Note
that J1

t p0q “ J2
t p0q “ 0 and J1

t p1q “ 9γptq and J2
t p1q “ 9φptq. Because Jt is the unique

Jacobi field along Γt with Jtp0q “ 9φptq and Jtp1q “ 9γptq, it follows that

Jtpsq “ J1
t psq ` J

2
t p1´ sq.

Using the above decomposition, we show how to bound | 9Jtp0q|. The bound for
| 9Jtp1q| may be obtained similarly. By the triangle inequality, we have

| 9Jtp0q| ď | 9J1
t p0q| ` | 9J2

t p1q|.

Note that

| 9J1
t p0q| “ |dpExpφptqq´1

Exp´1
φptq

γptq
9γptq| ď |dpExpφptqq´1

Exp´1
φptq

γptq
|| 9γptq|.

Therefore, by Lemma 3.4.2 there exists a constant C ą 0 only depending on K and
r (since |Exp´1

φptqγptq| “ dpφptq, γptqq ď r) such that

| 9J1
t p0q| ď C| 9γptq| “ C| 9γp0q|.

For the other term, it follows from Proposition 3.1.6 that

| 9J2
t p1q| ď | 9J2

t p0q| ` sup
sPr0,1s

|RΓpt,sqpJ
2
t psq, BsΓpt, sqqBsΓpt, sq|

ď C| 9φp0q| ` |BsΓpt, 0q|2 sup
sPr0,1s

|Rψtpsq||J
2
t psq|

ď C| 9φp0q| ` C̃dpγptq, φptqq2 sup
sPr0,1s

|J2
t psq|

ď C| 9φp0q| ` C̃r2 sup
sPr0,1s

|J2
t psq|.

Here we used in the second line again Lemma 3.4.2 as above, together with the
fact that the curves Γtpsq are geodesics. Furthemore, we used that the curvature is
continuous, and hence bounded on compact sets, so that C̃ only depends on K̃, since
the variation Γ is contained in K̃. In the last line, we used that dpγptq, φptqq ď r for
all 0 ď t ď t0 by choice of t0.
Finally, we have for any s P r0, 1s

|J2
t psq| “ |dpExpγptqq´sBsΓpt,1qps 9J2

t p0qq|

ď s|dpExpγptqq´sBsΓpt,1q|| 9J2
t p0qq|

ď C 1| 9φp0q|,
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where in the last line we used Lemma 3.4.1. Collecting everything, there exists a
constant C ą 0, only depending on K̃ and r, such that

| 9J2
t p1q| ď C| 9φp0q|.

Putting everything together, we find that

| 9Jtp0q| ď | 9J1
t p0q| ` | 9J2

t p1q| ď Cp| 9γp0q| ` | 9φp0q|q

for some C ą 0 only depending on K̃ and r. Obtaining a similar bound for | 9Jtp1q|
now proves the claim.

3.4.4. Minimizing trajectories for convex functionals
In this section we generalize the result that if F : RN Ñ R is convex, the integral

Ipγq “

ż 1

0
F p 9γptqqdt

considered for curves with γp0q “ x and γp1q “ y is minimized by the straight line
connecting x and y.
In the context of Riemannian geometry, this concept arises naturally when mini-
mizing the Riemannian distance between points x, y P M . Indeed, the distance is
given by (see Section 2.2)

dpx, yq2 “ inf
"
ż 1

0
| 9γptq|2

ˇ

ˇ

ˇ

ˇ

γ : r0, 1s ÑM,γp0q “ x, γp1q “ y, γ piecewise smooth
*

.

It can be shown that the optimal trajectories for the distance between x and y are
geodesics, see e.g. [69, Chapter 6]. Note that in this case, we consider the integral
of the function F : TM Ñ R given by F px, vq “ |v|2gpxq. For every x P M , the map
v ÞÑ F px, vq is strictly convex. Furthermore, F is invariant under parallel transport
in the sense that for all x, y P M and v P TxM we have F px, vq “ F py, τxyvq. The
next result states that these two conditions on F are in general sufficient to conclude
that geodesics are minimizing trajectories for the integral of F .

Proposition 3.4.11. Let F : TM Ñ R be a smooth function satisfying the following
properties:

1. For every x PM , the map F px, ¨q : TxM Ñ R is strictly convex.

2. For every x, y PM and smooth curve γ connecting x and y, we have

F px, vq “ F py, τxy;γvq

for all v P TxM .

Define the functional I by

Ipγq :“
ż 1

0
F pγptq, 9γptqqdt.
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Then for any x, y PM we have

inftIpγq|γ : r0, 1s ÑM,γp0q “ x, γp1q “ y, γ piecewise smoothu
“ inftIpγq|γ : r0, 1s ÑM,γp0q “ x, γp1q “ y, γ geodesicu
“ inftF pvq|v P Exp´1

x yu.

Before we get to the proof, we first need a lemma.

Lemma 3.4.12. Let F be as in Proposition 3.4.11. Fix x, y PM and let γ : r0, 1s Ñ
M be any curve with γp0q “ x and γp1q “ y. Denote by τxy parallel transport from
TxM to TyM along γ. For every x PM , define Fx : TxM Ñ R by Fxpvq :“ F px, vq.
Then for any v P TxM we have

τxy∇Fxpvq “ ∇Fypτxyvq.

Proof. By the consistency property 2 of F we have Fx “ Fy ˝ τxy. Applying the
chain rule, we find

dFxpvq “ dpFy ˝ τxyqpvq “ dFypτxyvq ˝ dτxypvq “ dFypτxyvq ˝ τxy.

Here we used in the final step that τxy is linear. But then we find for every w P TxM
that

x∇Fxpvq, wy “ dFxpvqpwq “ dFypτxyvqpτxywq
“ x∇Fypτxyvq, τxywy “ xτyx∇Fypτxyvq, wy.

This implies that ∇Fxpvq “ τyx∇Fypτxyvq, from which the desired equality follows
by applying τxy.

We now turn to the proof of Proposition 3.4.11. The proof is similar to the vari-
ational approach in proving that geodesics are optimal trajectories for the length
functional, see e.g. [69, Chapter 6]. For the notation from the calculus of variations,
we refer to Section 3.1.1.

Proof of Proposition 3.4.11. Fix x, y P M and let γ : r0, 1s Ñ M be a curve with
γp0q “ x and γp1q “ y. Let Γ : p´ε, εq Ñ M be a variation of γ with Γps, 0q “ x
and Γps, 1q “ y for all s P p´ε, εq. If γ minimizes I, then

d
ds

ˇ

ˇ

ˇ

s“0
IpΓps, ¨qq “ 0.

On the other hand, we have

d
dsIpΓps, ¨qq “

ż 1

0

d
dsF pΓps, tq, BtΓps, tqqdt.

Hence, we need to compute

d
dsF pΓps, tq, BtΓps, tqq.
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Note that for every s P p´ε, εq we have

F pΓps, tq, BtΓps, tqq “ F pγptq, τΓps,tqΓp0,tqBtΓps, tqq.

Using this, we compute

d
dsF pΓps, tq, BtΓps, tqq “

d
dsF pγptq, τΓps,tqΓp0,tqBtΓps, tqq

“

B

∇Fγptq
`

τΓps,tqΓp0,tqBtΓps, tq
˘

,
d
dsτΓps,tqΓp0,tqBtΓps, tq

F

.

Now

d
dsτΓps,tqΓp0,tqBtΓps, tq “ lim

hÑ0

τΓps`h,tqΓp0,tqBtΓps` h, tq ´ τΓps,tqΓp0,tqBtΓps, tq
h

“ τΓps,tqΓp0,tq lim
hÑ0

τΓps`h,tqΓps,tqBtΓps` h, tq ´ BtΓps, tq
h

“ τΓps,tqΓp0,tqDsBtΓps, tq.

Combining the above equations, we find

d
dsF pΓps, tq, BtΓps, tqq “

@

∇Fγptq
`

τΓps,tqΓp0,tqBtΓps, tq
˘

, τΓps,tqΓp0,tqDsBtΓps, tq
D

“
@

∇FΓps,tq pBtΓps, tqq , DsBtΓps, tq
D

“
@

∇FΓps,tq pBtΓps, tqq , DtBsΓps, tq
D

.

Here, the one but last line follows from Lemma 3.4.12. The last line follows from
the Symmetry lemma (Lemma 3.1.3).
Now define the variational vector field V ptq of Γ by V ptq “ BsΓp0, tq. Then for s “ 0
we obtain

d
ds

ˇ

ˇ

ˇ

s“0
F pΓps, tq, BtΓps, tqq “

@

∇Fγptqp 9γptqq,∇ 9γptqV ptq
D

.

Collecting everything, we obtain

0 “ d
ds

ˇ

ˇ

ˇ

s“0
IpΓps, ¨qq

“

ż 1

0

@

∇Fγptqp 9γptqq,∇ 9γptqV ptq
D

dt

“

ż 1

0

d
dtx∇Fγptqp 9γptqq, V ptqy ´

@

∇ 9γptq∇Fγptqp 9γptqq, V ptq
D

dt

“ x∇Fγp1qp 9γp1qq, V p1qy ´ x∇Fγp0qp 9γp0qq, V p0qy ´
ż 1

0

@

∇ 9γptq∇Fγptqp 9γptqq, V ptq
D

dt

“ ´

ż 1

0

@

∇ 9γptq∇Fγptqp 9γptqq, V ptq
D

dt,
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because V p0q “ V p1q “ 0, since Γps, 0q “ x and Γps, 1q “ y for all s P p´ε, εq.

Now pick ϕ : r0, 1s Ñ R smooth with ϕp0q “ ϕp1q “ 0 and ϕptq ą 0, t P p0, 1q.
Consider the vector field V ptq “ ϕptq∇ 9γptq∇Fγptqp 9γptqq. Constructing Γ with this
variational vector field, we obtain

0 “ ´
ż 1

0
ϕptq|∇ 9γptq∇Fγptqp 9γptqq|2 dt

from which it follows that
∇ 9γptq∇Fγptqp 9γptqq “ 0

for all t P r0, 1s. We thus have that ∇Fγptqp 9γptqq is parallel along γptq, i.e.

τγptqγp0q∇Fγptqp 9γptqq “ ∇Fγp0qp 9γp0qq.

On the other hand, by Lemma 3.4.12 we have

τγptqγp0q∇Fγptqp 9γptqq “ ∇Fγp0qpτγptqγp0q 9γptqq.

Because Fγp0q is strictly convex, its derivative is injective, so that

∇Fγp0qp 9γp0qq “ ∇Fγp0qpτγptqγp0q 9γptqq

implies that
9γp0q “ τγptqγp0q 9γptq.

As this holds for all t P r0, 1s, we conclude that γ is a geodesic.

3.5. Proof of Cramér’s theorem for geodesic random
walks

In this section we provide a proof of Cramér’s theorem for geodesic random walks
with independent and identically distributed increments, which are bounded and
have expectation 0. The proof relies on an analysis of the geometric properties of
a geodesic random walk. To prove the theorem, we follow the steps as discussed in
Section 3.3. We provide the details and show how we use the geometric results from
Section 3.4. For completeness, let us recall the statement of the theorem.

Theorem 3.5.1 (Cramér’s theorem for Riemannian manifolds). Let pM, gq be a
complete Riemannian manifold. Fix x0 P M and let tµxuxPM be a collection of
measures such that µx P PpTxMq for all x PM . For every n ě 1, let tp 1

n ˚ Sqjujě0
be a 1

n -rescaled geodesic random walk started at x0 with independent increments
tXn

j ujě1, compatible with tµxuxPM . Let tp 1
n ˚ Sqnuně0 be the associated empiri-

cal average process started at x0. Assume the increments are bounded and have
expectation 0. Assume furthermore that the collection tµxuxPM satisfies the consis-
tency property in Definition 3.2.7. Then tp 1

n ˚ Sqnuně0 satisfies the large deviation
principle in M with good rate function

IM pxq “ inftΛ˚x0
pvq|v P Exp´1

x0
xu. (3.5.1)
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In Section 3.5.1 we prove the upper bound of the large deviation principle for
tp 1
n ˚ Sqnuně1 in M , while in Section 3.5.2 we prove the lower bound. More

specifically, Theorem 3.5.1 follows immediately from Proposition 3.5.8 together with
Proposition 3.5.10.

However, before we can prove the upper and lower bound of the large deviation
principle for tp 1

n ˚ Sqnuně1, we first need some general results and estimates. From
here on, we fix r ą 0 to be the uniform bound on the increments of the random
walk. By the triangle inequality, we find

d

ˆˆ

1
n
˚ S

˙

k

, x0

˙

ď
1
n

k
ÿ

l“1
|Xn

k | ď
k

n
r ď r

for all 0 ď k ď n. Therefore, for every n ě 0 and 1 ď k ď n we have
ˆ

1
n
˚ S

˙

k

P Bpx0, rq “: K.

By completeness of M , K is compact since it is closed and bounded.
Now consider the process Zn in Tx0M given by

Zn “
1
n

n
ÿ

k“1
τ´1
x0p

1
n˚Sqk´1

Xn
k .

Here, the parallel transport τx0p
1
n˚Sqk´1

is considered along the piecewise geodesic
path traced out by the geodesic random walk. From Cramér’s theorem for vector
spaces it follows that tZnuně0 satisfies the large deviation principle in Tx0M , which
we will show in the following proposition.

Proposition 3.5.2. Let the assumptions of Theorem 3.5.1 be satisfied. For every
n ě 0, define Zn “ 1

n

řn
k“1 τ

´1
x0p

1
n˚Sqk´1

Xn
k P Tx0M . Let Λx0pλq “ logEpexλ,X1yq be

the log moment generating function of the increments. Then tZnuně0 satisfies the
large deviation principle in Tx0M with good rate function

Ipvq “ Λ˚x0
pvq :“ sup

λPTx0M
txλ, vy ´ Λx0pλqu.

Proof. Define Y nk “ τ´1
x0p

1
n˚Sqk´1

Xn
k P Tx0M . We compute for any λ P Tx0M

Epexλ,Y
n
k yq “ E

ˆ

E
ˆ

e
xλ,τ´1

x0p 1
n
˚Sqk´1

Xnk y
ˇ

ˇ

ˇ

ˇ

Fk´1

˙˙

“ E

¨

˝

ż

T
p 1
n
˚Sqk´1

M

e
xλ,τ´1

x0p 1
n
˚Sqk´1

vy
µp 1

n˚Sqk´1
pdvq

˛

‚

“ E

˜

ż

Tx0M

exλ,vyµx0pdvq
¸
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“

ż

Tx0M

exλ,vyµx0pdvq.

Here we used in the second line that τ´1
x0p

1
n˚Sqk´1

is measurable with respect to Fk´1,
together with the fact that the increments are independent (see Definition 3.2.3). In
the third line we applied Proposition 3.2.9, using that the increments are identically
distributed. It follows that Y nk is distributed according to µx0 .
As a consequence, the result follows from Cramér’s theorem (Theorem 2.1.10) once
we show that Y nk and Y nl are independent whenever k ‰ l. To this end, assume
without loss of generality that l ă k. Then for measurable sets A,B Ă Tx0M we
find in a similar way as above that

PpY nl P A, Y nk P Bq
“ EpIpY nl P AqEpIpY nk P Bq|Fk´1qq

“ E

¨

˝IpY nl P Aq

ż

T
p 1
n
˚Sqk´1

M

I
´

τ´1
x0p

1
n˚Sqk´1

v P B
¯

µp 1
n˚Sqk´1

pdvq

˛

‚

“ E

˜

IpY nl P Aq

ż

Tx0M

I pv P Bqµx0pdvq
¸

“ EpIpY nl P AqqEpIpY nk P Bqq
“ PpY nl P AqPpY nk P Bq,

where I denotes the indicator function. Above, we used in the one but last line
that Y nk is distributed according to µx0 . We conclude that the Y nl and Y nk are
independent.

Remark 3.5.3. Note that in the proof of Proposition 3.5.2 we did not use along which
path we performed the parallel transport τ´1

x0p
1
n˚Sqk´1

, only that it was measurable
with respect to Fk´1. Therefore, the result holds for any choice of parallel transport,
as long as it is measurable with respect to Fk´1.

Proposition 3.5.2 suggests we should try to map the sequence tp 1
n ˚ Sqnuně0 from

M to Tx0M in such a way that it will be close to the sequence tZnuně0.
To this end, recall that if we assume that r ă ιpx0q, then for all n and all 0 ď k ď n
we can uniquely define

vnk P Exp´1
x0

ˆˆ

1
n
˚ S

˙

k

˙

Ă Tx0M

with |vnk | ă ιpx0q, because dpp 1
n ˚ Sqk, x0q ď r ă ιpx0q.

As explained in Step 2 of Section 3.3.2, we have the following estimate. The first term
of the upper bound in (3.5.2) follows from replacing vln with a sum of differentials
of the Riemannian exponential map, while the second term follows from replacing
these differentials with parallel transport.
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Proposition 3.5.4. Let the assumptions of Theorem 3.5.1 be satisfied. Addition-
ally, let r be the uniform bound of the increments and assume that r ă ιpx0q. Then
there exists a constant C ą 0 such that

ˇ

ˇ

ˇ

ˇ

ˇ

vnl ´
1
n

l
ÿ

k“1
τ´1
x0p

1
n˚Sqk´1

Xn
k

ˇ

ˇ

ˇ

ˇ

ˇ

ď C
l

n2 ` Cr
2 l

3

n3 (3.5.2)

for all n and all 1 ď l ď n.

Proof. Recall that for all n and all 0 ď k ď n we have that p 1
n ˚Sqk is in the compact

set K “ Bpx0, rq. This implies that

vnk P Bp0, rq Ă Tx0M

for all n and all 0 ď k ď n. But then it follows from Proposition 3.4.4 that for every
0 ď k ď n there exists a constant Ck ą 0 only depending on the norms of vnk , vnk`1
and Xn

k such that
ˇ

ˇ

ˇ

ˇ

vnk`1 ´

ˆ

vnk `
1
n

dpExpx0q
´1
vn
k
Xn
k`1

˙
ˇ

ˇ

ˇ

ˇ

ď Ck
1
n2 . (3.5.3)

Because each of the norms |vnk |, |vnk`1| and |Xn
k | are bounded by r, we conclude that

we can take Ck “ C independent of k.

Turning to the proof of the statement, by the triangle inequality we have
ˇ

ˇ

ˇ

ˇ

ˇ

vnl ´
1
n

l
ÿ

k“1
τ´1
x0p

1
n˚Sqk´1

Xn
k

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

vnl ´
1
n

l
ÿ

k“1
dpExpx0q

´1
vn
k´1

Xn
k

ˇ

ˇ

ˇ

ˇ

ˇ

`
1
n

l
ÿ

k“1

ˇ

ˇ

ˇ
dpExpx0q

´1
vn
k´1

Xn
k ´ τ

´1
x0p

1
n˚Sqk´1

Xn
k

ˇ

ˇ

ˇ
.

We estimate both terms separately.
For the first term, we write vnl as the telescoping sum

vnl “
l
ÿ

k“1
pvnk ´ v

n
k´1q.

Using this, we obtain
ˇ

ˇ

ˇ

ˇ

ˇ

vnl ´
1
n

l
ÿ

k“1
dpExpx0q

´1
vn
k´1

Xn
k

ˇ

ˇ

ˇ

ˇ

ˇ

ď

l
ÿ

k“1
|vnk ´ v

n
k´1 ´ dpExpx0q

´1
vn
k´1

Xn
k |

ď C
l

n2 ,

where the last line follows from the estimate in (3.5.3).
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For the other term, observe that by Corollary 3.4.8, there exists a constant C ą 0
only depending on the compact set Bp0, rq and r, such that

|dpExpx0q
´1
vn
k´1

Xn
k ´ τ

´1
x0p

1
n˚Sqk´1

Xn
k | ď C|vnk´1|

2

But then we find

1
n

l
ÿ

k“1
|dpExpx0q

´1
vn
k´1

Xn
k ´ τ

´1
x0p

1
n˚Sqk´1

Xn
k | ď C

1
n

l
ÿ

k“1
|vnk´1|

2

ď Cr2 l
3

n3 ,

where in the last line we used that |vnk´1| ď r k´1
n ď r ln for any 1 ď k ď l.

One might hope to combine Propositions 3.5.2 and 3.5.4 to prove that tvnnuně0
satisfies in Tx0M the large deviation principle. Unfortunately, the upper bound
found in Proposition 3.5.4 gives an unwanted contribution on the exponential scale.
Indeed, taking l “ n, we find that the upper bound in (3.5.2) is Op1q, which results
in the fact that we get stuck with a constant as explained in Step 1 of Section 3.3.2.
In an attempt to reduce this term in the upper bound, we cut up the random walk
in finitely many pieces and analyse the pieces separately.
To this end, recall that

d

ˆˆ

1
n
˚ S

˙

k

, x0

˙

ď
1
n

k
ÿ

l“1
|Xn

k | ď
k

n
r.

Now observe that ιpBpx0, rqq ą 0, because Bpx0, rq is compact (see (3.1.1) for the
definition of the injectivity radius of a set). Therefore, if k ď nιpBpx0,rqq

2r , then

d

ˆˆ

1
n
˚ S

˙

k

, x0

˙

ď
ιpBpx0, rqq

2 ă ιpBpx0, rqq. (3.5.4)

Now let m P N such that m ě 2r
ιpBpx0,rqq

. For 0 ď l ď m´ 1 we define nl “ ltm´1nu

and nm “ n. By (3.5.4), for every 0 ď l ď m ´ 1 and 1 ď k ď nl`1 ´ nl we can
uniquely define

ṽn,m,lk P Exp´1
p 1
n˚Sqnl

˜

ˆ

1
n
˚ S

˙

nl`k

¸

Ă Tp 1
n˚Sqnl

M (3.5.5)

with |ṽn,m,lk | ă ιpp 1
n ˚Sqnlq, because nl`1´nl ď nm´1 ď

nιpBpx0,rqq
2r . Finally, we set

vn,m,lk “ τ´1
x0p

1
n˚Sqnl

ṽn,m,lk P Tx0M,

where parallel transport τ´1
x0p

1
n˚Sqnl

is taken along the piecewise geodesic path through
the points p 1

n ˚ Sqn1 , . . . , p
1
n ˚ Sqnl´1 .
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Alongside this division of the random walk into pieces, we define a map Ψm :
pTx0Mq

m Ñ M to identify the tuple pvn,m,1
tm´1nu

, . . . , vn,m,m
tm´1nu

q with p 1
n ˚ Sqn, just

like we used the Riemannian exponential map to identify vnn and p 1
n ˚ Sqn before.

Essentially, Ψm is an m time recursive application of the Riemannian exponential
map.
More precisely, let pv1, . . . , vmq P pTx0Mq

m be given and define x1 “ Expx0pv1q.
Now, suppose x1, . . . , xi are given. Denote by τx0xi parallel transport along the con-
structed piecewise geodesic path via x1, . . . , xi´1. Then we define ṽi`1 “ τx0xivi`1
and set xi`1 “ Expxipṽi`1q. Finally, we define Ψmpv1, . . . , vmq “ xm. In particular,
we have for every x PM and v P Exp´1

x0
x that p 1

mv, . . . ,
1
mvq P Ψ´1

m x. To see this, ob-
serve that the path that Ψm constructs is precisely the geodesic γvptq “ Expx0ptvq,
because the speed of a geodesic is parallel along the geodesic. Furthermore, the map
Ψm is continuous as a composition of continuous maps.
Remark 3.5.5. Strictly speaking, if we divide the random walk into m pieces as
above, for the last piece we can only guarantee that it has at most tm´1nu ` m
increments, since n need not be divisible by m. Additionally, this implies that
Ψmpv

n,m,1
tm´1nu

, . . . , vn,m,m
tm´1nu

q is only equal to
` 1
n ˚ S

˘

n
when n is divisible by m. How-

ever, for every m P N it holds that

d

ˆ

Ψmpv
n,m,1
tm´1nu

, . . . , vn,m,m
tm´1nu

q,

ˆ

1
n
˚ S

˙

n

˙

“ O
ˆ

1
n

˙

.

Since in the proofs to follow we always first let n tend to infinity before m, this
has no influence on the results and arguments. Therefore, to avoid unnecessarily
complicated notation and reasoning, we proceed with the above.

3.5.1. Upper bound of the large deviation principle for the
sequence tp 1

n
˚ Sqnuně0

In this section we prove the large deviation upper bound for tp 1
n ˚ Sqnuně0. Before

we can do this, we first need some preliminary results.

Proposition 3.5.6 (Upper bound for Epenxλ,vnnyq). Let the assumptions of Theorem
3.5.1 be satisfied. Additionally, let r be the uniform bound of the increments and
assume that r ă ιpx0q. Then there exists a constanct C ą 0 such that for all n and
all 1 ď l ď n

Epenxλ,v
n
l yq ď eln

´1
|λ|Ce|λ|Cr

2l3n´2
Mx0pλq

l

for all λ P Tx0M . Here, Mx0pλq “
ş

Tx0M
exλ,vyµx0pdvq.

Proof. By Proposition 3.5.4 and the Cauchy-Schwarz inequality, there exists a con-
stant C ą 0 such that

xλ, vnl y ´
1
n

l
ÿ

k“1
xλ, τ´1

x0p
1
n˚Sqk´1

Xn
k y ď |λ|

ˇ

ˇ

ˇ

ˇ

ˇ

vnl ´
1
n

l
ÿ

k“1
τ´1
x0p

1
n˚Sqk´1

Xn
k

ˇ

ˇ

ˇ

ˇ

ˇ

ď C|λ|
l

n2 ` C|λ|r
2 l

3

n3 .
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But then we can estimate

E
´

enxλ,v
n
l y
¯

“ E
ˆ

e

řl
k“1 xλ,τ

´1
x0p 1

n
˚Sqk´1

Xnk y
e
nxλ,vnl y´

řl
k“1 xλ,τ

´1
x0p 1

n
˚Sqk´1

Xnk y
˙

ď eC|λ|ln
´1
eC|λ|r

2l3n´2
E
ˆ

e

řl
k“1 xλ,τ

´1
x0p 1

n
˚Sqk´1

Xnk y
˙

.

As shown in the proof of Proposition 3.5.2, for every 1 ď k ď n we have that
τ´1
x0p

1
n˚Sqk´1

Xn
k is distributed accodring to µx0 and is independent of τ´1

x0p
1
n˚Sql´1

Xn
l

for any l ‰ k. Consequentely, we find that

E
ˆ

e

řl
k“1 xλ,τ

´1
x0p 1

n
˚Sqk´1

Xnk y
˙

“

l
ź

k“1
E
ˆ

e
xλ,τ´1

x0p 1
n
˚Sqk´1

Xnk y
˙

“Mx0pλq
l,

where the last step follows from Proposition 3.2.9.

Using Proposition 3.5.6, we obtain the following inequality, which is key in deriving
the large deviation upper bound for tp 1

n ˚ Sqnuně0.

Proposition 3.5.7. Let the assumptions of Theorem 3.5.1 be satisfied. Denote by
r the uniform bound on the increments of the geodesic random walk. Then for any
m P N such that m ě 2r

ιpBpx0,rqq
and any closed F Ă pTx0Mq

m we have

lim sup
nÑ8

1
n

logP
´´

vn,m,1
tm´1nu

, . . . , vn,m,m
tm´1nu

¯

P F
¯

ď ´ inf
pv1,...,vmqPF

sup
pλ1,...,λmqPpTx0Mq

m

1
m

m
ÿ

i“1

 

xλi,mviy ´ Λx0pλiq ´m
´2C|λi|r

2( .

Here, C is a constant depending on the curvature of the compact set Bp0, rq and the
bound r.

Proof. We first prove the upper bound for compact sets, so let Γ Ă pTx0Mq
m be

compact. Following the proof of Cramér’s theorem (see e.g. [29, 56]) for the vector
space pTx0Mq

m, we have

lim sup
nÑ8

1
n

logP
´´

vn,m,1
tm´1nu

, . . . , vn,m,m
tm´1nu

¯

P Γ
¯

ď ´ inf
pv1,...,vmqPΓ

sup
pλ1,...,λmqPpTx0Mq

m

#

m
ÿ

i“1
xλi, viy ´ lim sup

nÑ8

1
n

logE
ˆ

e
n
řm
i“1xλi,v

n,m,i

tm´1nu
y

˙

+

.

Recall that for 0 ď i ď m´ 1 we write ni “ itm´1nu and nm “ n. By Proposition
3.5.4 (which we may apply, because m is chosen large enough) there exists a C ą 0
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such that for any 1 ď i ď m we have
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ṽn,m,i
tm´1nu

´
1
n

ni
ÿ

k“ni´1`1
τ´1
p 1
n˚Sqni´1 p

1
n˚Sqk

Xn
k

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď C
tm´1nu

n2 ` Cr2 tm´1nu3

n3

ď C
1
nm

` Cr2 1
m3 .

But then we also have that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

vn,m,i
tm´1nu

´
1
n
τ´1
x0p

1
n˚Sqni´1

ni
ÿ

k“ni´1`1
τ´1
p 1
n˚Sqni´1 p

1
n˚Sqk

Xn
k

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď C
1
nm

`Cr2 1
m3 , (3.5.6)

because parallel transport is an isometry.
Now define

Y ni “ τ´1
x0p

1
n˚Sqni´1

ni
ÿ

k“ni´1`1
τ´1
p 1
n˚Sqni´1 p

1
n˚Sqk

Xn
k P Tx0M.

Using (3.5.6), it follows from the Cauchy-Schwarz inequality and the triangle in-
equality that

ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

i“1
xλi, v

n,m,i
tm´1nu

y ´
1
n

m
ÿ

i“1
xλi, Y

n
i y

ˇ

ˇ

ˇ

ˇ

ˇ

ď C

ˆ

1
nm

` r2 1
m3

˙ m
ÿ

i“1
|λi|.

As a consequence, we find that

E
ˆ

e
n
řm
i“1xλi,v

n,m,i

tm´1nu
y

˙

ď eCm
´1 řm

i“1 |λi|eCr
2m´3n

řm
i“1 |λi|E

´

e
řm
i“1xλi,Y

n
i y
¯

.

Now note that, like in the proof of Proposition 3.5.2, we can show that for i ‰ j the
random variables Y ni and Y nj are independent. Therefore, we have that

E
´

e
řm
i“1xλi,Y

n
i y
¯

“

m
ź

i“1
E
´

exλi,Y
n
i y
¯

.

Moreover, again following the proof of Proposition 3.5.2, one can show that

E
´

exλi,Y
n
i y
¯

“Mx0pλiq
tm´1nu.

Combining everything, we find that

lim sup
nÑ8

1
n

logE
ˆ

e
n
řm
i“1xλi,v

n,m,i

tm´1nu
y

˙

ď lim sup
nÑ8

#

C

mn

m
ÿ

i“1
|λi| `

Cr2

m3

m
ÿ

i“1
|λi| `

tm´1nu

n

m
ÿ

i“1
Λx0pλiq

+
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“
Cr2

m3

m
ÿ

i“1
|λi| `

1
m

m
ÿ

i“1
Λx0pλiq.

Putting everything together, we obtain

lim sup
nÑ8

1
n

logP
´´

vn,m,1
tm´1nu

, . . . , vn,m,m
tm´1nu

¯

P Γ
¯

ď ´ inf
pv1,...,vmqPΓ

sup
pλ1,...,λmqPpTx0Mq

m

m
ÿ

i“1

 

xλi, viy ´m
´1Λx0pλiq ´m

´3Cr2|λi|
(

.

This concludes the proof of the upper bound for compact sets.
To extend the upper bound to all closed sets, one should simply notice that

´

vn,m,1
tm´1nu

, . . . , vn,m,m
tm´1nu

¯

P Bp0, rq
m

almost surely, where r is the uniform bound of the increments. SinceM is complete,
Bp0, rq

m
is compact, so that the sequence is exponentially tight.

It now remains to transfer the upper bound in Proposition 3.5.7 for the process
in pTx0Mq

m related to t
` 1
n ˚ S

˘

n
uně0 to the upper bound of the large deviation

principle for t
` 1
n ˚ S

˘

n
uně0. With all preparations done, the only thing that remains

to be shown, is that the upper bound has the desired form.

Proposition 3.5.8. Let the assumptions of Theorem 3.5.1 be satisfied. Then for
any F ĂM closed we have

lim sup
nÑ8

1
n

logP
ˆˆ

1
n
˚ S

˙

n

P F

˙

ď ´ inf
xPF

IM pxq,

where
IM pxq “ inftΛ˚x0

pvq|v P Exp´1
x0
xu.

Proof. Let F Ă M be closed and pick m P N such that m ě 2r
ιpBpx0,rqq

, where r
denotes the uniform bound of the increments. Let Ψm : pTx0Mq

m Ñ M be the
recursive application of the Riemannian exponential map defined just above Section
3.5.1. Because Ψm is continuous, we have that Ψ´1

m F Ă pTx0Mq
m is closed. Hence,

by Proposition 3.5.7 we find that

lim sup
nÑ8

1
n

logP
ˆˆ

1
n
˚ S

˙

n

P F

˙

ď lim sup
nÑ8

1
n

logP
´´

vn,m,1
tm´1nu

, . . . , vn,m,m
tm´1nu

¯

P Ψ´1
m F

¯

ď ´ inf
pv1,...,vmqPΨ´1

m F
sup

pλ1,...,λmqPpTx0Mq
m

1
m

m
ÿ

i“1

 

xλi,mviy ´ Λx0pλiq ´m
´2Cr2|λi|

(

.
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Now observe that for every λ P Tx0M we have |λ| ď |λ|2 ` 1. Plugging this into the
above estimate, keeping in mind the minus sign in front, we find that

lim sup
nÑ8

1
n

logP
ˆˆ

1
n
˚ S

˙

n

P F

˙

ď
Cr2

m2 ´ inf
pv1,...,vmqPΨ´1

m F
sup

pλ1,...,λmqPpTx0Mq
m

1
m

m
ÿ

i“1

 

xλi,mviy ´ Λx0pλiq ´m
´2Cr2|λi|

2( .

We now focus on the infimum in the above expression. The necessity of replacing
|λ| with |λ|2, and making the upper bound slightly worse, will become clear when
we try to calculate this infimum further.
First, consider the map Λm : Tx0M Ñ R defined by

Λmpλq “ Λx0pλq `
1
m2Cr

2|λ|2.

and denote by Λ˚m its Legendre transform. Then

sup
pλ1,...,λmqPpTx0Mq

m

1
m

m
ÿ

i“1

 

xλi,mviy ´ Λx0pλiq ´m
´2Cr2|λi|

(

“
1
m

m
ÿ

i“1
Λ˚mpmviq.

The latter may be interpreted as
ż 1

0
Λ˚mp 9γmptqqdt,

where γm is piecewise geodesic on intervals of the form r
pi´1q
m , im s with speed mṽi,

where ṽi “ τ
x0γmp

pi´1q
m q

vi.
Now note that since Λx0 is differentiable and convex, we find that Λm is differentiable
and strictly convex. Furthermore, we have for every u P Tx0M that

Λ˚mpuq “ sup
λPTx0M

"

xλ, uy ´ Λx0pλq ´
1
m2Cr

2|λ|2
*

ď sup
λPTx0M

"

xλ, uy ´
1
m2Cr

2|λ|2
*

ă 8.

Here we used that Λx0 is non-negative, because the expectation of µx0 is 0. We
conclude that Λ˚m is everywhere finite. Note that this does not contradict the fact
that the rate function might be infinite, since Λ˚m merely provides a lower bound
of the rate function. Because Λ˚m is everywhere finite, it follows from Lemma 3.8.1
that Λ˚m is strictly convex and differentiable.
The above shows that we can apply Proposition 3.4.11, giving us that minimizing
trajectories for the functional

ż 1

0
Λ˚mp 9γptqqdt
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are geodesics. Because for every x P F and every v P Exp´1
x0
x we have that

p 1
mv, . . . ,

1
mvq P Ψ´1

m F , we find that

´ inf
pv1,...,vmqPΨ´1

m F
sup

pλ1,...,λmqPpTx0Mq
m

1
m

m
ÿ

i“1

 

xλi,mviy ´ Λx0pλiqu ´m
´2Cr2|λi|

2(

“ ´ inf
vPExp´1

x0 F
sup

λPTx0M

 

xλ, vy ´ Λx0pλq ´m
´2Cr2|λ|2

(

.

Now note that

lim
mÑ8

sup
λPTx0M

 

xλ, vy ´ Λx0pλq ´m
´2Cr2|λ|2

(

“ sup
λPTx0M

lim
mÑ8

 

xλ, vy ´ Λx0pλq ´m
´2Cr2|λ|2

(

(3.5.7)

“ sup
λPTx0M

txλ, vy ´ Λx0pλqu ,

because Λmpλq “ xλ, vy´Λx0pλq´m
´2Cr2|λ|2 is increasing inm for every λ P Tx0M .

Furthermore, we have

xλ, vy ´ Λx0pλq ´m
´2Cr2|λ| ě xλ, vy ´ r|λ| ´m´2Cr2|λ|2,

because the support of µx0 is contained in Bp0, rq. Furthermore, one may compute
that if |v| ą r, then

sup
λPTx0M

 

xλ, vy ´ r|λ| ´m´2Cr2|λ|2
(

“
m2

4Cr2 p|v| ´ rq
2. (3.5.8)

Now write

Exp´1
x0
F “

´

Exp´1
x0
F XBp0, 2rq

¯

Y

´

Exp´1
x0
F XBp0, 2rq

C
¯

.

Note that by (3.5.8), we find that

lim
mÑ8

inf
vPExp´1

x0 FXBp0,2rq
C

sup
λPTx0M

 

xλ, vy ´ Λx0pλq ´m
´2Cr2|λ|2

(

ě lim
mÑ8

inf
vPExp´1

x0 FXBp0,2rq
C

sup
λPTx0M

 

xλ, vy ´ r|λ| ´m´2Cr2|λ|2
(

ě lim
mÑ8

m2

4Cr2 r
2

“ 8,

where we used in the one but last line that |v| ě 2r. Also, because |v| ě 2r ě r, we
have

sup
λPTx0M

txλ, vy ´ Λx0pλqu “ 8,

so that
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lim
mÑ8

inf
vPExp´1

x0 FXBp0,2rq
C

sup
λPTx0M

 

xλ, vy ´ Λx0pλq ´m
´2Cr2|λ|2

(

“ inf
vPExp´1

x0 FXBp0,2rq
C

sup
λPTx0M

txλ, vy ´ Λx0pλqu .

For the other part, because Exp´1
x0
F X Bp0, 2rq is compact, it follows from (3.5.7)

that

lim
mÑ8

inf
vPExp´1

x0 FXBp0,2rq
sup

λPTx0M

 

xλ, vy ´ Λx0pλq ´m
´2Cr2|λ|2

(

“ inf
vPExp´1

x0 FXBp0,2rq
sup

λPTx0M
txλ, vy ´ Λx0pλqu .

Collecting everything, we find that

lim sup
nÑ8

1
n

logP
ˆˆ

1
n
˚ S

˙

n

P F

˙

ď lim
mÑ8

˜

Cr2

m2 ´ inf
vPExp´1

x0 F
sup

λPTx0M

 

xλ, vy ´ Λx0pλq ´m
´2Cr2|λ|2

(

¸

“ ´ lim
mÑ8

inf
vPExp´1

x0 FXBp0,2rq
sup

λPTx0M

 

xλ, vy ´ Λx0pλq ´m
´2Cr2|λ|2

(

“ ´ inf
vPExp´1

x0 F
sup

λPTx0M
txλ, vy ´ Λx0pλqu

“ ´ inf
xPF

IM pxq,

which concludes the proof.

3.5.2. Lower bound of the large deviation principle for tp 1
n
˚

Sqnuně0

In this section we prove the large deviation lower bound for tp 1
n ˚Sqnuně0. In order

to do this, we need a refinement of Proposition 3.5.2, which may be proven in a
similar way.

