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Abstract

Image processing is found in many fields and in many domains. Advances in digital image cap-
turing technology allows for faster video rates, of higher quality, than has been seen before and
that trend continues. With greater resolution and increased data flow there is also a need for
faster and better hardware for image processing. As the trend introduced in Moore’s law is slow-
ing down, and possibly reaching saturation in the coming years, there is an ongoing search for
new and different solutions in processor architecture. The trend went from single core to multi
core and many core and now we are looking into other designs like memory streaming archi-
tectures and runtime reconfigurable computers. This thesis designs, implements and evaluates
a programming interface for a dynamically-reconfigurable memory-streaming platform for image
processing with a focus on programmability, power consumption, reconfigurability and perfor-
mance. An application programming interface (API) is created to aid with new code development
for the platform. The API is a library of functions that are run on an ARM processor and are
used to setup, and communicate with, a stream of ρ-VEX soft processors running on a field pro-
grammable gate array (FPGA). In this research we look at other state-of-the-art solutions, for
comparison and inspiration, that focus on programmability, reconfiguration and performance. The
platform is reconfigurable at runtime and experiments show that it takes under 200 ms to com-
pletely reconfigure the fabric and initialize a new configuration of ρ-VEX processors. The platform
is tested on a Zynq-7000 chip from Xilinx. Comparison is made between streaming architecture
and a many core setup using the same amount of ρ-VEX soft processors. The results show a
speedup of factor of 2 by using a single processing stream of seven cores compared with seven
cores individually running the same algorithm. The result is a working fully-programmable and
open-source streaming platform for the image processing domain.
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Introduction 1
Image processing is found in many fields and in many domains. To name few example cases
where real time image processing is used are: medical imaging, drones, satellites, augmented
reality devices, autonomous underwater vehicles (AUVs) and computer vision. Advances in
digital image capturing technology allows for faster video rates, of higher quality, than has been
seen before and that trend continues. With greater resolution and increased data flow there is
also a need for faster and better hardware for image processing.

As the trend introduced in Moore’s law is slowing down, and possibly reaching saturation
in the coming years, there is an ongoing search for new and different solutions in processor
architecture. The trend went from single core to multi core and many core. Now we are looking
into other designs like memory streaming architectures and runtime reconfigurable computers.
The emphasis used to be mostly on performance but now it is also energy efficiency, size and
programmability. New solutions have to be easily programmable for fast development of new
code a reuse of older algorithms.

There are many solutions available, and widely adopted for processing real time video
streams. Central processing units (CPUs), graphics processing units (GPUs), field programmable
gate arrays (FPGAs), digital signal processors (DSPs) and application specific integrated cir-
cuits (ASICs) are the most common devices used. They all vary greatly in terms of performance
and programmability. From easily programmable devices (CPUs) to high performance chips
(ASICs).

1.1 Performance vs programmability

CPUs and GPUs are the most utilized processing devices on the market today. They are both eas-
ily programmable and very widely adapted. With languages like the open computing language
OpenCL, a program can be written once and compiles for a variety of devices form different ven-
dors. This is great in terms of programmability but trails behind more specialized solutions in
terms of performance and energy efficiency.

Highly optimized ASICs are on the other end of the performance and programmability spec-
trum. They can be very fast and energy efficient as they are specially designed solutions for one
given problem domain. The development cycle for an ASIC can be long and takes months to
design. On top of that is an expensive and time consuming production time. ASICs can not be
updated after they have been produced so they become obsolete when the application domain
changes or a bug is discovered in the design.

FPGAs are both programmable and reprogrammable, like CPUs and GPUs, so they can
be updated in the field and do not get obsolete as easily as ASICs. Though FPGAs are pro-
grammable, the development cycle is still fairly long for a highly optimized design. Creating a
hardware design on an FPGA is almost as time consuming as designing a new ASIC. It requires
a highly specialized knowledge of hardware design, functionality and use of specialized tools

1



2 CHAPTER 1. INTRODUCTION

and hardware description languages (HDLs). To make programming for FPGAs more appealing
for the general developer a number of high level synthesis (HLS) tools have been developed to
create a hardware designs using higher level languages like C/C++, OpenCL, Haskel and others.
In [10] the use of OpenCL for writing FPGA code proofs to be both faster and more efficient than
using HDL. The cost of these solutions, compared to CPU programming for example, are long
compile and synthesis cycle times.

The need for performance and programmability is indeed present. There exists a great deal of
knowledge, in industry and academia, on image and signal processing using high level languages
like C/C++, OpenCL, Cuda etc. Bridging this gap between programmability and performance is
an active research field and in Section 2.5 some published solutions in the field will be discussed.

1.2 Project goal

This thesis project is based on the work introduced in [2] which in turn is based on the ρ-VEX
[11] processor. It is a proof of concept for a memory streaming hierarchy architecture with
medical image processing in mind. There exists an implementation of the platform running
a Mandelbrot demo utilizing 64 ρ-VEX processing cores. The Mandelbrot demo runs on a
VC707 board from Xilinx. It has an HDMI output to showcase real time results produced by
the memory streaming architecture, on an external monitor. The code base for the demo is a
coupled application running on a Xilinx’s MicroBlaze and the ρ-VEX processing cores. The
aim of this project is extract main functionality of the code developed for the MicroBlaze into a
library of functions that will serve as the a foundation for writing new applications. Making the
ρ-VEX streaming architecture runtime reconfigurable would be an interesting addition. I.e., the
total number of streams, and the number of ρ-VEX cores within a stream, could be configurable
after a program starts executing. These ideas are summarized in the thesis problem statement:

Is it feasable to use the ρ-VEX memory streaming architecture as a general, programmable,
run time reconfigurable image processing platform?

To get a clearer idea of what needs to be accomplished in this thesis work the problem
statement is broken down into four separate steps, or goals, that all should be implemented.
These steps are:

1. Create a general library in C that includes all necessary building block to interface a new
application with the ρ-VEX streaming device.

2. Implement a functionality so that the number of streams, and cores within a stream, can
be dynamically changed at runtime.

3. Shorten the application development cycle by removing the need to create a new hardware
design while a new program is being developed.

4. Create an input output interface for video streaming to properly showcase the platform.



1.3. THESIS OUTLINE 3

1.3 Thesis outline

The remainder of this thesis report is divided into five separate chapters and their content is as
follows:

• Chapter 2. Background In the background chapter we will have closer look at the ρ-VEX
memory streaming architecture and its state at the beginning of this thesis project. The
chapter provides background information on the hardware used, i.e., FPGAs, the Pynq de-
velopment board and the Zynq chip. The chapter contains a section which looks at image
processing on a high level and a follow up section on OpenCL. The chapter is concluded
with a related work in Section 2.5 which covers four platforms, or implementations, that
are of interest to this thesis project.

• Chapter 3. Reconfigurable hardware design A design of the new platform is sketched
up on a conceptual level in Section 3.1. The challenges that rise during the hardware
design of the platform are covered in Section 3.2. It includes timing, resources, portability
and video interfacing. In Section 3.3 the implementation details of the design are listed
and why some decisions were made are explained. The chapter is then concluded with a
section on designs limitations.

• Chapter 4. Platform implementation This chapter covers the main implementation of the
ρ-VEX streaming platform. It is explained how application code, written for the platform,
is divided between host and device code and how the ARM processors communicates with
the ρ-VEX accelerator. Section 4.1 introduces how a host program is setup. What is the
methodology behind the host libraries and how to write new code for the host. Section 4.2
covers the device side of the platform where it is explained how to write code for the ρ-
VEX processing cores, how they communicate and how output is written back to main
memory. The chapter ends with a section on some practical considerations regarding the
platform’s implementation.

• Chapter 5. Experiments In this chapter a number of experiments are described. The
platform is tested in regards to reconfiguration time, power consumption, performance and
programmability. The main results from the experiments are drawn up in Section 5.2 and
compared to other related work in Section 5.3. The chapter is concluded with a discussion
regarding the results.

• Chapter 6. Conclusion and future work Section 6.1 concludes this thesis report and is
followed by Section 6.2 where future work is suggested and includes a number of im-
provements to the platform on both a hardware and software level.
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Background 2
Image processing on field programmable gate arrays (FPGAs) is not a new concept. It has
been widely adopted, and in many forms. From highly optimized solutions, using hardware
description languages (HDLs), that can take weeks or months to develop, to using high level
languages, for instance OpenCL, to write code in a matter of days or even hours. In this chapter
we will look at previous work, that this thesis project is based on, as well as other scientific
publications related to this thesis.

First, there is section about the ρ-VEX memory streaming architecture, which is the founda-
tion of the work performed. Secondly, there is a section about the hardware used, FPGAs and the
Pynq board, followed by a section on image processing. Lastly, there is a section about OpenCL.
In related work we will have a look at four different publications, that are not only relevant to the
work presented here, but also serves as an inspiration into what can be achieved. The main topic,
in the background section, is on FPGAs as accelerators with focus on: Power consumption, ease
of development, reconfiguration and length of development cycle.

2.1 The ρ-VEX stream architecture

The foundation of this thesis project is the ρ-VEX memory streaming architecture, introduced
in [2] based on [12]. It uses a ρ-VEX processor [13] as its core building block. The ρ-VEX soft
core is a very-long instruction word (VLIW) processor based on the VEX (VLIW EXample) in-
struction set architecture (ISA) [14]. VLIW processors make use of instruction level parallelism
at compile time. The compiler is responsible for hiding pipeline latency by scheduling RISC like
operation into bundles (wide words) that are then executed in parallel. The ρ-VEX is a compile-
and runtime reconfigurable processor with few possible setups, that are shown in Figure 2.1. In
order to fit as many processors as possible onto the FPGA fabric, a smaller version of ρ-VEX
was used, with a single 2-way data path and without reconfiguration functionality.

In [2], the streaming memory hierarchy architecture is introduced as a hardware accelerator,
for medical image processing. Image processing is highly parallelizable, as in theory, every pixel
can be computed independent of other pixels in the image. This is what general image processing
units exploit with many core architectures. Image processing pipelines are also split into multiple
stages where an output of one stage is the input of the next. Figure 2.2 shows a simple image
processing pipeline where an original image enters a grayscaling stage, the intermediate pixels
go into a blurring stage, and from there they are processed in a final Sobel edge-detection stage.

The ρ-VEX streaming architecture takes advantage of this feature by proposing a grid like
structure of how the cores are lined up in rows and columns. The rows take advantage of data
level parallelism (DLP), columns of task level parallelism (TLP) and each 2-way ρ-VEX pro-
cessor utilizes instruction level parallelism (ILP). This setup is visualized in Figure 2.3. If the
number of columns is reduced to one, the streaming device can function as a many core, i.e., a
set of independent processors all running in parallel with out any streaming functionality. There

5
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Figure 2.1: The ρ-VEX is reconfigurable at run- and compile time, and can adapt to ILP or TLP depending on the algorithm
running [1].

Figure 2.2: A simple image processing pipeline where three filters are applied. An input image is grayscaled, then blurred using
Gaussian blur and finally a Sobel filter is used to detect edges in the image

is no global memory present in the design, as is the case with graphics processing units (GPUs),
so this is not an ideal setup as the cores can not communicate when working together on a single
image.

In Figure 2.4, a single row, or stream, is presented. It shows how a single processor in the
stream can write, via decoder, to its own memory or the memory of the next core in the pipeline.

Figure 2.3: Each processing element (PE) utilizes ILP, while the rows exploit DLP and the columns TLP.
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Figure 2.4: Overview of a single processing element, or a stream unit, showing how each processor can access the memory of its
predecessor as well as its own memory [2].

This allows for a two dimensional setup that exploits thread level parallelism on one hand, by
increased number of streams, and an instruction level parallelism on the other hand, by number
of cores per stream.

2.2 FPGA

Field programmable gate arrays (FPGAs) have been around since the 1980s but with recent
advancement in FPGA technology and design tools, their popularity have grown significantly. As
the name suggests, an FPGA is a two dimensional array of reconfigurable logic gates. This means
that a custom hardware can be synthesized and implemented in a far shorter development cycle,
than that of application-specific integrated circuits (ASICs), that can take months to develop and
manufacture. Also, FPGAs can be updated after being deployed to production, or in the field.
Traditionally FPGAs have served as a good tool for rapid hardware prototyping but now with
newer and better technology FPGAs have become a viable alternative to ASICs.

FPGAs come in various types and sizes with the two biggest vendors being Xilinx and Intel.
In this thesis work a Pynq development board from Xilinx is used. It comes with a Xilinx
Zyniq [5] series heterogeneous FPGA-ARM chip. As this is the only board used during this
work, further detail on it is given in the following subsection.

2.2.1 Pynq

A Pynq development board, Python on Zynq, shown in Figure 2.5, from Xilinx is used in this
project for testing and developing the ρ-VEX streaming platform.

The Pynq board is designed with Python developers in mind. It comes with a base hardware
overlay, filled with modules and Python drivers. A developer familiar with Python can access and
control modules on the programmable fabric, without any in-depth understanding of hardware
design nor FPGA logic. This is a great gateway for developers into the Xilinx’ Zynq computing
domain. The board also comes with a preinstalled Ubuntu Linux operating system, so all that is
needed is basic understanding of Linux and Python and the user can start communicating with
the board’s peripherals. The many peripherals on the board are the defining reason for why this
board was chosen for this project over other boards with bigger and faster FPGAs. The ability
to use Python to start communicating with the FGPA, and running some demos, is a great way
to get started using the Zynq and is used in this project to control the HDMI interface.
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Figure 2.5: Overview of the Pynq development board [3].

