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Abstract
As the volume of telemetry data generated by satellites and other complex systems continues to grow, there is a pressing 
need for more efficient and accurate anomaly detection methods. Current techniques often rely on human analysis and pre-
set criteria, presenting several challenges including the necessity for expert interpretation and continual updates to match 
the dynamic mission environment. This paper critically examines the use of deep anomaly detection (DAD) methods in 
addressing these challenges, evaluating their efficacy on real-world spacecraft telemetry data. It exposes limitations in current 
DAD research, highlighting the tendency for performance results to be overestimated and suggesting that simpler methods 
can sometimes outperform more complex DAD algorithms. By comparing established metrics for anomaly detection with 
newly proposed ones, this paper aims to improve the evaluation of DAD algorithms. It underscores the importance of using 
less accuracy-inflating metrics and offers a comprehensive comparison of DAD methods on popular benchmark datasets 
and real-life satellite telemetry data. Among the DAD methods examined, the LSTM algorithm demonstrates considerable 
promise. However, the paper also reveals the potential limitations of this approach, particularly in complex systems that lack 
a single, clear predictive failure channel. The paper concludes with a series of recommendations for future research, includ-
ing the adoption of best practices, the need for high-quality, pre-split datasets, and the investigation of other prediction error 
methods. Through these insights, this paper contributes to the improved understanding and application of DAD methods, 
ultimately enhancing the reliability and effectiveness of anomaly detection in real-world scenarios.

Keywords  Deep anomaly detection · Real-life satellite telemetry data · Anomaly detection metrics · Time-series anomaly 
detection
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1  Introduction

Satellites and other complex systems generate increasing 
amounts of telemetry data that can be analyzed by terrestrial 
systems. Monitoring this data is crucial for ensuring the 
success of spacecraft operations and missions. Anomaly 
detection is a key method to prevent spacecraft loss due to 
undetected flaws or slow responses to hazards. However, 
most current anomaly detection methods rely on human 
evaluation of aggregated data and out-of-limit checks 
with established criteria. These methods have significant 
disadvantages, as they require specialized expertise and 
effort to organize and analyze the data.

In the coming years, these challenges are expected to 
intensify due to ongoing advancements in computer and 
storage capacities. As a result, the volume of telemetry 
data will significantly increase, placing greater demands 
on technical resources and data aggregation techniques. 
Deep learning for anomaly detection in high-dimensional 
time-series data has shown promising results with recent 
advancements in neural network architecture and increased 
processing power. Some deep learning algorithms perform 
better than traditional anomaly detection techniques on real-
world time-series challenges [1], with reported F1 scores 
greater than 0.9, indicating highly accurate deep anomaly 
detection (DAD) capabilities. However, the widely used 
point adjust (PA) method [2] in modern DAD research has 
faced criticism in recent publications, mainly due to its 
tendency to overestimate accuracy [3–6]. This paper aims 
to address the aforementioned shortcomings by applying and 
evaluating DAD methods on real-world spacecraft telemetry 
data. In doing so, it contributes to the state of the art in the 
following ways:

•	 We compare established metrics for anomaly detection 
with newly proposed metrics, aiming to improve the 
measurement and evaluation of anomaly detection 
algorithms. By considering a range of metrics, we 
provide a more robust framework for assessing algorithm 
performance.

•	 We investigate the performance of anomaly detection 
methods with different levels of complexity using metrics 
that are less likely to overestimate accuracy. This allows 
for a more comprehensive assessment of the methods’ 
effectiveness.

•	 The comparison and evaluation of the anomaly detection 
methods are conducted on two popular benchmark 
datasets as well as on a real-life dataset of satellite 
telemetry data. This provides a comprehensive and 
realistic assessment of the methods’ performance in 
different scenarios.

The remainder of this paper is organized as follows. 
Section 2 provides an introduction to the background and 
current state of the art in anomaly detection. Section 3 
describes the metrics, anomaly detection algorithms, 
and thresholding methods employed in this study for the 
comparison and evaluation of the methods. Section  4 
provides a comprehensive overview of the datasets utilized 
in the case studies, offering pertinent information about each 
dataset. Furthermore, it presents the detailed results obtained 
from the case studies and engages in an in-depth discussion 
of the findings. Finally, in Sect. 5, we summarize the key 
findings and limitations of the study and suggest potential 
directions for further research and improvement in the field 
of DAD.