Proposition 3.5.9. Let the assumptions of Theorem 3.5.1 be satisfied. Let m P N
and set Zmn “ 1

n

řtm´1nu

k“1 τ´1
x0p

1
n˚Sqk´1

Xn
k . Finally, define Λx0pλq “ logEpexλ,X1yq.

Then tZmn uně1 satisfies in Tx0M the large deviation principle with good rate function

Impvq “
1
m

Λ˚x0
pmvq,

where Λ˚x0
pvq “ supλPTx0M

txλ, vy ´ Λx0pλqu.

We are now able to prove the large deviation lower bound for tp 1
n ˚ Sqnuně0.
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Proposition 3.5.10. Let the assumptions of Theorem 3.5.1 be satisfied. Then for
any G ĂM open,

lim inf
nÑ8

1
n

logP
ˆˆ

1
n
˚ S

˙

n

P G

˙

ě ´ inf
xPG

IM pxq,

where IM is as in (3.5.1).

Proof. It suffices to show that

lim inf
nÑ8

1
n

logP
ˆˆ

1
n
˚ S

˙

n

P G

˙

ě ´IM pxq

for every x P G.
So fix x P G and pick v P Exp´1

x0
x. Because G is open, there exists an ε ą 0 such

that Bpx, εq Ă G. Let m P N such that m ě 2r
ιpBpx0,rqq

, where r is the uniform bound
on the increments of the geodesic random walk.
We again need to identify the geodesic random walk with a tuple in pTx0Mq

m.
However, this time the parallel transport back to Tx0M is carried out by first trans-
porting to a well-chosen point on the geodesic γvptq “ Expx0ptvq and then to x0
along this geodesic.
More precisely, we define a map Ψm,x,v : pTx0Mq

m Ñ M that allows us to identify
the random variable p 1

n ˚ Sqn P M with a vector of random variables in pTx0Mq
m.

To this end, define for 0 ď i ď m the points yi “ Expx0p
i
mvq. For 1 ď i ď m we de-

fine τx0yi as parallel transport along the geodesic Expx0ptvq. Furthermore, for every
z PM and every 0 ď i ď m´1, we choose a geodesic γyix of minimum length and de-
note by τyix parallel transport along this geodesic. We now define Ψm,x,vpv1, . . . , vmq
as follows. Define x1 “ Expx0p

1
mv1q and if xi is defined, we set ṽi`1 “ τyixiτx0yivi

and define xi`1 “ Expxip
1
m ṽi`1q. Finally, we set Ψm,x,vpv1, . . . , vmq “ xm.

Now note that by the triangle inequality, we have

dpxi, x0q ď
1
m

i
ÿ

j“1
|vj | ď

1
m

m
ÿ

j“1
|vj |

for any 1 ď i ď m. Therefore, if pv1, . . . , vmq P Bpv, 1qm, then we have |vj | ď |v|`1,
so that

dpxi, x0q ď |v| ` 1
for any 1 ď i ď m. Because also dpx0, yiq ď

i
m |v| ď |v|, we find that xi, yi P

Bpx0, |v| ` 1q for all 1 ď i ď m.
Writing η “ |v| ` 1, we will show that there exists a constant m0 P N such that for
all m ě m0 we have

pv1, . . . , vmq P Bpv, ε
2{p8ηqqm ñ Ψm,x,vpv1, . . . , vmq P Bpx, εq, (3.5.9)

whenever ε ą 0 is small enough.
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To this end, let K ĂM be a compact set, such that all geodesics of minimal length
between points x, y P Bpx0, ηq are contained in K. Because K is compact, its
injectivity radius ιpKq is strictly positive.
Fix 0 ă δ ă ιpKq. We first show that for ε small enough and m large enough we
have

dpxi, yiq
2 ď

i´ 1
2m ε2 `

i

m2C (3.5.10)

for 1 ď i ď m. Here, C ą 0 is some constant only depending on K and δ. We
proceed by induction.
First consider the case i “ 1. By taking m large enough, we can apply Proposition
3.4.10 to obtain a constant C ą 0 (depending only on K and δ) such that

dpx1, y1q
2 “ d

ˆ

Expx0

ˆ

1
m
v1

˙

,Expx0

ˆ

1
m
v

˙˙

ď
1
m2C.

Now suppose that dpxi, yiq2 ď i´1
2m ε

2 ` i
m2C. Then in particular we have

dpxi, yiq
2 ď

ε2

2 `
1
m
C,

which can be made smaller than δ
2 by taking ε sufficiently small and m sufficiently

large. In that case, we may again apply Proposition 3.4.10, so that for the same
constant C ą 0 as above, we have

dpxi`1, yi`1q
2 “ d

ˆ

Expxi

ˆ

1
m
τyixiτx0yivi`1

˙

,Expyi

ˆ

1
m
τx0yiv

˙˙

ď dpxi, yiq
2 ` 2 1

m
xτx0yivi`1 ´ τx0yiv,Exp´1

yi xiy `
1
m2C

ď
i´ 1
2m ε2 `

i

m2C ` 2 1
m
|τx0yivi`1 ´ τx0yiv||Exp´1

yi xi| `
1
m2C

“
i´ 1
2m ε2 `

i` 1
m2 C `

2
m
|vi ´ v|dpxi, yiq.

Now, observe that dpxi, yiq ď 2η since xi, yi P Bpx0, ηq. Using this, together with
the induction hypothesis and the fact that |vi ´ v| ď ε2

8η , we find

dpxi, yiq
2 ď

i´ 1
2m ε2 `

i` 1
m2 C `

1
2mε2 “

2i
2mε2 `

i` 1
m2 C,

as desired.
Now taking i “ m in (3.5.10), we obtain

dpxm, ymq
2 ď

ε2

2 ` C
1
m
,

whenever pv1, . . . , vmq P Bpv, ε
2{p8ηqqm. It follows that if we take m0 ą

2C
ε2 , then

we obtain for m ą m0 that

d pΨm,x,vpv1, . . . , vmq, xq
2
“ dpxm, ymq

2 ă
ε2

2 `
ε2

2 “ ε2
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as desired.

Fixing m0 and C as above, let m ě m0 be large enough so that we can define

ṽn,m,lk P Exp´1
p 1
n˚Sqnl

˜

ˆ

1
n
˚ S

˙

nl`k

¸

Ă Tp 1
n˚Sqnl

M

like in (3.5.5). Different from before, we now define the vectors

vn,m,lk “ τ´1
x0ynl

τ´1
ynl p

1
n˚Sqnl

ṽn,m,lk P Tx0M, (3.5.11)

using the parallel transport procedure used in the definition of the map Ψm,x,v.
As a consequence, by construction we obtain

Ψm,x,v

´

vn,m,1
tm´1nu

, . . . , vn,m,m
tm´1nu

¯

“

ˆ

1
n
˚ S

˙

n

.

Using this, together with the implication in (3.5.9), we find

P
ˆˆ

1
n
˚ S

˙

n

P G

˙

ě P
ˆˆ

1
n
˚ S

˙

n

P Bpx, εq

˙

ě P
´´

vn,m,1
tm´1nu

, . . . , vn,m,m
tm´1nu

¯

P Bpv, ε2{p8ηqqm
¯

.

Now define for 1 ď i ď m the random variables

Y ni “ τ´1
x0yni´1

τ´1
yni´1 p

1
n˚Sqni´1

ni
ÿ

k“ni´1`1
τ´1
p 1
n˚Sqni´1 p

1
n˚Sqk´1

Xn
k P Tx0M,

where the parallel transport τ´1
p 1
n˚Sqni´1 p

1
n˚Sqk´1

is carried out along the trajectory
of the geodesic random walk. The sum is then transported from Tp 1

n˚Sqni´1
M to

Tx0M as in the definition of vn,m,lk in (3.5.11).
In the same way as we obtained (3.5.6) in the proof of Proposition 3.5.7, we find
that there exists a constant C̃ ą 0 such that

ˇ

ˇ

ˇ
vn,m,1

tm´1nu
´ Y ni

ˇ

ˇ

ˇ
ď C̃

1
nm

` C̃r2 1
m3 .

Hence, we can take m large enough such that almost surely we have
ˇ

ˇ

ˇ
vn,m,1

tm´1nu
´ Y ni

ˇ

ˇ

ˇ
ă

ε2

16η .

But then we find that if Y ni P Bpv, ε2{p16ηqq, then vn,m,1
tm´1nu

P Bpv, ε2{p8ηqq. This
implies that



98 3. Large deviations for geodesic random walks

P
´´

vn,m,1
tm´1nu

, . . . , vn,m,m
tm´1nu

¯

P Bpv, ε2{p8ηqqm
¯

ě P
`

pY n1 , . . . , Y
n
mq P Bpv, ε

2{p16ηqqm
˘

.

Now note that, like in the proof of Proposition 3.5.2, we can show that the random
variables Y ni and Y nj are independent and identically distributed for i ‰ j, so that

P
`

pY n1 , . . . , Y
n
mq P Bpv, ε

2{p16ηqqm
˘

“

m
ź

i“1
P
`

Y ni P Bpv, ε
2{p16ηqq

˘

“ P
`

Y n1 P Bpv, ε2{p16ηqq
˘m

.

Furthermore, by Proposition 3.5.9 we have

lim inf
nÑ8

1
n

logP
`

Y n1 P Bpv, ε2{p16ηqq
˘

ě ´
1
m

Λ˚x0
pvq.

Combining everything, we find that

lim inf
nÑ8

1
n

logP
ˆˆ

1
n
˚ S

˙

n

P G

˙

ě m lim inf
nÑ8

1
n

logP
`

Y n1 P Bpv, ε2{p16ηqq
˘

ě ´Λ˚x0
pvq.

Since this holds for all v P Exp´1
x0
x, we find that

lim inf
nÑ8

1
n

logP
ˆˆ

1
n
˚ S

˙

n

P G

˙

ě ´ inf
vPExp´1

x0 x
Λ˚x0

pvq “ ´IM pxq,

which concludes the proof.

3.6. Concentration inequalities

Concentration inequalities are concerned with the problem of where the mass of a
given probability measure is concentrated, see e.g. [67]. In this section we derive
Gaussian concentration inequalities for geodesic random walks with bounded incre-
ments. In contrast to the large deviation principle which only holds asymptotically,
Gaussian concentration inequalities provide exponential estimates for every n large
enough. However, these are only estimates for probabilities of deviating from the
expected value, while the large deviation principle gives us the asymptotic behaviour
of the probability of any event.
We prove the Gaussian concentration inequalities for geodesic random walks by
applying the Azuma-Hoeffding inequality (see e.g. [2]) to a suitable supermartingale.
This supermartingale is obtained by using Proposition 3.4.10, as we will show in the
following proposition.

Proposition 3.6.1. Let pM, gq be a complete Riemannian manifold. Fix x0 P M
and let tµxuxPM be a collection of measures such that µx P PpTxMq for all x PM .
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Fix n ě 1 and let tp 1
n ˚ Sqjujě1 be a 1

n -rescaled geodesic random walk started at
x0 with independent increments tXn

j ujě1, compatible with tµxuxPM . Assume the
increments are bounded. Assume furthermore that the collection tµxuxPM satisfies
the consistency property in Definition 3.2.7. Define the curve En : r0, ns ÑM by

Enptq “ Expx0

ˆ

t

n
EpXn

1 q

˙

.

Then there exists a constant C ą 0 only depending on the bound of the increments,
such that

Mk “ d

ˆˆ

1
n
˚ S

˙

k

, Epkq

˙2
´

k

n2C

is a super-martingale up to time n with respect to the filtration tFn
k u0ďkďn given by

Fn
k “ σpXn

1 , . . . , X
n
k q.

Proof. Because the increments are bounded and are identically distributed, they are
uniformly bounded. Writing r ą 0 for this bound, we have

d

ˆˆ

1
n
˚ S

˙

k

, x0

˙

ď
1
n

k
ÿ

l“1
|Xn

l | ď
kr

n
ď r

for any 0 ď k ď n. From this it follows that up to time n, the rescaled geodesic
random walk is almost surely contained in the compact set K “ Bpx0, rq, which
does not depend on n. Therefore, by Proposition 3.4.10 there exists a constant
C ą 0 such that

d

ˆˆ

1
n
˚ S

˙

k`1
, Epk ` 1q

˙2
´ d

ˆˆ

1
n
˚ S

˙

k

, Epkq

˙2

ď ´2 1
n

B

τ´1
Epkqp 1

n˚Sqk
Xn
k`1 ´ τx0EpkqEpX

n
1 q,Exp´1

p 1
n˚Sq

k

Epkq

F

`
1
n2C. (3.6.1)

From the independence of the increments, together with the fact that p 1
n ˚ Sqk is

measurable with respect to Fn
k , it follows that

Epτ´1
Epkqp 1

n˚Sqn
Xn
k`1|Fn

k q “ τ´1
Epkqp 1

n˚Sqn
EpXn

k`1q.

Since the increments are identically distributed, it follows from Proposition 3.2.8
that their expectations are invariant under parallel transport. This implies that

τ´1
Epkqp 1

n˚Sqn
EpXn

k`1q “ τx0EpkqEpX
n
1 q.

Collecting everything, we obtain that

E
ˆB

τ´1
Epkqp 1

n˚Sqk
Xn
k`1 ´ τx0EpkqEpX

n
1 q,Exp´1

p 1
n˚Sq

k

Epkq

F
ˇ

ˇ

ˇ

ˇ

Fn
k

˙

“ 0.
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Combined with the estimate in (3.6.1), this implies that

E

˜

d

ˆˆ

1
n
˚ S

˙

k`1
, Epk ` 1q

˙2
ˇ

ˇ

ˇ

ˇ

ˇ

Fn
k

¸

ď d

ˆˆ

1
n
˚ S

˙

k

, Epkq

˙2
`

1
n2C (3.6.2)

Now define the process

Mk “ d

ˆˆ

1
n
˚ S

˙

k

, Epkq

˙2
´

k

n2C.

Using the estimate in (3.6.2), we find

EpMk`1|Fkq ď d

ˆˆ

1
n
˚ S

˙

k

, x0

˙2
´
k ` 1
n2 C `

1
n2C “Mk,

showing that Mk is a super-martingale.

Remark 3.6.2. In the case of Euclidean space, one can actually obtain a martingale
by taking C “ Ep|X1|

2q.

We are now able to derive Gaussian concentration inequalities for p 1
n ˚ Sqn.

Proposition 3.6.3. Let pM, gq be a complete Riemannian manifold. Fix x0 P M
and let tµxuxPM be a collection of measures such that µx P PpTxMq for all x PM .
For every n ě 1, let tp 1

n ˚ Sqjujě1 be a 1
n -rescaled geodesic random walk started

at x0 with independent increments tXn
j ujě1, compatible with tµxuxPM . Assume the

increments are bounded. Assume furthermore that the collection tµxuxPM satisfies
the consistency property in Definition 3.2.7. Define for every n ě 1 the curve
En : r0, ns ÑM by

Enptq “ Expx0

ˆ

t

n
EpXn

1 q

˙

.

Then there exists a constant L ą 0 such that for every ε ą 0 there exists a N P N
such that for all n ě N and k “ 1, . . . , n we have

P
ˆ

d

ˆˆ

1
n
˚ S

˙

k

, Enpkq

˙

ą ε

˙

ď e´
1

8kL2 n
2ε4
.

The constant L can be chosen to only depend on the bound of the increments.

Proof. By Proposition 3.6.1, there exists a constant C ą 0 only depending on the
bound of the increments, such that for every n

Mn
k “ d

ˆˆ

1
n
˚ S

˙

k

, Enpkq

˙2
´

k

n2C

is a super-martingale up to time n.
Note that Mn

0 “ 0. Furthermore,

|Mn
k`1 ´M

n
k |
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ď

ˇ

ˇ

ˇ

ˇ

ˇ

d

ˆˆ

1
n
˚ S

˙

k`1
, Enpk ` 1q

˙2
´ d

ˆˆ

1
n
˚ S

˙

k

, Enpkq

˙2
ˇ

ˇ

ˇ

ˇ

ˇ

`
1
n2C

“

ˇ

ˇ

ˇ

ˇ

d

ˆˆ

1
n
˚ S

˙

k`1
, Enpk ` 1q

˙

´ d

ˆˆ

1
n
˚ S

˙

k

, Enpkq

˙
ˇ

ˇ

ˇ

ˇ

ˆ

ˆ

ˇ

ˇ

ˇ

ˇ

d

ˆˆ

1
n
˚ S

˙

k`1
, Enpk ` 1q

˙

` d

ˆˆ

1
n
˚ S

˙

k

, Enpkq

˙
ˇ

ˇ

ˇ

ˇ

`
1
n2C.

Writing r for the bound of the increments, the triangle inequality (via x0) gives us
that

ˇ

ˇ

ˇ

ˇ

d

ˆˆ

1
n
˚ S

˙

k`1
, Enpk ` 1q

˙

` d

ˆˆ

1
n
˚ S

˙

k

, Enpkq

˙
ˇ

ˇ

ˇ

ˇ

ď 4r.

Again applying the triangle inequality, we also obtain that
ˇ

ˇ

ˇ

ˇ

d

ˆˆ

1
n
˚ S

˙

k`1
, Enpk ` 1q

˙

´ d

ˆˆ

1
n
˚ S

˙

k

, Enpkq

˙
ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

d

ˆˆ

1
n
˚ S

˙

k`1
, Enpkq

˙

´ d

ˆˆ

1
n
˚ S

˙

k

, Enpkq

˙
ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

d

ˆˆ

1
n
˚ S

˙

k`1
, Enpk ` 1q

˙

´ d

ˆˆ

1
n
˚ S

˙

k`1
, Enpkq

˙
ˇ

ˇ

ˇ

ˇ

ď
1
n
|Xn

k`1| `
1
n
|EpXn

1 q|

ď
2r
n
.

Collecting everything, we find that

|Mn
k`1 ´M

n
k | ď

8r2

n
`

1
n2C ď L

1
n

for some L ą 0.
By the Azuma-Hoefdding inequality (see e.g. [2]) we obtain

P

˜

d

ˆˆ

1
n
˚ S

˙

k

, Enpkq

˙2
´

k

n2C ě ρ

¸

ď e´
1

2kL2 n
2ρ2

for every k “ 1, . . . , n.
Now fix ε ą 0 and take N large enough such that 1

nC ă ε2

2 for all n ě N . In
particular, this implies k

n2C ă
ε2

2 for all k “ 1, . . . , n.
But then we find for n ě N that

P
ˆ

d

ˆˆ

1
n
˚ S

˙

k

, Enpkq

˙

ą ε

˙

ď P

˜

d

ˆˆ

1
n
˚ S

˙

k

, Enpkq

˙2
´

k

n2C ě ε2{2
¸

` P
ˆ

k

n2C ě ε2{2
˙
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ď e´
1

8kL2 n
2ε4

which is the desired estimate. Because L depends only on the constants r and C, it
may be chosen as claimed.

Remark 3.6.4. Note that the curve En defined in Propositions 3.6.1 and 3.6.3 only
depends on n via a rescaling in time. More precisely, define the curve E : r0, 1s ÑM
by

Eptq “ Expx0

ˆ

t

n
EpX1

1 q

˙

.

Since the increments are identically distributed, we have EpXn
1 q “ EpX1

1 q for all n.
This shows that Enptq “ E

`

t
n

˘

. In particular, this shows that the image Enpr0, nsq
is the same curve for every n ě 1.
Remark 3.6.5. Because we assume the increments of the random walk are bounded,
Proposition 3.6.3 is only interesting for small ε. In Euclidean space we can actually
improve the concentration inequality by having ε2 in the exponential rather than ε4.
To obtain this, one utilizes the additive structure of Euclidean space, which lacks in
the Riemannian setting.

3.7. Concluding remarks

We conclude this chapter by discussing possible extensions of the results obtained
in this chapter.
First of all, in Cramér’s theorem for geodesic random walks we assume the incre-
ments are bounded and have expectation 0. The use of the boundedness of the
increments is two-fold. Firstly, it assures that the rescaled geodesic random walks
remain almost surely in some compact subset of the manifold. As a consequence,
the exponential tightness of the sequence tp 1

n ˚ Sqnuně0 is immediate. In the Eu-
clidean setting, the exponential tightness follows from the fact that the moment
generating function of the increments is everywhere finite. It should be possible to
obtain exponential tightness in the Riemannian setting with a similar argument.
Secondly, we use the fact that the random walk remains in a compact set to be
able to cut the random walk into pieces, each of which we can then pull-back to
a tangent space and use Cramér’s theorem there. However, this containment in a
compact set need not be almost sure, but it should occur with very high probability.
The finiteness of moment generating functions should also allow us to construct such
sets, possibly growing with n in an appropriate manner. All in all, there is reason
to believe that the boundedness assumption can be replaced with an assumption on
the moment generating functions of the measures µx.

Overcoming the assumption that the increments need to be centered is part of an-
other possible extension, namely to geodesic random walks with drift. To obtain
such random walks, we take a (deterministic) vector field V . If we then sample an
increment according to the distribution µx on TxM , we add V pxq. The drift we
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have added to the random walk is then formed by the flow of the vector field V .
If we start with a geodesic random walk with independent, identically distributed
increments, and add a (deterministic) drift, it is expected that one can again prove
a large deviation principle.

Finally, we remark that the estimate in Proposition 3.5.4 is one of the most im-
portant ingredients of the proof of Theorem 3.5.1. Indeed, it allows us in some
sense to connect large deviations for tp 1

n ˚ Sqnuně0 in M to large deviations for
the sums t 1

n

řn
k“1 τ

´1
x0p

1
n˚Sqk´1

Xn
k uně0 in the tangent space Tx0M . Therefore, by

making appropriate assumptions on the sequence t 1
n

řn
k“1 τ

´1
x0p

1
n˚Sqk´1

Xn
k uně0, for

example in the spirit of the Gärtner-Ellis theorem (Theorem 2.1.12), we can obtain
more general results than Cramér’s theorem for geodesic random walks in a similar
way.

3.8. Appendix: Some convex analysis

In this appendix we collect a result from convex analysis. Although this is probably
well-known, we include it for the sake of being self-contained.

Lemma 3.8.1. Let V be a vector space, and let F : V Ñ R be strictly convex and
differentiable. Then its Legendre transform F˚ is strictly convex and differentiable
on the interior of its domain D˝F˚ .

Proof. The differentiability of F˚ follows from [82][Theorem 26.3].
For the strict convexity, we first prove that for each v P D˝F˚ , there exists a λ˚v P V
such that

F˚pvq “ xλ˚v , vy ´ F pλ
˚
v q.

Indeed, suppose this is not the case. Because F˚pvq ă 8, we can find a sequence
λn such that

F˚pvq “ lim
nÑ8

xλn, vy ´ F pλnq.

Because the map λ ÞÑ xλ, vy ´ Fxpλq is continuous, the sequence λn cannot contain
a convergent subsequence, else the limit of this subsequence would serve as λ˚v . We
conclude that limnÑ8 |λn| “ 8.
But then there exists a w P V such that limnÑ8xλn, wy “ 8. To see this, sup-
pose such a w does not exist. Denoting by e1, . . . , ed a basis of V , we must have
that xλn, eiy is a bounded sequence for all i “ 1, . . . , d. But then, by taking sub-
sequences, we find xλn, eiy converges for all i “ 1, . . . , d, which contradicts the fact
that limnÑ8 |λn| “ 8.
Now consider v ` εw P V and let λn be the sequence found above. We have that

F˚pv ` εwq ě lim
nÑ8

xλn, v ` εwy ´ F pλnq “ F˚pvq ` ε lim
nÑ8

xλn, wy “ 8.
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We conclude that v ` εw R DF˚ for any ε ą 0, which contradicts the assumption
that v P D˝F˚ .

We are now ready to prove that F˚ is strictly convex on D˝F˚ . To this end, fix
v, w P D˝F˚ , v ‰ w and t P p0, 1q and assume that

F˚ptv ` p1´ tqwq “ tF˚pvq ` p1´ tqF˚pwq.

Now let λ˚t be such that

F˚ptv ` p1´ tqwq “ xtv ` p1´ tqw, λ˚t y ´ F pλ˚t q.

We find that

tF˚pvq ` p1´ tqF˚pwq “ tpxλ˚t , vy ´ F pλ
˚
t qq ` p1´ tqpxλ˚t , wy ´ F pλ˚t qq.

But then we find that
F˚pvq “ xv, λ˚t y ´ F pλ

˚
t q

and
F˚pwq “ xw, λ˚t y ´ F pλ

˚
t q.

Now, because F is everywhere differentiable, it must be that ∇F pλ˚t q “ v and
∇F pλ˚t q “ w, which contradicts the assumption that v ‰ w. We conclude that F˚
is strictly convex on D˝F˚ .



4
Large deviations for random
walks in Lie groups
In this chapter we study random walks in Lie groups. More precisely, we are in-
terested in the large deviations for rescaled random walks, in a similar sense as in
Chapter 3. The results in this chapter seem very similar, but as we will argue in
Section 4.2.1, the random walks we study in Lie groups cannot always be considered
as geodesic random walks. The main reason for this is that the Lie group exponen-
tial map does not necessarily coincide with the Riemannian exponential map. The
results we present in this chapter are based on:

Rik Versendaal. “Large deviations for random walks on Lie groups”. In: Preprint;
ArXiv: 1909.05065 (2019). ArXiv: 1909.05065.

Since the middle of the previous century, the study of random matrices has received
a lot of attention. Of particular interest is the limiting behaviour of products of
random matrices. This finds its applications for example in the study of disordered
spin systems (see e.g. [27]), where the associated partition function is a product
of transfer matrices, which are random because of the disorder. Certain physical
quantities of the system are obtained by a limiting procedure, which in the case of
disorder, is replaced by a law of large numbers or central limit theorem. Another
application can be found in studying solutions to difference equations. One can for
example think about the Schrödinger equation on a one-dimensional lattice with
random vector potentials, see e.g. [14].
The limiting behaviour of products of random matrices was first studied in [11]
and further developed in (among others) [42]. In these works, one takes a sequence
tMnuně1 of matrix valued random variables and studies the product

Sn “M1 ¨ ¨ ¨Mn.

In order to say anything about the limiting behaviour of the random variable Sn,
we take a matrix norm and consider the sequence of real-valued random variables
given by log ||Sn||. It is then shown that under mild conditions we have

lim
nÑ8

1
n

log ||Sn|| “ γ
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almost surely, which is the analogue of the law of large numbers. The constant γ is
referred to as the upper Lyapunov exponent. Furthermore, in [66] (see also [14]) it
is shown that under additional assumptions, log ||Sn|| also satisfies the central limit
theorem, i.e.,

log ||Sn|| ´ nγ
?
n

converges in distribution to a Gaussian random variable. The same work also verifies
the large deviation properties of the sequence tlog ||Snx||uně1 of random variables,
where x is some vector.

It is possible to go beyond matrix groups, and study products of elements of a
general Lie group. For a random sequence tgnuně1 in a Lie group G, using the
group operation, we can define the product

Sn “ g1g2 ¨ ¨ ¨ gn.

We will refer to this as a random walk in the Lie group G.
In order to study limit theorems like the law of large numbers and central limit
theorem, we can no longer use a norm, since G is not necessarily a normed space.
Instead, we can equip G with a left-invariant Riemannian metric with associated
Riemannian distance d and study the real-valued random variables dpSn, eq, where
e is the identity element of the group G. It is shown in [48] that if G is locally
compact, there exists a γ ě 0 such that almost surely

lim
nÑ8

1
n
dpSn, eq “ γ.

Furthermore, the central limit theorem, i.e., the convergence of

dpSn, eq ´ γn
?
n

in distribution to a normal distribution, is studied in [91].

Another approach to study limit theorems, which we will be considering here, is
not to transfer the problem to a real-valued setting, but to find a suitable way of
rescaling the random walk in the Lie group G itself. For this, we slightly modify the
definition of a random walk. Let g denote the Lie algebra of G, and let tXnuně1 be
a sequence of random variables in g. We define the random walk in G as

Sn “ exppX1q ¨ ¨ ¨ exppXnq,

where exp : g Ñ G denotes the exponential map. Because g is a vector space, we
can rescale the sequence tXnuně1, allowing us to define the rescaled random walk
by

σnn “ exp
ˆ

1
n
X1

˙

¨ ¨ ¨ exp
ˆ

1
n
Xn

˙

.



107

However, from the Baker-Campbell-Hausdorff formula it follows after a formal com-
putation that

σnn “ exp
˜

1
n

n
ÿ

i“1
Xi `Op1q

¸

,

which one obtains by counting the number of commutators. Therefore, it is not
obvious how to use known results regarding the limiting behaviour of 1

n

řn
i“1Xi in

order to study the limiting behaviour of σnn . To overcome this problem, instead of
simply rescaling the elements g by 1

n , one uses so-called dilations D 1
n

: gÑ g as done
in [15, 10, 44, 76]. The idea is to decompose an element Y P g as Y “

ř

iě1 Yi, where
Yi is an i-th order commutator, meaning it is of the form rY 1

i , r¨ ¨ ¨ , rY
i´1
i , Y ii sss,

where none of the Y ji are commutators. We call a Lie algebra nilpotent if there is
some l P N such that all commutators of order l vanish. In that case, Y may be
written as a finite sum Y “

řl
i“1 Yi and we define the dilation D 1

n
Y of Y by

D 1
n
Y “

l
ÿ

i“1

1
ni
Yi

So essentially, we dilate the elements of g in such a way that the problematic parts,
being the (higher order) commutators, are scaled away in the limit by multiplying
those by higher powers of 1

n . Now the Baker-Campbell-Hausdorff formula will give
us after a formal computation that

n
ź

i“1
exp

´

D 1
n
Xi

¯

“ exp
˜

1
n

n
ÿ

i“1
Xi `O

ˆ

1
n

˙

¸

.

This makes it at least more viable that in the limit this product should indeed
behave like exp

` 1
n

řn
i“1Xi

˘

. It is shown in [44, 76] that the law of large numbers
is satisfied: if tXnuně1 are independent, identically distributed with EpX1q “ 0
and with finite moment generating function in a neighbourhood of the origin, then
almost surely

lim
nÑ8

n
ź

i“1
exp

´

D 1
n
Xi

¯

“ 0.

The large deviations for the sequence
#

n
ź

i“1
exp

´

D 1
n
Xi

¯

+

ně0

(4.0.1)

are studied in [10]. The proof uses path-space large deviations, first transferring the
problem to Rd to use Mogulskii’s theorem, followed by the contraction principle to
get the large deviations for the end-point of the random walk.

However, if G admits a bi-invariant metric (which implies that its Lie algebra g
is reductive, see e.g. [60]), the processes Sn and σnn are special cases of geodesic
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random walks as defined in [58]. The large deviations for these have been studied in
Chapter 3. Therefore, if G admits a bi-invariant metric, Theorem 3.3.1 applies to the
sequence tσnnuně1, so that the sequence satisfies in G the large deviation principle.
Moreover, the corresponding rate function coincides with the rate function for the
sequence of random variables in (4.0.1), where the higher order commutators are
scaled away.
This raises the question whether the sequence tσnnuně1 also satisfies a large deviation
principle when G does not necessarily admit a bi-invariant metric. This would cover
the result for all (connected, finite-dimensional) Lie groups. Following the approach
in Chapter 3, we will show that under some assumptions on the sequence tXnuně1,
this is indeed the case. More precisely, we will prove that if tXnuně1 is a sequence of
bounded, independent and identically distributed g-valued random variables, with
EpX1q “ 0 and everywhere finite moment generating function, then the sequence
tσnnuně0 satisfies in G the large deviation principle with rate function I given by

Ipgq “ inf
"
ż 1

0
Λ˚p 9γptqqdt

ˇ

ˇ

ˇ

ˇ

γ P ACpr0, 1s;Gq, γp0q “ e, γp1q “ g

*

.

Here, Λpλq “ logEpexλ,X1yq denotes the log moment generating function, and Λ˚ its
Legendre transform given by

Λ˚pXq :“ sup
λPg

txλ,Xy ´ Λpλqu .

This chapter is organised as follows. First, in Section 4.1 we introduce some theory
on Lie groups and Lie algebras and fix the notation we use in what follows. With
the notation fixed, we define in Section 4.2 the random walks in Lie groups we will
be studying, and discuss their relation to geodesic random walks. In Section 4.3 we
state our main theorem and give a sketch of its proof. Additionally, we discuss an
example by considering the stochastic group. Section 4.4 is devoted to important
estimates following from the Baker-Campbell-Hausdorff formula. Finally, we use
these estimates to prove our main theorem in Section 4.5.

4.1. Lie groups and Lie algebras

In this section we collect the necessary notation and theory on Lie groups and Lie
algebras. For more details, we refer to [21, 60, 68, 99] for general Lie group theory
and to [51] for a treatment of matrix Lie groups.

Let G be a finite-dimensional Lie group, i.e., a finite dimensional group with a
smooth manifold structure such that the group operations of multiplication and in-
version are smooth. We write e for the identity element of G. The Lie algebra g of
G is defined as the tangent space TeG at the identity.

Next, we want to equip g with a Lie bracket r¨, ¨s, which is a map from gˆ g into g
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which is bilinear, skew-symmetric and satisfies the Jacobi identity:

rX, rY,Zss ` rY, rZ,Xss ` rZ, rX,Y ss “ 0

for all X,Y, Z P g. In order to construct such a Lie bracket, we need a different
interpretation of the Lie algebra g.
To this end, we denote by Lg : G Ñ G left multiplication with g. A vector field V
on G is called left-invariant if for all g, h P G we have dLgphqpV phqq “ V pghq.
For every X P g, we can define a left-invariant vector field XL on G by setting

XLpgq “ dLgpeqpXq. (4.1.1)

This is a vector space isomorphism between the Lie algebra g and the set of left-
invariant vector fields over G. Indeed, its inverse is given by the evaluation of the
vector field at the identity e. Therefore, the Lie algebra g of G may be identified
with the set of left-invariant vector fields over G. This set forms a Lie algebra under
the Lie bracket rV,W s “ VW ´WV . Using this, we define the Lie bracket rX,Y s
for X,Y P g by rX,Y s :“ rXL, Y Lspeq.

The above procedure also shows us that for every g P G we can identify the tangent
space TgM with g via the isomorphism dLgpeq : g Ñ TgM . Whenever we consider
a tangent vector X P TgM as element of g or vice versa, we have this identification
in mind.

4.1.1. Exponential map
We now define an important map that allows us to map elements of the Lie algebra
to the Lie group. For this, first observe that for every X P g, there exists a curve
γX : RÑ G satisfying γXp0q “ e and

9γXptq “ XLpγXptqq. (4.1.2)

In particular, 9γXp0q “ X. The fact that the curve γX exists for all time can be seen
as follows: Suppose γX exists on r´ε, εs. For t0 P r´ε, εs, define φ : r´ε, εs Ñ G
given by φptq “ γXpt0qγXptq. Since

9φptq “ dLγXpt0qpγXptqqp 9γXptqq,

it follows from the left-invariance of XL that φ again satisfies (4.1.2), with φp0q “
γpt0q. Repeating this procedure, we can construct a solution for all time.
Using such curves, we make the following definition.

Definition 4.1.1. The exponential map is a map exp : gÑ G given by

exppXq “ γXp1q,

where γX is the curve satisfying (4.1.2) with γXp0q “ e.
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For every X P g we have

d expp0qpXq “ d
dt

ˇ

ˇ

ˇ

ˇ

t“0
expptXq “ X

so that d expp0q “ I. Therefore, by the inverse function theorem, there exists an
r ą 0 such that exp is a homeomorphism from Bp0, rq onto its image. The inverse
of the exponential map is referred to as the logarithm map, and is denoted by log.
We have the following proposition.

Proposition 4.1.2. For every r ą 0 such that exp is a homeomorphism on Bp0, rq,
there exists an ε ą 0 such that log is well-defined on Bpe, εq and for all g P Bpe, εq
we have | logpgq| ď r.

Proof. Because exp is a homeomorphism on Bp0, rq, it is an open map, and hence
exppBp0, rqq contains some open ball Bpe, εq. Because exppBp0, rqq is closed, it
must be that Bpe, εq Ă exppBp0, rqq so that log is well defined on Bpe, εq and
logpBpe, εqq Ă Bp0, rq as desired.

4.1.2. Riemannian metric
For reasons that will become clear later, we equip g with an inner product x¨, ¨y. This
induces on g a norm | ¨ | given by |X| “

a

xX,Xy. Because g is finite-dimensional,
all norms are equivalent, and hence, our results will not depend on the choice of
inner product. For more details regarding the Riemmanian structure of Lie groups,
we refer to e.g. [73].
The inner product on g may be extended to a Riemannian metric on G. For this, we
use the fact that TgM may be identified with g via the isomorphism dLgpeq. With
this identification in mind, we define an inner product on TgG by setting

xX,Y yg :“ xdLgpeq´1X,dLgpeq´1Y y

for X,Y P TgM . The assumption that the group operations are smooth implies that
this defines a Riemannian metric on G. By construction this Riemannian metric is
left-invariant, i.e., for all g, h P G and for all X,Y P TgG we have

xdLhpgqX,dLhpgqY yhg “ xX,Y yg.

This also shows that dLhpgq : TgG Ñ ThG is an isometry for all g, h P G. In par-
ticular, the identification dLgpeq : g Ñ TgG of TgG with the Lie algebra g is an
isometry. Therefore, if we consider X P TgG as element in g, its norm can also be
taken as element of g.

To the Riemannian metric we can associate a Riemannian distance d : GˆGÑ R
given by the usual formula (see Section 2.2):

dpg, hq “ inf
"
ż 1

0
| 9γptq| dt

ˇ

ˇ

ˇ

ˇ

γ : r0, 1s Ñ G piecewise smooth, γp0q “ g, γp1q “ h

*

.
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Because the Riemannian metric is left-invariant, it follows that for all f, g, h P G we
have

dpg, hq “ dpfg, fhq.

This shows that the distance between elements ofG is preserved under left-multiplication.

4.2. Random walks in Lie groups

In this section we introduce random walks in a general (connected) Lie group G.
We will explain how these random walks relate to geodesic random walks defined
in Chapter 3, and argue that the two notions only coincide when we equip the Lie
group with a bi-invariant metric.

We start by defining a random walk in a Lie group G. To this end, let tXnuně1 be
a sequence of g-valued random variables. We define the random walk Sn P G with
increments tXnuně1 by

Sn “ exppX1q exppX2q ¨ ¨ ¨ exppXnq. (4.2.1)

Furthermore, we define the rescaled random walk by

σnn “ exp
ˆ

1
n
X1

˙

exp
ˆ

1
n
X2

˙

¨ ¨ ¨ exp
ˆ

1
n
Xn

˙

. (4.2.2)

4.2.1. Relation to geodesic random walks
In order to relate the random walk defined in (4.2.1) to the concept of a geodesic
random walk in Chapter 3, we need to argue how one-parameter subgroups of the
form γptq “ g expptXq can be interpreted as geodesics. To this end, we need some
additional theory from Lie groups.

Definition 4.2.1. Let ∇ be a connection on a Lie group G. ∇ is said to be left-
invariant if for any two left-invariant vector fields XL and Y L (see (4.1.1)) with
X,Y P g we have that ∇XLY

L is also left-invariant.

Among the left-invariant connections, there are special connections for which the
one-parameter subgroups form geodesics.

Definition 4.2.2. A Cartan connection on a Lie group G is a left-invariant con-
nection satisfying the property that the subgroup γptq “ expptXq is a geodesic for
every X P g.

One question that arises, is whether such connections always exist. This is indeed
the case, as the following result from [73] states.

Proposition 4.2.3. For any Lie group G there exists a unique symmetric Cartan
connection ∇ given by

∇XLY
L “

1
2 rX,Y s

L (4.2.3)
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for any X,Y P g.

