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Global Precipitation Measurement data compared to 

ground based disdrometer measurements 

A case study in the Netherlands and Myanmar 

D. F. Honingh 

Delft University of Technology, Department of Watermanagement, Stevinweg 1, Delft, The Netherlands 

 

Abstract 

Rapid advancements in satellite observation technologies have resulted in an unprecedented 

availability of remotely sensed rainfall characteristics. These freely available precipitation 

measurements could be of great value for improving current weather prediction, particularly in 

developing countries where other data is scarce. A key parameter to derive rainfall intensities is the 

drop size distribution (DSD). Data of the Global Precipitation Measurement (GPM) mission provides 

amongst others the DSD and rainfall intensity, but it is unknown how well the device can convert the 

DSD to rain intensity. Therefore the main goal of this study is validating the GPM measurement 

results, by using ground based disdrometers. The disdrometers were located in De Bilt (The 

Netherlands), Yangon and Bago (Myanmar). In the Netherlands an industrial standard Thies LPM was 

used, whereas in Myanmar innovative Delft-disdrometers were tested. DSD’s obtained from the Thies 

LPM showed a decreasing peak for increasing rainfall intensities, which corresponds to DSD theory. 

In most cases the DSD’s of the Thies LPM and GPM were comparable with an average R
2
 of 0.9. On 

the other hand, the rainfall intensities for these two datasets were not comparable with a relative error 

varying between 49 and 3314 %. The very limited joint occurrence of satellite flyover and rain events 

caused insufficient data for validation in Myanmar. The data obtained from the Delft-disdrometer in 

Yangon showed that, despite the limitations of this innovative device, it is possible to produce 

representative DSD.  

Keywords: Rainfall, Drop size distribution, Satellite remote sensing, Delft-disdrometer, Thies LPM

1. Introduction 

Myanmar is considered to be one of the most 

vulnerable countries in terms of natural disasters in 

Southeast Asia. The country is in second place on the 

Global Climate Risk Index, which is based on the 

number of extreme events that took place between 

1995 and 2014. The annual floods during the monsoon 

period are one of those natural disasters that count as 

extreme events. For example, 460.000 people were 

affected and 172 people were killed by floods in 2015. 

Therefore, disaster risk reduction and other activities to 

prepare and respond to natural disasters are of great 

importance for Myanmar. (United Nations 

Humanitarian Country Team, 2015) 

In Myanmar, weather forecasting is done by the 

Department of Meteorology and Hydrology (DMH). 

They give a daily weather forecast, but this is quite 

general and only mentions the expected number of 

showers for a region. For those forecasts, the DMH 

uses data from weather stations, satellite images and 

the regional weather predictions of neighbouring 

countries (DMH, 2016). The Weather Research 

Forecast (WRF) model is used to process the station 

data. However, the country covers 677.000 km
2
 

(Embassy of the Republic of the Union of Myanmar, 

2016) and there are only 63 Meteorological Stations 

and 39 Meteorological & Hydrological Stations. 

Therefore the possibilities to validate and calibrate the 

model are very limited. As the WRF model has a 



2 

 

resolution of 30 km by 30 km, it is not possible to 

make very accurate predictions. Making better use of 

satellite images would enable more accurate weather 

predictions. By using satellite images the calibration of 

the rainfall model can be improved with less rain 

gauges required. For example, National Aeronautics 

and Space Administration (NASA) satellites could be 

used to study monsoon patterns more closely and 

improve the weather forecast in Myanmar (NASA, 

2016).  

Tropical regions have the world’s highest amount of 

rainfall. To study rainfall patterns, the Tropical 

Rainfall Measurement Mission (TRMM) was launched 

in November 1997: a joint mission between NASA and 

the Japan Aerospace Exploration Agency (JAXA). The 

rain intensity, cloud water and water vapour in the 

atmosphere were determined by measuring the Earth’s 

emitted microwave energy. In order to measure this 

reflected energy and convert this to temperature, the 

TRMM Microwave Imager was used. Water surfaces 

emit limited microwave energy, which corresponds to 

50 % of its real temperature. The measured 

temperature for raindrops on the other hand is almost 

equal to their real temperature. The contrast between 

cold water surfaces and warmer raindrops makes it 

possible to determine rainfall intensities quite 

accurately. Above the land surface more microwave 

energy is emitted, which corresponds to 90 % of its 

real temperature. This leads to a smaller contrast and 

therefore it is harder to observe the raindrops above 

land surface. (NASA, 2016)  

The TRMM data became the space standard for 

precipitation measurements. Furthermore, the TRMM 

mission improved our knowledge on tropical cyclones, 

convective rainfall and human impact on rainfall. In 

addition, it has been useful for weather and flood 

forecasting. However, the mission ended in April 

2015. (NASA, 2015) 

The Global Precipitation Measurement (GPM) mission 

is the successor to the TRMM mission and data 

collection started in February 2014. The GPM is 

capable of measuring a larger area in more detail. The 

area covered is now between 65 S to 65 N whereas 

TRMM covered 50 S and 50 N. In addition to the 

larger coverage of the GPM, smaller intensities and 

other quantities such as snow can be detected. (Hou, et 

al., 2014) 

The commonly used approach for validating satellite 

precipitation data is comparing it with ground 

observations. In this case, the ground observations are 

taken as the best possible standard for comparison 

even though they have their own uncertainties. This 

approach has also been used in the five field 

campaigns performed with Two-Dimensional Video 

Disdrometers. The use of disdrometers is preferred 

over other rain gauges because they measure both the 

DSD and the rain intensity. The following five 

campaigns have been conducted; the Light 

Precipitation Evaluation Experiment (LPVEx), the 

Mid-Continent Convective Clouds Experiment 

(MC3E), the GPM Cold-season Precipitation 

Experiment (GPCEx), the Iowa Flood Studies 

(IFloodS) and the Integrated Precipitation ad 

Hydrology Experiment (IPHEx). The results of these 

studies have been used to improve the GPM 

algorithms.  

In the IFloodS study, the uncertainties in the drop size 

distribution (DSD) obtained by the GPM Dual-

frequency Precipitation Radar (DPR) were 

investigated. For this, 1.5 month of GPM rain rate data 

was collected and compared with 11 Parsivel 

disdrometers. One of those comparisons was between 

the GPM rain rates and the rain rate data of the 

disdrometers. Scatter plots were created, which 

showed that the majority of the measurement points 

were near the y=x line. The correlation coefficient that 

was found for rain intensity was 0.987 and for the 

particle diameter this was 0.861. The findings of this 

study might not be representative for different climate 

regions, so therefore the authors recommend 

performing similar studies for different areas. (Liao L. 

&., 2014) 

In this research project a similar study with 

disdrometers will be performed in the maritime climate 

of the Netherlands and in the monsoon climate of 

Myanmar. In Myanmar, the newly developed Delft-

disdrometer will be installed, which is much cheaper 

compared to the traditional disdrometer. Having 

affordable disdrometers available would be a benefit 

for GPM ground validation (Koertellis, 2005). The 

reason why disdrometers are being used and preferred 

to other devices is that this type of rain gauge can 

measure the DSD. The DSD ties all the rainfall 

variables together and is therefore very valuable 

(Uijlenhoet, 1999). According to the GPM algorithms, 

a gamma function is used for the DSD. In order to use 
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this gamma function, two DSD parameters are 

required. After obtaining the DSD, the GPM rainfall 

rates can be derived by combining DSD’s, drop 

volumes and drop velocities and therefore contain 

multiple possible errors. From a scientific viewpoint it 

is therefore of great interest to assess differences 

between the GPM data and ground based disdrometer 

measurements. This will result in an indication of the 

added error due to the conversion from DSD to rain 

intensity. 

1.2. Objective 

The main objective of this research is to validate the 

GPM data in the maritime climate of the Netherlands 

and monsoon climate of Myanmar.  

1.3. Research questions 

In this study, GPM satellite data will be compared with 

disdrometer data. The purpose of comparing these 

datasets is to find out how accurate the GPM data is 

and where it can be improved. However, before 

making this comparison it is important to verify the 

accuracy of the Delft-disdrometer. The main research 

questions can thus be formulated as follows: 

- How accurate are the rainfall intensities 

measured by the Delft-disdrometer? 

- Does the theoretical DSD for different rainfall 

intensities correspond with the measured 

disdrometer data? 