In this work, only HDMI-in, HDMI-out and the ethernet ports were used. The central el-
ement of the board is a Zynq, all-programmable system on a chip (SoC). The Zynq’s defining
feature is that it contains both an ARM Cortex-9 dual core processor, and traditional FPGA logic
on the same chip. These separate elements, the hard processor, and the programmable logic, are
referred to as the processing system (PS) and the programmable logic (PL), respectively. The
Pynq board has a 512MB DDR3 memory and a slot for a micro SD card that can be used for
memory and storage. As the Zynq is the board’s main feature, it will be further detailed in the
next subsection.

2.2.2 Zynq

The Zynq chip [5] is a SoC that combines a dual core ARM processor with a traditional recon-
figurable logic fabric based on the Xilinx 7-series FPGAs [15]. A full operating system can be
run on the ARM processor with a high speed, low latency connection to the programmable logic
fabric, via an AXI interface [16]. AXI is a micro controller bus and member of the ARM AMBA
family of buses. With the development tools tailored for the Zynq system, the whole design
process and implementation cycle becomes relatively short and focused. The chip, on a high
level, is split into the PS and the PL, as has been stated and is visualized in Figure 2.6. The PL
can be reconfigured at boot-time or by the PS at runtime. It is also possible to only reconfigure
the logic fabric partially, leaving some of the logic intact and running. The PL and the PS are
further discussed in the next two subsections.

Figure 2.6: A simplified model of the Zynq architecture [4].
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Processing system All Zynq devices have an ARM Cortex-A9 [17] processor, as the basis
for the processing system [5]. The ARM processor is a hard processor and should not be con-
fused with the soft ρ-VEX processors that are implemented on the reconfigurable fabric. The
processing system, Figure 2.7, is not just the ARM but a set of resources that form an applica-
tion processing unit (APU) as well as clock generators, memory interfaces and interconnect that
connects to the PL. The APU has two ARM processing cores, each with a memory management
unit (MMU), and level 1 cache. The APU also contains a 512KB level 2 cache and a 256KB on
chip memory (OCM) with an OCM AXI4 interconnect that connects to the PL.

Figure 2.7: Overview of the Zynq processing system [5]

The PS is connected to the PL via an AXI interconnect that serves as a bridge between the
two. There are other connection links, like the extended multiplexed input/output (EMIO), but as
AXI interconnects were solely used, the EMIO will not be further discussed. The AXI4 standard
comes in three flavors, AXI4, AXI4-Lite and AXI4-Stream [16]. The AXI4 protocol provides the
highest performance, is memory mapped, and supports burst of up to 256 data words. AXI4-Lite
is also memory mapped, but is a simplified version and does not support data burst, a simple use
case for the AXI-Lite would be to serve as a configuration bus for modules on the programmable
fabric. AXI4-Stream is not memory mapped but supports high speed data streaming with data
bursts of unrestricted size. The stream protocol is good for signals that do not need to go to the
PS, but can flow through the board.

As the PS can run a full operating system, reconfigure the PL and start data streaming to the
logic, it can be seen as a the master where the PL is the slave. This is not always the case, as the
PL can run independently of the PS, i.e., be configured and started at boot time, without the PS
running any operating system. But that is not the essence of the Zynq design, as it is not just an
FPGA but a powerful SoC combining an ARM with an FPGA.

The processing system on the Zynq is a powerful embedded system on its own, and is a great
tool to run in tandem with an FPGA on a single chip.



10 CHAPTER 2. BACKGROUND

Programmable logic The PL is a two dimensional reconfigurable array of logic gates and
wirings. The building blocks of the reconfigurable fabric are many, but maybe most important
are the configurable logic blocks (CLB). CLBs are small blocks of logic that are lined up in a
two dimensional array in the reconfigurable fabric. Each CLB consists of two slices and every
slice contains four lookup tables (LUTs) and eight flip-flops (FF). LUTs are flexible units that
can be used to implement different types of logic units such as a function with a maximum of
six inputs, small read only memory (ROM), random access memory (RAM) and a shift register.
LUTs can also be connected together to create bigger, more complex logic. The FFs are one bit
memory elements with a reset function. Next to every CLB is a switch matrix that is used for
routing the inner elements of a block, and to connect multiple CLBs together.

There are other and more specialized resource blocks on the PL side, apart from the general
fabric already mentioned. These are the block RAMs (BRAMs) for dense memory requirements
and the DSP48E1 slices for high speed arithmetic operations. The BRAMs are lined up in
the fabric in columns. Each block can store up to 36Kb of data, but can also be split into
two 18Kb blocks, on the Pynq board there are 140 BRAM blocks or just under 1.5Mb in total
memory capacity. Close to every BRAM column is a DSP48E1 column, as computation and
data storage often go hand in hand. The DSP48E1s are flexible units that primarily comprise
a pre-adder/subtractor, multiplier and a post-adder/subtractor with four input ports and a single
output port.

The PL is configured by loading a bitstream to the fabric. A bitstream is a file that contains
information about how all logic should be lined up, and is usually built by a design tool like
Xilinx’s Vivado. The bitstream can be loaded at boot time, so that the PL is ready when the board
starts up. It can also be loaded, via JTAG port, from off-board source like desktop computer. But
the interesting part is to use the PS’s operating system to load the bitstream at runtime. A library
of different bitstreams, hardware designs, can be stored on the device, or in memory, so the PL
can be reconfigured at any point. Another feature of interest is partial reconfiguration (PR). It
means that a dedicated part of the programmable fabric can be reconfigured without affecting
the rest of the PL, and in far shorter time. This can be used to add logic, like soft cores, without
stopping or reconfiguring other logic on the board. Let us say, for example, that the chip is a
part of embedded system running on battery power, if the power is running low, so in order to
conserve energy consumption part of the logic can be removed without halting other processes
running at the same time.

Having a highly flexible PL, where almost any hardware design can be realized in a matter
of milliseconds on the same chip as a relatively fast general purpose processor is the foundation
that makes this thesis project possible.

2.3 Image processing

With faster camera sensors, better lenses and the demand for low energy consumption, image
processing is an active field of research. A typical video process today is 1080p image stream at
sixty frames per second, and with color correction and other raw processing it can be computa-
tionally heavy, like for example, 120 gigaops/sec [18].

A digital image is split into pixels, where each pixel is a few bytes in size, depending on the
format. Commonly, image processing algorithms work on individual pixel, independent of other
pixels in the image. Image processing pipelines can be very deep, i.e., with many independent
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stages and intermediate results. Figure 2.8 shows a very simple two stage pipeline where a 3x3
convolution filter is applied to an input image, and another 3x3 convolution filter is applied to
the intermediate image to produce an output image. Every intermediate pixel can be calculated
independently with the function f. When three lines have been processed the second filter g can
start working on producing output pixels. This leaves space for exploiting TLP at the same time
as DLP. With deeper image processing pipelines, more intermediate filters, or functions, can
work concurrently on different stages of the pipeline while still, individually, computing pixels
in parallel.

The fastest and most power efficient way to process a video stream is by using specialized
ASICs. As an ASIC has no other job but to process a video, in a predefined way, it can be heavily
optimized for performance and energy consumption. There are a few downsides to ASIC though.
They are expensive in production, with a long design process that can take months to complete.
ASICs also cannot be updated after being released to production, and as the name suggests,
cannot be reused for different applications.

GPUs are specially built for image processing. They make use of data level parallelism by
implementing thousands of small processing cores per processing unit. These devices have big
memories, high data bandwidth, and memory hierarchies specialized for fast image processing.
GPUs are easily programmable with industry standards like OpenCL, maintained by the Khronos
Group [19] and CUDA, a powerful platform developed by Nvidia [20], for Nvidia graphics
processors. The downside to GPUs is their energy requirements as they are big power consumers,
making them not suitable for embedded devices, that rely on battery power or in data centers
where power consumption is also a concern.

FPGAs fit in between the ASIC and GPUs. They use far less energy then GPUs, are not
as fast as ASICs but are programmable and therefore do not get obsolete as easily as ASICs.
Though OpenCL has been adapted for FPGAs [21][22], every change made to an OpenCL kernel
requires a new synthesis process, with specialized design suites tool-chains. By using soft cores
like the Xilinx Microblaze [23] or a ρ-VEX , the logic fabric becomes programmable without
the need for resynthesis.

Figure 2.8: Image processing pipeline with 2 convolution filters. Both every pixel in the image, and each stage can be processed
concurrently

2.4 OpenCL

OpenCL is a widely adopted industry standard for image processing as well as general-purpose
computing on graphics processing units (GPGPU). Its strength lies in code portability. In theory,
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OpenCL code written for one platform should be runnable on a different one. Code written for an
Intel CPU should just as well work on an AMD GPU. Sometimes minor tweaks are needed when
code is ported, but in general it should work out of the box. That said, performance does not port
as easily, when code is written a developer knows the strengths and weaknesses of the device
he is writing the code for. For good performance, it is necessary to understand the memory
hierarchy of the accelerator, to know how data is moved and to understand data reuse, like using
texture memory on a GPU for example.

OpenCL is an open framework used for writing code for heterogeneous platforms. The ap-
plication code is divided into host and device code. An OpenCL application is built up in such a
way that one host code (runs on CPU) is responsible for setting up devices, downloading kernels
and establishing communication links to the device. The code written for an OpenCL device is
called a kernel. The kernel is written using a subset of the C programming language and can run
on variety of processors, or accelerators, like GPUs, CPUs, FPGAs and DSPs.

The basic steps needed to setup a simple OpenCL host program is to first discover available
devices on the host system. A platform finds vendor specific installations, within the operating
system, and detects available devices. A context object needs to be created that contains just a
single device. After that a program is built, it can be a code source or precompiled binaries ready
to run on the specific device. Buffer and queues need to be setup in order to transfer data to the
device that has been setup. With this initial setups complete the host can start sending data to the
device that executes kernels already uploaded by the program and kernel functions.

One project that is of interest and was going to be the baseline for this thesis work, is a
successful attempt to run OpenCL using ρ-VEX as an accelerator [24]. The experiment worked
but the results were not great. So an idea arose to use the work already performed and map it
to the ρ-VEX streaming architecture discussed in Section 2.1. This was not a one-to-one fit, as
it turned out there is no general support for streaming architectures in the OpenCL standard. In
order to get the ρ-VEX stream compatible with OpenCL standards, there is a great overhead and
it is not given that the work will pay off.

2.5 Related work

Writing programs for FPGAs can be a tedious task that requires specialized tools, in-depth un-
derstanding of hardware design, and long development cycles.

It is an interesting task, to make the FPGA more accessible to software developers, while still
gaining performance when compared to conventional computing architectures, some solutions
have been proposed and implemented.

When developing platforms for image processing on FPGAs there are a few parameters, or
Pareto points, that have to be kept in mind. As there is no one solution that works for all, some
papers have been written with different results in mind, and in this section, we will look into four
solution and compare them on a high level. The problems that need to be addressed are power
consumption, programmability, development cycle time, learning curve, streaming capability
and performance.
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2.5.1 Catapult

In [6] FPGAs are proposed as accelerators in data centers. To maintain data centers homogeneity
each server has one FPGA installed. The reconfigurable fabric Catapult is introduced, which is
a network of FPGAs in the data center. As a function can be to big to be realized on a single
FPGA fabric, the Catapult system can map a function over multiple FPGAs. To test out their new
hardware platform, they ported part of the Bing search engine ranking system to the Catapult.

The ranking system of Bing has many long processing pipelines where one data input is pro-
cessed in more than one way. This feature, multiple-instruction single-data (MISD) computation,
means that many streaming computations can be run in parallel. So they propose an array of soft
cores, or columns of soft core pipelines working on each data stream as shown in Figure 2.9.

Figure 2.9: The first stage of the Bing ranking pipeline mapped to streaming processors [6].

Rather than using off-the-shelf soft cores a decision was made to develop a new custom
soft core processor with focus on massive multithreading and long-latency operations, called
free-form expressions (FFEs) processor. By using custom made data paths, composed of FFEs,
they managed to increase the ranking throughput by 95% while not increasing overall power
consumption by more than 10% [6].

Programmability of the FFEs is not mentioned in [6], but the paper is concluded by stating
that programmability is still a major long-term challenge, one can only assume that the Catapult
system still requires manual tuning on the hardware design level.

2.5.2 MARC

Many core approach to reconfigurable computing (MARC) is introduced in [7]. The gap, be-
tween GPUs and custom made ASICs, seen in Figure 2.10, i.e., the difference between perfor-
mance and ease of design is attempted to be bridged. FPGAs show great potential in energy
efficiency and exploitation of application-specific parallelism. One problem with FPGAs is pro-
grammability. The design space, using hardware description languages (HDL), is far away from
the experience and expertise of general application developers. MARC proposes a reconfig-
urable architecture that maintains programmability and performance. Meaning that it should be
possible to use the power of FPGAs but write the applications in a high level imperative language
like C/C++.
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Figure 2.10: This graph shows where MARC fits into modern landscape of computing with regards to programmability vs perfor-
mance [7].

A many core template is proposed, consisting of a single control processor (C-core) and
multiple algorithmic processing cores (A-cores). Every core has a private memory but com-
munication between cores takes place by reading and writing to a global memory shared by all
cores.

MARC is compared against manually optimized FPGA implementation of ParaLearn [25],
a Bayesian network interface implementation. All experiments were made by synthesizing 48
A-cores and a single C-core. When all C-cores are implemented as RISC processors, MARC
only achieves about 5% of the performance shown by the hand tailored solution. To increase the
performance, within factor of 3 of the reference, the A-cores had to be application customized
during design- and synthesizing phase, taking days to develop.

MARC is a template for a many core system that runs on an FPGA and manages to maintain
high level programmability. But when it comes to performance, it still has to be tackled during
a hardware design phase, taking days to reach less than half of the performance compared to the
highly optimized solution.