By definition, a random walk on G is a geodesic random walk when we equip G with
a Cartan connection. Unfortunately, the Cartan connection given in Proposition
4.2.3 is in general not compatible with the Riemannian metric. It can be shown
that the connection in (4.2.3) is compatible with the metric if and only if the metric
is bi-invariant, see e.g. [70, 80, 73]. In this case, the exponential map exp : g Ñ G
coincides with the Riemannian exponential map.
We will now connect the result of Theorem 4.3.1 to the result in Theorem 3.3.1. For
this, let µ be a probability measure g. We need to find a collection of probability
measures tµgugPG with µg a measure on TgM , such that if we identify an increment
X P g as element of TgM , then X has distribution µg. Because we identify the
tangent space TgM with the Lie algebra g via the map dLgpeq´1, the measure µg is
given by

µg “ µ ˝ dLgpeq´1. (4.2.4)

From this definition, it immediately follows that the collection tµgugPG is left-
invariant, in the sense that

µgh “ µh ˝ dLgphq´1,

for all g, h P G.
In order for the random walk to have identically distributed increments in the sense
of Definition 3.2.7, the collection of measures tµgugPG has to be invariant under
parallel transport. In the case of a bi-invariant metric, it can be shown that parallel
transport along a geodesic of the form γptq “ expptXq is given by (see e.g. [70, 55])

τγp0qγptq;γY “ dLexpptX{2qpexpptX{2qqpdRexpptX{2qpeqpY qq.

Here, Rg : G Ñ G denotes right-multiplication, i.e., Rgh “ hg. Therefore, in order
for the collection of measures tµgugPG to be invariant under parallel transport, one
also needs that the collection is right-invariant, meaning that

µhg “ µh ˝ dRgphq´1,

for all g, h P G. Since the metric is bi-invariant, a sufficient condition for this is that
µ only depends on the norm of X P g. Another example is when the Lie algebra is
abelian, in which case left- and right-multiplication coincide. However, in that case
the random walk σnn reduces to

σnn “ exp
˜

1
n

n
ÿ

i“1
Xi

¸

,

in which case Theorem 4.3.1 immediately follows from Cramér’s theorem (Theorem
2.1.10), together with the contraction principle (Theorem 2.1.6).
Collecting everything, we see that the random walk in (4.2.1) only coincides with
the notion of a geodesic random walk with independent, identically distributed
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increments as in Chapter 3, when the metric on G is bi-invariant, and the collection
tµgugPG defined in (4.2.4) is right-invariant. In that case, although the proof might
be somewhat simpler due to the extra group structure, the results in this chapter
do not add anything over the results in Chapter 3. The novelty of the work in
this chapter is in the case when either of those conditions is not satisfied. Most
importantly, the result is new when no bi-invariant metric exists, in which case
the random walk in (4.2.1) cannot be interpreted as a geodesic random walk with
respect to some Riemannian metric.

4.3. Main theorem, sketch of the proof and an ex-
ample

With all the notation fixed, we are ready to state the main theorem that we are
going to prove. Because the proof consists of a number of steps, we also provide a
sketch of the proof so that the main steps are clear. The precise proof will be given
in Section 4.5. We conclude this section by showing how the main theorem can be
applied if we consider the Lie group of stochastic matrices.

4.3.1. Statement of the main theorem
Let G be a Lie group with Lie algebra g equipped with an inner product x¨, ¨y. Let
tXnuně1 be a sequence of independent, identically distributed random variables in
the Lie algebra g and denote by σnn the rescaled random walk as in (4.2.2). We
are going to prove that under some assumptions on the increments tXnuně1, the
sequence tσnnuně1 satisfies a large deviation principle in G.
Along with the large deviation principle for tσnnuně1, we need to identify the corre-
sponding rate function. If G admits a bi-invariant metric, it follows from Theorem
3.3.1 that the rate function is given by

Ipgq “ inftΛ˚pXq| exppXq “ gu.

Here, Λpλq is the log moment generating function of an increment, given by

Λpλq :“ logE
´

exλ,X1y
¯

,

while Λ˚ denotes its Legendre transform, defined as

Λ˚pXq :“ sup
λPg

txλ,Xy ´ Λpλqu .

Obtaining this form of the rate function relies on the fact that if we minimize
ş1
0 Λ˚p 9γptqqdt over curves with fixed endpoints, the minimum is attained by a
geodesic. However, if G does not admit a bi-invariant metric, curves of the form
γptq “ expptXq are no longer necessarily geodesics (when taking the exponential
map in the terminology of Lie groups and Lie algebra’s). As a consequence, we can
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do no better than the expression

Ipgq “ inf
"
ż 1

0
Λ˚p 9γptqqdt

ˇ

ˇ

ˇ

ˇ

γ P ACpr0, 1s;Gq, γp0q “ e, γp1q “ g

*

.

We now collect everything and give the statement of the theorem.

Theorem 4.3.1 (Cramér’s theorem for Lie groups). Let G be a Lie group and g
its associated Lie algebra, equipped with an inner product x¨, ¨y. Let tXnuně1 be a
sequence of random variables in g and denote by σnn the associated rescaled random
walk as in (4.2.2). Assume the increments tXnuně1 are independent, identically dis-
tributed and bounded. Assume furthermore that the log moment generating function
Λpλq “ logEpexλ,X1yq is everywhere finite. Then the sequence tσnnuně0 satisfies the
large deviation principle in G with good rate function

IGpgq “ inf
"
ż 1

0
Λ˚p 9γptqqdt

ˇ

ˇ

ˇ

ˇ

γ P ACpr0, 1s;Gq, γp0q “ e, γp1q “ g

*

. (4.3.1)

Some remarks on optimal trajectories for the rate function
In this section, we make some remarks about the optimal trajectories for the rate
function in (4.3.1). Comparing to the setting of geodesic random walks in Chapter
3, one might expect that optimal trajectories are of the form γptq “ expptXq for
some X P g. It turns out this is true in specific cases, but not in general.
Indeed, recall that we equipped the Lie group G with a left-invariant Riemannian
metric, to which we may associate a Levi-Civita connection. Now suppose that
Λ˚pXq is given as Λ˚pXq “ F p|X|q for some convex function F . It then follows
from Proposition 3.4.11 that the optimal trajectories are geodesics with respect
to the Levi-Civita connection. These geodesics are of the form γptq “ expptXq,
precisely when the Levi-Civita connection is a Cartan connection. As discussed in
Section 4.2, the latter is true precisely when the Riemannian metric is bi-invariant.
Therefore, if Λ˚pXq only depends on the norm ofX, then optimal trajectories for the
rate function in (4.3.1) are of the form γptq “ expptXq if the metric is bi-invariant.
Note that in this case the random walk in (4.2.2) is a geodesic random walk as
treated in Chapter 3.
However, if the Riemannian metric is only left-invariant, the Lie group structure
still allows us to give a simpler expression for the rate function, given that Λ˚pXq is
a function of the norm of X. Indeed, geodesics for a left-invariant metric on a Lie
group satisfy a special equation, namely the Euler-Arnold equation, see e.g. [7, 17].

4.3.2. Sketch of the proof of Theorem 4.3.1
Since the proof of Theorem 4.3.1 is rather long, we first provide a sketch. The de-
tailed proof is given in Section 4.5. The proof is inspired by the proof of Theorem
3.3.1, and therefore, we will follow similar steps as explained in Section 3.3. Like in
the proof of Cramér’s theorem in Euclidean space (Theorem 2.1.10), we prove the
upper and lower bound of the large deviation principle separately.
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By Cramér’s theorem for vector spaces, the sequence t 1
n

řn
i“1Xiuně1 of empirical

averages satisfies the large deviation principle in g with good rate function IpXq “
Λ˚pXq. This, together with the contraction principle (Theorem 2.1.6), implies that
the sequence tΣnuně1 given by

Σn “ exp
˜

1
n

n
ÿ

i“1
Xi

¸

satisfies the large deviation principle in G with good rate function

IGpgq “ inftΛ˚pXq| exppXq “ gu.

Unfortunately, the Baker-Campbell-Hausdorff formula shows us that in general, Σn
and σnn do not coincide. More precisely, given that the random walk stays close
enough to the identity e so that logarithms are well-defined, the integral version of
the Baker-Campbell-Hausdorff formula (see Theorem 4.4.1) gives us that

logpσnnq “
1
n

n
ÿ

i“1

˜

ż 1

0

adlogpσn
i´1q

1´ e´adlogpσn
i´1q

¸

Xi (4.3.2)

Here, the operator ad is as defined in (4.4.1) and σni is the point of the random walk
after i steps, i.e.,

σni “ exp
ˆ

1
n
X1

˙

¨ ¨ ¨ exp
ˆ

1
n
Xi

˙

.

However, we would like to understand the difference between logpσnnq and 1
n

řn
i“1Xi.

For this, we compare 1
n

řn
i“1Xi to the expression found in (4.3.2) for logpσnnq. We

prove (see Proposition 4.4.2) that there exists constants C| logpσn
i´1q|

such that
ˇ

ˇ

ˇ

ˇ

ˇ

˜

ż 1

0

adlogpσn
i´1q

1´ e´adlogpσn
i´1q

¸

Xi ´Xi

ˇ

ˇ

ˇ

ˇ

ˇ

ď C| logpσn
i´1q|

|Xi|,

where Cα is a constant, decreasing in α and such that limαÑ0 Cα “ 0.
Using the triangle inequality and the smoothness of the logarithm, one can show
that | logpσni q| À i

nB, where B is the uniform bound on the increments. As a
consequence, C| logpσn

i´1q|
ď CB for all i “ 1, . . . , n. If we now collect everything, we

find
ˇ

ˇ

ˇ

ˇ

ˇ

logpσnnq ´
1
n

n
ÿ

i“1
Xi

ˇ

ˇ

ˇ

ˇ

ˇ

ď CBB. (4.3.3)

Because B is fixed, this upper bound unfortunately does not show us that logpσnnq
and 1

n

řn
i“1Xi will get arbitrarily close if n tends to infinity. The key will be to

decrease the constant CBB in an appropriate way.

To do this, we split the random walk into finitely many, saym, pieces, each consisting
of tm´1nu increments. It turns out that this also takes care of the problem that the
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logarithms we use are not necessarily well-defined. More precisely, for m P N we
define the indices nj “ jtm´1nu for j “ 0, . . . ,m´ 1 and set nm “ n. We can prove
(see (4.5.2) and (4.5.3)) that if B is the uniform bound on the increments, then for
every j “ 1, . . . ,m and i “ 1, . . . , nj ´ nj´1 we have

dpe, pσnnj´1
q´1σnnj´1`iq “ dpσnnj´1

, σnnj´1`iq ď
i

n
B ď

1
m
B.

Here, the first equality follows from the left-invariance of the metric d. This shows
that if m P N is large enough, then logppσnnj´1

q´1σnnj´1`i
q is well-defined for every

j “ 1, . . . ,m and every i “ 1, . . . , nj´nj´1. In particular, one may show in a similar
spirit as (4.3.3), that

ˇ

ˇ

ˇ

ˇ

ˇ

logppσnnj´1
q´1σnnj q ´

1
n

nj´nj´1
ÿ

i“1
Xnj´1`i

ˇ

ˇ

ˇ

ˇ

ˇ

ď Cm´1B
B

m
. (4.3.4)

Now let us define Y n,m,j
tm´1nu

“ logppσnnj´1
q´1σnnj q P g for j “ 1, . . . ,m. By the above

construction, we have

σnn “ exp
´

Y n,m,1
tm´1nu

¯

¨ ¨ ¨ exp
´

Y n,m,m
tm´1nu

¯

“: Ψm

´

Y n,m,1
tm´1nu

, . . . , Y n,m,m
tm´1nu

¯

,

where Ψm : gm Ñ G is the continuous function given by

Ψmpx1, . . . , xmq “ exppx1q ¨ ¨ ¨ exppxmq.

Using this, we can prove the upper and lower bound for the large deviation principle
for tσnnuně1, which we explain in the upcoming two sections.

Upper bound of the large deviation principle for tσnnuně1.
In this section we sketch the proof of the upper bound of the large deviation principle
for tσnnuně1. For F Ă G closed and every m P N large enough, we have that
Ψ´1
m F Ă gm is closed and

Ppσnn P F q “ P
´´

Y n,m,1
tm´1nu

, . . . , Y n,m,m
tm´1nu

¯

P Ψ´1
m F

¯

. (4.3.5)

Because gm is a vector space, we can use a similar argument as in the proof of
Cramér’s theorem for the Euclidean setting (see e.g. [29, 56]), to obtain for Γ Ă gm

compact that

lim sup
nÑ8

1
n

logP
´´

Y n,m,1
tm´1nu

, . . . , Y n,m,m
tm´1nu

¯

P Γ
¯

ď ´ inf
xPΓ

sup
λPgm

"

xλ, xy ´ lim sup
nÑ8

1
n

logE
ˆ

e
nxλ,pY n,m,1

tm´1nu
,...,Y n,m,m

tm´1nu
qy

˙*

.

By exponential tightness, this bound also holds for all F̃ Ă gm closed.
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Now one can use (4.3.4) to prove that

E
ˆ

e
nxλ,pY n,m,1

tm´1nu
,...,Y n,m,m

tm´1nu
qy

˙

ď eCm´1B |λ|Bm
´1
E
´

enxλ,pZ
m,n
1 ,...,Zn,mm qy

¯

,

where

Zm,nj “
1
n

nj´nj´1
ÿ

i“1
Xnj´1`i.

Because the increments tXnuně1 are independent, identically distributed, the ran-
dom variables Zn,m1 , . . . , Zn,mm are also independent and identically distributed with
Epenxλ,Z

n,m
1 yq “ Epexλ,X1yqtm

´1nu. Therefore, we find that

E
´

exλ,pZ
m,n
1 ,...,Zn,mm qy

¯

“Mpλ1q
tm´1nu ¨ ¨ ¨Mpλmq

tm´1nu.

Collecting everything, we find that

lim sup
nÑ8

1
n

logPpσnn P F q

ď ´ inf
xPΨ´1

m F
sup
λPgm

#

xλ, xy ´
1
m

m
ÿ

i“1
Λpλiq ´ Cm´1B |λ|B

1
m

+

“ ´ inf
xPΨ´1

m F

1
m

m
ÿ

j“1
sup
λPg

txλ,mxjy ´ Λpλq ´ Cm´1B |λ|Bu .

Finally, by letting m tend to infinity, apart from some technical difficulties, one
obtains

lim sup
nÑ8

1
n

logPpσnn P F q ď ´ inf
gPG

IGpgq,

as desired.

Lower bound of the large deviation principle for tσnnuně1.
To prove the lower bound of the large deviation principle for tσnnuně1, we first
observe that it is sufficient to show for every U Ă G open and every g P U that

lim inf
nÑ8

1
n

logPpσnn P Uq ě ´
ż 1

0
Λ˚p 9γptqqddt

for all γ P ACpr0, 1s;Gq with γp0q “ e and γp1q “ g.
To do this, we fix γ P ACpr0, 1s;Gq with γp0q “ e and γp1q “ g and define for m P N
the vectors

ymi :“ log
˜

γ

ˆ

i´ 1
m

˙´1
γ

ˆ

i

m

˙

¸

P g.

Note that Ψmppy
m
1 , . . . , y

m
mqq “ g, where Ψm : gm Ñ G is as in (4.3.5). In order to

continue, we need to know a bit more about the continuity properties of Ψm. More
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precisely, we will prove (see Proposition 4.5.7) that there exists a constant C ą 0
such that for ε ą 0 and m P N large enough, we have that if

px1, . . . , xmq P
m
ź

i“1
Bpymi , pCmq

´1εq,

then
Ψmppx1, . . . , xmqq P BpΨmppy

m
1 , . . . , y

m
mqq, εq “ Bpg, εq.

Now note that in general, contrary to the Euclidean case, we have

log
˜

γ

ˆ

i´ 1
m

˙´1
γ

ˆ

i

m

˙

¸

‰

ż i
m

i´1
m

9γptqdt.

We will show that under the condition that 9γ is bounded (see Proposition 4.5.8),
we have

ˇ

ˇ

ˇ

ˇ

ˇ

log
˜

γ

ˆ

i´ 1
m

˙´1
γ

ˆ

i

m

˙

¸

´

ż i
m

i´1
m

9γptqdt

ˇ

ˇ

ˇ

ˇ

ˇ

ď Lm
1
m
,

where limmÑ8 Lm “ 0. In particular, if we set

ỹmi :“
ż i
m

i´1
m

9γptqdt,

then for m large enough we have Bpỹmi , p2Cmq´1εq Ă Bpymi , pCmq
´1εq. We con-

clude that if

px1, . . . , xmq P
m
ź

i“1
Bpỹmi , p2Cmq´1εq,

then Ψmppx1, . . . , xmqq P Bpg, εq.

Because U is open, there exists an ε ą 0 such that Bpε, gq Ă U . Using the above
continuity property, we find that

Ppσnn P Uq

ě P
´´

Y n,m,1
tm´1nu

, . . . , Y n,m,m
tm´1nu

¯

P Bpỹm1 , p2Cmq´1εq ˆ ¨ ¨ ¨ ˆBpỹmm , p2Cmq´1εq
¯

.

Now using (4.3.4) and the fact that limmÑ8 Cm´1B “ 0, we have form large enough
that

ˇ

ˇ

ˇ

ˇ

ˇ

Y n,m,j
tm´1nu

´
1
n

nj´nj´1
ÿ

i“1
Xnj´1`i

ˇ

ˇ

ˇ

ˇ

ˇ

ď p2Cmq´1 ε

2 .

But then we find that

P
´´

Y n,m,1
tm´1nu

, . . . , Y n,m,m
tm´1nu

¯

P Bpỹm1 , p2Cmq´1εq ˆ ¨ ¨ ¨ ˆBpỹmm , p2Cmq´1εq
¯
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ě P

˜˜

1
n

n1
ÿ

i“1
Xi, . . . ,

1
n

nm´nm´1
ÿ

i“1
Xnm´1`i

¸

P

m
ź

i“1
Bpỹmi , p2Cmq´1ε{2q

¸

“

m
ź

j“1
P

˜

1
n

nj´nj´1
ÿ

i“1
Xnj´1`i P Bpỹ

m
j , p2Cmq´1ε{2q

¸

.

By Cramér’s theorem for random walks in Euclidean space (Theorem 2.1.10), we
find

lim inf
nÑ8

1
n

logP
˜

1
n

nj´nj´1
ÿ

i“1
Xnj´1`i P Bpyj , pCmq

´1εq

¸

ě ´
1
m

Λ˚pmymj q.

Therefore, if we collect everything, we obtain

lim inf
nÑ8

1
n

logPpσnn P Uq ě ´
1
m

m
ÿ

j“1
Λ˚pmỹmj q.

Finally, the convexity of Λ˚ together with Jensen’s inequality implies that

1
m

m
ÿ

j“1
Λ˚pmỹmj q ď

m
ÿ

i“1

ż i
m

i´1
m

Λ˚p 9γptqqdt “
ż 1

0
Λ˚p 9γptqq dt.

From this, we conclude

lim inf
nÑ8

1
n

logPpσnn P Uq ě ´
ż 1

0
Λ˚p 9γptqqdt,

which finishes the proof.

4.3.3. Example: Products of transition matrices
We conclude this section by discussing an example. In this example, we aim to
study the limiting behaviour of products of transition matrices on a finite dimen-
sional state space. For this, we use the stochastic group and its Lie algebra, see e.g.
[47, 79]. For theory regarding matrix Lie groups, see e.g. [51].

We define the set of transition matrices T pd,Rq on d states by

T pd,Rq “ tP PMpd,Rq|P1 “ 1, Pij ě 0 for 1 ď i, j ď du.

Here, Mpd,Rq denotes the set of all dˆ d-matrices, and 1 is the vector of all ones.
Because we will be working with groups, we need inverses to be well-defined. We
therefore consider the subset S`pd,Rq of invertible matrices in T pd,Rq, i.e.

S`pd,Rq “ tP P T pd,Rq| detpP q ‰ 0u.

Note that S`pd,Rq is closed under matrix multiplication. Indeed, if P and Q have
non-negative entries, then so does PQ. Furthermore, if P1 “ 1 and Q1 “ 1 then
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PQ1 “ P1 “ 1. Finally, if P and Q are invertible, then so is PQ. However, inverses
of elements in S`pd,Rq need not have only non-negative entries. It turns out that
the smallest group containing S`pd,Rq is given by

Spd,Rq “ tP PMpd,Rq| detpP q ‰ 0, P1 “ 1u.

This group is called the stochastic group. It is in fact a Lie group. Because we are
dealing with matrix Lie groups, this follows from the observation that if Pn Ñ P
element wise, and Pn1 “ 1 for all n, then also P1 “ 1.

The Lie algebra associated to Spd,Rq is given by

spd,Rq “ tA PMpd,Rq|A1 “ 0u.

Indeed, if A PMpd,Rq is such that A1 “ 0, then

expptAq1 “ 1`

˜

8
ÿ

n“1

tnAn´1

n!

¸

A1 “ 1.

This shows that expptAq P Spd,Rq for all t, implying that

tA PMpd,Rq|A1 “ 0u Ă spd,Rq.

Conversely, if expptAq1 “ 1 for all t P R, then

A1 “ d
dt

ˇ

ˇ

ˇ

t“0
expptAq1 “ 0,

so that
spd,Rq Ă tA PMpd,Rq|A1 “ 0u.

In order to consider random walks in the Lie group Spd,Rq which only use invertible
transition matrices, i.e., elements from S`pd,Rq, we need to find a subset of spd,Rq
which is mapped by the exponential map into S`pd,Rq. To this end, consider the
set

s`pd,Rq “ tA P spd,Rq|Aij ě 0 whenever i ‰ ju.

We will prove that for all A P s`pd,Rq we have exppAq P S`pd,Rq. It suffices to
prove that exppAq has nonnegative entries. To show this, we fix k “ maxdi“1 |Aii|.
Then the matrix B “ A ` kI has nonnegative entries, from which it follows, using
the Taylor series expression, that exppBq has nonnegative entries. Because A and I
commute, we have

exppBq “ exppAq exppkIq “ ek exppAq,

so that exppAq “ e´k exppBq. The latter now has nonnegative entries because
e´k ą 0 and exppBq has nonnegative entries.
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If we now take a measure µ on spd,Rq supported in s`pd,Rq, then the random
walk Sn associated to an independent, identically distributed sequence tXnuně1
will remain in S`pR, dq. This random walk may be thought of as the (random)
n-step transition matrix of a Markov process with state space Ω “ t1, . . . , du.
From an increment A P s`pd,Rq of such a random walk, we can deduce some
qualitative behaviour of the random walk. Indeed, for a state i P t1, . . . , du we
have that the larger |Aii|, the more mass remains at site i after that iteration. The
remainder of the mass at state i is then distributed over the states j ‰ i according
to the relative size of the Aij .

A concrete example
To get a better understanding of these random walks in Spd,Rq and their limiting
behaviour, we do the calculations for a specific example. For this, we take d “ 2
and α, β ą 0. Consider the matrices

A “

ˆ

´α α
0 0

˙

, B “

ˆ

0 0
β ´β

˙

.

Let tXnuně1 be a sequence of independent, identically distributed random variables
with

PpX1 “ Aq “ PpX1 “ Bq “
1
2 .

One may compute the exponentials of the matrices A and B to find

exp
ˆ

1
n
A

˙

“

ˆ

e´
1
nα 1´ e´ 1

nα

0 1

˙

, exp
ˆ

1
n
B

˙

“

ˆ

1 0
1´ e´ 1

nβ e´
1
nβ

˙

.

Intuitively, this process chooses one of the states uniformly at random and then
distributes the mass at that state over the two states according to some parameter.
Additionally, one sees that if n tends to infinity, the mass that is passed between
states becomes exponentially small.
Now consider the rescaled random walk

σnn “ exp
ˆ

1
n
X1

˙

¨ ¨ ¨ exp
ˆ

1
n
Xn

˙

.

By Theorem 4.3.1, the sequence tσnnuně1 satisfies in Sp2,Rq the large deviation
principle. In order to obtain an explicit expression for the rate function, we need
to equip sp2,Rq with an inner product. For this, we will use the Frobenius inner
product given by

xA,By “ TrpATBq “
2
ÿ

i,j“1
AijBij .

With this inner product, the log moment generating function Λ : sp2,Rq Ñ R of X1
is given by

Λ
ˆˆ

´λ1 λ1
λ2 ´λ2

˙˙

“ log
ˆ

1
2e

2αλ1 `
1
2e

2βλ2

˙

.
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Let us compute Λ˚ : sp2,Rq Ñ R, i.e., we want to compute

Λ˚
ˆˆ

´x1 x1
x2 ´x2

˙˙

“ sup
λPsp2,Rq

xλ, xy ´ Λpλq

“ sup
λ1,λ2PR

2λ1x1 ` 2λ2x2 ´ log
ˆ

1
2e

2αλ1 `
1
2e

2βλ2

˙

.

Here we used that every λ P sp2,Rqmay be characterized by two elements λ1, λ2 P R.
By taking λ2 “ 0 and letting |λ1| tend to infinity, we see that Λ˚ is infinite whenever
x1 R r0, αs. In a similar way one can show that Λ˚ is infinite if x2 R r0, βs.
Next, we show that Λ˚ is also infinite if αx2 ` βx1 ‰ αβ. To see this, take λ1, λ2
such that αλ1 ´ βλ2 “ αβ. Writing everything in terms of λ2, we find that

Λ˚
ˆˆ

´x1 x1
x2 ´x2

˙˙

ě 2λ1x1 ` 2λ2x2 ´ log
ˆ

1
2e

2αλ1 `
1
2e

2βλ2

˙

“ 2x1

ˆ

β `
β

α
λ2

˙

` 2λ2x2 ´ log
ˆ

1
2e

2βλ2
`

eαβ ` 1
˘

˙

“ 2
ˆ

β

α
x1 ` x2 ´ β

˙

λ2 ` 2x1 ´ log
ˆ

1
2
`

eαβ ` 1
˘

˙

.

By letting |λ2| tend to infinity, we see that if we maximize the above over λ2 P R,
it will only be finite when

β

α
x1 ` x2 ´ β “ 0,

which is equivalent to
βx1 ` αx2 “ αβ.

Let us now compute the finite values of Λ˚. To this end, first consider the case
x1 P p0, αq and x2 P p0, βq with βx1 ` αx2 “ αβ. Let us define

F pλ1, λ2q “ 2λ1x1 ` 2λ2x2 ´ log
ˆ

1
2e

2αλ1 `
1
2e

2βλ2

˙

.

Computing the gradient, and equating to 0, we find for the critical points of F that

x1 “
α

e2αλ1 ` e2βλ2
e2αλ1

and
x2 “

β

e2αλ1 ` e2βλ2
e2βλ2 .

Using that βx1 ` αx2 “ αβ, we find that the above set of equations is solved by

λ˚1 “
1

2α logpβx1q, λ˚2 “
1

2β logpαx2q.
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It follows that

Λ˚
ˆˆ

´x1 x1
x2 ´x2

˙˙

“ F pλ˚1 , λ
˚
2 q

“
1
α

logpβx1qx1 `
1
β

logpαx2qx2 ´ log
ˆ

1
2βx1 `

1
2αx2

˙

“
1
α

logpβx1qx1 `
1
β

logpαx2qx2 ´ log
ˆ

1
2αβ

˙

,

where in the final step we used again that βx1 ` αx2 “ αβ.
Now, in the case that x1 “ 0 and x2 “ β we have

Λ˚
ˆˆ

0 0
β ´β

˙˙

“ sup
λ2PR

sup
λ1PR

"

2λ2β ´ log
ˆ

1
2e

2αλ1 `
1
2e

2βλ2

˙*

“ sup
λ2PR

"

2λ2β ´ log
ˆ

1
2e

2βλ2

˙*

“ logp2q.

Likewise, we also have

Λ˚
ˆˆ

´α α
0 0

˙˙

“ logp2q.

Now, the rate function for the large deviation principle for tσnnuně1 is given by

IpMq “ inf
"
ż 1

0
Λ˚p 9γptqqdt

ˇ

ˇ

ˇ

ˇ

γ P ACpr0, 1s; Sp2,Rqq, γp0q “ I, γp1q “M

*

.

To get a more specific expression, we calculate the rate function further in the case
where α “ β. Let γ P ACpr0, 1s; Sp2,Rqq with γp0q “ I. Then we can write

γptq “

ˆ

1´ γ1ptq γ1ptq
γ2ptq 1´ γ2ptq

˙

,

so that
9γptq “

ˆ

´ 9γ1ptq 9γ1ptq
9γ2ptq ´ 9γ2ptq

˙

P TγptqSp2,Rq.

Now recall that we may identify TγptqSp2,Rq with sp2,Rq using the map dL´1
γptq “

dLγptq´1 . Because Sp2,Rq is a matrix Lie group, we have

dLγptq´1pXq “ γptq´1X.

Therefore, as element of sp2,Rq, the curve tangent to γ is given by

dLγptq´1p 9γq “ γptq´1 9γptq

“
1

1´ γ1ptq ´ γ2ptq

ˆ

´p1´ γ2ptqq 9γ1ptq ´ γ1ptq 9γ2ptq p1´ γ2ptqq 9γ1ptq ` γ1ptq 9γ2ptq
p1´ γ1ptqq 9γ2ptq ` γ2ptq 9γ1ptq ´p1´ γ1ptqq 9γ2ptq ´ γ2ptq 9γ1ptq

˙
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Now, in order for
ż 1

0
Λ˚pγptq´1 9γptqqdt

to be finite, we need to have

β
p1´ γ2ptqq 9γ1ptq ` γ1ptq 9γ2ptq

1´ γ1ptq ´ γ2ptq
` α

p1´ γ1ptqq 9γ2ptq ` γ2ptq 9γ1ptq

1´ γ1ptq ´ γ2ptq
“ αβ,

because, as we have seen above, only then Λ˚pγptq´1 9γptqq ă 8. Since α “ β, after
some calculations, the above may be rewritten as

9γ1ptq ` 9γ2ptq “ αp1´ pγ1ptq ` γ2ptqqq.

If we now write ψptq “ γ1ptq`γ2ptq, the previous equality gives a differential equation
for ψ, namely

9ψptq “ αp1´ ψptqq,

with ψp0q “ γ1p0q ` γ2p0q “ 0. The solution to this equation is given by

ψptq “ 1´ e´αt.

In particular, this implies that

γ1p1q ` γ2p1q “ ψp1q “ 1´ e´α.

From this, we deduce that IpMq is only finite for matrices satisfying M12 `M21 “
1 ´ e´α. Now, if M is such a matrix, the convexity of Λ˚ together with Jensen’s
inequality, implies that

inf
"
ż 1

0
Λ˚p 9γptqqdt

ˇ

ˇ

ˇ

ˇ

γ P ACpr0, 1s; Sp2,Rqq, γp0q “ I, γp1q “M

*

is attained when taking γ˚1 ptq “ cψptq and γ˚2 ptq “ p1´ cqψptq. Since we need that
γ˚1 p1q “M12, we take

γ˚1 ptq “
M12

M12 `M21
ψptq “

M12

1´ e´α p1´ e
´αtq,

in which case
γ˚2 ptq “

M21

1´ e´α p1´ e
´αtq.

Using the expression for Λ˚ we derived above, one obtains after some computations
that

IpMq “

ż 1

0
Λ˚

ˆˆ

´ 9γ˚1 ptq 9γ˚1 ptq
9γ˚2 ptq ´ 9γ˚2 ptq

˙˙

dt

“ α2M12 log
ˆ

αM12

1´ e´α

˙

´M12 ´
αe´αM12

1´ e´α
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` α2M21 log
ˆ

αM21

1´ e´α

˙

´M21 ´
αe´αM21

1´ e´α ´ log
ˆ

1
2α

2
˙

“ α2M12 log
ˆ

αM12

1´ e´α

˙

` α2M21 log
ˆ

αM21

1´ e´α

˙

` p1´ αqe´α ´ log
ˆ

1
2α

2
˙

´ 1

if M12 `M21 “ 1´ e´α. Otherwise, we have IpMq “ 8.

4.4. Some estimation results from Lie group theory

In this section we use the integral version of the Baker-Campbell-Hausdorff for-
mula to derive a key estimate we need for proving Theorem 4.3.1. Essentially, we
will show that for X,Y P g small enough, we can bound the difference between
logpexppXq exppY qq and X ` Y . These results are likely to be known to experts,
however, we did not find a version in which the estimates are quantified precisely
enough for our purposes. Estimates which are closely related, and obtained using a
similar approach may be found in e.g. [46, Section 3].

4.4.1. Baker-Campbell-Hausdorff formula
Before we can state the Baker-Campbell-Hausdorff formula, we first need to intro-
duce some linear operators on g.
For every X P g, we define the adjoint map adX : gÑ g by

adXpY q :“ rX,Y s. (4.4.1)

Because the map pX,Y q ÞÑ adXY is smooth, it follows that ||adX || depends contin-
uously on X. In particular, this implies that

sup
XPK

||adX || ă 8

for all K Ă g compact. Additionally, it also gives us that

lim
XÑ0

||adX || “ ||ad0|| “ 0. (4.4.2)

Because adX is a bounded operator, we can define the operator etadX by

etadX “
8
ÿ

m“0

tmadmX
m! .

Similarly, for fpzq “ 1´e´z
z “

ř8

m“0
p´1qm
pm`1q!z

m we define the operator

I ´ e´adX

adX
“ fpadXq “

8
ÿ

m“0

p´1qm

pm` 1q! admX .



126 4. Large deviations for random walks in Lie groups

From this series representation, we find that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

I ´
I ´ e´adX

adX

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

8
ÿ

k“1

||adX ||k

pk ` 1q! ď e||adX || ´ 1.

Now, by (4.4.2) the upper bound goes to 0 if X Ñ 0. This implies that if |X| is
small enough, then

I ´ e´adX

adX
is invertible, with inverse given by

adX
I ´ e´adX

“ gpeadX q (4.4.3)

where gpzq “ z logpzq
z´1 “ 1`

ř8

m“1
p´1qm`1

mpm`1q pz ´ 1qm for |z ´ 1| ă 1.
With all relevant operators defined, we can state the integral form of the Baker-
Campbell-Hausdorff formula, see e.g. [51, 92].

Theorem 4.4.1 (Baker-Campbell-Hausdorff). There exists an r ą 0 such that for
all X,Y P g with |X|, |Y | ď r we have that logpexppXq expptY qq is well-defined for
all t P r0, 1s and is given by

logpexppXq expptY qq “ X `

ˆ
ż t

0
gpeadXesadY qds

˙

Y,

where gpzq “ z logpzq
z´1 “ 1`

ř8

m“1
p´1qm`1

mpm`1q pz ´ 1qm for |z ´ 1| ă 1.

We will use this formula to deduce approximations for the logarithm of a product
of exponentials.

4.4.2. Logarithm of a product of exponentials
In this section we aim to control the difference

|logpexppXq exppY qq ´X ´ Y |

forX and Y small enough. We do this using the Baker-Campbell-Hausdorff formula.
We have the following proposition.

Proposition 4.4.2. There exists an r ą 0 such that for every X P g with |X| ď r
there exists a constant CX ą 0 such that

|logpexppXq exppY qq ´X ´ Y | ď CX |Y |

for all |Y | ď r. Moreover, the constants CX may be chosen to only depend on |X|
and such that limXÑ0 CX “ 0.
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Proof. By Theorem 4.4.1 there exists an r ą 0 such that for X,Y P g with |X|, |Y | ď
r we have

logpexppXq exppY qq “ X ` Y `

˜

ż 1

0

8
ÿ

m“1

p´1qm

mpm` 1q pe
adXesadY ´ Iqm ds

¸

Y.

From this, it follows that

| logpexppXq exppY qq ´X ´ Y |

“

ˇ

ˇ

ˇ

ˇ

ˇ

˜

ż 1

0

8
ÿ

m“1

p´1qm

mpm` 1q pe
adXesadY ´ Iqm ds

¸

Y

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż 1

0

8
ÿ

m“1

1
mpm` 1q ||e

adXesadY ´ I||m´1|peadXesadY ´ IqY | ds.

Because adY Y “ 0, we find that

esadY Y “ Y `
8
ÿ

m“1

smadm´1
Y

m! adY Y “ Y,

so that

|peadXesadY ´ IqY | “ |peadX ´ IqY | ď ||eadX ´ I|||Y | ď pe||adX || ´ 1q|Y |.

Here, the latter follows from

||eadX ´ I|| ď
8
ÿ

m“1

||adX ||m

m! “ e||adX || ´ 1.

Now define Zptq “ logpexppXq expptY qq. Then

eadXesadY “ eadZpsq ,

see e.g. [51, Chapter 5] or [92, Chapter 2]. From this we deduce

||eadXesadY ´ I|| ď e||adZpsq|| ´ 1.

By (4.4.2), we find r1 ą 0 such that ||adZpsq|| ď logp2q
2 whenever |Zpsq| ď r1. By

Proposition 4.1.2, there is r2 ą 0 such that latter holds whenever dpe, exppZpsqqq ď
r2.
Now we have

dpe, exppZpsqqq “ dpe, exppXq expptY qq
ď dpe, exppXqq ` dpexppXq, exppXq expptY qq
“ dpe, exppXqq ` dpe, expptY qq
ď |X| ` t|Y |,
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where we used the triangle inequality and left-invariance of the metric. The last
step follows by noticing that if γptq “ expptXq, then

dpe, exppXqq ď
ż 1

0
| 9γptq| dt “ |X|.

Therefore, if |X|, |Y | ď 1
2r
2, then dpe, exppZpsqqq ď r2 so that ||adZpsq|| ď logp2q

2 for
all s P p0, 1q. But then ||eadXesadY ´ I|| ď

?
2´ 1 ă 1, and hence

ż 1

0

8
ÿ

m“1

1
mpm` 1q ||e

adXesadY ´ I||m´1|peadXesadY ´ IqY | ds

ď pe||adX || ´ 1q|Y |
ż 1

0

8
ÿ

m“1

p
?

2´ 1qm´1

mpm` 1q ds

ď pe||adX || ´ 1q|Y |
8
ÿ

m“1

p
?

2´ 1qm´1

mpm` 1q .

We may thus take

CX “ pe
||adX || ´ 1q

8
ÿ

m“1

p
?

2´ 1qm´1

mpm` 1q ă 8.

Because lim|X|Ñ0 ||adX || “ 0, it follows that limXÑ0 CX “ 0, and that CX may be
chosen to depend only on |X|.

We conclude this section with the following result, which shows a Lipschitz-like
estimate for the logarithm of a product of two exponentials.

Proposition 4.4.3. There exist constants r ą 0 and C ą 0 such that for all
X,Y P g with |X|, |Y | ď r we have

| logpexppXq expp´Y qq| ď C|X ´ Y |

Proof. Following the same reasoning as in the proof of Proposition 4.4.2, there exists
an r ą 0 such that

logpexppXq expp´Y qq “ X ´ Y ´

˜

ż 1

0

8
ÿ

m“1

pI ´ eadXe´tadY qm

mpm` 1q dt
¸

Y

whenever |X|, |Y | ď r.
As before, we have e´tadY Y “ Y and similarly eadXX “ X. As a consequence, we
can write

pI ´ eadXe´tadY qY “ pI ´ eadX qY “ pI ´ eadX qpY ´Xq,

from which it follows that

|pI ´ eadXe´tadY qmY | ď ||I ´ eadXe´tadY ||m´1||I ´ eadX |||Y ´X|.
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By similar reasoning as in the proof of Proposition 4.4.2, after possibly shrinking r,
there exist constants C, C̃ ą 0 such that |X|, |Y | ď r implies that

ˇ

ˇ

ˇ

ˇ

ˇ

˜

ż 1

0

8
ÿ

m“1

pI ´ eadXe´tadY qm

mpm` 1q dt
¸

Y

ˇ

ˇ

ˇ

ˇ

ˇ

ď C̃||I ´ eadX |||Y ´X| ď C|X ´ Y |.

By the triangle inequality we then find that

| logpexppXq expp´Y qq| ď pC ` 1q|X ´ Y |

as desired.