- Does the theoretical DSD for different rainfall 

intensities correspond with the DSD’s 

determined by GPM? 

- What is, according to an analysis of eight 

GPM measurement locations, the spatial 

variance in common rain intensities in 

Myanmar?  

- How accurate is the by GPM obtained gamma 

distribution? 

- How accurate is rainfall intensity data 

obtained by GPM? 

2. Study locations 

2.1. The Netherlands 

The Netherlands has a maritime climate and the land is 

covering 41,543 km
2

. In the Netherlands the Koninklijk 

Nederlands Meteorologisch Instituut (KNMI) is the 

Dutch knowledge institute for weather, climate and 

seismology. The main office of the KNMI is located in 

De Bilt, which is also one of the 35 measurement 

stations that are spread throughout the country.  

De Bilt has been chosen as a study location due to the 

fact that this station is equipped with advanced 

precipitation measurement devices. One of those 

instruments is the Thies LPM, which can be used to 

measure the DSD. More information about this device 

can be found in section 3.1.3. 

2.2. Myanmar 

Myanmar covers 676,578 km
2
 and has a tropical 

monsoon climate. There are considerable differences 

in the spatial average annual rain. In the delta region 

this amount is approximately 2500 mm (Yangon 2700 

mm), in the coastal region 5000 mm, while in the dry 

zone the average annual rainfall is less than 1000 mm 

(Mandalay 850 mm). (Weather and climate 

information, 2016) 

Two locations were used to perform ground based 

measurements using Delft-disdrometers, namely the 

Yangon Technological University (YTU) in Yangon 

and Irrigation Technological Centre (ITC) in Bago. 

The placement coordinates are given in Table 1. 

Table 1: Coordinates (latitude and longitude) of the Delft-
disdrometers in both Yangon and Bago, Myanmar.  

Location  Latitude Longitude 

1. Yangon  N16º52’30” E96º07’04.799” 

2. Bago N14º05’60” E98º12’17.999” 

 

Furthermore, eight study locations have been chosen 

for GPM data analysis. Those places consist out of 

four (major) cities and four rural areas, which are 

scattered throughout Myanmar. The geographical 

specifications of those eight places are given in Table 

2.  

Table 2: Coordinates of the eight study locations in Myanmar. 

Location  Latitude Longitude 

1. Mandalay  N21º56’24.0” E96º05’24.000” 

2. Naypyiadaw N19º46’04.8” E96º06’07.200” 

3. Yangon N16º52’30.0” E96º07’04.799” 

4. Dawei N14º05’60.0” E98º12’17.999” 

5. Mohnyin N25º30’00.0” E96º40’29.999” 

6. Kengtung N21º19’30.0” E99º38’24.000” 

7. Nat Ma Taung 

National Park 

N21º15’00.0” E93º24’18.000” 

8.Lenya National 

Park 

N11º42’18.0” E99º15’00.000” 
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Figure 1 indicates the spatial distribution of those eight 

study locations. In this figure the cities are represented 

by a star and the dots stand for rural areas. 

 

Figure 1: The spatial distribution of the eight study locations in 
Myanmar. In this figure cities are represented by a star and dots 
represent rural areas.  

3. Materials and methods 

3.1. Materials 

Precipitation data was collected with the GPM Core 

Observatory satellite, disdrometers and tipping 

buckets. The specifications of these materials are 

explained below. The obtained data was processed by 

using Python 3.5.0. (Python, 2016) and Excel 2007 

(Microsoft, 2016). Furthermore, Panoply 4.5.1 

(Schmuck, 2016) was used for initial assessment of the 

obtained GPM data.  

3.1.1. GPM 

The mission started with the launch of the GPM Core 

Observatory satellite in Japan on February 27
th
, 2014. 

The Core Observatory satellite is the reference 

standard for approximately eight constellation 

satellites. Several of them, deliver precipitation 

measurements every three hours. (JAXA, 2016)    

The Core Observatory satellite flies a non-Sun-

synchronous orbit at an altitude of 407 km; this path 

covers the earth from 65 S to 65 N. The satellite orbits 

the earth 16 times a day, so each orbit takes 1.5 hours. 

For measuring precipitation, the GPM Core 

Observatory satellite is using the GPM Microwave 

Imager (GMI) and the Dual-frequency Precipitation 

Radar (DPR). The GMI delivers horizontal patterns 

and rainfall intensities, while the DPR provides 

information about the three dimensional structure of 

droplets. (NASA, 2016) 

There are 3 different levels of GPM data products 

available, which are described in appendix A. From the 

available GPM data, only level 2A-DPR contains DSD 

parameters and was thus used in this research. Data has 

been accessed from the Science Team On-Line 

Request Module (STORM) data source portal 

(Lammers, 2016). 

The DPR measures the reflectivity; this is translated to 

the DSD using the following formulas: 

    
  

       
                 (1) 

   
     

     
      (2) 

                   
          

      (3) 

In which    [mm
6
/m

3
] is the effective radar 

reflectivity,   [m] the electromagnetic wavelength,   

[-] a constant defined as a function of   [-] which is 

the complex refractive index of scattering particles. 

The       [-] is the particle reflection,      [m
3
·mm] 

the drop size distribution,    [-],     [-] the rainfall 

distribution parameters and D [mm] the diameter of the 

droplet. The µ [-] is the shape parameter, which is 

fixed at 3 for the gamma distribution (Liao L. , 2014).  

The following formula is used to transfer the obtained 

parameters to rainfall rates: 

                      (4) 

In which the   [mm/h] is the rainfall rate, the      

[m
3
] and the      [mm/h] the particle volume and the 

particle velocity, both depending on the diameter of 

the droplet.  

3.1.2. Delft-disdrometer  

Disdrometers are capable of measuring DSD and 

convert these to rainfall intensities. However, the price 
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for a conventional disdrometer starts from about 

€5000, while the commonly used tipping bucket is 

already available from €400. For this reason, a new 

kind of disdrometer has been designed, called the 

“Delft-Disdrometer”. This type of rain gauge has been 

designed by combining the best of both. It is namely 

able to measure the acoustic energy (and therefore the 

drop size distribution) and the costs are approximately 

between €200 and €300. (Hut, 2013) 

The smallest droplets that can be measured by the 

Delft-disdrometer have a diameter of 1 mm. For 

droplets larger than 1.75 mm, the uncertainties of the 

Delft-disdrometer are comparable to the uncertainties 

of industrial standards (Thies LPM & Ott Pasivel). 

Compared with a KNMI electronic rain gauge, the 

measurement difference falls within a 10 % interval. 

(Hut, 2013) 

Furthermore, disdrometers can suffer from 

uncertainties due to a certain deadtime. This 

phenomenon has been investigated for the Joss-

Waldvogel disdrometer that has a resonance time of 

several milliseconds, just like the Delft-disdrometer. 

The findings of this research were that in case 

deadtime correction was applied, the amount of 

precipitation of an event increased with nearly 15 % 

and the rainfall intensity increased with almost 35 %. 

(Uijlenhoet et al., 2002)  

 

Another error is caused by stiffness variations within 

the disdrometer casing, which is comparable to the 

‘drum effect’. In appendix B, a simplified derivation of 

the relative error caused by this effect is given. This 

showed that smaller droplets suffer more from the 

drum effect.  

 

3.1.3. Thies Laser Precipitation Monitor (LPM) 

The Thies LPM (disdrometer) is capable of measuring 

precipitation particles with a diameter from 0.16 till 8 

mm, a fall speed ranging from 0.2 till 20 m/s and an 

intensity from 0.005 mm/h till 1000 mm/h. It is 

capable of identifying more than 97 % of the drizzle, 

99 % of the rain, 95 % of hail and 99 % of snow. 

(Adolf Thies GbmH & Co. KG, 2011) 

The device has a measurement area of 46 cm
2
, uses a 

laser of class 1M and has a laser diode of 785 nm. 