2.5.3 LP-P2IP

As power consumption can often be a critical factor, like in drones, satellites, or remote loca-
tions, [8] proposes a low power version of a programmable pipeline image processor(P2IP).

The idea introduced is an image processing pipeline with processing elements (PEs) that can
be added or removed at runtime by replacing the removed PE with a dummy bypass core. First
the total number of PEs has to be decided before the synthesis, as partial reconfiguration (PR)
is used to add and remove stages from the processing pipeline. Three basic algorithms were
implemented: sharpening, edge detection and corner detection, using three, five and seven PEs,
respectively. This means that when a sharpening algorithm is implemented, four PEs can be
bypassed and removed resulting in power savings up to 45%.

The whole concept is build on PR. That is, when the hardware is designed, parts of the
programmable logic is dedicated to each PE. So that at run time, it is not necessary to stop the
image stream and reconfigure the whole logic fabric, but simply switch between bypass cores
and PEs, making LP-P2IP a real-time reconfigurable architecture.

As there are seven PEs, and all can be in active or bypass mode, fourteen partial bitstream
are stored on an SD card, and at boot time, loaded to DDR memory. They measured the time
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Figure 2.11: Sharpening algorithm mapped to LP-P2IP, the last 4 PEs are in bypass mode [8].

it takes to reconfigure each partial bitstream and the longest is from sharp, three PEs, to corner,
seven PEs, or just under twelve milliseconds. It is a considerable speed as full reconfiguration
on a Zynq takes just under two hundred milliseconds, so speed up of more than an order of
magnitude.

LP-P2IP shows great results in power conservation, up to 45% compared to original im-
plementation, and in runtime reconfiguration. Its down side is that all versions of the image
processing pipeline have to be decided at hardware design time, before synthesis, so it can not
be changed quickly in the field, or by programmers only familiar to higher level imperative
languages.

2.5.4 Halide-HLS

Computational photography, computer vision and augmented reality all require high perfor-
mance and energy efficiency, as well as ease of programmability and implementation. Writing
specialized accelerators on FPGAs is work that needs in depth knowledge of hardware design
and using GPUs and CPUs, requires more power. In [9] it is proposed to use a high level, domain
specific programming language (DSL), Halide [26]. Halide is popular open source programming
language focused primarily on image processing, where algorithm and scheduling is separated
to help the user find the most efficient implementation.

Halide-HLS is an open source system, which input is code written in Halide and the output
is FPGA accelerators and a Linux source code. The compilation pipeline, show in Figure 2.12,
is modified version of the original Halide pipeline.

Six individual image processing application were implemented in [9], which are: Gaus-
sian, Harris, unsharp, stereo, bilateral grid and a camera pipeline. In all cases there were great
improvements in performance and energy efficiency. Specially with the Harris corner detec-
tion showing 38x and 12x improvement in energy efficiency, and 6x and 3.5x improvement in
throughput compared to CPU and GPU, respectively.

The Halide-HLS, proves to be a great tool when it comes to ease of programmability and
showed very good results in energy and performance. The downside is that there is no runtime
reconfigurability and all changes made to the algorithm or scheduling has to go through the
whole compilation pipeline including resynthesizing of the hardware design. I.e, it is not possible
to make any changes to an algorithm on the board as an outside work station is needed, with large



16 CHAPTER 2. BACKGROUND

Figure 2.12: Overview of how Halide code is compiled. Blue blocks are new, green blocks are unchanged/existing Halide compila-
tion passes [9].

design tools, to recompile the whole application.

2.5.5 Discussion

In this section we have looked at four different solutions tackling different areas when it comes
to ease of programmability, power efficiency, runtime reconfigurability and processor streaming
architecture. Now we will try to summarize each system’s strong, and weak sides and see if there
is a room for yet another solution with focus on streaming architecture and programmability.

Evaluating and comparing the different approaches already discussed, is not easy without
implementing them and use predefined benchmarks to test for a quantifiable comparison. This is
out of scope of the thesis project. Instead, some high level comparison is made, based on results
of published papers, and summarized in Table 2.1

Table 2.1: High level comparison of the systems introduced.

Solution Programmability Performance Development cycle time Reconfigurable
Catapult - - + - - -
MARC - ++ - - -
LP-P2IP - + - ++

Halide-HLS ++ ++ - -

From the comparison, shown in Table 2.1, Halide-HLS comes out as the best overall solu-
tion. With a high level DSL for algorithm and scheduling and a promise of good performance.
LP-P2IP also scores well and is the only solution, covered here, that has runtime reconfigurable
capabilities. None of the platform score well in all categories so there is a room for a processor
streaming solution, with a focus on programmability, power efficiency and run-time reconfigu-
ration.
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In the previous chapter we had a look at related work and identified a space for a design focusing
on processor streaming architecture, programmability, power efficiency and run-time reconfigu-
ration. None of the platforms score well in all categories so there is a room for a new processor
streaming solution. It is important to first sketch up a design of the new solution on a conceptual
level before moving into implementation details.

In this chapter we will write up a design of our new platform, look back at related work
from Section 2.5 and the original problem statement from Section 1.2 and explore what steps
need to be taken in order to realize the new platform. Later in the chapter we will move into
the platform’s hardware implementation starting with challenges in Section 3.2, implementation
details in Section 3.3 then this chapter is wrapped up with a section on portability, Section 3.4 and
limitations Section 3.5. The platform’s implementation will be further explored in the following
chapter and evaluated in Section 5.

3.1 Hala ρ-VEX platform

The Icelandic word halarofa means moving together in a file, or a row, one behind another.
Halarofa is a compound consisting of hala, cow’s tail, and rofa, dog’s tail. In the streaming
architecture data flows from one processor to other so the name Hala ρ-VEX is a fitting name
for the platform.

In this section the Hala ρ-VEX platform design is introduced. If we look back at the prob-
lem statement, introduced in Section 1.2, the focus is on making the memory streaming architec-
ture [2] programmable and run-time reconfigurable. In the previous chapter we had a look at four
different solutions and compared them on a high level. They all scored badly in the development
cycle time category, only Halide-HLS scored well in programmability and LP-P2IP is the only
reconfigurable solution that was introduced. It is of interest to create a design that fulfills the
steps introduced in the problem statement and fills the gaps presented in related work.

The Hala ρ-VEX platform is broken up into five separate design objectives, based on the
problem statement and the related work introduced in the background chapter:

1. Programmability

2. Reconfiguration

3. Development cycle time

4. Performance

5. Video streaming interface

In the following subsections we will consider each of these design objectives and develop
solutions that will later be implemented.

17
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3.1.1 Programmability

To make the streaming architecture programmable it is important that new code can be written
for it using known development patterns or a programming paradigm. The Hala ρ-VEX plat-
form is divided into device on one hand and host on the other. Both host application code and
device kernels are written in C but compiled separately, Figure 3.1. In the OpenCL environment,
introduced in Section 2.4, a host is a general purpose processor and a device is any OpenCL
compatible accelerator or computing device. The design for this platform uses the OpenCL pro-
gramming model as a reference and it is desirable to make it as OpenCL compatible as possible.
That is, we aim at building up libraries so that host code is not too alien for a developer familiar
with OpenCL.

An API, used for writing host code, needs to include functions that can find the available
ρ-VEX devices, reconfigure the programmable logic, and setup communication lines to the ρ-
VEX cores. The API also needs to include ways for a host application to know if the ρ-VEX
cores are idle or busy and be capable of uploading new software kernels to the devices.

Code written for the ρ-VEX cores will not be different from writing application for any
other ρ-VEX processor. Some factors have to be taken into consideration, like how does one
core communicate with another ρ-VEX core and how the streams communicate with the host
application. This will be solved by using memory mapped structs that will be initialized
within each kernel pointing to the same memory location.

Figure 3.1: The Hala ρ-VEX compile and run-time flow.

3.1.2 Development cycle time

To shorten the development cycle time two things have to be kept in mind: abstract the devel-
opment process of new application away from the hardware level and make sure that code is
standardized to a certain degree. The latter has been covered in the earlier subsection on pro-
grammability. To abstract a new application from the hardware it is important that there is no
need for a developer writing any hardware description code and that there is also no need for
a use of synthesis tools or bitstream generation. To tackle this design criteria all code for the
platform is written in C and precompiled overlays are provided.
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3.1.3 Reconfiguration

If the platform is reconfigurable that means that if more performance is needed, the number of
cores on the logic fabric can be increased. If, on the other hand, energy needs to be conserved,
the number of ρ-VEX cores can be reduced at the cost of performance. It is desirable to make
the platform runtime reconfigurable, that means it has to happen fast and on the fly.

To be able to call any configuration at run-time, i.e., how many cores there should be on the
fabric at any given time, and how they are lined up in terms of stream lengths, it is proposed to
prebuild all available setups and store them with the platform’s application libraries. This means
that when an application asks for, e.g., two streams with 2 cores each, there is a precompiled
bitstream that fits that criteria and only needs to be fetched and uploaded at run-time.

3.1.4 Performance

In most image processing applications performance is paramount. With the building blocks,
that will make up this platform, there are three parameters that have to specially considered in
regards to performance: Clock frequency of the ρ-VEX soft processors has a direct linear impact
on performance, number of ρ-VEX processing cores on the fabric and available bandwidth to
supply the cores with data. All have their limitations and for different reasons:

• The maximum clock frequency available on the Pynq board’s field programmable gate
array (FPGA) is 250MHz. As the design gets more complicated it becomes harder to meet
timing constrains.

• The total number of ρ-VEX processors that can be implemented on the reconfigurable fab-
ric is restricted by the fabric’s size, i.e., available look-up tables (LUTs), memory blocks
and arithmetic units. As resources will be used for video interfacing it is an acceptable so-
lution to have up to ten ρ-VEX cores on the fabric as a maximum amount for the platform’s
implementation on the Pynq board.

• The memory bandwidth is restricted by the board’s available interconnect protocols. The
fastest way to move data from the processing system over to the programmable logic is via
AXI4 interconnect. It can move one data word per clock cycle. The same clock frequency
is used for the ρ-VEX soft cores as the AXI4 bus. This means that to exhaust the memory
bandwidth a ρ-VEX core would need to produce one result per clock cycle for every new
data word. Or in case of ten cores running in parallel, produce one result per core every ten
cycles. The arithmetic intensity of image processing pipelines is typically far greater than
ten, so using the AXI4 bus should not create a performance bottleneck for the platform.

3.1.5 Video streaming interface

To be able to showcase the platform’s performance and usability it is important to interface a live
video stream. The Pynq board from Xilinx has both HDMI input and HDMI output. This allows
for a web camera to be attached directly to the platform. The boards HDMI input can also be
connected to a personal computer as an external monitor. The HDMI output of the board can
then be connected to a monitor to showcase its real time video processing capabilities.
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The HDMI interfacing is implemented on the programmable logic. Various IP blocks that
ship with the Pynq board can be used for this purpose and controlled via Python drivers from
the ARM host processor on the Zynq chip. There is a variety of reference designs available
on the Internet and one is provided by Xilinx and comes preinstalled on the Pynq board. The
reference design that comes with the Pynq board will be used as a reference design for the whole
platform’s implementation. A problem with that overlay is that it is already packed with logic
that uses most of the chip’s resources and leaves little space for ρ-VEX processing cores. In
order to free up resources, the Pynq overlay will be systematically stripped down leaving only
the core HDMI logic left in the design.

3.2 Challenges

During the hardware design, of the Hala ρ-VEX platform, several challenges were met. The
three biggest ones were interfacing a live video stream, timing the design and resource limita-
tions. I.e., having a working input and output stream of video, meet the designs timing con-
straints and a utilization of the chip’s available resources.

It is possible to fit thirteen ρ-VEX processors on the FPGA with regards to available lookup
tables (LUTs) and routing matrices, but with a maximum of 16KB of data memory per ρ-VEX
processor. It was desirable to increase the data memory, per processing core, to 32kB at the cost
of only fitting 10 on the FPGA as block RAM (BRAM) resources are then exhausted.

There is an example of this particular streaming architecture running on clock speed of just
under 200MHz [2] which was set as the baseline, or goal, for this implementation. The Zynq has
four clocks that can be fed to the fabric and can be set as high as 250MHz. Still the maximum
frequency that was reached was only 85MHz while not violating any timing constraints on the
logic fabric.

For a real showcase, one of the main reasons the Pynq board was chosen, it is important
to interface the HDMI input and output ports. The Pynq board ships with a base overlay that
supports HDMI interfaces. But that same overlay also has many other types of functionality
packed in with it using up most of the board’s resources. An attempt was made to find another
reference design that only implements the HDMI functionality. Several were found, but not
with drivers for a Linux operating system as they were all bare metal designs. Following some
driver implementation failure it was decided to use the overlay that comes with the Pynq board
but systematically remove all extra functionality from the design. The result is an overlay with
full HDMI support that uses 17% of the chip’s available LUTs and is fully compatible with the
Python video drivers available on the board. Using 17% of the LUTs is also an acceptable use of
resources as ten ρ-VEX cores, with 32kB memory each, can fit alongside the HDMI interfacing
logic.

3.3 Implementation details

The hardware layout is designed on a block diagram level, as there already exists a ρ-VEX
streaming block, using Xilinx’s Vivado design suite. During development of the reconfigurable
streaming ρ-VEX platform, a Pynq-Z1 [3] board from Xilinx was used and all bitstreams gen-
erated are for the Zynq-7000 chip. The Pynq has an all programmable system on a chip (SoC)
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Figure 3.2: A simple ρ-VEX block design with no support for HDMI.

with a dual-core ARM cortex A-9 processor on the same die as an FPGA. The FPGA is based on
the Xilinx 7-series architecture family and is on the smaller end of the Xilinx product spectrum.
Due to its size a maximum of thirteen ρ-VEX cores can be fitted on the fabric at the same time.

