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We analyze the control of Majorana zero-energy states by mapping the fermionic system onto a chain of
Ising spins. Although the topological protection is lost for the Ising system, the mapping provides additional
insight into the nature of the quantum states. By controlling the local magnetic field, one can separate the Ising
chain into ferromagnetic and paramagnetic phases, corresponding to topological and nontopological sections of
the fermionic system. In this paper we propose (topologically nonprotected) protocols performing the braiding
operation, and in fact also more general rotations. We first consider a T -junction geometry, but we also propose
a protocol for a purely one-dimensional (1D) system. Both setups rely on an extra spin- 1

2 coupler. By including
the extra spin in the T -junction geometry, we overcome limitations due to the 1D character of the Jordan–Wigner
transformation. In the 1D geometry the coupler, which controls one of the Ising links, should be manipulated
once the ferromagnetic (topological) section of the chain is moved far away. We also propose experimental
implementations of our scheme. One is based on a chain of flux qubits which allows for all needed control fields.
We also describe how to translate our scheme for the 1D setup to a chain of superconducting wires hosting each
a pair of Majorana edge states.

DOI: 10.1103/PhysRevB.96.195402

I. INTRODUCTION

Theoretically Majorana zero-energy states (also known as
Majorana fermions) arise as a property of the Kitaev chain [1].
A physical realization is provided by a one-dimensional (1D)
p-wave superconductor or—more accessible to experiment—
by a semiconducting wire with strong spin-orbit interaction
and proximity-induced superconductivity [2]. A fundamental
elementary quantum gate, the braiding operation [3], can
be performed in these systems if one uses a T -junction
geometry [4]. This adiabatic manipulation (errors emerging
in such manipulations are discussed in Ref. [5]) allows for a
restricted class of operations only; to construct a universal
set of gates, it is necessary to expand the set of gates
by nonadiabatic manipulations (for discussion and further
references see Ref. [6]).

Mathematically closely related is a 1D Ising chain, which
can be mapped onto the Kitaev chain via the Jordan–Wigner
transformation. The ideal systems are exactly equivalent;
however, they differ in a crucial way in the presence of disorder
[7], e.g., due to random fields. The Majorana states in the
Kitaev chain are topologically protected (with exponential
accuracy for long chains). That is, local perturbations due
to disorder do not lift the degeneracy of the ground states.
Similarly, the system remains topologically protected during
the adiabatic braiding operation. In contrast, for the Ising chain
a local longitudinal magnetic field does lift the degeneracy.

In spite of the lack of topological protection, simulating the
physics of Majorana fermions by artificially constructed Ising
chains can provide additional insight (see, e.g., the proposals
of Refs. [8,9]). Short Ising chains exhibiting Majorana physics
have already been simulated in optical systems [10,11]. With

present-day Josephson qubit circuits, which have reached
an encouraging level of coherence, the Majorana physics
could now be studied for interesting length- and timescales.
Several proposals on how to emulate Majorana states with
Josephson circuits have already been formulated (see, e.g.,
Refs. [12,13]), but as a consequence of the 1D character of the
Jordan–Wigner transformation the extension to a T -junction
geometry, required for performing the braiding operation,
remains problematic.

In this paper we first present a setup of Ising spins in
a T -junction geometry which—except for the topologically
protection—is equivalent to the fermionic Majorana system
and allows us to perform the braiding operation. It relies on an
extra spin 1

2 controlling the three-spin coupling in the junction.
This spin also introduces Klein factors, which assure that the
fermionic anticommutation relations for different legs of the
setup are obeyed. In addition, we propose a scheme based
on a purely 1D geometry, which allows us to perform an
operation which is equivalent to the braiding. This is achieved
by attaching an extra spin 1

2 (the coupler) to the chain, such
that one of the links of the Ising chain is controlled by this
spin. Depending on the quantum state of the coupler, this
link can be either ferromagnetic or antiferromagnetic, or a
superposition thereof. The coupler should be manipulated
once the ferromagnetic part of the chain, corresponding to
the topological part hosting the Majorana fermions, has been
moved sufficiently far away. An added advantage of this
scheme is that it allows us to perform parity-conserving U (1)
rotations of the Majorana qubit by an arbitrary angle, whereas
the topologically protected braiding in the fermionic system
fixes this angle to discrete multiples of π/4. In this way one
can construct a universal set of quantum logical gates.
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Furthermore, we propose experimental implementations of
our 1D setup and braiding scheme. One is based on a chain
of Josephson flux qubits. They are well suited because they
can be strongly coupled and the matrix element which plays
the role of the transverse field can be efficiently tuned [14].
We also propose a direct translation of the 1D Ising scheme
into the realm of topological wires [15,16] hosting pairs of
Majorana edge states, which allows arbitrary rotations of the
Majorana qubit.

Throughout this paper we frequently use terminology
appropriate for fermionic systems with topological protection,
e.g., referring to topological qubits and braiding operations.
This is done to emphasize the equivalence of the fermionic
system and the Ising chains. We do not imply the existence
of topological protection in Ising systems. But we want to
stress—and this is one of the main messages of the present
paper—that due to the exact mapping between the fermionic
and Ising systems, topological notions have exact counterparts
in the qubit chain.