There are 440 measurement classes, namely 22 particle 

diameter classes and 20 speed classes. (Adolf Thies 

GbmH & Co. KG, 2011) 

 

3.1.4. Tipping bucket  

The tipping bucket is one of the most frequently used 

rain gauges for measuring rainfall. A tipping bucket 

has a bucket in which rainfall is collected and produces 

a measurement when a certain amount of water that 

has been collected. The used rain collector with 

product number 7852 has a collection area of 214 cm
2
 

and records every 0.2 mm of rainfall. Furthermore, it 

delivers continuous rainfall data, with a chosen time 

resolution of 5 minutes. (Rain Collector # 7852 & 

7852M, 2004)   

The accuracy of the tipping bucket for rain rates up to 

50 mm/hr is equal to the greatest value of 4 % of the 

total or 0.2 mm. For rain rates from 50 mm/hr to 100 

mm/hr, the accuracy is equal to  5 % of the total 

intensity or 0.2 mm, whichever is the biggest value. 

(Rain Collector # 7852 & 7852M, 2004)  

3.2. Method  

In order to answer the research questions, a number of 

steps will be carried out. The steps consist of: 

1. Comparing Delft-disdrometer data with 

tipping bucket data for rain intensity control 

2. Comparing theoretical DSD’s with measured 

DSD’s 

3. Analysing historical GPM data for Myanmar 

4. Validating GPM satellite data  

3.2.1. Comparing Delft-disdrometer data with tipping 

bucket data for rainfall intensity control 

A previous study with Delft-disdrometers, tipping 

buckets and manual rain gauges in Yangon and Bago, 

showed divergent results in rain intensity (Honingh, 

2016). Therefore, rainfall intensities measured with the 

Delft-disdrometer are re-calibrated using the rainfall 

intensities of the tipping buckets. 

In this research, the rainfall intensities measured by 

both the tipping bucket and Delft-disdrometer will be 

checked again. The time resolution for comparing the 

measured rain amount of Delft-disdrometer and tipping 

bucket data was 5 minutes. 

Scatter plots were constructed to visualize differences 

between the two measurement methods. Furthermore, 

the mean bias error (MBE), the root mean squared 

error (RMSE) and the coefficient of determination (R
2
) 

were calculated. Finally, a regression analysis was 
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performed to investigate the relationship between the 

datasets.  

The formula for calculating the mean bias error is: 

    
 

 
      

            (5) 

In which    is the measurement and     is the 

prediction. The formula for calculating the root mean 

squared error is: 

      
 

 
      

       
     (6) 

In which    is the measurement and     is the 

prediction. The formula for calculating the coefficient 

of determination is: 

       
         

 

         
     (7) 

In which    is the measurement,    is the average of the 

measurements and     is the prediction. Finally, the 

formula for the regression analysis is: 

Y = A · X + B      (8) 

In which Y is the dependent variable, X the 

independent variable, A the slope coefficient and B the 

intercept with the Y-axis.  

3.2.2. Comparing theoretical DSD’s with measured 

DSD’s 

According to Uijlenhoet (1999), DSD’s as shown in 

Figure 2 are to be expected. This figure shows that the 

higher the rain intensity the higher the probability of 

large drop sizes.  

 

Figure 2: Theoretically expected DSD, in which the full line 
represents the intensity class of 1 mm/h, the striped line shows 
the intensity category of 10 mm/h and the dot stripe dot line 
stands for the rain intensity of 100 mm/h. (Uijlenhoet, 1999)  

For both the Thies LPM, Delft-disdrometer and GPM, 

a check was performed to see if the measurement 

results were consistent with the theoretical expected 

DSD.  

Both types of disdrometers produce binned 

measurement results. This implies that the 

disdrometers measure the droplet size and count how 

many droplets fall within a certain range. For the Thies 

LPM, research into binning effects on the DSD has 

been carried out (Garcia et al., 2014). This study 

showed that the effect of binning DSD data can lead to 

a maximum error of 5 % in rainfall and reflectivity 

during heavy rainfall intensities. Furthermore, a 

noticeable impact of binning methods on the DSD was 

reported.  

First, research was carried out to check whether a 

gamma fit or a generalized gamma fit corresponded 

best to the binned measurement results. Second, rain 

intensity categories were made, with which probability 

density curves were created.  

3.2.3. Analysing historical GPM data 

Historical GPM data were analysed in order to find 

possible patterns. For this, the eight locations that were 

described in paragraph 2.2 were used. First, the 

measurements of all the locations are combined to see 

whether the by GPM measured DSD follows the in 

theory expected DSD. Second, the variance in 

measured rain intensities was compared for the 

different locations, for which box plots were used. This 

gives an indication for the possible spatial variation in 

precipitation.  

3.2.4. Validating GPM satellite data  

For GPM satellite data validation ground measured 

data, both the Thies LPM and the Delft-disdrometer 

data, are taken as the ‘ground truth’. The one minute 

findings of the GPM are compared with the 

measurement results of the ground devices. For this, 

plots were made for DSD comparison. Beside this, the 

MBE, the RMSE, the R
2
 and the regression 

coefficients were determined. For comparing the rain 

intensities, the relative error was calculated. The 

formula for the relative error is: 

Erelative = 
             

   
 

In which    is the prediction and    is the actual value. 
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4. Results and discussion 

4.1. Comparing tipping bucket data with Delft-

disdrometer data for rain intensity control  

For the tipping bucket and Delft-disdrometer, the 

amount of precipitation for every five minutes was 

compared. In order to present the differences between 

these, scatter plots have been constructed, which are 

shown in Figure 3 and Figure 4.  

In Figure 4, it can be seen that for low rainfall 

intensities the y=x line is a good fit. However, the error 

increases seriously for higher rainfall intensities. For 

Figure 3, the error is more constant for different rain 

intensities.  

 

Figure 3: Scatter plot of tipping bucket & Delft-disdrometer 
comparison, locations: Yangon (left) and Bago (right). 

 

Figure 4: Scatter plot of tipping bucket & Delft-disdrometer 
comparison, location: Bago. 

In addition, a statistical analysis has been performed, 

of which the results can be seen in Table 3. In this 

table, it can be seen that the results for the tipping 

bucket and Delft- disdrometer comparison are the best 

for location Yangon.  

Table 3: Comparison of rain amount measured by the tipping 
bucket and the Delft-disdrometer in Yangon and Bago. In this 
table, the mean biased error (MBE), Root mean squared error 
(RMSE), coefficient of determination (R

2
), the slope coefficient of 

the regression line (A) and the regression line its intercept with 
the Y-as (B) are given. 

Location:  Yangon Bago 

Time span  11July-5Sept. 11-21 July 

MBE [mm] -4.4·10
-3

  6.9·10
-4

 

RMSE [mm]  1.3·10
-1

  2.1·10
-1

 

R
2 
[-]  8.3·10

-1
  7.8·10

-1
 

A [-]   9.8·10
-1

  7.8·10
-1

 

B [mm]
  5.2·10

-3
  1.6·10

-2
 

 

4.2. Comparing theoretical DSD’s with measured 

DSD’s – Thies LPM 

One year of Thies LPM data for the location De Bilt 

was analysed in order to compare the theoretical DSD 

with the measured DSD of the Thies LPM. In the 

Netherlands, high rain intensities are less common. 

Therefore different rain intensity classes are chosen 

compared to the ones used in Figure 2, but still a 

comparable figure is expected. The chosen intensity 

classes are 1 mm/h, 5 mm/h, 10 mm/h and 50 mm/h.  

First, it was determined whether a gamma or a 

generalized gamma function would fit the measured 

data best. The results showed that in all cases the 

generalized gamma function outperformed the gamma 

function.  

In Figure 5, the average bins of the different intensity 

classes are plotted to get a visual impression of the 

binned data of the LPM. Also, it shows how the data 

and the corresponding fits relate to each other. Both 

functions provide a good fit, but the generalized 

gamma results were slightly better. The reason why the 

generalized gamma fit gives a better result is because 

this fit has more parameters, which leads to more 

freedom to develop.  
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Figure 5: Comparing for every intensity class, the average bins of 
the LPM data with the gamma and generalized gamma fit. The 
average results for the R

2
 of the gamma fit were respectively 

0.71, 0.73, 0.78 and 0.84. The average results for the R
2
 of the 

generalized gamma fit were respectively 0.84, 0.82, 0.84 and 
0.85. 

Subsequently, probability density curves with 90 % 

confidence bands were made using fitted generalized 

gamma distributions on the binned data. The results 

can be found in Figure 6, where it can be observed that 

larger droplets were measured for increasing 

intensities. There is no overlap in the peaks of the 90 

% confidence bands, this leads to an increased 

confidence in that the DSD’s follow the theory. 