4.5. Proof of Theorem 4.3.1

As explained in Section 4.3.2, we prove the upper bound and lower bound for the
large deviation principle of tσnnuně0 separately. More precisely, Theorem 4.3.1 fol-
lows immediately from Propositions 4.5.3 and 4.5.9. Before we get to either of these,
we first need two general results, which we use in both the proof of the upper and
lower bound.
First of all, define for every n P N and every 1 ď k ď n the random variable

σnk “ exp
ˆ

1
n
X1

˙

¨ ¨ ¨ exp
ˆ

1
n
Xk

˙

P G,

i.e., the point of the rescaled random walk after k increments. Finally, we set σn0 “ e,
the identity element of G. We have the following estimate.

Proposition 4.5.1. Let the assumptions of Theorem 4.3.1 be satisfied. Then for
every m large enough, there exists a constant Cm ą 0 such that for all 1 ď k ď
tm´1nu, logpσnk q is well-defined and

ˇ

ˇ

ˇ

ˇ

ˇ

log pσnk q ´
1
n

k
ÿ

i“1
Xi

ˇ

ˇ

ˇ

ˇ

ˇ

ď Cm
1
m
.

Moreover, the constants Cm may be chosen so that limmÑ8 Cm “ 0.

Proof. First note that by the triangle inequality we have for any n and 1 ď k ď n
that

dpσnk , eq ď
k
ÿ

i“1
dpσni , σ

n
i´1q.

Considering the curve γiptq “ σni´1 expptXiq in G, we obtain

dpσni , σ
n
i´1q ď

ż 1
n

0
| 9γiptq| dt “

1
n
|Xi|.



130 4. Large deviations for random walks in Lie groups

Hence, if we write B for the uniform bound on the increments, we find

dpσnk , eq ď
k

n
B. (4.5.1)

But then we have for 1 ď k ď tm´1nu that

dpσnk , eq ď
tm´1nu

n
B ď

1
m
B. (4.5.2)

Thus if we choose m large enough, we can assure that σnk is sufficiently close to e
for k “ 1, . . . , tm´1nu, so that logpσnk q is well-defined for 1 ď k ď tm´1nu.

Turning to the proof of the estimate, first note that we may write

log pσnk q “
k
ÿ

i“1
log pσni q ´ log

`

σni´1
˘

so that
ˇ

ˇ

ˇ

ˇ

ˇ

log pσnk q ´
1
n

k
ÿ

i“1
Xi

ˇ

ˇ

ˇ

ˇ

ˇ

ď

k
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

log pσni q ´ log
`

σni´1
˘

´
1
n
Xi

ˇ

ˇ

ˇ

ˇ

.

By Proposition 4.1.2, for every r ą 0 there exists an ε ą 0 such that dpe, gq ď ε
implies that | logpgq| ď r. Therefore, it follows from (4.5.2) that for 1 ď k ď tm´1nu,
| logpσnk q| can be made arbitrarily small by taking m large enough. Furthermore,
because |Xi| ď B, we find that 1

nXi becomes small for large n. Hence, for m
and n large enough we can apply Proposition 4.4.2 to obtain constants Cm with
limmÑ8 Cm “ 0 such that

ˇ

ˇ

ˇ

ˇ

log pσni q ´ log
`

σni´1
˘

´
1
n
Xi

ˇ

ˇ

ˇ

ˇ

ď Cm
1
n
|Xi| ď Cm

1
n
B.

Combining everything, we find that
ˇ

ˇ

ˇ

ˇ

ˇ

log pσnk q ´
1
n

k
ÿ

i“1
Xi

ˇ

ˇ

ˇ

ˇ

ˇ

ď

k
ÿ

i“1
Cm

1
n
“ Cm

k

n
ď Cm

1
m
.

Here we used that k ď tm´1nu and absorbed the constant B into Cm.

In general we do not have that logpσnk q exists in g for all n and all 1 ď k ď n.
Therefore, in order to be able to use some identification of the random walk with a
process in the Lie algebra, we need to make sure we can actually use the logarithm
map.
To this end, notice that in the previous proof we have seen in (4.5.2) that dpσnk , eq ď
1
mB for 1 ď k ď tm´1nu, where B is the uniform bound on the increments. With
this estimate in mind, the idea is now to split the random walk into m pieces, each
consisting of (approximately) tm´1nu increments. More precisely, we define the
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indices nl “ ltm´1nu for l “ 0, . . . ,m ´ 1 and set nm “ n. Because the metric is
left-invariant, it follows similarly to (4.5.2) that

dpe, pσnnl´1
q´1σnnl´1`k

q “ dpσnnl´1
, σnnl´1`k

q ď
1
m
B (4.5.3)

for every l “ 1, . . . ,m and every k “ 1, . . . , nl ´ nl´1. This implies that for m large
enough we can define

Y n,m,lk “ log
´

pσnnl´1
q´1σnnl´1`k

¯

P g

for every l “ 1, . . . ,m and k “ 1, . . . , nl ´ nl´1.
Note that

pσnnl´1
q´1σnnl´1`k

“ exp
ˆ

1
n
Xnl´1`1

˙

¨ ¨ ¨ exp
ˆ

1
n
Xnl´1`k

˙

,

so that
Y n,m,lk “ log

ˆ

exp
ˆ

1
n
Xnl´1`1

˙

¨ ¨ ¨ exp
ˆ

1
n
Xnl´1`k

˙˙

. (4.5.4)

For every m, this allows us to define a random vector
´

Y n,m,1
tm´1nu

, . . . , Y n,m,m
tm´1nu

¯

P gm. (4.5.5)

By (4.5.4), we have that Y m,1
tm´1nu

, . . . , Y m,m
tm´1nu

are independent and identically dis-
tributed random variables in g, because the Xi are independent and identically
distributed by assumption.

4.5.1. Proof of the upper bound for the large deviation prin-
ciple of tσn

nuně0
As explained in Section 4.3.2, we prove the upper bound for the large deviation
principle of tσnnuně0 by transferring the problem to the Lie algebra and obtain
suitable estimates there using a similar approach as in the Euclidean case. We start
with the following result.

Proposition 4.5.2. Let the assumptions of Theorem 4.3.1 be satisfied. Let m P N
be large enough so that the random vector

´

Y n,m,1
tm´1nu

, . . . , Y n,m,m
tm´1nu

¯

P gm

in (4.5.5) is well-defined. Then there exists a constant Cm ą 0 such that for every
F Ă gm closed we have

lim sup
nÑ8

1
n

logP
´´

Y n,m,1
tm´1nu

, . . . , Y n,m,m
tm´1nu

¯

P F
¯

ď ´ inf
px1,...,xmqPF

1
m

m
ÿ

i“1
sup
λPg

txλ,mxiy ´ Λpλq ´ Cm|λ|u .
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Here, Λpλq “ logEpeλX1q. Moreover, the constants Cm may be chosen such that
limmÑ8 Cm “ 0.

Proof. Following the proof of Cramér’s theorem for the vector space gm (see e.g.
[29, 56]), we have for any Γ Ă gm compact that

lim sup
nÑ8

1
n

logP
´´

Y n,m,1
tm´1nu

, . . . , Y n,m,m
tm´1nu

¯

P Γ
¯

ď ´ inf
px1,...,xmqPΓ

sup
pλ1,...,λmqPgm

#

m
ÿ

i“1
xλi, xiy ´ lim sup

nÑ8

1
n

logE
ˆ

e
n
řm
i“1xλi,Y

n,m,i

tm´1nu
y

˙

+

However, as mentioned above, the fact that the Xi are independent and identically
distributed, together with (4.5.4), shows that Y n,m,1

tm´1nu
, . . . , Y n,m,m

tm´1nu
are independent

and identically distributed. Hence

E
ˆ

e
n
řm
i“1xλi,Y

n,m,i

tm´1nu
y

˙

“

m
ź

i“1
E
ˆ

e
nxλi,Y

n,m,1
tm´1nu

y

˙

.

By Proposition 4.5.1, there exist constants Cm ą 0 with limmÑ8 Cm “ 0 such that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Y n,m,1
tm´1nu

´
1
n

tm´1nu
ÿ

i“1
Xi

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď Cm
1
m
.

Using the Cauchy-Schwarz inequality, this gives us that

E
ˆ

e
nxλi,Y

n,m,1
tm´1nu

y

˙

ď E
ˆ

e
řtm´1nu

j“1 xλi,Xjy

˙

en|λi|Cmm
´1

“ en|λi|Cmm
´1
E
´

exλi,X1y
¯tm´1nu

.

Hence

lim sup
nÑ8

1
n

logE
ˆ

e
n
řm
i“1xλi,Y

n,m,i

tm´1nu
y

˙

“

m
ÿ

i“1
lim sup
nÑ8

1
n

logE
ˆ

e
nxλi,Y

n,m,1
tm´1nu

y

˙

ď

m
ÿ

i“1

"

|λi|Cm
1
m
`

1
m

logE
´

exλi,X1y
¯

*

“
1
m

m
ÿ

i“1

!

Cm|λi| ` logE
´

exλi,X1y
¯)

.

Collecting everything, we find that

lim sup
nÑ8

1
n

logP
´´

Y n,m,1
tm´1nu

, . . . , Y n,m,m
tm´1nu

¯

P Γ
¯

ď ´ inf
px1,...,xmqPΓ

sup
pλ1,...,λmqPgm

1
m

m
ÿ

i“1

!

xλi,mxiy ´ logE
´

exλi,X1y
¯

´ Cm|λi|
)
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“ ´ inf
px1,...,xmqPΓ

1
m

m
ÿ

i“1
sup
λPg

txλ,mxiy ´ Λpλq ´ Cm|λ|u .

To extend this upper bound to all closed sets, note that the boundedness of the in-
crements of the random walk implies that Y n,m,1

tm´1nu
is bounded, and hence remains in

a compact subset of g. Because Y n,m,1
tm´1nu

, . . . , Y n,m,m
tm´1nu

are independent and identically
distributed, we can conclude from this that pY n,m,1

tm´1nu
, . . . , Y n,m,m

tm´1nu
q is exponentially

tight in gm. From this it follows that the upper bound actually holds for all closed
sets, which completes the proof.

With the preparations done, we can now turn to the proof of the upper bound of
the large deviation principle for tσnnuně1. The main work goes into proving that we
actually obtain the desired form of the upper bound.

Proposition 4.5.3. Let the assumptions of Theorem 4.3.1 be satisfied. Then for
any F Ă G closed we have

lim sup
nÑ8

1
n

logPpσnn P F q ď ´ inf
gPF

IGpgq,

where IG is the good rate function given by (4.3.1).

Proof. Let F Ă G be closed. Choose m P N large enough so that the random vector
´

Y n,m,1
tm´1nu

, . . . , Y n,m,m
tm´1nu

¯

P gm

defined in (4.5.5) is well-defined. Let Ψm : gm Ñ G be the map given by

Ψmpx1, . . . , xmq “ exppx1q ¨ ¨ ¨ exppxmq.

Because Ψm is a composition of continuous functions, it is itself continuous. Fur-
thermore, observe that by construction

Ψm

´

Y n,m,1
tm´1nu

, . . . , Y n,m,m
tm´1nu

¯

“ σnn .

This implies that

P pσnn P F q “ P
´´

Y n,m,1
tm´1nu

, . . . , Y n,m,m
tm´1nu

¯

P Ψ´1
m F

¯

,

where Ψ´1
m F is closed, because F is closed and Ψm is continuous. By Proposition

4.5.2 we then find that

lim sup
nÑ8

1
n

logP pσnn P F q

ď ´ inf
px1,...,xmqPΨ´1

m F

1
m

m
ÿ

i“1
sup
λPg

txλ,mxiy ´ Λpλq ´ Cm|λ|u ,
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where limmÑ8 Cm “ 0.
The final step is now to let m tend to infinity, and show that we obtain the desired
upper bound. For this, we need to show that

´ lim
mÑ8

inf
px1,...,xmqPΨ´1

m F

1
m

m
ÿ

i“1
sup
λPg

txλ,mxiy ´ Λpλq ´ Cm|λ|u ď ´ inf
gPF

IGpgq.

To this end, let ε ą 0 be arbitrary. Because limmÑ8 Cm “ 0, we can find m0 P N
such that m ě m0 implies that Cm ă ε. In that case, we have

´ inf
px1,...,xmqPΨ´1

m F

1
m

m
ÿ

i“1
sup
λPg

txλ,mxiy ´ Λpλq ´ Cm|λ|u

ď ´ inf
px1,...,xmqPΨ´1

m F

1
m

m
ÿ

i“1
sup
λPg

txλ,mxiy ´ Λpλq ´ ε|λ|u

“ ´ inf
px1,...,xmqPΨ´1

m F

1
m

m
ÿ

i“1
Λ˚ε pmxiq,

where Λεpλq “ Λpλq ` ε|λ| and Λ˚ε denotes its Legendre transform.
Now note that

1
m

m
ÿ

i“1
Λ˚ε pmxiq “

ż 1

0
Λ˚ε p 9γptqqdt,

where γ : r0, 1s Ñ G is given by γp0q “ e and

γptq “ γ

ˆ

i´ 1
m

˙

exp
ˆˆ

t´
i´ 1
m

˙

mxi

˙

, t P

„

i´ 1
m

,
i

m



,

for i “ 1, . . . ,m. Furthermore, note that γp1q “ Ψmpx1, . . . , xmq.
Using this, we find that

´ inf
px1,...,xmqPΨ´1

m F

1
m

m
ÿ

i“1
Λ˚ε pmxiq

ď ´ inf
"
ż 1

0
Λ˚ε p 9γptqqdt

ˇ

ˇ

ˇ

ˇ

γ P ACpr0, 1s;Gq, γp0q “ e, γp1q “ g

*

.

It remains to consider the limit ε Ñ 0. To this end, first suppose that IGpgq ă 8.
By the goodness of the rate function Iεpγq “

ş1
0 Λ˚ε p 9γptqqdt, the sets

Cε :“
"

γ

ˇ

ˇ

ˇ

ˇ

ż 1

0
Λ˚ε p 9γptqqdt ď 2IGpgq

*

are compact. Furthermore, we have Cε1 Ă Cε whenever ε1 ď ε. Because lower-
semicontinuous functions attain their minimum on compact sets, we have a sequence
γε such that

ż 1

0
Λ˚ε p 9γεptqq dt “ inf

"
ż 1

0
Λ˚ε p 9γptqqdt

ˇ

ˇ

ˇ

ˇ

γ P ACpr0, 1s;Gq, γp0q “ e, γp1q “ g,

*
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“: Iε.

Because the sequence Cε is decreasing, for ε small enough, the sequence γε is con-
tained in a compact set, and hence, upon passing to subsequences, we may assume
that γε converges with limit γ. But then we find for every δ ą 0 that

lim inf
εÑ0

Iε “ lim inf
εÑ0

ż 1

0
Λ˚ε p 9γεptqqdt

ě lim inf
εÑ0

ż 1

0
Λ˚δ p 9γεptqqdt

ě

ż 1

0
Λ˚δ p 9γptqqdt.

As this holds for all δ ą 0, by taking the limit δ Ñ 0 we find that

lim inf
εÑ0

Iε ě

ż 1

0
Λ˚p 9γptqq dt ě IGpgq.

Because also Iε ď IGpgq for every ε ą 0, we find that limεÑ0 Iε “ IGpgq as desired.
Now consider the case that IGpgq “ 8. Suppose that Iε does not go to 8. Then
lim infεÑ0 Iε ă 8. Upon passing to subsequences, suppose that limεÑ0 Iε “ I.
Following a similar reasoning as above, we find a sequence γε converging to γ which
we can use to show that

IGpgq ď lim inf
εÑ0

Iε ă 8,

which is a contradiction. We conclude that limεÑ0 Iε “ 8.
Collecting everything, we have that

lim
εÑ0

„

inf
"
ż 1

0
Λ˚ε p 9γptqqdt|γ : r0, 1s Ñ G, γp0q “ e, γp1q “ g, γ P AC

*

“ IGpgq.

so that
lim sup
nÑ8

1
n

logPpσnn P F q ď ´ inf
gPF

IGpgq

as desired.

4.5.2. Proof of the lower bound for the large deviation princi-
ple of tσn

nuně0
Before we get to the proof of the lower bound for the large deviation principle of
tσnnuně0, we first need to study more carefully the continuity properties of the maps
Ψm : gm Ñ G given by

Ψmpx1, . . . , xmq “ exppx1q ¨ ¨ ¨ exppxmq.

Before we can do this, we first need some technical lemmas.
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Lemma 4.5.4. Let K Ă G be compact. Denote by Φg : G Ñ G conjugation by g,
i.e., Φgh “ ghg´1. Then

sup
gPK

||dΦgpeq|| ă 8.

Proof. Consider the map Φ : G ˆ G Ñ G given by Φpg, hq :“ Φgh. Because
Φpg, hq “ Rg´1Lgh, the map Φ is smooth. Now note that

dΦgpeqpXq “ dΦpg, eqp0, Xq

Because Φ is smooth, the latter is continuous in g and hence

sup
gPK

|dΦgpeqX| ă 8

for all X P g. But then it follows from the uniform boundedness principle that also

sup
gPK

||dΦgpeq|| ă 8

as desired.

Lemma 4.5.5. For every X P g and g, h P G we have

|dΦgphqpdLhpeqpXqq| “ |dΦgpeqpXq|.

Proof. Since dL´1
ΦghpΦghq is an isometry, we have

|dΦgphqpdLhpeqpXqq| “ |dL´1
ΦghpΦghqpdΦgphqpdLhpeqpXqqq|.

By the chain rule

dL´1
ΦghpΦghqpdΦgphqpdLhpeqpXqqq “ dpL´1

Φgh ˝ Φg ˝ LhqpeqpXq.

Now, consider γptq “ expptXq. Then γp0q “ e and 9γp0q “ X, which gives us that

dpL´1
Φgh ˝ Φg ˝ LhqpeqpXq “

d
dt

ˇ

ˇ

ˇ

ˇ

t“0
pL´1

Φgh ˝ Φg ˝ LhqpexpptXqq

“
d
dt

ˇ

ˇ

ˇ

ˇ

t“0
gh´1g´1gh expptXqg´1

“
d
dt

ˇ

ˇ

ˇ

ˇ

t“0
g expptXqg´1

“ dΦgpeqpXq.

Combining all the equalities, we find that

|dΦgphqpdLhpeqpXqq| “ |dΦgpeqpXq|

as desired.
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Lemma 4.5.6. For every X P g and g P G we have

dpe,Φg exppXqq ď |dΦgpeqX|,

where Φg denotes conjugation with g.

Proof. Consider the curve γptq “ Φg expptXq. By definition of the Riemannian
distance, we have

dpe,Φg exppXqq ď
ż 1

0
| 9γptq| dt.

By the chain rule, we have that

9γptq “ dΦgpexpptXqqpdLexpptXqpeqpXqq.

By Lemma 4.5.5 we have

|dΦgpexpptXqqpdLexpptXqpeqpXqq| “ |dΦgpeqpXq|.

Combining everything, we find that

dpe,Φg exppXqq ď
ż 1

0
|dΦgpeqpXq|dt “ |dΦgpeqpXq|,

which concludes the proof.

We can now prove the following continuity property of the maps Ψm.

Proposition 4.5.7. For every r ą 0, there exists a constant C ą 0 such that for
all ε ą 0 and m P N large enough we have that if

px1, . . . , xmq P Bpy1, C
´1εq ˆ ¨ ¨ ¨Bpym, C

´1εq,

then
Ψmpx1, . . . , xmq P BpΨmpy1, . . . , ymq, εq

whenever |xi|, |yi| ď r
m .

Proof. By the triangle inequality and left-invariance of the metric, we have

dpΨmpx1, . . . , xmq,Ψmpy1, . . . , ymqq

“ dpΨm´1px2, . . . , xmq, expp´x1q exppy1qΨm´1py2, . . . , ymqq

ď dpΨm´1px2, . . . , xmq,Ψm´1py2, . . . , ymqq

` dpΨm´1py2, . . . , ymq, expp´x1q exppy1qΨm´1py2, . . . , ymqq

“ dpΨm´1px2, . . . , xmq,Ψm´1py2, . . . , ymqq

` dpe,Ψm´1py2, . . . , ymq
´1 expp´x1q exppy1qΨm´1py2, . . . , ymqq.

Now if m is large enough, then for x1, y1 with |x1|, |y1| ď
r
m , we have that

logpexpp´x1q exppy1qq
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is well-defined. Furthermore, by Proposition 4.4.3 there exists a constant C such
that

| logpexpp´x1q exppy1qq| ď C|x1 ´ y1|.

If we now write Φg for conjugation with g, it follows from Lemma 4.5.6 that

dpe,Ψm´1py2, . . . , ymq
´1 expp´x1q exppy1qΨm´1py2, . . . , ymqq

ď ||dΦΨm´1py2,...,ymq´1peq||| logpexpp´x1q exppy1qq|

ď C||dΦΨm´1py2,...,ymq´1peq|||x1 ´ y1|

Because y2, . . . , ym P Bp0, rm´1q, in the same way as we obtained (4.5.1), we find
that

|Ψm´1py2, . . . , ymq| ď B
m
ÿ

i“2
|yi| ď Br.

Since Lie groups are complete as Riemannian manifold, the set Bpe,Brq Ă G is
compact. Combining everything and applying Lemma 4.5.4, there exists a constant
C̃ ą 0 such that

||dΦΨm´1py2,...,ymq´1peq|| ď C̃.

Collecting everything, and absorbing the constants into one, we find that

dpe,Ψm´1py2, . . . , ymq
´1 expp´x1q exppy1qΨm´1py2, . . . , ymqq ď C|x1 ´ y1|

for some C ą 0. We conclude that

dpΨmpx1, . . . , xmq,Ψmpy1, . . . , ymqq

ď dpΨm´1px1, . . . , xmq,Ψm´1py1, . . . , ymqq ` C|x1 ´ y1|.

Iterating this procedure, we find that

dpΨmpx1, . . . , xmq,Ψmpy1, . . . , ymqq ď C
m
ÿ

i“1
|xi ´ yi|.

It thus follows that if

px1, . . . , xmq P Bpy1, pCmq
´1εq ˆ ¨ ¨ ¨ ˆBpym, pCmq

´1εq,

then

dpΨmpx1, . . . , xmq,Ψmpy1, . . . , ymqq ă C
m
ÿ

i“1
pCmq´1ε “ ε,

which proves the claim.

We need one more result, which allows us to partition absolutely continuous curves
in G in an appropriate way.
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Proposition 4.5.8. Let γ P ACpr0, 1s;Gq be arbitrary. Assume that 9γ P L8pr0, 1s, gq.
Then for each m large enough, the vectors

log
˜

γ

ˆ

i´ 1
m

˙´1
γ

ˆ

i

m

˙

¸

P g

are well-defined for i “ 1, . . . ,m. Furthermore, there exist constants Lm with
limmÑ8 Lm “ 0 such that

ˇ

ˇ

ˇ

ˇ

ˇ

log
˜

γ

ˆ

i´ 1
m

˙´1
γ

ˆ

i

m

˙

¸

´

ż i
m

i´1
m

9γptqdt

ˇ

ˇ

ˇ

ˇ

ˇ

ď Lm
1
m
|| 9γ||8.

Proof. First of all, because γ is continuous and r0, 1s is compact, it is actually
uniformly continuous. Therefore, we can take m P N large enough, so that for
i “ 1, . . . ,m the vectors

log
˜

γ

ˆ

i´ 1
m

˙´1
γprq

¸

P g

are well-defined for r P r i´1
m , im s.

Now consider the function fi,m : r i´1
m , im s Ñ g given by

fi,mprq “ log
˜

γ

ˆ

i´ 1
m

˙´1
γprq

¸

. (4.5.6)

Then

f 1i,mprq “ d log
˜

γ

ˆ

i´ 1
m

˙´1
γprq

¸

p 9γprqq,

where again we used the identification of TγprqG with g. Using this, we obtain

log
˜

γ

ˆ

i´ 1
m

˙´1
γ

ˆ

i

m

˙

¸

“ fi,m

ˆ

i

m

˙

´ fi,m

ˆ

i´ 1
m

˙

“

ż i
m

i´1
m

f 1i,mprqdr

“

ż i
m

i´1
m

d log
˜

γ

ˆ

i´ 1
m

˙´1
γprq

¸

p 9γprqqdr.

With this expression at hand, we estimate
ˇ

ˇ

ˇ

ˇ

ˇ

log
˜

γ

ˆ

i´ 1
m

˙´1
γ

ˆ

i

m

˙

¸

´

ż i
m

i´1
m

9γprqdt

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż i
m

i´1
m

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

d log
˜

γ

ˆ

i´ 1
m

˙´1
γprq

¸

´ I

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

| 9γprq|dr (4.5.7)
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ď || 9γ||8

ż i
m

i´1
m

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

d log
˜

γ

ˆ

i´ 1
m

˙´1
γprq

¸

´ I

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

dr.

It follows from (4.4.3) that (see also [51, Chapter 5] or [92, Chapter 2])

d log
˜

γ

ˆ

i´ 1
m

˙´1
γprq

¸

´ I “
8
ÿ

k“1

p´1qk`1

kpk ` 1q

´

eadfi,mprq ´ I
¯k

.

Here, fi,mprq is as defined in (4.5.6). From this it follows that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

d log
˜

γ

ˆ

i´ 1
m

˙´1
γprq

¸

´ I

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

8
ÿ

k“1

1
kpk ` 1q

´

e||adfi,mprq|| ´ 1
¯k

. (4.5.8)

Now, fix ε ą 0. By Proposition 4.1.2 there exists a δ ą 0 such that dpe, gq ă δ
implies that | logpgq| ă ε. Since γ is uniformly continuous on r0, 1s, we can choose
m large enough so that for every i “ 1, . . . ,m it holds that dpγp i´1

m q, γprqq ă δ

for all r P r i´1
m , im s. Using left-invariance of the Riemannian distance, we find that

dpe, γp i´1
m q´1γprqq ă δ for all r P r i´1

m , im s and all i “ 1, . . . ,m. But then we have
for all i “ 1, . . . ,m and all r P r i´1

m , im s that
ˇ

ˇ

ˇ

ˇ

ˇ

log
˜

γ

ˆ

i´ 1
m

˙´1
γprq

¸
ˇ

ˇ

ˇ

ˇ

ˇ

ă ε.

We conclude that

lim
mÑ8

sup
1ďiďm

sup
rPr i´1

m , im s

ˇ

ˇ

ˇ

ˇ

ˇ

log
˜

γ

ˆ

i´ 1
m

˙´1
γprq

¸
ˇ

ˇ

ˇ

ˇ

ˇ

“ 0.

With (4.4.2) in mind, it follows that

lim
mÑ8

sup
1ďiďm

sup
rPr i´1

m , im s

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

adlog
´

γp i´1
m q

´1
γprq

¯

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ 0.

Recalling the definition of fi,mprq in (4.5.6), this in turn implies that the upper
bound in (4.5.8) tends to 0 if m goes to infinity, independent of i. We can thus find
constants Lm with limmÑ8 Lm “ 0 such that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

d log
˜

γ

ˆ

i´ 1
m

˙´1
γprq

¸

´ I

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď Lm

for all i “ 1, . . . ,m and all r P r i´1
m , im s. If we plug this into (4.5.7), we find

ˇ

ˇ

ˇ

ˇ

ˇ

log
˜

γ

ˆ

i´ 1
m

˙´1
γ

ˆ

i

m

˙

¸

´

ż i
m

i´1
m

9γprqdt

ˇ

ˇ

ˇ

ˇ

ˇ

ď || 9γ||8

ż i
m

i´1
m

Lm dr “ Lm
1
m
|| 9γ||8

as desired.
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With the final preparations done, we can prove the lower bound of the large deviation
principle for tσnnuně1.

Proposition 4.5.9. Let the assumptions of Theorem 4.3.1 be satisfied. Then for
every U Ă G open we have

lim inf
nÑ8

1
n

logPpσnn P Uq ě ´ inf
gPU

IGpgq,

where IG is the good rate function given by (4.3.1).

Proof. Let U Ă G be open. Fix g P U and a curve γ P ACpr0, 1s;Gq with γp0q “ e
and γp1q “ g. We will show that

lim inf
nÑ8

1
n

logP
ˆˆ

1
n
˚ S

˙

n

P U

˙

ě ´

ż 1

0
Λ˚p 9γptqq dt.

If
ş1
0 Λ˚p 9γptqqdt “ 8, the above is certainly true. Hence, suppose

ş1
0 Λ˚p 9γptqqdt ă

8. Because Λ is the log-moment generating function of a bounded random variable,
it follows Λ˚ is finite only on a bounded set, referred to as its domain. Therefore,
because

ş1
0 Λ˚p 9γptqqdt ă 8, it must be that 9γptq is in the domain of Λ˚ for almost

all t. But then we have that || 9γ||8 ă 8.
By the same reasoning as in the proof of Proposition 4.5.8, we can take m P N large
enough, so that we can define for i “ 1, . . . ,m the vectors

ymi :“ log
˜

γ

ˆ

i´ 1
m

˙´1
γ

ˆ

i

m

˙

¸

P g.

Let Ψm : gm Ñ G be again the map given by

Ψmpx1, . . . , xmq “ exppx1q ¨ ¨ ¨ exppxmq,

so that g “ Ψmpy
m
1 , . . . , y

m
mq.

Because U is open, there exists an ε ą 0 such that Bpg, εq Ă U . By Proposition
4.5.7, for m large enough, there exists a constant C ą 0 independent of m, such
that if

px1, . . . , xmq P Bpy
m
1 , pCmq

´1εq ˆ ¨ ¨ ¨ ˆBpymm , pCmq
´1εq,

then Ψmpx1, . . . , xmq P Bpg, εq.
Now define for i “ 1, . . . ,m the vectors

ỹmi :“
ż i
m

i´1
m

9γptqdt.

By Proposition 4.5.8, for every m large enough there exists a constant Lm such that
for i “ 1, . . . ,m we have

|ymi ´ ỹ
m
i | ď Lm

1
m
|| 9γ||8
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and limmÑ8 Lm “ 0. It follows that Bpỹmi , p2Cmq´1εq Ă Bpymi , pCmq
´1εq for m

large enough. We conclude that if

px1, . . . , xmq P Bpỹ
m
1 , p2Cmq´1εq ˆ ¨ ¨ ¨ ˆBpỹmm , p2Cmq´1εq,

then Ψmpx1, . . . , xmq P Bpg, εq.
Now, let

´

Y n,m,1
tm´1nu

, . . . , Y n,m,m
tm´1nu

¯

be again as in (4.5.5), so that

Ψm

´´

Y n,m,1
tm´1nu

, . . . , Y n,m,m
tm´1nu

¯¯

“ σnn .

Using the above, we have

P pσnn P Uq ě P

˜

´

Y n,m,1
tm´1nu

, . . . , Y n,m,m
tm´1nu

¯

P

m
ź

i“1
Bpỹmi , p2Cmq´1εq

¸

“

m
ź

i“1
P
´

Y n,m,i
tm´1nu

P Bpỹmi , p2Cmq´1εq
¯

“

m
ź

i“1
P
´

Y n,m,1
tm´1nu

P Bpỹmi , p2Cmq´1εq
¯

.

Here we used again the fact that Y n,m,1
tm´1nu

, . . . , Y n,m,m
tm´1nu

are independent and identi-
cally distributed, which follows from the fact that the sequence tXnuně1 is inde-
pendent, identically distributed, together with expression (4.5.4).
Continuing, it follows from Proposition 4.5.1 that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Y n,m,1
tm´1nu

´
1
n

tm´1nu
ÿ

j“1
Xj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď Cm
1
m
,

where limmÑ8 Cm “ 0. As a consequence, for m large enough we have
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Y n,m,1
tm´1nu

´
1
n

tm´1nu
ÿ

j“1
Xj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď p2Cmq´1 ε

2 .

In that case we find that

P
´

Y n,m,1
tm´1nu

P Bpỹmi , p2Cmq´1εq
¯

ě P

¨

˝

1
n

tm´1nu
ÿ

j“1
Xj P Bpỹ

m
i , p2Cmq´1ε{2q

˛

‚.

By Cramér’s theorem for vector spaces (Theorem 2.1.10), it follows that the sequence
t 1
n

řtm´1nu

j“1 Xjuně0 satisfies the large deviation principle in g with good rate function
Impxq “

1
mΛ˚pmxq. Hence, we obtain that

lim inf
nÑ8

1
n

logP pσnn P Uq ě
m
ÿ

i“1
lim inf
nÑ8

1
n

logP
´

Y n,m,1
tm´1nu

P Bpỹmi , p2Cmq´1εq
¯
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ě

m
ÿ

i“1
lim inf
nÑ8

1
n

logP

¨

˝

1
n

tm´1nu
ÿ

j“1
Xj P Bpỹ

m
i , p2Cmq´1ε{2q

˛

‚

ě

m
ÿ

i“1
´Impỹ

m
i q

“ ´
1
m

m
ÿ

i“1
Λ˚pmỹmi q.

We are done once we show that

1
m

m
ÿ

i“1
Λ˚pmỹmi q ď

ż 1

0
Λ˚p 9γptqqdt.

By the convexity of Λ˚ and Jensen’s inequality, we have

Λ˚pmỹmi q “ Λ˚
˜

m

ż i
m

i´1
m

9γptqdt
¸

ď m

ż i
m

i´1
m

Λ˚p 9γptqqdt.

From this it follows that

1
m

m
ÿ

i“1
Λ˚pmỹmi q ď

m
ÿ

i“1

ż i
m

i´1
m

Λ˚p 9γptqqdt “
ż 1

0
Λ˚p 9γptqqdt,

which concludes the proof.





5
Path-space large deviations
in Riemannian manifolds
This chapter focusses on path space large deviation results in Riemannian mani-
folds. We prove the analogue of Mogulskii’s theorem (Theorem 2.1.13), i.e., path
space large deviations for trajectories of geodesic random walks as defined in Chap-
ter 3. The only difference is that in this chapter, we consider the moment generating
function of an increment as function on the cotangent space, see Section 5.1. It turns
out this is more natural in light of our method for proving the result. Furthermore,
we provide two novel approaches to obtain the generalization of Schilder’s theorem
(Theorem 2.1.14) for Riemannian Brownian motion with small variance. The results
presented in this chapter are based on:

Richard C. Kraaij, Frank Redig, and Rik Versendaal. “Classical large deviation the-
orems on complete Riemannian manifolds”. In: Stochastic Process. Appl. 129.11
(2019), pp. 4294–4334. issn: 0304-4149. doi: 10.1016/j.spa.2018.11.019. url:
https://doi.org/10.1016/j.spa.2018.11.019.

As explained in Section 2.1.2, Mogulskii’s theorem is the natural path space large
deviations result accompanying Cramér’s theorem. More precisely, given a sequence
tXnuně1 of independent, identically distributed random variables, Moguslkii’s the-
orem provides the large deviation principle for the trajectories tSnp¨quně1 given by

Snptq “
1
n

tntu
ÿ

i“1
Xi.

To obtain an analogue of Mogulskii’s theorem for Riemannian manifolds, we make
use of geodesic random walks (see Chapter 3), which extend the notion of a random
walk to Riemannian manifolds. For every n ě 1, let tp 1

n ˚ Sqjujě1 be a 1
n -rescaled

geodesic random walk started in x0 with increments tXn
j uně1 as in Definition 3.2.6.

If the increments are independent and identically distributed in the sense of Defini-
tions 3.2.3 and 3.2.7, Theorem 3.3.1 gives the large deviation principle in M for the
sequence tp 1

n ˚Sqnuně1. For the associated path space large deviations, we consider

145
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the random trajectories

Znptq “

ˆ

1
n
˚ S

˙

tntu

.

Under the same conditions on the increments as in Theorem 3.3.1 (apart from the in-
crements being centered), we obtain the large deviation principle for the trajectories
tZnp¨quně1. The precise statement is given in Theorem 5.1.1.
Contrary to the analogue of Moguslkii’s theorem for Riemannian manifolds, the
analogue of Schilder’s theorem for Riemannian Brownian motion has been consid-
ered before, see e.g. [9, 41]. In this chapter, we provide two novel approaches in
obtaining this result. These approaches are interesting in their own right, and find
applications beyond Schilder’s theorem.

To prove the analogues of Mogulskii’s and Schilder’s theorem for Riemannian man-
ifolds, we make use of a general approach for studying large deviations for Markov
processes introduced by Feng and Kurtz in [39]. This approach relies on the conver-
gence of non-linear semigroups and viscosity solutions to Hamilton-Jacobi equations.
Since the details of this approach are beyond the scope of this work, we only collect
the relevant results from Section 7 in [63].
For Schilder’s theorem, we also discuss a second approach using embeddings of
manifolds into Euclidean space. This is particularly useful when the process being
studied is the solution of a stochastic differential equation. As explained in Section
2.4.2, Stratonovich stochastic differential equations behave well under diffeomor-
phisms. Therefore, using the embedding allows us to transfer the problem from the
manifold to the Euclidean setting, in which we can apply Freidlin-Wentzell theory
(see Section 2.1.3). The importance of this approach lies in Chapter 7, where we
extend the result further to time-evolving Riemannian manifolds.

This chapter is organized as follows. In Section 5.1 we give the precise statements
of the analogues of Mogulskii’s and Schilder’s theorem for Riemannian manifolds.
In Section 5.2 we collect the important results from the Feng-Kurtz approach to
studying large deviations for Markov processes. Section 5.3 is devoted to showing
how these results can be applied to prove Theorem 5.1.1 and 5.1.3. Finally, in
Section 5.4 we show how we can use embeddings to provide a different proof of
Schilder’s theorem for Riemannian Brownian motion.

5.1. Main results

In this section we state the analogues of Mogulskii’s and Schilder’s theorem for Rie-
mannian manifolds. Furthermore, we touch on the relations between Mogulskii’s
theorem to Cramér’s theorem (Theorem 3.3.1). Finally, we work out an example to
show the relations between all three theorems in the case when we consider geodesic
random walks with normally distributed increments.
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In the Euclidean case, the rate function in Mogulskii’s theorem is given by

Ipγq “

#

ş1
0 Λ˚p 9γptqqdt, γ P AC0pr0, 1s;Rdq
8, otherwise.

(5.1.1)

Here, Λpλq “ logEpexλ,X1yq is the log-moment generating function of the increments,
and

Λ˚pvq “ sup
λPRd

txλ, vy ´ Λpλqu

is its Legendre transform.
However, in the Riemannian setting, the distribution of an increments depends
on the position of the geodesic random walk in M . More precisely, we have a
collection of measures tµxuxPM with µx P PpTxMq, where PpTxMq denotes the set
of probability measures on TxM . We thus have for every x P M a log-moment
generating function Λx : T˚xM Ñ R given by

Λxpλq “ log
ż

TxM

exv,λyµxpdvq

with Legendre transform given by

Λ˚xpvq “ sup
λPTxM

txv, λy ´ Λxpλqu .

Here, xv, λy denotes the pairing of the cotangent vector λ with the tangent vector
v. We sometimes also denote this as λpvq. Observe that in Chapter 3 we defined
the log-moment generating function Λx as function on TxM , rather than T˚xM .
However, these functions are essentially the same if we identify T˚xM with TxM
using the Riemannian metric. More precisely, abusing notation and writing Λx for
both functions, we have that

Λxpλq “ Λxpλ#q (5.1.2)

for all λ P T˚xM . Here λ# is the unique tangent vector such that

λpvq “ xλ#, vy

for all v P TxM denotes the tangent vector associated to λ via the inner product,
see Section 2.2.3.
For a curve γ : r0, 1s ÑM , we have that 9γptq P TγptqM . Therefore, the appropriate
analogue of the rate function in (5.1.1) is given by

#

ş1
0 Λ˚γptqp 9γptqqdt, γ P ACx0pr0, 1s;Mq
8, otherwise.