II. ISING CHAIN

Let us first recall some well-known relations between Ising
chains and Majorana fermions. We consider an Ising chain
described by the Hamiltonian [17]

H = −
N∑

n=1

h(n)σx(n) − J

N−1∑
n=1

σ z(n)σ z(n + 1). (1)

For definiteness we consider the ferromagnetic case, J > 0.
If the perpendicular magnetic field is weak, h(n) < J , the
ground state of a long chain, N → ∞, is ferromagnetic; for
strong fields the system is paramagnetic. By controlling the
transverse fields h(n) at each site we can define a ferromagnetic
domain, which is an interval where h(n) � J , in an otherwise
paramagnetic chain where h(n) � J . In the paramagnetic
state, at the low temperature considered here, the paramagnetic
spins are “frozen” in the state | →x〉, the (+1) eigenstate
of σx . The two “ground states,” |↑↑↑〉 and |↓↓↓〉, of the
ferromagnetic section are degenerate. If h(n) = 0 for all n in
the chain the degeneracy is exact.1 For nonvanishing but small
h(n) a residual hybridization between these two states decays
exponentially as a function of the length of the ferromagnetic
domain [17]. This remains so also when the ferromagnetic
domain is surrounded by polarized paramagnetic domains (for
further discussions see Ref. [18]). By switching the transverse
fields h(n) on and off one can adiabatically control the size and
position of the ferromagnetic interval, similar to the “zipping”
and “unzipping” procedure described in Ref. [19].

By means of the Jordan–Wigner transformation

χ (n) = σ z(n)
n−1∏
p=1

σx(p), (2)

η(n) = σy(n)
n−1∏
p=1

σx(p), (3)

1Interestingly, the degeneracy between the somewhat perturbed
ground states remains exact even if h(n) vanishes only at a single
site whereas, in the rest of the chain, h(n) � J .

we can map the Ising model to a fermionic system with
Hamiltonian

H = −i

N∑
n=1

h(n)χ (n)η(n) − iJ

N−1∑
n=1

η(n)χ (n + 1) (4)

and fermionic Majorana operators χ (n), η(n) satisfying the
anticommutation relations

{χ (n),χ (m)}+ = 2δnm,

{η(n),η(m)}+ = 2δnm,

{χ (n),η(m)}+ = 0. (5)

Furthermore, by introducing the local Dirac fermions a(n) ≡
[η(n) + iχ (n)]/2 and a†(n) ≡ [η(n) − iχ (n)]/2, we recover
the Kitaev–Hamiltonian [1] of a 1D p-wave superconductor,

H =
N∑

n=1

h(n)[2a†(n)a(n) − 1] − J

N−1∑
n=1

[a†(n)a(n + 1)

+ a(n)a(n + 1) + H.c.]. (6)

We observe that the perpendicular magnetic field of the Ising
system is equivalent to the chemical potential of the Kitaev
model [1], −2h(n)=̂μ(n), and the ferromagnetic coupling
strength J replaces the hopping matrix element w, which in
the case described by Eq. (6) is chosen to coincide with the
gap of the p-wave superconductor, J =̂w = � (see Ref. [1]).

In the Hamiltonian (4) we note that, for −2h(n)=̂μ(n) = 0
in the whole chain, the two boundary operators γL ≡ χ (1) and
γR ≡ η(N ) do not appear. They represent the famous zero-
energy Majorana modes [1]. For nonvanishing but weak fields,
0 
= h(n) � J , the Majorana modes are no longer perfectly
localized but acquire a finite extent. However, the overlap
vanishes exponentially with growing length of the system.
This is the origin of the topological protection of the Majorana
system. For the Majorana system it is usual to introduce
the Dirac fermion d0 = (γL − iγR)/2 and the parity operator
of the zero-energy subspace P0 ≡ −iγRγL = 1 − 2d

†
0d0. Its

even and odd eigenstates, P0|0〉 = |0〉, P0|1〉 = −|1〉, satisfy
d
†
0 |0〉 = |1〉, d0|1〉 = |0〉, and d

†
0 |1〉 = d0|0〉 = 0.

In the spin system for vanishing perpendicular field the
two states |↑↑↑〉 and |↓↓↓〉 are degenerate and span a qubit
space. For nonvanishing but weak fields the spin states are no
longer perfectly ferromagnetic. However, if the ferromagnetic
domain is long, the ensuing hybridization is exponentially
suppressed. The mapping between the Majorana and the
spin system is achieved by γL = χ (1) = σ z(1) and γR =
η(N ) = σy(N )

∏N−1
p=1 σx(p) = −iσ z(N )P , where the total

parity operator of the chain reads P ≡ ∏N
p=1 σx(p). Thus we

have

γL|↑↑↑〉 = |↑↑↑〉,
γL|↓↓↓〉 = −|↓↓↓〉,
γR|↑↑↑〉 = i|↓↓↓〉,
γR|↓↓↓〉 = −i|↑↑↑〉. (7)

In other words, γL=̂τ z and γR=̂τ y correspond to two
noncommuting spin-like operators (Pauli matrices) in the
two-dimensional subspace of ferromagnetic states. From here
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FIG. 1. Three Ising chains. (left panel) Ising coupling between the chains. Here, a fictitious spin �S is introduced formally in order to
construct the Klein factors (see text). (right panel) A central spin �S controls the coupling between the chains via a three-spin interaction.

we also find the mapping between the even and odd eigenstates
of the Majorana system and the ferromagnetic states of the spin
system,

|0〉 ≡ |↑↑↑〉 + |↓↓↓〉√
2

,

|1〉 ≡ |↑↑↑〉 − |↓↓↓〉√
2

. (8)

Finally we mention that the nontopological state of the
Majorana system, found for |μ| � 2|w|, corresponds to the
paramagnetic phase of the spin system, |h| � |J |.