2 � Literature review

2.1 � State of the art

Numerous studies have investigated various aspects of DAD 
on satellite data, exploring diverse topics within this field. 
At the core of anomaly detection algorithms lies the data 
they analyze. Time-series data, characterized by a sequence 
of time-dependent variables, represents a distinctive type of 
input data with its own unique properties and challenges [7, 
8]. Various efforts to characterize the nature of anomalous 
data have been documented in the literature. Hawkins’ 
definition of an anomaly is: “an observation which deviates 
so much from other observations as to arouse suspicions that 
it was generated by a different mechanism” [9]. According to 
Barnett and Lewis, an anomaly is “an observation or subset 
of observations, which appears to be inconsistent with the 
remainder of that set of data” [10]. Time-series anomalies 
are typically classified into three types: Point, Contextual, 
and Collective anomalies [11]. They can also be further 
divided into more specific subsets that depend on the domain 
being analyzed. For example, Tang et al. defined six patterns 
to categorize vibration anomalies [12].

Choi et  al. categorized classic anomaly detection 
approaches into time/frequency domain analysis, statistical 
models, distance-based models, auto-regressive models, and 
clustering models [7]. Basora et al. groups distance-based 
and clustering models together and expands the classification 
to include ensemble-based, domain-based, and subspace-
based methods [13]. Telemetry data from spacecraft is 
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typically analyzed in the time domain using simple limit 
checking with upper and lower limits for the observed values 
[14]. However, fixed thresholds can be limiting for dynamic 
systems. To address this, adaptive limit checking has been 
developed [15].

Traditional methods for anomaly detection face 
limitations in scaling with increasing dimensionality and 
large data volumes. In contrast, deep learning methods, 
specifically DAD, have shown superior performance in such 
scenarios [16–18]. Recent research has focused on DAD to 
overcome these challenges, and it has been successfully 
applied to various tasks across different domains.

The advancement in deep learning architecture and 
increase in data and computational resources have resulted 
in deep learning models performing some tasks at a human 
level, even surpassing it in certain cases. This has also 
fueled extensive research in the field of diagnostics. The 
most common deep learning architectures that are used in 
anomaly detection are convolutional neural network (CNN) 
and recurrent neural network (RNN), specifically the long 
short-term memory (LSTM) networks [19], autoencoder 
(AE) and variational autoencoder (VAE) [20], generative 
adversarial networks (GAN) [21], graph attention network 
(GAT) [22] and transformers [23].

DAD models aim to minimize an objective loss function 
during training, which depends on the model architecture 
and relates to abnormality decision criteria. These mod-
els output an anomaly score, which is a numeric value that 
indicates the probability of a sample being abnormal, and 
samples are labeled as anomalous when the score exceeds 
a certain threshold. While domain experts used to set the 
threshold empirically, it is now determined based on training 
results, either through performance evaluation on valida-
tion data for labeled data or by using extreme value theory 

for non-labeled data [24]. DAD can be categorized into 
three types depending on the method used to calculate the 
anomaly score: reconstruction error, prediction error, and 
dissimilarity [7]. However, the first two criteria are more 
commonly used than the third.

Autoencoders, variational autoencoders, generative 
adversarial networks, and transformers are examples of 
models that typically use reconstruction errors to obtain an 
anomaly score. They learn low-dimensional representations 
of the data and map them to the input space to calculate 
residuals by comparing the reconstructed values with 
the original data. Reconstruction-based methods assume 
that anomalies lose information when mapped to a lower 
dimensional space and cannot be effectively reconstructed. 
Therefore, high reconstruction errors suggest a high chance 
of being anomalous [25]. Prediction error methods use a 
model to fit the given data and predict future values. The 
difference between the model output and the actual values 
is used to identify anomalies. Commonly used models for 
prediction error anomaly scores include LSTM, CNN, graph 
neural networks (GNN), and transformers. Dissimilarity-
based models measure distance or similarity between 
data instances. Objects that are distant from a cluster or 
distribution are considered anomalies. A table of current 
state-of-the-art algorithms with their corresponding 
architecture, anomaly criterion and benchmark scores can 
be seen in Table 1.

2.2 � Limitations in the state of art

While many papers claim to have unsupervised algo-
rithms, several of them suffer from data leakage, espe-
cially many of those that achieve the best results. Data 
leakage refers to the utilization of information during the 

Table 1   Performance comparison of recent deep anomaly detection algorithms

Server Machine Dataset (SMD) [26], Mars Science Laboratory (MSL) and Small Active Passive Satellite (SMAP) [14], Secure Water Treatment 
(SWAT) [27]