We have the following theorem.
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Theorem 5.1.1 (Mogulskii’s theorem for Riemannian manifolds). Let pM, gq be
a complete Riemannian manifold. Fix x0 P M and let tµxuxPM be a collection of
measures such that µx P PpTxMq for all x PM . For every n ě 1, let tp 1

n ˚ Sqjujě0
be a 1

n -rescaled geodesic random walk started at x0 with independent increments
tXn

j ujě1, compatible with tµxuxPM . Define the random trajectories

Znptq “

ˆ

1
n
˚ S

˙

tntu

for t P r0, 1s. Assume the collection tµxuxPM satisfies the consistency property in
Definition 3.2.7. Finally, assume the increments are bounded. Then tZnp¨quně1
satisfies the large deviation principle in L8pr0, 1s;Mq with good rate function

IM pγq “

#

ş1
0 Λ˚γptqp 9γptqqdt, γ P ACx0pr0, 1s;Mq
8, otherwise.

(5.1.3)

It is interesting to observe how Theorem 5.1.1 relates to Cramér’s theorem (Theorem
3.3.1). Since evaluation in the end-point of a trajectory is continuous, it follows from
the contraction principle (Theorem 2.1.6) that Mogulskii’s theorem implies the large
deviations for the sequence tp 1

n ˚ Sqnuně1. Furthermore, this shows that the rate
function is given by

ĨM pxq “ inf
"
ż 1

0
Λ˚γptqp 9γptqq dt

ˇ

ˇ

ˇ

ˇ

γ P ACx0pr0, 1s;Mq, γp1q “ x

*

.

For every x P M , we have that Λx is convex, and hence, so is Λ˚x. Furthermore,
by Proposition 3.2.9 we have that the maps tΛxuxPM are invariant under parallel
transport, and hence, so are the maps tΛ˚xuxPM . As a consequence, apart from
some technicalities, it follows from Proposition 3.4.11 that the optimal trajectories
for ĨM pxq are given by geodesics. This shows that we obtain the desired rate function
as stated in Theorem 3.3.1. Let us illustrate this connection with an example.

Example 5.1.2. Let pM, gq be a compact Riemannian manifold. Let tµxuxPM be
the collection of standard normal distributions as defined in Example 3.2.11. There
it was shown that these measures satisfy the consistency property as in Definition
3.2.7. Furthermore, we have that Λxpλq “ 1

2 |λ|
2
gpxq, from which it follows that

Λ˚xpvq “ 1
2 |v|

2
gpxq.

For every n ě 1, let tp 1
n ˚ Sqjujě1 be a 1

n -rescaled geodesic random walk with
increments compatible with the measures tµxuxPM . By Cramér’s theorem (Theorem
3.3.1), the sequence tp 1

n ˚ Sqnuně1 satisfies the large deviation principle with good
rate function

IM pxq “ inf
"

1
2 |v|

2
x0

ˇ

ˇ

ˇ

ˇ

Expx0v “ x

*

.

Note that |v|gpx0q is the length of the geodesic γv : r0, 1s Ñ M given by γvptq “
Expx0ptvq. Since we take the infimum over all possible v, we also consider the
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geodesic of minimal length between x0 and x and hence

IM pxq “ dpx, x0q
2.

Furthermore, by Mogulskii’s theorem (Theorem 5.1.1), we find that the process
Znptq “

1
n ˚ Stntu satisfies the large deviation principle in L8pr0, 1s,Mq with good

rate function

Ipγq “

#

1
2
ş8

0 | 9γptqq|
2
gpγptqq dt, H1

x0
pr0, 1s;Mq,

8 otherwise.

As explained, by the contraction principle, we also have that

IM pxq “ inf
"

1
2

ż 1

0
| 9γptqq|2gpγptqq dt

ˇ

ˇ

ˇ

ˇ

γ P ACx0pr0, 1s;Mq, γp1q “ x

*

.

By Jensen’s inequality and the definition of the Riemannian distance, the right-hand
side is indeed equal to dpx, x0q

2.

In Section 2.1.3 we discussed that if we take the increments of a random walk to
be standard normal, we can use Mogulskii’s theorem to obtain the large deviations
for the t 1?

n
W p¨quně1, where W ptq is a standard Brownian motion. It is not clear

if a similar approach works in the Riemannian setting. Indeed, the increments of
Brownian motion are no longer normally distributed (in the sense of Example 3.2.11)
with the desired parameters due to curvature.
However, Varadhan ([93]) showed that the short-time asymptotics of the heat kernel
on a Riemannian manifold are given by

lim
tÑ0

t log pM px, y, tq “ ´
d2px, yq

2 . (5.1.4)

This suggests that for short times, the ‘increments’ of Riemannian Brownian motion
are almost normally distributed. With the computations in Example 5.1.2 in mind,
it turns out that this provides the correct intuition.

Theorem 5.1.3 (Schilder’s theorem for Riemannian Brownian motion). Let pM, gq
be a complete Riemannian manifold. Assume furthermore that pM, gq is stochasti-
cally complete. Let x0 P M and let Xptq be a Riemannian Brownian motion and
with Xp0q “ x0 almost surely. Define for every n ě 1 the process Xnptq :“ Xp tn q.
Then the sequence tXnp¨quně1 satisfies the large deviation principle in Cpr0, 1s;Mq
with good rate function

IBM pγq “

#

1
2
ş8

0 | 9γptq|
2
gpγptqq dt, γ P H1

x0
pr0, 1s;Mq,

8, otherwise.
. (5.1.5)

Remark 5.1.4. The short-time asymptotics of the heat kernel as in (5.1.4) can be used
in the Euclidean case to prove the large deviation principle for processes generated
by a weighted Laplacian. However, in general, these conditions are not satisfied by
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a Riemannian metric. Nonetheless, similarly as done in the proof of Lemma 3.1
in [93], one can use (5.1.4) to obtain the large deviations for the finite dimensional
distributions of Brownian paths once Gaussian bounds for the heat kernel for a
general (stochastically complete) Riemannian manifold are established (see e.g. [6]).
Using Proposition 3.7 in [63] (which replaces Lemma 3.2 in [93]), one can follow
the argument in proving Theorem 3.3 in [93] to obtain the large deviations upper
bound in Schilder’s theorem. For the lower bound, one can exactly mimic the proof
of Lemma 3.4 in [93]. We show that all assumptions, apart from the stochastic
completeness may be dropped, see Theorem 5.1.3.

5.2. Large deviations via Hamilton-Jacobi equations

In this section we explain the steps of the approach introduced in [39] to study
large deviations for Markov processes. This approach is based on convergence of
non-linear semigroups and solving Hamilton-Jacobi equations in viscosity sense. For
general theory on viscosity solution for Hamilton-Jacobi equations we refer to [26].
For an extensive treatment of the relation to large deviations in the Euclidean case,
apart from [39], we also refer to the Appendix in [22]. In [63], this approach has
been adapted to the setting of Riemannian manifolds. Here, we state some of the
results from Section 7 in [63] that we need in order to prove Theorems 5.1.1 and
5.1.3.

5.2.1. Comparison principle for Hamilton-Jacobi equations
Let H : DpHq Ă CbpMq Ñ CbpMq be an operator. For h P CbpMq and λ ą 0,
consider the Hamilton-Jacobi equation

f ´ λHf “ h. (5.2.1)

We want to solve (5.2.1) in the viscosity sense. We have the following definition.

Definition 5.2.1. A function u is a viscosity subsolution of equation (5.2.1) if u is
bounded, upper semi-continuous and if for every f P DpHq there exists a sequence
xn PM such that

lim
nÑ8

upxnq ´ fpxnq “ sup
x
tupxq ´ fpxqu,

and
lim
nÑ8

upxnq ´ λHfpxnq ´ hpxnq ď 0.

A function v is a viscosity supersolution of equation (5.2.1) if v is bounded, lower
semi-continuous and if for every f P DpHq there exists a sequence xn PM such that

lim
nÑ8

vpxnq ´ fpxnq “ inf
x
tvpxq ´ fpxqu,

and
lim
nÑ8

vpxnq ´ λHfpxnq ´ hpxnq ě 0.
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A function u is a viscosity solution of equation (5.2.1) if it is both a viscosity sub-
and supersolution.

Definition 5.2.2. We say that (5.2.1) satisfies the comparison principle if for a
subsolution u and supersolution v we have u ď v.

Note that if the comparison principle is satisfied, then a viscosity solution is unique.

From now on we assume that the Hamiltonian H has a special form. More precisely,
it should be possible to represent H by a map on the cotangent bundle.

Assumption 5.2.3. The operator H : DpHq Ă CbpMq Ñ CbpMq satisfies C8c pMq Ď
DpHq Ď CbpMq X C

1pMq and can be represented as

Hfpxq “ Hpx, dfpxqq,

where H : T˚M Ñ R is continuous and for each x P M the map p ÞÑ Hpx, pq from
T˚xM to R is convex.

We now wish to state a sufficient condition for the comparison principle. The
idea is that we want to use a subsolution u and supersolution v as test functions
in Definition 5.2.1, and so obtain conditions on the map H evaluated in du and
dv in order to conclude that u ď v. This is explained in detail in [63, Section
7.2]. However, this approach relies on the fact that u and v are test functions,
and that there exist points x0, y0 such that upx0q ´ vpx0q “ supxtupxq ´ vpxqu and
vpy0q ´ upy0q “ infytvpyq ´ upyqu. The first issue can be resolved by penalizing by
a distance function, in this case the Riemannian distance. The second problem is
taken care of by restricting to compact sets. For this we use what we call a compact
containment function.

Definition 5.2.4. A function Υ : M Ñ R is a good containment function for H if
it satisfies the following:

1. Υ ě 0 and there exists a point x0 such that Υpx0q “ 0,

2. Υ is twice continuously differentiable,

3. for every c ě 0, the set tx PM |Υpxq ď cu is compact,

4. we have supz Hpz,dΥpzqq ă 8.

Using the Riemannian distance to penalize and a good compact containment func-
tion, we obtain the following sufficient condition on H for the comparison principle.

Proposition 5.2.5. Let H be an operator satisfying Assumption 5.2.3. Fix λ ą 0,
h P CbpMq and consider u and v a sub- and super-solution to f ´ λHf “ h. Let Υ
be a good containment function. Moreover, for every α, ε ą 0 let xα,ε, yα,ε P M be
such that
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upxα,εq

1´ ε ´
vpyα,εq

1` ε ´
α

2 d
2pxα,ε, yα,εq ´

ε

1´ εΥpxα,εq ´
ε

1` εΥpyα,εq

“ sup
x,yPM

"

upxq

1´ ε ´
vpyq

1` ε ´
α

2 d
2px, yq ´

ε

1´ εΥpxq ´ ε

1` εΥpyq
*

.

Suppose that

lim inf
εÑ0

lim inf
αÑ8

!

H
´

xα,ε,
α

2 dd2p¨, yα,εqpxα,εq
¯

´H
´

yα,ε,´
α

2 dd2pxα,ε, ¨qpyα,εq
¯)

ď 0. (5.2.2)

Then u ď v, i.e. the Hamilton-Jacobi equation f´λHf “ h satisfies the comparison
principle.

Remark 5.2.6. Although the square of the Riemannian distance is not everywhere
smooth, this is not a problem in Proposition 5.2.5. The squared Riemannian distance
is smooth at points which are inside each others injectivity radius. Now, by Lemma
7.6 in [63], it follows that txα,ε, yα,ε|α ą 0u is contained in a compact set for every
ε ą 0. Furthermore, we have that limαÑ8 dpxα,ε, yα,εq “ 0 for all ε ą 0. Since the
injectivity radius of compact sets is strictly positive (Proposition 2.2.6), we thus find
that for α large enough, the points xα,ε and yα,ε are within each others injectivity
radius.

5.2.2. Compact containment and the large deviation principle
To connect the Hamilton-Jacobi equation to the large deviation principle, we intro-
duce some additional concepts. First of all, we denote the Skorokhod space of càdlàg
paths by Dpr0, 1s;Mq, see [37, Section 3.5]. Furthermore, we introduce a notion of
operator convergence for which we consider bounded and uniform convergence on
compact sets (buc). We define this next.

Definition 5.2.7. Let tfnuně1 be a sequence in CbpMq and let f P CbpMq. We say
that fn converges to f boundedly, and uniformly on compacts, denoted by LIMn fn “
f , if the following are satisfied:

1. supn ||fn|| ă 8,

2. For all K ĎM compact,

lim
nÑ8

sup
xPK

|fnpxq ´ fpxq| “ 0.

We now define our notions of operator convergence.

Definition 5.2.8. For every n ě 1, let Bn : DpBnq Ă CbpMq Ñ CbpMq be an
operator. The extended limit ex ´ limnÑ8Bn is defined by the collection pf, gq P
CbpMqˆCbpMq such that there exist a sequence tfnuně1 with fn P DpBnq and such
that

LIM
n

fn “ f, LIMBnfn “ g.
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An operator pB,DpBqq is said to be contained in ex ´ limnÑ8Bn if the graph
tpf,Bfq | f P DpBqu of B is a subset of ex´ LIMnBn.

Before we get to any results relating Hamilton-Jacobi equations to large deviation
principles, we first need to define the operators that we will be considering.

Assumption 5.2.9. Depending on whether we consider Markov processes in con-
tinuous time or discrete time, we consider the following:

Continuous time case Assume that for each n ě 1, we have a linear operator
An Ď CbpMqˆCbpMq and existence and uniqueness holds for the Dpr0, 1s,Mq
martingale problem for pAn, µq for each initial distribution µ P PpMq. Letting
Rny P PpDpr0, 1s,Mqq be the solution to the martingale problem for pAn, δyq,
the mapping y ÞÑ Rny is measurable for the weak topology on PpDpr0, 1s,Mqq.
Let Xn be the solution to the martingale problem for An and set

Hnf “
1
n
e´nfAne

nf enf P DpAnq.

Discrete time case Assume for each n ě 1 we have a transition operator Tn :
CbpMq Ñ CbpMq for a Markov chain. For each n, let Xn be a discrete-time
Markov chain with transition operator Tn:

E rfpXnptqq |Xnp0q “ xs “ T tntu
n fpxq.

Set
Hnf “ log e´nfTnenf .

Suppose that we have an operator H : DpHq Ď CbpMq Ñ CbpMq with DpHq “
C8c pMq and H Ď ex ´ LIMHn which satisfies Assumption 5.2.3. Finally, assume
that the map H : T˚M Ñ R is continuously differentiable.

The following result is concerned with the limiting behaviour of the probability of
sequence of processes to stay in compact sets. It is Proposition 7.15 in [63].

Proposition 5.2.10. Suppose Assumption 5.2.9 is satisfied and assume that Υ
is a good containment function for H. Then the sequence tXnuně1 satisfies the
exponential compact containment condition: for every T ą 0 and a ě 0, there
exists a compact set Ka,T ĎM such that

lim sup
nÑ8

1
n

logP rXnptq R Ka,T for some t ď T s ď ´a.

We conclude with the result giving us conditions for the large deviation principle
to hold for a sequence of Markov processes with generators satisfying Assumption
5.2.9.

Theorem 5.2.11. Consider the setting of Assumption 5.2.9. We have the following:
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(a) Suppose that Υ is a good containment function for H. Then the processes
tXnuně1 are exponentially tight in Dpr0, 1s,Mq.

(b) In addition to the assumption in (a), suppose that for each λ ą 0 and h P CbpMq
the comparison principle is satisfied for f ´ λHf “ h. Then the sequence
tXnuně1 satisfies the large deviation principle in Dpr0, 1s;Mq with good rate
function I given by

Ipγq “

#

ş8

0 Lpγpsq, 9γpsqqds if γ P ACpr0, 1s;Mq,
8 otherwise.

where L : TM Ñ r0,8s is the Legendre transform of H given by

Lpx, vq “ sup
pPT˚x M

txv, py ´Hpx, pqu .

5.3. Classical large deviations in Riemannian mani-
folds via the Feng-Kurtz formalism

In this section we prove Theorems 5.1.1 and 5.1.3 using the Feng-Kurtz approach
discussed in Section 5.2. Before doing so we construct a good containment function
that we will use for both proofs.

5.3.1. Good containment function
In order to use Theorem 5.2.11 to prove the analogues for Mogulskii’s and Schilder’s
theorem for Riemannian manifolds, we need a good containment function. We
construct one containment function that will suffice for both proofs. We use the
following proposition, which essentially follows from the fact that the function rpxq “
dpx, x0q is 1-Lipschitz.

Proposition 5.3.1. Let pM, gq be a complete Riemannian manifold. Fix x0 P M
and define rpxq :“ dpx, x0q. There exists a smooth function f P C8pMq such that
||f ´ r|| ď 1 and |df | ď 2.

Consider the function f as in the above proposition and set

Υpxq “ logp1` f2pxqq. (5.3.1)

Lemma 5.3.2. Let tµxuxPM be a collection of measures such that µx P PpTxMq
for all x PM . Assume that tµxuxPM satisfies the consistency property in Definition
3.2.7. Let H be given by

Hpx, pq “ log
ż

TxM

exv,pyµxpdvq. (5.3.2)

Then Υ given in (5.3.1) is a good containment function for H.
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Proof. Clearly Υ ě 0, Υpx0q “ 0 and Υ P C8pMq.
Now fix c ě 0. By the continuity of Υ, the set tx PM |Υpxq ď cu is closed. Further-
more, the set is bounded since Υpxq ď c implies that dpx, x0q ď 1`

?
ec ´ 1. Because

M is a complete, finite dimensional manifold, it follows that tx P M |Υpxq ď cu is
compact.
Now consider the Hamiltonian H in (5.3.2). Note that for all x PMztx0u,

dΥpxq “ 2fpxq
1` f2pxq

dfpxq.

This implies that |dΥpxq| ď |dfpxq| ď 2, where the latter holds by choice of f . But
then

Hpx,dΥpxqq “ log
ż

TxM

exv,dΥpxqyµxpdvq ď log
ż

TxM

e2|v|gpxqµxpdvq “: Cx ă 8,

where Cx is finite because we assume the log moment generating function of µx is
everywhere finite. By the consistency property (as in Definition 3.2.7), Cx actually
does not depend on x. We conclude that supxPM Hpx, dΥpxqq ă 8.

5.3.2. Proof of Mogulskii’s Theorem, Theorem 5.1.1
In this section we prove the analogue of Mogulskii’s theorem for rescaled geodesic
random walks. Before we can get to the proof, we first need the following result.

Proposition 5.3.3. Let x, y P M and assume that dpx, yq ă ιpxq. Then for all
v P TyM we have

dyd2px, yqpvq “ 2x 9γp1q, vygpyq,

where γ : r0, 1s Ñ M is the unique geodesic of minimal length connecting x and y.
Moreover, we have

τxydxd2px, yq “ ´dyd2px, yq.

Proof. For a path h : r0, 1s ÑM , define the Lagrangian

Lphptqq “ x 9hptq, 9hptqygphptqq “ | 9hptq|
2
gphptqq

and the action
Sphq “

ż 1

0
Lphptqqdt.

Observe that for x, y PM we have

d2px, yq “ inftSphq|hp0q “ x, hp1q “ y, h piecewise smoothu.

Since dpx, yq ă ιpxq, there is an optimal path γ : r0, 1s Ñ M for S, the geodesic of
minimal length connecting x and y. Note that the differential of the action in the
starting point equals the momentum of the optimal path γ in 0. For this we refer
to [69, Chapter 6] or [77, Chapter 5] for an approach using variational calculus and
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to [8, Chapter 3] for the physical intuition. In coordinates one finds that the j-th
component of this momentum equals

pj “
BL

B 9hjptq
pγptqq “ 2

k
ÿ

i“1
gijpγptqq 9γiptq “ 2p 9γptqq5j .

Here, v5 P T˚xM denotes the unique cotangent vector defined by v5pwq “ xv, wy for
all w P TxM , see also Section 2.2.3.
We thus find that dxd2px, yq “ 2p 9γp0qq5, where γ is the geodesic of minimum length
connecting x and y. In particular, this implies that for every v P TxM we have
dxd2px, yqpvq “ 2xv, 9γp0qygpxq. Defining γ´ptq :“ γp1´ tq, γ´ is the geodesic of min-
imum length connecting y and x. We obtain dyd2px, yq “ 2p 9γ´p0qq5 “ ´2p 9γp1qq5.
Noticing that 9γp1q is the parallel transport of 9γp0q now proves the claim.

We are now set to prove Mogulskii’s theorem for geodesic random walks.

Proof of Theorem 5.1.1. We verify the conditions for Theorem 5.2.11.
Step 1: We start by calculating Hn and its limit H. From Remark 3.2.5 it follows
that for every n ě 1 the sequence t 1

n ˚ Skukě1 is a Markov chain with transition
operator given by

Tnfpxq “ E
ˆ

f

ˆ

1
n
˚ Sk`1

˙
ˇ

ˇ

ˇ

ˇ

1
n
˚ Sk “ x

˙

“

ż

TxM

fpExpxpn´1vqqµxpdvq.

Using this, for every n ě 1 we can compute the Hamiltonian

Hnfpxq “ log e´nfTnenf pxq “ log
ż

TxM

enpfpexpxpn
´1vq´fpxqqµxpdvq.

We first establish that supn ||Hnf || ă 8. By the mean value theorem there exists a
t P p0, n´1q such that

npfpexpxpn´1vq ´ fpxqq “ dfpExpxptvqqpτxExpxptvqvq.

In particular, we find

|npfpexpxpn´1vq ´ fpxqq| ď ||df ||8|v|gpxq.

For f P C8c pMq we have ||df ||8 ă 8, and by the consistency property from Defini-
tion 3.2.7 for tµxuxPM we have

Hnfpxq ď log
ż

TxM

e||df ||8|v|gpxqµxpdvq “ log
ż

Tx0M

e||df ||8|v|gpx0qµx0pdvq :“ C ă 8,

where the upper bound is finite, because Λx0 is everywhere finite. Similarly, we find

Hnfpxq ě log
ż

Tx0M

e´||df ||8|v|µx0pdvq “: c ą ´8.
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We conclude that supn ||Hnf || ă 8.
Furthermore, by a similar argument, we find for f P C8c pMq that

Hfpxq :“ lim
nÑ8

Hnfpxq “ log
ż

TxM

exv,dfpxqyµxpdvq

uniformly in x, so that we can take DpHq “ C8c pMq. Note that indeed H has the
form Hfpxq “ Hpx, dfpxqq for a continuous map H : T˚M Ñ R that is convex in
the second coordinate. Here, the convexity follows from Hölder’s inequality. This
implies that Assumption 5.2.3 is satisfied and H is given by

Hpx, pq “ log
ż

TxM

exv,pyµxpdvq “ Λxppq.

Step 2: By Lemma 5.3.2 we have a good containment function Υ.
Step 3: Fix λ ą 0 and h P CbpMq. We verify the comparison principle for f´λHf “
h by an application of Proposition 5.2.5. Let xα,ε, yα,ε be as in Proposition 5.2.5.
We establish (5.2.2).
Fix ε ą 0. By Lemma 7.6 in [63] there is a compact set Kε Ď M such that
txα,ε, yα,ε|α ą 0u is contained in Kε. Since Kε is compact, it follows from Propo-
sition 2.2.6 that there exists a δ ą 0 such that ιpKεq ě δ ą 0. Now for x, y P Kε

with dpx, yq ă δ we find

H
´

x,
α

2 pdd
2p¨, yqqpxq

¯

“ Λx
´α

2 pdd
2p¨, yqqpxq

¯

“ Λy
´α

2 τxypdd
2p¨, yqqpxq

¯

“ Λy
´

´
α

2 pdd
2px, ¨qqpyq

¯

“ H
´

y,´
α

2 pdd
2px, ¨qqpyq

¯

.

Here τxy denotes parallel transport along the unique geodesic of minimal length
connecting x and y. The second equality follows from proposition 3.2.9 with the
identification in (5.1.2) in mind and the third from Proposition 5.3.3. We thus find
for xα,ε, yα,ε with dpxα,ε, yα,εq ă δ that

H
´

xα,ε,
α

2 pdd
2p¨, yα,εqqpxα,εq

¯

´H
´

yα,ε,´
α

2 pdd
2pxα,ε, ¨qqpyα,εq

¯

“ 0.

Therefore, by Proposition 5.2.5 we find that H satisfies the comparison principle.
Since the collection of measures tµxuxPM satisfies the consistency property as in Def-
inition 3.2.7, it follows from Proposition 3.2.9 (with the identification as in (5.1.2)
in mind) that Hpx, pq “ Λx0pτxx0pq for all x P M and p P T˚xM . This shows
that H is continuously differentiable. Hence, Theorem 5.2.11 implies that the se-
quence tZnuně1 satisfies in Dpr0, 1s,Mq the large deviation principle with good rate
function given by (5.1.3). Since the random variables tZnuně1 are almost surely in
Dpr0, 1s;Mq and Dpr0, 1s;Mq is closed in L8pr0, 1s;Mq, the large deviation principle
also holds in L8pr0, 1s;Mq with the same rate function.
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5.3.3. Proof of Schilder’s Theorem, Theorem 5.1.3
In this section we prove Schilder’s theorem for Riemannian Brownian motion based
on Theorem 5.2.11. The proof is similar as the proof of Theorem 5.1.1.

Proof of Theorem 5.1.3. Let us verify the conditions for Theorem 5.2.11. We cal-
culate Hn and limit H. The process Xptq solves the martingale problem for the
operator 1

2∆M and therefore, Xnptq is generated by 1
2n∆M . For f P C8c pMq, we

find

Hnf “
1
n
e´nf

1
2n∆Me

nf

“
1
n
e´nfenf

1
2 p∆Mf ` n |df |2gpxqq

“
1

2n∆Mf `
1
2 |df |

2
gpxq .

Let H Ď CbpMq ˆ CbpMq be the operator with DpHq “ C8c pMq and given by

Hf “ 1
2 |df |

2
gpxq

for f P C8c pMq:
It follows that for all f P C8c pMq,

lim
nÑ8

||Hnf ´Hf || “ 0,

implying that H Ď ex ´ limnÑ8Hn. Note that Hfpxq “ Hpx,dfpxqq for H :
T˚M Ñ R of the form Hpx, pq “ 1

2 |p|
2
gpxq.

Now consider the collection tµxuxPM of normal distributions as defined in Example
3.2.11. As shown in the example, this collection satisfies the consistency property
in Definition 3.2.7. Furthermore, keeping the identification in (5.1.2) in mind, the
example also shows that

log
ż

TxM

exv,pyµxpdvq “
1
2 |p|

2
gpxq “ Hpx, pq.

As a consequence, by Lemma 5.3.2 we have a good containment function Υ. Fur-
thermore, it follows from the proof of Theorem 5.1.1 that for λ ą 0 and h P CbpMq,
the Hamilton-Jacobi equation satisfies the comparison principle.
Finally, note that H is continuously differentiable. Therefore, by Theorem 5.2.11,
the sequence tXnuně1 satisfies in Dpr0, 1s,Mq the large deviation principle with
good rate function given by (5.1.5). Since tXnuně1 lies almost surely in Cpr0, 1s;Mq
and the topology of Dpr0, 1s,Mq restricted to Cpr0, 1s,Mq reduces to the uniform
topology, the same large deviation principle holds in Cpr0, 1s,Mq.

5.4. A proof of Schilder’s theorem via embeddings

In this section we provide an alternative proof of Schilder’s theorem for Riemannian
Brownian motion onM (Theorem 5.1.3). This approach is relevant for the extension
of Theorem 5.1.3 to the time-inhomogeneous case which we consider in Chapter 7.
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The proof relies on lifting the Riemannian Brownian motion to the orthonormal
frame bundle OM . This lift is a diffusion on OM driven by a Euclidean Brownian
motion. We then embed OM into some Euclidean space and use Freidlin-Wentzell
theory to obtain the large deviations for the embedded process. By the contraction
principle, we then obtain the large deviations for the process on OM , from which
the large deviations for the rescaled Riemannian Brownian motion follow (also by
the contraction principle). We refer to Section 2.3 for the terminology of frame
bundles and horizontal lifts.

Freidlin-Wentzell theory for Stratonovich diffusions
As explained in Section 2.4, in manifolds we work with Stratonovich stochastic
differential equations. Therefore, if we want to carry out the above procedure, we
need to adapt Freidlin-Wentzell theory to the setting of Stratonovich stochastic
differential equations. We have the following result.

Theorem 5.4.1 (Freidlin-Wentzell, Stratonovich version). Let Wt be an Rl-valued
standard Brownian motion. Let b : Rk Ñ Rk and σ : Rk Ñ Rkˆl be bounded,
Lipschitz continuous functions with Dσ also Lipschitz continuous. Fix y P Rk and
assume that for any n ě 1 the process Y nt satisfies the Stratonovich stochastic dif-
ferential equation

dY nt “ bpY nt qdt` 1
?
n
σpY nt q ˝ dWt (5.4.1)

with Y n0 “ y. Then the sequence tY nuně1 satisfies the large deviation principle in
Cpr0, 1s;Rkq with good rate function I given by

Ipγq “ inf
"

1
2

ż 1

0
| 9ϕptq|2 dt

ˇ

ˇ

ˇ

ˇ

ϕ P H1pr0, 1s;Rlq,

γptq “ y `

ż t

0
bpγpsqqds`

ż t

0
σpγpsqq 9ϕpsqqds

*

. (5.4.2)

Proof. By Theorem 2.4.3, equation (5.4.1) is equivalent to the Itô stochastic differ-
ential equation

dY nt “ bpY nt qdt` 1
2n

l
ÿ

j“1
DσjpY

n
t qσjpY

n
t qdt` 1

?
n
σpY nt qdWt,

where σ1, . . . , σl denote the columns of σ.
Now suppose that Ỹ nt satisfies the Itô stochastic differential equation

dỸ nt “ bpỸ nt qdt` 1
?
n
σpỸ nt qdWt

with Ỹ n0 “ y. By Theorem 2.1.15, we find that Ỹ nt satisfies in Cpr0, 1s;Rkq the
large deviation principle with good rate function I as in (5.4.2). To complete the
proof, it suffices to show that the sequences tY nuně1 and tỸ nuně1 are exponentially
equivalent in Cpr0, 1s;Rkq.
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Consider the joint law of Y n0 and Ỹ n0 and the following system of stochastic differ-
ential equations

$

’

&

’

%

dY nt “ bpY nt qdt` 1
2n

řl
j“1DσjpY

n
t qσjpY

ε
t qdt` 1?

n
σpY nt qdWt

dỸ nt “ bpỸ nt qdt` 1?
n
σpỸ nt qdWt

dZnt “ bpY nt qdt` 1?
n
σpY nt qdWt,

with Y n0 “ Ỹ n0 “ Zn0 “ y.
First note that

dpZnt ´ Y nt q “ ´
1

2n

l
ÿ

j“1
DσjpY

n
t qσjpY

n
t qdt.

Because σ and Dσ are bounded, we can find a constant C ą 0 such that

|Znt ´ Y
n
t | ď C

1
n

(5.4.3)

for all t P r0, 1s.
Furthermore, we have

dpỸ nt ´ Znt q “ pbpỸ nt q ´ bpY nt qqdt`
1
?
n
pσpỸ nt q ´ σpY

n
t qqdWt.

If we write B for the Lipschitz constant of b and use the estimate in (5.4.3), we find
that

|bpỸ nt q ´ bpY
n
t q| ď B|Ỹ nt ´ Y

n
t |

ď Bp|Ỹ nt ´ Z
n
t | ` |Z

n
t ´ Y

n
t |q

ď B
?

2p|Ỹ nt ´ Znt |2 ` |Znt ´ Y nt |2q1{2

ď B
?

2
ˆ

|Ỹ nt ´ Z
n
t |

2 ` C2 1
n2

˙1{2
.

A similar estimate holds with σ instead of b. But then it follows from Lemma 5.6.18
in [29] that for δ ą 0 we have

lim sup
nÑ8

1
n

logP p sup
0ďtď1

|Ỹ nt ´ Z
n
t | ě δq ď lim sup

nÑ8
K ` log

ˆ

C2

C2 ` n2δ2

˙

“ ´8.

This shows that that the sequences tỸ nuně1 and tZnuně1 are exponentially equiva-
lent in Cpr0, 1s;Rkq. Furthermore, it follows from (5.4.3) that the sequences tY nuně1
and tZnuně1 are also exponentially equivalent in Cpr0, 1s;Rkq. We conclude that
the sequences tY nuně1 and tỸ nuně1 are exponentially equivalent in Cpr0, 1s;Rkq as
desired.
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Proof of Theorem 5.1.3 using embeddings
The proof we present here is an adaptation of the proof given in Section 6 of [63].
Before we give the proof, let us first provide a short overview.
Define Xn

t “ Xnt with Xt a Riemannian Brownian motion. Observe that the
horizontal lift Unt of Xn

t satisfies the stochastic differential equation

dUnt “ HipU
n
t q ˝ dWn,i

t (5.4.4)

with Un0 “ u0 P Ox0M . Here, Wn
t “

1?
n
Wt with Wt an Rk-valued standard Brown-

ian motion. Using Whitney’s embedding theorem, we can embed OM smoothly into
a Euclidean space RN and push-forward equation (5.4.4), making use of proposition
2.4.9 to relate the solutions. This results in a stochastic differential equation on RN
driven by a Euclidean Brownian motion, the solution of which remains inside the
embedding of the manifold.
In order to obtain the large deviation principle, we first restrict the vector fields
in equation (5.4.4) to a compact set using bump functions. This assures that the
diffusion matrix of the pushed-forward equation in RN is smooth with compact
support. This in turn allows us to apply Freidlin-Wentzell theory in Euclidean
space, giving us the large deviation principle in Cpr0, 1s;RN q. By the contraction
principle, this also gives us a large deviation principle for tUnuně1 in Cpr0, 1s;OMq
and hence also for tXnuně1 in Cpr0, T s;Mq, at least if we restrict to some compact
set. We remove this restriction by letting the compact set grow and using a compact
containment argument (Proposition 5.2.10). Let us provide the details.

Proof of Theorem 5.1.3 using embeddings. Fix u0 P Ox0M and for every n ě 1, let
Unt be the solution of

dUnt “ HipU
n
t q ˝ dWn,i

t

with Un0 “ u0. Here, Wn
t “

1?
n
with Wt a standard Rk-valued Brownian motion.

It follows from the proof of this theorem given in Section 5.3.3 that we can apply
Proposition 5.2.10 to obtain for every α ą 0 a compact set Kα ĂM such that

lim sup
nÑ8

1
n

logPpXn
t R Kα for some t P r0, 1sq ď ´α.

The sets can be chosen to be increasing and such that
Ť

αKα “M .
Let ϕα : M Ñ R be a smooth function with ϕα ” 1 on Kα and with compact
support. We extend ϕα to OM by defining it to be constant on fibers. Abusing
notation, we call this extension ϕα as well. Consider the process Un,αt in OM
satisfying

dUn,αt “ ϕαHipU
n,α
t q ˝ dWn,i

t (5.4.5)

with Un,α0 “ u0.
By Whitney’s embedding theorem there exists an N P N and a smooth embedding ι :
OM Ñ RN . We push (5.4.5) forward to ιpOMq to obtain the stochastic differential
equation

dV n,αt “ ι˚pϕαHiqpV
n,α
t q ˝ dWn,i

t (5.4.6)
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with V n,α0 “ ιpu0q.
Because ϕα has compact support in M , the continuity of ι implies that the vector
fields ι˚pϕαHiq have compact support. Since ιpOMq is closed in RN , they can be
extended to smooth, compactly support vector fields on RN , which we denote by
Čι˚pϕαHiq. This gives us the following stochastic differential equation on RN :

drV n,αt “ Čι˚pϕαHiqprV
n,α
t q ˝ dWn,i

t

with rV n,α0 “ ιpu0q. Since the diffusion matrix is smooth with compact support, it
follows from Theorem 5.4.1 that trV n,αuně1 satisfies the large deviation principle in
Cpr0, 1s;RN q with good rate function

IαRN pfq “ inf
"

1
2

ż 1

0
| 9gptq|2Rk dt

ˇ

ˇ

ˇ

ˇ

g P H1
0 pr0, 1s;Rkq,

fp0q “ ιpu0q, 9fptq “ 9giptq Čι˚pϕαHipfptqq
)

.

Since fp0q “ ιpu0q P ιpOMq, the existence of such a g as in the rate function implies
that fpr0, 1sq Ď ιpOMq, because the vector fields Čι˚pϕαHiq are tangent to ιpOMq
at points of ιpOMq. For this, a similar proof (but adjusted to the deterministic
case) as that of [57, Proposition 1.2.8] can be used. Hence, IαRN is infinite outside
Cpr0, 1s; ιpOMqq. Since the latter is a closed subset of Cpr0, 1s;RN q (as ιpOMq is
closed in RN ), we conclude that tVn,αuně1 satisfies the large deviation principle in
Cpr0, 1s; ιpOMqq, where the rate function IαιpOMq is simply the restriction of IαRN .
Now observe that as ι is diffeomorphism, by Proposition 2.4.9 we have that ιpUn,αt q

solves (5.4.6) with initial value ιpu0q if and only if Un,αt solves (5.4.5) with initial
value u0. Therefore, by the contraction principle (Theorem 2.1.6) we find that
tUn,αuně1 satisfies the large deviation principle in Cpr0, 1s;OMq with good rate
function given by

IαOM phq “ IιpOMqpι ˝ hq

“ inf
"

1
2

ż 1

0
| 9gptq|2Rk dt

ˇ

ˇ

ˇ

ˇ

g P H1
0 pr0, 1s;Rkq, ι ˝ hp0q “ ιpu0q,

d
dt pι ˝ hqptq “ 9giptqι˚pϕαHiqpι ˝ hptqq

*

.

Now observe that since ι is a smooth embedding, we have

d
dt pι ˝ hqptq “ 9giptqι˚pϕαHiqpι ˝ hptqq

if and only if
9hptq “ 9giptqpϕαHiqphptqq.

But then we can rewrite the rate function IαOM as
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IαOM phq “ inf
"

1
2

ż 1

0
| 9gptq|2Rk dt

ˇ

ˇ

ˇ

ˇ

g P H1
0 pr0, 1s;Rkq,

hp0q “ u0, 9hptq “ 9giptqpϕαHiqphptqq
)

.

Now, if there exists a g P H1
0 pr0, 1s;Rkq such that 9hptq “ 9giptqpϕαHiqphptqq, then

9hptq is horizontal for every t P r0, 1s. This implies that h is a horizontal curve. It
follows that IαOM phq can only be finite if h is a horizontal curve in OM .
Now define Xn,α

t “ πpUn,αt q. By the continuity of π, the contraction principle
(Theorem 2.1.6) implies that tXn,αuně1 satisfies the large deviation principle in
Cpr0, 1s;Mq with good rate function IαM pfq given by

IαM pfq “ inf
!

IαOM pf̂q | f̂ P Cpr0, 1s;OMq with πpf̂q “ f
)

.

We now show how to simplify this expression when fpr0, 1sq Ď Kα. As discussed
above, IαOM pf̂q can only be finite if f̂ is horizontal with f̂p0q “ u0. This implies that
it suffices to consider the horizontal lift hf of f . Furthermore, since fpr0, 1sq Ă Kα,
we have that ϕαpfptqq “ 1 for all t P r0, 1s. Therefore, to compute IαOM phf q, we
need to consider the unique curve g : r0, 1s Ñ Rk such that 9hf ptq “ 9giptqHiphptqq.
In particular, g is the anti-development of f via the frame u0. From this it follows
that

IαM pfq “
1
2

ż 1

0
| 9gptq|2Rk dt,

where g is the anti-development of f . Furthermore, we have that 9gptq “ h´1
f ptq

9fptq
for every t P r0, 1s. Using that hf ptq is an orthonormal frame and thus an isometry,
we find that

| 9gptq|Rk “ |h
´1
f ptq

9fptq|Rk “ | 9fptq|M .

This shows that, at least for f such that fpr0, 1sq Ă Kα, the rate function IαM is
given by

IαM pfq “
1
2

ż 1

0
| 9fptq|2M dt.

