
Scalable GPU
Acceleration
for Complex
Brain Simulations
M.C.W. Engelen

Scalable GPU
Acceleration
for Complex

Brain Simulations
by

M.C.W. Engelen

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on the 24 of February 2021.

Student number: 4470532
Laboratory: Computer Engineering
Codenumber: Q&CECEMS202101
Project duration: April, 2020 – February, 2021
Thesis committee: Chairperson Dr. Ir. Zaid AlArs, TU Delft , CE, QCE

Member Dr. Matthias Möller, TU Delft , Num. Analysis, AM
Advisor Dr. Ir. Christos Stydis, Erasmus MC, Neurocomputing
Member Dr. Mario Negrello Erasmus MC, Neurocomputing

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract
Complex mathematical models are used in computational neuroscience to stimulate brain activity to un
derstand the biological processes involved. The simulation of such models is computationally costly,
and thus highperformance computing systems are selected as a potential solution to increase perfor
mance. This thesis aims to implement a new versatile, multiGPU eHH simulator (mgpuHH), explore
its performance and make general observations on performance scalability over different modeling
and clusterconfiguration properties. This work offers a multinode multiGPU solution that offers ex
cellent scalability performance due to how the simulator is constructed, with the use of OpenMPI and
CUDA. The simulator is configured with JSON configuration files, containing the neural descriptions
and simulatorspecific settings. Consequently, enabling a userfriendly environment, for the neuro
scientists, without the need of recompiling or understanding the source code. The gap junction cal
culations are identified as the critical function bottlenecking performance of the simulator. Therefore,
an algorithm tailored to utilize GPU performance is implemented to decrease wallclock time for these
specific calculations. For internode communication, OpenMPI can be configured in two ways. Eiter
share all possible compartments potentials with every node in the network or only share the com
partments potentials to nodes that need them. These methods rely internally on MPI Allgather and
Alltoallv respectively. When available, GPUDirect, NVlink, and RDMA are supported. The implemen
tation hides communication overhead, when possible, by concurrently executable compute kernels. A
neuron model from the Inferior Olivary Nucleus is selected for benchmarking. Reported results go up
to 32 Nodes with a total of 64 GPU cards. The design shows linear weak and strong scaling within
the experimental setups for intranode and internode scalability. With this simulator, networks over 10
million cells become available to model on largescale GPU clusters, setting a new standard for eHH
simulations. Comparisons against related work on CPU and FPGAs have been conducted, a 100x
speedup is achieved versus a single cpu threaded solution. Furthermore, a 2x speedup is achieved
over an FPGA solution (flexHH) and 10 fold over a multithreaded CPU (GenEHH, with 128 threads)
solution, both reported speedups are for a fully connected network with 7000 IO cells.

iii

Acknowledgements
I want to thank my thesis advisor, Christos Strydis, and his entire lab, the Neuro Computing Lab at the
Erasmus MC, for the advice and guidance during this project. The whole project was conducted in a
challenging time due to a global pandemic at the time. However, Cristos and his lab managed to keep
mymorals high and created a workable environment suiting the restrictions that were in place. Likewise,
a thank you to Zaid AlArs, my supervisor from the TUDelft, for helping me select this thesis subject
and advice on my work during the project. I also want to acknowledge multiple institutes supporting
the project with hardware resources. The support of NVIDIA Solutions Lab with the donation of the
Tesla V100 GPU development cluster, the Greek Research and Technology Network for making Aris
available for this project, and the Swiss National Supercomputing Centre to access their development
cluster AULT.

To finish, I want to thank my parents and friends, who supported me through my studies.

Package managers are overrated (just kidding), it is true for pretty printing in ASCII.

Max Engelen
Delft
Januari 17, 2021

v

Contents

Abstract iii

Acknowledgements v

List of Figures ix

1 Introduction 1
1.1 Thesis scope . 1
1.2 Challenges and Research Questions . 2
1.3 Overview . 3

2 Background 5
2.1 Neuron Simulations . 5

2.1.1 HodgkinHuxley Models . 5
2.1.2 Numerical Solvers . 5

2.2 Compute Hardware. 6
2.2.1 GPU . 6
2.2.2 MultiNode Systems . 7
2.2.3 Cloud Based Compute Systems . 7

2.3 Platform Scope . 7
2.3.1 CUDA . 7
2.3.2 OpenMP . 11
2.3.3 OpenMPI . 11

3 Related work 13
3.1 The InferiorOlive Race . 13
3.2 Stepping Away from Hardcoded Models . 15
3.3 Standalone Neural Simulators . 17

4 Design 21
4.1 Design Considerations . 21

4.1.1 Compute Challenges in Neurocomputing . 21
4.1.2 Requirements. 22

4.2 Analysis . 23
4.2.1 Simulation Flow Breakdown . 25
4.2.2 Parallelizable Parts . 26
4.2.3 Scalability . 27
4.2.4 Memory Usage . 28

4.3 Design Overview . 28
4.3.1 User IO . 28
4.3.2 Scalability . 30
4.3.3 Kernel Breakdown . 30

4.4 Added Value to Research . 32

5 Implementation 35
5.1 Development Resources . 35

5.1.1 SoftwareSpecific Considerations . 36
5.1.2 HardwareSpecific Considerations. 36

5.2 Memory Requirements . 36
5.3 CUDA Kernel Breakdown . 37
5.4 Memory Arrangement to Support Warp Equality . 41
5.5 Output Handler . 41
5.6 Scalability . 42

vii

viii Contents

6 Evaluation 45
6.1 Experimental Setup . 45
6.2 Roofline Model . 47
6.3 FunctionalFlow Performance . 48
6.4 Performance Scalability . 49
6.5 Communication Performance . 51
6.6 Comparison Against Related Work . 53
6.7 Use Case Evaluation . 55

7 Conclusions and Future Work 57
7.1 Contributions . 57
7.2 Future work . 58

Bibliography 59

A Overview of the IOmodel 63

B JSON inputconfigurationfile example 67

C Metadata outputfile example 71

List of Figures

2.1 Hodgkin Huxley model . 6
2.2 Overview of a viable target platform . 8
2.3 An logicall overview to illustrate the design NVIDIA GPUs are using 8

4.1 Neural network structure . 24
4.2 Supported neural structures . 24
4.3 Compartment update data flow . 26
4.4 Functional design overview . 29
4.5 Architecturelevel diagram . 30
4.6 A dataflowstyle overview of the gapjunction kernel . 31

5.1 A visual representation of different kernel approaches performance 38
5.2 Performance of synaptic current calculation (32768 IOcells) 39
5.3 Performance of synaptic current calculation (524288 IOcells) 40
5.4 Warp equality performance . 41
5.5 UVA and p2p performance . 43
5.6 GJconnectivitylist generation kernel performances . 44

6.1 Overview of memory usage . 47
6.2 Roofline model for the mgpuHH kernels . 48
6.3 Functianalflow performance . 49
6.4 GPU scalability results . 50
6.5 Comppute node scalability results upto 8 . 51
6.6 Compute node scalability results upto 32 nodes . 52
6.7 MPI communication results, for NSLA cluster . 53
6.8 MPI communication results, for Aris cluster . 54
6.9 Comparison against related work . 55
6.10 MgpuHH versus GenEHH comparison . 56
6.11 MgpuHH versus BrianGPU comparison . 56

ix

1
Introduction

1.1. Thesis scope
Since the 1970s, there has been a lot of specialized graphics circuits. At the start, Graphics Processing
Units (GPUs) were nothing more than integrated frame buffers. Since then, GPUs have evolved into
programmable and highly parallel devices [25]. The ability to execute many instructions concurrently is
used heavily in all sorts of computational problems. Ranging from gaming to scientific compute loads.

An example of those scientific compute loads is present within the field of computational neuro
science. Computational neuroscience focuses on building models that can explain and/or predict ex
perimental neuroscientific data. The appliance of GPUs will generate the ability to simulate more com
plex computational models within a reasonable time, enabling the possibility to gain insights into such
models’ functionality. Eventually, create a better understanding of the functioning of the brain.

Questions in computational neuroscience can span a wide range of traditional analysis levels, such
as the brain’s development, structure, and cognitive functions. Research in this field utilizes mathemat
ical models, theoretical analysis, and computer simulation to describe and verify biologically plausible
neurons and nervous systems. For example, biological accurate neuron models are mathematical de
scriptions of spiking neurons that can represent both the behavior of single neurons and the dynamics
of neural networks. Computational neuroscience is, therefore, often referred to as theoretical neuro
science. The neuron model depends on the goals that the neuroscientists want to achieve. If these
goals depend on neuronal behavior that depends on measurable physiological parameters, Hodgkin
Huxley (HH) type models are the best fit [23].

However, Izhikevich stated in 2004 that only tens of coupled spiking neurons could be simulated
in realtime. This computational problem is solvable with the everimproving computational platforms.
Therefore, models can extend to a lot more than tens of neurons, realtime, in the future. Hodgkin
Huxley modeling has evolved with many modern extensions (extended HH, eHH), intercellular con
nections, multiple compartments per cell, and additional userdefined custom ion gates. A widely used
model to benchmark simulators is the Inferior Olive (IO)model [14]. The IOmodel utilizes a lot of
the abilities the extended HH models can capture. The Erasmus MC’s Neurocomputing department
uses this model to benchmark their Brainframe platform [36], working on a heterogeneous accelerator
platform for neuron simulators. (The work done for this thesis will supplement this platform.)

To support the full range of models that one can create using the extended HH formulation, an
effort is made, by Rene Miedema, to build a flexible hardware library (flexHH) [26]. Generalizing the
computational task helps to create scalable solutions without knowledge of network dynamics. This
library is focused on FPGA solutions (Data flow Engines (DFE)) but contains a particular approach
that can potentially benefit a broader computational platform range. Based on the flexHH method, an
indepth analysis of scalable GPU platforms is performed.

Simulation of the full brain, with high detail, is still far out of scope for any neuroscientists, simply
because the compute power available does not come close to handling suchmodels. These simulations
will stay out of scope for quite some time after writing this thesis. However, an attempt to show the
current potential of computing systems known at the time of writing could create exciting insights for
the future road to walk. To display the potential, distributing the task over multiple computing systems

1

2 1. Introduction

would be beneficial for computing throughput.
This thesis aims to implement a new versatile, multiGPU eHH simulator named mgpuHH and ex

plore its performance, and make general observations on performance scalability over different model
ing and clusterconfiguration properties. Each neuron has a set of ordinary differential equations (ODE)
that needs to be solved. The typical approach is to use a numeric solver (e.g., forward Euler). Implying
that for every timestep, the intermediate state of all cells is calculated in parallel, suiting GPUs very
well.

Exploring the boundaries of what is possible, in terms of neuron count and average connection
number amang the neurons in a system, on specific hardware configurations, and bottlenecking the
experiments’ scalability will be the main focus point. However, an exploration in best practices when
designing GPU and/or scalable solution for this type of computing load will be covered when developing
a platform that suits the goal to simulate of the biggest IOmodel ever seen in the field of neuroscience,
with a reasonable biological time over simulation time ratio.

1.2. Challenges and Research Questions
Scalability will increase complexity for the simulator but boils down to the problem of communication and
memory management of the model under simulation. The neurons in a network share a predefined set
of interconnections, making it challenging to maintain high performance while scaling the model across
multiple units (compute nodes and/or GPUs). A distributed solution also suffers from a problem known
as load balacing. Where it is important each unit has the same amount of computational work and
perfromancem. When this is not the case units are in idle when having dependencies to units that still
need to finish their task.

Using a solver technique to solve the ODEs for every cell means there is a need to share specific
data from one neuron to all connected neurons for every solver’s timesteps. Furthermore, one or mul
tiple kernels are developed to apply the solving technique for each timestep. The platform is designed
in CUDA (Compute Unified Device Architecture), NVIDIAs parallel computing platform, and application
programming interface (API), giving the most programming freedom on GPUs, but limiting development
to NVIDIA products only. A new C++ Runtime API and Kernel language know as HIP could change
this, making it possible to develop for AMD and NVIDIA products using the same codebase. Tools
exist to automatically covert CUDA to HIP, making it possible to change to codebase later on relatively
quickly when there is a need to support AMD GPUs.

In this thesis, we will face multiple research questions, which will be centralized around the following
problem statement: How can we efficiently simulate neural models, growing numbers of densely
connected neurons keeping the solution as high performing as possible, utilizing multinode
GPU compute platforms? This problem statement gives rise to a set of research questions that are
answered in this thesis.

• How does growing neural networks influence the simulation on multinode GPU compute plat
forms?

• What can be learned from other platforms and migrate over to a GPU platform?
• How does a multiGPU platform and/or multi compute node configuration scale with respect to
performance?

• What is bottlenecking scalability, and how (if possible) could these bottlenecks be resolved?
• How can we optimize the compute functions to reduce memory footprint and reduce wallclock
performance utilizing the GPU specific architecture?

1.3. Overview 3

1.3. Overview
This thesis is structured as follows:

Chapter 2: Gives the reader all the background information they need to have about the topics
covered in this thesis. For example, highperformance computing, CUDA, and the basics of neuro
computing are covered.

Chapter 3: With the background information in hand, it should be possible to follow the related
work’s breakdown provided in this chapter. The related work mainly focuses on the predecessors that
lead to this research. It also briefly covers other projects in the same field to give an overview of exciting
projects that could potentially provide ideas for this work.

Chapter 4: Will cover the highlevel design of this work. It will give insight into data flow and critical
paths in the simulator. It will also highly why design chooses were made and what possible other
options could be.

Chapter 5: When implementing the design, there are still different option that can be selected.
These will be covered in this chapter. Mostly, there is no predefined optimal way to do it, and therefore
experimentation will be used to deduce the best way to implement the design.

Chapter 6: Will cover evaluation of the design and focusses on answering the research questions,
by utilizing multiple compute platforms to verify findings. Results will be presented and compared with
each other.

Chapter 7: Will conclude the work. It also will conduct a reflection on the research questions and
answers found in Chapter 6. Furthermore, the open research questions and future work are formu
lated.

2
Background

This chapter provides a deeper dive into the modeling and the hardware solutions available to create
a performancedriven simulator. It is essential to notice that this is a computer engineering thesis, and
any neuroscience covered is only there to support the given explanation.

2.1. Neuron Simulations
The brain consists of roughly 8.6 × 1010 (eightysix billion) neurons on average [20]. The average
synaptic connection count between the neurons is 7000 [15].

A sparsely saved graph to capture all these connections would theoretically be 2500 terabytes (4
bytes per edge). Unfortunately, this is still unthinkable in standard compute systems and will not be
there soon. For example, take Fugaku (number one of the top500 at the moment of writing [3]) and
perfectly utilize all system memory. It would come short, more than 1800 terabytes. Summit (number
two of the top500 at the moment of writing) could theoretically hold the graph in system memory. Nev
ertheless, that is just the synaptic connection graph (and only if the program could perfectly distribute
the connection graph across all nodes).

The way neuroscientists simulate neural networks is dominated by modeling them as Spiking neural
networks (SNNs). SNNs can more closely mimic natural neural networks. The concept of time is
integrated into the network, together with the neuronal and synaptic state. When a neuron fires (spikes),
the spike travels along the synaptic connections and influences connected neurons’ potential. In the
field of neurocomputing, it is established that the firing patterns of neurons are limited to a particular set.
Multiple spiking models are ranging from very basic to quite complex. The differences are discussed
in the Izhikevich paper [23]. The most challenging neuron models, compute wise are considered to be
neurons of the HodgkinHuxley type.

2.1.1. HodgkinHuxley Models
Conductancebased models in the HodgkinHuxleytype subset are giving biophysically meaningful
and measurable results. An overview of the basic HodgkinHexley model is presented in Figure 2.1.
However, they come at the price of high computational complexity [21]. This work focuses on these
models because of the computational complexity, which poses interesting compute challenges. The
basic HodgkinHuxley equations can be extended in various ways. One common case is adding inter
cellular connections (gap junctions), custom userdefined gates, and multiple compartments per cell.
Then, the resulting modified HH models are generally known as the extended HodgkinHuxley (eHH)
formulation. The Inferior Olive model (IOmodel) [14] captures these extensions and is often used as a
base network to benchmark/test simulators within the Neuroscience Department of the Erasmus MC.
The IOmodel is a part of the brain that coordinates signals from the spinal cord to the cerebellum,
regulating motor coordination and learning [33].

2.1.2. Numerical Solvers
Numerical approximations can be utilized to solve Ordinary Differential Equations (ODEs). Many ODEs
cannot be solved through symbolic computation, or in other words, analysis. A numeric approximation

5

6 2. Background

Figure 2.1: The components, representing the cell membrane’s biophysical characteristics, of the Hodgkin–Huxleytype models.
The capacitance (𝐶𝑀) represents the lipid bilayer. The ion channels are modeled by linear (𝑔𝐿) and nonlinear (𝑔𝑛) conduc
tances. The voltage sources (𝐸𝑛 and 𝐸𝑙) represent the electrochemical gradients driving the flow of ions. The current source
(𝐼𝑝) represents the ion pumps and exchangers.

is, most of the time, sufficient. For neural simulations, a numerical approximation is adequate. The
ODEs in question have an unknown derivative with respect to time. The problem can be tackled with
implicit or explicit methods. Implicit methods find a solution by solving an equation involving both the
current state of the system and the later one, where explicit methods only take the current state into
account. The space in time of interest is divided into a certain amount of steps the solver will take.
The smaller these time steps are, the better the resolution will be. When the timesteps are too big, the
networks will show instability. Both the instability and resolution are also depending on which solving
techniques are used.

2.2. Compute Hardware
Since processor clock frequencies have not significantly increased since 2006 [5], modern CPUs are
developed to do as much as possible in each processor cycle. By using techniques like instructionlevel
pipelining and outoforder execution, modern CPUs maximize the effective number of instructions per
cycle. However, this has some significant drawbacks. Processorlevel optimization requiresmany extra
transistors, power, and engineering, but for increasingly little performance gains. Therefore different
approaches to the computing world gained traction.

In the early 2000s, the first commercial multicore processors are developed. By simply duplicating
a slightly less complex processor core, suddenly performance could, theoretically, be doubled. As tran
sistor counts continue to go up, it has been predicted that core counts will also increase exponentially.
[12] However, as Amdahl’s laws teach us, adding more processor cores will stop making sense as long
there is a sequential part in the execution path.

The ambitions to get additional processing power drove the industry in making faster and/or archi
tectural different processors. However, it also fueled people to build various architectures and con
figurations with off the shelf components. With the development of computer interconnections, the
compute clustering principle was born. The Clustering approach will usually but not generally connect
existing compute units through fast interconnection to create a system that has more power shared
than a single compute unit.

Highperformance computing (HPC) uses large scale compute resources for computational prob
lems that are not suited for standard computers. Compute clusters fit perfectly under the definition of
large scale compute resources. A wide variety of Parallel techniques, such as distributing and paral
lelization libraries, are used to utilize these large scales compute resources. These tools are useful for
all science that rely upon computing throughput.

2.2.1. GPU
The GPU, or Graphical Processing Unit, represents an extension of the idea of multicore processors.
GPUs often consist of many cores that, individually, are not all that powerful. They can perform some

2.3. Platform Scope 7

simple instructions but are not optimized for a maximum performance like CPUs often are. Instead,
the GPUs strength comes from the fact that it has so many parallel cores. That way, parallelizable
programs’ workload can be divided over all cores, severely decreasing the required runtime.

Utilizing the GPU in software is not straightforward for the developer. In a ”normal” multicore system
with just a few cores, the program is already being run onmultiple processors, requiring synchronization
of instructions, data access, and hardware access. When programming for a GPU, one can have
hundreds of cores, only further worsening the problem. In addition to this, GPUs usually have much
smaller memory caches and altogether different memory structures, which the developer also has to
take into account [7].

Luckily, this is a problem that many people had since different applications try to use GPUs to
improve performance. Furthermore, as is often the case for such common issues, solutions exist in the
form of software tools. One of the most advanced GPU programming frameworks is called CUDA. This
framework allows the user to (relatively) quickly develop software that can execute on a GPU. CUDA,
however, is vendor specific and is made and maintained by Nvidea. Limiting this library to Nvidea
products only.

GPUs offer the opportunity to parallelize calculations massively. Suited calculations can, therefore,
massively benefit from GPU support. The perfect example is pixel rendering. The reason GPUs were
invented in the first place. However, this is for sure not the only field of calculations suitable. The Scien
tific field quickly saw potential in using GPUs to increase performance on a wide variety of calculations
and is therefore getting more and more traction in a wide range of application fields.

2.2.2. MultiNode Systems
Nowadays, the scalability of computing systems is getting quite common. The wellknown top500
computers explodingmultinode systemswith local interconnection going up to 100Gb/s with InfiniBand
EDR, amazingly powerful systems can be configured and exploited for all sorts of applications.

A single node of such systems can again hold multiple processors, and expansion cards such as
GPUs, FPGA, and custom logic cards can be added to target specific bottlenecks of applications.
Management software such as Slurm [4] are well developed, makes using these systems very user
friendly.

2.2.3. Cloud Based Compute Systems
Cloud computing makes the hardware, software, and data available on request via a network, often
the internet. Services as Google Cloud, Microsoft Azure, and Amazon Web Services provide a wide
variety of services one can utilize. Setting up compute units with a particular hardware configuration
with a few mouse clicks unlock tremendous potential. There is no need to buy and maintain highend
machines anymore if there is the possibility of just renting the desired services. Of course, this does not
suit all projects equally well. Nevertheless, for the sake of testing, for example, selfmade application
on a wide variety of machine configurations, this would do the job for just a few bucks.

2.3. Platform Scope
For this work, a specific set of tools and possible platforms are within the project’s scope. A typical
computing system that lies in the project’s scope is graphically shown in Figure 2.2. All components
will be briefly highlighted to understand their potential and why the project can benefit from utilizing
them.

2.3.1. CUDA
CUDA gets often described as an API or even a standalone language, which is not the case. It is
best described by a computing platform/programming model that uses a GPU for generalpurpose
computing. The developer still programs in one of the supported languages (C, C++, Fortran, ..) and
incorporates extensions of these languages in the form of a few keywords. Using these keywords will
direct the compiler to map parts of the application to the GPU, unlocking the parallelism a GPU offers.

CUDA has the capability of launching Kernels within a particular dimension, called a grid. This grid
consists of blocks build of threads. Within a kernel call, everything is symmetrical. This results in two
parameters passed alongside a kernel call, the grid dimension, and the block dimension. Dimensions
can be one, two, or three dimensional. Every thread then executes the same functions passed to the

8 2. Background

PCI
Switch

GPU

System
Memory CPU

GPU

Network
Card

NVME
Memory

PCI
Switch

GPU

System
MemoryCPU

GPU

Network
Card

NVME
Memory

Viable Target Platform

NVLinkNVLink

Figure 2.2: Overview of a viable target platform. This platform consists of 2 nodes, 2 GPUs each. Where each node has his own
NVME memory, the GPUs are equipped with the NVlink bus. The dotted line illustrates internode connection. The solid lines
represent intranode connections between components.

kernel. Within these functions, the thread’s location with respect to the grid is known, giving all sorts of
freedom with the way parallelization is applied.