When designing the hardware layout on a block diagram level, there are two main blocks
that are of most interest. First it is the ρ-VEX stream intellectual property (IP) block introduced
in [2], and second is the Zynq processing system IP. These two building blocks, along with AXI4
interconnects are the bare minimum elements to create a working hardware design that can be
run on the Pynq board.

As stated earlier, Xilinx’s Vivado is used for designing the hardware layout for the Hala
ρ-VEX platform. Two basic hardware designs were implemented, one that has support for HDMI
input and output, and the other with no extra functionality apart from the streaming ρ-VEX IP
block.

The simple design, shown in Figure 3.2, has nothing but a ρ-VEX IP block, an AXI inter-
connect and a processor system reset. The two external debugging connections, dbg_tx and
dbg_rx, were connected to UART serial port, in the original Mandelbrot implementation, on the
VC707 board but are not used in the current design on the Pynq board.

The ρ-VEX streaming IP has to be modified to be compatible with the Zynq-7000 and im-
ported to the Vivado project for the Pynq overlay. Inside the Vivado’s block design view, the
ρ-VEX streaming module is customizable. By double clicking the ρ-VEX IP within the block
diagram view, 13 configurable parameters are available. The ones of interest to this project are:

• Data memory size

• Instruction memory size

• Number of streams

• Number of cores per stream

Other parameters were left at default values in the design process of the Hala ρ-VEX plat-
form. It is not possible at this stage to have more then seven cores per stream. This is due to how
the cores and streams are memory mapped on the fabric. To take advantage of the full resources
of the Pynq board, data memory was increased to 32kB. With the data memory set to 32kB and
implementing ten ρ-VEX processing cores on the fabric, all BRAM resources were exhausted
and 75% of the available lookup tables (LUTs). The fact that 25% of the LUTs are still avail-
able means that three more processors can fit on the PL but with smaller data memories. The
actual use of resources is visualized in Figure 3.3a where the use of the PL, with ten ρ-VEX
processors, is shown. The figure is generated in Vivado after implementation and optimization.
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(a) Hardware implementation of ten ρ-VEX cores on the
Pynq board.

(b) Hardware implementation, ten ρ-VEX cores with sup-
port for HDMI.

Figure 3.3: Implemented hardware layouts of the two available designs shown with 10 ρ-VEX processors.

Table 3.1: Available ρ-VEX processing core setups in the current implementation. The rows are number of available streams and
the columns represent how many cores can be in each stream.

1 2 3 4 5 6 7
1 D D D D D D D

2 D D D D D

3 D D D

4 D D

5 D D

6 D

7 D

8 D

9 D

10 D

The Hala ρ-VEX platform is a runtime reconfigurable design. It means that the application
developer can make a choice how many processing cores are on the device and how they are lined
up. To realize this function of the platform all variations of possible setups are synthesized and
implemented. There are 24 different setups available using ten cores as the maximum number
on the fabric at once. For example, there can be a single stream consisting of seven cores,
or ten streams with a single core each. All the setups available on the Pynq board are shown
in Table 3.1.

The second hardware implementation has support for both HDMI input and HDMI output
that are connected to the board’s physical ports. The HDMI video module, shown in Figure 3.4,
is a set of IPs packed together in one block to reduce clutter in the design view. The block
contains many IPs needed for the HDMI protocol for pixel conversion. Such as: color convert,
pixel pack, DVI to RGB converter, video to AXI stream and more. This hardware design is a
stripped down version of the base overlay [27] that comes with the Pynq board. The base overlay
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comes packed with functionality out of the box so it is relatively big, or occupied. After searching
for HDMI designs made for the Zynq board that come with Linux compatible drivers without
much luck it was decided to systematically remove all functionality from the Pynq design except
for the HDMI interfacing modules. The results from removing all unnecessary functionality is
an overlay with 17% of the LUT resources already utilized. Still ten ρ-VEX cores fit onto the
fabric alongside the HDMI block logic.

The actual use of LUTs and BRAM, in the programmable fabric, is visualized in Figure 3.3b
alongside the previously introduced design that has no HDMI support. From the two images the
difference in resource utilization is visually noticeable.

Figure 3.4: A simplified block design that contains the ρ-VEX streaming platform and full support for HDMI input and output.

3.4 Portability

The ρ-VEX memory streaming architecture was previously implemented on a VC707 [28] from
Xilinx. It is a lot bigger FPGA and has no ARM on the same chip like the Zynq. That work
was ported to the Pynq board, where the ARM is used as a replacement for a Xilinx soft core
processor, MicroBlaze, that was responsible for uploading kernels and pushing data to the ρ-
VEX streams. The libraries developed during this project have not been tested on the MicroBlaze
so it is not known how much work there would be involved porting the project back onto the
VC707 board, or any other that has no ARM processor like the Zynq.

As stated already in the beginning of this chapter, the whole work was developed using a
Xilinx Zynq chip and the Vivado design suite. To regenerate the project for other Zynq products
should be trivial and only a question of the time it takes to regenerate all the bitstreams in
Vivado for a targeted chip. That work could be reduced to a script that produces all available
configurations given the physical limitations of the target FPGA.

When it comes to other vendors, like Intel, no attempt has been made to realize the platform
on their products. The ρ-VEX stream is written in VHDL and the platforms interface in C so in
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theory it is portable to other vendors, given some unknown level of modification.

3.5 Limitations

Timing became an issue during the hardware design process. By setting the clock for the ρ-VEX
IP block higher than 90MHz the design stopped meeting timing constraints. This was not ex-
pected as there exists an implementation [2] where 64 ρ-VEX cores are running concurrently
clocking at 192MHz. The design process has to be further explored to increase the clock speed.
A possible way to increase the clock frequency is manual routing in order to decrease the critical
path, or by putting constraints on how cores are spatially mapped to the fabric. Another solution
that was used in a former implementation on the VC707 board was to use custom clock genera-
tors and converters. It would be worth exploring similar solutions on the Pynq board. With the
clock set so low, it takes eight ρ-VEX cores to match the ARM processor, so increase in clock
frequency is desired.

The HDMI in- and output ports make use of the AXI streaming protocol, meaning that
data flows through the board without going to memory. There is a video direct memory access
(VDMA) block inside the video module. The VDMA, in this particular setup, can write frames
to main memory, via the AXI4 protocol, at 568MB/s. In the current implementation there is a lot
of data traffic overhead. First the data is converted from an AXI stream and moved to memory
via the AXI4 bus, then when ready, the ARM writes the data to the ρ-VEX streams. The last
core of the ρ-VEX streaming IP copies data back to main memory and the VDMA fetches the
ready frame, converts it into an AXI stream that continues towards the HDMI output. This is a
great overhead and a limitation with regards to energy conservation, latency and general use of
resources.

The current limitations of the hardware design are seven cores per stream, timing, data move-
ment, available resources and that the design has only been synthesized for a single chip. All five
limitations have their separate solutions, like new memory mapping of cores and streams, better
routing for improved timing, new logic such as DMA for higher bandwidth, a bigger FPGA and
a script that generates bitstreams for different chips respectively.
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In this chapter we will explain how the Hala ρ-VEX platform was implemented, how it can be
used and go into some discussion on design decisions made in the process. This chapter can
also be used as a reference manual for those that want to design new code for the platform. Fur-
ther information and details on libraries and individual functions can be found in the platform’s
documentation in Appendix A.

We aimed at making the platform as OpenCL compatible as possible so that existing OpenCL
could be modified and compiled for the platform. The emphasize on the OpenCL compatibility
was reduced gradually over the time period of this thesis but its heritage is still visible in the
platform’s design and how it is setup. As was described in Section 2.4, OpenCL host code has
to be set up in a predefined order. First, a platform has to be set up, then devices are discovered
and a context has to be initialized before setting up queues and buffers. To implement the whole
OpenCL standard is out of this project’s scope and is not necessarily a good fit as there is no gen-
eral support for a streaming architecture. Instead a bare minimum set of functions and constants
were implemented in a hala_rvex.h with implementations of the functions in a C library.

When writing new applications for the platform it is paramount to understand that though
the platform is highly flexible in terms of architecture and number of available cores, the code
written is always split first and foremost into host and device. Code written for the host is
compiled on the Pynq board using the gcc compiler. Device code, also called kernels, that run
on the ρ-VEX cores are compiled separately using ρ-VEX tool-chain and a rvexgcc compiler.
The host-device setup is visualized in Figure 4.1.

In the following subsections this work will be explained in more detail with some comments
on how to use the platform to setup a host program on the processing system’s (PS) side that
interacts with the dynamic ρ-VEX platform on programmable logic’s (PL) side.

4.1 Host implementation

In developing code for the platform the first step hast to be writing code for the host. During this
work the host was an ARM processor, but can, in theory, be replaced with any general purpose
CPU that has access to an field programmable gate array (FPGA). The host program is respon-
sible for setting up the ρ-VEX device, uploading kernels and starting programs, downloading
bitstreams, monitoring if the stream is busy or not, allocating memory for the ρ-VEX to write to
etc.

When creating a host program that interacts with the ρ-VEX there are number of object that
have to be setup and configured. The first and most important is to initialize a context as without
one there is no platform. Next step is to determine the desired number of ρ-VEX streams and
how many cores there should be per stream. These constraints will be referenced time and again
when setting up the host and device environment. Number of streams and cores can be changed
later on while the program is executing and only a part of the initial setup is needed to be run
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Figure 4.1: Overview of compile and runtime. Kernels and host code are compiled separately but host is responsible, at runtime, to
configure the PL and upload kernels to streams.

again as will be further explained. The following steps include finding a compatible ρ-VEX
device, downloading bitstreams to the reconfigurable fabric, uploading kernels to the ρ-VEX
cores, configure and setup parameter, allocating contiguous memory space for the ρ-VEX to
write back to etc. These concepts are discussed and explained in the following subsections.

4.1.1 Context

A context is an object that stores information needed for realizing the platform. When the
context is initialized it opens a configuration file containing information about the platform
and all available device setups. Contents of the configuration file are parsed to the context’s
variables and used for further setup of the host program. Values like the maximum number
of available ρ-VEX cores on the platform, how they are memory mapped, how big the data-
and instruction memories are and their offsets related to the ρ-VEX base address. The context
also opens the /dev/mem file in the Linux host system and gives access via mmap to memory
locations on the FPGA fabric. A pointer is created to an array that memory maps the whole
ρ-VEX memory address space into a single array. Later in the process this array is used in slices
to represent various memory locations of every core in each stream.

The information stored in the context is used when a platform is setup and when devices
are configured. Setting up the platform and devices are the next steps in creating a host program
and are further explained in the following sections.

4.1.2 Platform

Unlike OpenCL the platform object does not have a fixed device but only potential devices.
They need to be setup via reconfiguration of the fabric, in line with the need and demand of
an application developer. The idea is that every ρ-VEX stream should be an individual stand-
alone device that can be setup and run independent of other streams/devices on the platform.
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During the work of this thesis project this was not materialized. Only one device can be active
at any given moment, but can be of any size, i.e., can contain multiple streams of equal size and
running the same kernels. However, though only one device can be active on the platform at
once, multiple devices can be kept in memory. If an application needs more, or less, processing
power the reconfiguration time is reduced as bitstreams do not need to be read from file but can
be sent directly from the host memory to the reconfigurable fabric. The platform object keeps
a list of all devices that are in memory, along with a pointer to the binaries, and knows which
one is active at any given moment.

4.1.3 Device

A device object holds all information about the device that has been created. It has access to the
cores and streams on the fabric and is used for all communication to the actual ρ-VEX device.
This object keeps track of the streams’ states and knows for example if they are busy, running,
down, programmed etc.

The ρ-VEX object is setup with the initialise_rvex function that takes an initialized
context as a parameter along with a new ρ-VEX object and the desired number of streams and
cores per stream. The context is used to see if the desired number of streams and cores are
feasible within the platform. The device has to be initialized before any kernels or programs are
uploaded to the device. During initialization, all streams to be used are added to the device along
with all cores that each stream has in its pipeline. Every core gets a pointer to a memory-mapped
array from the context to represent its data, instruction and register memories. The rule on how
the ρ-VEX cores are mapped can be found in the documentation in Appendix A.

4.1.4 Reconfiguration

If an application requests a new device then the FPGA needs to be reconfigured. A bitstream
is written to the /dev/xdcfg file that initiates a transfer to the configurable fabric. As partial
reconfiguration (PR) was not implemented all data transfers on the PL side have to be stopped
before a reconfiguration takes place. This means waiting for all ρ-VEX streams that are writing
data to memory to finish as well as stopping all other direct memory access blocks (DMAs) or
video DMAs (VDMAs) that might me running on the PL. If data streams are active at recon-
figuration time it can lead to an unstable state of the reconfigurable fabric. A reconfiguration is
needed every time an application requests more cores or a change in the streaming architecture.

4.1.5 Program

There is no function implemented that can take a program source as a parameter but only a
function that creates or uploads precompiled binaries to the ρ-VEX cores instruction mem-
ory. When setting up programs on the host side the kernels to be used have to be precom-
piled and in binary format as is further explained in Section 4.2. The user calls the function
create_program_with_binary that takes a program name and a device as parameters and
downloads the right kernels to the correct cores’ instruction memories. If the binary is bigger
than the available memory, the function returns a 1 and prints out an error message containing
the maximum binary size and the actual size of the program that was attempted to upload, oth-
erwise a 0 is returned. The function create_program_with_binary does not start the kernels,
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only uploads the instructions. Next step in the host program’s implementation is to setup the
ρ-VEX parameter.