Furthermore, it can be seen that the bands for 10 and 

50 mm/h are bigger compared to the bands of 1 and 5 

mm/h. This is because there are more measurement 

results for 1 and 5 mm/h, which results in smaller 

confidence bands. 

 

Figure 6: Probability density curve of the generalized gamma fit 
on the LPM data with 90 % confidence bands, the bands are set 
as follows; 0.99-1.01, 4.50-5.50, 9.50-10.50,40.0-60.0 mm/h. 

The mean curve was compared with all the binned 

data, of which the R
2
 is given in the legend of Figure 6. 

The best relation between the mean confidence band 

and the binned data was found for the intensity class of 

50 mm/h, with an R
2
 of 0.85. 

4.3. Comparing theoretical DSD’s with measured 

DSD’s – Delft-disdrometer  

Yangon 

Two months of Delft-disdrometer data for the location 

Yangon was analysed. In Myanmar, higher rainfall 

intensities are more common than in the Netherlands. 

For this reason, the intensity of 100 mm/h replaced the 

intensity of 5mm/h. The data collection period was 

from 5 July 2016 until 5 September 2016.  

The Delft-disdrometer is not capable of measuring 

droplets with a diameter smaller than 1 mm. Due to the 

recalibration, it can be observed that also bins larger 

than 1 mm are not well represented when comparing 

this to the theoretical DSD.  

Deriving the droplets that have a diameter between 0 

and 1 mm is therefore challenging when using the 

Delft-disdrometer. From Figure 7 it can be observed 

that directly fitting the generalised gamma and gamma 

distributions to the data resulted in shifted DSD’s.  

 

Figure 7: Comparing the binned Delft-disdrometer data with the 
gamma and generalized gamma fit. Droplets smaller than 1 mm 
could not be detected by the Delft-disdrometer.  

A different method of fitting gamma and generalised 

gamma functions was therefore used. Due to the fact 

that the Delft-disdrometer only provides drop sizes 

larger than one mm, a function has to be fitted on the 

tail of the data. With this information it is possible to 

derive an estimate for drop size frequencies between 0 

and 1 mm.  

In order to determine which function would be the 

preferable one to use several tests were performed on 
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Thies LPM data. Only the functions with R
2
 above 

0.99 for the tail (D >1 mm) section were accepted. 

Subsequently, the best function was then selected 

based on the R
2
 of data in the head (D < 1 mm) of the 

probability density functions. Results of rain intensities 

1, 10 and 50 mm/h showed that the generalized gamma 

(R
2
; 0.74, 0.66, 0.78) outperformed the gamma 

distribution (R
2
; 0.10, 0.25, 0.51). 

For rain intensities of 1, 10 and 50 mm/h, the Thies 

LPM in De Bilt classified 15, 24 and 37 % of all the 

rain drop diameters bigger than 1 mm. Furthermore, 

Uijlenhoet (1999) showed that approximately 45 % of 

the droplets during 100 mm/h intensity had a diameter 

bigger than 1 mm. 

Combining these findings, the tail of the measured 

DSD of the Delft-disdrometer was selected and 

multiplied by its corresponding reduction factor. After 

this data transformation, new generalized gamma 

distributions were created. Only the function with a 

coefficient of determination larger than 0.99 with 

respect to the transformed data, were selected (see 

Figure 8).  

From the figure below, it can be seen that the largest 

spread in each of the intensity classes is located in the 

part without measurements. This is because the tail of 

the distribution was measured, while the peak was not 

measured at all.  

 

Figure 8: Representative probability density curves for the Delft-
disdrometer in Yangon. Generalized gamma distributions were 
fitted on the measurement result for drop diameters bigger than 
1 mm. Only the distributions which had on the measured interval 
a R

2
 bigger than 0.99 were taken into account. 

The benefit of plotting all the functions with a 

coefficient of determination larger than 0.99 compared 

to plotting only the best fit, is that the spread in 

potential DSD is visible. However, it is possible that 

the reduction factor for the Netherlands and Myanmar 

is different, which directly changes the tail and thus all 

potential fits. Therefore, additional research should be 

conducted with industrial standard disdrometers in 

several climates to determine the variation in the 

percentage of droplets with a diameter bigger than 1 

mm.    

Bago 

For the location Bago, a remarkable spread in the 

droplets diameter was detected compared to theory and 

the previous results. Therefore, it can be concluded 

that recalibration of the Delft-disdrometer in Bago was 

unsuccessful. For this reason, the results found in Bago 

are not further used.  

4.4. Analysing historical GPM data for 8 locations in 

Myanmar 

In Table 4, the number of rain events measured by the 

GPM satellite are given for each study location. Data 

was collected between March 9 2014 and August 9 

2016.  

Table 4: Number of GPM rain measurements between March 9 
2014 and August 8 2016, for 8 locations throughout Myanmar. 

Location  Abbreviation # GPM 

satellite rain 

detections 

1. Mandalay  MAN 10 

2. Naypyiadaw NAP 9 

3. Yangon YAN 17 

4. Dawei DAW 23 

5. Mohnyin MOH 9 

6. Kengtung KEN 15 

7. Nat Ma Taung 

National Park 

NAT 31 

8.Lenya National 

Park 

LEN 18 

 

In Figure 9 the measured DSD’s of all eight locations 

are combined. Measured rain intensities were, for this 

historical analysis, on average quite low. For this 

reason the rain intensity was binned in the following 

ranges; 0-1 mm/h, 1-5 mm/h and > 5 mm/h. It can be 

seen that on average the diameter of the droplets 

increases and the height of the probability density 

curve thus decreases with increasing precipitation 

intensity. This is as expected and follows from the 

theory discussed in 3.2.2. 
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Figure 9: Combined drop size distributions of all 8 study locations 
in Myanmar. Data was collected between March 9 2014 and 
August 8 2016. 

In Figure 10, box plots show the spread in measured 

rain intensity by the GPM for every study location. In 

Mandalay, which is located in the dry zone, very low 

rain intensities were measured. Interestingly, results 

from other locations outside the dry zone show very 

low rain intensities too. Due to the limited GPM 

measurements, it is possible that high rain events are 

common, but remain undetected. Therefore, it is not 

possible to draw reliable conclusions about possible 

differences in common rain intensities or DSD’s.  

 

Figure 10: Box plots of the rain intensities measured by the GPM 
for the 8 study locations in Myanmar. Measurement period was 
between March 9 2014 and August 8 2016. 

4.5. Comparison GPM data with LPM ground 

measurements of the KNMI (De Bilt, Netherlands) 

Measurement statistics concerning the Thies LPM in 

De Bilt are given in the Table 5. Between March 2014 

and March 2016, the GPM has 242 measurements for 

the location De Bilt. Of those measurements, only 11 

times precipitation was measured. In one of those 

cases, the Thies LPM did not measure precipitation at 

all. Vice versa, in 15 measurements where rain was 

detected by the Thies LPM, no rain was detected by 

the GPM.  

Research showed that larger errors in GPM products 

occur for higher latitudes and during the winter period 

(AghaKouchak et al., 2012). However, the measured 

errors are not well documented in literature. Most 

papers only mention that the validation results were 

used to improve the GPM algorithms. 

Table 5: Measurement statistics of GPM and Thies LPM 
comparison for location De Bilt. Data was collected between 
March 2014 and March 2016. 

 2014 2015 2016 

Number of GPM satellite 

measurements with rain 
4 6 1 

Number of GPM satellite 

measurements without rain 
89 134 8 

Number of measurements where 

the LPM measured rain while no 

rain was measured by the GPM 

satellite 

3 12 0 

 

During the GPM satellite measurement of 12-05-2014, 

the LPM in De Bilt was undergoing maintenance. 

Measurements of both the LPM and GPM were only 

taken into account when two values could be used for 

comparison. Furthermore, the measurement of 30-01-

2015 where solid precipitation was measured was also 

not taken into account. Without those, eight events 

were compared and the results are shown in Table 6 

and Figure 11.  

For all eight events, the LPM data was best modelled 

by the generalized gamma fit. For three of the eight 

compared measurements, the measured rain intensities 

were of the same order of magnitude. In the other 

situations, both under and over estimation of GPM 

occurred. The relative errors that were made by the 

under-and overestimations in rain intensity vary 

between 49 and 3314 %. 