An Important Part of the performance is memory latency. Therefore, for NVIDIA architecture from
Fermi and up, the architecture consists of four hierarchical levels. Device memory, l2 cache, shared
memory, and registers. Device memory is where all data allocations goto and has the most significant
latency. L2 cache is an ordinary cache for this device’s memory. The architecture has multiple stream
ing multi processors (SMs). Each of these streaming multi processors is responsible for executing a
block of threads described in the launched kernel. This SM has then shared memory, which is accessi
ble by all threads within the same block. An SM consists of multiple cores. A core can handle a single
thread. A simplified overview is given in Figure 2.3. Note that an SM will consist of more cores, but
only two are drawn for simplicity.

 Device

L2 Cache

Device Memory

Streaming Multi Processor

Thread 0

Registers Local
Memory

Shared
Memory

Thread 0

Registers Local
Memory

Texture cacheL1 cache

Streaming Multi Processor

Thread 0

Registers Local
Memory

Shared
Memory

Thread 0

Registers Local
Memory

Texture cacheL1 cache

Streaming Multi Processor

Core 0

Registers Local
Memory

Shared
Memory

Core 1

Registers Local
Memory

Texture CacheL1 Cache

 Host

System Memory

CPU Chip Set

Figure 2.3: An logicall overview to illustrate the design NVIDIA GPUs are using.

Nvidia GPUs are using Single Instruction Multiple Thread (SIMT) execution. Execution happens in
warps, of 32 parallel threads, that each having its own registers. However, they are still able to load and
store from divergent addresses. The threads within a warp can follow divergent control flow paths, but
performance takes a hit because all threads within the warp that are not on the same flow paths are in
active during divergent execution. CUDA provides warplevel primitives such as __𝑠ℎ𝑓𝑙_𝑑𝑜𝑤𝑛_𝑠𝑦𝑛𝑐()
to perform a treereduction within the warp.

The multiprocessor occupancy is the ratio between active warps and the maximum amount of warps
supported. Each SM has a certain amount of registers available. These registers are a shared resource

2.3. Platform Scope 9

among the thread block executed on the SM. Together with the amount of shared memory, the amount
of active warps is derived, and the occupancy can be calculated. The higher the occupancy, the more
thread blocks that can be active in the machine simultaneously.

10 2. Background

Host to device data transfers Memory copies between system memory and Device memory are
passing through the CPU every time. CPU data allocations are by default pageable. GPUs, however,
cannot access pageable host memory directly. Therefore, the CUDA driver must first allocate page
locked (pinned) memory and then start transferring data to the device memory. (𝑐𝑢𝑑𝑎𝑀𝑎𝑙𝑙𝑜𝑐𝐻𝑜𝑠𝑡() is
used for pinned memory allocations)

NVlink Highspeed GPU interconnects connecting multiple GPUs is what NVLink offers. Therefore, it
is a significantly faster connection than multiGPU systems that can utilize traditional PCIe connections.
If available, CUDA drivers will automatically select this faster interconnect. For example, p2p data
transfers will use this connection.

Unified Virtual Addressing (UVA) CUDA 4.0 (compute capability two and up) introduced the concept
of UVA. With UVA, the host memory and all device memory of GPUs residing in a single compute node
are combined into one large virtual address space. Makingmemory accesses available without knowing
where the data is physically located. (𝑐𝑢𝑑𝑎𝑀𝑎𝑙𝑙𝑜𝑐𝑀𝑎𝑛𝑔𝑒𝑑() is used for UVA allocations is available)

PCI
switch

GPU0

CPU

GPU1

UVA

UVA

GPUDirect ”NVIDIA GPUDirect®” is a family of technologies, part of Magnum IO, that enhances
data movement and access for NVIDIA data center GPUs. Using GPUDirect, network adapters and
storage drives can directly read and write to/from GPU memory, eliminating unnecessary memory
copies, decreasing CPU overheads, and reducing latency, resulting in significant performance improve
ments. These technologies including GPUDirect Storage, GPUDirect Remote Direct Memory Access
(RDMA), GPUDirect Peer to Peer (P2P), and GPUDirect Video are presented through a comprehen
sive set of APIs.” [2]

• RDMA Is the ability for third party PCIe cards to directly access the GPU memory address
space. Making direct communication between GPUs across a cluster possible. Mpi will benefit
significantly from this technology. (Requirement that Both (GPU and network) PCIe cards are on
the same PCIe root complex)

RDMA
NO RDMA

GPU CPU PCI switch Network Card System Memory Compute unit

• P2P MultiGPU systems have to pass memory copies between GPU usually through system
memory. This is not needed anymore with P2P support. It enables systems to directly transfer
data through the PCIe bus to a different GPU residing in the same PCIe root complex.

2.3. Platform Scope 11

No Peer Acces Peer acces

System
Ram

Ram
GPU 0

Ram
GPU 1

Ram
GPU 0

Ram
GPU 1

System
Ram

GPU CPU PCI switch

NV-link peer access

Ram
GPU 0

Ram
GPU 1

NVLink

• GPUDirect Storage The standard route data travels from anNVMe drive to GPU devicememory
is through a bounce buffer in system memory. This oneway data path is simplified by having a
direct path from e.x. NVMe drives to GPU device memory. It only provides this path and not
reversed. PCIe PeertoPeer is a prerequisite for GPUdirect Storage to work.

NVME
Storage

NVME
Storage

GPU CPU PCI switch

No Direct Strorage Direct Storage

• GPUDirect Video Ability to directly pass buffers to video IO. Not in the scope of this work.

Coalesced memory access The combination of multiple memory accesses into a single transac
tion refers to coalesced memory access or memory coalescing. For example, in a single transaction,
any successive memory of 128 bytes can be accessed by a warp. However, uncoalesced load can
result in memory access becoming serialized: misaligned memory access, memory is not sequential,
and memory access are sparse. Serialization of memory accesses will affect memory performance.
Therefore this is a vital feature to keep in mind while implementing CUDA Kernels.

2.3.2. OpenMP
OpenMP (Open Multiprocessing) enables easy multithreading. One multiprocessing approach is cre
ating multiple threads and splitting the program into parallel chunks executed by a specific thread.
OpenMP takes a different approach. It tries to distribute tasks or parts of the task that can be executed
in parallel, at runtime over a thread team. OpenMP works out, through compiler directives, which parts
could be executed in parallel. OpenMP then determines at runtime which threads should perform which
part of which task. OpenMP is prone to NonUniform Memory Access (NUMA) effects because multiple
processors can access the same system memory. Therefore, applications need to be designed with
these effects in mind.

2.3.3. OpenMPI
When systems get bigger and grow, for example, to multinode systems, some communication and
synchronization between distributed processes are needed. The open MPI project is a message pass
ing interface that brings a solution to these problems. OpenMPI is widely used across HPC platforms

12 2. Background

and, therefore, a perfect fit. Because each openMPI process has its pool of resources, it can sim
plify design over openMP, but potentially performance will take a hit. Therefore a hybrid system with
openMP internode and OpenMPI intranode is a popular design choice. OpenMPI works on with a
modular architecture, which allows for a wide variety of supported hardware and software configura
tions. OpenMPI is built upon theDe facto standardMPI, and an active community backs an opensource
project. [16]

CUDAaware openMPI When openMPI is built with extensions to support CUDA, the libraries are
called CUDAaware openMPI (CAM). The significant difference is that instead of passing host buffers to
mpi, it is possible to pass GPU buffers directly. Depending on platform support, CUDAaware openMPI
behaves differently. GPUdirect plays a significant role here. Depending on RDMA support or P2P
support, MPI will not have to stage the buffers through the CPU. However, if GPUDirect is not available,
MPI will still be able to transfer the request through the standard memory copy paths successfully.

3
Related work

Various HPC projects are focussing on neural network simulations. Scalability is often a problem within
these projects and, therefore, either not present or not researched extensively. Most common projects
focus on x86_64 CPU architectures with some, extending there focussed to GPU support. Various
projects focus on only supporting a certain subset of added features to their implementations and ex
ploring the boundaries of what is possible computational wise on certain hardware platforms. The other
approach makes the implementation extremely parameterizable to support a diverse as possible range
of neuron descriptions such as NEURON, NEST, BRIAN, which are well established neural simulators.
Pushing the boundaries of computing possibilities and learning valuable lessons for the future of neu
rocomputing will contribute to this work. To model neurons for simulations, specific tools are designed
to unify the description. NeuroML [17] and PyNN [13] are examples of such descriptions. The idea is
that simulator platforms can be build taking this description as input, Making it fairly easy for a neuro
scientist to pick a simulator that suits their wishes and deploy the neural descriptions without the need
to (re)write code and/or model description.

The chapter will start with historically recounting the Hardcoded InferiorOlive work conducted by the
Neurocomputing department lab (NCL) at the Erasmus MC. Following the NCL developments, the next
section will focus on stepping away from hardcoded models and scaling to multinode systems. The
last section of the chapter will highlight different standalone neural simulators other research groups
are developing.

3.1. The InferiorOlive Race
Platforms pushing compute possibilities of neuralnetwork simulations tend to select the extended
HoldkinHuxley (eHH) type of neural descriptions. These are very computeheavy descriptions of mod
els and, therefore, perfect for exploring the possibilities that lay in accelerations via different compute.
A model that is often utilized for research into this spectrum of the field is the inferior Olive model
(IOmodel) from de Gruijl [14]. The de Gruijl model uses all features of the eHH type.

The model is buildout of three compartments the dendrite, soma, and axon hillock. Each compart
ment has a potential affected by the channel currents (𝐼𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠). These consist of: the leak current
(𝐼𝑙𝑒𝑎𝑘), the interaction current induced between the compartments (𝐼𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡), the interaction currents
trough the synaptic connections(𝐼𝑔𝑎𝑝) and the externally applied current (𝐼𝑎𝑝𝑝). These currents act on
on the membrane capacity (𝐶𝑚) which create a potential (Equation (3.1)). (The formulations of these
currents are described in the additional material of the paper from de Gruijl [14], and repeated in the
Appendix A)

𝑑𝑉
𝑑𝑇 =

𝐼𝐴𝑝𝑝 − 𝐼𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 − 𝐼𝐺𝑎𝑝 − 𝐼𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡 − 𝐼𝐿𝑒𝑎𝑘
𝐶𝑚

(3.1)

A single channel can consist of multiple gates. These gates influence the current generated by
a channel and are dependent on the current compartment potential. All these equations describe
an Ordinary Differential Equations (ODEs) system, making simulation only possible with a numerical
approach as expected. In Christoph et al. [8] a comparison is made between different solvers and

13

14 3. Related work

exploring their timestep requirements. Using exponential time differencing does seem to make sense
for HH, like partial and ordinary differential equations. However, it adds complexity with respect to
the standard explicit timestepping schemes, which may or may not be worth it in specific cases. To
compare standard timestepping schemes (e.g., FWDEuler and RungeKutta methods (rk2 and rk3),
Miedema et al. [26] implemented FWDEuler, rk2, and rk3 resulting in the fastest execution for the
fwdEuler method for the edge cases of stability. It is important to note that the timestep states’ quality
is different with different methods, so it is always weighing performance against result resolution.

The reason that time steps need to be small comes from membrane potential overshooting. The
rapid rising of the membrane potential often only lasts for a few 10s of microseconds. Some kind
of adaptive stepping method could be beneficial for a single cell. However, as Christoph et al. [8]
states, conventional timestep control mechanisms would force the whole network to scale down the
time step whenever a single neuron fires disabling all the benefits when the network is not in perfect
synchronization. All implementation considered in the rest of this section only supports the standard
timestepping schemes.

In Smaragdos et al. [34], the IO model went under the loop. Their Xeon Phi implementation of a
hardcoded IOmodel could simulate up to 24 neurons matching simulation time with biological time, with
a timestep of 0,05ms. Furthermore, simulation results up to 7,680cell networks are presented with fully
connected gap junction networks. These accomplishments can be seen as two types of experiments.
Type 1: With finetunedmodel parameter supporting networks from 10 till 100s in realtime. An example
of such an experiment is given in Yamazaki et al. [39] where they were able to simulate a Cerebellar
model containing 102400 granule cells, 1024 Golgi cells, 16 Purkinje cells, 16 basket cells, one inferior
olive, and one neuron in the cerebellar nucleus in realtime. Simulating a more extensive network or
even a more biologically accurate model could potentially benefit this field substantially. Experiments
of Type 2 are largescale networks which Smaragdos et al. [34] classifies as everything larger as 1000
neurons. They also consider two fundamentally different implementations for the IO model, a Data
Flow Engine and a Xeon Phi implementation. Types 1 experiments seem suited for a data flow engine,
where type 2 experiments are better suited for the Xeon Phi implementation. Graphical processing
units (GPUs) are not considered.

Nguyen et al. [28] considered Graphical processing units as an accelerator, with a maximum
speedup of 160 times over a CPU implementation. However, the catch is that the implementation
supports only eight neighboring connections via gap junctions and nothing more. Making the simula
tion inherently more parallelizable than, for example, a fully connected network. The implementation is
a hardcoded IO model, as previously mentioned. The work is reporting results for network sizes of over
1 million neurons. With 120,000 simulation steps, this network takes over 40,000 seconds of simulation
time. Where a comparable FPGA based implementation, at the time, could only simulate up to 14,400
cells but can simulate 96 neurons in realtime while having a fully connected gap junction network [35].

A point can be made that FPGAs require a certain skill set to work with that most neuroscientists
do not possess. Therefore Miedema et al. [26] suggested a flexible hardware library (flexHH) that
does not need new firmware to run a different network configuration. FlexHH is reporting to support
166 neurons of the IO model in realtime while heaving a fully connected gap junction network. It still
supports simulations of up to 24,576 compartments (8192 Neurons). The point that Smaragdos et
al. [34] made that FPGA are better suited for Type1 experiments and CPU better suited for Type2
experiments seems to hold with the remark that GPU seems more promising for Type2 experiments.

Brainframe [36] is a project that tries to bring all these possible solutions together under one roof,
giving users of Brainframe control and freedom to choose simulator type and configuration. Brainframe
aims to extend and complete the previous work by Smaragdos et al. [34]. Brainframe only shows
results for a hardcoded IOmodel. However, these are excellent benchmarking results for more general
approaches to compare against. The work is presented as a single compute node application, but it is
intended to be extended to Multinode computing platforms.

Supporting multinode systems opens up this whole new area of HighPerformance Computing.
In Chatzikonstantis et al. [10], a multinode CPU implementation is presented for the hardcoded IO
model. The work presented only saw a Small speedup between utilizing 1 and 2 nodes. Additionally,
scaling to more nodes showed no further improvements. They did, however, create a new standard for
CPU simulation of the IOmodel. This work simulated a neural network simulation of 2 million neurons,
with 1000 connections per neuron.

Vlag et al. [38] took another approach by utilizing the best of both worlds with there brainGPU sim

3.2. Stepping Away from Hardcoded Models 15

ulator. A multinode multiGPU setup, reporting promising scalability trends. However, when reviewing
the source code, a significant bug was found in the generation of the gap junction networks, poten
tially favoring the published performance results. The bug appears in the generation of the Synaptic
connection networks, where one kernel per cell is launched to generate the connection list. However,
each thread within this kernel starts with setting the connection count back to zero. One can never
be sure that all threads are running concurrently, and therefore generated connections can get lost.
Furthermore, the memory allocated for the connection lists does not have any overflow protection.
And because of the stochastic nature, it can never be ensured to stay within the allocated memory
bounds. However, this will not affect the trends shown in the paper but potentially shifts the tipping
point. Therefore, brainGPU will not be used for comparison at this stage.

3.2. Stepping Away from Hardcoded Models
While the IOmodel is pushing compute to the limits and setting new performance standards. It is not
useful for neuroscientist that want to have the ability to tweak the experiments without having knowl
edge about HPC programming or even programming in general. Therefore Miedema et al. [26], work
that was already mentioned in the IO race, designed a way to generalize networks of the eHH type.
This hardware flexible design is called flexHH. The general idea without the Data Flow Engine (DFE)
implementation can also be beneficial for experiments of large networks, Type2, where the DFE was
focussing on smaller experiments classified as Type1.

flexHH
A way to generalize the extended HH equations would be preferable. It will allow for a single logic
process to simulate a range of different neural configurations. InMiedema et al. [26], a flexible hardware
library is proposed, which makes this possible. The IOmodel is used as a basis, and extra features
such as custom ion gates are supported within this general description. This is established by creating
a set of functions that makes it possible to describe all gates using the same formula set. This adds
overhead to hardcoded models but gives back the flexibility to use the same hardware/code base
for variations of models. As shown in Miedema et al. [26], remarkable results can be achieved on an
FPGA platform. This thesis will use the basic idea of the flexible library and port it to a GPU accelerated
codebase.

The generalized mathematical equations used in flexHH are shown in Equations (3.1) – (3.10).
Where Equation (3.10) might change if custom gates are not supported. All variables written in lower
case are constant values that are model configuration specific. This collection of equations need to be
solved for each neuron in the system and timestep synchronous because of the intercell dependency
of the gap junction calculation (Equation (3.3)). Therefore the problem is twofold. Firstly update the
compartments, secondly share the synaptic potentials across the network.

𝐼𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡,𝑖 = 𝑔𝑖𝑛𝑡
𝑛𝑐𝑜𝑚𝑝𝑠,𝑖−1

∑
𝑗=0

𝑉𝑖 − 𝑉𝑗
𝑝𝑖,𝑗

(3.2)

𝐼𝑔𝑎𝑝,𝑖 =
𝑛𝑐𝑜𝑛𝑒𝑐𝑡𝑒𝑑𝑐𝑒𝑙𝑙𝑠−1

∑
𝑗=0

(𝑤𝑖,𝑗(𝑐0𝑒𝑥𝑝(𝑐1 × 𝑉2𝑖,𝑗)𝑉𝑖,𝑗) (3.3)

𝐼𝑙𝑒𝑎𝑘,𝑖 = 𝑔𝑙𝑒𝑎𝑘,𝑖 × (𝑉𝑖 − 𝑣𝑙𝑒𝑎𝑘,𝑖) (3.4)

𝐼𝑎𝑝𝑝(𝑠𝑡𝑒𝑝) = {𝐴 if 𝑠𝑡𝑒𝑝𝑠𝑡𝑎𝑟𝑡 ≤ 𝑠𝑡𝑒𝑝 < 𝑠𝑡𝑒𝑝𝑒𝑛𝑑
0 otherwise

(3.5)

16 3. Related work

𝐼𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 =
𝑛𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠−1

∑
𝑗=0

𝐼𝑐ℎ𝑎𝑛𝑛𝑒𝑙,𝑗

=
𝑛𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠−1

∑
𝑗=0

𝑔𝑐,𝑗 × (𝑉 − 𝑣𝑐,𝑗) × 𝑌𝑃𝑟𝑜𝑑𝑗𝑠 (3.6)

𝑌𝑃𝑟𝑜𝑑 =
𝑁𝑔𝑎𝑡𝑒𝑠,𝑖−1

∏
𝑖=0

𝑌𝑝𝑖𝑖 (3.7)

𝑑𝑌𝑖
𝑑𝑡 = (1 − 𝑦𝑖) × 𝛼 − 𝑌𝑖 × 𝛽𝑖 (3.8)

𝑑𝑌𝑖
𝑑𝑡 =

𝑖𝑛𝑓𝑖 − 𝑌𝑖
𝑡𝑎𝑢𝑖

(3.9)

𝑓𝐶𝑢𝑠𝑡𝑜𝑚(𝑉, 𝑥[8], 𝑓𝑡) =

⎧
⎪

⎨
⎪
⎩

𝑥5(𝑥1−𝑉)
𝑥0𝑒𝑥𝑝((𝑥1−𝑉)𝑥2)+𝑥3

+ 𝑥8 if 𝑓𝑡 = 0
𝑥8

𝑥0𝑒𝑥𝑝(𝑥2(𝑥1−𝑉))+𝑥3+𝑥4𝑒𝑥𝑝(𝑥5(𝑥6−𝑉))+𝑥7
if 𝑓𝑡 = 1

𝑥0((𝑥1−𝑉)𝑥2)+𝑥3
𝑥4𝑒𝑥𝑝((𝑥6−𝑉)𝑥5)+𝑥7

+ 𝑥8 if 𝑓𝑡 = 2
𝑚𝑖𝑛(𝑥0𝑉, 𝑥1) if 𝑓𝑡 = 3

(3.10)

Equation (3.7) does not show support for instantaneous gates in this description, which means
that the gate does not rely on a DFE system that needs to be solved but directly dependent on the
compartment voltage. This is, however, supported in the implementation that flexHH uses to validate
it is functionality. Instantaneous gates are necessary if the gate descriptions are not stable because
small changes push the state to infinity and minus infinity quickly. Instantaneous gates can be solved by
using 𝑓𝐶𝑢𝑠𝑡𝑜𝑚 to calculated the activation function. The results can be plugged directly into Equation
(3.7) as that 𝑌𝑖 value of that gate.

The flexHH paper did optimize the equations to some extent to be better suited for FPGA usage.
Calcium concentrations are modeled as a gate and, therefore, can only depend on previously described
channels. However, calcium concentration is compartmentspecific and will depend on some subset
of the 𝐼𝐶ℎ𝑎𝑛𝑛𝑒𝑙 currents. Equation (3.6) makes the channel current calculation sequential. The same
sequential requirement hold for the Calcium updates. Updating the gate DFE system does not have
any such sequential requirements. Therefore it could make sense to categorize calcium concentration
updates as part of a compartment. Making solving the gate DFE systems completely parallelizable. s
Equation (3.2) supports different compartment ordering. However, the implementation only supports
chained compartments, which is not a major implementation compromise but something to keep in
mind when designing the simulator for this thesis.

The implementation supports FWDEuler, rk2, and rk3 Solving methods. A conclusion on perfor
mances is made on these solvers, resulting in FWDEuler coming out on top for all experiments. These
results are not included in the paper but can be found in the MSC thesis work, with the same title, where
the paper is based upon [9].

A novel simulator for extended HodgkinHuxley neural networks
FlexHH is a powerful generalization that enables highperformance computing while maintaining flex
ibility. Panagiotou et al. [31] took this philosophy and ported it to an x64 CPU Architecture. The
implementation is named GenEHH: ”a highlyconfigurable conductancebased neuronal network sim
ulator.” GenEHH can run on multicore x64 architectures, utilizing openMP for parallelization over mul
tiple threads. A JSON file configuration interface is proposed to make GenEHH usable for General
users. The platform also supports concurrent output generalization, reducing the RAM footprint of the
application because intermediate states are offloaded to disk memory. The implementation is utilizing
an FWDEuler solver, and results about scaling out to multiple CPU cores are in favor of adding more

3.3. Standalone Neural Simulators 17

compute power. With a 2x degrees in runtime for every doubling of CPUs available. The implementa
tion does support fully heterogeneous neural models and is deployable on any x64 system. Combining
that with the JSON input configuration makes this platform extremely useful for an enduser. Also, in
the IOmodel race, its performance better than the work from Nguyen et al. [28] while supporting higher
connectivity densities. The DFE implementation of flexHH outperforms GenEHH but does not support
the same large scale networks as GenEHH can support. GenEHH focusses more on experiments of
Type2.