4.1.6 Parameters

Communications between host and device go through the parameters object. This is a struct
that holds predefined information as well as optional data parameters.

Parameters are transfered to the first ρ-VEX core of every stream. The way this was imple-
mented is via a transfer struct that has few predefined variables that should not be changed
by the user but are set up automatically when the set_rvex_parameters function is called. As
the ρ-VEX has little endian memory system, every parameter that is written to the ρ-VEX has to
be byte swapped. This is taken care of by the functions that write to the ρ-VEX and should not be
of consideration to the end-user but is something that is worth knowing for future improvements
of the platform.

As this is an image processing oriented design, the struct contains information about the
image that is being transfered. The end-user is responsible for setting parameters such as total
size of the image, its width, height and stride, along with information about the image block
being uploaded in each iteration. This information contains the size of the rectangle part being
uploaded, its offset in reference to the complete picture, its total width, height and pixel size.
The last part of the transfer struct is the data to be uploaded. For other uses of the platform
beside image processing, the data part of the struct can be used to upload any parameters or
arrays as the programmer sees fit. Other fields specific for image information can be ignored or
used to transfer other parameters.

4.1.7 Execution

When everything is setup, the device has been created, the kernels uploaded and the parameters
configured it is time to start the ρ-VEX processors. First kernels are started by calling the
start_rvex_programs function and using a ready device as a parameter. This function writes
a control sequence to all cores’ registers that start the program from the top.

Figure 4.2: One rectangle is moved at a time, from input image to a stream. For convolution filtering, extra padding is needed
around the rectangle.

With the cores running, data needs to be moved to the device. To do this there are three
functions already implemented. All have in common that pthreads are used to spawn threads,
one per stream. A thread is responsible to send all data to a stream and split it up into smaller
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chunks in case it is too big for the dedicated data memory of the processors. The simplest
function writes lines to the first core of every stream. There are two functions, aimed at image
processing, that write rectangles to the device (Figure 4.2). One splits the image into rectangles
that fit into the data memory of the core that is being written to, while the other adds a padding
around the image. This is done because convolution filters need a border around every pixel that
is being processed as is shown in Figure 4.2.

If the stream is busy when data is to be copied to the device the host program waits so pre
uploaded data is not lost nor overwritten.

4.2 Device implementation

One of the core concepts of this platform is its dynamic hardware structure. Upon building an
application for the platform the developer has great flexibility when it comes to device setup,
total processing power, energy consumption etc. As discussed in Section 2.1 the device can be
setup as a (1) manycore like a GPU shown in Figure 4.3b or (2) in a streaming fashion where
one core outputs its results to the next one in line as shown in Figure 4.3a. Both setups have their
advantages and disadvantages that will is examined in more detail later on.

(a) ρ-VEX cores lined up in a memory streaming pipeline.

(b) Overview of the platform setup where every core is independent.

Figure 4.3: Overview of host ρ-VEX cores can be lined up.

To understand the device setups better, we can take image processing as an example as it
is often embarrassingly parallel, where each output pixel is processed independent of all other
pixels in the output image. As has already been explained in Section 2.3, GPUs take advantages
of this inherent parallelism by throwing in thousands of small cores, all doing the same job at
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the same time but in different parts of the image. This can be done in a similar way with this
platform although that is not its strong side. The interesting part lies in the streaming architecture
where instruction parallelism is exploited along with data parallelism. As GPUs and the method
of data parallelism is so widely adopted and well documented, this chapter will be focusing more
on the streaming functionality of the platform.

The kernels running on the platform are written in C99 with few limitations related to the ρ-
VEX compatibility. For example, the ρ-VEX version used in this project, does not have support
for floating point operations nor a square root function which has to be taken into consideration
when writing the kernels. The following section gives a high-level explanation on how programs
are written for the ρ-VEX streaming platform.

4.2.1 Map algorithms to the streaming architecture

To understand how algorithms are mapped to the streaming platform we will keep using image
processing as an example. Image processing pipelines, like the one shown in Figure 4.4, are
inherently split into multiple stages, where the output of one stage is the input of the following
one. They are a natural fit for the streaming architecture. At first glance, it might seem like a
good idea to implement it on a stream consisting of three cores where each stage of the image
pipeline is mapped to a single core. But this is not the case, as every stage in the figure has a
different amount of arithmetic and memory operations. No automated tools or methods to map
the image pipeline to the cores were made so it has to be manually.

Figure 4.4: A simple 3-stage image processing pipeline. First the input image is greyscaled, then blurred before a Sobel edge
detection is applied and the final image is written to output.

Figure 4.5: On the host side, one thread is spawned per stream. Here the gray-blur-sobel image processing pipeline has been mapped
to two cores and two streams as an example.

Manual inspection of the edge detection pipeline reveals the number of operations in each
stage, which are presented in Table 4.1. When the results are examined it becomes clear that a
three stage pipeline would not be optimal as the last core, working on the sobel filter, would need
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Table 4.1: Each stage of the image processing pipeline analyzed and divided into processor operations per pixel

Stage ALU Mul Dev Mem Total
Grayscale 4 5 1 4 14
Gaussian Blur 21 6 1 10 38
Sobel Filter 33 4 0 13 50

to perform almost four times the operations on each pixel compared to the first core responsible
for grayscaling the input image. A good fit would be to implement a two stage stream where the
first core handles grayscaling and the Gaussian blur and the second core would be responsible
for the sobel filtering for better resource utilization, leaving the system well load-balanced.

FPGAs have relatively small on-chip memory that sets constraints on the whole design. It
is a limiting factor on the total amount of instruction memory available to each processor. If
every core is to execute all stages of an image processing pipeline, i.e., every stream would
consist of a single processor like in Figure 4.3b, there is not much space left for compile time
optimizations, given that the binaries would even fit to memory. Techniques like loop unrolling
can have significant impact on performance [2] at the cost of total binary size. This becomes
possible when processors in the ρ-VEX stream run smaller part of the algorithm and is a great
advantage of the stream architecture over the single core setup.

4.2.2 How cores communicate

As discussed earlier in Section 4.1, a developer who writes code for the platform can choose
either having many independent cores or line the cores up into streams. Cores that are indepen-
dent, can also be thought of as streams with a pipeline depth of one, have no means to exchange
data. This is a limiting factor when using the platform in a similar setup as how GPUs are de-
signed. GPUs normally have more complex memory hierarchies which are, for example, split
into large global memory, smaller per block of threads memory and then a small private memory
for each thread. When the ρ-VEX platform is run as a manycore it is limited to private memory
only, with the exception of write access to host main memory.

When the platform is setup in a streaming fashion every core can write to its own memory,
and with a flip of a switch, write to the memory of its adjacent core. The switch that is flipped
is not more than a map where input memory starts at address 0x00000000 and the same address
of the next core is mapped at 0x80000000. This means that when a function or a loop writes
to a variable or array, it is up to the developer to choose if the data is to be written to the
processor’s own memory, or to the succeeding processor’s memory. The following core can then
start processing the data the moment it becomes available.

When kernels are written, it’s very important to define a partially volatile transfer struct
both at the input address of the kernel in question and for the adjacent kernel which outputs’ will
be written to. A flag that indicates when data is ready is externally updated and if that is not
volatile, the compiler ignores all conditional statements regarding that flag as it is not updated
with in the normal program flow. In the common header file that comes with the platform there
are predefined transfer structs that can be used. They are used in the example programs, to
correctly map memory of a core to the private memory of the next one in line. These structs
have variables such as stream number, offset, state of the kernel, output address in host main
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memory, data to be transfered and its size that need to be shared by two cores.
In total, there are three states a core can be in IDLE, READY and BUSY, indicating that

core is not working, data is ready to be processed and data is being processed respectively.
When the host starts sending data to the first core it marks the core as BUSY. After the data
transfer has finished the state is updated to READY indicating that new data is ready to be
processed. The core marks itself as BUSY so the data is not overwritten by the host while it is
being processed. When results have been produced and written to the memory of the following
core in the pipeline, that core can start processing the data immediately. The former core marks
its state as IDLE when it is ready to receive new data batch and starts working on that dataset so
both cores work simultaneously, but in different stages of the image processing pipeline.

4.2.3 Writing back to host memory

When the last core in a ρ-VEX stream has finished processing a line it needs to write it back to
main memory. Like other cores in a stream, the last core has an external memory map to address
0x80000000. But in the case of the last one, this address maps to a DMA built into the streaming
architecture. Writing to the DMA and subsequently to host memory is done in a number of steps
with few things that have to be kept in mind when starting a transfer. Figure 4.6 shows the steps
needed to initialize and start a DMA transfer.

Figure 4.6: Functional flow overview on how DMA transfer is setup and initiated in the last core of every stream.

First, a buffer is created pointing to the output address 0x80000000. The destination address
in host memory is written to the newly created buffer before it is filled with the data to be written
back to memory. As ρ-VEX stores data in big endian format and the host, in this case an ARM,
uses little endian convention, every integer has to be byte swapped before written to the output
buffer. To start a new transfer, the size of the data array to be sent is written to the buffer. If there
is any ongoing transfer this data will be ignored and subsequently lost. To avoid data loss, care
has to be taken to wait for any previous transfers to complete before writing the data size to the
buffer.

It is important to be very careful when writing back to host memory. The ρ-VEX DMA
has no way knowing if the memory that is being written to is already occupied by a process
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on the host system. It means that memory has to be allocated by some host process before the
DMA is started to avoid instability. In worst case this could lead to a complete system failure
if the DMA overwrites host-system memory. This can be avoided by allocating a dedicated
part of the DDR memory to the ρ-VEX platform at Linux host-system boot time. This was not
implemented in this work but what has been done to tackle this problem is a dedicated python
server that uses Xilinx library to allocate consecutive memory blocks. There are few functions in
the palloc library that communicate with the server and secure contiguous memory for the DMA
to write to. To read more about the palloc library please refer to the platforms documentation in
Appendix A.

4.3 Practical considerations

The platform implementation explained in this chapter was carried out on Xilinx Zynq processor
running Ubuntu Linux with pre-installed Xilinx-Python libraries. To port the platform to another
architecture all overlays have to be regenerated, leaving a big setup overhead for new platforms.

How communication from host to device was implemented, raises some security concerns.
Super-user privilege is needed to access the host system /dev/mem file leaving the whole memory
open for manipulation and can not be considered a good practice.

Though this implementation works it is far from production ready. It cans still serve as basis
for further explorations into runtime reconfigurations as well as mapping algorithms to streaming
architectures.
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Experiments 5
In this chapter the focus is on evaluating the Hala ρ-VEX platform. It is important to measure
and test the implementation developed during this thesis work. To evaluate and understand, how
the platform fairs against other related work that was introduced in Section 2.5. A number of
experiments were performed and in the following sections they are explained and the results
from those experiments presented and discussed.

It is not easy to compare the Hala ρ-VEX streaming platform to other related work within
the time frame of the thesis project, as it is out of scope to setup other related platforms and create
benchmarks that fit all the various implementations. In this chapter the Hala ρ-VEX streaming
memory platform is evaluated and tested. The focus will be on run-time reconfiguration, energy
consumption, and image processing performance where streaming pipelines are compared to a
stand alone core. Ease of programmability and design cycle time is also evaluated, but on a
conceptual level, since it is hard to quantify. This chapter is concluded with a discussion section
where the main results are evaluated and reflected on.

5.1 Setup and hardware

A Pynq board with a dual core ARM Cortex-A9 processor, that serves as a host, and a Xilinx 7-
series FPGA for device implementation, as described in Section 2.2.1 is used for all experiments.
All host code is compiled on the board and the kernels, that run on the ρ-VEX cores, are compiled
on an x86 based laptop running OpenSuse Linux.

HDMI in and HDMI out is supported but that is mostly for demo purposes, so all experiments
are performed by using an image loaded from memory. This both saves time, as setting up an
HDMI data link does not happen instantly, and as the current HDMI setup is not ideal it shows
better performance to use an image loaded from memory. Though the image is read from file, it
is kept in memory when tests are performed to save fetching time and not read from the SD card
in every iteration.

All results are based on real experiments performed on the Pynq board except for the power
consumption results, that are generated using Xilinx’s Vivado power estimation and the para-
graph on theoretical performance that are based on Xilinx and ρ-VEX documentations.

5.2 Results

5.2.1 Reconfiguration

As has been explained in Section 2.2.2, the FPGA is reconfigured by uploading a new bitstream
from the host processor to the reconfigurable logic. The steps needed to reconfigure the Hala
ρ-VEX platform, besides uploading a new bitstream, is to download kernels to the uninitialized
ρ-VEX processors. Few basic parameters need to be set and the programs need to be started.
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According to Xilinx, the bitstream transfer rate is 400MB/s [29] for non-secure PL config-
uration and 100MB/s for secure PL configuration. This means that ideally it should take 10 or
40 ms to upload a new 4MB bitstream. For good measure this was tested on the Hala ρ-VEX
platform by downloading a new bitstream, both from the SD card and directly from memory. To
get a good average number it was uploaded 2000 times for both cases. It is not enough to just
download a new bitstream, as stated earlier, so the time it takes to download kernels and start
programs where also measured and also tested 2000 times. The results from these experiments
are shown Table 5.1.

Table 5.1: Results from measuring average reconfiguration time of the Hala ρ-VEX platform.

Download bitstream from SD card to memory 16.5ms

Download bitstream to fabric from memory 180ms

Download kernels and start programs 0.15ms

Total reconfiguration time 196.65ms

The time it takes to download a new bitstream is a factor greater than what was expected.
This could be improved by using Xilinx native drivers, and not rely on the Linux OS to move the
binaries, but that is not confirmed. As can be seen in Table 5.1, the reconfiguration time can be
improved just under 10% by keeping the bitstreams ready in memory and not fetch it from the
SD card every time when reconfiguration is needed. This still leaves 180ms left to reconfigure
the platform, so that any image stream working on higher frame rate than 5 frames per second
(fps) would loose more than one frame during reconfiguration.