III. T JUNCTION WITH THREE ISING CHAINS

For strictly 1D setups the mapping between an Ising chain
and the Majorana system is exact. However, for the latter the
braiding operation has been recognized as an essential tool,
which can be achieved in a T -junction geometry. To emulate
this operation we consider now three Ising chains coupled to
each other as shown in Fig. 1. The Hamiltonian of each of the
chains with label α = 1,2,3 and—for convenience—the site
index n counting from the junction, reads

Hα = −
N∑

n=1

hα(n)σx
α (n) − J

N−1∑
n=1

σ z
α(n)σ z

α(n + 1). (9)

One could try to extend the Jordan–Wigner transformation
by introducing a global 1D ordering, i.e., numbering the sites
in all three chains in some order. However, any such order is
artificial and leads to nonlocal interactions, thus precluding
mapping to a fermionic system with a quadratic Hamiltonian
and braiding by established procedures [20]. An alternative is
provided by a modified Jordan–Wigner transformation similar
to the one proposed in Ref. [21]. It introduces an extra spin,
denoted by the Pauli matrices Sα ,

χα(n) = Sασ z
α(n)

n−1∏
p=1

σx
α (p), (10)

ηα(n) = Sασ y
α (n)

n−1∏
p=1

σx
α (p). (11)

This extra spin provides the Klein factors. The Hamiltonian of
each chain is again of the form (1), while due to the extra oper-
ators Sα the Majorana operators belonging to different chains
also anticommute. Thus, we have properly “fermionized” the
whole system. In what follows it is important to know the

commutation relations between Sα and the Majorana operators
(10) and (11),

[Sα,χα(n)]− = 0, [Sα,ηα(n)]− = 0,

{Sα,χβ(n)}+ = 0, {Sα,ηβ(n)}+ = 0 for α 
= β. (12)

This doubles the Hilbert space and creates effectively two
equivalent copies of the system. With this extension one arrives
at a simple fermionic description.

To proceed one could introduce additional Ising couplings
between the first spins of each chain, as indicated in the left
panel of Fig. 1, with Hamiltonian

H
Ising
int = −

∑
α<β

Jαβσ z
α(1)σ z

β (1). (13)

In the fermionic representation this becomes

H
Ising
int = i

∑
α<β

Jαβχα(1)χβ(1)εαβγ Sγ . (14)

This form suggests a connection to the Kondo model, which
was explored in Refs. [22,23] and is most interesting for critical
Ising chains with h ≈ J . This connection may not be obvious,
since some spin and fermionic operators do not commute with
each other; cf. Eq. (12). To overcome this obstacle, one can
proceed with the modified Jordan–Wigner transformation [21].
Since this approach is irrelevant for our purposes, it will not
be discussed here any further. Furthermore, we note that the
simple Ising coupling (13) between the chains does not lead to
a quadratic Hamiltonian in terms of Majorana fermions. This
will influence protocols intended to simulate braiding-type
protocols in such systems. In fact, as can be seen in the spin
description, the braiding-type procedure used in Ref. [20] does
not produce a desired qubit operation, rather it may lead to an
identity operation.

As an alternative we suggest proceeding with another
coupling Hamiltonian, as illustrated in the right panel of Fig. 1.
It relies on a three-spin interaction with an extra spin 1

2 with
components Sα in the junction. We call this extra spin the
“coupler.” The interaction between the chains is described by
the Hamiltonian

HS
int = −1

2

∑
αβγ

′
JαβSγ σ z

α(1)σ z
β (1), (15)
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with summation over mutually distinct α, β, γ and Jαβ = Jβα .
The fermionic version of this coupling reads

HS
int = i

2

∑
αβγ

εαβγ Jαβχα(1)χβ(1), (16)

with the Levi–Civita symbol εαβγ . Thus the coupling (15)
leads to a quadratic fermionic Hamiltonian; cf. a similar
discussion in Ref. [21] and three-spin couplings employed
in Refs. [10,11]. This ensures that braiding can be performed
by standard methods [4]. Note that the operators Sα disappear
from the Hamiltonian. Nevertheless, as we will see below,
the spin is not decoupled since the components Sα do not, in
general, commute with HS

int [cf. Eqs. (12)].
To simulate braiding we follow the braiding protocol for a

T -junction geometry as described in Ref. [4]. We begin with
the state with only one ferromagnetic domain (representing the
topological section) placed in the left leg, α = 1. In the first
stage of the operation the ferromagnetic domain is transported
adiabatically through the upper link of the coupler region to
the right leg, α = 2, then through the right link to the lower
leg, α = 3, and finally through the left link back to the left leg.
At each stage of the protocol only one of three couplings Jαβ

is switched on while the ferromagnetic (∼topological) domain
is transported through the coupler. Let us consider the effect
of these operations, first in the spin language. During the first
stage, if S3 = +1, the state of the ferromagnetic region (qubit)
is conserved, while for S3 = −1 all spins are switched between
up and down. To proceed it is useful to move to the Heisenberg
picture and record what happens to the operators. We define
in the (low-energy) qubit space the Pauli matrix operators
τ̂ x,y,z, in the up-down (|↑↑↑〉,|↓↓↓〉) basis. In the Heisenberg
picture, during the first stage τ x and S3 are conserved, while
τ y,z → S3τ y,z and S1,2 → τ xS1,2. In the second and third
stages transformations are similar, with the part of S3 played
by S1 and S2, respectively. The combination of all three stages
yields