Scaling to Multinode
Scaling the idea of flexHH to amultinode platform is not done yet. Chatzikonstantis et al. [10] scalability
results are not promising. However, Vlag et al. [38] does report great results on scaling their hardcoded
IO model over multiple nodes. Both implementation, however, suffers from communication overhead
of the Gapjunction network. The work by Hahne et al. [19] proposes a unified framework for spiking
and gapjunction interactions in distributed neuronal network simulations. The framework is based on
waveform relaxation techniques. Results seem very promising but also come with a big note that the
communication overhead is replaced by more compute overhead. When the added compute overhead
is lower than the communication overhead, it makes sense to use frameworks as described in this
paper.

Jordan et al. [24] researched the feasibility of scaling neural simulators out to the post
petascale highperformance computing facilities. The communication scheme selected is utilizing the
MPI_Alltoallv API function. It is argued that it becomes beneficial for neural systems with very
sparse interconnection networks to have a more tailored approach to the communication problem that
”just” sharing everything with every process (MPI_AllGather) contributing to the simulation. The
work by Vlag et al. [38] also adopted this approach in a similar fashion. However, a fair comparison
between the option is not given which limits the insight into where the turning point, in terms of per
formance, of the different approaches, lies. This work does go into the ”Gaussian” versus ”Uniformly”
generated interconnection networks. Where a gaussian generated interconnection network has more
locality in its connections with results in less stress on the communication tasks. The work shows that
a neural network that is more locally connected performance better in terms of execution time.

3.3. Standalone Neural Simulators
Some standalone neural simulators that are taken interesting approaches are SpiNNaker, HRLSim,
and Arbor. There are many more simulators out in the world, with the focus laying on brain simulations,
which will not be covered. It is chosen to highlight some exciting approaches rather than highlighting
the most successful approaches.

Arbor
Arbor [6] is a highperformance library of multicompartment, morphologically complex cells, from
singlecell models to vast networks, for computer neuroscience simulations. To help neuroscientists
efficiently use current and future HPC systems to fulfill their simulation needs. Arbor is written from
scratch with several CPU and GPU architectures in mind. Arbor supports several neuron models
but focuses on the simulation of multicompartmental neurons. It supports spiking patterns with an
asynchronous MPIbased spike communication scheme. Arbor enables extensive parallelism with one
CUDA thread per state Mechanism update. It shows strong scalability results when deployed on multi
compute node systems. Arbor is an opensource project that is still heavily under development and
expected to develop to a full fletch way of supporting neural simulations.

NEST
The Neural Simulation Technology Initiative (NEST) is a simulator for SNN models that focuses not
on the exact morphology of individual neurons but the dynamics, size, and structure of neural net
works.NEST offers over 50 models of neurons, including LIF with synapses based on current or con
ductance, IZH, or HH models. Also included are several multicompartmental neurons.

NEST uses two types of parallelization, threadparallel simulation and distributed simulations, to
conduct simulations on multicore machines and computer clusters. To accomplish this, OpenMP and
MPI are utilities. Allegedly, the NEST architecture scales to the biggest available petascale machine,

18 3. Related work

but there is no multiGPU implementation.
The Julich supercomputing center (JSC) has a NEST affiliated research group. Their research

showed that the algorithms generating neural model instances and their connections scale well for
neural networks on the scale of ten thousand neurons but do not offer the same speedup for millions of
neuron networks. The work uncovers that the lack of scaling is due to inadequate memory allocation
strategies and demonstrates that threadoptimized memory allocators recover excellent scaling. [22]

Neuron
NEURON provides a versatile and robust environment to implement biologically realistic models of
electrical and chemical signaling in neurons and neuron networks. Neuron modeling comes in the form
of NMODL. This highlevel language allows models to be represented in terms of kinetic schemes or
collections of differential and algebraic equations at the same time.

CoreNEURON is a simplified NEURON simulator engine designed to simulate larger network mod
els on supercomputing platforms, optimized for computational speed and memory use. It can target
architectures for GPUs and CPUs. Building the network model depends on NEURON.

Via the Open Accelerators (OpenACC) programming model, CoreNEURON supports GPUs. Ope
nACC is a parallel computing programming standard that offers compiler directives that define code
regions to be implemented on a highperformance computing system. OpenACC does not restrict itself
to NVIDIA devices but supports a variety of accelerator platform.

Brian
Brian is an opensource simulator for spiking neural networks written in the Python programming lan
guage. Brian has an extensive modeling environment and can be driven by (stochastic) differential
equations. Custom models are used as equations that endorse a wide variety of neural models.
The PyNN language can be used as an input for Brian. Two software packets, Brian2CUDA and
Brian2GeNN, are available to accelerate Brian.

Brian2CUDA is an extension of the Brian spiking neural network simulator, implementing a stan
dalone system to generate C++/CUDA code to run simulations on NVIDIA graphics processing units
for general purpose (GPGPUs). This package is under development and has not yet been released.

Brian2Genn is a software package that connects Brian and GeNN. GeNN is a C++based meta
compiler for accelerating spiking neural network simulations using consumer or highperformance
grade graphics processing units (GPUs) GeNN [40]. In this way, the users can use Genn GPU ac
celeration without requiring any technical skills about GPUs, Genn, or C++. [37]

HRLSim: A High Performance Spiking Neural Network Simulator of GPGPU
Clusters
HRLSim [27] is a spiking neural network simulator with GPU cluster systems as their targeted compute
platforms. The main reason this work is of interest is the optimizations that were used to increase per
formance. The modeling, for example, is happening with a reduced precision integer approximation.
For the message packaging, a different kernel is created to offload communication threads. Further
more, kernels that do not have large dependencies on memory are assigned to run concurrently and
resulting in better compute throughput. Also, the alignment of synapse related datastructures which
prevents memory access overlapping is a great feature. They report having a simulator that scales
well over multiple GPU cards, reporting results for up to 64 GPUs. The performance bottleneck is the
synaptic updates. However, the project is discontinued and therefore not relevant beyond the lessons
learned.

CARLsim
Due to the memory and computation needed to iteratively process the broad collection of dynamics
and updates of the neural state, largescale spiking neural network (SNN) simulations are challenging
to implement. CARLsim 4 is a userfriendly SNN library written in C++ that can simulate large biolog
ically detailed neural networks to meet these challenges. CARLsim 4 is the next iterations improving
the previous version, which can now use multiple GPUs and multiple CPU cores concurrently in a
heterogeneous computing cluster. [11]

The work shows results demonstrate the simulation of 8.6 million neurons and 0.48 billion synapses.

3.3. Standalone Neural Simulators 19

When using 4 GPUs, up to a 60x speedup over a singlethreaded CPU implementation is observed.
In addition, the latest release introduces new features, such as leakyintegrateandfire (LIF), nine pa
rameter Izhikevich, multicompartment neuron models, and incorporation of RungeKutta fourthorder.
Hodkin Huxley is not supported. CARLsim does not support electrical synapses but does chemical
synapses are supported.

CARLsimmaximizes the degree of parallelizing with two approaches. Firstly the distinction between
organizing computations according to neuronal activity and secondly to synoptical activity. A hybrid of
these two reports the best results showing the best load balancing and the least warp divergence.

SpiNNaker

Spiking Neural Network Architecture (SpiNNaker [30]) is a massively parallel, multicore supercom
puter architecture developed at the University of Manchester. It consists of 57,600 processing nodes,
each with 18 ARM9 processors (specifically ARM968) and 128 MB of mobile DDR SDRAM, totaling
1,036,800 cores and over.

It supports building neural networks in the PyNN description language. Three principle axioms of
parallel computing are discarded: Synchronicity, memory coherence, and communication determinism.
It, however, is still able to perform meaningful computations. Communication happens by simple spike
mechanisms no larger than packets of 72 bits. The computing platform is accessible through the Human
Brain Project [32] and the source code available on Github.

Summarizing

This section has highlighted a subset of available neuron simulators. The focus on selecting these sim
ulators was their similarities to this thesis subject. In Table 3.1 an overview of this subset is presented.
What has become very clear is that there is already a good collection of neural simulators available for
neuroscientists to use. This thesis work focuses on the eHH subset of neuron models supported by all
except HRLSim, CARLsim, and GeNN3. SpiNNaker is the only simulator that does not support GPUs
but is included in this review because of its approach to coping with distributed computing. This thesis
problem statement: ”How can we efficiently simulate neural models, with growing neuron counts keep
ing the solution as high performing as possible, utilizing multinode GPU compute platforms” raises the
questions if one of these platforms could be suitable to answer the formulated research questions, with
or without alternations to the software. However, as the objective already stated, this work will imple
ment a new versatile, multiGPU eHH simulator, which will be heavily based upon flexHH and GenEHH.
These two implementations show massive potential in their respective subset of neuron models they
support. With this new multiGPU simulator, this thesis will show that simulating the entire Inferior Olive
complex of a human could come into scope for the neuroscientist. None of the simulators mentions
can achieve this simply because they are way more general than a dedicated eHH simulator.

20 3. Related work

Simulator Neuron models Frontend Characteristics

LI
F

IZ
H

H
H

M
ul
ti
C
om

pa
rtm

en
ta
l

C
ur
re
nt
b
as
ed

Sy
na
ps
es

C
on
du
ct
an
ce
b
as
ed

Sy
na
ps
es

Py
th
on

C
\C
++

Py
N
N

N
eu
ro
M
L

Si
ng
le
G
PU

Su
pp
or
t

M
ul
ti
G
PU

Su
pp
or
t

D
is
tri
bu
te
d

N
eu
ro
m
or
ph
ic

O
pe
n
So

ur
ce

Arbor x x x x x x x x x x x
NEST x x x x x x x x x x
CoreNeuron x x x x x x x x x x x x
Brian x x x x x x x x x x x x x
GeNN 3 x x x x x x x x
CARLsim 4 x x x x x x x x
SpiNNaker x x x x x x x
flexHH/GenEHH x x x *

Table 3.1: Overview of the characteristics of the review subset of neural simulators that are still active
* Indicates using a interfaced which is NeuroMLcompliant

4
Design

The main focus of this chapter is on the design, of our simulator mgpuHH, choices for which first the
requirements of the design are discussed. As the thesis title suggest, the project focuses on GPU
powered platforms to do the calculation, but the same scalability principles hold for a CPUonly imple
mentation. Several design cycles are done, firstly to get acquainted with the CUDA syntax and project
and secondly to test certain ideas. Explanations will mainly be on the final design.

4.1. Design Considerations
The ideas presented in flexHH [26] and the CPU revision GenEHH [31] are selected as a starting point
for this work. These works were created and maintained by the Neuro Computing Lab (NCL) at the
Erasmus MC (EMC). This thesis project is part of the NCL, and collaborators on the mentioned work
are still lab members. This work is considered the next iteration, exploring the possibilities of utilizing
GPU and multinode computing systems. The choice to follow the same neuron support as flexHH
and GenEHH does not cover all possible neuron modeling features. For example, chemical synapses
and geometrically accurate neurons are not in the scope of this simulator. Electrical synapses (gap
junctions) aremore challenging computewise due to their direct nature, meaning that in each simulation
step, all the communication required for gapjunctions needs to be performed. Chemical synapse do
not have this requirement, and therefore their implementation needs to be designed differently, which
is left out of scope. Geometrical data about neuron models is left out of scope because the focus
is large network simulation and researching scalability; therefore, such features on cell level are not
considered.

4.1.1. Compute Challenges in Neurocomputing
A few key challenges in the world of computational neuroscience came out of discussions with compu
tational neuroscientists:

1. Dense gapjunction connectivity in a largescale network
2. Numeric instabilities in small active compartments
3. Large parameter spaces for network composition
4. Very long simulations (hundreds of seconds of biological time)
5. Stochastic input sources and seed management
6. Local Field Potential simulations of the cerebellar network
7. Simulate an entire olivocerebellar complex.
This work will tackle mainly problems 1,3,4 and 7. One example of a stochastic input source is

included in the design. Seed management is done through a user interface, ensuring experiments
can be recreated. However, the design will allow for easy addition of input sources, with the side
note that programming knowhow is needed. Combining these statements with the research questions
presented in the introduction chapter gives rise to the following presented requirements.

21

22 4. Design

4.1.2. Requirements
An essential aspect of every design is meeting the requirements. Because this is a research project,
there is a certain amount of freedom to explore the design space as no fullfledged application is ex
pected. However, to be recognized as a usable neural simulator, a set of requirements needs to be
met. The essential requirement is that the simulator is accurate, and users can trust the results. An
overview of the requirments is given in Table 4.1.

Feature Requirements Design Specifics

Designed for LINUXbased systems Source code only,
user will have to build the executable.

Interface Configurationfile controllable JSONbased, building further upon.
the work of GenEHH

CLI (non interactable) interface .
.

Scalability MultiNode support OpenMPI will be used for message
passing between computes nodes.

MultiGPU support IntraNode multiGPU support without
OpenMPI dependencies.

GPU Support CUDA Limits to NVIDIA GPUs only.
.

Output Metadata output file
Meta data results on performance and memory
usages, intended to profile the design.
Example in Appendix C.

Filebased networkstate output Output in either raw or ASCII data to give
the user insights into their simulations.

Table 4.1: Overview of the design requirements

Interface
The programming skills of neuroscientists might be limited. Therefore, it is required to be ’userfriendly’
enabeling neuroscientists to utalize the simulator. The program will achieve this by using configuration
files in JSON format. The JSON format is lightweight and designed for storing and transporting data that
is widely supported and can be used with Python and Matlab. An example configuration file is included
and annotated in Appendix B. The simulator will be a commandline interface (CLI) executable that is
designed to run on Linux systems. The focus lies on a scalable solution, and almost all big compute
nodes/clusters are Linux powered.

Neural model support In the related work, most of the implementations supports heterogeneous
models. This work should support fully heterogeneous networks. Homogeneous networks are having
the same constructions and parameter settings for all cells in the network. Heterogeneous networks
can have different constructions and parameter settings for all cells in the network. However, most
experiments consist of significant clusters of the same cell structures. The neuroscientist wants to
control specific simulation parameters with some randomization instead of creating massive heteroge
neous networks with only some randomization at the parameter level. This work will support handling
those randomizations, making it easier to use the JSON files helping relax memorysize needs. The
performance implications introduced because of this will be discussed in the Implementation chapter.

The parameters that are getting randomization support are the ”Channel LeakConductivity” and the
”Channel InversionPotential.” These two are selected because there was a need for these parameters
in collaboration with the neuroscientist. The implementation can be easily altered to support a different
and/or bigger subset of parameters. However, this will potentially need more memory resources and
can slow down the simulations. On the other hand, when all parameters need randomization, one can
still explicitly describe every neuron in the system, maintaining full flexibility.

Gapjunction network generation To properly test the simulator, some gapjunction network count
needs to be supplied or generated. This work will have two generative algorithms builtin, RandomBi
nary (A uniformdistribution generation) and a 1DGaussian. It will also support reading the intercon
nection graph from a file. RandomBinary and 1DGaussian are selected because of either the lack

4.2. Analysis 23

of locality or strong locality in the generated connections, which either stresses communication and
cashing more in the case of no locality or relieves stress in the case of strong locality. The normal
mode of operation is considered to be reading from a connection file because neuroscientists like to
have precise control over the interconnection network they deploy.

Scalability
Scalability of compute resources is critical to answer the research questions of this thesis. Primarily,
two sorts of scalability are taken into consideration. Firstly, intranode scalability. Secondly, internode
scalability. Intra node scalability is the possibility of using all GPU resources available to a single node.
The amount of GPUs a node can carry depends on the amount of PCIe lanes the processor has avail
able. In extreme cases, setups with 19 GPUs are out there at the time of this writing, reducing the
amount PCIe connection lanes from x16 to a lower count and therefore reducing the communication
bandwith. The focus will be on systems with two up to eight GPUs because those systems are avail
able to use and are sufficient to showcase intra node scalability. Internode scalability means utilizing
multiple nodes within a compute cluster. Many nodes are clustered together through some networking
interface. The simulator will distribute processes and data using these network interfaces between
nodes. MPI, the Message Passing Interface, will be the standard here. OpenMPI is chosen to be the
implementation of MPI that this work will use. It is an opensource and freetouse library that interacts
through an API, reducing complexity by not managing all network interfaces manually. [18]

GPU Support
This work focuses on utilizing GPU(s) and comparing results against prior CPU and DFE implementa
tions. The created program will only run on platforms with CUDA support in the intended design form.
However, some effort to incorporate the CPU design from [31] into the final executable to run some
smallerscale experiments with the same code base is made. That design does not support multinode
implementations, and for this reason incorporating multinode CPU support stays out of scope.

Output
The most crucial requirement for the neuroscientist is the network’s state at specific simulation time
steps. Four values can be of importance: The compartment potentials, the calcium concentration within
a compartment, the channel currents, and the gatevariable states. The JSON input configuration will
decide what needs to be written into an output file. These output files can either be raw binary data or
humanreadable ASCII data. Printing out values for all cells or a specific cell needs to be supported.
The network’s state must be possible to be written to file for every timestep in the simulator but also be
reduced to every N’th step to spare disk space and potentially increase performance. The simulator will
not be interactive through callback functions, or commandline interface (CLI) commands. However,
already generated output data can be looked into before the simulator finishes the full simulation run.
This choice is made because there are not any added benefits to this thesis and it only increases
complexity.

4.2. Analysis
In Figure 4.1, the extensibility which the neural description utalized in the simulator possesses, is pre
sented structurally. It is important to note that the designed simulator cannot control what a neuro
scientist would like to simulate. It could be a single cell with millions of compartments consisting of
only a single channel and a single gate. Nevertheless, it could also be millions of cells with a single
compartment, a single channel, and onehundred gates for this channel. Whether these configurations
make any biological sense is not up to this simulator to determine. The simulator should support every
degree of freedom while keeping the solutions scalable and functionally correct.

Supported Network Structurs The network structures this work supports are presented in Figure
4.2. A few concessions are made that were also made in flexHH and GenEHH. Firstly, the externally
applied current and the gapjunction current can only act on the first compartment described in a cell
description. Secondly, the compartments are ordered in a chain following the order of the cell descrip
tion. These concessions simplify the design but still creates a design that can answer many research
questions and meet requirements.

24 4. Design

Network

Cell

Compartment Compartment

Channel Channel

Cell...

Gate Gate

...
...

...
Figure 4.1: An overview of the neural network structure. A network can contain multiple cells, which can contain multiple
compartments etc. The dotted lines represent the extensibility of the object.

By including support for gapjunctions to act on the different compartments, converts the gap
junction problem form a celldependency to a compartmentdependency problem. The same holds
for the applied current and the chain linking of compartments. The chain linking of compartments is
a somewhat harder problem to provide a generalized solution for. Support to save the cell structure
would need to be built into the cell description. The formulation of flexHH’s interactioncurrent Equa
tion (3.2) does support arbitrary compartment ordering. However, the IO model does not utilize this,
and also the flexHH implementation does support arbitrary compartment ordering. GenEHH does only
support chainstyle compartment ordering, and this work will follow those design choices.

Gapjunction currents are dependent on a connectivity list. This connectivity list is supplied by the
neuroscientist as an input file. Alternatively, the parameters for a generation algorithm are provided
by the neuroscientist. This work will support three options: An input file, a RandomBinary (uniformly
distributed) generation, and a RandomGaussian generation. The weight that each gapjunction con
nection has can be uniform or connectionspecific.

Figure 4.2: An overview of the neural network style that is supported in this work. Two neurons are shown, each consisting of
three compartments. 𝐼𝑎𝑝𝑝 and 𝐼𝑔𝑎𝑝 can only act on the first compartment in the chain like compartment list each neuron has.
The dotted lines represent the growing freedom of the neural network.

4.2. Analysis 25

4.2.1. Simulation Flow Breakdown
flexHH and GenEHH are designed in a way that one function can handle the complete simulation. This
function takes a compartment and updates it. This function is then executed as often as the number of
instantiated compartments for each timestep in the simulation. The timesteps required are depending
on which numerical solver is used but will stay sequential depending on each iteration, because there
is a relation to the previous state of the network for each case. Pseudocode to run a simulation can
be simplified to Algorithm 1. This idea that a single function can handle the complete simulation and is
within a fat loop that can be executed in parallel indicates the potential of GPU usage.

Algorithm 1 Run Simulations
1: for 0 ≤ 𝑖 < 𝑁𝑠𝑡𝑒𝑝𝑠 do
2: for 0 ≤ 𝑘 < 𝑁𝑐𝑜𝑚𝑝𝑠 do
3: 𝑈𝑝𝑑𝑎𝑡𝑒𝐶𝑜𝑚𝑝()
4: end for
5: end for

Compartment update A carefully tailored implementation is of the utmost importance to meet re
quirements and still get highperforming solutions. Analysis of the work that the targeted compute
platform needs to perform is crucial here. A dataflow overview can be made when breaking down the
implementations of flexHH and GenEHH and altering them to best suit a parallel implementation. See
Figure 4.3. It is important to note that it is a numerical solution on a ODE system, which means repeti
tion is needed. The critical path depends on the configuration of the model. An important note is that
the gap connection and externally applied currents are only present in the first compartment of each
cell, adding additional logic to check if the current compartment is indeed the first one or not. The alter
ation in design is that the compartment now gets the option to add a dedicated calcium concentration,
instead of the need to model it as a gate, which flexHH and GenEHH are doing. This choice makes the
gate updates independent of each other and generalizes the support for calcium concentrations.

As can be seen in the overview in Figure 4.3, the rest of the formulas show resemblance to Equa
tions (3.1) – (3.10), where Equations (3.8) – (3.10) are combined in the 𝑌𝑢𝑝𝑑𝑎𝑡𝑒 function. At gate
level, instantaneous gate support is added, which is not present in the formulations of flexHH but is
implemented in flexHH and GenEHH in the same manner.

Leak Current The leak current is straightforward and only depends on the current compartment
potential and two compartmentspecific variables.

Interaction Current The supported network structures limit the cell structure to have chainedstyle
compartment connections resulting in a maximum of two neighboring compartments. An improvement
could be modifying the design to support three structures that can be tailored by the user. This work will
not go deeper into that direction, resulting in a reasonably easy way to calculate all interaction currents.

Gapjunction Current The most challenging of all because it needs the number of compartment
potentials as it has connections, resulting in many memory accesses that tend to be very chaotic and
uncoallesed.

Externally Applied Current The externally applied current is timedependent and therefore takes
the current simulation step as input. When it is enabled, the amplitude provided will add to the com
partment potential update. The way the amplitude gets calculated does not matter for the design, given
that it is a formula that depends on the compartment or cellID, the compartment potential, and the time
variables. Constant values or random noise sources can be added. What will be supported to show
case this the versatile functionality are the following types of applied current: DcCurrentStepandHold,
DcCurrentRampandHold, DcCurrentPulseModulo, and OrnsteinUhlenbeck noise.

Channel Current The channelcurrent calculation is themost complex one. There are still 2 degrees
of expandability: The number of channels and gates of a channel can differ across cells making this an

26 4. Design

Update Calcium

Channel Currents
 Channel_0 (j = 0)

 Channel_x

 Gate_0 (k = 0)

 Gate_x

...