For six results (08/07/2014, 16-10-2014, 01/02/2015, 

25-03-2015, 16-10-2015, 28-11-2015), the GPM 

DSD’s matched with the LPM DSD’s. However, for 

only three (08/07/2014, 16-10-2014, 01/02/2015) of 

those measurements the rain intensity matched, while 

for the other cases the rain intensity was 

underestimated by the GPM. During one event (07-03-

2016), where the GPM had measured a lot of small 

droplets and fewer big droplets compared to the LPM 

measurements, the corresponding rain intensity was 

remarkably enough overestimated. For the last 

discussed event (23/03/2014), both the DSD and rain 

intensity were overestimated.  
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Table 6: GPM rain measurement overview and comparison to LPM findings (Location De Bit). In this table, the mean biased error [mm], 
Root mean squared error [mm], coefficient of determination [-], the slope coefficient of the regression line [-] and the regression line its 
intercept with the Y-as [mm] are given. 

Date and 

time 

GPM rain      

rate 

[mm/h] 

LPM rain rate 

[mm/h] 

 Gamma fit 

LPM data 

Generalized 

gamma fit 

LPM data 

GPM 

gamma 

distribution 

23-03-2014 

12:35 

2.97 0.087 MBE 

RMSE 

R2 

A 

B 

1.9·10-3 

1.3·10-1 

9.4·10-1 

6.3·10-1 

1.1·10-1 

6.1·10-4 

1.1·10-1 

9.6·10-1 

6.4·10-1 

1.1·10-1 

8.7·10-2 

5.0·10-1 

3.0·10-1 

2.6·10-1 

1.8·10-1 

08-07-2014 

05:24 

0.31 0.371 MBE 

RMSE 

R2 

A 

B 

2.3·10-2 

3.0·10-1 

7.6·10-1 

6.4·10-1 

1.0·10-1 

2.2·10-2 

3.0·10-1 

7.7·10-1 

7.0·10-1 

8.6·10-2 

-2.4·10-2 

1.9·10-1 

8.8·10-1 

1.1·100 

-1.4·10-2 

16-10-2014 

07:24 

1.34 1.380 MBE 

RMSE 

R2 

A 

B 

1.9·10-3 

1.3·10-1 

9.4·10-1 

8.3·10-1 

5.3·10-2 

6.1·10-4 

1.1·10-1 

9.6·10-1 

8.6·10-1 

4.3·10-2 

1.7·10-3 

1.4·10-1 

9.4·10-1 

8.1·10-1 

5.9·10-2 

01-02-2015 

23:24 

0.51 0.504 MBE 

RMSE 

R2 

A 

B 

9.4·10-4 

1.3·10-1 

8.8·10-1 

7.9·10-1 

6.4·10-2 

4.7·10-4 

1.1·10-1 

9.2·10-1 

8.5·10-1 

4.6·10-2 

-3.2·10-2 

1.7·10-1 

9.3·10-1 

1.3·100 

-6.1·10-2 

25-03-2015 

01:32 

0.68 2.678 MBE 

RMSE 

R2 

A 

B 

1.4·10-2 

2.2·10-1 

9.0·10-1 

7.5·10-1 

7.5·10-2 

1.1·10-2 

1.9·10-1 

9.2·10-1 

7.7·10-1 

6.5·10-2 

2.0·10-2 

2.4·10-1 

8.8·10-1 

7.1·10-1 

8.5·10-2 

16-10-2015 

13:18 

0.72 1.4 MBE 

RMSE 

R2 

A 

B 

6.0·10-3 

1.3·10-1 

9.4·10-1 

8.3·10-1 

4.9·10-2 

5.1·10-3 

1.1·10-1 

9.6·10-1 

8.7·10-1 

3.5·10-2 

-6.3·10-3 

1.3·10-1 

9.3·10-1 

8.7·10-1 

5.0·10-2 

28-11-2015 

00:56 

0.30 3.453 MBE 

RMSE 

R2 

A 

B 

2.0·10-2 

3.0·10-1 

7.3·10-1 

5.5·10-1 

1.3·10-1 

1.7·10-2 

2.7·10-1 

7.9·10-1 

6.3·10-1 

1.1·10-1 

2.8·10-2 

2.8·10-1 

7.5·10-1 

6.4·10-1 

9.5·10-2 

07-03-2016 

02:36 

0.29 0.097 MBE 

RMSE 

R2 

A 

B 

1.3·10-3 

1.7·10-1 

8.1·10-1 

7.0·10-1 

8.5·10-2 

1.2·10-3 

1.6·10-1 

8.4·10-1 

7.5·10-1 

7.2·10-2 

-7.3·10-2 

3.7·10-1 

5.3·10-1 

1.0·100 

6.7·10-2 

 

Figure 11: Comparison of probability density curves LPM and GPM (Location: De Bilt).
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4.6. Comparison GPM data with Delft-disdrometer 

measurement results (Yangon, Myanmar) 

During GPM flyover, no rain was measured by the 

Delft-disdrometer and tipping bucket in Yangon. For 

this reason, it is not possible to compare Delft-

disdrometer measurement results with GPM findings.  

See Table 7 for the data collection time span, the 

number of times GPM fly over and the number of rain 

measurements by the GPM and Delft-disdrometer.  

Table 7: Comparing GPM and Delft-disdrometer statistics for 
Yangon, between 5 July and 5 September 2016. 

 2016 

Number of times the GPM fly over 14 
Number of rain events measured by the 

GPM at the location 
3 

Number of rain events measured by the 

Delft-disdrometer during GPM fly over 
0 

 

During two of the three events where the GPM 

measured rain, the intensities where around 0.5 mm/h. 

However, during the last event, a rain intensity of 9.4 

mm/h was measured.  

5. Summary and conclusions 

Validation of the GPM results for DSD’s and rain 

intensities was the main objective in this study. For 

this, two different ground based disdrometers were 

used. Before comparing the GPM and disdrometer 

results, three steps were carried out to assess the results 

of each device. Firstly, rain amounts measured by the 

Delft-disdrometer were compared to tipping bucket 

measurements. Secondly, ground based measured 

DSD’s of the Delft-disdrometer and Thies LPM were 

compared to the theoretical DSD’s. Thirdly, space 

borne GPM data was studied. Finally, the satellite 

measurement results of the GPM were compared to the 

disdrometers measurements.  

The accuracy that was found for the Delft-disdrometer 

in Yangon was better than the accuracy of the one in 

Bago. The results of comparing the Delft-disdrometer 

intensity data with tipping bucket intensity data were a 

R
2
 of 0.83 for Yangon and a R

2
 of 0.78 for Bago. 

Interestingly enough, the Delft-disdrometer in Bago 

measured the low rainfall intensities quite accurately, 

but had a significant larger deviation that occurred for 

rain intensities higher than 3 mm/h. For Yangon, both 

low and high rainfall intensities had only small 

discrepancies between the two types of measurements.  

The DSD’s measured by the Thies LPM in De Bilt 

were similar to the theoretical DSD’s. The Delft-

disdrometer in Yangon was unable to measure drop 

diameters smaller than 1 mm. Therefore a significant 

amount of droplets were not detected, for instance the 

Thies LPM in De Bilt classified for different intensities 

85 till 63 % of all rain drop as smaller than 1mm. This 

resulted in an uncertainty in the height and exact 

location of the probability density curve peak. 

Nevertheless, the peak for smaller droplets decreased 

by increasing rain intensities, which corresponds with 

the theory.  

For the Delft-disdrometer in Bago, the spread in 

measured droplets was much bigger than for both 

Yangon and De Bilt. This is probably due to 

calibration errors which impacts the sensitivity of the 

Delft-disdrometer. As a result, the fits were not 

comparable with the theory. For this reason the DSD 

results of Bago were not taken into account.  

In addition to ground based measurements this paper 

showed the DSD measured by the GPM. Only low 

rainfall intensities were measured, but the produced 

DSD’s already showed a decrease in peak height for 

increasing intensities, what corresponds with the 

theory. The detected spread in rainfall intensity is 

lower than expected, because for most locations, only 

low intensities were found. However, for the locations 

in the delta and coastal region (Yangon, Dawei and 

Lenya National Park), relatively higher rainfall 

intensities were detected. This is in line with the 

expectations based on the annual rainfall for different 

locations in Myanmar 

Furthermore, the measurement results of the Thies 

LPM were compared to the findings of the GPM. For 

most events, the measured DSD’s were comparable 

while the rain intensity only matched for half of the 

events. So it can be concluded, that in case of correct 

parameters the GPM gamma distribution can 

correspond well to the DSD measured by the Thies 

LPM. However, this doesn’t deliver automatically the 

corresponding rain intensity. This means that 

especially the determination of the rain intensity could 

be improved.  