τ z → S3τ z → (τ xS1)S3τ z → S2(τ xS1)S3τ z = −τ y,

τ y → S3τ y → (τ xS1)S3τ y → S2(τ xS1)S3τ y = τ z, (17)

whereas τ x and the three coupler spin components S1, S2, S3

are preserved. After the three stages the coupler spin is again
disentangled from the qubit, although they were entangled
during the process, and the braiding operation is achieved (i.e.,
a π/2 x rotation in the language of pseudospin τ ). Indeed,
within the doubly degenerate ground state the two fermionic
Majorana operators, γin = τ z and γout = τ y are interchanged
[see Eqs. (2) and (3) and after Eq. (1)]: γin → γout, γout →
−γin. Since the notation γL and γR , used in Sec. II for Majorana
zero modes becomes ambiguous in the T -junction geometry,
we use here the notation γin for the Majorana zero-mode which
is closest to the junction and γout for the one that is further away.

We conclude that the coupling (15) allows simulating the
braiding protocol of Majorana systems in a spin system, which
is one of the main messages of this paper. On the other hand,
we cannot exclude that the coupling is difficult to realize
in an experiment. Fortunately, there are further possibilities,
including one which is based on a strictly 1D geometry, which
will be discussed in the following section.

FIG. 2. Two Ising chains coupled via the central spin �S.

IV. A BRAIDING-TYPE PROTOCOL IN A
ONE-DIMENSIONAL CHAIN GEOMETRY

Based on the considerations presented above we suggest
an alternative approach replacing the braiding, based on a
purely one-dimensional geometry as displayed in Fig. 2.
That is, we consider a system with only two chains (α =
1 and 2), with a three-spin interaction coupling the two
chains, HS

int = −J12σ
z
1 (1)σ z

2 (1)S3. Effectively, the transport of
the ferromagnetic (∼topological) domain through all three
components S1, S2, and S3 described for the T -junction
geometry can be replaced by transport through a single spin
provided we rotate the state of the coupler between various
stages of the protocol. Depending on the angles of these
rotations, the following protocol also provides a generalization
of the single-domain braiding protocol; namely, allowing for
an arbitrary rotation angle; cf. below. Moreover, a single
intermediate rotation of the coupler spin is sufficient, as we
will demonstrate.

The braiding protocol in terms of spins described in the
previous section showed the following: When the ferromag-
netic interval is adiabatically transported through the coupler,
the spins of the domain remain intact if the coupling is
ferromagnetic (Sγ = +1) and flip if the coupling is antifer-
romagnetic (Sγ = −1). If the coupler is in a superposition
of the two states, the coupler and the ferromagnetic domain
become entangled. In the 1D geometry, one again should
first pull the ferromagnetic region (qubit) through the special
Ising link which is controlled by the coupler spin S3. The
stages controlled by S1 and S2 are no longer available, which
limits the accessible possibilities. However, one could emulate
various coupler-spin components by rotations of the coupler
spin between the pulling operations. Thus, for instance, one can
achieve a braiding-type operation by pulling the qubit through
the coupler three times with proper coupler-spin rotations in
between. The rotations should be chosen in such a manner
that three spin components are involved in sequence. This
statement can be also confirmed by a direct calculation of the
evolution of τ and S operators. Moreover, one can achieve
a braiding-type operation also with a shorter manipulation,
which we will describe next.

Indeed, the full braiding, which we just outlined, is achieved
after a sequence of three pulling operations past the coupler
spin components S3, S1, and S2. However, we notice that
the operator S2 returns to its initial value after the first two
stages (this follows from the observation that all three coupler-
spin components return back after the full cycle, and S2 is
conserved during the last, S2-pulling stage). This allows us to
avoid the third (S2) pulling by using the following approach:
if the coupler is initially prepared in the (+1) eigenstate of S2,
then S2 = +1 during the third pulling operation, and thus this
operation is trivial (the qubit spins keep their states) and can
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FIG. 3. Practical realization of qubits chains with Josephson junction circuits. (a) Basic states of the gradiometer flux qubit. A permanent
flux of half a flux quantum is applied to each loop. Tunnelling occurs through one smaller junction denoted by α. (b) Driving of the qubit by
changing the tunneling strength (σx) or the flux bias (σ z). (c) Layout of the system with two chains (left and right) and the coupler (center).

be left out. Hence, the third stage is not needed, simplifying
the overall procedure.

In Appendix A we describe our suggested protocol in detail;
here we concentrate on the underlying ideas and main result.
One Ising link is controlled by the S3 component of the coupler
spin. To emulate other components, we manipulate the coupler
spin via local fields. To minimally disturb the qubit state, this
should be done while the ferromagnetic (∼topological) region
is moved away from the coupler location. Let us follow the
fate of the qubit and coupler operators in the three stages
of the process: the first and third stage involve pulling the
ferromagnetic section past the coupler, while the second stage
involves a coupler-spin rotation S2 → S2, S1 → S1 cos θ +
S3 sin θ , and S3 → S3 cos θ − S1 sin θ . After the combination
of the three stages we find that S2 is conserved, while τ y →
τ y cos θ − τ zS2 sin θ and τ z → τ z cos θ + τ yS2 sin θ . In other
words, if the coupler was initially prepared, e.g., in the (+1)
eigenstate of S2 (cf. the next section), it remains in this state
after the operation; that is, the coupler remains disentangled
from the qubit. At the same time a “braiding rotation” is
performed on the qubit subspace: γin → γin cos θ + γout sin θ ,
γout → γout cos θ − γin sin θ .