...

Check Instateneous Gate

leak Current

Interaction Current

Gap-connection Current (if comp = 0)

Applied Current
A

Figure 4.3: This overview shows everything that needs to be computed for a single solver step of the simulation for one com
partment. All uppercase variables are timestepdependent. The lowercase variables are constants that are defined in the
configuration file. The color red represents inputs, while the color green represents the output of a specific step in the simulation.
Dotted lines represent the ability to add multiple channels and/or gates to a compartment.

unpredictable summation for the singlechannel currents and multiplication for the gate’s contribution
to a singlechannel current. 𝑌𝑢𝑝𝑑𝑎𝑡𝑒, which is an collection of equations (3.10), (3.8) and (3.9), is not
dependent on other factors within the compartmentupdate phase. One function to handle all possible
gate descriptions is designed.

Calcium Concentration The calcium concentration is unique for each compartment and can be
influenced by one or multiple channels in the implementation presented in this work. It is necessary to
be able tomodel the calcium update formulas as a flexHH gate. However, it is compartmentspecific and
dependeds on one or more channel currents (𝐼𝑐ℎ𝑎𝑛𝑛𝑒𝑙). Therefore, it is made part of the compartment
description, resulting in the fact that all gates stay independent of each other but still can be influenced
by the compartment’s calcium concentration.

4.2.2. Parallelizable Parts
Memory dependencies heavily bound parallelization. Therefore, it is immediately evident that the solver
steps, regardless of the type or method, are sequential because of the dependencies on previous cal
culated values. Updating the neurons, on the other hand, is not sequentially depend on other neurons
during a single timestep. Parallelization at cell level or compartment level gives the same chucks of
calculations each parallel pipe needs to perform. Compartmentwise parallelization would be prefer
able because it splits up the calculations in more parallel pipes and will not lose performance when
compartments counts differ across the network. Compartments with gapjunctions will have more com
putational load that compartments without gap junctions. This imbalance could be tackled by grouping
all compartments with gap junctions together, eliminating warp divirgence, or by taking the gapjunction
calculations out of the compartment update and create a new kernel for this task.

4.2. Analysis 27

If this parallelism is applied on a GPU platform, we would use a CUDA thread per compartment and
launch a kernel to update a compartment. This would limit the freedom of further parallelization of the
function. For example, the gapjunction calculations could benefit from having multiple threads avail
able to calculate the gapjunction current to parallelize the accumulation of single connections further.
Also, the gate updates can benefit from having a thread per gate available. Because of the diver
sity of calculation and accumulations, it would not make sense to create kernels for each contributing
current in the compartment update. However, it could make sense, performancewise, to split up the
𝑈𝑝𝑑𝑎𝑡𝑒𝐶𝑜𝑚𝑝() function into a separate gap calculation function, gate update function, and compart
ment update kernel. The different options will be implemented, and the implementation chapter will
report the results.

Setting up the network pertains mostly allocating and initializing the memory correctly based upon
the configuration file. However, the gapjunction network generation is something that can be done with
a GPU kernel where, for example, one thread for each cell is launched. This works for the RandomBi
nary and Gaussian distribution incorperated this codebase. However, when a neuroscientist designs a
connection list, she can link a file in her configuration, and the program will read out the connection list
from the hard disk. The CPU will do this and then copy it to the on board memory of the selected GPU.
GPUdirect memory could potentially improve performance. However, because most targeted systems
do not have direct NVMe support, and clusters are working most of the time with networkattached
storage, no further design resources are put into this feature.

4.2.3. Scalability
Scalability is of great importance to this implementation. It makes it possible to use anything from
a computer at home up to highperformance compute platforms such as supercomputers from the
TOP500. As described in the Background chapter, openMP and openMPI are the bestsuited libraries
to facilitate this requirement.

Because this work focuses heavily on GPU acceleration, it will not benefit a lot from multithreading.
However, in the case of multiple GPU’s available, it is required to call API functions per GPU to utilize
them. These API function calls are handled on a thread basis and therefore can be parallel. This work
uses the same amount of openMP threads as GPUs available to simplify the implementation, there is
no additional performance benefit expected from using multiple threads.

Another performance killing requirement is writing results into an output file. The writing is a se
quential process but does not require execution to be sequential with the compute kernels. Writing the
output of a timestep can therefore be made parallel with a simulation timestep. Prettyprinting floating
points numbers from raw to ASCI is a cumbersome operation. Therefore, the user is given the option
to either pretty print or dump the raw data to a file, resulting in significant performance differences.

Expanding to multinode or, in other words, a multiprocess program requires communication be
tween processes. OpenMPI is perfectly suited to handle this. Analysis of the communication needed
boils down to communication of the compartment potentials when gapjunction are utalized. Everything
else is known in each separate process, either by the process ID or input handling that each process
does at startup. Beneficial would be to overlap communication with computing. However, communica
tion is sequential with the compartment updates, simply because the next timestep needs the connected
cells’ compartment voltages. However, the gate updates do not have a sequential dependency within
a time step and can potentially be overlapped with communication.

Memorywise, it is mandatory to save all compartment potentials needed for the gap junction cal
culations, of every local cell connection list, in GPUaccessible memory. Spanning easily to a point
where all GPUs need to have every synaptic connection potential stored inside accessible memory to
perform gapjunction calculations. Accessible memory can be memory directly located on a GPU card.
However, it can also be located in the Unified Virtual Addressing (UVA) space of a compute node. Us
ing UVA saves memory on multiple GPU compute nodes but is outperformed by GPUspecific memory
allocations as presented in the Implementation chapter. A tradeoff between memory and performance
has to be made here. The added amount of data latency of getting the GPUs data versus getting
the data in the unified memory space cannot be neglected. It is important to note that, before CUDA
compute capability 6.0, it was impossible to have multiple devices (GPUs / CPUs) access the same
memory locations in UVA, making UVA not suitable for older cards with the application under design.

The first described compartments in the neural description are the only compartments capable of
having gapjunctions connected to them. Therefore, when in this work we talk about sharing the gap

28 4. Design

junction potentials, we refer to sharing the first compartment’s potentials only. The gapjunction poten
tials are the only values that need to be shared in the system. To communicate betweenMPI processes,
two implementations are possible. Firstly, communicate everything to everyone. Secondly, communi
cate the necessary data to specific nodes only. Experimentation will give insight into the performance
of different configurations. The more local the connections get, performance is expected to benefit from
the second implementation because gapjunctions spanning MPI processes are reduced.

4.2.4. Memory Usage
It is important to understand how memory usage relates to the modeling experiment a neuroscientist
wants to explore. All modeling constructs discussed so far have has linear memory scaling, except
for the synapticconnection lists: In the worstcase case scenario, it scales at a cubic rate. Each
cell needs to allocate memory to save a connection to all other cells in the network. The synaptic
connection lists can either be saved sparsely or densely. Densely saving will always have the same
size, 𝑁𝑐𝑒𝑙𝑙𝑠 ∗ 𝑁𝑐𝑒𝑙𝑙𝑠 ∗ 𝑠𝑖𝑧𝑒𝑜𝑓(𝑏𝑜𝑜𝑙)[𝑏𝑦𝑡𝑒𝑠]. Saving sparse connection lists will have a great benefit
memorywise when the network has a density under 𝑠𝑖𝑧𝑒𝑜𝑓(𝑏𝑜𝑜𝑙)/𝑠𝑖𝑧𝑒𝑜𝑓(𝑢𝑖𝑛𝑡) (normally under 0.25).
This is derived from the memory space needed for densely saving the network count and sparsely
saving it, which takes up 𝑁𝑐𝑒𝑙𝑙𝑠 ∗ 𝑁𝑐𝑒𝑙𝑙𝑠 ∗ 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 ∗ 𝑠𝑖𝑧𝑒𝑜𝑓(𝑏𝑜𝑜𝑙)[𝑏𝑦𝑡𝑒𝑠] of memory when taking the
density as the average connections each node has.

However, the problem lies in randomly generating networks. One can never be sure that that gen
erated list will not overshoot some smaller allocation than the network size. CUDA does not natively
support something like std::vector pushback that we know from the C++ language (that works as desired
at the time of writing). However, the goal is to simulate massive networks in terms of the number of cells
without quickly running out of memory. Therefore, sparse will be the only valid option. Furthermore,
some decisions on connectionlist growth must be made to ensure memory safety but still ensures a
near to perfect generation of the connection list obeying the set of requirements the generation takes
as an input. The details are discussed in Section 4.3.3.

4.3. Design Overview
The analysis broken down to a functionallevel description for a particular system configuration is graph
ically shown in Figure 4.4. The network setup consists of initializing GPU and CPU memory and op
tionally generating the synapticconnectivity list. Memory management must ensure data correctness
because the system works with separate kernels to do gate updates and compartment updates. There
fore, it requires a doublebuffering system to ensure that the previoustimestepcalculated compartment
potentials are not updated before they are read by an operation that is still dependent on these val
ues. Employing two memory allocations, where one holds the current values and one that holds the
updated values, this is ensured. An extra benefit is that we can also use the first buffer, with the current
values, to copy concurrently back to system memory if required. Therefore, each state of the network,
compartment potentials and calcium concentrations, channel currents, and gateactivation states are
doublebuffered. Because of the double buffering, the GPUtoCPU data transfers can be done entirely
concurrently with the compute kernels. Also, as discussed in the analysis, the most promising and ad
vanced simulation would be to do the calculations in three separated kernels. This implementation is
shown in the design and will be justified later in this chapter. Using three separate kernels makes the
gate update completely independent from the gap and compartment kernels, which are still holding
sequential relations.

4.3.1. User IO
For the user input of the design there is chosen for a JSON input file. This decision has been made
because some of the groundwork was already done, in GenEHH, for this system, and JSON is a widely
accepted dataformat making it highly usable for any user. Being able to simulate the full eHH class of
neurons with the system that a user can come up with is one requirement. This is possible due to the
fact that anything in the eHH class of neurons can be described with the flexHH formulations.

For described cells, one canmultiply the description they made for a single cell by adding amultiplier
entry to the cell description. However, it would not be representative of biological systems to be exact
replicas of each other. Therefore, a randomization factor can be added to each channel’s conductivity
and reversal potential; these randomizations were chosen by expert endusers within the NCL and are

4.3. Design Overview 29

Barrier 2

 GPU 1 GPU 2 Cpu Thread

Network Setup

Memory Management

Gap-Junctions
Calculations

Compartment
Update

Gate
Update

Intra node GPU
Communication

Copy state
back to

CPU

Gap-Junctions
Calculations

Compartment
Update

Gate
Update

Intra node GPU
Communication

Copy state
back to

CPU
Output
Handler

For each Timestep

Finalization

MPI
Communication

Communicate
gap voltages

between GPUs

Barrier 1

Figure 4.4: A functional overview of the system where greencolored blocks define CUDA kernels, and yellowcolored blocks
define CPU tasks. All white blocks are data management and control flow specific. The overview in 4.3 is captured in the
Compatment update with the execption for the gapjunction calculations and gate update which both have a dedicated kernel
represented by ”GapJunction Calculations” and ”Gate Update” in this overview. This functional overview is for a single process
with two GPUs connected to one compute node. The MPI communication happens internode to a system running a similar
process, when multiple compute node are utalized. In the case of a single GPU, the ”Internode GPU communication” can be
seen as a NULL function. The same holds for the ”MPI communication” in the case of singleprocess execution.

sufficient for a meaningful simulation run. When the user wishes to describe each cell with different
configurations and geometries explicitly, this is also possible by setting the multiply entry to one. A full
description of using the input file will be included in the repository, which is managed by the NCL and
not opensource. A example of such a configuration file is included in Appendix B.

The output can be adjusted to the user’s requirements. The compartment potentials and calcium
concentrations, channel currents, and gateactivation states are available to the user on each timestep
in formatted ASCII format written to a text file. However, floattoASCII conversions are very costly in
terms of execution time. Therefore, one can also choose to opt for raw binary outputs for the selected
variable. The user can set a timestep interval between each output generation. Higher performance can
be achieved, especially with nonlocal storage locations; writing the output to a file can delay simulation
runs.

30 4. Design

4.3.2. Scalability
The scalability requirement is met utilizing OpenMPI intranode. OpenMP is used to manage GPUs
connected to a node. Mapping onetoone different threads to separate GPUs (via OpenMP) does not
offer a performance benefit compared (for instance) to launching all GPU calls from a single thread.
However, it allows for elegant programming style and higher maintainability of the code. The imple
mentation autodetects the GPU number each node has, and is able to utalize them all or a selected
subset. The program does not guarantee the fastest run time when combining different GPU types or
,having multiple GPU, available versus a single GPU implementation. This was not inside the scope of
this thesis and would be great future work on the project. An overview of how the design’s scalability
is graphically shown in Figure 4.5. Combining this overview with the functional overview in Figure 4.4
should give the reader insight into how the overall simulator design works.

GPU GPU

NODE 0
CPU

...

thread
1

thread
2

...

process (mpi rank 0)

openMP thread
management

file system

std::thread

GPU GPU

NODE 1
CPU

...

thread
1

thread
2

...

process (mpi rank 1)

openMP thread
management

file system

std::thread

MPIRUN

...

Figure 4.5: Architecturelevel diagram of the design. It illustrates the scalability of the design where the dotted lines represent
the ability to scale out. MPI manages the processes where each node receives a process to run. Within this process, openMP
thread management takes care of the communication with the available GPU cards in the system. A separate CPU thread takes
care of writing the state of the simulator to an output file.

MPI: Allgather versusAlltoallv Both communication schemeswill be supported and usable via a flag
in the configuration file. Allgather will bluntly share all data across all processes where Alltoallv
has a tailored sharing approach where only the necessary data will be sent over to the process that re
quires the data. Sharing all data with everyone adds more communication overhead. Alltoallv adds
more computational complexity because of ordering and collecting the correct data before sending it
over. It will be investigated in chapter 6 whether both implementations will have the same scaling prop
erties and whether the synapticconnectionlist type of generation (denser or sparser or more localized)
does influence the preferred choice in term of performance.

4.3.3. Kernel Breakdown
Designing CUDA kernels is the most challenging part of the design phase. Programming a CUDA
kernel is quite delicate and somewhat complex to estimate its performance. However, the CUDA C++
programming guide gives a starting point [1]. Nvidia delivers a toolchain within CUDA that is very
helpful for validating applications under design. The available profilers are heavily used to determine
performance and/or validate design choices (Visual Profiler and Nsight Compute). An overview of all
CUDA kernels implemented in our mgpuHH simulator is shown in Figure 4.4. Next, we will go over the
details of each one of these kernels.

Gate and Compartment Update The gate and compartmentupdates kernels are a straightforward
design following the analysis. The gateupdate kernel has the same amount of threads as there are
gates in the neurons. Each thread is responsible for updating its gate with the 𝑌𝑢𝑝𝑑𝑎𝑡𝑒() function.
The compartment update kernel does the same but then on a compartment level, implementing the

4.3. Design Overview 31

overview of Figure 4.3 except for the gate updates and gapjunction connection current calculation. The
gap junction connection current will be a direct input provided by the gapjunction calculation kernel.
Updating the 𝑌𝑘 value to 𝑌𝑘, 𝑡 + 1, which is handled by the gate update kernel.

Gapjunction Calculations For the gapjunction calculation, a different approach is taken. For each
cell, a certain adjustable amount of threads (N) will be called. All these N threads will work together
to fetch from memory and accumulate to a shared result: The gapjunction current of that specific cell.
The accumulations rely on warplevelprimitives, limiting the maximum amount of threads to 32 per cell
(one warp). The system could potentially benefit from even more threads by utilizing shared memory
for the additions making to possible to use a full CUDA thread block; this was tested briefly and did
not offer any improvements. Because the focus is on big network experiments, it is estimated that the
GPU(s) will be 100% utilized in any case, and dividing up further would reduce instead of increasing
performance because more threads require to be managed in terms of communication and memory.
Therefore, it was not further taken into consideration for the design. The optimal N threads will be
explored in the implementation chapter. Also, prebuffering through shared memory will be explored in
the implementation chapter. It is not expected to affect smaller network densities. Still, it can potentially
benefit more dense gapjunction networks, where a larger number of cells need to access the same
memory locations. The overall design is graphically presented in Figure 4.6.

Gap connection Current (if comp = 0)

thread_0
j = 0

thread_1
j = 1

thread_3
j = 3

thread_2
j = 2

thread_0 thread_1 thread_3thread_2

temp = 0 temp = 0 temp = 0 temp = 0

temp temp temp temp

temp = temp + temptemp = temp + temp

Igap = temp + temp

Figure 4.6: A dataflowstyle overview of the gapjunction kernel design. The colour yellow represents a forloop where it iterates
the function represented by the colour blue. Each thread will execute this function and then accumulate the temporary results
together resulting in the value for the gapjunction current of a single cell in the network.

Connectiongraph generation The generation of the connection graph is important for performance
experiments of the network. Most endusers will probably provide their customtailored connections
lists that suit their specific needs. Therefore, the generation is optimized for GPU execution but not
with high optimization priority. Two schemes are implemented natively: RandomBinar (shown in Al
gorithm 2) and 1DGaussian (shown in Algorithm 3). The Randombinary generation is considered to
be the most challenging interconnection network because it is completely random. The 1DGaussian

32 4. Design

generation has many localities in the connection list, which will benefit computation and communica
tion performance. A 2D and 3D Gaussian is also created in the same fashion but will not be further
discussed in the report because they do not add value to the research questions and only complicate
the understanding of locallity and memory / neuron ID tracking. The networks used are all ranked in
a 1D list ranging from 0 to the maximum number in the network. This could be easily changed to a
2D ordering or even 3D ordering but does add complexity, which will make the performance results
dependable on more parameters, which is not in the scope of this work. It is estimated that it will not
change performance scalability.

Algorithm 2 RandomBinary Generation (Density,Networksize)
1: TargetCell = threadID
2: for 0 ≤ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐶𝑒𝑙𝑙 < 𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑠𝑖𝑧𝑒 do
3: if 𝑅𝑎𝑛𝑑(0, 1) ≤ 𝐷𝑒𝑛𝑠𝑖𝑡𝑦/𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑠𝑖𝑧𝑒 then
4: > Add NeighborCell to TargetCell
5: end if
6: end for

Algorithm 3 1DGaussian generation (mean,variance,Networksize,Target Connection count)
1: TargetCell = threadID
2: xd = 1 / (variance * sqrt(2 * PI))
3: yd = (1 / (2 * pow(variance, 2)))
4: for 0 ≤ 𝐷𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 < 𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑠𝑖𝑧𝑒 do
5: checkcell = TargetCell Dintance
6: if checkcell < Networksize then
7: probability = xd * exp(pow(distance mean, 2) * yd)
8: if 𝑅𝑎𝑛𝑑(0, 1) ≤ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 then
9: > Add NeighborCell to connection graph
10: end if
11: end if
12: checkcell = Targetcell + Dintance
13: if Targetcell > Dintance then
14: probability = xd * exp(pow(distance mean, 2) * yd)
15: if 𝑅𝑎𝑛𝑑(0, 1) ≤ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 then
16: > Add NeighborCell to connection graph
17: end if
18: end if
19: if Connection count ≥ Target Connection count then
20: Break()
21: end if
22: end for

4.4. Added Value to Research
The design of mgpuHH, as captured in this chapter, should contribute to the IOmodel race described
in the Background chapter and potentially set the new standard for Largenetwork experiments. The
codebase is not hardcoded but utilizes the methodologies from flexHH and GenEHH, making it a uni
versal eHH simulator. The design will hopefully be very didactic for current neuron simulators that are
being developed in the field of multinode and GPU support. This design should give insights into the
challenges involved when creating neural simulators with gapjunction style interconnections. It is the
first codebase that can utilize multinode and/or GPU systems that have the flexibility of experimenting
with all sorts of conductancebased models through a JSON based configuration where the codebase
does not need to be recompiled. A benefit of this codebase’s usability and due to close relations with
neuroscientists is that this design will be used to run experiments that were earlier out of reach without
(and outside) the NCL. The ability to easily deploy mgpuHH on supercomputers brings much potential,

4.4. Added Value to Research 33

and the first humansized IO model can be simulated with hardware resources that are available for
this thesis.

5
Implementation

With the proposed design in Chapter 4, there is still a lot of room for different implementations. These
options will need to obey the design but need to bestsuite the hardware configuration. This chapter
will explore these different paths and validate the design choices.

5.1. Development Resources
For the development of the design, a range of platforms is selected. Important when selecting compute
platforms is firstly availability secondly whether the platform suits the requirements for the evaluation.
For example, profilers from Nvidia are powerful but disabled on most largerscale platforms. Platforms
that we can control the software installed on them are bettersuited for this. An overview of all available
hardware to this thesis is presented in Table 6.2.

EMC resources The Neurocomputing Lab of the Erasmus MC has a range of development options
available, one server in particular suits our needs. This server is named ”ComputeDev” and carries
a V100 GPU and a dualsocket server CPU (AMD EPYC 7551) with 128 threads. Having full control
over this machine enables us to use nvprof, nsight compute and cudamemcheck, which makes
this machine a good choice for the development of singleGPU code. Also, it is an ideal platform to run
CPU versus GPU benchmarks to show the potential GPUs are bringing to the table.

TU Delft development resources The TU Delft has a CUDA development server, which is part of
the Q&CE IT infrastructure. The server carries 2 GPUs, a K40 and a RTX2080Ti. Permissions to
use profiling tools are enabled and therefore suitable for developing multiGPU code. They also have a
cluster available within the same resource pool comprising four nodes with 2 K80 GPUs. Unfortunately,
MPI is not supported, which makes it harder to use its full potential. Optionally, OpenMPI can be built
from source code, and the cluster could still be used in the multinode configuration. This, however,
was not worth the time, and the platform is only used for singlenode dual GPU development. The
somewhat older GPUs, unified memory addressing is available but does not support simultaneously
reading from UVA memory from different devices.

TU delft HPC cluster The HPC cluster has the same problem as the TU delft development resources.
It does not support MPI out of the box. Because of lacking dedicated interconnection between nodes,
it is not considered a multinode option. However, some nodes within this cluster are packing eight
GTX1080ti GPUs, a potential platform for benchmarking the simulator’s multiGPU scalability.

Google Cloud Google Cloud resources are falling into a different category of computing units. They
offer Cloudcomputing resources that are adaptable to the user’s wishes at any time. However, this
project is limited to a maximum of resources. Specifically, the number of GPUs available is limiting
the possibilities. For example, the project can only use one V100 GPU but four Tesla T4 GPUs at the
same time. Therefore, this platform is selected for multinode development. Because it is a Cloud
computingbased solution, the user has full administrator rights over the virtual machine instances they

35

36 5. Implementation

manage making it tedious work to set up, but possible, to tailor the correct environment to run multi
node experiments. Due to hardware resource limitations, configurations of four nodes with one GPU
each or two nodes with two GPUs each, or one node with four GPUs are possible. The rest is out of
scope for this platform. However, this is sufficient to verify that the codebase is correctly functioning in
multinode environments.