5.2.2 Performance

Performance can be measured in various ways, but as this thesis’ focus is on image processing all
of the performance tests are carried out by using image frames and image processing algorithms.

Hala ρ-VEX roof line model When measuring the performance of the Hala ρ-VEX platform
it is useful to first know the theoretical maximum performance of the system. When it comes to
performance of accelerators, bandwidth and number of operation per clock cycle are paramount.
We have to know how much data can be moved to the accelerator per second and how many
operations are possible in the same time interval, i.e., what is the maximum throughput of the
system.

According to [5] the AXI4 protocol can write one word per clock cycle. The experimental
setup used has an AXI4 bus clock set to 85MHz so maximum mount of data that can be moved
should be

BusBandwidth = 32bits×85MHz = 2720Mb/s(340MB/s) (5.1)

which can be translated to 236 fps in image processing, giving our test frame is 800 by 600
pixel color image.
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The ρ-VEX cores work on the same frequency as the AXI4 bus. The maximum number of
operations for a ten core setup would then be

PeakPerformance = 85MHz×10cores×2lanes×1OP = 1700MOPS/sec(1.7GOPS/sec)
(5.2)

taking two lanes into account as in theory the ρ-VEX should be able to issue two commands
simultaneously and complete one operation per clock cycle. Multiplication takes two clock
cycles but can be pipelined so one result can be produced per clock cycle. Division takes longer,
or around 40 clock cycles. The peak performance in Equation 5.2 is theoretical and can not be
expected in a real application. The memory bandwidth, calculated in Equation 5.1, and peak
performance are added together into a ten core roof line model shown in Figure 5.1.

Figure 5.1: A theoretical roof line model of the ρ-VEX streaming platform, using 10 cores on a Xilinx Pynq development board.

Maximum performance is reached at five arithmetic operation per data byte. As image pro-
cessing algorithms normally do more then five operations per pixel, it is safe to say that the
memory bandwidth should not be a bottleneck in the Hala ρ-VEX platform, given the ten core
setup. This roof line model is based on optimum data transfer performance as described in the
Zynq book [5] and theoretical ρ-VEX peak performance.

Bandwidth When actual measurements are done on the Hala ρ-VEX platform the optimum
bandwidth, calculated in the previous section, is not reached. The experiment was performed
by repeatedly pushing a test image, an 800 by 600 colored image, to the accelerator without
performing any operation on the pixels and not copy the image frame back to memory. The
maximum measured bandwidth is only 18.5 fps which translates to 26.6MB/s. With a simple
pass-through algorithm, i.e., the image is copied back to memory from the ρ-VEX cores, this
performance is even lower, at 17 fps (24.8MB/s), as shown in Figure 5.2. The big difference
between ideal performance and the one that is measured can be explained by the fact that in the
Hala ρ-VEX platform the ARM processor is used to copy the data to the PL fabric. An ideal,
and lot faster way to move the data would be to use a dedicated direct memory access block
(DMA) to transfer images to the ρ-VEX cores. This was not done and therefore the ideal AXI4
bandwidth was not saturated.
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Figure 5.2: Throughput of 2 simple algorithms compared with the maximum measured bandwidth.

It is noticeable form Figure 5.2 that the grayscaling algorithm performs little better than
the simple pass-through. The results are gathered by iterating the image transfer and grayscaling
1000 times to get a reliable average performance. The reason why grayscale was slightly faster is
that when copying back to main memory, the image is three times smaller than the original one.
In this example that means copying 480k bytes over 1.44M bytes, as with the colored image, per
image frame.

Loop unrolling One of the selling points of the streaming architecture is a better use of the
instruction memory. By using loop unrolling, the kernel binaries grow in size, but at the same
time the compiler can make a better use of filling the VEX instruction pipelines and ideally
complete an execution of an operation every clock cycle.

Few experiments were done using loop unrolling factors of 0, 4 and 8. During the tests
an 256 by 256 grayscale image was used and two different kernels were implemented. First a
Gaussian blur kernel was tested and secondly a Sobel edge detection algorithm. The output from
the blurred image from previous experiment was used as the input for the Sobel edge detection.
To get a good average results the image was run 20 thousand times through the accelerator for
both software kernels. The results are shown in Figure 5.3a and as can be seen, the performance
was increased by around 60%, for both processing kernels, by unrolling the main loop 8 times
compared to no loop unrolling at all. When execution times of both kernels are stacked together,
Figure 5.3b, the total time goes down from 39.2ms to 24.4ms. The Sobel and Gaussian binaries
roughly tripled in size by unrolling the main convolution kernel, or from 800B to 2kB and from
768B to 2.3kB respectively. As the instruction memory, per core, is only 4kB no further unrolling
experiments were possible.

Streaming vs single core Another advantage of the memory streaming solution compared to
independent many cores is image processing pipelines. Rather then waiting for all cores to run
through all the algorithm before starting processing the next image in line, a part of the algorithm
could be run in the first stage of the pipeline, and when finished, pass on the results on and start
working on a new frame. By pipelining the processing procedure in this way the frame rate could
be pushed up and overall throughput increased.
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(a) Loop unrolling of Gaussian and Sobel kernels.
(b) Stacked processing times of Gaussian and Sobel
kernels.

Figure 5.3: Results from loop unrolling two image processing kernels tested on two streams consisting of one core each.

To evaluate the streaming architecture, with the limited resources of the Pynq board, two
different streams are compared. A stream of just a single core is compared in performance with
a stream of two cores. To get a better view of scalability, within the limited fabric, up to four
streams are run in parallel. Two filters are used, a Gaussian blur and a Sobel edge detection.

In the first setup, both kernels are running on the same ρ-VEX processor. The intermediated
results from Gaussian are stored in a local memory. When the intermediate result are ready, the
ρ-VEX core signals the ARM to start a new data transfer while the edge detection algorithm
runs. The benefit is that while the Sobel edge detection algorithm is being executed data is
moved simultaneously to the cores data memory, i.e., the input data is refreshed.

The second setup splits the load between two separate processing cores. The first core applies
the Gaussian blur and the second core is responsible for calculating the Sobel edge detection and
writing back to host memory. As can be seen in Figure 5.3a there is some difference in execution
time between the two kernels. The Sobel kernel executes in about two thirds of the time it takes to
execute the Gaussian blur. In the streaming setup only the second processing core is responsible
for writing data back to main memory. This should shorten the execution time of the Gaussian
kernel and improve the overall load balancing of the stream.

(a) Results from running Gaussian and Sobel algo-
rithms on streams of size one and size two.

(b) Total execution time compared between using
streaming, and not streaming.

Figure 5.4: Single and dual cores streams compared using two separate image processing kernels. Less is better.

When the results are examined, there is considerable gain in performance using the streaming
setup over the single core configuration. In Figure 5.4a the execution time between single core
streams and two core streams are compared running the same image processing filters. It is
interesting to see that the dual core streams perform over twice as good. For better clarity of
resource utilization, in terms of performance per core, Figure 5.4b shows total execution time
of both setups when equal number of cores are used. The dual core setup shows in all three
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Figure 5.5: Average execution time of a seven stage image processing pipeline run on: (1) a single stream consisting of seven cores
and (2) seven single core streams.

experiments better use of resources, i.e., shorter execution of the image processing pipeline per
core.

Though the resources on the Pynq board are limited it is still possible to run a stream of seven
cores on it. To test how a seven core stream fairs when compared with seven single cores, a seven
stage image processing pipeline has been created. The algorithm developed was made to fit both
for a stream and single core. It consists of seven processing kernels, beginning with a Gaussian
blur, then there are five blur kernels of equal intensity, followed by a Sobel edge detection at the
end. Both setups were tested using an image of size 800x700 and iterated 2000 times to obtain a
good average execution time. The results from this experiment is shown in Figure 5.5.

The results from the seven core experiment show that running the same algorithm on seven
single cores, more than doubles the execution time compared to running it on a single stream
that consists of seven cores. The image processing pipeline used was made in such a way that
the ρ-VEX processors in the stream are fairly equally load-balanced.

The reason for the difference in execution time can be explained by three separate factors.
All the main loops in the streaming setup are unrolled 8 times and we have seen from earlier
experiments that loop unrolling introduces a considerable performance gain. The second factor
is number of pixels that need to be copied to the device per image frame. In the streaming
setup all intermediate results are written to the next processor’s memory, meaning that for every
iteration, a 32KB slice of the original image can be uploaded from main memory to the first
core. With the single core setup, there needs to be memory available for intermediate results.
Two arrays are used to toggle results between image processing kernels. This means that only
10KB of the original image can be uploaded in every iteration. As there are two convolution filter
in the pipeline the part of the image that is begin uploaded needs to be padded two times due to
data dependencies of the convolution kernel as was explained in Section 2.3. As the image is split
into more pieces, the overall data that needs to be copied increases as every iteration requires
four lines of padding due to data dependencies. The third factor is related to the second one in the
way that as the image is split into smaller pieces and padding is added for every upload, the total
number of arithmetic operations per image frame increases as well. The streaming setup gains
considerable performance with better compile optimizations, less data that needs to be copied to
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the ρ-VEX device and fewer arithmetic operations per image frame.

5.2.3 Power consumption

The power consumption of the FPGA fabric is not measured in the field, but all numbers are
based on Vivado power estimations. During power analysis some parameters are modified in
order to help the tool to get better estimates.

Figure 5.6: Total power consumption of the Zynq, SoC, showing near linear increase in power consumption with every new ρ-VEX
core added.

In this experiment, the results are presented in Figure 5.6, it is assumed that the 2 ARM
cores are working at 50% capacity. That there is no heat sink on the chip, no fan and that the
ambient temperature is around 30C. What is interesting, is that even when the logic fabric is
filled with 10 ρ-VEX cores, clocking at 90MHz, they still use less than half of the chip’s total
power consumption, or 1W. This was not tested on real hardware and are only estimations. If
these estimation are not faraway from reality then the Hala ρ-VEX platform’s performance per
watt is around 1.7GOPS/W. Further real live measurements are needed to confirm if these results
are anywhere close to real power consumption.

5.2.4 Programmability

It is not easy to measure how programmable, or how easy it is to program a device. One measure
would be what language the application is written in, how popular is that language, and is it nor-
mally used for the stated purpose. For example, is it usual to write image processing algorithms
in C?

The code, as explained in Section 4.1.3, is written in standard C. Though there are some
things that have to be taken into consideration, like how the host communicates with the device,
and how data and parameters are passed from one soft processor to another, processing kernels
are still written in a fairly standard way for the Hala ρ-VEX platform. Image processing al-
gorithms written for a more general CPU can be ported to the ρ-VEX platform without much
modification. What has to be kept in mind though is the limit of the data and instruction memory
sizes. There are some functions in the Hala ρ-VEX libraries that help break the dataset down
into manageable portions that can be written to the device in order to not overfill the memory.
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But fitting a big image processing kernel into the small instruction memory of the ρ-VEX is
more of a challenge. So the code has to be split over several kernels manually.

There are examples in the Hala ρ-VEX platform directory on how an image processing
pipeline can be broken up and shared between processors, and therefore make use of the stream-
ing element of the platform. There is a learning curve for a developer in order to get started
writing new code for the platform. But it should not be to alien to a programmer that is used to
writing code for OpenCL platforms for example.

It is hard to say but it could take an experienced programmer, used to writing C code, about a
day to get familiar enough with platform to be able to modify and compile one of the examples
programs that come with the platform. To fully understand the platform and writing code from
scratch would take longer. But when used to the architecture, a programmer can write new and
experimental algorithms in a similar amount of time as with other platforms like OpenCL. This
will soon be tested when the platform is publicly available.

5.3 Comparison

Though it is important to compare the platform to other similar works it is not a straight forward
task. If we look at the high level comparison between other solution in Table 2.1, Section 2.5.5,
then it would be fair, based on the experiments presented, to give Hala ρ-VEX a plus in pro-
grammability, a plus/minus in performance, two pluses in development cycle time and a plus in
reconfigurability.

Based on the project goals Hala ρ-VEX comes out on top in total number of pluses. This
might be an unfair comparison at the cost of the other platforms as not all their merits are counted
up. If other things were taken in consideration then, for example, Catapult [6] scales over mul-
tiple FPGAs in data center, MARC [7] offers great performance close to that of a handcrafted
hardware description code, LP-P2IP [8] is high performance and runtime partial reconfigurable.
Halide-HLS [26] offers a mixture of ease of programming with high performance at cost of long
compiling cycles. All the solutions are good in their own way and Hala ρ-VEX is a fine addition
to this group though it is still in its early development stage and not as mature solution as the
others that were presented.

It would be interesting to test longer image processing pipelines, using more cores per
stream, on bigger FPGAs for real performance.

5.4 Discussion

The experiments performed have shown that the platform is usable in most aspects. It is pro-
grammable, reconfigurable, can be used as a single core, many core, in a streaming fashion and
running multiple streams simultaneously.

The outcome of the performance experiments are interesting and show good results in using
the platform in streaming fashion over the multi core setup. The tests performed used rather
simple algorithms and streams of only two cores. Still there is around 10% speed up in using the
streaming architecture on the small FPGA on the Pynq board. When seven cores where tested,
in both a streaming and many-core fashion, the streaming setup was twice as fast compared to
the many-core setup. With a bigger FPGA it would quickly show diminishing return to increase
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the number of cores, if every stream has only one core each. Then it would be interesting to
see how performance, or overall throughput, can be increased by making the processing streams
longer, i.e., increase the amount of ρ-VEX cores per stream.