In Appendix B we reformulate the braiding-type protocol
in Majorana fermionic representations.

V. PHYSICAL REALISATION OF THREE-SPIN COUPLING

An effective coupling of the type HS
int = −J12σ

z
1 (1)σ z

2 (1)S1

(which is equivalent to that considered above upon the sub-
stitution S1 ↔ S3) can be realized as follows: Consider three
spins σ 1, σ 2, and S coupled by the following Hamiltonian:

H = v1σ
z
1 Sz + v2σ

z
2 Sz − �Sx, (18)

where � � v1,v2. Under these conditions one can treat the
couplings v1 and v2 perturbatively with H0 = −�Sx and
perturbation V = (v1σ

z
1 + v2σ

z
2 )Sz.

A Schrieffer–Wolf transformation H̃ = e−RHeR with

R = − iSy

2�

(
v1σ

z
1 + v2σ

z
2

)
(19)

yields [H0,R]− = −V . We thus find the new Hamiltonian

H̃ ≈ H0 + 1

2
[V,R]− = −�Sx − Sx

2�

(
v1σ

z
1 + v2σ

z
2

)2

= −�̃Sx − v1v2

�
σz

1 σ z
2 Sx, (20)

where �̃ = � + v2
1+v2

2
2�

. This produces the desired interaction
with J12 = v1v2

�
if we transform to the rotating frame with

respect to the term −�̃Sx .
In a realistic situation we have to include the terms

corresponding to the transverse fields acting on the spins
σ 1, σ 2, i.e., −h1σ

x
1 and −h2σ

x
2 into H0. A straightforward

calculation shows that our conclusions remain intact as long
as � � h1,h2. Formally, also the limit � � h1,h2 is possible
(the effective coupling is then of the order �v1v2/h2

1 or
�v1v2/h2

2). However, in this limit, once the spins σ 1, σ 2 are
being “frozen” and “defrozen,” one would have to go through
the resonances � = h1,h2, where unwanted transitions would
happen. Thus, we require the condition � � h1,h2 at all stages
of the protocol. One can also show that the terms describing
the coupling of σ 1 and σ 2 to the further spins of the respective
chains as well as the driving term −�(t)Sz acting on the
coupler are only slightly modified by the transformation (19).

VI. PRACTICAL IMPLEMENTATION OF ISING CHAIN

A practical implementation of the proposed schemes can be
realized by means of Josephson junction circuits. Flux qubits
are particularly suited because a strong coupling between them
is easy to achieve and their tunnelling strength, which plays
here the role of the transverse field, can be efficiently tuned
[14]. A possible circuit is illustrated in Fig. 3. It consists
of a chain of gradiometer flux qubits [14]. An individual
gradiometer qubit is shown in Fig. 3(a). It is an advanced
version of the flux qubit [24] (persistent current qubit with
a characteristic smaller junction denoted by α), in which the
outer inductance loop is replaced by two symmetrically placed
loops. The two states denoted by |↑〉 and |↓〉 (eigenstates of
σ z) are the persistent current states depicted in Fig. 3(a). The
amplitude of tunneling between |↑〉 and |↓〉, denoted here by
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h, is controlled by the Josephson energy of the α junction,
which can be tuned by replacing it with a two-junction
superconducting quantum interference device (SQUID) loop
[see Fig. 3(b)]. The gradiometer geometry allow us to tune
the α junction without affecting the bias energy between |↑〉
and |↓〉. Typical values could be as follows: qubit tunneling
strength h = 2πh̄ × 1 GHz within the topological region
and h = 2πh̄ × 9 GHz outside. The gradiometer inductive
loops contain further Josephson junctions; the strength of the
nearest-neighbor coupling can be varied by their number. The
nearest-neighbor coupling could be J = 2πh̄ × 3 GHz.

The coupler is a special gradiometer qubit with a particu-
larly strong tunneling, denoted here by � [see Eq. (18)]. We
envision � = 2πh̄ × 15 GHz. Moreover, an extra magnetic
bias (z bias) is needed in order to perform NMR-like rotations
of the coupler. This bias can be described by adding to the
Hamiltonian a term Hz = −�(t)Sz. The coupling between the
coupler and the first qubits of the chains can be made as strong
as v1/2 = 2πh̄ × 8 GHz [see Eq. (18)]. This is achieved by
placing extra Josephson junctions into the legs mutual to the
coupler and the first qubits [Fig. 3(c)]. These numbers are given
as examples and can be realized with available technology.

Switching of the individual qubits of the chains as well as
of the coupler can be effected in a few nanoseconds while the
coherence time can be above 10 μs [25]. This will allow at
least 1000 operations, enough to slide the topological region
(five qubits long) through the coupler and back.

Simulating a controllable Ising–Kitaev chain in the way
described above would validate the high level of coherence
and control of superconducting flux qubits. This would
demonstrate that the superconducting qubits are sufficiently
advanced and may simulate fermionic dynamics.