CSCS The Swiss National Supercomputing Centre Offers a wide range of highend supercomputers
that were out of scope for this project. What was, however, in scope was their development cluster
named ”Ault”. This development cluster enabled us to finalize implementation experimentation and
draw a conclusion about which configuration is working best for this design. Ault consits of four Nodes
with four V100 GPUs per node.

5.1.1. SoftwareSpecific Considerations
CUDA support is required, preferably CUDA 5.0 or higher, to support GPUdirect technologies. None of
the discussed systems is running anything below CUDA 10.1 out of the box, which means no measures
need to be taken for the correct functioning of the implementation. For internode scaling, OpenMPI
can be built either CUDAaware or not CUDAaware, meaning one can pass GPU buffers directly to an
openMPI call. Therefore, in any case, it is beneficial to have a CUDAaware openMPI library installed.
However, this is not common in most installations. Consequently, the design will have to support a non
CUDAaware openMPI library as the enduser is not expected to built these libraries from source code.
Performance for CUDA aware libraries will be higher for most configurations.

5.1.2. HardwareSpecific Considerations
The implementation should support different hardware configurations to show that even with home
compute units simulating complex brain models becomes accessible. However, the main goal lies in
scalability. With powerful systems, some different tricks become available to the user. Intranode, the
most significant introduced delay will be the sharing of the gapjunction potentials between GPUs. This
most straightforward approach will be to use UVA memory allocations. However, this is not expected
to be achieving the best performance. Best performance is expected to come from direct peer2peer
memory copies when GPUdirect is available or otherwise use regular CPU staged memory copies
when GPUdirect is not available. NVlink, when available, will make all direct peer access faster, and
therefore, UVA and peer2peer memory copies will benefit from having this bus available. However, on
all described platforms earlier, this bus is not present, so testing this hypothesis will be out of scope.

Intranode, the networking interfaces, and the way openMPI is built are important. OpenMPI is
performance bound by network latency and bandwidth. When GPUdirect is available on a system,
CUDAaware MPI can reach its full potential utilizing tricks as RDMA to increase datatransfers’ per
formance. Performance is hard to estimate upfront, but in HPC computing systems, latency between
nodes utilizing QDR InfiniBand can be as low as a few microseconds. Any implementation of MPI can
detect and use systems to their full potentials if everything is set up correctly. Any network intercon
nection can be used from 100 Mbits up to QDR Infiniband, reaching 100 Gbits bandwidth speeds. The
latency, which is also an essential factor to consider, is harder to estimate upfront and will depend on
the networking topologies of the system in use.

All this hints that the more hardware available, the better it is. But this is most definitely not the case.
There will always be a tradeoff between the extra added compute power versus the communication
overhead. These tradeoffs will be explored and discussed. This work leaves combining differnt GPU
types or computes nodes out of scope it thus considers only homogeneous HPC resources; otherwise,
the design space exploration would explode. MgpuHH is built to assume homogeneous resources but
will run correctly on heterogeneous configurations. However, it will most not be a performance balanced
implemention in the case of heterogeneous configurations.

5.2. Memory Requirements
The memory requirements of the design can be calculated when the network configuration is known.
A tool named mgpuHH memoryestimation tool (mgpuHH MET) is built to do this with any given JSON
network configuration used as input for the simulator. This tools is implementing Equations(5.1) (5.6)
to determine the memory needs per simulation. Where unique stands for a unique description. For

5.3. CUDA Kernel Breakdown 37

example, the IO model has three unique compartments, nine unique channels, and twelve unique
gates. The global identifier stands for the total number of neurons described in the network. To get
the local GPU identifier, the global counterparts need to be divided by the number of GPUs present in
the system. The numerical multipliers attached in the equations represent respective bytesizes of the
various memory structures used in the source code of the simulator.

𝑀𝑒𝑚𝑈𝑠𝑎𝑔𝑒(𝑏𝑦𝑡𝑒𝑠) = 𝑀𝑒𝑚𝑈𝑠𝑎𝑔𝑒𝑐𝑜𝑛𝑓𝑖𝑔 +𝑀𝑒𝑚𝑈𝑠𝑎𝑔𝑒𝑆𝑡𝑎𝑡𝑒𝑠 +𝑀𝑒𝑚𝑈𝑠𝑎𝑔𝑒𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑠 (5.1)

𝑀𝑒𝑚𝑈𝑠𝑎𝑔𝑒𝑐𝑜𝑛𝑓𝑖𝑔 =𝑛𝐶𝑜𝑚𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡𝑠𝑢𝑛𝑖𝑞𝑢𝑒 ∗ 84+
𝑛𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠𝑢𝑛𝑖𝑞𝑢𝑒 ∗ 13+ (5.2)
𝑛𝐺𝑎𝑡𝑒𝑠𝑢𝑛𝑖𝑞𝑢𝑒 ∗ 124

𝑀𝑒𝑚𝑈𝑠𝑎𝑔𝑒𝑆𝑡𝑎𝑡𝑒𝑠 =𝑛𝐶𝑒𝑙𝑙𝑠𝑔𝑙𝑜𝑏𝑎𝑙 ∗ 8+
𝑛𝐶𝑒𝑙𝑙𝑠𝑙𝑜𝑐𝑎𝑙𝐺𝑃𝑈 ∗ 20+
𝑛𝐶𝑜𝑚𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡𝑠𝑙𝑜𝑐𝑎𝑙𝐺𝑃𝑈 ∗ 32+ (5.3)
𝑛𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠𝑙𝑜𝑐𝑎𝑙𝐺𝑃𝑈 ∗ 8+
𝑛𝐺𝑎𝑡𝑒𝑠𝑙𝑜𝑐𝑎𝑙𝐺𝑃𝑈 ∗ 16

𝑀𝑒𝑚𝑈𝑠𝑎𝑔𝑒𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑠
𝑅𝑎𝑛𝑑𝑜𝑚𝐵𝑖𝑛𝑎𝑟𝑦 = 8 ∗ 𝑛𝐶𝑒𝑙𝑙𝑠𝑙𝑜𝑐𝑎𝑙𝐺𝑃𝑈 ∗ 2 ∗ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ∗ 𝑛𝐶𝑒𝑙𝑙𝑠𝑔𝑙𝑜𝑏𝑎𝑙 (5.4)
1𝐷 − 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 = 8 ∗ 𝑛𝐶𝑒𝑙𝑙𝑠𝑙𝑜𝑐𝑎𝑙𝐺𝑃𝑈 ∗ 2 ∗ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ∗ 𝑛𝐶𝑒𝑙𝑙𝑠𝑔𝑙𝑜𝑏𝑎𝑙 (5.5)

𝑅𝑒𝑎𝑑 = 8 ∗ 𝑛𝐶𝑒𝑙𝑙𝑠𝑙𝑜𝑐𝑎𝑙𝐺𝑃𝑈 ∗ 1 ∗ 𝑀𝑎𝑥𝐷𝑒𝑛𝑠𝑖𝑡𝑦 ∗ 𝑛𝐶𝑒𝑙𝑙𝑠𝑔𝑙𝑜𝑏𝑎𝑙 (5.6)

5.3. CUDA Kernel Breakdown
As discussed in the parallelization analysis in Section 4.2.2, it could be beneficial to spread a single
simulation step out over multiple kernels, adding communication overhead between the kernels in the
case of data dependencies. This section will explore the different options when parallelizing the system
shown in Figure 4.3 and will highlight how the kernels described in Chapter 4 are implemented.

One kernel fits all When taking a look at the tasks that need to be done to update a single compart
ment potential presented in Figure 4.3, it is quite clear how to convert this to a GPU kernel. Launching
this kernel with grid dimensions that match the total number of compartments in the simulator completes
a single simulation step. As seen in Figure 4.3, where all uppercase variables are compartment
specific and updated every step and lowercase variables are, in fact, constants related to the de
scription of the network. All variables need to be looked up in memory, probably leading to a memory
bottleneck. Therefore, this kernel could potentially be betterperforming than splitting the kernels out
because all variables are only pulled into one kernel and stay in cache or registers. However, because
only one kernel is launched, concurrent ke execution is not available, resulting in less parallelization.
This may not be a problem as long the GPU is fully utilized.

Compartmentpotential update The same as ”One kernel fits all” excluding the gapjunction calcu
lations and gate updates.

Activation variable update (gate update) Updating the activation variable is shown to be completely
independent of updating the compartment potentials. This kernel can therfore, if hardware allows, be
computed concurrently with the other kernels. It can also be parallelized on gatelevel.

38 5. Implementation

Compartment and gate update For comparison, a kernel is designed that does both compartment
and gate updates. The kernel is similar too the ”One kernel fits all” kernel without the gapjunction
calculations. Potentially this is beneficial because all cell constants are loaded into the same kernel
instead of two separate kernels. This kernel is parallelized at the compartment level.

Table 5.1: Overview of the kernels for internal experimentation to make implementation decisions

Kernel GJcalculations Compartmentupdates . Gateupdates
One kernel fits all X X X
Compartment and gateupdate X X
Compartmentupdate X
Gateupdate X

Evaluation To evaluate the different described update kernels, two networks of the IO model are
deployed. The GJconnectivitydensity range is chosen to be multiples of 10, starting at 0.01% up to
100% or full memory utilization. All kernel evaluations are done on the ComputeDev server utilizing
a V100 GPU, forcing all kernels to be executed sequentially for fair comparison because concurrent
kernels can influence each other performance. An overview of the kernels used for internal experimen
tation for the implementation process is found in Table 5.1. Results are displayed in Figure 5.1. Where
it can be noted that The compartment and gateupdate performance does not get influenced by the
GJconnectivitydensity. This comes from the fact that the only part in Figure 4.3 that depends on the
GJdensity are the GJcalculations. This dependency is present in the one kernel fits all bars. The
GJcalculations and how these can be further optimized as a standalone kernel will be discussed in
the next subsection. The Compartment and gate update combined is outperformed by the two separate
kernels to conduct these tasks. This is due to the fact a higher parallelization is achieved by splitting up
the task in the respective separate kernels. How this scales with growing network sizes is non propor
tional, e.g., 2x more neurons results in more than 2x the simulation time. As can be concluded when
comparing the subfigures, this scalability will be discussed in the Evaluation chapter.

100% 10% 1% 0.1% 0.01% 0%

Gap junction density

10 3

10 2

10 1

100

101

102 Update kernels (32768 IO cells)
All in one
Compartment and gate update
Compartment update
Gate update

0.1% 0.01% 0%

Gap junction density

10 3

10 2

10 1

100

101

102 Update kernels (524288 IO cells)

Si
m

ul
at

io
nt

im
e

[m
s]

Figure 5.1: A visual representation of different kernel approaches to update the network for a timestep. The simulation ran for
1000 Simulation steps and results presented are an accumulation of these steps. Results are generated utalizing ”ComputeDev”
resources.

5.3. CUDA Kernel Breakdown 39

GapJunction Calculations
The gapjunction (GJ) calculation is a challenging problem performancewise due to the random nature
and amount of memory lookups. The proposed design in Figure 4.6 is giving us freedom in the number
of threads (2,4,8,16,32) to allocate for each neuron. They are going to work on the sameneuron’s
incoming gapjunction current. The needed memory can either come directly out of device memory or
be staged through a shared memory buffer that can potentially improve memory latency when multiple
cells need to access the same memory location.

Evaluation Figure 5.2 and 5.3 presents results for the same parameter space and experimental
setup as Figure 5.1. Note that that when the gapjunction density is 0%, the gapjunction kernel is
still launched for this experiment, leading to nonzero execution times due to the launchingoverhead
costs shown, this is not the case for the released version of the simulator. When the group of worker
threads becomes larger, this overhead increases; the same behavior is observed for sharedmemory
against no shared memory. Shared memory is dynamically allocated when the kernel is launched,
and therefore adds more overhead. When the work done by the kernel is sufficient, it becomes clear
that running without shared memory and 16 threads per neuron seems to be performing best. This
is not a clear winner, but in both edge cases (a neural network with high neuron count and a dense
gapjunction neural network), this configuration is favored. Shared memory buffering is most likely not
impacting growing densities due to L1cache mechanisms in place that reside in the same physically
located memory as shared memory. For sparse networks, more threads seem to have a less pro
nounced and eventually a detrimental effect on performance. This is due to the fact that the amount
of work that need to be done by the GJcalculation kernel is low and the overhead of launching more
thread is therefore a higher performance penalty the the slightly more work a thread needs to perform.

100% 10% 1% 0.1% 0.01% 0%

Gap-junction density

10 3

10 2

10 1

100

101

102 Direct Global Memory Access
 1 Thread /cell
 2 Threads/cell
 4 Threads/cell
 8 Threads/cell
 16 Threads/cell
 32 Threads/cell

100% 10% 1% 0.1% 0.01% 0%

Gap-junction density

10 3

10 2

10 1

100

101

102 Shared Memory

Igap-Calculation Comparison (32768 IO Cells)

Si
m

ul
at

io
nt

im
e

[m
s]

Figure 5.2: Synaptic current calculation for an IO network with 32768 cells, with different densities for a uniformly generated
synaptic connection list. Results are generated utilizing ”ComputeDev” resources.

40 5. Implementation

0.1% 0.01% 0%

Gap-junction density

10 3

10 2

10 1

100

101

102 Direct Global Memory Acces
 1 Thread /cell
 2 Threads/cell
 4 Threads/cell
 8 Threads/cell
 16 Threads/cell
 32 Threads/cell

0.1% 0.01% 0%

Gap-junction density

10 3

10 2

10 1

100

101

102 Shared Memory

Igap-Calculation Comparison (524288 IO Cells)

Si
m

ul
at

io
nt

im
e

[m
s]

Figure 5.3: Synaptic current calculation for an IO network with 524288 cells with different densities for a uniformly generated
synaptic connection list. Results are generated utilizing ”ComputeDev” resources.

5.4. Memory Arrangement to Support Warp Equality 41

5.4. Memory Arrangement to Support Warp Equality
CUDA works great when all threads within an SM are executing the same instructions and taking
the same branches in the code. This comes from the fact that it can only launch one instruction to
all threads residing in that SM. Therefore, it becomes clear that each block should launch the same
compartment or gate, for that matter. The gapjunction calculations are not affected by this because of
the already similar tasks for each tread. CUDA also heavily favors coalesced memory accesses, the
network should be arranged in this fashion at a memory level.

Performance plots for different data arrangements in memory are shown in Figure 5.4. ”Ordered”
is grouping compartments and gates in blocks and ”Not Ordered” is arranging them in description or
der.”Not Ordered”: (𝑐𝑒𝑙𝑙1𝑐𝑜𝑚𝑝1−𝑐𝑒𝑙𝑙1𝑐𝑜𝑚𝑝2−𝑐𝑒𝑙𝑙1𝑐𝑜𝑚𝑝3−𝑐𝑒𝑙𝑙2𝑐𝑜𝑚𝑝1.. vs ”Ordered”:𝑐𝑒𝑙𝑙1𝑐𝑜𝑚𝑝1−
𝑐𝑒𝑙𝑙2𝑐𝑜𝑚𝑝1....𝑐𝑒𝑙𝑙1𝑐𝑜𝑚𝑝3 − 𝑐𝑒𝑙𝑙2𝑐𝑜𝑚𝑝3..).. shows consistently better results which can be explained
by the fact that warp equality is implemented. However, it restrict the input configuration to have cell
descriptions containing multiplication factors of the blocksize. This can be fixed by padding the internal
descriptions. The effort to build this mechanism was not made. Ordering can be turned off or on at
compile time.

104 105 106

Networksize (IO Cells)

10 1

100

Compatment Update
Not Ordered
Ordered

104 105 106

Networksize (IO Cells)
10 2

10 1

100

Gate Update
Not Ordered
Ordered

Si
m

ul
at

io
n

Ti
m

e
10

00
 S

te
ps

 [s
]

Figure 5.4: Experimental results to support ordered memory configuration to achieve warp equality for the compartmentupdate
and gateupdate kernel. Results are generated utilizing ”ComputeDev” resources.

5.5. Output Handler
Formatting the output of the simulator does decrease performance. Dumping raw data to disk versus
formatting can increase the writing time with a factor of over one hunderd. Therefore, it is made optional
to format the output data but not recommended to do so. Also, not every timestep is always important for
a neuroscientist. Consequently, it is possible for the user to select a particular sampling interval, such
as every 10th, 100th or any number tof simulation timesteps. Because a separate thread manages
the writing to disk, it will only synchronize every Nth step making it concurrently with more than one
simulation step. The only drawback is the need for a separate writing buffer to keep data correctness
throughout the writing process. During experimentation, generating output has never been in the critical
path as long as it is not requested to generate output at each timestep. The design has support to
export the full network state at each timestep with 4 discrete groups: Compart Potentials, Calcium
Levels, Channel Currents, Activation Variables.

42 5. Implementation

5.6. Scalability
Scalability in either multiGPU or multinode usage depends on data movement. Compartment poten
tials that add to the synaptic connection from neurons located on other GPUs or even compute nodes
need to be shared. Within a compute node, the memory space is shared, and data can be shared either
through UVAmemory or by directly copying it between GPU buffers. Between different compute nodes,
this is done by utilizing MPI. However, some hardware and software configurations can influence the
performance of these methods, which will be discussed next.

UVA memory There are two suitable implementations for UVA memory 2.3.1. The first one just
allocates the needed space without specifying a specific GPU. The second method determines the
GPU where the allocation needs to occur and matches it with the generated data. In both cases, the
UVA memory space is accessible for all devices in the system, but in the latter case, it is potentially
faster to update each entry because it should reside in physical memory on the GPU that is generating
the data. This is a hypothesis developed during implementation and not discussed in any NVIDIA
manual or literature, the results are presented in Figure 5.5. ”OldUVA” stands for the first described
method and UVA for the secondly described method, p2p will be discussed in the next paragraph. The
second design outperforms the first design except for the case with 65536 neurons. This is due to
the small network and low density, it is expected that the added complexity, keeping track where the
data is actually located and requesting the right data, the second method is not worth it in this case. It
also becomes very clear that UVA is never worth it compared to the results where UVA is not enabled.
These chosen neural networks should benefit from UVAmemory because of the low densities involved:
only a few lookups to other GPUs are happing, but still, UVA is a poor design choice. Therefore, no
more investigation will be conducted in utilizing UVA memory.

Testing for high connection densities will only increase the performance difference between UVA
and manual memory management. This is because no extra memory operations need to be conducted
for manual memory management. The simulator already shares everything with each GPU inside the
same process. However, UVA will need to conduct even more memory lookups and thus will not
decrease the two options’ performance gap.

P2P access P2P access 2.3.1 can impact the durations of memory copies which is shown in Figure
5.5. It is clear that with p2p enabled, simulation times are slightly faster. The cases with UVA enabled
are not taken into account because the CUDA driver most likely utilizes other systems to manage UVA,
the results are included and shows that it indeed does not seem to matter if p2p is enabled or not in
the case of utalizing UVA memory. However, this information is not openly available, so no conclusions
can be drawn.

Internode communication Internode communication is handled by OpenMPI. OpenMPI can be ei
ther built CUDAaware or not. This is checked and passed to the codebases at compile time. When
it is built CUDAaware, GPU buffers can be directly passed to the OpenMPI API. When this is not the
case, there is a need to first copy the buffers into host memory before passing them to the OpenMPI
API. However, when there is no GPUdirect support present in the interconnection medium openMPI
will still copy the buffers into host memory before passing handeling them.

When OpenMPI is built CUDAaware, it does not explicitly mean OpenMPI will use GPUdirect with
or without RDMA support. A CUDAaware build library can be utalized on any system: systems without
GPUdirect or RDMA, even systems without a GPU in them. OpenMPI is following the socalled ”Law
of Least Astonishment.” This means that it will automatically select the option with most performance
to use for communication, the CUDAaware built library adds the option of GPUdirect and RDMA as
an option and they will be utalized when present on the target system. Because of this, it is easy to
deploy on a broad range of different platforms. The same holds for Infiniband versus Ethernet. When
InfiniBand is available, it will be automatically selected as the medium to communicate.

For internode communications, two styles of message passing are supported in OpenMPI, mpiall
gather and MPI_alltoallv. The MPI_alltoallv implementation does not support GPUDirect.
This stems from the fact that the send buffer needs to be created out of all the selected compartment
potentials which to be send to a specific node. A CPU is bettersuited for this task, resulting in a

5.6. Scalability 43

10 2 10 1 100 101 102

 P2P
 noP2P

UVA P2P
UVA noP2P

OldUVA P2P
OldUVA noP2P

Ncells = 65536 , Density = 2%

10 2 10 1 100 101 102

 P2P
 noP2P

UVA P2P
UVA noP2P

OldUVA P2P
OldUVA noP2P

Ncells = 65536 , Density = 0.5%

10 2 10 1 100 101 102

 P2P
 noP2P

UVA P2P
UVA noP2P

OldUVA P2P
OldUVA noP2P

Ncells = 131072 , Density = 2%

10 2 10 1 100 101 102

 P2P
 noP2P

UVA P2P
UVA noP2P

OldUVA P2P
OldUVA noP2P

Ncells = 131072 , Density = 0.5%

10 2 10 1 100 101 102

Simulationtime [s]

 P2P
 noP2P

UVA P2P
UVA noP2P

OldUVA P2P
OldUVA noP2P

Ncells = 262144 , Density = 2%

10 2 10 1 100 101 102

Simulationtime [s]

 P2P
 noP2P

UVA P2P
UVA noP2P

OldUVA P2P
OldUVA noP2P

Ncells = 262144 , Density = 0.5%

Figure 5.5: Experimental exploration of UVA and p2p access either enabled or disabled. All results are for a singlenode with
4 V100 GPUs, between all GPUs p2p access is possible. Results are generated utalizing the ”Ault” development cluster at the
CSCS

sendbuffer that is created in host memory making GPUDirect obsoleet. This task could also be per
formed by a GPU kernel. However, letting the CPU perform these tasks allows for concurrency with
the Gateupdate kernel, balancing the compute resources better.

Synaptic Connection Graph Generation
To implement a synaptic connection graph, systemmemory size is one of the biggest bottlenecks
when the simulator is scaled to larger network sizes. When a dense representation is selected,
the memory footprint will not vary with a requested gapjunction density. However, it will require
𝑠𝑖𝑧𝑒𝑜𝑓(𝑏𝑜𝑜𝑙) ∗ 𝑛𝑒𝑡𝑠𝑖𝑧𝑒2[𝑏𝑦𝑡𝑒𝑠] in memory allocations which explodes memory usage for large net
work sizes. Therefore, a sparse representation is selected, which would ideally require 𝑠𝑖𝑧𝑒𝑜𝑓(𝑏𝑜𝑜𝑙) ∗
𝑛𝑒𝑡𝑠𝑖𝑧𝑒2 ∗ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦[𝑏𝑦𝑡𝑒𝑠] of memory space. This is not beneficial for growing networks, but at least
for lowdensity configurations, it keeps the memory footprint smaller. However, the random patterns
at which users are generating networks, places this ideal complexity far from realworld scenarios. In
a 100cell neural network with a density of 10%, cell #1 can have eight connections, and cell #2 can
have 15 connections in a randomly generated network. This poses a big problem with memory man
agement and potentially the hazard of overflowing buffers. When for example, each thread determines
the connections of a single cell, which would be a logical approach for parallelizing the problem, the
simulator needs to allocate the arrays upfront to hold the generated connections. Evenly distributing
would only allow for ten connections per cell, which does not comply with the example above.