The results from the power consumption experiments show that the device does not draw a
lot of power. Power consumption per watt, as it was estimated, is greater then an AMD embedded
graphics card [30] but also three times more than a high density multi GPGPU architectures [31]
in a server environment. These where only estimation and are not confirmed by a real time
experiment on an actual device.

Reconfiguration time is acceptable as long as the platform is used where temporary data loss
is not an issue. If an application is critical to data loss the 180 ms reconfiguration time is not
acceptable as it would loose 12 frames if a video stream is running at 60 fps.

These problems also have solutions as the platform is in its early stages. Reconfiguration
time can be improved with partial reconfiguration where the data flow does not need to be
stopped when the fabric is reconfigured. The scheduling of algorithms and load balancing can
be improved to make better use of the streaming functionality. It would be interesting to test the
platform in other application domains than image processing. A domain where the data flow is
lower or where arithmetic intensity is higher.

Now that there exists a programming interface for the Hala ρ-VEX it is time for further
experiments and studies. The platform can be ported to bigger FPGAs, tried in other domains
and scheduling between cores can be experimented with.
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Conclusion and future work 6
In this chapter the work presented in this thesis report is concluded. In Section 6.1 we will
reflect on the results gathered in the previous chapter, look back at the original problem statement
from Section 1.2 and see what has been achieved.

During this work many ideas for improvement and increased functionality arose. Some of
these proposed improvements are presented in Section 6.2. We will have a look at proposed
memory improvements, automation of mapping algorithms to streams, ρ-VEX read access to
main memory and more.

6.1 Conclusion

In Section 1.2 this project’s goal was introduced, along with what was to be achieved during the
work presented in this thesis report. The goal was broken down to four vital steps that needed to
be completed in order achieve the thesis goals. Here we reflect on the main goal and the steps
needed to be completed, to see what was achieved, and already presented, in this thesis. The
goal, as it was stated in Section 1.2:

Is it feasable to use the ρ-VEX memory streaming architecture as a general, programmable,
run time reconfigurable image processing platform?

The results, presented in Section 5.2, show that the ρ-VEX memory streaming architec-
ture [2] is runtime reconfigurable, it can be used to apply image processing algorithm on real
time video streams and the platform is fully programmable. Streams of two cores showed better
performance than running the same algorithm on two independent processing cores, indicating
performance promise in future implementations using longer and more complicated algorithms
on bigger FPGAs.

The problem statement was also broken down into four steps that needed to be completed in
order to achieve this thesis goal. These steps, and what has been done are listed below:

1. Create a general library in C that includes all necessary building block to interface a new
application with the ρ-VEX streaming device.

To tackle this requirement the hala_rvex library was built, as was thoroughly explained
in Section 4. It contains all necessary functions to develop a new application to run on the
Hala ρ-VEX platform. The hala_rvex library combined with the functions implemented
in palloc, the Python memory server and the common header file create a full interface to
work within the Hala ρ-VEX environment.

2. Implement a functionality so that the number of streams, and cores within a stream, can
be dynamically changed at runtime.
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This problem was solved by pre-synthesizing all possible ρ-VEX processing configuration
that can fit on the programmable logic (PL) present on the Pynq board. As can be seen
in Table 3.1 there is a total number of 27 possible lineups of the cores within the Zynq’s
PL. With every layout synthesized, and stored on the Pynq board, they take up a total
space of 108MB. The Pynq’s main storage is a micro SD card. A modern SD card, at the
time this thesis is written, is available with hundreds of GB in data storage capacity. All
27 bitstreams only use a fraction of the available theoretical storage on the board.

This solution scales even though bigger FPGAs require bigger bitstreams and the number
of possible setups grow exponentially. The whole bitstream library can be stored on any
external storage space. If the number of setups needed by an application is known at
compile time then all bitstreams can be fetched as a part of the application setup process.
The bitstreams are then stored in memory for faster reconfiguration time. The bigger the
FPGA used, the bigger will the bitstream be, the time it takes do load a bitstream should
be proportional to its size.

3. Shorten the application development cycle by removing the need to create a new hardware
design while new program is being developed.

The Hala ρ-VEX platform is fully programmable at the post synthesis state. The kernels,
for the device, are written in plain C as well as the host program. All possible hardware
configuration are already synthesized and ready at runtime. It should only take as long to
develop a new application for the platform as for any other hardware accelerator, i.e., in
depth hardware design knowledge is not needed. In fact there is no need to run any type
of hardware design tool in order to develop and run a new application for the platform.

4. Create an input output interface for video streaming to properly showcase the platform.

A hardware design, that supports both HDMI input and HDMI output, was introduced
in Section 3.3. Though it is not without flaws, there exists a demo that takes input from
HDMI, routes the data to the ρ-VEX streaming device and back to HDMI out. In the
current implementation there is great overhead of data movement, pixels being copied
back and forth.

The goal of interfacing the platform with input and output video data was met but is in a
need of a new design. In future work, Section 6.2, some suggestions are made in how it
can be improved.

What we have is a working platform. Device and host code has been mostly decoupled, but
further work is needed and will be explained in the following section. The result of this work is
a functioning open source platform that has been uploaded to the ρ-VEX online repositories. It
will be available to anyone that wants to make use of it. In order to start using the platform, only
thing that a user needs is a Pynq board and a computer running Linux operating system in order
to compile new kernels for the ρ-VEX cores. The platform is still work in progress and needs to
be further developed on both the hardware and the software level. Some suggestions are made
in the following section, future work.
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6.2 Future work

There is room for improvement in the platform’s implementation and many things that would
have been great to implement better or differently during this thesis work. Possible improve-
ments can be found on all levels of the platform. In the VHDL code, in the Vivado design and in
some C level functions. Few flaws especially stand out and they will be covered in the following
paragraphs, in no particular order, with some recommendation on how they can be fixed.

Partial reconfiguration A prominent feature for the platform is to make use of partial recon-
figuration (PR) [32]. By implementing PR it is possible to add new streams to the fabric without
stopping other streams, and other functionality, running on the board. PR is not only faster
than full reconfiguration, but a video stream can flow uninterrupted through the fabric while the
change to the hardware is being made.

PR can take the Hala ρ-VEX platform to a new level with regards to dynamic run time
reconfiguration and uninterrupted uptime. Another benefit that comes from using PR is storing
all possible configurations. PR bitstreams are considerably smaller then full bitstreams. With
bigger FPGAs both the number of available configurations increase and each bitstream increases
in size. This means that more storage space is needed and it takes longer to download each
bitstream to the programmable fabric. PR reduces these two overheads with smaller partial
bitstreams replacing full bitstreams.

Memory bandwidth In the current implementation of the Hala ρ-VEX platform memory
bandwidth is one of the biggest bottlenecks. There are numerous ways to increase the overall
throughput and most of them include decreasing data copying and make better use of solutions
already available.

With regards to streaming video data, it would be ideal to stream the pixels straight to the ρ-
VEX streaming device. The overhead of first writing to memory and then to the ρ-VEX streams
is far to great. It includes writing to a off-chip memory only to be copied back. How the video
data can be streamed directly to the ρ-VEX needs to be further researched as there are few things
that have to be kept in mind. For instance, if the incoming frame rate is higher then the ρ-VEX
streams can process, should there then be a frame buffer so that only whole frames are dropped
and not just parts of frames, and what will split the lines between ρ-VEX streams. With this in
mind there could be an IP block implemented that takes care of this logic: stores one frame at
the time and equally splits it between number of streams available.

If main memory is to be used for storing frames, there needs to be a better way of moving
data to the ρ-VEX streams. In the current implementation the ARM processor copies all data
to the ρ-VEX device. There are other ways to move the data from the main memory to the
accelerator, like a dedicated direct memory access (DMA) block for example, and they should
be further explored.

ρ-VEX access to main memory In the current design, when the ρ-VEX streaming device
needs to write back to memory a dedicated Python memory server has to be started up first. This
server is responsible for allocation of continues memory block for the ρ-VEX DMA to write to.
This is not very practical and a better solution is needed. One way to tackle this shortcoming
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of the platform, is to reserve part of the DDR memory for the ρ-VEX at boot time. I.e., hide
considerable amount of memory from the host operating system.

In Section 4.1 it is explained how pixels, and images, are copied to the ρ-VEX device. The
accelerator operates as a slave that can only wait for data and not request it. The last core in any
stream can write to main memory and in similar way the first processing core of every stream
should be able to read from the main memory. In order to materialize this functionality the
VHDL code representing the streaming design would need to be revisited.

ρ-VEX access to main memory requires further research into possible overhead of such a
solution in terms of resources and how it affects load balancing of the device. In the current
implementation, in theory, there is no downtime of the first processing core. It can work on
parts of the input data simultaneously as data is being moved to the core, initiated by the host
processor. If the ρ-VEX would be responsible for accessing data in main memory, would that
then stall the processor while data is being moved, for example.

Mapping an algorithm to a stream In the current implementation, represented in this report,
algorithms are mapped to streams manually, as explained in Section 4.2. Mapping big compli-
cated image processing algorithms has not been tested and it is not obvious how easily it will
scale. In the current work, stages of the image processing pipeline are tested individually to see
how long they take to execute in order to improve load balancing between various stages in the
ρ-VEX processing pipeline. With long and complicated algorithms this could become a very
tedious job.

It would be interesting to study how algorithms can be automatically mapped to the streams.
To automate a process that detects where an applications can be ideally cut and split between
processors. Each processor should get a similar workload to avoid cores running without per-
forming any work.

Automating the procedure of mapping algorithms to the streaming architecture should be
done in steps. First, there needs to be some improvement in how cores, within a stream, commu-
nicate data. As was presented in Section 4.2, data is moved from one core to another via memory
map and dynamic structs directly exposed to the application developer. This would need to be
improved and the underlying functionality further abstracted. A processing core could, for ex-
ample, be called via asynchronous function call. This implies that code for all cores can be
written within a single function, or a kernel. With the code for the whole stream being written
within a single function it would be easier to create an automated process that analyses the data
flow and identifies possible places where to cut the code and split it between ρ-VEX processors.
The third step is to automatically create the individual kernels from the code snippets cut by
the analyzing algorithm. This requires further studies and experiments before a good solution is
found and implemented.

Variable instruction and data memory sizes In Section 3.3, we saw that block RAM
(BRAM), the building blocks for instruction and data memory, is a limited resource on an FPGA.
In the current implementation, data memory for every processor is set to 32kB and instruction
memory to 4kB. This setup fully exhausts all BRAM resources on the Pynq board when ten
ρ-VEX cores are implemented.

For image processing, it is good to have large data memories at the cost of smaller instruction
memories. This might not be the ideal for other use cases. If the platform is used for different
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applications, with fewer data points and more complicated algorithms, it might be of interest for
an application developer to have bigger instruction memories and smaller data memories.

To create a bitstream for every possible memory setup within every possible ρ-VEX core
setup does not scale very well. So a different type of solution is needed. This could maybe
be solved by using PR, but that might also not be the case. Finding a way to realize variable
memory sizes in the post synthesis state is an interesting work to look into.

OpenCL implementation To make the platform OpenCL compatible would be a great addi-
tion to the family of OpenCL ready devices. OpenCL, as stated in Section 2.4, is an industry
standard in image processing and other GPGPU applications. There exists a great variety of
algorithms, applications and documentation for OpenCL.

If the Hala ρ-VEX architecture would be OpenCL compatible, it would be fairly easy to
compare it to other devices on the market. It would also minimize the learning curve for expe-
rienced OpenCL programmers, and the ρ-VEX streams could work alongside other accelerators
within the same application.

The amount of work needed to be performed to make the device OpenCL compatible is not
known. The ρ-VEX processor has been used as an OpenCL accelerator as part of the portable
computing language (POCL) [33] and the ALMARVI project [24]. The body of the work would
be to map OpenCL kernels to streams and the scale of such an undertaking is unknown at the
time when this is written.
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A
This appendix contains a copy of chapter 2 from the Hala ρ-VEX platform manual as it was at
the time of this writing. The manual does not cover all functions available within the platform
libraries but all functions that are used in the demo application are documented here.
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2 | Hala ρ-VEX API

This chapter gives an overview of the Hala ρ-VEX platform’s API. An appli-
catoin that runs on the platform is split into host and device code. The host
is an ARM processor and a device is the ρ-VEX streaming architecture.

The first section of this chapter deals with host code. It explains, in steps,
how to write new code for the host side of the application and gives a simple
code example. The second section is about how to write code for the ρ-VEX
device with some examples given. The third and the fourth sections list
functions used to setup a new application on the platform. Section three is a
list of hala_rvex functions and in section four is a list of palloc functions.

2.1 Host code

Host code is written in C and compiled using gcc on the ARM processor.
The host is responsible for setting up the ρ-VEX device, HDMI support and
memory allocation. The host splits images to smaller pieces and sends data
to the device.

The first section explains how to write new host code and the second
section gives an example of host setup code.

2.1.1 New application

This section explains the basic steps that need to be taken in order to write
new host code. When writing a new application the hala_rvex header file
needs to be imported as it contains all necessary function to interface with
the platform. If the ρ-VEX device is to write results back to memory then
the palloc header file needs to be imported as well.

A context object has to be created before other things are initialized.
The initialise_context function opens up a configuration file and reads
core parameters into the context’s attributes. Second step in writing a host
application is to read a bitstream from file, the function read_bitstream_from_file

3
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is used to read a bitstream from file and into memory. It takes number of
streams and number of cores as parameters along with a bitstream *char
pointer. There is a separate function, download_bitstream, that downloads
the bitstream to the fabric. The reason these are two separate functions is
that it might be of interest to the developer to keep more than one bitstreams
in memory for a faster, on demand, reconfiguration.