Finally, we show how to remove the restriction to compact sets. For this, let Tn,α
be the exit time of Xn

t from Kα. Observe that by definition of Xn,α
t we have that

Xn
t and Xn,α

t agree up to time Tn,α.
Let us first prove the upper bound of the large deviation principle for tXnuně1. For
this, let F Ď Cpr0, 1s;Mq be closed. Then

PpXn P F q “ PpXn P F |Tn,α ą 1qPpTn,α ą 1q ` PpXn P F |Tn,α ď 1qPpTn,α ď 1q
ď PpXn P F, Tn,α ą 1q ` PpTn,α ď 1q
“ PpXn,α P F, Tn,α ą 1q ` PpTn,α ď 1q
ď PpXn,α P F X Cpr0, 1s;Kαqq ` PpTn,α ď 1q.
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Using this, we find for every α ą 0 that

lim sup
nÑ8

1
n

logPpXn P F q

ď lim sup
nÑ8

1
n

logPpXn,α P F X Cpr0, 1s;Kαq ` PpTn,α ď 1q

“ max
"

lim sup
nÑ8

1
n

logPpXn,α P F X Cpr0, 1s;Kαq, lim sup
nÑ8

1
n
PpTn,α ď 1q

*

ď maxt´ inf
fPFXCpr0,1s;Kαq

IαM pfq,´αu

ď maxt´ inf
fPF

IM pfq,´αu.

Here, the last line follows from the fact that on Cpr0, 1s;Kαq, the rate function IαM
coincides with IM . Letting α tend to infinity proves the upper bound.
It remains to prove the lower bound. Let G Ď Cpr0, 1s;Mq be open. Fix g P G and
take δ ą 0 such that Bpg, δq Ď G. Furthermore, since the setsKα are increasing with
Ť

αKα “ M , there exists an α ą 0 such that gpr0, 1sq is contained in the interior
of Kα. By possibly shrinking δ, we then have for all h P Bpg, δq that hpr0, 1sq is
contained in the interior of Kα. From this it follows that

PpXn P Bpg, δqq “ PpXn,α P Bpg, δqq.

Indeed, by continuity, Xn,α and Xn can only be different if Xn hits the boundary of
Kα. However, since hpr0, 1sq is contained in the interior of Kαfor every h P Bpg, δq,
this does not occur.
Using this, we find that

lim inf
nÑ8

1
n

logPpXn P Gq ě lim inf
nÑ8

1
n

logPpXn P Bpg, δqq

“ lim inf
nÑ8

1
n

logPpXn,α P Bpg, δqq

ě ´IαM pgq

“ ´IM pgq.

Here, the third line follows from the large deviation principle for tXn,αuně1, while
the last line follows from the fact that IαM pgq “ IM pgq for g P Cpr0, 1s;Mq with
gpr0, 1sq Ď Kα. As the above holds for all g P G, this proves the lower bound.

Finally, to see that IM is a good rate function, note that IM “ infα IαM and that
the IαM are good rate functions.

Remark 5.4.2. If the Ricci curvature is bounded from below, we can replace the
compact containment argument by a more explicit estimate of the exit probability
PpTn,α ď 1q. More precisely, one can use [63, Proposition 3.7] to obtain that

PpTn,α ď 1q ď 2e´
1
2n

pkLn´1´ 1
2α

2q2

α2 .
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Here k is the dimension of the manifold and L is the lower bound on the Ricci
curvature.
Remark 5.4.3. In a similar way as done in the final step of the above proof, one
can also show that the large deviation principle holds for tUnuně1 and not only for
tUn,αuně1. Indeed, since horizontal lifts are unique, the fact that Xn

t and Xn,α
t

agree up to time Tn,α implies that Unt and Un,αt agree up to time Tn,α.
To prove the upper bound, let F Ď Cpr0, 1s;OMq be closed. A similar estimate as
above shows that

PpUnt P F q ď PpUn,αt P F X Cpr0, 1s;OKαqq ` PpTn,α ď 1q.

Here,
OKα “ tu P OM |πu P Kαu.

Noticing that IOM phq “ IαOM phq whenever hpr0, 1sq Ď OKα, a similar argument as
above proves that

lim sup
nÑ8

1
n

logPpUnt P F q ď ´ inf
hPF

IOM phq.

For the lower bound, let G Ď Cpr0, 1s;OMq be open. Fix g P G and δ ą 0 such that
Bpg, δq Ď G. Note that there exists an α ą 0 such that for all h P Bpg, δq it holds
that πhpr0, 1sq Ď Kα, where we possibly have to shrink δ. By a similar argument as
in the proof above, we obtain also the lower bound.

5.5. Concluding remarks

We conclude this chapter by discussing some directions in which the results from
this chapter may be extended.
First of all, the discussion of the conditions of Cramér’s theorem for geodesic ran-
dom walks (Theorem 3.3.1) in Section 3.7 are also relevant for Mogulskii’s theorem
(Theorem 5.1.1). As for Cramér’s theorem, it is expected to be possible to replace
the boundedness of the increments with an assumption on their moment generating
function.
Another interesting problem to consider is that of deducing Mogulskii’s theorem for
geodesic random walks from Cramér’s theorem. It should be possible to follow a
similar approach as in the proof of Mogulskii’s theorem given in Section 5.1 of [29].
This gives two main difficulties. First of all, in comparison to Lemma 5.1.7 in [29],
we need to show that the piecewise geodesic approximation of the geodesic random
walk is exponentially tight in Cpr0, 1s;Mq. Second, we also need to show that the
rate function obtained from the projective limit theorem has the desired form, see
Lemma 5.1.6 in [29].
Furthermore, as already mentioned in Section 5.1, there is also reason to believe
that Schilder’s theorem for Riemannian Brownian motion can be obtained from
Mogulskii’s theorem. The only problem is that the ‘increments’ of Riemannian
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Brownian motion are only asymptotically normal. Therefore, the main obstacle is to
prove that a piecewise geodesic approximation with normal increments of a rescaled
Riemannian Brownian approximates it well-enough on the exponential scale.
Finally, we can also consider Freidlin-Wentzell theory for diffusions on manifolds
driven by a Euclidean Brownian motion. More precisely, we can consider processes
Xn on M satisfying

dXn
t “ bpXn

t qdt`
1
?
n
VipX

n
t q ˝ dW i

t .

This might even be pushed further, and consider stochastic differential equations
driven by a Riemannian Brownian motion. We refer to [36] for the definition of
such equations. For the case where the driving Brownian motion is Euclidean,
both approaches we discussed in this chapter are suitable for studying the large
deviations for tXnuně1. In particular, the approach using embedding can be applied
immediately without having to lift the process to the frame bundle, as in the case
for Riemannian Brownian motion.



III
Large deviations in a

time-inhomogeneous setting
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6
Large deviations for
time-inhomogeneous
processes
In this chapter we temporarily leave the geometric setting and aim to extend the
classical results in large deviation theory into another direction. More precisely, we
study the large deviation behaviour of random walks in Euclidean space with time-
inhomogeneous increments. Furthermore, we also look at a time-inhomogeneous
Schilder-type theorem by considering the process generated by a weighted Lapla-
cian, where the weight depends on time. The main purpose of these results is to
get a first look into large deviations for time-inhomogeneous processes and serve
as a starting point for considering also time-inhomogeneous processes in a geomet-
ric setting. A first step in this direction is taken in Chapter 7, where we consider
Schilder’s theorem for Riemannian Brownian motion in a time-evolving Riemannian
manifold.

This chapter is organized as follows. We first prove the large deviation principle for
rescaled random walks with time-inhomogeneous increments in Section 6.1. This
gives us the analogue of Cramér’s theorem. It turns out that under suitable as-
sumptions, this is a direct consequence of the Gärtner-Ellis theorem.
Next, in Section 6.2 we obtain the path space large deviations for random walks
with time-dependent increments by following a similar approach as in the homoge-
neous case. Indeed, following the approach in [29, Section 5.1], we obtain the large
deviations via the projective limit theorem of Dawson and Gärtner. However, to
prove that the rate function takes on the desired form requires slightly more work
than in the homogeneous case.
We conclude this chapter by considering an inhomogeneous Schilder-type theorem
in Section 6.3. Since the process we consider for this is Gaussian, the result is a
special case of Theorem 3.4.5 in [30]. However, we provide an alternative proof
by showing how to obtain this result from the path space large deviations for
time-inhomogeneous random walks. Furthermore, this result serves as a connec-
tion between this chapter and the next one, where we treat Schilder’s theorem for

169
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Riemannian Brownian motion in an evolving Riemannian manifold.

6.1. Large deviations for time-inhomogeneous ran-
dom walks

Consider a collection tµtutPr0,1s of probability measures on Rd. Using this, we con-
struct a time-inhomogeneous random walk. For every n P N, we define n indepen-
dent random variables Xn

1 , . . . , X
n
n , where Xn

i is distributed according to µ i
n
. Next,

we consider the rescaled random walk

Zn “
1
n

n
ÿ

i“1
Xn
i . (6.1.1)

We refer to the sequence tZnuně1 as the time-inhomogeneous random walk associated
to tµtutPr0,1s.
For a collection tµtutPr0,1s of probability measures on Rd, we denote by Λt the log-
moment generating function of µt, i.e.,

Λtpλq “ log
ż

Rd
exλ,xyµtpdxq.

Using the Gärtner-Ellis theorem, we obtain the following time-inhomogeneous ver-
sion of Cramér’s theorem.

Theorem 6.1.1. Let tµtutPr0,1s be a collection of probability measures on Rd. For
every n P N, let Zn be the random variable defined in (6.1.1). Assume that Λtpλq
is finite for all λ P Rd and t P r0, 1s. Furthermore, assume that the map t ÞÑ Λtpλq
is continuous for every λ P Rd. Finally, assume that the map λ ÞÑ

ş1
0 Λtpλqdt is

differentiable. Then the sequence tZnuně1 satisfies the large deviation principle in
Rd with good rate function

Ipxq “ sup
λPRd

"

xλ, xy ´

ż 1

0
Λtpλqdt

*

. (6.1.2)

Proof. We start with the following computation

1
n

logE
´

enxλ,Zny
¯

“
1
n

n
ÿ

i“1
logE

´

exλ,Z
n
i y
¯

“
1
n

n
ÿ

i“1
Λ i
n
pλq.

Since t ÞÑ Λtpλq is continuous, we find that

Λpλq :“ lim
nÑ8

1
n

logE
´

enxλ,Zny
¯

“

ż 1

0
Λtpλqdt.
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Since Λpλq is differentiable by assumption, the Gärtner-Ellis theorem (Theorem
2.1.12) implies that tZnuně1 satisfies the large deviation principle in Rd with good
rate function given by

Ipxq “ Λ˚pxq “ sup
λPRd

"

xλ, xy ´

ż 1

0
Λtpλqdt

*

.

Remark 6.1.2. For the rate function I in (6.1.2) we have the upper bound

Ipxq ď

ż 1

0
Λ˚t pxqdt,

where Λ˚t is the Legendre transform of Λt, i.e.,

Λ˚t pxq “ sup
λPRd

txλ, xy ´ Λtpλqu.

However, in general, equality need not hold. As an example, one can take d “ 1
and consider µt “ Np0, 1` tq. Indeed, in this case, Λtpλq “ 1

2 p1` tqλ
2 and Λ˚t pxq “

1
2p1`tqx

2. Furthermore, we find that
ż 1

0
Λtpλqdt “

„

1
4λ

2p1` tq2
1

0
“

3
4λ

2

from which we can compute that

Ipxq “ sup
λPR

"

λx´
3
4λ

2
*

“
1
3x

2.

On the other hand,
ż 1

0
Λ˚t pxqdt “

„

1
2x

2 logp1` tq
1

0
“

1
2 logp2qx2

We conclude that

Ipxq “
1
3x

2 ă
1
2 logp2qx2 “

ż 1

0
Λ˚t pxqdt.

6.2. Large deviations for trajectories of time-inhomogeneous
random walks

We now turn to the path space large deviation result accompanying Theorem 6.1.1.
To this end, let Znptq be the trajectories associated to the random variables in
(6.1.1), i.e.,

Znptq “
1
n

tntu
ÿ

i“1
Xn
i (6.2.1)

for t P r0, 1s. Our aim is to prove the following theorem.
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Theorem 6.2.1. Let tµtutPr0,1s be a collection of probability measures on Rd. For
every n P N and t P r0, 1s, let Znptq be the random variable defined in (6.2.1).
Assume that Λtpλq ă 8 for all λ P Rd and t P r0, 1s. Assume furthermore that the
map pt, λq ÞÑ Λtpλq is continuous. Also assume that for every r P r0, 1s, the map
λ Ñ

şr

0 Λtpλqdt is differentiable. Then the sequence tZnp¨quně1 satisfies the large
deviation principle in L8pr0, 1s;Rdq with good rate function given by

Ipγq “

#

ş1
0 Λ˚t p 9γptqqdt, γ P AC0pr0, 1s;Rdq,
8, otherwise.

(6.2.2)

To prove Theorem 6.2.1, we follow the approach taken in [29, Section 5.1]. We first
establish a variety of preparatory results, from which Theorem 6.2.1 will follow.
Before we get to these results, we first need to make some more definitions. We
define the space X by

X “
 

f : r0, 1s Ñ Rd
ˇ

ˇ fp0q “ 0
(

, (6.2.3)

equipped with the topology of pointwise convergence, i.e., the product topology.
Furthermore, let Z̃n be the piecewise linear approximation of Zn, i.e.,

Z̃nptq “ Znptq `

ˆ

t´
tntu

n

˙

Xn
tntu`1 (6.2.4)

for t P r0, 1s.

We start by showing that the large deviations for tZnp¨quně1 are the same as for the
piecewise linear approximations tZ̃np¨quně1. Before we can do this, we first need a
technical lemma.

Lemma 6.2.2. Let tµtutPr0,1s be a collection of probability measures. Assume that
Λtpλq ă 8 for all λ P Rd and t P r0, 1s. Assume furthermore that t ÞÑ Λtpλq is
continuous for every λ P Rd. Then

sup
tPr0,1s

Eµt
´

eα|X|
¯

ă 8

for every α ą 0.

Proof. Since Λtpλq is continuous in t, so is Eµt
`

exλ,Xy
˘

. Hence, the compactness of
r0, 1s implies that

sup
tPr0,1s

Eµt
´

exλ,Xy
¯

ă 8 (6.2.5)

for all λ P Rd.
Furthermore, we have that

Eµt
´

eα|X|
¯

ď Eµt

˜

d
ź

i“1
eα|Xi|

¸
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ď

d
ź

i“1
Eµt

´

eαd|Xi|
¯

1
d

ď

d
ź

i“1

`

Eµt
`

eαdXi
˘

` Eµt
`

e´αdXi
˘˘

1
d .

Here, the second line follows from Hölder’s inequality. Using this, we find that

sup
tPr0,1s

Eµt
´

eα|X|
¯

ď

d
ź

i“1

˜

sup
tPr0,1s

Eµt
`

eαdXi
˘

` sup
tPr0,1s

Eµt
`

e´αdXi
˘

¸
1
d

ă 8,

where the latter is finite by considering the vectors λi “ ˘αdei in (6.2.5), with
e1, . . . , ed the standard basis of Rd.

We can now prove that the sequences tZnp¨quně1 and tZ̃np¨quně1 are exponentially
equivalent.

Proposition 6.2.3. Let the assumptions of Theorem 6.2.1 be satisfied. For ev-
ery n ě 1 and t P r0, 1s, let Znptq and Z̃nptq be the random variables defined in
(6.2.1) and (6.2.4) respectively. Then the sequences tZnp¨quně1 and tZ̃np¨quně1 are
exponential equivalent in L8pr0, 1s;Rdq.

Proof. Note that |Znptq ´ Z̃nptq| ď
1
n |X

n
tntu`1| for every t P r0, 1q, while Znp1q ´

Z̃np1q “ 0. Using this, together with the union bound and Markov’s inequality, we
find that

P

˜

sup
tPr0,1s

|Znptq ´ Z̃nptq| ą δ

¸

ď

n
ÿ

i“1
Pp|Xn

i | ě nδq

ď e´λnδ
n
ÿ

i“1
E
´

eλ|X
n
i |
¯

“ e´λnδ
n
ÿ

i“1

ĎM i
n
pλq,

where
ĎMtpλq “ Eµt

´

eλ|X|
¯

.

This implies that

P

˜

sup
tPr0,1s

|Znptq ´ Z̃nptq| ą δ

¸

ď ne´λnδ sup
tPr0,1s

ĎMtpλq,

where the upper bound is finite by Lemma 6.2.2. It follows that

1
n

logP
˜

sup
tPr0,1s

|Znptq ´ Z̃nptq| ą δ

¸

ď ´λδ `
1
n

logn` 1
n

log
˜

sup
tPr0,1s

ĎMtpλq

¸

,
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from which we obtain

lim sup
nÑ8

1
n

logP
˜

sup
tPr0,1s

|Znptq ´ Z̃nptq| ą δ

¸

ď ´λδ.

The claim follows by considering the limit λÑ8.

Next, we show that the piecewise linear approximations tZ̃np¨quně1 satisfy the
large deviation principle in X . For this, we first use Cramér’s theorem for time-
inhomogeneous random walks (Theorem 6.1.1) to prove the large deviation princi-
ple for the finite dimensional distributions. We then obtain the path space large
deviations by using the projective limit theorem of Dawson-Gärtner (see [28] and
also [29, Theorem 4.6.1]). The most work goes into proving that the rate function
has the desired form.

Proposition 6.2.4. Let the assumptions of Theorem 6.2.1 be satisfied. For every
n ě 1 and t P r0, 1s, let Z̃nptq be the random variable defined in (6.2.4). Finally,
let X be the space defined in (6.2.3). Then tZ̃np¨quně1 satisfies the large deviation
principle in X with good rate function given by (6.2.2).

As mentioned above, before we can prove this, we first have to prove the large
deviation principle for the finite-dimensional distributions.

Proposition 6.2.5. Let the assumptions of Theorem 6.2.1 be satisfied. For ev-
ery n ě 1 and t P r0, 1s, let Znptq be the random variable defined in (6.2.1). Fi-
nally, let 0 “ t0 ă t1 ă ¨ ¨ ¨ ă tk ď 1 be a partition of r0, 1s. Then the sequence
tpZnpt1q, Znpt2q, . . . , Znptkquně1 satisfies the large deviation principle in pRdqk with
good rate function

Ipx1, . . . , xkq “
k
ÿ

l“1
sup
λPRd

#

xλ, xl ´ xl´1y ´

ż tl

tl´1

Λtpλqdt
+

,

where x0 “ 0.

Proof. Following the proof of Theorem 6.1.1, we find that for s ă r, the sequence
tZnprq ´ Znpsquně1 satisfies in Rd the large deviation principle with rate function

Is,rpxq “ sup
λPRd

"

xλ, xy ´

ż r

s

Λtpλqdt
*

.

Here, one uses that λ ÞÑ
şr

s
Λtpλqdt is differentiable, which follows from the assump-

tion that for every r, the map λ ÞÑ
şr

0 Λtpλqdt is differentiable.
Now, since the increments of Znp¨q are independent, we find that tpZnpt1q, Znpt2q´
Znpt1q, . . . , Znptkq ´ Znptk´1qquně1 satisfies in pRdqk the large deviation principle
with rate function

Ĩt1,...,tkpx1, . . . , xkq “
k
ÿ

l“1
Itl´1,tlpxlq.
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Applying the contraction principle, we find that tpZnpt1q, Znpt2q, . . . , Znptkquně1
satisfies in pRdqk the large deviation principle with good rate function

It1,...,tkpx1, . . . , xkq “ Ĩt1,...,tkpx1, x2 ´ x1, . . . , xk ´ xk´1q

“

k
ÿ

l“1
Itl´1,tlpxl ´ xl´1q

“

k
ÿ

l“1
sup
λPRd

#

xλ, xl ´ xl´1y ´

ż tl

tl´1

Λtpλqdt
+

as desired.

In order to prove that the rate function given by the projective limit theorem of
Dawson-Gärtner is of the desired form, we need the following technical lemma.

Lemma 6.2.6. Let the assumptions of Theorem 6.2.1 be satisfied. Define Λt “ Λ0
for t ď 0 and Λt “ Λ1 for t ě 1. Let H : pNY t8uq ˆRd ˆRd ˆRÑ R be given by

Hpk, λ, x, sq “ xλ, xy ´ k

ż s` 1
k

s

Λtpλqdt,

and set
Hp8, λ, x, sq “ xλ, xy ´ Λspλq.

Then H is continuous as function of four variables.

Proof. Let pkn, λn, xn, snq Ñ pk, λ, x, sq. We show that

lim
nÑ8

Hpkn, λn, xn, snq “ Hpk, λ, x, sq.

Since the inner product is continuous, we have

lim
nÑ8

xλn, xny “ xλ, xy.

For the other term, we consider two cases. First assume that k ă 8. Then there
exists and N such that kn “ k for all n ě N . Since pt, λq ÞÑ Λtpλq is continuous, it
is bounded on compact sets and hence, we find by dominated convergence that

lim
nÑ8

ż sn`
1
k

sn

Λtpλnqdt “
ż s` 1

k

s

Λtpλqdt.

Now consider the case k “ 8. Since pt, λq ÞÑ Λtpλq is continuous, by the mean value
theorem, there exists for every n P N a ξn P psn, sn ` 1

kn
q such that

kn

ż sn`
1
kn

sn

Λtpλnqdt “ Λξnpλnq.
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Because sn Ñ s and 1
kn
Ñ 0, we find that limnÑ8 ξn “ s. Again using the continuity

of pt, λq ÞÑ Λtpλq, we conclude that

lim
nÑ8

kn

ż sn`
1
kn

sn

Λtpλnqdt “ lim
nÑ8

Λξnpλnq “ Λspλq

as desired.

We are now able to prove Proposition 6.2.4.

Proof of Proposition 6.2.4. By combining Propositions 6.2.3 and 6.2.5, we find that
tpZ̃npt1q, . . . , Z̃nptkquně1 satisfies in pRdqk the large deviation principle with rate
function

It1,...,tkpx1, . . . , xkq “
k
ÿ

l“1
sup
λPRd

#

xλ, xl ´ xl´1y ´

ż tl

tl´1

Λtpλqdt
+

.

Following the proof of [29, Lemma 5.1.6], the projective limit theorem of Dawson-
Gärtner ([29, Theorem 4.6.1]) implies that tZ̃np¨quně1 satisfies in X the large devi-
ation principle with good rate function given by

IX pγq “ sup
0“t0ăt1ă¨¨¨ătkď1

It1,...,tkpγpt1q, . . . , γptkqq

“ sup
0“t0ăt1ă¨¨¨ătk“1

k
ÿ

l“1
sup
λPRd

#

xλ, γptlq ´ γptl´1qy ´

ż tl

tl´1

Λtpλqdt
+

.

Here, in the last line we can take tk “ 1, since the functions involved are nonnegative.
We are done once we show that IX “ I, where I is as in (6.2.2). We first prove that
IX ď I. If γ is not absolutely continuous, then Ipγq “ 8 and certainly IX pγq ď Ipγq.
If γ is absolutely continuous, then

IX pγq “
k
ÿ

l“1
sup
λPRd

#

xλ, γptlq ´ γptl´1qy ´

ż tl

tl´1

Λtpλqdt
+

“

k
ÿ

l“1
sup
λPRd

ż tl

tl´1

xλ, 9γptqy ´ Λtpλqdt

ď

k
ÿ

l“1

ż tl

tl´1

sup
λPRd

txλ, 9γptqy ´ Λtpλqu dt

“

ż 1

0
Λ˚t p 9γptqqdt

“ Ipγq.

For the reverse inequality, first consider the case where γ is absolutely continuous.
For k P N, define the points tl “ l

k . Then

IX pγq ě
k
ÿ

l“1
sup
λPRd

#

B

λ, γ

ˆ

l

k

˙

´ γ

ˆ

l ´ 1
k

˙F

´

ż l{k

pl´1q{k
Λtpλqdt

+
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“
1
k

k
ÿ

l“1
sup
λPRd

#

B

λ, k

ˆ

γ

ˆ

l

k

˙

´ γ

ˆ

l ´ 1
k

˙˙F

´ k

ż l{k

pl´1q{k
Λtpλqdt

+

.

Now define for s ă r the function

Fs,rpλq “
1

r ´ s

ż r

s

Λtpλqdt,

together with its Legendre transform

F˚s,rpxq “ sup
λPRd

txλ, xy ´ Fs,rpλqu .

With this notation, we can write the above estimate as

IX pγq ě
1
k

k
ÿ

l“1
F˚l´1

k , lk

ˆ

k

„

γ

ˆ

l

k

˙

´ γ

ˆ

l ´ 1
k

˙˙

. (6.2.6)

Now define the function

Gkptq “ F˚tktu

k ,
tktu`1
k

˜

k

ż

tktu`1
k

tktu

k

9γpuqdu
¸

,

and set Gkp1q “ Gk
`

k´1
k

˘

. Then the inequality in (6.2.6) may be rewritten as

IX pγq ě

ż 1

0
Gkptqdt.

We will show that
lim inf
kÑ8

Gkptq ě Λ˚t p 9γptqq.

To this end, consider the function H : pNY t8uq ˆRd ˆRd ˆRÑ R as in Lemma
6.2.6 and define the function H˚ : pNY t8uq ˆ Rd ˆ RÑ R by

H˚pk, x, sq “ sup
λPRd

Hpk, λ, x, sq.

BecauseH is continuous by Lemma 6.2.6, it follows thatH˚ is lower-semicontinuous.
Now note that

Gkptq “ H˚

˜

k, k

ż

tktu`1
k

tktu

k

9γpuqdu, tktu

k

¸

.

Since H˚ is lower-semicontinuous, we find that

lim inf
kÑ8

Gkptq ě H˚

˜

8, lim inf
kÑ8

k

ż

tktu`1
k

tktu

k

9γpuqdu, t
¸

“ H˚p8, 9γptq, tq
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“ sup
λPRd

txλ, 9γptqy ´ Λtpλqu

“ Λ˚t p 9γptqq.

Here, the second line follows from the Lebesgue differentiation theorem, because
9γ P L1pr0, 1s;Rdq.
It now follows from Fatou’s lemma that

IX pγq ě lim inf
kÑ8

ż 1

0
Gkptqdt ě

ż 1

0
lim inf
kÑ8

Gkptqdt ě
ż 1

0
Λ˚t p 9γptqqdt,

which shows that IX pγq ě Ipγq whenever γ is absolutely continuous.
It remains to prove that if γ is not absolutely continuous, then IX pγq “ 8. Since
γ is not absolutely continuous, given δ ą 0, we can find a sequence t0 ă tn1 ă sn1 ď
¨ ¨ ¨ ď tnkpnq ă snkpnq ď 1u of partitions, such that

lim
nÑ8

kpnq
ÿ

l“1
psnl ´ t

n
l q “ 0,

while
kpnq
ÿ

l“1
|γpsnl q ´ γpt

n
l q| ě δ.

For these partitions we have

IX pγq ě

kpnq
ÿ

l“1
sup
λPRd

#

xλ, γpsnl q ´ γpt
n
l qy ´

ż snl

tn
l

Λtpλq
+

.

Indeed, this follows from the fact that for every n ě 1 and every 1 ď l ď kpnq we
have that

sup
λPRd

#

xλ, γptnl`1q ´ γps
n
l qy ´

ż tnl`1

sn
l

Λtpλq
+

ě 0

by considering λ “ 0.
If we now consider λl “ ρ

γpsnl q´γpt
n
l q

|γpsn
l
q´γptn

l
q|
whenever γpsnl q ´ γptnl q ‰ 0, we find that

IX pγq ě

kpnq
ÿ

l“1

#

xλl, γps
n
l q ´ γpt

n
l qy ´

ż snl

tn
l

Λtpλlq
+

ě ρ

kpnq
ÿ

l“1
|γpsnl q ´ γpt

n
l q| ´

«

sup
0ďtď1,|λ|“ρ

Λtpλq
ff

kpnq
ÿ

l“1
psnl ´ t

n
l q.

Now, because pt, λq ÞÑ Λtpλq is continuous, we have that sup0ďtď1,|λ|“ρ Λtpλq ă 8.
Therefore, we find that

IX pγq ě lim sup
nÑ8

¨

˝ρ

kpnq
ÿ

l“1
|γpsnl q ´ γpt

n
l q| ´

«

sup
0ďtď1,|λ|“ρ

Λtpλq
ff

kpnq
ÿ

l“1
psnl ´ t

n
l q

˛

‚
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ě ρδ.

Since ρ ą 0 is arbitrary, the result follows by letting ρ tend to infinity.

We have now shown that tZ̃np¨quně1 satisfies the large deviation principle in X . In
order to prove that the large deviation principle also holds in the supremum norm
topology, we need to prove that tZ̃np¨quně1 is exponentially tight in C0pr0, 1s;Rdq.

Proposition 6.2.7. Let the assumptions of Theorem 6.2.1 be satisfied. For every
n ě 1 and t P r0, 1s, let Z̃nptq be the random variable defined in (6.2.4). Then the
sequence tZ̃np¨quně1 is exponentially tight in C0pr0, 1s;Rdq.

Proof. If X is and Rd-valued random variable with distribution µt, then we write
µt,j for the distribution of Xj , the j-th coordinate of X. Furthermore, we denote
by Λt,j the log moment generating function of the distribution µt,j .
Now, given α ą 0 and n ě 1, consider the sets

Kj
α,n “

"

γ P ACpr0, 1s;Rdq
ˇ

ˇ

ˇ

ˇ

γp0q “ 0,
ż 1

0
Λ˚tntu

n ,j
p 9γptqqdt ď α

*

for j “ 1, . . . , d. Furthermore, define the sets

Kj
α “

8
ď

n“1
Kj
α,n

and set

Kα “

d
č

j“1
Kj
α.

Then
PpZ̃np¨q R Kαq ď d

dmax
j“1

PpZ̃np¨q R Kj
αq.

Furthermore, since dZ̃nptq
dt “ Xn

tntu`1 almost everywhere, we find that

PpZ̃np¨q R Kj
αq ď PpZ̃np¨q R Kj

α,nq

ď P

˜

1
n

n
ÿ

l“1
Λ˚l´1

n ,j
pXn,j

l q ą α

¸

for every j “ 1, . . . , d and every n ě 1. Estimating further, we have

P

˜

1
n

n
ÿ

l“1
Λ˚l´1

n ,j
pXn,j

l q ą α

¸

“ P

˜

e
δ
řn
l“1 Λ˚

l´1
n
,j
pXn,j

l
q

ą enδα

¸

ď e´nδαE

˜

e
δ
řn
l“1 Λ˚

l´1
n
,j
pXn,j

l
q

¸



180 6. Large deviations for time-inhomogeneous processes

“ e´nδα
n
ź

l“1
E

˜

e
δΛ˚

l´1
n
,j
pXn,j

l
q

¸

.

Here, the second line follows from Markov’s inequality and the last line from the
independence of the increments.
Now, since Xn,j

l has distribution µ l´1
n ,j , it follows from [29, Lemma 5.1.14] that for

δ ă 1 we have

E

˜

e
δΛ˚

l´1
n
,j
pXn,j

l
q

¸

ď
2

1´ δ .

Combining everything, we find that

lim sup
nÑ8

1
n

logP
˜

1
n

n
ÿ

l“1
Λ˚l´1

n ,j
pXn,j

l q ą α

¸

ď ´δα` log
ˆ

2
1´ δ

˙

,

from which we conclude that

lim
αÑ8

lim sup
nÑ8

1
n

logP
˜

1
n

n
ÿ

l“1
Λ˚l´1

n ,j
pXn,j

l q ą α

¸

“ ´8.

Since

PpZ̃np¨q R Kαq ď d
dmax
j“1

P

˜

1
n

n
ÿ

l“1
Λ˚l´1

n ,j
pXn,j

l q ą α

¸

,

it follows that
lim
αÑ8

lim sup
nÑ8

PpZ̃np¨q R Kαq “ ´8.

It remains to show that Kα is relatively compact. Since Kα “
Şd
j“1K

j
α, it is suffi-

cient to show that Kj
α is compact for arbitrary j. By the Arzelà-Ascoli theorem, it

suffices to show that Kj
α is bounded and equicontinuous. We first prove equiconti-

nuity of Kj
α, since boundedness will be a consequence of one of the estimates.

Let γ P Kj
α be arbitrary. Then there exists an n ě 1 such that

ż 1

0
Λ˚tntu

n ,j
p 9γptqqdt ď α.

First, let l´1
n ď s ă r ď l

n . By Jensen’s inequality, we have

Λ˚l´1
n ,j

ˆ

γprq ´ γpsq

r ´ s

˙

“ Λ˚l´1
n ,j

ˆ
ż r

s

9γptqdt
˙

ď
1

r ´ s

ż r

s

Λ˚l´1
n ,j

p 9γptqq dt

ď
α

r ´ s
,

where in the last line we used that fact that Λ˚t,j is nonnegative for all t P r0, 1s.
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Now, since
Λ˚t,jpxq “ sup

λPR
tλx´ Λt,jpλqu ,

by considering λ “M or λ “ ´M , we find that

Λ˚t,jpxq ěM |x| ´maxtΛt,jpMq,Λt,jp´Mqu

for all M ą 0. Using this, we have

|γprq ´ γpsq|

ď
r ´ s

M
Λ˚l´1

n ,j

ˆ

γprq ´ γpsq

r ´ s

˙

`
r ´ s

M
max

!

Λ l´1
n ,jpMq,Λ l´1

n ,jp´Mq
)

ď
1
M

ˆ
ż r

s

Λ˚l´1
n ,j

p 9γptqq dt` pr ´ sqmax
!

Λ l´1
n ,jpMq,Λ l´1

n ,jp´Mq
)

˙

. (6.2.7)

If we simply have that 0 ď s ă r ď 1, we find by the triangle inequality that

|γprq ´ γpsq|

ď

ˇ

ˇ

ˇ

ˇ

γ

ˆ

tnsu` 1
n

˙

´ γpsq

ˇ

ˇ

ˇ

ˇ

`

tnru
ÿ

l“tnsu`1

ˇ

ˇ

ˇ

ˇ

γ

ˆ

l ` 1
n

˙

´ γ

ˆ

l

n

˙
ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

γprq ´ γ

ˆ

tnru

n

˙
ˇ

ˇ

ˇ

ˇ

.

Now, we wish to find a choice for M , such that we can estimate the second term in
(6.2.7) independent of l. For this, we need to show that for any δ ą 0, there exist
Mjpδq ą 0 satisfying limδÑ0Mjpδq “ 8 and such that

Λt,jpMjpδqq ď
1
δ
, Λt,jp´Mjpδqq ď

1
δ

for all t P r0, 1s. To this end, note that pt, λq ÞÑ Λt,jpλq is continuous, and hence,

Λjpλq :“ sup
tPr0,1s

Λt,jpλq

is lower-semicontinuous. As a consequence, the sets tΛj ď 1
δ u are closed, and

increasing to R. From this it follows that we can find a sequence Mjpδq with
limδÑ0Mjpδq “ 8 and such that

ΛjpMjpδqq ď
1
δ
, Λjp´Mjpδqq ď

1
δ
.

Since Λt,j ď Λj , the sequence has the desired properties.
Now, given r ą s with r ´ s ď δ, using the sequence Mjpδq constructed above, we
find that

|γprq ´ γpsq|
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ď

ˇ

ˇ

ˇ

ˇ

γ

ˆ

tnsu` 1
n

˙

´ γpsq

ˇ

ˇ

ˇ

ˇ

`

tnru
ÿ

l“tnsu`1

ˇ

ˇ

ˇ

ˇ

γ

ˆ

l ` 1
n

˙

´ γ

ˆ

l

n

˙
ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

γprq ´ γ

ˆ

tnru

n

˙
ˇ

ˇ

ˇ

ˇ

ď
1

Mjpδq

˜

ż

tnsu`1
n

s

Λ˚tnsu

n ,j
p 9γptqq dt`

ˆ

tnsu` 1
n

´ s

˙

1
δ

¸

`
1

Mjpδq

tnru´1
ÿ

l“tnsu`1

˜

ż
l`1
n

l
n

Λ˚l
n ,j
p 9γptqq dt` 1

nδ

¸

`
1

Mjpδq

˜

ż r

tnru

n

Λ˚tnru

n ,j
p 9γptqq dt`

ˆ

r ´
tnru

n

˙

1
δ

¸

“
1

Mjpδq

ˆ
ż r

s

Λ˚tntu

n ,j
p 9γptqqdt` r ´ s

δ

˙

ď
α` 1
Mjpδq

. (6.2.8)

Here, in the last line we used the fact that γ P Kα,n and the fact that r ´ s ă δ.
Now, since limδÑ0Mjpδq “ 8, given ε ą 0, we can choose δ ą 0 independent of γ
such that α`1

Mjpδq
ă ε, in which case |r ´ s| ă δ implies that |γprq ´ γpsq| ă ε. This

proves the equicontinuity of Kα.
To prove the boundedness of Kα, we can take s “ 0 and δ “ 1 in (6.2.8), giving us
that

|γptq| “ |γptq ´ γp0q| ď α` 1
Mjp1q

.

Here, we used that γp0q “ 0. We find that ||γ||8 ď α`1
Mjp1q for all γ P Kα, hence Kα

is bounded.

With all the preparations done, we can prove Theorem 6.2.1.

Proof of Theorem 6.2.1. By Proposition 6.2.4 we find that the sequence tZ̃np¨quně1
satisfies the large deviation principle in X with good rate function I as in (6.2.2).
Now observe that the rate function I is infinite outside C0pr0, 1s;Rdq. Further-
more, for every n, Z̃np¨q is almost surely contained in C0pr0, 1s;Rdq. Therefore, by
Lemma 4.1.5 in [29] we find that tZ̃np¨quně1 satisfies the large deviation principle
in C0pr0, 1s;Rdq with the topology of pointwise convergence. Because the sequence
tZ̃np¨quně1 is exponentially tight in C0pr0, 1s;Rdq with the supremum norm topol-
ogy by Proposition 6.2.7, we can strengthen the large deviation principle to this
space. Since C0pr0, 1s;Rdq is closed in L8pr0, 1s;Rdq, we conclude that tZ̃np¨quně1
satisfies in L8pr0, 1s;Rdq the large deviation principle with rate function I. Fi-
nally, by Proposition 6.2.3, tZ̃np¨quně1 is exponentially equivalent in L8pr0, 1s;Rdq
to tZnp¨quně1. From this we conclude that tZnp¨quně1 satisfies in L8pr0, 1s;Rdq the
large deviation principle with rate function I as desired.
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6.3. Inhomogeneous Schilder-type theorem

In [93], Schilder’s theorem is extended to hold also for processes generated by
weighted Laplacians, i.e., operators of the form

A “
1
2

d
ÿ

i,j“1
GijBiBj

for some positive definite matrix G. One can view this process as a Riemannian
Brownian motion when we equip Rd with the inner product xv, wyG “ xv,G´1wy.
In this section we prove the time-inhomogeneous analogue of this.
To this end, consider a collection tGptqutPr0,1s of symmetric, positive definite matri-
ces depending continuously on t. Define the operators

At “
1
2

d
ÿ

i,j“1
GijptqBiBj

for t P r0, 1s. We say a process W ptq is generated by the time-dependent operator
At if for every f P C8c pRdq we have that

fpW ptqq ´ fpW p0qq ´
ż t

0
AsfpW psqq ds

is a martingale. A continuous processW p¨q generated by At withW p0q “ 0 is called
a Gptq-Brownian motion on Rd. Such a process exists, since we can take

W ptq “

ż t

0

a

Gptq dBptq,

where Bp¨q is a standard Rd-valued Brownian motion. From this observation we
obtain the following property of a Gptq-Brownian motion.

Proposition 6.3.1. Let tGptqutPr0,1s be a collection of symmetric, positive definite
matrices depending continuously on t. Let W p¨q be a Gptq-Brownian motion and
let tFsusPr0,1s be its natural filtration. Then for every s ă r, W prq ´ W psq is
independent of Fs and has a multivariate normal distribution with mean 0 and
convariance matrix Cs,r “

şr

s
Gptqdt.