44 5. Implementation

From file When importing handtailored connection matrices, the simulator has no idea of the pattern
used to create the matrix. Therefore, it will search for the most extensive connection list a single cell
has and therefore allocated that space per cell. This is not an optimal solution in terms of memory
footprint, but for the scope of this project, it solves the problem of reliable memory allocation.

RandomBinary Generation RandomBinary is the most challenging connectivitygeneration problem
because of the variances in connections list per cell, making it prone to memory probles. Therefore the
following approach is taken. Instead of allocating 𝑠𝑖𝑧𝑒𝑜𝑓(𝑏𝑜𝑜𝑙) ∗ 𝑛𝑒𝑡𝑠𝑖𝑧𝑒2 ∗ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦[𝑏𝑦𝑡𝑒𝑠], double of
this allocation will be taken for the connection lists. Also, instead of 1 cell per thread, the problem will
take N cells per tread. This will automatically balance out the network lists sizes of the accumulation
of N selected cells. N is selected to be 25, which seems reasonable but can be altered when memory
problems occur. All kernels check for overflowing the memory buffer. When this happens, the simulator
will throw a warning and stop the generation for that specific cell group. When all generation is done,
the total amount of connections will be checked and compared against the targeted density. If these
do not differ by a certain factor, the simulator will continue execution. When the two differ with more
than this factor, the simulator will raise an error and terminate to maintain reliable performance data.
The simulator can then be rerun the configuration with a different seed or excluded the simulation from
the experimentation results. The meganism is build in to ensure correct data for this thesis.

Gaussian Generation The Gaussian connectionlist generation depends on the variance mean and
density of a Gaussian distribution. As described in Algorithm 3. The kernel will never create more
connection than requested. It can, however, be prone to making not enough connections. Therefore
this will be checked after generation because it could result in faulty experiment results. It will be
handled in the same manner as described in the RandomBinary Generation.

Both kernels are written in CUDA so as to execute natively on GPUs. They have been tested
to perform correctly and show performance as expected. Networkgeneration simulation times are
reported in Figure 5.6 up to the piont where the simulator runs out of system memory. Experimentation
is done on the ComputeDev server, which is equipped with one V100 GPU with 32GB of graphical
memory.

104 105 106

Networksize
10 4

10 3

10 2

10 1

100

101

Ke
rn

el
 ti

m
e

[s
]

RandomBinary

Density: 0.1%
Density: 1.0%
Density: 10.0%
Density: 100%

104 105 106

Networksize
10 4

10 3

10 2

10 1

100

101

Ke
rn

el
 ti

m
e

[s
]

Gaussian

Density: 0.1%
Density: 1.0%
Density: 10.0%
Density: 100%

Figure 5.6: Overview of the generation kernel performances. Results are generated utilizing ”ComputeDev” resources.

6
Evaluation

This chapter will evaluate the design implemented in Chapter 5. The evaluation will cover different
aspects of the program, including fullscale performance runs to validate the design scalability. Bench
marking the simulator shows that improvement on previously written simulators is made by utilizing
GPU(s) and multinode computing solutions. It also verifies the design choices and sets an example of
how neuron simulators can benefit from multinode systems and GPU utilization. A short section will
be devoted to the practical case for resident neuroscientists and the experiments they will conduct with
this implementation.

Singlenode, singleGPU benchmarking up to multinode, multiGPU benchmarking will be pre
sented to show this implementation’s versatility and the potential benefits and potential drawbacks
when scaling out to higher node counts. Python scripts have been employed control the exploration
space’s parameter sweep and is utilized to gather all benchmarking information. Every experiment
with the same hardware configuration is combined into a single job, reducing job counts and avoiding
short simulation runs on hard to access computing platforms. The exploration space will consist of
a parameter sweep over the number of IO neurons in the network versus the gapjunctions density.
These sweeps will run with different configurations such as MPI_allgather (sharing and collecting
everything) versus MPI_alltoallv (sharing only what is necessary). Also, control over p2p access,
having the ability to be disabled to see the effect of p2p memory copies if available. Unfortunately, a
system with NVlink is not available to see if NVlink can bring even more performance benefits. There
fore, all communications on all compute platforms used in our benchmarking are utilizing the PCIe bus.
UVA memory can be used or disabled. However, it was already shown in Chapter 5 that UVA memory
is never beneficial for design of this type. Consequently, it not be investigated any further.

Furthermore, a roofline model will be presented for the different kernels to determine whether the
design is memory or computebound, giving insight into possible future improvements.

6.1. Experimental Setup
The parameter space consists of 6 parameters that will determine the exploration space as listed in
Table 6.1. However, it is impossible to iterate and mix and match all possible parameter values on the
same hardware platform due to hardware limitations. Therefore, various computational platforms are
being used, where each one will support a subset of this parameter space and answer a different re
search question. Available platforms will be listed underneath and referred to when discussing specific
experiments.

PerformanceEvaluation Resources
Different computing platforms are selected to evaluate performance compared to the implementation
chapter, mainly because more compute resources are required for scalability evaluation. However,
almost all platforms mentioned do not support profiling tools due to security reasons and therefore
give limited insight into the simulator’s exact workings. Also, these platforms are heavily used HPC
clusters, development purposes are not their main purpose. The resources at NCL will be used for the
singleGPU and CPU benchmarking. The Ault resources (described in chapter 5) are not selected,

45

46 6. Evaluation

Table 6.1: Exploration space for tthe evaluation of the mgpuHH simulator.

Parameter Range
Problem size 0 10M neurons
GJ connection density 0 100%
GJ connection pattern RandomBinary and Gaussian
GPU(s) per Compute Node 1 4 GPUs
Compute Node(s) 1 32 Nodes
MPI communication pattern Allgather and Alltoallv

but results are validated against other platforms to ensure correct results across multiple computing
platforms.

NVIDIA Solutions Lab cluster (NSLA) At the Nvidia solutions lab, a cluster is available which com
prises nine nodes with four V10032GB PCIe cards and four nodes with four V10016GB PCIe cards.
Both types are equipped with FDR Infiniband interconnection (56GB/s), whichmakes an excellent setup
for performance experiments.

Aris [29] The Greek Research and Technology Network or GRNET contains the national HPC infras
tructure providing state of the art supercomputing named ARIS based in Greece. Aris infrastructure
consists of Thin, Fat Phi, and GPU nodes. For this project, the GPU nodes are of interest, containing
dual Tesla K40m cards and Infiniband FDR interconnection. There are 44 GPU nodes available to
the user. The K40m GPUs are having a compute capability of 3.5 and Kepler architecture, which limit
UVA memory to not be accessible by multiple devices at the same time. This platform will be used for
scaleout experiments over up to 32 nodes.

Table 6.2: Overview of all available hardware this project has access too. Combining resources form this Chapter and Chapter
5

Number
of node CPUtype GPUtype Compute

Capability
GPUs
Per Node Experiment Interconneciton

Computedev
at NCL 1

AMD EPYC 7551
32Core Processor
(2 sockets,128 threads)

V100 7.0 1

 General development single GPU
 CPU vs GPU
 DFE vs GPU
 Single GPU benchmark

Google 4 Skylake, 4 threads T4 7.5 14 General development multi GPU/Node
 CUDAaware vs no CUDAaware openmpi 10GB/s

TUDelft Dev
cluster 1 Intel(R) Xeon(R)

CPU E52683 v3 @ 2.00GHz K80 3.7 2 Development Multi GPU

CSCS Ault Dev
cluster 4 Intel(R) Xeon(R) Gold

6130 CPU @ 2.10GHz V100 7.0 4 Dual node full benchmark IB 100GB/s

Nvidia Dev
cluster 8 Intel(R) Xeon(R)

CPU E52698 v3 @ 2.30GHz V100 7.0 4 Scalability benchmark IB 56GB/s

ARIS at GRNET 32 Intel(R) Xeon(R)
CPU E52660 v3 @ 2.60GHz K40m 3.5 2 Scalability benchmark IB 56GB/s

Memory Evaluation
Section 5.2 mathematically described the relation between the neuralnetwork configuration and mem
ory usage. These formulas calculate the amount of memory used per GPU system when the neural
network is evenly distributed over all available GPUs. System memory resources required are ne
glectable. Even with multinode support, it will never grow larger than:

(𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑠𝑖𝑧𝑒𝑔𝑙𝑜𝑏𝑎𝑙 + 𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑠𝑖𝑧𝑒𝑙𝑜𝑐𝑎𝑙𝑛𝑜𝑑𝑒 ∗ (1 + 2 ∗ 𝑁𝐶𝑜𝑚𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡𝑠 + 𝑁𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 + 𝑁𝐺𝑎𝑡𝑒𝑠)) ∗ 𝑠𝑖𝑧𝑒(𝑓𝑙𝑜𝑎𝑡)

Indicating that it could become a problem when scaling with extensive networks, but inside the range
stated in the experimental setup, this will not be a possibility. Furthermore, the only relevant question
is how many GPUs are required to fit a particular model configuration, which is calculated through
the equations in Section 5.2. As a result, Figure 6.1, to determine the amount of GPUs required for
a specific neuralnetwork configuration. This is assuming IO cells, this overview is created using the
tool mgpuHH MET which takes in any model configuration and creates memory requirements for that
particular configuration.

6.2. Roofline Model 47

104 105 106 107

NetworkSize (nCells)
10 2

10 1

100

101

102

De
ns

ity
 (%

 n
Ce

lls
)

Memory usage Visualization, for GPU cards with 32GB and IO neurons

nGPUs: 1
nGPUs: 2
nGPUs: 4
nGPUs: 8
nGPUs: 16
nGPUs: 32
nGPUs: 64
nGPUs: 128

Figure 6.1: Overview of memory usage for different problem sizes of the IO model to determine the required GPUs for 32GB
cards. Everything on the left of a line is possible with the amount of GPUs the line represents. On the right of the lines is not
feasable due to memory resource limitations.

6.2. Roofline Model
TheRooflinemodel is an intuitive, visual performance plot that is used to provide performance estimates
of a given computer kernel or application running on multicore or acceleratorprocessor architectures
by demonstrating inherent hardware limitations and optimizing potential benefits and priorities. By
integrating location, bandwidth, and various parallelization paradigms into a single figure.

The Nsight Compute Profiler from CUDA can return the flop_counts for each kernel for
single and double precision. Combining this with the specifications of a specific type of GPU results
in a Roofline model such as presented in Figure 6.2. The problem with creating a roofline model for
this application is that with growing network sizes and/or different configurations, the performance per
kernel changes. However, as long as the neural model stays the same, for example, the IOmodel, the
trends and results are very similar for different network sizes and densities. Therefore, only one neural
network configuration is presented, representing the roofline model for the simulator with IOmodel
neural configuration, in Figure 6.2.

A conclusion that can be drawn for this specific case is that the gapjunctions calculation kernel is
heavily memorybound. The kernel is often stalled because it has to wait on memoryaccesses. The
compartment and gateupdate kernels still show room for improvement. Both are, in principle, memory
bounded. However, it can be observed that the device does not achieve the peak performance within
this bound. This is mainly because warps are stalling to wait for dependencies. The most occurring stall
is the Stall Long Scoreboard indicating that memory access patterns are not optimal for these
kernels. The compartmentupdate kernel does not achieve maximum warp occupancy because of the
number of registers required per thread are not available for this specific neuralmodel. A neuralmodel
with fewer state variable would be possible to fit.

Possible improvements for the compartment and gapupdate kernels are better memoryaccess
patterns by arranging the memory, used for the configuration parameters, differently or better utilizing
shared memory. The gapjunction calculations kernel is bottlenecked by memory bandwidth. Efforts
can be made to better hide this latency by adding more compute complexity. The gapjunction calcu
lations are also lacking concurrency in the memory accesses, due to their random nature, limiting the
maximum achievable performance. Shared memory is not the solution, as the implementation chapter
showed in Section 5.3.

48 6. Evaluation

10 1 100 101 102

Arithmetic Intensity [FLOP/Byte]
100

101

102

103

104

Pe
rfo

rm
an

ce
 [G

FL
OP

/s
]

Memory Bandwidth: 900 GB/s

 Single-Precision (sp): 14000.0 GFLOPs

Co
m

pa
rm

en
t u

pd
at

e
(s

p)

Ig
ap

 (s
p)

Ga
te

 u
pd

at
e

(s
p)

Roofline GPU: V100; model: Inferior Olive

Figure 6.2: Roofline model for the mgpuHH kernels. Single precision (sp) kernels are presented in this figure. The exact
configuration for the presented results is: 131072 cells, 1% Density for a RandomBinary generated synapticconnection network
and the IOmodel for each cell in the network. The dots represent the measured performance.

6.3. FunctionalFlow Performance
Evaluation of the kernels is already done extensively in the implementation chapter. The focus there
was on which implementation is performing better in terms of implementation options. Here, experi
mentation will show if the design is in balance and how different tasks scale or bottleneck the perfor
mance when scaling out the problem over multiple nodes. The NVIDIA Solutions Lab cluster (NSLA)
is selected to be the platform to run experiments. In Table 6.3 the exploration space is given.

Table 6.3: Exploration space, NSLA functional flow Performance

Parameter Range
Model IOmodel by DeGruijl [14]
Number of simulation steps 100
Problem size [26144]
GJ connection density [0,0.01,0.1,1]
GJ connection pattern RandomBinary
GPU(s) per compute node [4]
Compute node(s) [1,2,4,8]
MPI communication pattern Allgather

Figure 6.3 shows the simulation time, split up in the respective tasks, forming the critical path, which
links to the functionalflow diagram in Figure 4.4. When observing the results, it becomes clear that
every time we double the number of nodes, halves the gap calculation, compartment update kernel
and local memory movements execution times, represented by stall barrier 1. The Kernel
launch times are becomming shorter when the local network sizes are going down for higher node
count, the dimensions of grids are launched decreases and seems to affect the time it takes to launch
these kernels. Which can be noted in Figure 6.3. MPI communication times are growing by adding
more nodes because of the management overhead it adds for each additional node. However, those
overheads are not scaling by the same factor as adding nodes to the system, making it possible to
get better performance when scaling up to multiple nodes. The gate updates, represented by stall
barrier 2, are almost entirely executed concurrently to the other tasks and do not add anything to
the critical path, concluding that the design is well balanced for this specific network configuration.

6.4. Performance Scalability 49

It is important to note that with increasing GJ densities, the GJ calculation kernel also increases, as
shown in Figure 5.1. This contributes to the overall simulation time and to stall barrier 1 in Figure
6.3. These calculations are distributed over the respective nodes in the configuration, and therefore
better scaling is achieved for higher densities.

1000 2000 3000 4000 5000
Nodes 1

Nodes 2

Nodes 4

Nodes 8
Ncells: 262144 RandomBinary: 0.1%

Kernel launch Time
MPI Communication Time
Stall barrier1
Stall barrier2

1000 2000 3000 4000 5000
Nodes 1

Nodes 2

Nodes 4

Nodes 8
Ncells: 262144 RandomBinary: 1.0%

1000 2000 3000 4000 5000
Nodes 1

Nodes 2

Nodes 4

Nodes 8
Ncells: 262144 RandomBinary: 2.0%

Figure 6.3: Functianalflow performance which can be linked to Figure 4.4. Nodes x indicated the amount of Nodes and each
configuration has 4 GPUs per node configured

6.4. Performance Scalability
The main goal of the project is to show the scalability potential in neural simulators. The design was
build in a way to automatically adapt to the hardware configuration it is deployed on. Two compute
platforms are selected to run the parameter sweep. The NVIDIA Solutions Lab cluster (NSLA) and
Aris are selected for scalability measurements.

NSLA
The way this experiment is setup is that a particular parameter sweep is executed for each possible
hardware configuration. Not all parameters can be found in the presented results. When the con
figurations are not possible, results are left out. Two experiments are selected. The first one, too,
determines the scalability of multiple GPUs on a single node presented in Figure 6.4. The second one
is determining the scalability over multiple nodes with one GPU per node shown in Figure 6.5. For
the Synaptic connection pattern, RandomBinary is selected, stressing the scalability because it has no
locality across the network. For the MPI communication, it is set to share everything across all nodes,
taking away a variable that can influence the results. The exploration space is found in Table 6.4

The results show that scalability performance looks very promising with multiple GPUs on a single
node and multiple nodes with a single GPU. What can be determined is that the implementation seems
the scale very well for larger growing network sizes. Figure 6.4 Shows that adding more GPUs starts
making sense from a certain network size. This point is determined by the utilization of the GPUs in
use. The bigger the workload (growing density and growing neural network size), the faster it makes
sense to utilize multiple GPUs. This is explained by the fact that when one GPU is not fully utilized, it
does not make sense to use more than one GPU. In the form of adding more compute nodes, scalability

50 6. Evaluation

Table 6.4: Exploration space, NSLA scalability experiment

Parameter Range
Model IOmodel by DeGruijl [14]
Number of simulation steps 1000
Problem size [8192,16384,32768,65536,131072,262144,524288,1048576]
GJ connection density [0,0.01,0.1,1]
GJ connection pattern RandomBinary
GPU(s) per compute node [1,2,4]
Compute node(s) [1,2,4,8]
MPI communication pattern MPI_allgather

shows that the communication overhead can be hidden if a single node has enough computing tasks
to hide the overhead. As soon as this point is reached, the implementation is showing the same trend.
The location of this point is following the same reasoning as the GPU scalability experiment. More
detailed experiments on the communication overhead will be presented later in this chapter. In terms
of scalability, the design shows reliable scalability results, up to eight nodes, as long as the GPUs are
not underutilized.

104 105 106
10 2

10 1

100

101

102 0%

1 gpu 2 gpus 4 gpus
104 105 106

10 2

10 1

100

101

102 1%

104 105 106
10 2

10 1

100

101

102 100%
GPU scalability experiment

Networksize

Si
m

ul
at

io
nt

im
e

[s
]

Figure 6.4: Experimental results to determine the impact of adding more gpus to one node. One node is selected and results
are reported for 1,2 and 4 Gpus enabled. Compute platform selected is NSLA

Aris
Results from running benchmarks on Aris are not comparable with NSLA performance because of
different GPU architectures. However, Aris offers more than 32 GPU nodes, making it possible to
see if the scalability found in previous results is still showing the same behaviors when expanding the
number of nodes. Results are visually presented in Figure 6.6 and the exploration space is found in
Table 6.5.

The experiment shows the same behavior as the previous experiment with some unclear imper
fections for smaller network sizes, which can be due to nonoptimal GPU utilization. Furthermore, the
Codebase performs as expected and communication can still be overlapped with computation, creating
very predictable results up to 32 Nodes with a total of 64 GPUs. Adding more GPUs per node would not
influence the intra node communication overhead were adding more nodes will affect this overhead.
Moreover, it is expected to introduce the same ”balance” point, as observed in the previous experiment
when exploring higher node counts.

6.5. Communication Performance 51

104 105 106
10 2

10 1

100

101

102 0%

1 node
2 nodes

4 nodes
8 nodes

104 105 106
10 2

10 1

100

101

102 1%

104 105 106
10 2

10 1

100

101

102 100%
Node scalability experiment

Networksize

Si
m

ul
at

io
nt

im
e

[s
]

Figure 6.5: Experimental results to determine scalability over a varing size of nodes results are reported for 1,2,4,8 nodes with
a fixed GPU count of 1 gpu per node. Compute platform selected is NSLA

Table 6.5: Exploration space, Aris scalability

Parameter Range
Model IOmodel by DeGruijl [14]
Number of simulation steps 1000
Problem size [8192,16384,32768,65536,131072,262144,524288, 1048576]
GJ connection density [0,0.01,0.1,1]
GJ connection pattern RandomBinary
GPU(s) per compute node [2]
Compute node(s) [1,2,4,8,16,32]
MPI Communication pattern MPI_allgather

6.5. Communication Performance
One of the most important, but also the hardest metric, is the communication overhead. There is no
computational platform that gives freedom to control every aspect of the networking between nodes.
Also, the infrastructure of networking is most of the time unclear to the enduser. Because the inter
connection architecture is unknown, one can not be sure that the nodes will be physically close to each
other when picking two nodes. Because other running jobs potentially utilize the cluster network, it
makes it very hard to get results that are comparable with each other.

Furthermore, without a clear understanding of the architecture and not having the possibility to
monitor this network, it is impossible to determine the influence other jobs have. The best approach
would be to run the same experiment multiple times during a particular period. Running jobs on the
same list of nodes will exclude structural network differences.

Because of all these limitations, it is chosen to run each experiment multiple times, which should
give an insight into network fluctuations. However, trends that occur are more interesting than perfect
measurements. NSLA and Aris are selected for experimentation. The most pressing research ques
tion is which MPI communication style is preferable when supplying a certain network configuration. It
is expected that locality in the synaptic gap junction network will decrease MPI communications times
when utilizing a tailored communication scheme. A more randomly distributed synaptic gap junction
network will probably only add overhead, and all to all, sharing of the synaptic compartment potentials
is preferred. Exploration space for the experiments is described in Table 6.6. Results for NSLA are
presented in Figure 6.7 and results for Aris in Figure 6.8. The gaussian synaptic connection pattern is
expecting a variance and mean parameter. The mean will be fixed at zero, where the variance will be
two times the network size—creating a gaussian distribution that still has a big chance of connecting

52 6. Evaluation

104 105 106
10 2

10 1

100

101

102

103 0%

1 node
2 nodes

4 nodes
8 nodes

16 nodes
32nodes

104 105 106
10 2

10 1

100

101

102

103 1%

104 105 106
10 2

10 1

100

101

102

103 100%
Node scalability experiment 2 times K40m GPU per node

Networksize

Si
m

ul
at

io
nt

im
e

[s
]

Figure 6.6: Experimental results to determine scalability over a varing size of nodes results are reported for 1,2,4,8,16 and 32
nodes with a fixed GPU count of 2 GPUs per node. Compute platform selected is ARIS

to a far node in the network. However, it will show a high degree of locality.

Table 6.6: Exploration space for MPI communication time experiments

Parameter Range
Model IOmodel by DeGruijl [14]
Number of simulation steps 1000
Problem size 262144(NSLA) or 65536(Aris)
GJ connection pattern [RandomBinary, Gaussian]
GJ connection density [0.001,0.01,0.1]
GPU(s) per compute node 4 (NSLA) or 2 (Aris)
Compute node(s) [1,2,4,8] (NSLAA) or [1,2,4,8,16,32] (Aris)
MPI Communication pattern Allgather and Alltoallv

Observations Both Figures 6.7 and 6.8 are showing results that are expected. With high locality in
the gaussian distribution network, an alltoallv approach is preferred over the allgather method
for MPI communication. A possible next step could be to find the tipping point in terms of durations for
both communication methods. Which communication method is preferred for which locality rate present
in the gap junction network? This thesis left this question out of scope due to the additional challenge
of quantifying the locality rate and designing generation schemes for such interconnection graphs. This
was mainly due to the fact the focus is on building a usable simulator, and most neuroscientists will use
their own created graphs.