VII. IMPLEMENTATION IN A TOPOLOGICAL SYSTEM
WITH MAJORANA EDGE STATES

We now ask the following question: Do the protocols
developed in this paper for the Ising spin systems provide
added insight into the use of topological systems with
fermionic Majorana zero modes? First, we mention the recent
developments (see Refs. [15,16]) with advanced designs of
Majorana wires. Instead of small semiconducting wires placed
on top of large superconductors one uses multiple, relatively
small elongated superconducting islands placed on top of a
semiconducting wire. In Fig. 4 we show a chain of such
islands (as described in detail in Refs. [15,16]). It is easy
to understand that, by allowing for tunneling between adjacent
Majoranas fermions, HT = i

∑
n EMη(n)χ (n + 1), we obtain

a system completely equivalent to the Kitaev chain. Here
η(n) is the right Majorana fermion of island n, χ (n) is the
left Majorana fermion of island n, and EM is the tunneling
amplitude discussed in detail in Ref. [16]. The charging effects
are suppressed if the residual Josephson coupling EJ between
the islands, which is always present in addition to Majorana
coupling EM (see Refs. [15,16]), is larger than the charging
energy EC of each island. Alternatively, one can think of
coupling the islands to large superconducting reservoirs [15].
The capacitive interactions between the islands do not change
the situation qualitatively, as long as they remain small [26].

FIG. 4. Implementation of a Kitaev chain using superconducting
islands on top of a semiconducting wire (see Ref. [15]). The gates
control both the electrochemical potential of each wire (transverse
field in the Ising equivalent) as well as the tunneling amplitude
between the adjacent Majoranas (analog of J in the Ising chain).

With the insight gained from the spin representation we
envision coupling a flux qubit to one of the links between
adjacent sections hosting Majorana fermions, as shown in
Fig. 5. At this stage we do not discuss the experimental
realization of this setup, which may present a challenge for
present-day technology. The idea is to use the phase difference
ϕ across the Josephson junction of the qubit (the branch with
a single junction) to control the tunneling of Majoranas. As
discussed, e.g., in Ref. [16], the tunneling Hamiltonian for
this particular link reads HT = iEM cos(ϕ/2)η(n)χ (n + 1).
We consider the situation where the Josephson energy of the
flux qubit is much higher than the tunneling amplitude EM .
Then the phase difference across the junction can take two
well-defined values depending on the quantum state of the
flux qubit, and the system of Majoranas has to adjust to these
two possible situations. In a usual symmetrically biased flux
qubit the phase drop ϕ takes the values ϕ = π ± �ϕ with
�ϕ < π/2. Thus, cos(ϕ/2) takes one positive and one negative
value, and the effective Hamiltonian of the link controlled
by the flux qubit becomes Heff = iJ ′Szη(n)χ (n + 1), where
J ′ ≡ EM | cos(π/2 + �ϕ/2)|. This Hamiltonian is equivalent
to the one considered above for the 1D setup.

FIG. 5. A flux qubit controls one of the links in the Kitaev
chain. Assuming the Josephson energy of the qubit dominates over
the tunneling amplitude of Majoranas, the latter is enslaved to the
quantum state of the qubit.
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VIII. DISCUSSION

In this paper we have proposed setups of Ising spins which
allow emulating the physics of Majorana systems and, in
particular, performing the braiding operation. In the first case
we showed that this is possible in a T -junction geometry, when
we introduce an extra spin coupling to the three legs and also
appearing as Klein factor in the generalized Jordan–Wigner
transformation, thus preserving the proper anticommutation
relations. In the second case we showed that a braiding-type
protocol can also be performed in a strictly 1D Ising setup,
which may be easier to realize in experiments. In addition it
allows us to perform the analog of parity-conserving rotations
of a Majorana qubit by an arbitrary angle. This is achieved
by placing a special spin 1

2 (coupler) in one of the Ising links
of the chain. The coupler controls the sign (ferromagnetic or
antiferromagnetic) of that Ising link.

This 1D setup emerged in the search for methods to
implement (nonprotected) topological braiding in Ising chains.
The well-known problem is the fact that the Jordan–Wigner
transformation, which maps the Ising problem onto the
fermionic one, is strictly one dimensional. Placing a coupler
between three Ising chains allows circumventing this obstacle
but requires a very special kind of coupling. We showed that
the same can be achieved in 1D if one is able to manipulate the
coupler between the adiabatic passages of the ferromagnetic
(topological) domain through the Ising link controlled by the
coupler.

Our protocol could possibly be generalized. One prospec-
tive possibility is to rotate the coupler during sliding of
the topological (ferromagnetic) domains. This could induce
nontrivial Berry phases. Moreover, our protocol can be di-
rectly employed in systems containing topologically protected
fermionic wires (islands). Such wires would have to be coupled
in a nonprotected fashion to a spin 1

2 (qubit).
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APPENDIX A: BRAIDING ALGORITHM
IN SPIN LANGUAGE

In this appendix we complement the previous discussions
by an explicit calculation in the spin language. We assume
that the chains α = 1 and 2 are on the left and right side of
the setup, respectively, and the coupling between the chains is
controlled by S3. We perform the following protocol: (i) We
start with the ferromagnetic (∼ topological) section (qubit) on
the left side prepared in the state |↑↑↑〉, while the coupler is
in the state |↑〉S . That is, the initial state is the product state

|ψ0〉 = |↑〉S ⊗ |↑↑↑〉. (A1)