Now define for every n ě 1 the process Wnptq :“ 1?
n
W ptq, where W ptq is a Gptq-

Brownian motion. We show that the large deviations for tWnp¨quně1 may be ob-
tained from Theorem 6.2.1. Before we get to the theorem, we remark that Propo-
sition 6.3.1 shows that tWnp¨quně1 is a sequence of Gaussian processes with small
covariance operators. Therefore, the result obtained in Theorem 6.3.2 is a special
case of [30, Theorem 3.4.5], which in turn is a generalization of the results in [33].
Their proof is based on the observation that Wnp¨q can be written as the empirical
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average of independent copies of W p¨q. The result then follows from Cramér’s the-
orem for Banach spaces, see e.g. [32, 30, 29]. For our method, we do not require
this representation as empirical averages. Additionally, our approach is general in
that it shows how to use random walk approximations to study large deviations for
continuous-time processes in the setting of time-inhomogeneous processes.
We now state a time-inhomogeneous variant of Schilder’s theorem in Rd and prove it
using Mogulskii’s theorem for time-inhomogeneous random walks (Theorem 6.2.1).

Theorem 6.3.2. Let tGptqutPr0,1s be a collection of positive definite matrices, such
that t ÞÑ Gptq is Lipschitz. Let W ptq be a Gptq-Brownian motion and define for
every n ě 1 the process Wnptq :“ 1?

n
W ptq. Then tWnp¨quně1 satisfies the large

deviation principle in C0pr0, 1s;Rdq with good rate function

Ipγq “

#

1
2
ş1
0xGptq

´1 9γptq, 9γptqydt, γ P AC0pr0, 1s;Rdq
8, otherwise.

(6.3.1)

Remark 6.3.3. If we define the inner products xv, wyGptq :“ xv,G´1ptqwy, the rate
function in (6.3.1) may be written as

Ipγq “
1
2

ż 1

0
|| 9γptq||2Gptq dt

whenever γ P AC0pr0, 1s;Rdq.

Before we get to the proof of Theorem 6.3.2, we first need some preliminary results.

Proposition 6.3.4. Let tGptqutPr0,1s be a collection of symmetric, positive definite
matrices depending continuously on t. Let W ptq be a Gptq-Brownian motion and
define for every n ě 1 the process Wnptq :“ 1?

n
W ptq. Furthermore, set

ĂWnptq “Wn

ˆ

tntu

n

˙

(6.3.2)

for every n ě 1 and t P r0, 1s. Then tWnp¨quně1 and tĂWnp¨quně1 are exponentially
equivalent in L8pr0, 1s;Rdq.

Proof. First of all, note that by the union of events bound we have

P

˜

sup
tPr0,1s

|Wnptq ´ĂWnptq| ě δ

¸

ď

d
ÿ

l“1
P

˜

sup
tPr0,1s

|W l
nptq ´

ĂW l
nptq| ě

δ
?
d

¸

.

Furthermore, for every l “ 1, . . . , d we have

sup
tPr0,1s

|W l
nptq ´

ĂW l
nptq| “ sup

0ďiďn´1
sup

tPr in ,
i`1
n s

ˇ

ˇ

ˇ

ˇ

W l
nptq ´W

l
n

ˆ

i

n

˙
ˇ

ˇ

ˇ

ˇ

.
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This implies that

P

˜

sup
tPr0,1s

|W l
nptq ´

ĂW l
nptq| ě

δ
?
d

¸

ď

n´1
ÿ

i“0
P

˜

sup
tPr in ,

i`1
n s

ˇ

ˇ

ˇ

ˇ

W l
nptq ´W

l
n

ˆ

i

n

˙
ˇ

ˇ

ˇ

ˇ

ě
δ
?
d

¸

.

Now, it follows from Doob’s inequality (see e.g. [37]) that

P

˜

sup
tPr in ,

i`1
n s

ˇ

ˇ

ˇ

ˇ

W l
nptq ´W

l
n

ˆ

i

n

˙
ˇ

ˇ

ˇ

ˇ

ě
δ
?
d

¸

ď 2P
˜

sup
tPr in ,

i`1
n s

enλpW
l
nptq´W

l
np

i
n qq ě enλδd

´ 1
2

¸

ď 2e´nλδd
´ 1

2 E
´

enλpW
l
np

i`1
n q´W

l
np

i
n qq

¯

for λ ą 0. From Proposition 6.3.1 it follows that Wn

`

i`1
n

˘

´Wn

`

i
n

˘

has a mul-
tivariate normal distribution with mean 0 and covariance matrix 1

n

ş

i`1
n
i
n

Gptqdt.
Therefore, we find that W l

n

`

i`1
n

˘

´W l
n

`

i
n

˘

has a normal distribution with mean 0
and variance 1

n

ş

i`1
n
i
n

Gllptqdt. From this it follows that

E
´

enλpW
l
np

i`1
n q´W

l
np

i
n qq

¯

“ e
1
2λ

2n
ş

i`1
n
i
n

Gllptq dt
.

Now, since t ÞÑ Gptq is continuous, it is bounded on r0, 1s. Therefore, there exists a
constant C ą 0 such that for all t P r0, 1s and all l “ 1, . . . , d we have Gllptq ď C.
Using this bound, we find that

E
´

enλpW
l
np

i`1
n q´W

l
np

i
n qq

¯

ď e
1
2Cλ

2
.

Putting all estimates together, we obtain

P

˜

sup
tPr0,1s

|Wnptq ´ĂWnptq| ě δ

¸

ď 2nde´nλδd
´ 1

2 e
1
2Cλ

2
.

From this, it follows that for every λ ą 0 we have

lim sup
nÑ8

1
n

logP
˜

sup
tPr0,1s

|Wnptq ´ĂWnptq| ě δ

¸

ď ´
λδ
?
d
.

Letting λ tend to infinity now proves the claim.

The piecewise constant process defined in (6.3.2) can be written as

ĂWnptq “
1
n

tntu
ÿ

i“1
Xn
i ,
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where by Proposition 6.3.1, Xn
i follows a multivariate normal distribution with mean

0 and covariance matrix n
ş
i
n
i´1
n

Gptqdt. In order to apply Theorem 6.2.1, we need
to find a collection tµtutPr0,1s of probability measures, such that Xn

i is distributed
according to µ i´1

n
. Unfortunately, in our case, the distributions will also depend

on n. However, for n large, the covariance matrix of Xn
i can be approximated by

G
`

i´1
n

˘

. This inspires the following proposition.

Proposition 6.3.5. Let the assumptions of Theorem 6.3.2 be satisfied. For every
n ě 1, let ĂWnp¨q be the process as defined in (6.3.2). Let tµtutPr0,1s be the collection
of measures given by µt “ N p0, Gptqq. Denote by

Znptq “

tntu
ÿ

i“1
Y ni

the time-inhomogeneous random walk associated to the collection tµtutPr0,1s as de-
fined in (6.2.1). Then tĂWnp¨quně1 and tZnp¨quně1 are exponentially equivalent in
L8pr0, 1s;Rdq.

Proof. For every n ě 1, let Y n1 , . . . , Y nn be independent, with Y ni distributed accord-
ing to µ i´1

n
. Define

X̃n
i “

˜

n

ż i
n

i´1
n

Gptqdt
¸

1
2

G

ˆ

i´ 1
n

˙´ 1
2

Y ni .

Then X̃n
i has a multivariate normal distribution with mean 0 and covariance matrix

n
ş
i
n
i´1
n

Gptqdt. Therefore, 1
n

řtntu
i“1 X̃

n
i equals ĂWnptq in distribution. Now note that

ˇ

ˇ

ˇ

ˇ

ˇ

1
n

tntu
ÿ

i“1
X̃n
i ´

1
n

tntu
ÿ

i“1
Y ni

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1
n

tntu
ÿ

i“1
|X̃n

i ´ Y
n
i | ď

1
n

n
ÿ

i“1
|X̃n

i ´ Y
n
i |.

Plugging in the definition of X̃n
i , we can estimate further to find that

ˇ

ˇ

ˇ

ˇ

ˇ

1
n

tntu
ÿ

i“1
X̃n
i ´

1
n

tntu
ÿ

i“1
Y ni

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1
n

n
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

˜

n

ż i
n

i´1
n

Gptqdt
¸

1
2

G

ˆ

i´ 1
n

˙´ 1
2

´ I

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

|Y ni |

ď
1
n

n
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

G

ˆ

i´ 1
n

˙´ 1
2
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

˜

n

ż i
n

i´1
n

Gptqdt
¸

1
2

´G

ˆ

i´ 1
n

˙
1
2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

|Y ni |.
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Since Gptq is symmetric positive definite, we find that

||Gptq´
1
2 || “ ||Gptq||´

1
2 .

Because t ÞÑ Gptq is continuous and ||Gptq|| ą 0 for all t P r0, 1s, there exists an
η ą 0 such that ||Gptq|| ě η for all t P r0, 1s. From this, we obtain the uniform
bound

||Gptq´
1
2 || ď

1
?
η
.

Furthermore, the continuity of t ÞÑ Gptq also gives, by the mean value theorem, that
there exists a ξ P p i´1

n , in q such that

n

ż i
n

i´1
n

Gptqdt “ Gpξq.

Using this, together with the fact that t ÞÑ Gptq is Lipschitz, say with constant
L ą 0, we find that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

n

ż i
n

i´1
n

Gptqdt´G
ˆ

i´ 1
n

˙

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Gpξq ´G

ˆ

i´ 1
n

˙
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď L

ˇ

ˇ

ˇ

ˇ

ξ ´
i´ 1
n

ˇ

ˇ

ˇ

ˇ

ď L
1
n
,

where we used that ξ P p i´1
n , in q. Now, since the square root is Lipschitz on the set

of symmetric positive definite matrices with norm bounded away from 0, we find
that there exists a possibly different constant L ą 0 such that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

˜

n

ż i
n

i´1
n

Gptqdt
¸

1
2

´G

ˆ

i´ 1
n

˙
1
2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď L1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

n

ż i
n

i´1
n

Gptqdt´G
ˆ

i´ 1
n

˙

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď L
1
n
.

Collecting everything, we find that
ˇ

ˇ

ˇ

ˇ

ˇ

1
n

tntu
ÿ

i“1
X̃n
i ´

1
n

tntu
ÿ

i“1
Y ni

ˇ

ˇ

ˇ

ˇ

ˇ

ď
L
?
η

1
n2

n
ÿ

i“1
|Y ni |.

But then we find that

P

˜
ˇ

ˇ

ˇ

ˇ

ˇ

1
n

tntu
ÿ

i“1
X̃n
i ´

1
n

tntu
ÿ

i“1
Y ni

ˇ

ˇ

ˇ

ˇ

ˇ

ą δ

¸

ď P

˜

L
?
η

1
n2

n
ÿ

i“1
|Y ni | ą δ

¸

“ P

˜

1
n

n
ÿ

i“1
|Y ni | ą

nδ
?
η

L

¸
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ď

n
ÿ

i“1
P
ˆ

1
n
|Y ni | ą

δ
?
η

L

˙

ď

d
ÿ

l“1

n
ÿ

i“1
P
ˆ

|pY ni q
l| ą

nδ
?
η

L
?
d

˙

ď 2e´nλδη
1
2 d´

1
2 L´1

d
ÿ

l“1

n
ÿ

i“1
E
´

eλpY
n
i q

l
¯

.

Here we used the union bound in the fourth line and Markov’s inequality in the last
line.
Since pY ni ql has a normal distribution with mean 0 and variance Gllp i´1

n q, we find
that

E
´

eλpY
n
i q

l
¯

“ e
1
2λ

2Gllp
i´1
n q ď e

1
2λ

2C ,

because t ÞÑ Gptq is bounded. Combining the above estimates, we find that

P

˜
ˇ

ˇ

ˇ

ˇ

ˇ

1
n

tntu
ÿ

i“1
X̃n
i ´

1
n

tntu
ÿ

i“1
Y ni

ˇ

ˇ

ˇ

ˇ

ˇ

ą δ

¸

ď 2nde´nλδη
1
2 d´

1
2 L´1

e
1
2λ

2C ,

from which it follows that

lim sup
nÑ8

1
n

logP
˜
ˇ

ˇ

ˇ

ˇ

ˇ

1
n

tntu
ÿ

i“1
X̃n
i ´

1
n

tntu
ÿ

i“1
Y ni

ˇ

ˇ

ˇ

ˇ

ˇ

ą δ

¸

ď ´
λδ
?
η

L
?
d
.

Considering the limit λÑ8 now proves the claim.

With all preparations done, we are ready to prove Theorem 6.3.2

Proof of Theorem 6.3.2. Define the measures µt “ N p0, Gptqq and let Znp¨q be the
associated time-inhomogeneous random walk as defined in (6.2.1). Note that for
every t P r0, 1s and every λ P Rd, we have

Λtpλq “
1
2xλ,Gptqλy.

Since t ÞÑ Gptq is continuous, it follows that pt, λq ÞÑ Λtpλq is continuous. Further-
more, we have

ż r

0
Λtpλqdt “ 1

2

B

λ,

ˆ
ż r

0
Gptqdt

˙

λ

F

,

which is differentiable with respect to λ. Therefore, by Theorem 6.2.1, we have that
tZnp¨quně1 satisfies the large deviation principle in L8pr0, 1s;Rdq with good rate
function

Ipγq “

#

ş1
0 Λ˚t p 9γptqqdt, γ P AC0pr0, 1s;Rdq,
8, otherwise.
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We can compute

Λ˚t p 9γptqq “ sup
λPRd

"

xλ, 9γptqy ´
1
2xλ,Gptqλy

*

“
1
2x 9γptq, Gptq´1 9γptqy.

It follows that the rate function reduces to

Ipγq “

#

1
2
ş1
0x 9γptq, Gptq´1 9γptqydt, γ P AC0pr0, 1s;Rdq,

8, otherwise.

Now, from Proposition 6.3.5 and 6.3.4 it follows that tZnp¨quně1 and tWnp¨quně1 are
exponentially equivalent in L8pr0, 1s;Rdq. Therefore, by Theorem 2.1.8 it follows
that tWnp¨quně1 satisfies the large deviation principle in L8pr0, 1s;Rdq with the
same rate function I. Finally, noticing that for every n ě 1, Wnp¨q is almost
surely contained in C0pr0, 1s;Rdq, together with the fact that the domain of the rate
function is contained in C0pr0, 1s;Rdq, the large deviation principle actually holds
in C0pr0, 1s;Rdq as desired.





7
Large deviations for
gptq-Brownian motion
In this chapter we continue the study of large deviations for time-inhomogeneous
processes. We extend the results obtained in Section 6.3 to the setting of Riemannian
manifolds. More precisely, we study the large deviation behaviour of Riemannian
Brownian motion with small variance in evolving Riemannian manifolds. We follow
the approach taken in Section 5.4 by constructing time-dependent variants of the
horizontal lift and anti-development of curves. The results presented in this chapter
are based on:

Rik Versendaal. “Large deviations for Brownian motion in evolving Riemannian
manifolds”. In: Preprint; ArXiv: 2004.00358 (2020). ArXiv: 2004.00358

In the past decades, the study of evolving Riemannian manifolds has received a lot
of attention. The treatment of stochastic processes in this setting was initiated in
[5], where Brownian motion with respect to a collection of time-dependent metrics is
defined. The existence of this process is proven, and the gradient of the associated
heat-semigroup is studied when the metric evolves under the Ricci-flow. This is
further developed in [23]. More generally, in [49], the theory of martingales with
respect to a time-dependent connection is studied. Finally, the central limit problem
for geodesic random walks in this setting is considered in [64].
In [24], the so-called Onsager-Machlup functional is studied for elliptic diffusions
on manifolds with time-dependent metric. It is shown that the probability that a
Brownian motion deviates from a smooth curve by at most a distance 1

n ą 0 decays
exponentially in n. More precisely, if Xt is a Brownian motion with respect to a
time-dependent metric tgptqu0ďtď1, and γ : r0, 1s Ñ M is a smooth curve, it is
proven that for n large

P
ˆ

sup
0ďtď1

dtpXt, γptqq ď
1
n

˙

„ e´n
2C exp

"
ż 1

0
´

1
2 | 9γptq|

2
gptq ´

1
12Rgptqpγptqq `

1
4TrgptqpB1gptqq dt

*

.

191

2004.00358
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Here, dt is the Riemannian distance associated to the metric gptq and Rgptq is the
scalar curvature of the metric gptq. Furthermore, TrgptqpB1gptqq denotes the trace of
the time-derivative B1gptq with respect to the metric gptq. More precisely, it is the
trace of the linear map X ÞÑ B1gptqpX, ¨q

#. The result is an extension of the time-
homogeneous case, in which the term containing the derivative B1gptq is non-existent.

A result related to this is Schilder’s theorem, which is concerned with the large
deviations for Brownian paths with small variance. In Chapter 5 we discussed
Schilder’s theorem for Riemannian Brownian motion in a (stationary) Riemannian
manifold pM, gq. More precisely, the result states that on the exponential scale we
have

P pXn « γq « exp
"

´
n

2

ż 1

0
| 9γptq|2g dt

*

,

where Xn
t “ Xtn´1 with Xt a Riemannian Brownian motion. Our aim is to extend

this result to the context of a Riemannian manifold with a time-dependent metric.
For this, we follow the approach taken in Section 5.4, where we prove Schilder’s
theorem by lifting the process to the orthonormal frame bundle, and embedding
this into some Euclidean space in order to use Freidlin-Wentzell theory. To carry
out this procedure in the time-inhomogeneous case, we define an appropriate way
of lifting a Brownian motion with respect to a time-dependent metric to the frame
bundle over the manifold. Furthermore, we also adapt Freidlin-Wentzell theory to
the setting where the drift and diffusion constants are time-dependent. Finally, to
reduce to compact sets, we extend the compact containment argument from Propo-
sition 5.2.10 to Markov processes with time-dependent generators.

This chapter is organized as follows. In Section 7.1 we introduce the notion of a
Brownian motion with respect to a time-dependent metric and state the main result,
the analogue of Schilder’s theorem. Additionally, we sketch the approach to proving
this result. Section 7.2 is devoted to extending the notion of horizontal lift and
antidevelopment of curves to the time-inhomogeneous case. Finally, in Section 7.3
we provide all details of the proof of our main result.

7.1. Main result

Following [5, 23], we define Brownian motion with respect to a collection of metrics
tgptqutPr0,1s. We state our main result concerning the large deviations for such
processes and give a sketch of its proof.

7.1.1. gptq-Brownian motion
LetM be a manifold, which in our case always means it is smooth, finite-dimensional
and second countable. Let G “ tgptqutPr0,1s be a collection of Riemannian metrics on
M , smoothly depending on t. We will interchangeably use G and tgptqutPr0,1s to refer
to this collection of metrics. For x P M and v, w P TxM we write xv, wygptq for the
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inner product of v and w with respect to the metric gptq. Furthermore, we denote by
∇t the Levi-Civita connection of gptq and by ∆t

M the associated Laplace-Beltrami
operator.
We can now define a Brownian motion with respect to a collection of metrics
tgptqutPr0,1s. We follow the definition in [23], which is equivalent to the definition in
[5].

Definition 7.1.1. Let M be a manifold and let tgptqutPr0,1s be a collection of Rie-
mannian metrics on M , smoothly depending on t. A process Xt is called a gptq-
Brownian motion if it is continuous and if for all f P C8pMq,

fpXtq ´ fpX0q ´
1
2

ż t

0
∆s
MfpXsqds

is a local martingale. In that case, we say that Xt is generated by (the time-
dependent generator) ∆t

M .

In general, a gptq-Brownian motion only exists up to some explosion time epXq. In
the time-homogeneous setting we have that if the Ricci-curvature is bounded from
below, then epXq is almost surely infinite, see Proposition 2.4.15. This result is
extended to the time-inhomogeneous setting in [65] by requiring that gptq evolves
under a backwards super Ricci flow, i.e., gptq satisfies

B1gptq ď Ricgptq.

In that case, gptq-Brownian motion exists up to time T for every T ą 0.

7.1.2. Statement of the main result
Next, we state the main result, which is the analogue of Schilder’s theorem for a gptq-
Brownian motion. Before we do this, we first need to introduce a proper rescaling
of a gptq-Brownian motion.
To motivate the rescaling, note that by Theorem 5.1.3, if Xt is a Riemannian Brow-
nian motion, then

P pXn « γq « exp
"

´
n

2

ż 1

0
| 9γptq|2g dt

*

,

where Xn
t “ Xtn´1 . Since Xt is generated by 1

2∆M , a substitution yields that Xn
t

is generated by 1
2n∆M .

In the time-inhomogeneous setting, we want the process Xn
t to evolve according to

a collection of metrics tgptqutPr0,1s. Therefore, we have to consider Xt as a gpntq-
Brownian motion, i.e., Xt is generated by 1

2∆nt
M . In that case, substitution yields

that the process Xn
t is generated by 1

2n∆n´1nt
M “ 1

2n∆t
M . Our main result gives the

large deviations for tXnuně1.
Before we give the precise statement, let us relate the above construction to the
result in Section 6.3. Let Wt be a Gptq-Brownian motion in Rd in the sense of
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Section 6.3. This is a Gptq-Brownian motion in the sense of Definition 7.1.1 if we
equip Rd with the time-dependent inner product

xv, wyGptq “ xv,G
´1ptqwy.

We have
W

Gptq
t “

ż t

0

a

GpsqdBs,

where Bt is a standard, Rd-valued Brownian motion. Similarly, a Gpntq-Brownian
motion is given by

W
Gpntq
t “

ż t

0

a

GpnsqdBs.

But then we find that

W
Gpntq
tn´1 “

ż tn´1

0

a

GpnsqdBs “
ż t

0

a

GpsqdBsn´1 “
1
?
n

ż t

0

a

GpsqdBs “
1
?
n
Wt

in distribution. Therefore, it follows from Theorem 6.3.2 that

P
´

W
Gpntq
n´1¨

« γ
¯

« exp
"

´
n

2

ż 1

0
| 9γpuq|2Gpuq du

*

.

Our main theorem states that this happens in general. In order to write down the
rate function, we define the space

H1,Gpr0, 1s;Mq “
"

γ : r0, 1s ÑM

ˇ

ˇ

ˇ

ˇ

γ is differentiable a.e. and
ż 1

0
| 9γptq|2gptq dt ă 8

*

.

We have the following theorem.

Theorem 7.1.2. Let M be a manifold and let tgptqutPr0,1s be a collection of Rie-
mannian metrics on M , smoothly depending on t. Fix x0 P M , and let Xt be a
gptq-Brownian motion with X0 “ x0. Furthermore, for every n ě 1, let Xn

t be the
continuous process generated by 1

2n∆t
M with Xn

0 “ x0. Assume the processes Xt and
Xn
t exist for all time t P r0, 1s. Then tXnuně1 satisfies the large deviation principle

in Cpr0, 1s;Mq with good rate function IM given by

IM pγq “

#

1
2
ş1
0 | 9γptq|

2
gptq dt, γ P H1,G

x0
pr0, 1s;Mq,

8 otherwise.

7.1.3. Sketch of the proof of Theorem 7.1.2
The proof of Theorem 7.1.2 follows the same lines as the proof of Theorem 5.1.3
given in Section 5.4 for the time-homogeneous case. The main work lies in defining
a good analogue of the concept of horizontal lift and anti-development in the time-
inhomogeneous setting. The detailed construction is given in Section 7.2.
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For Xn
t we denote by Unt the horizontal lift with respect to tgptqutPr0,1s to the frame

bundle FM . As explained in Section 7.2.4 (see also [23, 5]), this process satisfies
the Stratonovich stochastic differential equation

dUnt “ Hipt, U
n
t q ˝ dWn,i

t ´
1
2 pB1gptqqijpU

n
t ei, U

n
t ejqV

ijpUnt qdt. (7.1.1)

Here, Wn
t “

1?
n
Wt with Wt a standard, Rd-valued Brownian motion. Furthermore,

the vector fields Hipt, ¨q are the fundamental horizontal fields with respect to the
metric gptq defined in (2.3.5) and V ij is the canonical basis of vertical vector fields
over FM defined in (2.3.1). Finally, te1, . . . , edu denotes the standard basis of Rd.
By embedding FM smoothly in some Euclidean space RN , we can push-forward
equation (7.1.1) to RN to obtain a stochastic differential equation on RN with
a drift, and a diffusion of order 1?

n
, see Proposition 2.4.9. This shows that, at

least if we restrict to compact sets, we can apply Freidlin-Wentzell theory for time-
inhomogeneous diffusions (Theorem 7.3.6) to get the large deviations for the em-
bedded process. By the contraction principle (see [29, Theorem 4.2.1], this can then
be transferred to the sequence tXnuně1. The relation between the derivative of a
curve in M and the derivative of its anti-development with respect to tgptqutPr0,1s
in Rd then assures that we obtain the correct rate function.
Finally, as shown in Section 7.3.1, we can use a general approach using Lyapunov
functions to show that the process Xn

t remains in a compact set with high probabil-
ity. This, together with the result obtained when restricting to compact sets, allows
us to obtain the full result of Theorem 7.1.2.

7.2. Horizontal lift and anti-development

In this section we discuss how to define a horizontal lift with respect to a collection
tgptqutPr0,1s of Riemannian metrics on a manifold M . In order to do this, we need
a suitable definition of what we mean by horizontal curves and horizontal vectors.
For this, we need to incorporate time into our analysis. In order for the upcoming
constructions to make sense also for t R r0, 1s, we set gptq “ gp0q for t ă 0 and
gptq “ gp1q for t ą 1.

7.2.1. A time-dependent connection which is metric
Denote spacetime by M :“ RˆM and let TM be its tangent bundle. For pt, xq PM
we have Tpt,xqM “ R ‘ TxM . We denote the basis tangent vector in the time-
direction by B1.
Instead of considering the tangent bundle TM, we also want to view TM as bundle
over M. More precisely, we define the bundle TM over M with fibres given by

TM pt,xq “ TxM

for all t P R and all x P M . A smooth section of TM is called a time-dependent
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vector field. We will often write Zptq P ΓpTMq to stress that Z is a time-dependent
vector field on M .
To define the desired connection on TM , we first need to define what we mean by the
derivative of gptq with respect to t. This is a 2-tensor B1gptq : TMˆTM Ñ C8pMq,
which in coordinates is given by

B1gptqpv, wq “ B1gijptqv
iwj ,

where v “ viBi, w “ wjBj and gptq “ gijptqdxi b dxj .
Furthermore, for Y P ΓpTMq, we denote by pB1gptqqpY, ¨q

#t the vector field obtained
by ‘raising an index’ with respect to the metric gptq. More precisely, it is the unique
vector field such that for all vector fields Z P ΓpTMq we have

pB1gptqqpY,Zq “ xpB1gptqqpY, ¨q
#t , Zygptq,

see also Section 2.2.3. Finally, recall that we denote by ∇t the Levi-Civita connec-
tion of the metric gptq.

Following the idea in [52, 53], see also Chapter 6 in [3], we equip the bundle TM
over M with a natural connection ∇ : ΓpTMq ˆ ΓpTMq Ñ ΓpTMq given by

#

∇XY ptq “ ∇t
XY ptq,

∇B1Y ptq “ B1Y ptq `
1
2 pB1gptqqpY ptq, ¨q

#t ,
(7.2.1)

for X P ΓpTMq a vector field over M and Y ptq P ΓpTMq a time-dependent vec-
tor field over M . By C8-linearity, this defines ∇ZY for all Z P ΓpTMq and all
Y P ΓpTMq. This connection is compatible with the collection tgptqutPr0,1s of Rie-
mannian metrics on M , as we will show in the following proposition.

Proposition 7.2.1. The connection defined in (7.2.1) is metric in the following
sense: for all time-dependent vector fields Xptq, Y ptq P ΓpTMq and Z P ΓpTMq we
have

ZxXptq, Y ptqygptq “ x∇ZXptq, Y ptqygptq ` xXptq,∇ZY ptqygptq

for all t P R.

Proof. Note that Z P ΓpTMq can be written as Zpt, xq “ c1pt, xqB1 ` Z̃ptqpxq where
c1 : M Ñ R is a smooth function and Z̃ptq P ΓpTMq a time-dependent vector field
over M . Since ∇t is metric with respect to gptq, we have

Z̃ptqxXptq, Y ptqygptq “ x∇t
Z̃ptq

Xptq, Y ptqygptq ` xXptq,∇t
Z̃ptq

Y ptqygptq

“ x∇Z̃ptqXptq, Y ptqygptq ` xXptq,∇Z̃ptqY ptqygptq.

For the derivative with respect to B1, if we write Xptq “ XiptqBi, Y ptq “ Y jptqBj
and gptq “ gijptqdxi b dxj in coordinates, we get

B1xXptq, Y ptqygptq “ B1pX
iptqY jptqgijptqq
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“ B1X
iptqY jptqgijptq `X

iptqB1Y
jptqgijptq `X

iptqY jptqB1gijptq

“ xB1Xptq, Y ptqygptq ` xXptq, B1Y ptqygptq ` pB1gptqqpXptq, Y ptqq

“ x∇B1Xptq, Y ptqygptq ` xXptq,∇B1Y ptqygptq.

Here, the last line follows by splitting pB1gptqqpXptq, Y ptqq in two, and raising one
index.
Finally, using that ∇ is C8-linear in the first variable proves the claim.

As a corollary, we obtain the derivative of the inner product between two time-
dependent vector fields along a curve in M .

Corollary 7.2.2. Let Xptq, Y ptq P ΓpTMq be time-dependent vector fields and let
γ : r0, 1s ÑM be a curve. Then

d
dtxXpt, γptqq, Y pt, γptqqygptq

“ x∇B1` 9γptqXptq, Y ptqygptq ` xXptq,∇B1` 9γptqY ptqygptq.

Proof. Consider the curve ϕ : r0, 1s ÑM given by ϕptq “ pt, γptqq. From Proposition
7.2.1 it follows that

d
dtxXpt, γptqq, Y pt, γptqqygptq

“ 9ϕptqxXpt, γptqq, Y pt, γptqqygptq

“ x∇ 9ϕptqXpt, γptqq, Y pt, γptqqygptq ` xXpt, γptqq,∇ 9ϕptqY pt, γptqqygptq

“ x∇B1` 9γptqXptq, Y ptqygptq ` xXptq,∇B1` 9γptqY ptqygptq.

Here, the last line follows from the fact that 9ϕptq “ B1 ` 9γptq.

Remark 7.2.3. If Xptq “ X for some fixed vector field X P ΓpTMq, then B1Xptq “ 0,
and we reduce to the setting in [23]. If we consider another stationary vector field
Y ptq “ Y P ΓpTMq and a curve γ : r0, 1s ÑM , we have

d
dtxXpγptqq, Y pγptqqygptq “ pB1gptqqpXpγptqq, Y pγptqqq `

` x∇t
9γptqXpγptqq, Y pγptqqygptq ` xXpγptqq,∇

t
9γptqY pγptqqygptq.

Corollary 7.2.2 inspires us to define a notion of a time-dependent vector field being
parallel along a curve in M with respect to a collection tgptqutPr0,1s of Riemannian
metrics. We have the following definition.

Definition 7.2.4. Let γ : r0, 1s Ñ M be a curve. A time-dependent vector field
Xptq along γ is said to be parallel along γ with respect to tgptqutPr0,1s if it is parallel
along the curve pt, γptqq in M with respect to the connection ∇. More precisely, Xptq
is parallel along γ if and only if for all t P r0, 1s we have

∇B1` 9γptqXptqpγptqq “ 0.
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Remark 7.2.5. If Xptq and Y ptq are time-dependent vector fields which are parallel
along γ with respect to tgptqutPr0,1s, then by Corollary 7.2.2 we have

d
dtxXpt, γptqq, Y pt, γptqqygptq “ 0.

This shows that the inner product between parallel vector fields is constant. In
particular, by taking Y ptq “ Xptq, we find that |Xpt, γptqq|gptq is constant.

7.2.2. Horizontal lift with respect to a family of metrics
In Section 2.3, a thorough explanation is given of the frame bundle and the hori-
zontal lift of curves and vectors to this frame bundle. It is also explained that these
notions extend to general principal bundles. The aim of this section is to extend
these notions to the time-dependent setting.

Instead of performing horizontal lift with respect to a fixed connection, we wish to
define the horizontal lift with respect to a time-dependent family of connections.
More precisely, we wish to define the horizontal lift with respect to the family of
Levi-Civita connections associated to the collection G “ tgptqutPr0,1s of Riemannian
metrics on M . To do this, we use the parallel transport given in Definition 7.2.4.

Definition 7.2.6. Let γ : r0, 1s ÑM be a curve in M . A curve uptq P FM is called
a horizontal lift of γ with respect to tgptqutPr0,1s if for all a P Rd we have that uptqa
is parallel along γ with respect to tgptqutPr0,1s, i.e., for all a P Rd we have

∇B1` 9γptqpuptqaq “ 0

for all t P r0, 1s.

If uptq is the horizontal lift with respect to tgptqutPr0,1s of a curve γ, then by Corollary
7.2.2 we have for all a P Rd that

d
dt |uptqa|gptq “ 0, (7.2.2)

i.e., |uptqa|gptq “ |up0qa|gp0q for all t P r0, 1s. Therefore, if the initial frame up0q :
Rd Ñ pTγp0qM, gp0qq is an isometry, then uptq : Rd Ñ pTγptqM, gptqq is an isometry
for all t P r0, 1s.
We use this observation to show that the horizontal lift with respect to tgptqutPr0,1s
exists for all time, and is unique once an initial (orthonormal) frame is given. We
do this by showing that the horizontal lift defined in 7.2.6 is a special instance of a
horizontal lift from the manifold M “ RˆM to a principal fibre bundle over M. To
this end, consider the bundle O over M with fibres given by

Opt,xq “ tu : Rd Ñ pTxM, gptqq|u isometryu, (7.2.3)

i.e., Opt,xq consists of the orthonormal frames for TxM with respect to the metric
gptq. The bundle O is a principal bundle with structure group G “ Opdq, the
orthogonal group.
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Now, let γptq be a curve in M with horizontal lift uptq as in Definition 7.2.6, such
that up0q is an orthonormal frame for Tγp0qM with respect to gp0q. From (7.2.2)
it follows that for all t P r0, 1s, uptq is orthonormal with respect to gptq and hence
uptq P Opt,γptqq for all t P r0, 1s. If we now define ϕptq “ pt, γptqq P M, then
9ϕptq “ B1 ` 9γptq. This implies that the curve uptq can also be interpreted as the
horizontal lift of ϕptq with respect to the connection ∇ as in (7.2.1) to the bundle O.
Because O is a principal bundle, it follows that a horizontal lift of ϕptq “ pt, γptqq
exists for all time t P r0, 1s and is unique if the initial condition up0q “ u0 P Op0,γp0qq
is fixed. For this, we refer to Section 2.3. We conclude that the horizontal lift de-
fined in Definition 7.2.6 always exists and is unique if an initial orthonormal frame
with respect to gp0q is given.

As explained in Section 2.3, if a horizontal lift for curves is defined, we can use this
to define the horizontal lift of tangent vectors. In particular, the horizontal lift of
curves in M to the bundle O with respect to the connection ∇ in (7.2.1) allows us
to lift tangent vectors X P Tpt,xqM to TO. In what follows, we denote this lift by
X˚.
Since we also have a notion of horizontal lifts of curves in M with respect to
tgptqutPr0,1s, we can use this to define the horizontal lift of a tangent vector in
TM with respect to tgptqutPr0,1s.

Definition 7.2.7. Let X P TpM and u P Ops,pq. Let γ : r0, 1s Ñ M be a curve
with γpsq “ p and 9γpsq “ X. Denote by uptq the horizontal lift of γ with respect to
G “ tgptqutPr0,1s, satisfying upsq “ u. We define the horizontal lift of X via u with
respect to tgptqutPr0,1s by X˚Gpuq “ 9upsq.

Remark 7.2.8. If γ is a curve in M , we can identify its horizontal lift with respect
to tgptqutPr0,1s with the horizontal lift of the curve ϕptq “ pt, γptqq in M with respect
to the connection ∇ defined in (7.2.1). This implies that 9upsq is the horizontal lift
of 9ϕpsq “ B1 ` 9γpsq to TupsqOps,γpsqq via upsq. Therefore, we have that X˚Gpuq “
pB1 `Xq

˚puq.

Next, we relate the horizontal lift of X via u P Ops,pq with respect to tgptqutPr0,1s to
the horizontal lift of X via u with respect to the metric gpsq. Before we can do this,
we first need the following result, the proof of which is inspired by the proof of [23,
Proposition 1.2].

Proposition 7.2.9. Let u P Ops,pq. Then the horizontal lift of B1 via u with respect
to the connection ∇ in (7.2.1) is given by

B˚1 puq “ ´
1
2 pB1gpsqqpuei, uejqVijpuq.

Here, te1, . . . , edu is the canonical basis of Rd and Vijpuq are the canonical vertical
basis vectors of VuFM defined in (2.3.1).

Proof. Consider the curve ηptq “ ps ` t, pq. Then 9ηp0q “ B1. Let uptq be the
horizontal lift of ηptq with up0q “ u. Then B˚1 puq “ 9up0q. Since 9ηptq “ B1, we have
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for all a P Rd that
∇B1puptqaq “ 0,

which gives by (7.2.1) that

B1puptqaq `
1
2 pB1gps` tqqpuptqa, ¨q

#s`t “ 0. (7.2.4)

Since uptq P FpM for all t, we have that 9uptq P VuptqFM . As a consequence, we can
write

9uptq “ cαβpt, uptqqVαβpuptqq,

where Vαβ are the canonical vertical basis vector fields defined in (2.3.1). Note that
uptqa “ evapuptqq, where eva : FM Ñ TM denotes evaluation in a. From this it
follows that B1puptqaq “ dpevaqpuptqqp 9uptqq. Furthermore, note that

dpevaqpuptqqpVαβpuptqq “ dpeva ˝ LuptqqpIqpEαβq

“
d
ds

ˇ

ˇ

ˇ

ˇ

s“0
uptqpI ` sEαβqa

“ uptqpaβeαq,

where we write a “ aβeβ .
By linearity, we find for every i “ 1, . . . , d that

B1puptqeiq “ cαβpt, uptqqdpeveiqpuptqqpVαβpuptqqq
“ cαβpt, uptqquptqδiβeα

“ cαipt, uptqquptqeα.

Furthermore, since B1puptqeiq “ ´
1
2 pB1gps` tqqpuptqei, ¨q

#s`t by (7.2.4), we have

xB1puptqeiq, uptqejygps`tq “ ´
1
2 pB1gps` tqqpuptqei, uptqejq

for every j “ 1, . . . , d. Now, the left hand side is given by

xB1puptqeiq, uptqejygps`tq “ cαipt, uptqqxuptqeα, uptqejygps`tq

“ cαipt, uptqqxeα, ejyRd

“ cjipt, uptqq.

Here we used in the second line that uptq is an isometry from Rd to pTpM, gps` tqq.
Combining the two equalities above, we find for every i, j “ 1, . . . , d that

cjipt, uptqq “ ´
1
2 pB1gps` tqqpuptqei, uptqejq.

Because B1gps` tq is symmetric, it follows that cij “ cji. Therefore, we can write

9uptq “ ´
1
2 pB1gps` tqqpuptqei, uptqejqVijpuptqq,
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so that
B˚1 puq “ 9up0q “ ´1

2 pB1gpsqqpuei, uejqVijpuq,

where we used that up0q “ u.

From Proposition 7.2.9 we deduce the relation between the horizontal lift of X P

TpM with respect to tgptqutPr0,1s and with respect to the metric gpsq at a specific
time s P r0, 1s.

Corollary 7.2.10. For X P TpM and u P Ops,pq we have

X˚Gpuq “ X˚spuq ´
1
2 pB1gpsqqpuei, uejqVijpuq,

where X˚spuq denotes the horizontal lift of X via u with respect to the metric gpsq,
and the ei and Vij are as in Proposition 7.2.9.