Unfortunately it was not possible to compare the 

measurement results of the GPM and Delft-

disdrometers, because there was no measurement with 

both devices simultaneously detecting rain. On the 

other hand it was remarkable that three measurements 
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indicated the GPM measured rain, even though no rain 

was detected by the ground based devices. 
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Appendix A: Overview of the three GPM data products levels 

 Available products Data description Spatial 

resolution 

Temporal 

resolution 

Level 0 Raw instrument data    

Level 1 1A-GMI GMI unprocessed instrument data, but 

with ancillary information like 

calibration coefficients and 

georeferencing parameters 

4 km x 4km 16 orbits per day 

 1B-GMI Radiometrically and geolocated 

corrected 1A data 

Varies by 

channel 

16 orbits per day 

 1C-GMI 

1C-R 

Common intercalibrated brightness 

temperature 

Varies by 

channel 

16 orbits per day 

 1C-constellation Same but with partner radiometers Varies by 

satellite 

Varies by satellite 

Level 2 2A-GROF-GMI Radar enhanced (RE) precipitation 

retrievals 

4 km x 4km 16 orbits per day 

 2A-GROF- 

constellation 

Radar enhanced (RE) precipitation 

retrievals from 1C 

Varies by 

satellite 

Varies by satellite 

 2A-Ku DPR products 

Scan swath of 245 km 

5.2 km x 5.2 km 16 orbits per day 

 2A-Ka Two scans/outputs: 

One scan: for comparing the central 25 

beams of 2A-Ku 

Second scan: highly sensitive for light 

rain& snow 

5.2 km x 5.2 km 16 orbits per day 

 2A-DPR Reflectivity 

Sigma Zero 

DSD 

Precipitation with vertical structure 

5.2 km x 5.2 km 16 orbits per day 

 2B-CMB Precipitation 

Available time span: past two weeks 

5 km x 5 km  

Level 3 3-GROF 2A-GROF data transformed in gridded 

data 

0.25º x0.25º Daily -monthly 

 3-DPR Gridded data of computed low 

resolution and high resolution data 

0.25º - 0.5º Daily -monthly 

 3-CMB Combined precipitation data (gridded)  0.25º - 0.5º Daily -monthly 

 IMERG Merged product of GMI, partner 

radiometer and IR 

0.1º 30 min - monthly 

Table 8: Overview of the three GPM data products levels (NASA, 2016). 
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Appendix B: Assessing the Drum Effect - Impact of rain droplet 

Terminal fall velocity: 

     
   

    
 

In which    [m/s] is the terminal fall velocity, m [kg] is the mass of the droplet, g [ 
 

   ] the acceleration due to gravity, 

  [
  

   ] the density of the air, A [m
2
] the projected area,    [-] the drag coefficient. 

Kinetic energy: 

    
    

 
 

In which   [J] is the kinetic energy. 

Conservation of energy: 

    

 
 → 

    

 
 

In which k [ 
  

   ] is the stiffness and x [m] is the maximum displacement from its equilibrium position. This physical 

process can be seen as a damped forced vibration. 

Natural frequency: 

    
 

   
 

 

 
 

In which   [Hz] is the undamped natural frequency. This has to be converted to a damped natural frequency by the 

following formula: 

            

In which    [Hz] is the damped natural frequency and   [-] is the damping ratio of the mass spring damper model.  

Damping ratio: 

   
 

    
 

In which c [ 
  

 
 ] is the damping coefficient. 
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This relationship study was preformed with the following parameters: 

- Droplet diameters: 1, 2.5 and 5 mm 

- Damping coefficient: 1 
  

 
 

- Stiffness: k ~ EI · h, while the thickness h is assumed to be constant. Furthermore, it is assumed that the 

stiffness follows a trapezoidal distribution and the EIedge = ¼*EIcentre 

 

Figure 12: Stiffness distribution of piezo disk disdrometer. Note that EImax is the stiffness at x = 20 mm. 

Undamped natural frequency:  
 

   
 

 

 
 = 

 

   
 

 

  
 

Damping ratio:    
 

    
 = 

 

      
  

Damped natural frequency:           = 
 

   
   

 

  
       

 

      
    

The resulting normalized damped natural frequency is shown in Figure 13. 

 

Figure 13: Frequency distribution piezo disk disdrometer. Note that fmax is the damped natural frequency at x = 20 mm. 

This normalized frequency plot was very similar for different drop diameters. The figure below was constructed, to 

assess the relative errors for different drop sizes. This figure shows that the relative error is larger for smaller droplets. 

 

Figure 14: Relative error made by the piezo disk of the disdrometer  



 

 

 

 

 

 

 

 

 

 

Python scripts 

 

 

 

  



 

 

Script 1: Script for tipping bucket – Delft-disdrometer comparison 

import matplotlib.pyplot as plt 

import numpy as np 

import scipy.stats 

import pandas as pd 

from pandas import read_csv, DataFrame 

from sklearn import datasets, linear_model 

from scipy import stats  

 

datayangon = read_csv('yangon11July5Sept.csv',',') 

databago  = read_csv('bago11July21July.csv',',') 

tipyangon = np.zeros(len(datayangon)) 

disyangon = np.zeros(len(datayangon)) 

tipbago  = np.zeros(len(databago)) 

disbago  = np.zeros(len(databago)) 

for q in range(len(datayangon)): 

  tipyangon[q] = datayangon.tip[q] 

  disyangon[q] = datayangon.dis[q] 

for p in range(len(databago)): 

  tipbago[p] = databago.tip[p] 

  disbago[p] = databago.dis[p] 

   

def statistics(y,j): 

  MBE = (1.0/len(y))*np.sum((y-j)) 

  RMSE = np.sqrt((1.0/len(y))*np.sum((y-j)**2.0))   

  Rsqrt = ((scipy.stats.linregress(y,j))[2])**2 

  slope = stats.linregress(y,j)[0] 

  intercept = stats.linregress(y,j)[1] 

  return MBE,RMSE,Rsqrt,slope,intercept 

   

print ('Yangon', statistics(tipyangon,disyangon)) 

print ('Bago', statistics(tipbago,disbago)) 

 

plt.figure(figsize=[5,5]) 

plt.plot(tipyangon, disyangon,'d', label='measurements') 

plt.xlim(0,10) 

plt.ylim(0,10) 

x = np.linspace(0,10,100) 

y = np.linspace(0,10,100) 

plt.plot(x,y, color='red',label='line y=x') 

plt.xlabel('Tipping bucket measured intensity [mm/5min]') 

plt.ylabel('Delft-disdrometer measured intensity [mm/5min]') 

plt.title('Tipping bucket vs Delft-disdrometer (Yangon)') 

plt.legend(loc=1) 

 

plt.savefig("Yangon comparison.png") 

  



 

 

Script 2: Script for Thies LPM data analysis 

import matplotlib.pyplot as plt 

import numpy as np 

import scipy.stats 

import pandas as pd 

from pandas import read_csv, DataFrame 

from scipy import stats  

from scipy.interpolate import spline 

import filemapper as fm 

 

 

wf1 = read_csv('KNMI1gem.csv',',') 

wf5 = read_csv('KNMI5gem.csv',',') 

wf10 = read_csv('KNMI10gem.csv',',') 

wf50 = read_csv('KNMI50gem.csv',',') 

 

 

bins = [0,0.125,0.250,0.375,0.500,0.750,1.0,1.25,1.5,1.75,2,2.5,3,3.5,4,4.5,5] 

binav= [] 

for q in range(len(bins)-1): 

  binav.append(((bins[q+1]-bins[q])*0.5)+bins[q]) 

   

 

MainMatrix = [] 

for i in range(len(wf5)): 

  row = [0] 

  for column in wf5: 

    row.append(wf5[column][i]) 

  MainMatrix.append(row) 