The network fluctuation is visible but is not showing as much variance as anticipated. Both systems
are running fattree topologies, which explains this observation. Because this experiment is focussing
on comparing multinode setups with each other, it can be argued that for the higher node counts, 8
and 32 respectively, most of the MPI communication timing is initialization and latency, which is a valid
point. However, Figures 6.7 and 6.8 are selected because of the trend they show. Adding more nodes

6.6. Comparison Against Related Work 53

increases MPI communication duration. The duration increases in a linear fashion with the number of
nodes selected, with a slope that shows the potential of scaling.

N:2 N:4 N:80.00

0.05

0.10

0.15

0.20

Gjdistr: Gaussian Density: 0.1%

mpialltoallv
mpiallgather

N:2 N:4 N:80.00

0.05

0.10

0.15

0.20

Gjdistr: RandomBinary Density: 0.1%

N:2 N:4 N:80.00

0.05

0.10

0.15

0.20

M
pi

Co
m

m
un

ica
tio

n
tim

e
[s

] Gjdistr: Gaussian Density: 1.0%

N:2 N:4 N:80.00

0.05

0.10

0.15

0.20

Gjdistr: RandomBinary Density: 1.0%

N:4 N:80.00

0.05

0.10

0.15

0.20

Gjdistr: Gaussian Density: 10.0%

N:4 N:80.00

0.05

0.10

0.15

0.20

Gjdistr: RandomBinary Density: 10.0%

Ncells: 262144

Figure 6.7: MPI communication results, at the NSLA compute cluster, for the exploration space in Table 6.6. Three repetitions
of each experiment are conducted and presented as a smaller bar of the same color, which shows network fluctuations between
experiments. The results illustrate the mpi allgather method versus the mpi alltoallv method. It becomes clear the with
a higher rate of locality (gaussian) the latter becomes favourable.

6.6. Comparison Against Related Work
In the related work, it became clear that quite a lot of work is trying to find the best solution for extended
HodkinHukley type networks. The most recent efforts at the neurocomputing Lab at the Erasmus MC
were, flexHH, BrainGPU, and GenEHH. This work gives a multinode multi GPU solution for the same
problems these implementations are tackling. BrainGPU is included because it is the latest MultiNode
capable GPU solution of the hardcode model. The exploration space is limited by flexHH, which only
supports up to approximately 8000 neurons. flexHH, doesn’t benefit from less density, and therefore, a
fully connected graph is selected to compare against. The full exploration space is presented in Table
6.7. Results are visually presented in Figure 6.9. It was expected that mgpuHH would set some new
standards. However, it is even competing with flexHH, which is implemented on a Data flow engine.
flexHH still is the only implementation that gets simulation time the lowest for smaller sized networks.
However, as soon as more than 2000 IOmodel neurons are configured, mgpuHH is the clear new
standard.

GenEHH vs mgpuHH While Figure 6.9 already gave some insight is this comparison network sizes
only go up to 8K, which is not really representable for extensive size network experimentation. There
fore, a specific experiment for GenEHH versus mgpuHH is conducted. It is important to note that

54 6. Evaluation

N:2 N:4 N:8 N:16 N:320.00

0.05

0.10

0.15

0.20

Gjdistr: Gaussian Density: 0.1%

mpialltoallv
mpiallgather

N:2 N:4 N:8 N:16 N:320.00

0.05

0.10

0.15

0.20

Gjdistr: RandomBinary Density: 0.1%

N:2 N:4 N:8 N:16 N:320.00

0.05

0.10

0.15

0.20

M
pi

Co
m

m
un

ica
tio

n
tim

e
[s

] Gjdistr: Gaussian Density: 1.0%

N:2 N:4 N:8 N:16 N:320.00

0.05

0.10

0.15

0.20

Gjdistr: RandomBinary Density: 1.0%

N:2 N:4 N:8 N:16 N:320.00

0.05

0.10

0.15

0.20

Gjdistr: Gaussian Density: 10.0%

N:2 N:4 N:8 N:16 N:320.00

0.05

0.10

0.15

0.20

Gjdistr: RandomBinary Density: 10.0%

Ncells: 131072

Figure 6.8: MPI communication results, from the ARIS compute cluster, for the exploration space Table 6.6. Five repetitions of
each experiment are conducted and presented as a smaller bar of the same color, which shows networks fluctuations between
experiments. The results illustrate the MPI_allgathermethod versus the MPI_alltoallvmethod. It becomes clear the with
a higher rate of locality (gaussian) the latter becomes favourable.

Table 6.7: Exploration space, Coparison with related work

Model IOmodel by DeGruijl [14]
Number of simulation steps 100
Problem size [166 , ... , 7808]
GJ connection density 1
Implementations [flexHH, brainGPU, GenEHH, mgpuHH]

GenEHH is configured only to use one thread to show the potential of parallelization with mgpuHH.

Table 6.8: Exoloration space for the CPU vs GPU experiment, create to show the portential of parallelization

Parameter Range
Model IOmodel by DeGruijl [14]
Number of simulation steps 100
Problem size [128,256,512,1024,2048,4096,8192,16384,32726,65536]
GJ connection density [0,0.5,1]
GJ connection pattern RandomBinary
CPU threads 1
GPU(s) 1

6.7. Use Case Evaluation 55

0 1000 2000 3000 4000 5000 6000 7000 8000
Networksize

10 3

10 2

10 1

100

101

102

103

Si
m

ul
at

io
n

Ti
m

e
[s

]
IO-Benchmark, Fully connected gap junction network

flexHH
brainGPU
GenEHH_1thread
GenEHH_128threads
mgpuHH

Figure 6.9: Comparison against related work. All experimentation is kept as close as possible to each other in terms of generated
output and configuration. For flexHH, this work didn’t have the freedom to run tailored experiments, and therefore results from
[26] are taken. However, it is not clear what is included in terms of generated output for the simulation results. Predication is made
that the most favorable results are presented in terms of output generation, and therefore it is estimated that the presented results
are fair. BrainGPU and GenEHH source code and executables were accessible, giving the freedom to set all configurations in
the same manner to create a fair comparison.

BrainGPU vs mgpuHH BrainGpu is a multinode implementation containing a hardcoded IOmodel.
It was the inspiration that led to the research questions of this work. Therefore, comparison with
BrainGPU is made to show that the difference in design choices taken is correct when trying to achieve
higher performing simulators.

Table 6.9: Exploration space for BrainGPU vs mgpuHH

Parameter Range
Model IOmodel by DeGruijl [14]
Number of simulation steps 100
Problem size [512,1024,2048,4096,8192,16384,32726,65536]
GJ connection density [0,0.01,0.1,1]
GJ connection pattern RandomBinary
GPU(s) 1

6.7. Use Case Evaluation
The design, as described in this thesis, is already deployed on servers by Neuroscientist to simulated
their research. In collaboration, tweaks to the configurations are made and the way the program outputs
data. Because this is a highly specific simulator for a particular use case, the codebase will stay under
constant development to better suit particular experiments. Current research is in the field of dynamical
clustering in the Inferior Olive is conducted, and the codebase functionality of the codebase is adapted
to support this research.

An IOmodel of 10 million cells with an average Synaptic connection density of 0.1% is simulated,
setting new standards for what is possible in the large scale simulation of eHH type neurons.

56 6. Evaluation

102 103 10410 2

10 1

100

101

102

103

104

105 Density: 0%
CPU
GPU

102 103 10410 2

10 1

100

101

102

103

104

105 Density: 50%

102 103 10410 2

10 1

100

101

102

103

104

105 Density: 100%

CPU (single thread) versus GPU Comparison

Networksize

Si
m

ul
at

io
nt

im
e

[s
]

Figure 6.10: Results for the exploration space of Table 6.8. Presented results support the use parallelization for this simulator.
As soon as the GPU is fully utalized it stabilized and is following the same trend as the Single Threaded CPU implementation
showing increase in performance .

103 104 105 106

Networksize

10 2

10 1

100

101

102

Si
m

tim
e

[s
] 2.24

308.61

0.81

156.02

0.44

72.31

0.25

2.02

BrainGPU vs mgpuHH
brainGPU 0.1%
brainGPU 1.0%
brainGPU 10.0%
brainGPU 100%
mgpuHH 0.1%
mgpuHH 1.0%
mgpuHH 10.0%
mgpuHH 100%

Figure 6.11: Comparison of braingpu vs mgpuHH for the IOmodel. Results show the improvement is made in terms of perfor
mance. BrainGPU is a hardcode version, and mgpuHH can support a sort of eHH models. The exploration space is presented
in Table 6.9 and experimentation is done on the Computedev server at the NCL

7
Conclusions and Future Work

This work provides an addition to the work described in Miedema et al. [26] and Sotirios et al. [31]. The
idea of building a flexible neural network simulator has proven to perform very well on DFE and CPU
systems. This work has added a GPU implementation, which has proven to have outstanding perfor
mance and set the new standard for large scale IOmodel simulations. This work offers a multinode
multiGPU simulator (mgpuHH) that offers excellent scalability performance due to how the simulator is
constructed. Synaptic gap junction communication is done concurrently with calculations whenever the
configuration allows it. It is proven to work well for the IOmodel form De Gruijl [14] where a simulation of
up to millions of cells with high connection counts between neurons is possible. The memory footprint
is designed with the focus on only storing the necessary information to be as small as possible. Inter
mediate results are offloaded to disk memory parallel with the simulation, making it possible to simulate
a very long biological time with no system memory limitations on simulation time. Reported results go
up to 32 Nodes with a total of 64 GPU cards. The design shows linear weak and strong scaling within
the experimental setups for intranode and internode scalability.

The synaptic gap junction calculations and communication are the critical path for simulation per
formance and the largest problem for the memory footprint needed to run specific neural networks.
To calculate the Gap junction currents, a specialized kernel is designed, focussing on specific GPU
functionality to increase performance and further parallelize computations. For communication, ex
perimentation is done with two different communication scheme implementation. A share everything
with everyone (MPI_allgather) method is compared against an implementation that only shares
the necessary compartmental potentials with the nodes containing the neurons that rely on them
(MPI_alltoallv). For Larger locality in the synaptic gap junction graph, the MPI_alltoallv
method performs better than the MPI_allgather. For a complete uniformly distributed network (Ran
domBinary) MPI_allgather is performing better due to less computational overhead. Because of the
random nature of generation synaptic connections, it is almost certain everything needs to be shared
with every compute node anyway, so any added complexity will add to the performance.

Comparisons against related work on CPU and FPGAs have been conducted, a 100x speedup is
acheived versus a single cpu threaded solution. Furthermore, a 2x speedup is acheived over a FPGA
solution (flexHH) and 10 fold over a multithreaded CPU (GenEHH, with 128 threads) solution, both
reported speedups are for a fully connected network with 7000 IO cells.

7.1. Contributions
• A new versatile, multi Node multi GPU eHH simulator is presented, which offers high performance
with weak and strong scaling characteristics.

• This work sets the new standard for large scale simulations in the IOmodel race as described in
Chapter 3 and in simulating models of the eHH class.

• The work present a GPU optimize way to perform the Gap junction calculations present in the
eHH class of neural models.

57

58 7. Conclusions and Future Work

• A three kernel design is presented, which can overlap calculation with communication. (Indepen
dent of the numerical solver choice)

• A comprehensive performance analysis, including results up to 32 nodes and 64 GPUs, is pre
sented.

• In collaboration with neuroscientists, it is made as usable as possible to aid neurocomputing
research.

• Parameter randomization and description multiplications are added to reduce the memory foot
print, increase performance and create more biologically accurate simulations.

7.2. Future work
Potential efforts that could be made to continue this project.

• Research into the influences of the Gap junction network’s locality on Communication overhead
would give better insight into preferred communication methods while varying the locality. The
could pose interesting results that can influence the design choices for neural simulators. The
research would be twofold. Fristly design a Graph Generation algorithm with controllable and
quantifiable locality (e.g., Gaussian type), which can reliably satisfy the requested density. Sec
ondly, implement and benchmark a sweep over this quantified locality with different communica
tion methods (e.g., mpi_allgather versus mpi_alltoallv).

• General improvements in implementation are still possible. With more time and/or knowledge for
CUDA design, it is estimated there is still performance to gain, as shown by the roofline model in
Figure 6.2.

• The simulator presented in this thesis can still be extended with more features to support a wider
range of experiments. Examples could be supporting amore extensive range of externally applied
currents, support different compartment arrangments instead of only supporting compartments in
a chain arrangement, and many more.

• Different solver types could be incorporated into the design. Where the simulator now only sup
ports a Forward Euler solving method. It could be extended with higherorder solvers, which can
possibly better balance compute and communication time for growing to compute node counts.

• In cooperation with neuroscientists, the first simulations of a humansize IOmodel could be cre
ated.

• Research in grouping clustered neurons together, and positioning them in memory in a way that
reduces communication overhead, is a fascinating field of research.

• The JSON input configuration files are heavily based upon the NeuroML description language.
Efforts could be made to parse NeuroML to the JSON style configuration input this work uses,
increasing the usability even more of this work.

Bibliography
[1] CUDA C++ Programming Guide. URL http://docs.nvidia.com/cuda/

cudacprogrammingguide/index.html. Online; accessed 18 December 2020.

[2] NVIDIA GPUDirect. URL https://developer.nvidia.com/gpudirect. Online; accessed
21 October 2020.

[3] TOP500. URL https://www.top500.org/lists/top500/2020/11/. Online; accessed 27
November 2020.

[4] SlurmWorkloadManager. URL https://slurm.schedmd.com/. Online; accessed 21October
2020.

[5] SPEC CPU2006 Results. Internet:https://spec.org/cpu2006/results/, 2018 [Oct. 18
2018].

[6] Nora Abi Akar, Ben Cumming, Vasileios Karakasis, Anne Kusters, Wouter Klijn, Alexander Peyser,
and Stuart Yates. Arbor— amorphologicallydetailed neural network simulation library for contem
porary highperformance computing architectures. 2019 27th Euromicro International Conference
on Parallel, Distributed and NetworkBased Processing (PDP), Feb 2019. doi: 10.1109/empdp.
2019.8671560. URL http://dx.doi.org/10.1109/EMPDP.2019.8671560.

[7] K. Asanovic, B. C. Catanzaro, D. Patterson, and K. Yelick. The Landscape of Parallel Computing
Research : A View from Berkeley. EECS Department University of California Berkeley Tech Rep
UCBEECS2006183, 18:19, 2006. ISSN 00010782. doi: 10.1145/1562764.1562783.

[8] Christoph Börgers and Alexander R. Nectow. Exponential time differencing for hodgkinhuxley
like odes. SIAM Journal on Scientific Computing, 35, 2013. ISSN 10648275. doi: 10.1137/
120883657.

[9] Rene Miedema CEMS. flexhh: A flexible hardware library for hodgkinhuxleybased neural sim
ulations, 2020.

[10] G. Chatzikonstantis, H. Sidiropoulos, C. Strydis, M. Negrello, G. Smaragdos, C. I. De Zeeuw, and
D. J. Soudris. Multinode implementation of an extended hodgkin–huxley simulator. Neurocom
puting, 329:370–383, 2 2019. ISSN 18728286. doi: 10.1016/j.neucom.2018.10.062.

[11] TingShuo Chou, Hirak J. Kashyap, Jinwei Xing, S. Listopad, Emily L. Rounds, Michael Beyeler,
N. Dutt, and J. Krichmar. Carlsim 4: An open source library for large scale, biologically detailed
spiking neural network simulation using heterogeneous clusters. 2018 International Joint Confer
ence on Neural Networks (IJCNN), pages 1–8, 2018.

[12] Eric S. Chung, Peter A. Milder, James C. Hoe, and Ken Mai. Singlechip heterogeneous com
puting: Does the future include custom logic, FPGAs, and GPGPUs? Proceedings of the Annual
International Symposium on Microarchitecture, MICRO, pages 225–236, 2010. ISSN 10724451.
doi: 10.1109/MICRO.2010.36.

[13] Andrew Davison, Daniel Brüderle, Jochen Eppler, Jens Kremkow, Eilif Muller, Dejan Pecevski,
Laurent Perrinet, and Pierre Yger. PyNN: a common interface for neuronal network simulators.
Frontiers in Neuroinformatics, 2:11, 2009. ISSN 16625196. doi: 10.3389/neuro.11.011.2008.
URL https://www.frontiersin.org/article/10.3389/neuro.11.011.2008.

[14] Jornt R. de Gruijl, Paolo Bazzigaluppi, Marcel T.G. de Jeu, and Chris I. de Zeeuw. Climbing fiber
burst size and olivary subthreshold oscillations in a network setting. PLoS Computational Biology,
8, 12 2012. ISSN 1553734X. doi: 10.1371/journal.pcbi.1002814.

59

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://developer.nvidia.com/gpudirect
https://www.top500.org/lists/top500/2020/11/
https://slurm.schedmd.com/
https://spec.org/cpu2006/results/
http://dx.doi.org/10.1109/EMPDP.2019.8671560
https://www.frontiersin.org/article/10.3389/neuro.11.011.2008

60 Bibliography

[15] David A. Drachman. Do we have brain to spare?, 6 2005. ISSN 00283878.

[16] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Dongarra, Jeffrey M.
Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew Lumsdaine, Ralph H. Cas
tain, David J. Daniel, Richard L. Graham, and Timothy S. Woodall. Open MPI: Goals, concept,
and design of a next generation MPI implementation. In Proceedings, 11th European PVM/MPI
Users’ Group Meeting, pages 97–104, Budapest, Hungary, September 2004.

[17] Padraig Gleeson, Sharon Crook, Robert C. Cannon, Michael L. Hines, Guy O. Billings, Matteo
Farinella, Thomas M. Morse, Andrew P. Davison, Subhasis Ray, Upinder S. Bhalla, Simon R.
Barnes, Yoana D. Dimitrova, and R. Angus Silver. Neuroml: A language for describing data driven
models of neurons and networks with a high degree of biological detail. PLoS Computational
Biology, 6:1–19, 6 2010. ISSN 1553734X. doi: 10.1371/journal.pcbi.1000815.

[18] R. L. Graham, G. M. Shipman, B. W. Barrett, R. H. Castain, G. Bosilca, and A. Lumsdaine. Open
mpi: A highperformance, heterogeneous mpi. In 2006 IEEE International Conference on Cluster
Computing, pages 1–9, 2006. doi: 10.1109/CLUSTR.2006.311904.

[19] Jan Hahne, Moritz Helias, Susanne Kunkel, Jun Igarashi, Matthias Bolten, Andreas Frommer, and
Markus Diesmann. A unified framework for spiking and gapjunction interactions in distributed
neuronal network simulations. Frontiers in Neuroinformatics, 9, 9 2015. ISSN 16625196. doi:
10.3389/fninf.2015.00022.

[20] Suzana HerculanoHouzel. The human brain in numbers: A linearly scaledup primate brain.
Frontiers in Human Neuroscience, 3, 11 2009. ISSN 16625161. doi: 10.3389/neuro.09.031.
2009.

[21] A L Hodgkin and A F Huxley. A quantitative description of membrane current and its application
to conduction and excitation in nerve. J. Physiol, pages 500–544, 1952.

[22] Tammo Ippen, Jochen M. Eppler, Hans E. Plesser, and Markus Diesmann. Constructing neuronal
network models in massively parallel environments. Frontiers in Neuroinformatics, 11, 5 2017.
ISSN 16625196. doi: 10.3389/fninf.2017.00030.

[23] Eugene M. Izhikevich. Which model to use for cortical spiking neurons? IEEE Transactions on
Neural Networks, 15:1063–1070, 9 2004. ISSN 10459227. doi: 10.1109/TNN.2004.832719.

[24] Jakob Jordan, Tammo Ippen, Moritz Helias, Itaru Kitayama, Mitsuhisa Sato, Jun Igarashi, Markus
Diesmann, and Susanne Kunkel. Extremely scalable spiking neuronal network simulation code:
From laptops to exascale computers. Frontiers in Neuroinformatics, 12, 2 2018. ISSN 16625196.
doi: 10.3389/fninf.2018.00002.

[25] Chris Mcclanahan. History and evolution of gpu architecture, 2010.

[26] Rene Miedema, Georgios Smaragdos, Mario Negrello, Zaid AlArs, Matthias Moller, and Christos
Strydis. Flexhh: A flexible hardware library for hodgkinhuxleybased neural simulations. IEEE
Access, 8:121905–121919, 2020. ISSN 21693536. doi: 10.1109/ACCESS.2020.3007019.

[27] Kirill Minkovich, Corey M. Thibeault, Michael John O’Brien, Aleksey Nogin, Youngkwan Cho, and
Narayan Srinivasa. Hrlsim: A high performance spiking neural network simulator for gpgpu clus
ters. IEEE Transactions on Neural Networks and Learning Systems, 25:316–331, 2 2014. ISSN
2162237X. doi: 10.1109/TNNLS.2013.2276056.

[28] H. A. D. Nguyen, Z. AlArs, G. Smaragdos, and C. Strydis. Accelerating complex brainmodel
simulations on gpu platforms. In 2015 Design, Automation Test in Europe Conference Exhibition
(DATE), pages 974–979, 2015. doi: 10.7873/DATE.2015.0071.

[29] Nikos Nikoloutsakos. Aris documentation, 2021. URL https://doc.aris.grnet.gr/.

[30] Eustace Painkras, Luis A. Plana, Jim Garside, Steve Temple, Francesco Galluppi, Cameron Pat
terson, David R. Lester, Andrew D. Brown, and Steve B. Furber. Spinnaker: A 1w 18core system
onchip for massivelyparallel neural network simulation. IEEE Journal of SolidState Circuits, 48:
1943–1953, 2013. ISSN 00189200. doi: 10.1109/JSSC.2013.2259038.

https://doc.aris.grnet.gr/

Bibliography 61

[31] S. Panagiotou, R. Miedema, H. Sidiropoulos, G. Smaragdos, C. Strydis, and D. Soudris. A
novel simulator for extended hodgkinhuxley neural networks. In 2020 IEEE 20th Interna
tional Conference on Bioinformatics and Bioengineering (BIBE), pages 395–402, 2020. doi:
10.1109/BIBE50027.2020.00071.

[32] Arleen Salles, Jan G. Bjaalie, Kathinka Evers, Michele Farisco, B. Tyr Fothergill, Manuel Guerrero,
HannahMaslen, JeffreyMuller, Tony Prescott, Bernd C. Stahl, HenrikWalter, Karl Zilles, and Katrin
Amunts. The human brain project: Responsible brain research for the benefit of society, 2 2019.
ISSN 10974199.

[33] Nicolas Schweighofer, Eric J. Lang, and Mitsuo Kawato. Role of the olivocerebellar complex in
motor learning and control. Frontiers in Neural Circuits, 4 2013. ISSN 16625110. doi: 10.3389/
fncir.2013.00094.

[34] G. Smaragdos, G. Chatzikostantis, S. Nomikou, D. Rodopoulos, I. Sourdis, D. Soudris, C. I. De
Zeeuw, and C. Strydis. Performance analysis of accelerated biophysicallymeaningful neuron
simulations. In 2016 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), pages 1–11, 2016. doi: 10.1109/ISPASS.2016.7482069.