After the bitstream has been downloaded there are functioning ρ-VEX
cores on the fabric ready to be initialized. The initialization is mostly about
memory mapping the streams and cores memory offsets as they are described
within the context’s attributes. This is done with help of the context
object and the information about the available device is stored in a rvex
object. With an initialized rvex object it is now possible to upload kernels to
the devices. The function, create_program_with_binary, takes the device,
context and name of the kernels as parameters. The convention is that all
kernels are precompiled binaries with the same name. The kernels should
have a suffix indicating what their position within a stream. If there is only
one core within a stream its suffix would be zero. Same goes for the first core
of every stream. Second is one, third is two etc.

The ρ-VEX streaming device writes straight back to main memory via
a DMA. Before the device is started a continues memory block needs to be
allocated. A call, via the palloc interface, to the Python server asking for
memory takes care of that.

The device has to be prepared by calling the set_rvex_parameters and
passing information about the input and output images’ as parameters. At
this stage everything is setup and all that is left is to call start_rvex_programs
and write data to the device via write_padded_lines_to_rvex.

Next section gives an example of a host program.

2.1.2 Host code example

Below is a simplified example of a complete program that runs on the host.
What is different from the program described in the previous section is that
this application calls the palloc to start VDMA transfers. This means that
HDMI is activated and the device will write to a memory allocated by the
VDMA block. The application ends with stopping VDMA. If this is not done
before the fabric is reconfigured it will it will go into an unstable state and
the board needs to be restarted.

i n t main ( ){

i n i t i a l i s e_ c o n t e x t (&ctx ) ;
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read_bitstream_from_fi le (&ctx , . . , . . , . . ) ;

download_bitstream ( bitstream , b i t s t r eam_s ize ) ;

start_VDMA ( ) ;

i n i t i a l i s e_ r v e x (&ctx , &device , . . , . . ) ;

create_program_with_binary(&ctx , &device , " streaming−s obe l " ) ;

get_input_address_from_VDMA(&input_address ) ;

get_output_address_from_VDMA(&output_address ) ;

set_image_propert ies (&input_image , . . , . . , . . ) ;

greyscale_image(&output_image , input_image ) ;

set_rvex_parameters(&device , output_address , input_image , output_image ) ;

start_rvex_programs ( dev i ce ) ;

write_padded_lines_to_rvex(&device , input_image ) ;

stop_VDMA( ) ;

r e turn 0 ;
}

2.2 Device Code

Code written for the ρ-VEX processors is written in C and follows the same
principles as writing code for any other ρ-VEX implementation. The instruc-
tion memory of the cores is very small, only 4KB, so that has to be kept in
mind when writing new kernels.

The kernels communicate via shared memory, i.e., one core has access to
another adjacent core via memory map. The start address of data memory
for any core is 0x00000000. The same address for the next core in line,
seen from the previous one is 0x80000000. A core has both read and write
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access to the next core’s memory space.
The common header file needs to be included in all device applications.

It includes a struct that contains attributes such as a core’s states, output
address, data sizes and data arrays. It is important at the start of every core
to define a new transfer struct for both input and output:

#inc lude "common . h"
t r a n s f e r ∗ in = ( t r a n s f e r ∗) INPUT_MEM;
t r a n s f e r ∗out = ( t r a n s f e r ∗) OUTPUT_MEM;

The common.h also includes three stages a processing kernel can be in:
IDLE, BUSY, READY. If a kernel is IDLE another kernel, or the ARM host,
can upload a new set of data to it. If it is in READY state, it means it can
start processing data. If BUSY, no data should be written to it as it could
cause loss of data that has not been processed yet.

Below is an example of device code that could work for a core anywhere in
a streaming pipeline except for the last core. The last core has few additional
programming steps as it needs to initialize a DMA and write data back to
memory.

#inc lude "common . h"
i n t main ( ) {

t r a n s f e r ∗ in = INPUT_MEM;
t r a n s f e r ∗out = ( t r a n s f e r ∗) OUTPUT_MEM;
v o l a t i l e char ∗ out_state ;
#pragma un r o l l ( 0 )

whi l e (1 ) {
i f (∗ s t a t e == READY) {

in−>s ta t e = BUSY;
out−>out_address = in−>out_address ;
f o r ( i n t p i x e l = width ; p i x e l < l a s t ; p i x e l++) {

// Applay ke rne l
}
out−>o f f s e t = in−>o f f s e t ;
out−>s ta t e = READY;
in−>s ta t e = IDLE ;

}
}

}

Some things were left out of the code to make it shorter, like the main
filter kernel inside the main for-loop. What is important here is that when
new data has arrived to the processor it marks itself as BUSY. Then all pixels
are processed, and the state of the next core is marked as READY, signaling
new data has arrived. The core then marks itself as IDLE and is ready for
new data from the ARM host.
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The last kernel of every stream has few additional steps as it is responsible
for writing back to main memory. The last core has a built-in DMA that
is mapped to 0x80000000. Instead of showing the whole code, that looks
mostly like the one from the previous core, below is a code snippet on how
to write back to memory:

out_size = 255 ;
v o l a t i l e i n t ∗buf = ∗( i n t ∗ v o l a t i l e ∗) 0x80000000 ;
i n t addr = in−>out_address ;
∗buf++ = addr ;
f o r ( p i x e l = 0 ; p i x e l < out_size ; p i x e l ++){

// F i l l the buf array with data
}
buf = ( i n t ∗) ( ( i n t ) buf & ~0x7F ) ;
// Wait f o r other t r a n s f e r s to f i n i s h
whi l e (∗ ( ( v o l a t i l e i n t ∗) OUTPUT_MEM) & (1 << 12)) {} ;
// Star t the t r a n s f e r .
∗buf = out_size ;

The DMA starts transferring data to the output address after maksing
out the start address and writing the transfer size to it. The transfer size is
in number of integers and has a maximum size of 1024 bytes per transfer.

2.3 Functions in hala_rvex.h

Listed below are the functions used by the demos provided with the platform
at the time of writing. There are more functions within the hala_rvex header
file and will hopefully be documented here in the near future.

2.3.1 initialise_context

Type Parameters
Int context *ctx

A context is an object that stores information needed for realizing the
platform. When the context is initialized a configuration file is opened
that contains information about the platform and all available device setups.
Contents of the configuration file are parsed to the context’s variables and
used for further setup of the host program. The config.conf is stored in a
conf folder and contains:

• Available number of streams
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• Available number of cores

• Core memory offset in relation to a stream

• Stream memory offset in relation to the ρ-VEX base memory address

• ρ-VEX base memory address

• Data memory size per core

• Instruction memory size per core

• Data memory offset in relation to a core

• Instruction memory offset in relation to a core

• Creg offset in relation to a core

2.3.2 read_bitstream_from_file

Type Parameters
Int context *ctx

int number_of_streams
int number_of_cores
char **buffer
size_t *size

This function reads a bitstream from a file and into memory. The bit-
streams need to be be in a ../overlays/ folder and the naming convention is
rvex_<number of cores per stream>_<number of streams>. The func-
tion takes an initialized context as a parameter, desired number of cores and
streams, and a pointer to a buffer and size. Returns 0 if successful and prints
out an error message if something goes wrong.

2.3.3 download_bitstream

Type Parameters
Int char *buffer

size_t size

This function takes a buffer pointing to a bitstream and downloads it
to the FPGA. This function needs root access as it opens /dev/xdevcfg.
Returns zero upon success. Returns 0 if successful and prints out an error
message if something goes wrong.
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2.3.4 initialise_rvex

Type Parameters
Int context *context

rvex *rvex
int number_of_streams
int number_of_cores

This function initializes a new rvex device. It needs an initialized context
as a parameter, a long with number of streams, and cores within a stream,
that are on the fabric. The rvex device is memory mapped according to
the context parameters. The function needs root access as it uses mmap to
open the dev/mem file to access the operating system’s memory. Returns 0
if successful and prints out an error message if something goes wrong.

2.3.5 create_program_with_binary

Type Parameters
Int context *ctx

rvex *rvex
char program[]

This function uploads precompiled kernels to the ρ-VEX cores. The
context and rvex objects need to be initialized before this function is called.
The program parameter is the name of the kernel that is to be uploaded. The
naming convention for the kernels is any name plus a suffix indicating the
number of a core within a stream. The suffix should not be added to the
program parameter. Example:

A Gaussian blur pipeline that works on a stream of two cores is called
"gaussian" then there needs to be two binaries named "gaussian0.bin" and
"gaussian1.bin" that will be uploaded to kernel-0 and kernel-1 of the ρ-VEX
stream respectively.

2.3.6 set_image_properties

The struct image_info is used as a wrapper for parameter related to an
image that is to be processed. For example, image size, width, height, stride,
if it is padded or not and how big slices are to be uploaded to the device per
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Type Parameters
Int image_info *ptr

unsigned char *data
int width
int height
int pixel_size
int streams
int padding
int rect_height
int rect_width
int number_of_rects

iteration. This function is a setter for the image_info object. Returns 0 if
successful and prints out an error message if something goes wrong.

2.3.7 grayscale_image

Type Parameters
Int image_info *grey_image

image_info input_image

This is a simple function that takes an initialized image_info object
and returns a copy but with all color dimensions set to 1 no matter what
the original dimensions were. This is helpful when an image that is to be
uploaded will be grayscaled by the image processing kernels. Returns 0 if
successful and prints out an error message if something goes wrong.

2.3.8 set_rvex_parameters

Type Parameters
Int rvex *device

int address
image_info input_image
image_info output_image

This function preparers the ρ-VEX devices for the task that is to be
executed. It uploads few important parameters like stream number, stream
state, dimensions of the image that is to be processed and the memory address
that the ρ-VEX devices write back to. The memory space that address refers
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to has to be allocated before the device is started. A memory server written in
Python, and accessible via palloc.h is suitable to allocate continues memory
space for the device to write back to. Returns 0 if successful and prints out
an error message if something goes wrong.

2.3.9 start_rvex_programs

Type Parameters
void rvex device

This is simple function that starts all programs, already uploaded, on all
ρ-VEX cores that are initialized in the rvex device object.

2.3.10 write_padded_lines_to_rvex

Type Parameters
Int rvex *device

image_info image

This function does nothing but spawning as many threads as there are
streams. Every thread calls the write_padded_lines function. It waits for
all threads to finish executing before returning. Returns 0 if successful and
prints out an error message if something goes wrong.

2.3.11 write_padded_lines

Type Parameters
void * void * arg

This function is called from write_padded_lines_to_rvex and writes
data to the ρ-VEX streams. The parameter is expected to be a pointer
to a rvex_stream. The stream should already be initialized with image
information and data. This function writes data to the stream according to
predefined number of lines and adds pixel padding if requested.

Before uploading a data chunk to a stream, a check is made to see if the
stream is busy, if busy, the thread waits a micro second and tries again.
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Type Parameters
Int const char *file

int *width
int *height
int *pixel_size

2.3.12 get_image_dimensions

This is one of three function that help with opening images as data files. The
image has to be already split into to separate files by the image converter
found in the tools folder. This function takes the name of the image and
searches for a file with that name and the file extension .dim. The dimension
file should include image width, hight and pixel size. The function writes the
dimensions to the provided parameters.

2.3.13 get_image_from_file

Type Parameters
Int const char *input_file

unsigned char *image_data
long size

This function reads image data from file which is name is provided by
input_file. The image data array has to be allocated before passed to this
function and size has to be known. Returns 0 if successful, else a 1 and
prints out an error message.

2.3.14 write_image_to_file

Type Parameters
Int context ctx

int address
long size
const char *file

This function is used to retrieve image data from a specific memory loca-
tion. This is very helpful when the device is used for processing images as the
ρ-VEX streams write straight to memory. The function takes a context as a
parameter to access the system memory file /dev/mem. It reads the content
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of the memory location to a file and adds .out to the file name provided as
a parameter.

2.4 Functions in palloc.h

Palloc is an interface to a Python memory server that should be started before
any application is started for the platform. The Python memory server is
responsible for starting and stopping VDMA transfers on the programmable
logic and to allocate continues memory spaces for the ρ-VEX devices to write
back to.

2.4.1 get_output_address_from_VDMA

Type Parameters
Int int *address

This function calls the Python memory server and asks what address the
VDMA is reading from when streaming data from memory to the HDMI
output port. Returns 0 if successful and prints out an error message if
something goes wrong.

2.4.2 start_VDMA

Type Parameters
Int void

Asks the Python memory server to start HDMI input and output chan-
nels. Returns 0 if successful and prints out an error message if something
goes wrong.

2.4.3 stop_VDMA

Type Parameters
Int void

Asks the Python memory server to stop HDMI input and output channels.
This function has to be called before the logic fabric is reconfigured or the
system becomes unstable. Returns 0 if successful and prints out an error
message if something goes wrong.
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2.4.4 get_input_address_from_VDMA

Type Parameters
Int int *address

Makes a request to the Python memory server for a memory address that
the VDMA is writing to from the HDMI input port. Returns 0 if successful
and prints out an error message if something goes wrong.

2.4.5 free_buffers

Type Parameters
Int void

It is important to ask the server to free all memory that has been allo-
cated. This only happens if this function is called or the Python memory
server is stopped. Returns 0 if successful and prints out an error message if
something goes wrong.

2.4.6 get_memory_address

Type Parameters
Int long size

int *address

Sends a request to the Python memory server for a new continues memory
space of size size. The new address is written to the variable pointed to by
*address. When the memory is no longer needed it is important to call the
free_buffers function to free the memory again. Returns 0 if successful
and prints out an error message if something goes wrong.
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