 

output = []    

xbin = [0] 

for i in range(len(MainMatrix[0])): 

  for j in range(MainMatrix[0][i]):   

    xbin.append(binav[i]) 

entries, binedg, pat=plt.hist(xbin,bins,normed='True','r',label='LPM data') 

output.append(entries)   

 

   

plt.figure() 

for i in range(len(output)): 

  plt.plot(binav,output[i],'d')   

 

 

lnspc = np.linspace(0.,5.,len(xbin)) 

ag,bg,cg = stats.gamma.fit(xbin)  

pdf_gamma = stats.gamma.pdf(lnspc, ag, bg,cg)  

pdfdatagamma = stats.gamma.pdf(binav,ag, bg,cg)  

                    

a,b,c,d = stats.gengamma.fit(xbin)  

pdf_gengamma = stats.gengamma.pdf(lnspc, a, b, c,d)  

pdfdatagengamma = stats.gengamma.pdf(binav, a, b, c,d)  

 

 

plt.plot(lnspc, pdf_gamma, ':', color='k', label="Gamma fit LPM") 

plt.plot(lnspc, pdf_gengamma, '--', color='g', label="Gengamma fit LPM") 

plt.xlim(0.,5.) 

plt.ylim(0,2.) 

plt.xlabel('Raindrop diameter, D [mm]') 

plt.ylabel('Probability density [mm^-1]') 



 

 

plt.title('Probability density function - 01/02/2015') 

plt.legend(loc='best') 

plt.savefig("5.png") 

 

def statistics(y,j): 

  MAE = (1.0/len(y))*np.sum(np.abs(y-j)) 

  RMSE = np.sqrt((1.0/len(y))*np.sum((y-j)**2.0))   

  Rsqrt = ((scipy.stats.linregress(y,j))[2])**2 

  slope = stats.linregress(y,j)[0] 

  intercept = stats.linregress(y,j)[1] 

  return MAE,RMSE,Rsqrt,slope,intercept 

  

print('gengamma fit',statistics(output,pdfdatagengamma)) 

print('gamma fit',statistics(output,pdfdatagamma))  

 

  



 

 

Script 3: Script for the probability density curve of Thies LPM, 

with 90 % confidence bands 

import matplotlib.pyplot as plt 

import numpy as np 

import scipy.stats 

import pandas as pd 

from pandas import read_csv, DataFrame 

from scipy import stats  

from matplotlib import style 

from scipy.interpolate import spline 

import filemapper as fm 

 

 

wf1 = read_csv('Intensity1Data.csv',',') 

wf5 = read_csv('Intensity5Data.csv',',') 

wf10 = read_csv('Intensity10Data.csv',',') 

wf50 = read_csv('Intensity50Data.csv',',') 

 

 

def mean_confidence_interval(data, confidence=0.80): 

  a = 1.0*np.array(data) 

  n = len(a) 

  m, se = np.mean(a), scipy.stats.sem(a) 

  h = se * scipy.stats.t._ppf((1+confidence)/2., n-1) 

  return m, m-h, m+h 

 

 

MainMatrix = [] 

for i in range(len(wf1)): 

  row = [0] 

  for column in wf1: 

    row.append(wf1[column][i]) 

  MainMatrix.append(row) 

 

   

bins = [0,0.125,0.250,0.375,0.500,0.750,1.0,1.25,1.5,1.75,2,2.5,3,3.5,4,4.5,5] 

binav= [0] 

for q in range(len(bins)-1): 

  binav.append(((bins[q+1]-bins[q])*0.5)+bins[q]) 

 

 

MainMatrixGenGamma = []  

 

 

for p in range(len(MainMatrix)):   

  x = MainMatrix[p] 

   

  xbin = [0] 

  for i in range(len(binav)-1): 

    for j in range(x[i]):   

      xbin.append(binav[i]) 

   

  lnspc = np.linspace(0.,5.,len(xbin)) 

  a,b,c,d = stats.gengamma.fit(xbin)  

  pdf_gengamma = stats.gengamma.pdf(lnspc, a, b, c,d)  

  pdfdatagengamma = stats.gengamma.pdf(binav, a, b, c,d) 

  

  MainMatrixGenGamma.append(pdfdatagengamma) 

 



 

 

MainBands = [] 

 

for k in range(len(binav)): 

  data = [] 

  for x in range(len(MainMatrixGenGamma)): 

    data.append(MainMatrixGenGamma[x][k]) 

  bands = mean_confidence_interval(data) 

  MainBands.append(bands) 

 

 

MeanBand = [0] 

LowBand = [0] 

HighBand = [0] 

for t in range(1,len(binav)): 

  MeanBand.append(MainBands[t][0]) 

  LowBand.append(MainBands[t][1]) 

  HighBand.append(MainBands[t][2]) 

 

 

lin = np.linspace(0.,5.,len(xbin)) 

MeanBandSM = spline(binav,MeanBand,lin) 

LowBandSM = spline(binav,LowBand,lin) 

HighBandSM = spline(binav,HighBand,lin) 

 

 

plt.plot(lin,MeanBandSM,color='blue',label="1 mm/h, Rsqrt =0.83") 

#plt.plot(lin,LowBandSM,color='blue',linestyle='--') 

#plt.plot(lin,HighBandSM,color='blue',linestyle='--') 

plt.fill_between(lin,MeanBandSM,LowBandSM,  

where = MeanBandSM > LowBandSM,facecolor='blue',alpha=0.5 ) 

plt.fill_between(lin,MeanBandSM,HighBandSM,  

where = MeanBandSM < HighBandSM,facecolor='blue',alpha=0.5) 

 

  

plt.legend(loc='best') 

plt.ylim(0,1.5) 

plt.xlabel('Raindrop diameter [mm]') 

plt.ylabel('Probability density [mm^-1]') 

plt.title('Probability density curve with 90 % confidence bands') 

 

 

plt.savefig("KNMI_plotlineband.png") 

  



 

 

Script 4: Script for Delft-disdrometer data analysis 

import matplotlib.pyplot as plt 

import numpy as np 

import scipy.stats 

import pandas as pd 

from pandas import read_csv, DataFrame 

from scipy import stats  

from scipy.interpolate import spline 

import filemapper as fm 

 

binavp = read_csv('binav.csv',',') 

 

data = read_csv('Measurementpoints.csv',',') 

     

def statistics(y,u): 

  MAE = (1.0/len(y))*np.sum(np.abs(y-u)) 

  RMSE = np.sqrt((1.0/len(y))*np.sum((y-u)**2.0))   

  Rsqrt = ((scipy.stats.linregress(y,u))[2])**2 

  slope = stats.linregress(y,u)[0] 

  intercept = stats.linregress(y,u)[1] 

  return MAE,RMSE,Rsqrt,intercept,slope 

 

lnspc = np.linspace(0,5,100) 

a = np.linspace(0.6,1.0,10) 

b = np.linspace(1.8,2.2,10) 

c,d = 0,1 

#pdf_gengamma = [] 

#pointsgengam = [] 

 

for i in range(len(a)): 

  for j in range(len(b)): 

    pdf_gengamma = stats.gengamma.pdf(lnspc, a[i], b[j], c, d)  

    pointsgengam = stats.gengamma.pdf(binavp, a[i], b[j], c, d) 

    #print (statistics(data, pointsgengam)[2]) 

    if statistics(data, pointsgengam)[2] > 0.993: 

      #print(statistics(data, pointsgengam)[2]) 

      #print(a[i],b[j]) 

      #plt.figure() 

      plt.plot(binavp,data,'rd') 

      plt.plot(lnspc,pdf_gengamma) 

      plt.tick_params( 

      axis='x',        

      labelbottom='off') 

    plt.savefig("Yangon1gg.png") 

  



 

 

Script 5: Script for DSD’s of the eight study locations in Myanmar 

import matplotlib.pyplot as plt 

import numpy as np 

import scipy.stats 

import h5py as h5py 

import math  

import pandas as pd 

from pandas import read_csv, DataFrame 

from numpy.random import normal  

from scipy.stats import norm  

from scipy.integrate import simps 

from scipy import stats  

from os import listdir 

from os.path import isfile, join 

import filemapper as fm 

 

 

#Import Data 

all_files = fm.load('Data') 

 

 