(ii) To rotate the coupler around the x axis by an angle φ, we
apply the operation

Uφ = exp

{
− iφ

2
Sx

}
= cos

φ

2
− i sin

φ

2
Sx. (A2)

This gives

|ψ1〉 = Uφ|↑〉S ⊗ |↑↑↑〉

=
[

cos
φ

2
|↑〉S − i sin

φ

2
|↓〉S

]
⊗ |↑↑↑〉. (A3)

(iii) We pull the ferromagnetic section adiabatically to the right
side. This gives

|ψ2〉 = cos
φ

2
|↑〉S ⊗ |↑↑↑〉 − i sin

φ

2
|↓〉S ⊗ |↓↓↓〉.

(A4)

(iv) We rotate the coupler around the y axis by an angle θ by
applying

Uθ = exp

{
− iθ

2
Sy

}
= cos

θ

2
− i sin

θ

2
Sy. (A5)

This produces

|ψ3〉 = cos
φ

2

[
cos

θ

2
|↑〉S + sin

θ

2
|↓〉S

]
⊗ |↑↑↑〉

− i sin
φ

2

[
cos

θ

2
|↓〉S − sin

θ

2
|↑〉S

]
⊗ |↓↓↓〉.

(A6)

(v) We pull the ferromagnetic section back to the left side. This
produces

|ψ4〉 =
[

cos
φ

2
cos

θ

2
|↑〉S − i sin

φ

2
cos

θ

2
|↓〉S

]
⊗ |↑↑↑〉

+
[

cos
φ

2
sin

θ

2
|↓〉S + i sin

φ

2
sin

θ

2
|↑〉S

]
⊗ |↓↓↓〉.

(A7)

For φ = π/2 [this corresponds to a preparation of an eigenstate
of S2 at step (ii) above], the resulting state is a product state,

|ψ4〉 = 1√
2

[|↑〉S − i|↓〉S]

⊗
(

cos
θ

2
|↑↑↑〉 + i sin

θ

2
|↓↓↓〉

)
. (A8)

If, instead, we started with the state |ψ ′
0〉 = |↑〉S ⊗ |↓↓↓〉,

we would obtain

|ψ ′
4〉 = 1√

2
[|↑〉S − i|↓〉S]

⊗
(

cos
θ

2
|↓↓↓〉 + i sin

θ

2
|↑↑↑〉

)
. (A9)

Thus we perform a (−θ ) rotation around the x axis of the qubit,
and after the operation the coupler is no longer entangled with
the qubit. In the basis of the states with well-defined occupation
numbers (parity) of the Dirac fermions, (1/

√
2)(|↑↑↑〉 ±

|↓↓↓〉), the achieved rotation is a U (1) rotation around the
z axis, as expected.2

2The frozen spins are in the state | →x〉 = (1/
√

2)(|↑〉 + |↓〉). If
this spin “joins” the |↑↑↑〉 chain the rotation is performed by U =
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APPENDIX B: BRAIDING IN TERMS OF
THE MAJORANA OPERATORS

1. Boundary translations

Assume that the topological (∼ferromagnetic) interval is
placed on one side of the coupler (that is, in one of the chains).
The shift of the inner boundary of the interval towards the
coupler, say, from spin �σα(k + 1) to spin �σα(k), due to the
adiabatic variation of the corresponding transverse field hα(k)
from +∞ to 0, is given by the operator

T in
k,α = exp

{
i
π

4
σ z

α(k + 1)σy
α (k)

}
= 1 + iσ z

α(k + 1)σy
α (k)√

2

= 1 − χα(k + 1)χα(k)√
2

. (B1)

In particular, the zero-mode edge operator is shifted properly:

T in
k,αχα(k + 1)T in,†

k,α = χα(k). (B2)

The part of the boundary zero mode γin is played by χα(k + 1)
before the shift and by χα(k) after the shift. Similarly, the
operator that shifts the outer boundary away from the coupler,
i.e., from spin �σα(k) to spin �σα(k + 1), reads

T out
k,α = exp

[
i
π

4
σ z

α(k)σy
α (k + 1)

]
= 1 + iσ z

α(k)σy
α (k + 1)√

2

= 1 − ηα(k)ηα(k + 1)√
2

. (B3)

Again, the corresponding zero-mode operator is shifted prop-
erly:

T out
k,α ηα(k)T out,†

k,α = ηα(k + 1). (B4)

If in the middle of the protocol the topological interval is
shared by two chains, there are only outer boundaries, and
only the operators T out

k,α and (T out
k,α )−1 = T

out,†
k,α can be applied.

The operator that transfers the inner boundary from chain α to
chain β (where it becomes an outer boundary) reads

Tβ←α = exp

[
i
π

4
Sγ σ z

α(1)σy

β (1)

]
= 1 + �αβχα(1)ηβ(1)√

2
.

(B5)

Here α, β, γ are mutually distinct, and �αβ ≡ εαβγ (which
equals ±1 depending on whether the shift α → β is in the
clockwise or counterclockwise direction). Here we obtain an
extra minus sign while shifting the zero mode, i.e.,

Tβ←αχα(1)T †
β←α = −�αβηβ(1), (B6)

which is consistent with the sign of Eq. (16). As expected, the
operators Sα do not enter final expressions in the fermionic
language. Yet, they remain important due to the nontrivial
commutation relations (12).

exp[i(π/4)σy]. We have U | →x〉 = |↑〉. If the frozen spin “joins”
the |↓↓↓〉 chain the rotation is by U † = exp[−i(π/4)σy]. We obtain
U †| →x〉 = |↓〉. Thus, no extra sign appears.