Proof. From Remark 7.2.8 it follows that X˚Gpuq “ pB1 ` Xq˚puq. Since it holds
that pB1 `Xq

˚puq “ B˚1 puq `X
˚puq (see e.g. [87]), it follows from Proposition 7.2.9

that we are done once we show that X˚puq “ X˚spuq. To see the latter, consider a
curve γ : p´ε, εq Ñ M with γp0q “ p and 9γp0q “ X and define ϕ : p´ε, εq Ñ M by
ϕptq “ ps, γptqq. Then ϕp0q “ ps, pq and 9ϕp0q “ X. Let uptq be the horizontal lift of
ϕ with up0q “ u. Since 9ϕptq “ X, we have

∇s
Xpuptqaq “ 0

for every a P Rd. This implies that uptq is the horizontal lift of γptq with respect
to ∇s, i.e., the Levi-Civita connection of gpsq. It follows that X˚puq “ X˚spuq as
desired.

7.2.3. Development and anti-development of curves
In Section 2.3 we explained how we can use the notion of a horizontal lift to associate
to a curve in M a curve in Rd and vice versa. In the time-inhomogeneous case we
take the same approach, but now using the horizontal lift with respect to tgptqutPr0,1s.

Definition 7.2.11. Let γ : r0, 1s ÑM be a curve in M and let uptq be a horizontal
lift of γ with respect to tgptqutPr0,1s. We define the anti-development of γ with
respect to tgptqutPr0,1s as the curve w : r0, 1s Ñ Rd given by

wptq “

ż t

0
upsq´1 9γpsqds. (7.2.5)

If we fix a frame u P Op0,γp0qq (see (7.2.3)), we can speak about the anti-development
of γ via u with respect to tgptqutPr0,1s since the horizontal lift with respect to
tgptqutPr0,1s satisfying up0q “ u is unique.
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If wptq is the anti-development of γptq with respect to tgptqutPr0,1s via the horizontal
lift uptq, then (7.2.5) implies that

9wptq “ uptq´1 9γptq,

which rewrites to
9γptq “ uptq 9wptq.

Since both sides are elements of TγptqM , we can consider their horizontal lifts with
respect to the metric gptq, which must be equal:

Hpt, uptqq 9wptq :“ puptq 9wptqq˚t “ p 9γptqq˚t . (7.2.6)

Here Hpt, uptqq is as defined in (2.3.4) with respect to the Levi-Civita connection
∇t of the metric gptq. Furthermore, since uptq is the horizontal lift of γ with respect
to tgptqutPr0,1s, we have that 9uptq “ 9γptq˚G . Therefore, by applying Corollary 7.2.10
and using (7.2.6) we obtain

9uptq “ 9γptq˚G

“ p 9γptqq˚t ´
1
2 pB1gptqqpuptqei, uptqejqV

ijpuptqq

“ Hpt, uptqq 9wptq ´
1
2 pB1gptqqpuptqei, uptqejqV

ijpuptqq.

We thus obtained a differential equation for the horizontal lift u with respect to
tgptqutPr0,1s in terms of the anti-development w. This shows how to invert the oper-
ation of taking the anti-development of a curve. We make the following definition.

Definition 7.2.12. Let w : r0, 1s Ñ Rd be a curve in Rd and fix u0 P Op0,pq. Let
u : r0, 1s Ñ FM be the solution of

9uptq “ Hpt, uptqq 9wptq ´
1
2 pB1gptqqpuptqei, uptqejqV

ijpuptqq (7.2.7)

with up0q “ u0, where Hpt, uptqq is as defined in (2.3.4) for the Levi-Civita connec-
tion ∇t of the metric gptq. Then the curve γptq “ πuptq is called the development
of w onto M with respect to tgptqutPr0,1s.

Sometimes, the curve u is referred to as the development of w, rather than the
projection of u onto M .

7.2.4. Horizontal lift of gptq-Brownian motion
In this section we explain how a gptq-Brownian motion may be obtained by solving
a stochastic differential equation on FM , and projecting the solution down to the
manifold. The approach is similar to time-homogeneous case, see Section 2.4.4.
Malliavin’s transfer principle (see e.g. [72]) suggests that constructions for manifold-
valued curves can be extended to manifold-valued processes by replacing differen-
tial equations by Stratonovich stochastic differential equations. This is because
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Stratonovich integrals satisfy the ordinary fundamental theorem of calculus. This
suggests that we can obtain a gptq-Brownian motion as the development with respect
to tgptqutPr0,1s of a standard Brownian motion in Rd.
More precisely, we replace the curve w in (7.2.7) by a standard Rd-valued Brow-
nian motion Wt and interpret the so obtained stochastic differential equation in
Stratonovich sense. In symbols this means that for x0 P M fixed, we consider the
solution Ut of the Stratonovich stochastic differential equation

dUt “ Hipt, Utq ˝ dW i
t ´

1
2 pB1gptqqijpUtei, UtejqV

ijpUtqdt, (7.2.8)

with U0 P Op0,x0q (see (7.2.3)). Here, Hipt, uq are the canonical horizontal vector
fields with respect to the Levi-Civita connection ∇t of the metric gptq as defined in
(2.3.5). Furthermore, te1, . . . , edu denotes the standard basis of Rd and V ij is the
standard basis of vertical vectors, see (2.3.1). The following is [23, Proposition 1.4],
see also [5, Proposition 1.3].

Proposition 7.2.13. Let Ut be the process on FM solving equation (7.2.8). Then
Xt “ πUt is a gptq-Brownian motion on M starting in x0 PM .

7.3. Proof of Theorem 7.1.2 using embeddings

In this section we prove Theorem 7.1.2, the analogue of Schilder’s theorem for gptq-
Brownian motion. Let us recall the statement of the theorem.

Theorem 7.3.1. Let M be a manifold and let tgptqutPr0,1s be a collection of Rie-
mannian metrics on M , smoothly depending on t. Fix x0 P M , and let Xt be a
gptq-Brownian motion with X0 “ x0. Furthermore, for every n ě 1, let Xn

t be the
continuous process generated by 1

2n∆t
M with Xn

0 “ x0. Assume the processes Xt and
Xn
t exist for all time t P r0, 1s. Then tXnuně1 satisfies the large deviation principle

in Cpr0, 1s;Mq with good rate function IM given by

IM pγq “

#

1
2
ş1
0 | 9γptq|

2
gptq dt, γ P H1,G

x0
pr0, 1s;Mq,

8 otherwise.

As we have seen in Proposition 7.2.13, the horizontal lift Ut with respect to tgptqutPr0,1s
of a gptq-Brownian motion satisfies the Stratonovich stochastic differential equation

dUt “ Hipt, Utq ˝ dW i
t ´

1
2 pB1gptqqijpUtei, UtejqV

ijpUtqdt,

with U0 “ u0 P Op0,x0q, where Op0,x0q is defined in (7.2.3). Similarly, if X̃n
t is a

gpntq-Brownian motion, then its horizontal lift Ũnt with respect to tgpntqutPr0,n´1s

satisfies

dŨnt “ Hipnt, Ũ
n
t q ˝ dW i

t ´
n

2 pB1gpntqqijpŨ
n
t ei, Ũ

n
t ejqV

ijpŨnt qdt,
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with Ũn0 “ u0 P Op0, x0q. Finally, the horizontal lift of Xn
t “ X̃n

tn´1 with respect to
tgpntqutPr0,n´1s is given by Unt “ Ũntn´1 . This process satisfies

dUnt “ Hipt, U
n
t q ˝ dWn,i

t ´
1
2 pBtgptqqijpU

n
t ei, U

n
t ejqV

ijpUnt qdt, (7.3.1)

with U0 “ u0 P Op0,x0q. Here, Wn
t “Wtn´1 “ 1?

n
Wt. As explained above Theorem

7.1.2, Xn
t is the process generated by 1

2n∆t
M that we are studying.

The stochastic differential equation for the horizontal lift of Xn
t obtained in (7.3.1)

is an important tool for proving Theorem 7.1.2. However, before we can get to this,
we first need to make some preparations.

7.3.1. Compact containment
As part of the proof of Theorem 7.1.2, we need to show that the process Xn

t gen-
erated by 1

2n∆t
M stays within a compact set with high enough probability when n

tends to infinity. In this section we adapt the general approach using Lyapunov
functions discussed in Section 5.2.2 to the time-inhomogeneous case.

Definition 7.3.2. Let Ht : T˚M Ñ R be a collection of maps. We call a function
Υ : M Ñ R a good containment function for the collection tHtut if Υ is a good
containment function for Ht for every t in the sense of Definition 5.2.4 and if
additionally we have

sup
t,x

Htpx,dΥpxqq ă 8.

In what follows, we use the notion of operator convergence defined in Defintion 5.2.8.
The following assumption is a (simplified) version of Assumption 5.2.9.

Assumption 7.3.3. For every n ě 1, let Atn Ă CbpMq ˆ CbpMq be the (time-
inhomogeneous) generator of a Markov process Xn. Assume that for every x P M ,
the process Xn started in x is right-continuous and exists for all t. Define the
operator

Ht
nf “

1
n
e´nfAtne

nf , enf P DpAtnq.

Suppose that for every t, there is an operator Ht : DpHtq Ă CbpMq Ñ CbpMq with
DpHtq “ C8c pMq and such that Ht Ă ex ´ limnÑ8H

t
n. Finally, assume that Ht

can be written as Htfpxq “ Htpx,dfpxqq for some map Ht : T˚M Ñ R.

The following is an extension of Proposition 5.2.10 to the time-homogeneous case.
The proof is a straightforward adaptation of the proof of Proposition A.15 in [22],
which is based on Lemma 4.22 in [39].

Proposition 7.3.4. Let Assumption 7.3.3 be satisfied and assume that Xnp0q “ x P
M for all n ě 1. Assume that Υ is a good containment function for the collection
Ht. Assume furthermore that for every f P C8c pMq and every n ě 1 the map
t ÞÑ Ht

nf is continuous. Then for every α ą 0, there exists a compact set Kα ĂM
such that

lim sup
nÑ8

1
n

logP pXnptq R Kα for some t P r0, 1sq ď ´α.
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Moreover, the sequence Kα can be chosen to be increasing with
Ť

αKα “M .

Remark 7.3.5. The continuous dependence of Ht
nf on t in Proposition 7.3.4 is used

to assure that
şs

0 H
t
nfpXnptqq dt exists. This is necessary to construct a local expo-

nential martingale used in the proof.

7.3.2. Freidlin-Wentzell theory for time-inhomogeneous diffu-
sions

For the proof of Theorem 7.1.2, we embed the frame bundle FM into some Euclidean
space RN . Using this embedding, we push forward the stochastic differential equa-
tion in (7.3.1) to obtain a stochastic differential equation in RN . To obtain the
large deviations for such diffusions, we use Freidlin-Wentzell theory ([41]). Since
the stochastic differential equations has time-inhomogeneous coefficients, we have
to adapt the Freidlin-Wentzell theory to this setting. One can follow the line of
proof for Freidlin-Wentzell theory for time-homogeneous diffusions, i.e., by using
Euler approximations and making the drift and variance constant on small intervals
of time, see e.g. [29, Theorem 5.6.7].

Theorem 7.3.6. Let Wt be a standard Brownian motion with values in Rd. Let
b : r0, 1sˆRd Ñ Rd and σ : r0, 1sˆRd Ñ Rdˆd be bounded and Lipschitz. For every
n ě 1, let Xn

t be the process satisfying

dXn
t “ bpt,Xn

t qdt` 1
?
n
σpt,Xn

t qdWt,

with Xn
0 “ x0. Then tXnuně1 satisfies the large deviation principle in Cpr0, 1s;Rdq

with good rate function

Ipγq “ inf
"

1
2

ż 1

0
| 9ϕptq|2 dt

ˇ

ˇ

ˇ

ˇ

ϕ P H1pr0, 1s;Rdq,

γptq “ y `

ż t

0
bps, γpsqqds`

ż t

0
σps, γpsqq 9ϕpsqqds

*

. (7.3.2)

The same result also holds when we consider Stratonovich stochastic differential
equations instead of the Itô ones. Following the same reasoning as in the proof of
[63, Theorem 2.5], we have the following corollary.

Corollary 7.3.7. Let the assumptions of Theorem 7.3.6 be satisfied. Assume fur-
thermore that σ has bounded derivative. For every n ě 1, let Xn

t be the process
satisfying the Stratonovich stochastic differential equation

dXn
t “ bpt,Xn

t qdt` 1
?
n
σpt,Xn

t q ˝ dWt,

with Xε
0 “ x0. Then tXnuně1 satisfies in Cpr0, 1s;Rdq the large deviation principle

with good rate function I given in (7.3.2).
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7.3.3. Proof of Theorem 7.1.2
Before we prove Theorem 7.1.2, we first need some preliminary results. In the fol-
lowing proposition we prove that given a collection of metrics tgptqutPr0,1s depending
continuously on t, we can find another metric that dominates all of these metrics.

Proposition 7.3.8. Let tgptqutPr0,1s be a collection of Riemannian metrics on M ,
depending smoothly on t. There exists a Riemannian metric g such that for all
x PM and all v P TxM we have

gtpv, vq ď gpv, vq

for all t P r0, 1s.

Proof. Let tUnunPN be a countable collection of relatively compact charts covering
M . Furthermore, let tϕnunPN be a partition of unity for the collection tUnunPN.
Writing Gtpxq for the matrix of coordinates of the metric gptq in a chart Un, we
have

gptqpv, vq “
A

G
1
2
t pxqv,G

1
2
t pxqv

E

2

“

A

G
1
2
t pxqG

´ 1
2

0 pxqG
1
2
0 pxqv,G

1
2
t pxqG

´ 1
2

0 pxqG
1
2
0 pxqv

E

2

for all v P TxM . Here, the Euclidean inner product has to be understood as the
Euclidean inner product of the vector of coefficients of v. Using the Cauchy-Schwarz
inequality, we find

gptqpv, vq ď
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
G

1
2
t pxqG

´ 1
2

0 pxq
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
G

1
2
0 pxqv

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

2
“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
G

1
2
t pxqG

´ 1
2

0 pxq
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

2
gp0qpv, vq. (7.3.3)

Note that Gtpxq depends continuously on t and x, and hence so does G
1
2
t pxq. Simi-

larly, G´
1
2

0 pxq depends continuously on x. Since r0, 1s is compact and Un is relatively
compact, the continuity implies that ||G

1
2
t pxqG

´ 1
2

0 pxq||2 is bounded on r0, 1sˆUn. If
we write

C “ sup
tPr0,1s,xPUn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
G

1
2
t pxqG

´ 1
2

0 pxq
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
ă 8,

then we can define the Riemannian metric gn on Un by

gn “ Cgp0q.

From (7.3.3) it follows that
gtpv, vq ď gnpv, vq

for all v P TxM and all x P Un.
We now define on M the metric

g “
8
ÿ

n“1
ϕngn,

which has the desired property by construction.
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Let us denote by d the Riemannian distance function associated to the metric g
from Proposition 7.3.8. Fix x0 PM and consider the radial function rpxq “ dpx, x0q.
Since r is not everywhere smooth, it is not suitable for constructing a good contain-
ment function as in Definition 7.3.2. However, since r is 1-Lipschitz (with respect
to the metric g), we can find a smooth function r̃ with r̃px0q “ rpx0q “ 0 and such
that ||r̃ ´ r|| ď 1 and |dr̃|g ď 2, see also Proposition 5.3.1. Using this, we define Υ
by

Υpxq “ logp1` r̃pxq2q. (7.3.4)

We now show that Υ can be used as a good containment function for the operators
arising from the generator of a gptq-Brownian motion.

Proposition 7.3.9. Assume M is complete and let tgptqutPr0,1s be a collection of
Riemannian metrics on M , smoothly depending on t. For every t P r0, 1s, define
Ht : T˚M Ñ R by Htpx, pq “

1
2 |p|

2
gptqpxq. Let g be a metric as in Proposition 7.3.8

and define Υ as in (7.3.4). Then Υ is a good containment function for the collection
tHtutPr0,1s.

Proof. Following the proof of Theorem 5.1.3 in Section 5.3.3, it follows from Lemma
5.3.2 that Υ is a good containment function for each Ht individually. Hence, we are
done once we show that

sup
t,x

Htpx, dΥpxqq ă 8.

Observe that
dΥpxq “ 2r̃pxq

1` r̃pxq2 dr̃pxq,

so that
|dΥpxq|gpxq ď 2|dr̃pxq|gpxq ď 4.

From this, it follows that

Htpx, dΥpxqq “ 1
2 |dΥpxq|2gptqpxq ď

1
2 |dΥpxq|2gpxq ď 8.

for all t and x. Hence, we find that supt,x Htpx, dΥpxqq ă 8.

We can now show that Xn
t remains in compact sets with high enough probability.

Proposition 7.3.10. Let M be a complete manifold and let tgptqutPr0,1s be a collec-
tion of Riemannian metrics on M , smoothly depending on t. Assume that for every
n ą 1, the continuous process Xn

t generated by 1
2n∆t

M exists for all t P r0, 1s. Then
for every α ě 0, there exists a compact set Kα ĂM such that

lim sup
nÑ8

1
n

logP pXn
t R Kα for some t P r0, 1sq ď ´α.

Moreover, the sets Kα can be chosen to be increasing with
Ť

αKα “M .
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Proof. We verify the conditions of Proposition 7.3.4. Let f P C8c pMq and define

Ht
nf “

1
n
e´nf

1
2n∆t

Me
nf .

Then
Ht
nf “

1
n
e´nfenf

1
2 p∆

t
Mf ` n|df |2gptqq “

1
2n∆t

Mf `
1
2 |df |

2
gptq.

Now define Ht Ă CbpMq ˆ CbpMq with domain DpHtq “ C8c pMq and Htf “
1
2 |df |

2
gptq. Then for all f P C8c pMq we have

lim
nÑ8

||Ht
nf ´H

tf || “ 0,

so that H Ă ex ´ limnÑ8Hn. Furthermore, note that Htfpxq “ Htpx, dfpxqq for
Htpx, pq “ 1

2 |p|
2
gptqpxq. It follows that Assumption 7.3.3 is fulfilled, and by Propo-

sition 7.3.9, the function Υ given in (7.3.4) is a good containment function for the
collection tHtutPr0,1s. Since gptq depends continuously on t, we find that t ÞÑ Ht

nf
is continuous for every f P C8c pMq, so that the claim follows from Proposition
7.3.4.

Finally, we also need the following technical lemma.

Lemma 7.3.11. Let M be a manifold, and let tgptqutPr0,1s be a collection of metrics
on M , smoothly depending on t. For every t P r0, 1s and x PM , define

Opt,xq “ tu : Rd Ñ pTxM, gptqq|u isometryu.

Let K ĂM be compact. Then the set
ď

 

Opt,xq
ˇ

ˇt P r0, 1s, x P K
(

is a compact subset of FM .

Proof. Consider the bundle O over R ˆ M with fibres Opt,xq. For every pt, xq P
r0, 1s ˆK, let Upt,xq Ă r0, 1s ˆM be open and relatively compact such that there
exists a smooth section upt,xq of O on U pt,xq. Since r0, 1s ˆ K is compact, we can
find finitely many pt1, x1q, . . . , ptk, xkq such that

r0, 1s ˆK Ă

k
ď

i“1
Upti,xiq Ă

k
ď

i“1
U pti,xiq.

As a consequence, we have

ď

 

Opt,xq
ˇ

ˇt P r0, 1s, x P K
(

Ă

k
ď

i“1

ď

 

Opt,xq
ˇ

ˇt P r0, 1s, x P U pti,xiq
(

Since
ď

 

Opt,xq
ˇ

ˇt P r0, 1s, x P K
(
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is closed, it suffices to show that
ď

 

Opt,xq
ˇ

ˇt P r0, 1s, x P U pti,xiq
(

is compact for all i “ 1, . . . , k.
For this, consider the map Φi : r0, 1s ˆ U pti,xiq ˆOpdq Ñ FM given by

Φipt, x, gq “ upti,xiqpt, xqg.

Then Φi is continuous as composition of continuous maps. Furthermore, we have
that

Φipr0, 1s ˆ U pti,xiq ˆOpdqq “
ď

 

Ot,x

ˇ

ˇt P r0, 1s, x P U pti,xiq
(

.

Since r0, 1s ˆ U pti,xiq ˆOpdq is compact, the above, together with the continuity of
Φi proves the claim.

With all the preparations done, we are ready to prove Theorem 7.1.2. The proof is
similar to the one given in Section 5.4 for the time-homogeneous case. In order to
improve readability of certain equations in the upcoming proof, we define

pB1gptqqijpuq :“ B1gptqpuei, uejq (7.3.5)

for i, j “ 1, . . . d and u P FM , where te1, . . . , edu denotes the standard basis of Rd.

Proof of Theorem 7.1.2. Let Wt be a standard, Rd-valued Brownian motion and
define Wn

t “
1?
n
for every n ě 1. Consider the process Unt in FM with Un0 “ u0 P

Op0,x0q and satisfying

dUnt “ Hipt, U
n
t q ˝ dWn,i

t ´
1
2 pB1gptqqijpU

n
t qV

ijpUnt qdt,

where we used the notation introduced in (7.3.5).
Now, let tKαuαą0 be an increasing sequence of compact sets with

Ť

αKα “ M as
in Proposition 7.3.10. By Lemma 7.3.11 we have that

K̃α :“
ď

 

Opt,xq
ˇ

ˇx P Kα, t P r0, 1s
(

Ă FM

is compact.
Let ϕα : FM Ñ R be a smooth function with compact support and ϕ ” 1 on K̃α.
Since FM is locally compact, such a function exists. Consider the process Un,αt in
FM given by

dUn,αt “ ϕαpU
n,α
t qHipt, U

n,α
t q ˝ dWn,i

t ´
1
2ϕαpU

n,α
t qpB1gptqqijpU

n,α
t qV ijpUn,αt qdt,

with Un,α0 “ u0.
By Whitney’s embedding theorem, there exists an N P N and a smooth embedding
ι : FM Ñ RN . It follows from Proposition 2.4.9 that the RN -valued process Ũε,αt :“
ιpUε,αt q satisfies

dpιpUn,αt qq
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“ ϕαpU
n,α
t qHipt, ¨qιpU

n,α
t q ˝ dWn,i

t ´
1
2ϕαpU

n,α
t q

“

pB1gptqqijV
ij
‰

ιpUn,αt qdt

“ ϕαpU
n,α
t qι˚Hipt, ιpU

n,α
t qq ˝ dWn,i

t ´
1
2ϕαpU

n,α
t qι˚

“

pB1gptqqijV
ij
‰

pιpUn,αt qq dt.

In terms of Ũn,αt , this can be written as

dŨn,αt “ ϕαpι
´1pŨn,αt qqι˚Hipt, Ũ

n,α
t q ˝ dWn,i

t

´
1
2ϕαpι

´1pUn,αt qqι˚
“

pB1gptqqijV
ij
‰

pŨn,αt qq dt. (7.3.6)

Since ι and ι´1 are smooth, the vector fields

ϕαpι
´1pŨn,αt qqι˚Hipt, Ũ

n,α
t q

and
1
2ϕαpι

´1pŨn,αt qqι˚
“

pB1gptqqijV
ij
‰

pŨn,αt q

are smooth and compactly supported inside ιpFMq. By putting them equal to zero
outside ιpFMq, we obtain smooth, compactly supported vector fields on RN . With
slight abuse of notation, we denote these vector fields by the same symbol. This
observation allows us to consider (7.3.6) as equation on RN . Since the drift and
diffusion are smooth and compactly supported, we can apply Corollary 7.3.7 to
obtain that tŨn,αuně1 satisfies in Cpr0, 1s;RN q the large deviation principle with
good rate function ĨαRN given by

ĨαRN pγq “ inf
"
ż 1

0
| 9φptq|2Rd dt

ˇ

ˇ

ˇ

ˇ

γp0q “ ιpu0q, 9γptq “ ϕαpι
´1pγptqqqι˚Hipt, γptqq 9φiptq

´
1
2ϕαpι

´1pγptqqqι˚
“

pB1gptqqijV
ij
‰

pγptqq

*

.

Now note that ιpFMq is closed, and by construction it holds that Ũn,α is almost
surely contained in Cpr0, 1s; ιpFMqq. Furthermore, suppose that γp0q P ιpFMq and
that there exists a curve φ P H1pr0, 1s;Rdq such that

9γptq “ ϕαpι
´1pγptqqqι˚Hipt, γptqq 9φiptq ´

1
2ϕαpι

´1pγptqqqι˚
“

pB1gptqqijV
ij
‰

pγptqq.

Then, since the vector fields

pϕα ˝ ι
´1qι˚Hipt, ¨q

and
1
2 pϕα ˝ ι

´1qι˚
“

pB1gptqqijV
ij
‰

are tangent to ιpFMq at points of ιpFMq, we find that γptq P ιpFMq for all t P r0, 1s
so that γ P Cpr0, 1s; ιpFMqq. Therefore, if γ R Cpr0, 1s; ιpFMqq, then no such
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φ exists, and ĨαRN pγq “ 8. It now follows from [29, Lemma 4.1.5] that tŨn,αuně1
satisfies the large deviation principle in ιpFMq with good rate function ĨαιpFMq given
as the restriction of ĨαRN to Cpr0, 1s; ιpFMqq.
Since ι is a homeomorphism and Un,αt “ ι´1pŨn,αt q, the contraction principle
(Theorem 2.1.6) implies that tUn,αuně1 satisfies the large deviation principle in
Cpr0, 1s;FMq with good rate function IαFM given by

IαFM pηq “ ĨαιpFMqpι ˝ ηq

“ inf
"
ż 1

0
| 9φptq|2Rd dt

ˇ

ˇ

ˇ

ˇ

ιpηp0qq “ ιpu0q,
d
dt pι ˝ ηqptq “ ϕαpηptqqι

˚Hipt, ιpηptqqq 9φiptq

´
1
2ϕαpηptqqι

˚
“

pB1gptqqijV
ij
‰

pιpηptqqq

*

“ inf
"
ż 1

0
| 9φptq|2Rd dt

ˇ

ˇ

ˇ

ˇ

ηp0q “ u0, 9ηptq “ ϕαpηptqqHipt, ηptqq 9φiptq

´
1
2ϕαpηptqq

“

pB1gptqqijV
ij
‰

pηptqq

*

Now, if we set Xn,α
t :“ πpUn,αt q, it follows from the continuity of the projection

π : FM Ñ M and the contraction principle that tXn,αuně1 satisfies the large
deviation principle in Cpr0, 1s;Mq with good rate function IαM given by

IαM pζq “ inftIαFM pηq|πpηq “ ζu.

We show how to obtain the desired expression for IαM , at least when ζ P Cpr0, 1s;Kαq.
Consider such a curve ζ and suppose that η : r0, 1s Ñ FM is such that πη “ ζ
and IαFM pηq ă 8. Then ηp0q “ u0, η (and hence also ζ) is almost everywhere
differentiable and there exists a φ : r0, 1s Ñ Rd such that

9ηptq “ ϕαpηptqqHipt, ηptqq 9φiptq ´
1
2ϕαpηptqq

“

pB1gptqqijV
ij
‰

pηptqq. (7.3.7)

Since ηp0q “ u0 P Op0,x0q, the solution η̃ of the equation

9̃ηptq “ Hipt, η̃ptqq 9φiptq ´
1
2
“

pB1gptqqijV
ij
‰

pηptqq,

with η̃p0q “ u0 satisfies η̃ptq P Opt,ζptqq for all t P r0, 1s. Since ζptq P Kα, we find
that η̃ptq P K̃α and hence ϕαpη̃ptqq “ 1 for all t P r0, 1s. But then η̃ptq is also the
solution of (7.3.7). We conclude that η is the unique horizontal lift with respect to
tgptqutPr0,1s of ζ with ηp0q “ u0. In that case, φ is the anti-development with respect
to tgptqutPr0,1s of ζ (see Section 7.2.3), and we have

| 9φptq|Rd “ |ηptq 9ζptq|Rd “ | 9ζptq|gptq.

Therefore, if ζ is contained in Kα and almost everywhere differentiable, then the
rate function reduces to

IαM pζq “
1
2

ż 1

0
| 9ζptq|2gptq dt.
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If ζ is not almost everywhere differentiable, the above argument shows that IαM pζq “
8.

Finally, to deduce the large deviations for tXnuně1 from the large deviations for
tXn,αuně1 is done in exactly the same way as in the proof of Theorem 5.1.3 given
in Section 5.4.

7.4. Concluding remarks

We conclude this chapter by discussing some further directions which can be inves-
tigated which are related to the results in this chapter.
First of all, when comparing this chapter to Chapter 6, we have only extended the
result of the time-inhomogeneous Schilder-type theorem from Section 6.3 to the geo-
metric setting. It is natural to ask if the result concerning time-inhomogeneous ran-
dom walks can also be extended to time-inhomogeneous geodesic random walks. We
can use a similar approach as in Section 7.2 to define geodesics and parallel transport
with respect to a family of connections. This allows us to define time-inhomogeneous
geodesic random walks with indepedent, identically distributed increments in the
sense of Chapter 3. Furthermore, it also allows us to define a time-inhomogeneous
Riemannian exponential map. If it is possible to study this exponential map in a
similar way as done in Section 3.4, then one should be able to obtain the analogue
of Cramér’s theorem for time-inhomogeneous random walks.
Another direction we can think about, is to consider randomly evolving Riemannian
manifolds. In this case, we will not have a time-dependent Riemannian metric, but
we consider a random process in the space of Riemannian metrics. All the classical
large deviation theorems can then be studied in this setting. In this case, there are
two sources of randomness which can give rise to large deviations. The contribution
of both has to be understood, and it is interesting to see if both contribute on the
same scale, or if there occur different scales of large deviations.
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Summary
This thesis is concerned with large deviations for processes in Riemannian manifolds.
In particular, we study the extensions of large deviations for random walks and
Brownian motion to the geometric setting.
In the first chapters, we study large deviations for random walks in various geometric
settings. First, in Chapter 3 we consider geodesic random walks in Riemannian
manifolds. Since geodesic random walks are not simply sums of random variables, we
discuss a notion of independent, identically distributed increments for such random
walks. We then prove the large deviation principle for geodesic random walks with
independent, identically distributed increments which are bounded en centered. The
idea of the proof is to relate the large deviations for the geodesic random walk
to the large deviations for a random walk in a tangent space. Since the tangent
space is a vector space, these large deviations follow from the original Cramér’s
theorem. The desired comparison is made by carefully analyzing the geometric
properties of geodesic random walks, and in particular the short-time behaviour of
the Riemannian exponential map.
In Chapter 4 we study random walks in special Riemannian manifolds, namely Lie
groups. The additional group structure allows us to identify each tangent space
with the Lie algebra. This lets us define a random walk in a Lie group as prod-
uct of group elements which are the exponential of an element of the Lie algebra.
We explain that such random walks are geodesic random walks for the Levi-Civita
connection if and only if the Riemannian metric is bi-invariant. We then prove the
large deviation principle for such random walks. The proof follows similar steps as
the proof of the large deviation principle for geodesic random walks. However, the
estimates are obtained differently and make use of the Baker-Campbell-Hausdorff
formula, rather than properties of the Riemannian exponential map.

In chapter 5 we move on to path-space large deviations for processes in Rieman-
nian manifolds. In particular, we prove path-space large deviation principles for
geodesic random walks and Riemannian Brownian motion. Although the result for
Riemannian Brownian motion is already known, we provide two novel approaches
to obtain this result. We prove the path-space large deviation principle for geodesic
random walks via a general method to study large deviations for Markov processes.
This method relies on the convergence of non-linear semigroups and viscosity so-
lutions for Hamiltonian-Jacobi equations. Furthermore, we show how this method
can be used to study the large deviations for Riemannian Brownian motion. For the
latter, we also provide a proof by horizontally lifting the Brownian motion to the
frame bundle over the manifold. The horizontal lift satisfies a stochastic differential
equation driven by a Euclidean Brownian motion. To prove the large deviation prin-
ciple, we embed the frame bundle into Euclidean space, push-forward the stochastic
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differential equation and apply Freidlin-Wentzell theory. The large deviations for
Riemannian Brownian motion then follow from the contraction principle.

The final chapters are concerned with large deviations for time-inhomogeneous pro-
cesses, both in the Euclidean and geometric context. First, in Chapter 6 we restrict
to the Euclidean setting. We prove the large deviation principle for random walks
with time-inhomogeneous increments. Furthermore, we show how to obtain from
this the associated path-space large deviations. We conclude the chapter by study-
ing large deviations for a diffusion generated by a weighted Laplacian, where the
weights depend on time. Since such a diffusion is a Gaussian process, this result
is already known. However, we provide an alternative proof that shows how this
result can be obtained from the path-space large deviations for time-inhomogeneous
random walks. The results in this chapter serve as motivation for obtaining sim-
ilar results for time-inhomogeneous processes in a geometric setting. In the final
chapter, we initiate this direction.
More precisely, the final chapter, Chapter 7, is concerned with large deviations for
Riemannian Brownian motion in a time-evolving Riemannian manifold. For this,
we consider a manifold equipped with a Riemannian metric which depends on time.
First of all, we explain how to define Riemannian Brownian motion in this set-
ting. Then, to prove the large deviation principle, we follow the lifting approach
taken in Chapter 5. In order make this work, we define the notion of horizontal
lift to the frame bundle with respect to a time-dependent collection of connections.
By also considering the associated anti-development to Euclidean space, one ob-
tains a stochastic differential equation driven by a Euclidean Brownian motion for
the horizontally lifted process. By embedding into Euclidean space and applying
Freidlin-Wentzell theory (adapted to work for time-dependent drift and diffusion),
we obtain the large deviations for the embedded process. The contraction princi-
ple then gives us the large deviations for the Riemannian Brownian motion in the
evolving Riemannian manifold.



Samenvatting
Dit proefschrift behandelt grote afwijkingen voor processen in Riemannse manifolds.
In het bijzonder bestuderen we uitbreidingen van grote afwijkingen voor random
walks en Brownse beweging naar de meetkundige context.
In de eerste hoofdstukken bestuderen we de grote afwijkingen voor random walks
in verschillende meetkundige omgevingen. Allereerst behandelen we in Hoofdstuk 3
geodetische random walks in Riemannse manifolds. Aangezien geodetische random
walks niet simpelweg geschreven kunnen worden als som van kansvariabelen, bespre-
ken we een notie van onafhankelijk, identiek verdeelde incrementen voor dit soort
random walks. Vervolgens bewijzen we het grote afwijkingen principe voor geode-
tische random walks met onafhanlijk, identiek verdeelde incrementen die begrensd
en gecentreerd zijn. Het idee van het bewijs is om de grote afwijkingen voor de
geodetische random walk te relateren aan grote afwijkingen voor een random walk
in een raakruimte. Aangezien de raakruimte een vectorruimte is, volgen deze grote
afwijkingen uit de originele versie van Cramérs stelling. De gewenste vergelijking
wordt verkregen door een zorgvuldige analyse van de meetkundige eigenschappen
van geodetische random walks en in het bijzonder van het korte-tijd gedrag van de
Riemannse exponentiële afbeelding.
In Hoofdstuk 4 bestuderen we random walks in speciale Riemannse manifolds, na-
melijk Lie groepen. De extra groepsstructuur zorgt ervoor dat we elke raakruimte
kunnen identificeren met de Lie algebra. Hierdoor kunnen we een random walk in
een Lie groep definiëren als product van groepselementen die het beeld zijn van een
element van de Lie algebra onder de exponentiële afbeelding. We leggen uit dat dit
soort random walks geodetische random walks voor de Levi-Civita connectie zijn
dan en slechts dan als de Riemannse metriek bi-invariant is. Vervolgens bewijzen
we het grote afwijkingen principe voor dit soort random walks. Het bewijs is verge-
lijkbaar met het bewijs van het grote afwijkingen principe voor geodetische random
walks. Echter, de afschattingen worden op een andere manier verkregen en maken
gebruik van de Baker-Campbell-Hausdorff formule in plaats van eigenschappen van
de Riemannse exponentiële afbeelding.

In Hoofdstuk 5 gaan we over naar padsgewijze grote afwijkingen voor processen in
Riemannse manifolds. In het bijzonder bewijzen we padsgewijze grote afwijkingen
principes voor geodetische random walks en Riemannse Brownse beweging. Hoewel
het resultaat voor Riemannse Brownse beweging reeds bekend is, geven wij twee
nieuwe aanpakken om dit resultaat te verkrijgen. We bewijzen het padsgewijze
grote afwijkingen principe voor geodetische random walks via een algemene me-
thode om grote afwijkingen voor Markovprocessen te bestuderen. Deze methode is
gebaseerd op de convergentie van niet-lineaire halfgroepen en viscositeitsoplossin-
gen voor Hamilton-Jacobi vergelijkingen. Verder laten we zien hoe deze methode

225



226 Samenvatting

gebruikt kan worden om de grote afwijkingen voor Riemannse Brownse beweging te
bestuderen. Voor laatstgenoemde geven we ook een bewijs door de Brownse bewe-
ging horizontaal te liften naar de frame bundel over de manifold. De horizontale lift
voldoet aan een stochastische differentiaalvergelijking gedreven door een Euclidische
Brownse beweging. Om het grote afwijkingen principe te bewijzen, embedden we
de frame bundel in een Euclidische ruimte, zetten we de stochastische differentiaal-
vergelijking over en passen we Freidlin-Wentzel theorie toe. De grote afwijkingen
voor Riemannse Brownse beweging volgen daarna uit het contractieprincipe.

De laatste hoodstukken gaan over grote afwijkingen voor tijdsinhomogene proces-
sen, zowel in een Euclidische als meetkundige context. Allereerst behandelen we in
Hoofdstuk 6 de Euclidische omgeving. We bewijzen het grote afwijkingen principe
voor random walks met tijdsinhomogene incrementen. Verder laten we zien hoe
hieruit de bijbehorende padsgewijze grote afwijkingen afgeleid kunnen worden. We
sluiten het hoofdstuk af met het bestuderen van grote afwijkingen voor diffusies ge-
genereerd door een gewogen Laplaciaan, waarbij de gewichten tijdsafhankelijk zijn.
Sinds dit soort diffusies Gaussische processen zijn, is dit resultaat al bekend. Echter
geven wij een alternatief bewijs dat laat zien hoe dit resultaat volgt uit de padsge-
wijze grote afwijkingen voor tijdsinhomogene random walks. De resultaten in dit
hoofdstuk dienen als motivatie voor het verkrijgen van vergelijkbare resultaten voor
tijdsinhomogene processen in een meetkundige context. In het laatste hoofdstuk
zetten we de eerste stappen in deze richting.
Preciezer gezegd, het laatste hoofdstuk, Hoofdstuk 7, behandelt grote afwijkingen
voor Riemannse Brownse beweging in een evoluerende Riemannse manifold. Hier-
voor rusten we de manifold uit met een Riemannse metriek die afhangt van de tijd.
Allereerst leggen we uit hoe we in deze context een Riemannse Brownse beweging
kunnen definiëren. Daarna bestuderen we grote afwijkingen hiervoor, waarbij we
de aanpak volgen met de horizontale lift uit Hoofdstuk 5. Om dit te laten slagen,
definiëren we een notie van horizontale lift met betrekking tot een tijdsafhankelijke
familie van connecties. Als we vervolgens ook de anti-ontwikkeling naar een Eucli-
dische ruimte beschouwen, verkrijgen we een stochastische differentiaalvergelijking
gedreven door een Euclidische Brownse beweging voor het horizontaal gelifte proces.
Door nu weer te embedden in een Euclidische ruimte en Freidlin-Wentzell theorie
(aangepast voor tijdsafhankelijke drift en diffusie) toe te passen, verkrijgen we de
grote afwijkingen voor het geëmbedde proces. Het contractieprincipe geeft vervol-
gens de grote afwijkingen voor de Riemannse Brownse beweging in de evoluerende
Riemannse manifold.
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