[35] Georgios Smaragdos, Sebastian Isaza, Martijn F. van Eijk, Ioannis Sourdis, and Christos Strydis.
Fpgabased biophysicallymeaningful modeling of olivocerebellar neurons. In Proceedings of the
2014 ACM/SIGDA International Symposium on FieldProgrammable Gate Arrays, FPGA ’14, page
89–98, New York, NY, USA, 2014. Association for Computing Machinery. ISBN 9781450326711.
doi: 10.1145/2554688.2554790. URL https://doi.org/10.1145/2554688.2554790.

[36] Georgios Smaragdos, Georgios Chatzikonstantis, Rahul Kukreja, Harry Sidiropoulos, Dimitrios
Rodopoulos, Ioannis Sourdis, Zaid AlArs, Christoforos Kachris, Dimitrios Soudris, Chris I. De
Zeeuw, and Christos Strydis. Brainframe: A nodelevel heterogeneous accelerator platform for
neuron simulations. Journal of Neural Engineering, 14, 11 2017. ISSN 17412552. doi: 10.1088/
17412552/aa7fc5.

[37] Marcel Stimberg, Dan F.M. Goodman, and Thomas Nowotny. Brian2genn: accelerating spik
ing neural network simulations with graphics hardware. Scientific Reports, 10, 12 2020. ISSN
20452322. doi: 10.1038/s41598019549577.

[38] Michiel A. Van Der Vlag, Georgios Smaragdos, Zaid AlArs, and Christos Strydis. Exploring com
plex brainsimulation workloads on multigpu deployments. ACM Transactions on Architecture
and Code Optimization, 16, 2019. ISSN 15443973. doi: 10.1145/3371235.

[39] Tadashi Yamazaki and Jun Igarashi. Realtime cerebellum: A largescale spiking network model
of the cerebellum that runs in realtime using a graphics processing unit. Neural Networks, 47:
103–111, 11 2013. ISSN 08936080. doi: 10.1016/j.neunet.2013.01.019.

[40] Esin Yavuz, James Turner, and Thomas Nowotny. Genn: A code generation framework for ac
celerated brain simulations. Scientific Reports, 6, 1 2016. ISSN 20452322. doi: 10.1038/
srep18854.

https://doi.org/10.1145/2554688.2554790

A
Overview of the IOmodel

The IOmodel described by [14] and alomst exclusivly used to benchmark this thesis is decribed by the
following collection of formulas.

Dend

𝑑𝑉𝑑𝑒𝑛𝑑
𝑑𝑡 = 𝑆 [𝐼𝑎𝑝𝑝 − 𝐼𝑔𝑎𝑝 − 𝐼𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 − 𝐼𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡 − 𝐼𝑙𝑒𝑎𝑘]

𝑉𝑑𝑒𝑛𝑑 (0) = −60
𝑆 = 1

𝑔𝑙𝑒𝑎𝑘 = 0.016
𝑉𝑙𝑒𝑎𝑘 = 10
𝐼𝑙𝑒𝑎𝑘 = 𝑔𝑙𝑒𝑎𝑘 (𝑉 − 𝑉𝑙𝑒𝑎𝑘)

𝐼𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡 = 𝑔𝑖𝑛𝑡 (1 − 𝑔𝑝,𝑛𝑒𝑥𝑡) (𝑉𝑑𝑒𝑛𝑑 − 𝑉𝑠𝑜𝑚𝑎)
𝐼𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 𝐼𝑐𝑎𝑙𝑐𝑖𝑢𝑚_𝑐ℎ𝑎𝑛𝑛𝑒𝑙 + 𝐼𝑐𝑎𝑙𝑐𝑖𝑢𝑚_𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑_𝑝𝑜𝑡𝑎𝑠𝑠𝑖𝑢𝑚_𝑐ℎ𝑎𝑛𝑛𝑒𝑙 + 𝐼ℎ_𝑐ℎ𝑎𝑛𝑛𝑒𝑙

𝑔𝑖𝑛𝑡 = 0.13
[𝐶𝑎2+] (0) = 3.7152
𝑑 [𝐶𝑎2+]
𝑑𝑡 = 3𝐼𝑐𝑎𝑙𝑐𝑖𝑢𝑚𝑐ℎ𝑎𝑛𝑛𝑒𝑙 − 0.075 [𝐶𝑎2+]

Calcium Channel

𝐼𝑐𝑎𝑙𝑐𝑖𝑢𝑚_𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 𝑔𝑐 (𝑉 − 𝑉𝑐) 𝑦2𝑟
𝑔𝑐 = 4.5
𝑉𝑐 = 120

𝑑𝑦𝑟
𝑑𝑡 = (1 − 𝑦𝑟)𝛼𝑟 − 𝑦𝑟𝛽𝑟

𝛼𝑟 =
0.34

1𝑒0.071942⋅(5−𝑉) + 1
𝛽𝑟 =

0.004(−8.5 − 𝑉)
−1𝑒−0.200000⋅(−8.5−𝑉) + 1

63

64 A. Overview of the IOmodel

Calcium Controlled Potassium Channel

𝐼𝑐𝑎𝑙𝑐𝑖𝑢𝑚_𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑_𝑝𝑜𝑡𝑎𝑠𝑠𝑖𝑢𝑚_𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 𝑔𝑐 (𝑉 − 𝑉𝑐) 𝑦𝑠
𝑔𝑐 = 35
𝑉𝑐 = −75

𝑑𝑦𝑠
𝑑𝑡 = (1 − 𝑦𝑠)𝛼𝑠 − 𝑦𝑠𝛽𝑠
𝛼𝑠 =min (−0.000020 ⋅ (0 − [𝐶𝑎2+]), 0.01)
𝛽𝑠 = 0.015

H Channel

𝐼ℎ_𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 𝑔𝑐 (𝑉 − 𝑉𝑐) 𝑦𝑛
𝑔𝑐 = 0.125
𝑉𝑐 = −43

𝑑𝑦𝑛
𝑑𝑡 =

𝛼𝑛 − 𝑦𝑛
𝛽𝑛

𝛼𝑛 =
1

1𝑒−0.250000⋅(−80−𝑉) + 1
𝛽𝑛 =

1
1𝑒0.086000⋅(−169.7674418604651−𝑉) + 1𝑒−0.070000⋅(26.714285714285715−𝑉) + 1

Soma

𝑑𝑉𝑠𝑜𝑚𝑎
𝑑𝑡 = 𝑆 [𝐼𝑎𝑝𝑝 − 𝐼𝑔𝑎𝑝 − 𝐼𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 − 𝐼𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡 − 𝐼𝑙𝑒𝑎𝑘]

𝑉𝑠𝑜𝑚𝑎 (0) = −60
𝑆 = 1

𝑔𝑙𝑒𝑎𝑘 = 0.016
𝑉𝑙𝑒𝑎𝑘 = 10
𝐼𝑙𝑒𝑎𝑘 = 𝑔𝑙𝑒𝑎𝑘 (𝑉 − 𝑉𝑙𝑒𝑎𝑘)

𝐼𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡 = 𝑔𝑖𝑛𝑡/𝑔𝑝(𝑉𝑠𝑜𝑚𝑎 − 𝑉𝑑𝑒𝑛𝑑) + 𝑔𝑖𝑛𝑡 (1 − 𝑔𝑝,𝑛𝑒𝑥𝑡) (𝑉𝑠𝑜𝑚𝑎 − 𝑉𝑎𝑥𝑜𝑛)
𝐼𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 𝐼𝑐𝑎𝑙𝑐𝑖𝑢𝑚_𝑐ℎ𝑎𝑛𝑛𝑒𝑙 + 𝐼𝑠𝑜𝑑𝑖𝑢𝑚_𝑐ℎ𝑎𝑛𝑛𝑒𝑙 + 𝐼𝑝𝑜𝑡𝑎𝑠𝑠𝑖𝑢𝑚_𝑑𝑒𝑙𝑎𝑦𝑒𝑑_𝑟𝑒𝑐𝑡𝑖𝑓𝑖𝑒𝑟_𝑐ℎ𝑎𝑛𝑛𝑒𝑙 + 𝐼𝑝𝑜𝑡𝑎𝑠𝑠𝑖𝑢𝑚_𝑐ℎ𝑎𝑛𝑛𝑒𝑙

𝑔𝑝 = 0.25

65

Calcium Channel

𝐼𝑐𝑎𝑙𝑐𝑖𝑢𝑚_𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 𝑔𝑐 (𝑉 − 𝑉𝑐) 𝑦3𝑘𝑦𝑙
𝑔𝑐 = 0.68
𝑉𝑐 = 120

𝑑𝑦𝑘
𝑑𝑡 =

𝛼𝑘 − 𝑦𝑘
𝛽𝑘

𝛼𝑘 =
1

1𝑒0.238095⋅(−61−𝑉) + 1
𝛽𝑘 = 1
𝑑𝑦𝑙
𝑑𝑡 =

𝛼𝑙 − 𝑦𝑙
𝛽𝑙

𝛼𝑙 =
1

1𝑒−0.117647⋅(−85.5−𝑉) + 1

𝛽𝑙 =
20𝑒−0.033333⋅(−160−𝑉)
1𝑒−0.136986⋅(−84−𝑉) + 1 + 35

Sodium Channel

𝐼𝑠𝑜𝑑𝑖𝑢𝑚_𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 𝑔𝑐 (𝑉 − 𝑉𝑐) 𝑦3𝑚𝑦ℎ
𝑔𝑐 = 150
𝑉𝑐 = 55

𝑦𝑚 =
1

1𝑒0.181818⋅(−30−𝑉) + 1
𝑑𝑦ℎ
𝑑𝑡 =

𝛼ℎ − 𝑦ℎ
𝛽ℎ

𝛼ℎ =
1

1𝑒−0.172414⋅(−70−𝑉) + 1
𝛽ℎ = 3𝑒0.030303⋅(−40−𝑉)

Potassium Delayed Rectifier Channel

𝐼𝑝𝑜𝑡𝑎𝑠𝑠𝑖𝑢𝑚_𝑑𝑒𝑙𝑎𝑦𝑒𝑑_𝑟𝑒𝑐𝑡𝑖𝑓𝑖𝑒𝑟_𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 𝑔𝑐 (𝑉 − 𝑉𝑐) 𝑦4𝑛
𝑔𝑐 = 9
𝑉𝑐 = −75

𝑑𝑦𝑛
𝑑𝑡 =

𝛼𝑛 − 𝑦𝑛
𝛽𝑛

𝛼𝑛 =
1

1𝑒0.100000⋅(−3−𝑉) + 1
𝛽𝑛 = 47𝑒−0.001111⋅(−50−𝑉) + 5

66 A. Overview of the IOmodel

Potassium Channel

𝐼𝑝𝑜𝑡𝑎𝑠𝑠𝑖𝑢𝑚_𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 𝑔𝑐 (𝑉 − 𝑉𝑐) 𝑦4𝑥
𝑔𝑐 = 5
𝑉𝑐 = −75

𝑑𝑦𝑥
𝑑𝑡 = (1 − 𝑦𝑥)𝛼𝑥 − 𝑦𝑥𝛽𝑥

𝛼𝑥 =
−0.13(−25 − 𝑉)

−1𝑒0.100000⋅(−25−𝑉) + 1
𝛽𝑥 = 1.69𝑒0.012500⋅(−35−𝑉)

Axon
𝑑𝑉𝑎𝑥𝑜𝑛
𝑑𝑡 = 𝑆 [𝐼𝑎𝑝𝑝 − 𝐼𝑔𝑎𝑝 − 𝐼𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 − 𝐼𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡 − 𝐼𝑙𝑒𝑎𝑘]

𝑉𝑎𝑥𝑜𝑛 (0) = −60
𝑆 = 1

𝑔𝑙𝑒𝑎𝑘 = 0.016
𝑉𝑙𝑒𝑎𝑘 = 10
𝐼𝑙𝑒𝑎𝑘 = 𝑔𝑙𝑒𝑎𝑘 (𝑉 − 𝑉𝑙𝑒𝑎𝑘)

𝐼𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡 = 𝑔𝑖𝑛𝑡/𝑔𝑝(𝑉𝑎𝑥𝑜𝑛 − 𝑉𝑠𝑜𝑚𝑎)
𝐼𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 𝐼𝑠𝑜𝑑𝑖𝑢𝑚_𝑐ℎ𝑎𝑛𝑛𝑒𝑙 + 𝐼𝑝𝑜𝑡𝑎𝑠𝑠𝑖𝑢𝑚_𝑐ℎ𝑎𝑛𝑛𝑒𝑙

𝑔𝑝 = 0.15

Sodium Channel

𝐼𝑠𝑜𝑑𝑖𝑢𝑚_𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 𝑔𝑐 (𝑉 − 𝑉𝑐) 𝑦3𝑚𝑦ℎ
𝑔𝑐 = 240
𝑉𝑐 = 55

𝑦𝑚 =
1

1𝑒0.181818⋅(−30−𝑉) + 1
𝑑𝑦ℎ
𝑑𝑡 =

𝛼ℎ − 𝑦ℎ
𝛽ℎ

𝛼ℎ =
1

1𝑒−0.172414⋅(−60−𝑉) + 1
𝛽ℎ = 1.5𝑒0.030303⋅(−40−𝑉)

Potassium Channel

𝐼𝑝𝑜𝑡𝑎𝑠𝑠𝑖𝑢𝑚_𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 𝑔𝑐 (𝑉 − 𝑉𝑐) 𝑦4𝑥
𝑔𝑐 = 20
𝑉𝑐 = −75

𝑑𝑦𝑥
𝑑𝑡 = (1 − 𝑦𝑥)𝛼𝑥 − 𝑦𝑥𝛽𝑥

𝛼𝑥 =
−0.13(−25 − 𝑉)

−1𝑒0.100000⋅(−25−𝑉) + 1
𝛽𝑥 = 1.69𝑒0.012500⋅(−35−𝑉)

B
JSON inputconfigurationfile example

A minimal example of a single compartment single channel single
gate configuration file

1{
2 ”Label”: ”test_5_infoli_gap”,
3 ”SimTime”: 10.00,
4 ”SimTimestep”: 0.001,
5 ”GPU_enable”: 4,
6 ”GPU_Time_kernels”: true,
7 ”GPU_Use_UVA”: false,
8 ”GPU_MPI_share_everything”: false,
9 ”GPU_disable_peer_acces”: false,
10 ”OutputMetadataFile”: ”metadata.dat”,
11

12 ”OutputMonitor”: {
13 ”Name”: ”./examples/doc/test_5_infoli_gap”,
14 ”Type”: ”All”,
15 ”Formatting”: true,
16 ”WriteCompartPotentials”: true,
17 ”WriteCalciumLevels”: true,
18 ”WriteCurrents”: true ,
19 ”WriteActivationVariables”: true,
20 ”SaveInterval” : 10
21 },
22

23 ”ConnectivityModel”: {
24 ”Type”: ”RandomBinary”,
25 ”Weight” : 0.1,
26 ”Density” : 1,
27 ”RandomSeed” : ”time”
28 },
29

30 ”StimulusModel”: {
31 ”Type” : ”DcCurrentPulseModulo”,
32 ”BaseCurrent”: 0,
33 ”StartTime”: 4,
34 ”Duration”: 1,
35 ”Modulo”: 20,
36 ”ModuloCurrent”: 10

67

68 B. JSON inputconfigurationfile example

37 },
38

39 ”CellPopulation”: {
40 ”Type”: ”Explicit”,
41 ”NeuronModels”: [
42 {
43 ”Label”: ”infoli_full1”,
44 ”NeuronModelSize”: 256,
45 ”Compartments”: [
46 {
47 ”Label”: ”dend”,
48

49 ”InverseCapacitance”: 1,
50 ”PassiveLeakConductivity”: 0.016,
51 ”PassiveLeakInversionPotential”: 10,
52 ”InitialVoltage”: 60,
53 ”ConductivityRatio”: 0.13,
54

55 ”CalciumConcentration”: {
56 ”Label”: ”caconc”,
57

58 ”AlphaFormula”: {
59 ”Type”: ”ExponentialByExponential”,
60 ”NumVarOffset”: 0,
61 ”NumVarScale”: 0,
62 ”NumScale”: 0,
63 ”NumOffset”: 0,
64

65 ”DenVarOffset”: 0,
66 ”DenVarScale”: 0,
67 ”DenScale”: 0,
68 ”DenOffset”: 1,
69

70 ”Offset”: 3
71 },
72 ”BetaFormula”: {
73 ”Type”: ”ExponentialByExponential”,
74 ”NumVarOffset”: 0,
75 ”NumVarScale”: 0,
76 ”NumScale”: 0,
77 ”NumOffset”: 0,
78

79 ”DenVarOffset”: 0,
80 ”DenVarScale”: 0,
81 ”DenScale”: 0,
82 ”DenOffset”: 1,
83

84 ”Offset”: 0.075
85 },
86

87 ”CurrentGating”: ”GateVariable”,
88 ”CurrentGatingExponent”: 1,
89

90 ”AlphaGating”: ”CompartmentVoltage”,
91 ”Dynamics”: ”ConcentratedCalcium”,
92

69

93 ”InitialState”: 3.7152
94 },
95

96 ”IonChannels”: [
97 {
98 ”Label”: ”calcium_channel”,
99

100 ”LeakConductivity”: 4.5,
101 ”LeakConductivity_Randomization_offset”: 0,
102 ”LeakInversionPotential”: 120,
103 ”LeakInversionPotential_Randomization_offset”: 0,
104 ”IsCalciumChannel”: true,
105

106 ”Gates”:[
107 {
108 ”Label”: ”r”,
109 ”AlphaFormula”: {
110 ”Type”: ”ExponentialByExponential”,
111

112 ”NumVarOffset”: 0,
113 ”NumVarScale”: 0,
114 ”NumScale”: 0,
115 ”NumOffset”: 0.34,
116

117 ”DenVarOffset”: 5,
118 ”DenVarScale”: 0.071942,
119 ”DenScale”: 1,
120 ”DenOffset”: 1,
121

122 ”Offset”: 0
123 },
124 ”BetaFormula”: {
125 ”Type”: ”LinearByExponential”,
126

127 ”LinearVarOffset”: 8.5,
128 ”LinearVarScale”: 0.004,
129

130 ”ExponentialVarOffset”: 8.5,
131 ”ExponentialVarScale”: 0.2,
132 ”ExponentialScale”: 1,
133 ”ExponentialOffset”: 1,
134

135 ”Offset”: 0
136 },
137

138 ”CurrentGating”: ”GateVariable”,
139 ”CurrentGatingExponent”: 2,
140

141 ”AlphaGating”: ”CompartmentVoltage”,
142 ”Dynamics”: ”Classical”,
143

144 ”InitialState”: 0.0112788
145 }
146]
147 }
148]

70 B. JSON inputconfigurationfile example

149 }
150]
151 }
152]
153 }
154}

C
Metadata outputfile example

Example of a Real experiment metadata output file, from exepri
ments at CSCS AULTs development cluster

1{
2 ”ProcessorName”: ”hsw226”,
3 ”GPUcount”: 4,
4 ”Timing”: {
5 ”NetworkSetupTime”: 2.7946760654449463,
6 ”NetworkSynapticNetworkGenerationTime”: 2.7946760654449463,
7 ”MPISetupTime”: 39.625694990158081,
8 ”OutputWriteTime”: 0,
9 ”ComputeLaunchTime”: 0.023003101348876953,
10 ”MPICommunicationTime”: 0.27750825881958008,
11 ”LaunchWriteThread”: 6.4373016357421875e06,
12 ”Synchronizingtheloop1”: 2.2334461212158203,
13 ”Synchronizingtheloop2”: 0.0056474208831787109,
14 ”SimulationTime”: 2.5397908687591553,
15 ”GPU0: Tesla V100PCIE32GB”: {
16 ”time_Igap”: 2.2188638019561768,
17 ”time_Icalc_gate”: 2.1898284549713134,
18 ”time_Icalc_comp”: 0.0061534080244600772
19 },
20 ”GPU1: Tesla V100PCIE32GB”: {
21 ”time_Igap”: 1.9870404148101808,
22 ”time_Icalc_gate”: 1.9559014072418213,
23 ”time_Icalc_comp”: 0.0058584639988839629
24 },
25 ”GPU2: Tesla V100PCIE32GB”: {
26 ”time_Igap”: 1.9837053089141845,
27 ”time_Icalc_gate”: 1.9539980487823487,
28 ”time_Icalc_comp”: 0.0057299520149827008
29 },
30 ”GPU3: Tesla V100PCIE32GB”: {
31 ”time_Igap”: 1.9889988174438478,
32 ”time_Icalc_gate”: 1.9576277523040773,
33 ”time_Icalc_comp”: 0.0057336320057511329
34 }
35 },
36 ”Memory”: {

71

72 C. Metadata outputfile example

37 ”GPU0: Tesla V100PCIE32GB”: {
38 ”Total_global_memory”: 34089730048,
39 ”Memory_used”: 19855835136
40 },
41 ”GPU1: Tesla V100PCIE32GB”: {
42 ”Total_global_memory”: 34089730048,
43 ”Memory_used”: 19855835136
44 },
45 ”GPU2: Tesla V100PCIE32GB”: {
46 ”Total_global_memory”: 34089730048,
47 ”Memory_used”: 19855835136
48 },
49 ”GPU3: Tesla V100PCIE32GB”: {
50 ”Total_global_memory”: 34089730048,
51 ”Memory_used”: 19855835136
52 }
53 },
54 ”Connections”: {
55 ”nCells”: 1048576,
56 ”nCells_local_node”: 524288,
57 ”nCells_local_GPU ”: 131072,
58 ”Totaal_Connections”: 4947834207,
59 ”Xternal_Connections”: 524288,
60 ”Avg_density”: 0.00900005828589201,
61 ”Target_denisty”: 0.008999999612569809,
62 ”Percentage_diff_denisty”: 6.5192584770557005e06
63 },
64 ”V_check [0,0]”: 60.012969970703125
65}

	Abstract
	Acknowledgements
	List of Figures
	Introduction
	Thesis scope
	Challenges and Research Questions
	Overview

	Background
	Neuron Simulations
	Hodgkin-Huxley Models
	Numerical Solvers

	Compute Hardware
	GPU
	Multi-Node Systems
	Cloud Based Compute Systems

	Platform Scope
	CUDA
	OpenMP
	OpenMPI

	Related work
	The Inferior-Olive Race
	Stepping Away from Hardcoded Models
	Standalone Neural Simulators

	Design
	Design Considerations
	Compute Challenges in Neurocomputing
	Requirements

	Analysis
	Simulation Flow Breakdown
	Parallelizable Parts
	Scalability
	Memory Usage

	Design Overview
	User IO
	Scalability
	Kernel Breakdown

	Added Value to Research

	Implementation
	Development Resources
	Software-Specific Considerations
	Hardware-Specific Considerations

	Memory Requirements
	CUDA Kernel Breakdown
	Memory Arrangement to Support Warp Equality
	Output Handler
	Scalability

	Evaluation
	Experimental Setup
	Roofline Model
	Functional-Flow Performance
	Performance Scalability
	Communication Performance
	Comparison Against Related Work
	Use Case Evaluation

	Conclusions and Future Work
	Contributions
	Future work

	Bibliography
	Overview of the IOmodel
	JSON input-configuration-file example
	Metadata output-file example