##Set up figure 1 

fig1=plt.figure() 

fig1,ax = plt.subplots(nrows=1,ncols=3,sharey=True,sharex=True,figsize=(10,5)) 

ax[0].set_title('Bin 0-1 mm/h',fontsize='medium') 

ax[1].set_title('Bin 1-5 mm/h',fontsize='medium') 

ax[2].set_title('Bin > 5 mm/h',fontsize='medium') 

 

 

for n in range(len(all_files)): 

  data = read_csv(all_files[n],',') 

  D0 = data.Dparam 

  N0 = data.Nparam 

  R = data.Intensity 

  Dist = data.Distance 

       

  #Prepare for calc 

  mu = 3.0 

  D = np.linspace(0,5,100) 

  MainN = np.zeros([100,len(N0)]) 

  BinBoundary1 = 1 

  BinBoundary2 = 5 

   

  #Count number of measurements inside each bin 

  a = 0 

  b = 0 

  c = 0 

  for t in range(len(N0)): 

    if R[t]<=BinBoundary1: 

      a += 1 

    if R[t]>BinBoundary1 and R[a]<= BinBoundary2: 

      b += 1 

    if R[t]> BinBoundary2: 

      c +=1 

   

  #Main Loop, calc + plot 

  MainN1 = np.zeros([100]) 

  MainN2 = np.zeros([100]) 

  MainN3 = np.zeros([100]) 

   



 

 

  for k in range(len(N0)): 

    Nparam = N0[k] 

    Dparam = D0[k] 

    def DSD(Nparam,Dparam): 

      N = [] 

      for i in range(100):   

        N.append(Nparam*D[i]**mu*np.e**(-((3.67+mu)*D[i])/Dparam)) 

      return N 

       

    int=simps(DSD(Nparam,Dparam),D) 

     

    Nnorm = np.zeros([100]) 

     

    for j in range(100):   

      Nnorm[j]=((Nparam*D[j]**mu*np.e**(-((3.67+mu)*D[j])/Dparam))/int)   

     

    #Plot1 

    if R[k] <= BinBoundary1: 

      ax[0].plot(D,Nnorm,color='blue',linewidth=1, alpha=0.1) 

    if R[k] > BinBoundary1 and R[k] <= BinBoundary2: 

      ax[1].plot(D,Nnorm,'g',linewidth=1, alpha=.1) 

    if R[k] > BinBoundary2: 

      ax[2].plot(D,Nnorm,color='red',linewidth=1, alpha=.1) 

     

    if R[k] <= BinBoundary1: 

      MainN1 = MainN1 + Nnorm/a 

    if R[k] > BinBoundary1 and R[k] <= BinBoundary2: 

      MainN2 = MainN2 + Nnorm/b 

    if R[k] > BinBoundary2: 

      MainN3 = MainN3 + Nnorm/c 

       

  meanvalues1 = []  

  meanvalues2 = []  

  meanvalues3 = []   

  for m in range(100): 

    meanvalues1.append(np.mean(MainN1[m])) 

    meanvalues2.append(np.mean(MainN2[m])) 

    meanvalues3.append(np.mean(MainN3[m])) 

 

 

#Plot and save 

for ax in fig1.get_axes(): 

  ax.set_xlabel("Raindrop diameter, D [mm]") 

for ax in fig1.get_axes(): 

  ax.set_ylabel("Probability density [mm^-1]") 

fig1.tight_layout() 

plt.suptitle("Dropsize Distributions",size=12) 

fig1.subplots_adjust(top=0.88) 

 

plt.savefig("AllCities.png") 

  



 

 

Script 6: Script for box plots of measured rain intensities by GPM 

import matplotlib.pyplot as plt 

import numpy as np 

import h5py as h5py 

import pandas as pd 

from pandas import read_csv, DataFrame 

import filemapper as fm 

 

 

#Import Data 

all_files = fm.load('Data') 

 

 

R = [] 

for n in range(len(all_files)): 

  data = read_csv(all_files[n],',') 

  R.append(data.Intensity) 

 

   

plt.boxplot(R) 

 

labels = ( 'MOH', 'NAP', 'DAW', 'YAN', 'NAT', 'KEN', 'MAN','LEN') 

 

plt.xticks(range(1,9),labels) 

plt.ylim(0,20) 

plt.xlabel('Study location') 

plt.ylabel('Rainintensity [mm/h]') 

plt.title('Boxplots of measured rain intensities by GPM') 

 

plt.savefig("Boxplot intensities.png") 

  



 

 

Script 7: Script for comparing the data results of Thies LPM and 

GPM  

import matplotlib.pyplot as plt 

import numpy as np 

import scipy.stats 

from numpy.random import normal  

from scipy.stats import norm  

from scipy.integrate import simps 

from scipy import stats  

 

 

#LPM Bins 

bins = [0,0.125,0.250,0.375,0.500,0.750,1.0,1.25,1.5,1.75,2,2.5,3,3.5,4,4.5,5] 

binav= [] 

for q in range(len(bins)-1): 

  binav.append(((bins[q+1]-bins[q])*0.5)+bins[q]) 

   

x = [0,6,12,17,37,15,12,10,8,5,3,3,0,1,0,0] 

 

xbin = [0] 

for i in range(len(binav)): 

  for j in range(x[i]):   

    xbin.append(binav[i]) 

     

entries, bin_edges, patches = plt.hist(xbin,bins,'r',normed='True',label="LPM") 

 

 

#LPM fit 

data = [] 

for i in range(len(entries)): 

  data.append(entries[i]) 

 

lnspc = np.linspace(0.,5.,len(xbin)) 

ag,bg,cg = stats.gamma.fit(xbin)  

pdf_gamma = stats.gamma.pdf(lnspc, ag, bg,cg)  

pdfdatagamma = stats.gamma.pdf(binav,ag, bg,cg)  

                    

a,b,c,d = stats.gengamma.fit(xbin)  

pdf_gengamma = stats.gengamma.pdf(lnspc, a, b, c,d)  

pdfdatagengamma = stats.gengamma.pdf(binav, a, b, c,d)  

 

 

#GPM 

Nnul = 33.81 

Dnul = 1.06 

mu = 3.0 

D = np.linspace(0,5,len(xbin)) 

 

def DSD(Nnul,Dnul): 

  N = [] 

  for i in range(len(xbin)):   

    N.append(Nnul*D[i]**mu*np.e**(-((3.67+mu)*D[i])/Dnul)) 

  return N 

def DSD2(Nnul,Dnul): 

  N = [] 

  for i in range(len(binav)):   

    N.append(Nnul*binav[i]**mu*np.e**(-((3.67+mu)*binav[i])/Dnul)) 

  return N   

integrate=simps(DSD(Nnul,Dnul),D) 



 

 

int2=simps(DSD2(Nnul,Dnul),binav) 

Nnorm = [] 

for j in range(len(xbin)):   

  Nnorm.append((Nnul*D[j]**mu*np.e**(-((3.67+mu)*D[j])/Dnul))/integrate) 

GPMdata = np.zeros(len(data))   

for k in range(len(binav)): 

  GPMdata[k] = (Nnul*binav[k]**mu*np.e**(-((3.67+mu)*binav[k])/Dnul))/int2 

 

 

#plot 

plt.plot(D,Nnorm,color='k',label="GPM") 

plt.plot(lnspc, pdf_gamma,':',color='k', label="Gamma fit LPM") 

plt.plot(lnspc, pdf_gengamma,'--',color='g', label="Gengamma fit LPM") 

 

plt.xlim(0,3.5) 

plt.ylim(0,2.5) 

 

plt.xlabel('Raindrop diameter, D [mm]') 

plt.ylabel('Probability density [mm^-1]') 

plt.title('Probability density function - 01/02/2015') 

plt.legend(loc=1) 

 

plt.savefig("1-2-15.png") 

 

 

#stats 

def statistics(y,j): 

  MAE = (1.0/len(y))*np.sum(np.abs(y-j)) 

  RMSE = np.sqrt((1.0/len(y))*np.sum((y-j)**2.0))   

  Rsqrt = ((scipy.stats.linregress(y,j))[2])**2 

  slope = stats.linregress(y,j)[0] 

  intercept = stats.linregress(y,j)[1] 

  return MAE,RMSE,Rsqrt,intercept,slope 

  

print('gengamma fit',statistics(data,pdfdatagengamma)) 

print('gamma fit',statistics(data,pdfdatagamma)) 

print('GPM',statistics(data,GPMdata)) 

 

 

 

 