2. Braiding-type operations in one-dimensional geometry

Next we explain how to perform a braiding-type operation
in the 1D geometry depicted in Fig. 2. We refer to this setup
as a two-chain composite. Consider two chains α = 1 and
β = 2. We assume that, initially, the topological interval is
limited by the inner boundary N in

α � 1 and the outer boundary
Nout

α � N in
α . Thus, the zero mode is given by γout = ηα(Nout

α )
and γin = χα(N in

α ) (due to the inverse orientation of the chain
α = 1, we avoid using left and right indices). Once the interval
is transported to the chain β, the edges are located at N in

β � 1
and Nout

β � N in
β . To maintain an adiabatic regime, we have to

transfer the inner boundary in α to the outer boundary in β and
vice versa.

Now we construct the complete braiding operator:

Ubr = U
†
RULUy(θ )U †

LUR. (B7)

Here the rotation of the coupler in the middle of the protocol
is described by

Uy(θ ) = exp

(
−i

θ

2
Sy

)
= cos

θ

2
− i sin

θ

2
Sy. (B8)

The operator UR describes the transport of the inner edge on
the left side (α = 1) to the outer edge on the right side (β = 2):

UR = T out
β Tβ←αT in

α , (B9)

where

T in
α ≡

k=N in
α −1∏

k=1

T in
k,α =

k=N in
α −1∏

k=1

1 − χα(k + 1)χα(k)√
2

, (B10)

and

T out
β ≡

k=1∏
k=Nout

β −1

T out
k,β =

k=1∏
k=Nout

β −1

1 − ηβ(k)ηβ(k + 1)√
2

.

(B11)

Analogously, the operator UL describes the transport of the
inner edge on the right side (β = 2) to the outer edge on the
left side (α = 1):

UL = T out
α Tα←βT in

β , (B12)

where we again use the definitions (B10) and (B11) with α

and β interchanged.
We obtain

Ubr = cos
θ

2
− i sin

θ

2
U

†
RULSyU

†
LUR. (B13)

Next,

U
†
RULSyU

†
LUR = [T out

β Tβ←αT in
α ]†T out

α Tα←βT in
β Sy

× [T out
α Tα←βT in

β ]†T out
β Tβ←αT in

α . (B14)

Since, in our case, Sy = S2 = Sβ , we observe that Sβ

commutes with operators T in
α/β and T out

α/β , whereas

SβTβ←α = T
†
β←αSβ and SβTα←β = T

†
α←βSβ. (B15)
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This gives

U
†
RULSβU

†
LUR

= Sβ[T out
β T

†
β←αT in

α ]†T out
α T

†
α←βT in

β

× [T out
α Tα←βT in

β ]†T out
β Tβ←αT in

α

= SβT in,†
α Tβ←αT

out,†
β T out

α T
†
α←βT in

β T
in,†
β T

†
α←βT out,†

α

× T out
β Tβ←αT in

α

= SβT in,†
α Tβ←αT

out,†
β T out

α [T †
α←β]2T out,†

α T out
β Tβ←αT in

α .

(B16)

We notice that [T †
α←β]2 = �βαηα(1)χβ(1). This immediately

allows us to commute T out
β and T

out,†
β out since these consist

only of ηβ(k). We, thus, obtain

U
†
RULSβU

†
LUR

= SβT in,†
α Tβ←αT out

α �βαηα(1)χβ(1)T out,†
α Tβ←αT in

α .

(B17)

Furthermore, we observe that T out
α ηα(1)T out,†

α = ηα(Nout
α ) =

γout, as the edge transport relation (B4) suggests.

We obtain

U
†
RULSβU

†
LUR = �βαSβT in,†

α Tβ←αγoutχβ(1)Tβ←αT in
α

= �βαSβT in,†
α T 2

β←αT in
α γoutχβ(1)

= �βαSβT in,†
α �αβχα(1)ηβ(1)T in

α γoutχβ(1)

= −SβT in,†
α χα(1)T in

α χβ(1)ηβ(1)γout. (B18)

Finally we use Eq. (B2) and obtain T in,†
α χα(1)T in

α = χα(N in
α ) =

γin. This gives

U
†
RULSβU

†
LUR = −Sβχβ(1)ηβ(1)γinγout. (B19)

Since the system remains in the ground-state subspace, and
after the completion of the protocol hβ(1) = +∞, we observe
from Eq. (1) that the first spin in the β chain is frozen so that
〈χβ(1)ηβ(1)〉 = −i〈σx

β (1)〉 = −i. We, thus, finally obtain

U
†
RULSβU

†
LUR = iSβγinγout, (B20)

and

Ubr = cos
θ

2
+ sin

θ

2
Syγinγout. (B21)

This result coincides exactly with that obtained using the spin
representation. That is, if the coupler is initially prepared in
the (−1) eigenstate of Sy , we induce a (−θ ) rotation of the
topological qubit, described by Ubr = cos θ

2 − sin θ
2 γinγout =

exp[− θ
2 γinγout], whereas the coupler remains disentangled

from the qubit.
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