Name Year Network type Anomaly criterion F1PA Benchmark results

SMD MSL SMAP SWAT​

Anomaly transformer [18] 2021 Transformer Reconstruction error, association discrepancy 92,33 93,59 96,69 94,07
ImDiffusion [28] 2023 Transformer, diffusion model Prediction error 94,88 87,79 91,75 87,09
BeatGAN [29] 2019 GAN, autoencoder Reconstruction error 78,1 87,53 69,61 73,92
TadGAN [25] 2020 GAN Reconstruction error, critique Score 62,3 70,4
MAD-GAN [30] 2019 LSTM, GAN Reconstruction error 87,47 81,31 0,77
MTAD-GAT [22] 2020 GAT, Attention Prediction error, reconstruction error 90,84 90,13
OmniAnomaly [26] 2019 RNN, VAE Reconstruction error 88,57 89,89 84,34
THOC [17] 2020 RNN, One-class network Dissimilarity 93,67 95,18 88,09
USAD [31] 2020 Autoencoder, adverse training Reconstruction error 93,82 91,09 81,86 84,6
GTA [32] 2021 Transformer, GNN Prediction error 91,11 90,04 91
LSTM [14] 2018 LSTM Prediction error 69 71
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model training process that would not be available at pre-
diction time. Algorithms that really provide unsupervised 
results often rely on extreme value theory [14, 22, 25, 26, 
29] or use a discriminator network [29]. However, many 
top-performing algorithms create the illusion of being 
unsupervised but actually utilize the test data to deter-
mine the threshold [17, 31, 32].

Classic cross-validation with a standard split can be 
considered data leakage when applied to most time-series 
datasets. This is because it relies on the assumptions of 
independence and identical distribution, which may not 
hold in many real-world scenarios. The independence 
assumption implies that the values in the time series are 
not influenced by previous or future values. However, 
in many engineering systems, there are dynamics and 
interdependencies that violate this assumption. For 
example, in a mechanical system, the current state of the 
system may depend on its past states or external factors. 
This violates the independence assumption and can lead 
to biased and inaccurate performance estimates when 
using standard cross-validation. Similarly, the identical 
distribution assumption assumes that each observation 
in the time series is drawn from the same underlying 
probability distribution. However, in engineering 
systems, it is common for the distribution to change 
over time due to factors such as wear and tear, aging, or 
external influences. Therefore, the identical distribution 
assumption may not hold, and using standard cross-
validation can introduce bias and inaccuracies in the 
evaluation of anomaly detection methods. There exist 
other methods, for example cross-validation on a rolling 
basis, that could be used. Additionally, some algorithms 
use the input of the assumed or known fraction of outliers 
to determine the threshold [18, 33]. This approach has two 
issues. Firstly, the true outlier fraction is often unknown 
in real-life datasets. Secondly, it is not appropriate to 
apply the outlier fraction to the training dataset, as the 
training data is typically assumed to consist of normal 
instances.

Recent DAD research has reported high anomaly 
detection scores, leading to a perceived increase in 
accuracy. However, many studies use a method called 
PA [14] which artificially inflates metric scores and 
significantly improves real positive identification. Some 
authors have identified problems with PA and proposed 
new metrics [3–6]. They found out that many DAD 
algorithms do perform worse than a random signal or 
an untrained network when using PA to compare the 
results, demonstrating its inherent flaw. Additionally, the 
benchmark datasets used by the research community to 
compare DAD algorithms have been criticized. Wu and 
Keogh argue that these benchmarks are flawed and create 
an illusion of progress due to issues such as triviality, 

unrealistic anomaly density, mislabeled ground truth, and 
run-to-failure bias [34].

3 � Methodology

3.1 � Deep anomaly detection

This study seeks to provide a comprehensive representation 
of the DAD research field, focusing on the two main 
anomaly detection criteria: reconstruction error and 
prediction error. This exploration aims to discern whether 
increasing algorithmic complexity directly corresponds 
to more precise anomaly detection. To do so, algorithms 
of varying complexity were chosen, each demonstrating 
different strengths and attributes in their performance. 
The selection process encompassed both traditional and 
innovative anomaly detection techniques. The LSTM 
algorithm uses prediction error as its anomaly detection 
criterion, while the USAD and anomaly transformer 
operate based on reconstruction error. The anomaly 
transformer algorithm additionally introduces a novel 
anomaly detection metric, the ’association discrepancy’, 
showcasing the current trend of inventing new techniques 
to enhance detection capabilities. Furthermore, LSTM 
algorithm comes from the same domain as the telemetry 
data of satellites, which is considered to provide a unique 
perspective to the research. The selection process also 
considered performance capabilities, with one algorithm 
chosen specifically for its impressive results in numerous 
instances.

After careful consideration, the three algorithms 
selected were: the anomaly transformer, USAD, and 
LSTM. The anomaly transformer, the most complex 
among the three, features a transformer network, a 
learnable Gaussian kernel, and two-phase learning, and 
introduces its own ’association discrepancy’. USAD, a 
moderately complex model, necessitates the use of two 
autoencoders trained in two phases, one of which involves 
adversarial training. LSTM, on the other hand, represents 
the simpler end of the spectrum, involving the training 
of a basic LSTM network to fit the data. These choices 
ensure a wide-ranging exploration of the current state of 
DAD research.

3.1.1 � Anomaly transformer: time‑series anomaly detection 
with association discrepancy [18]

Xu et al. have proposed an “anomaly transformer” that 
utilizes the global representation capability of transformers 
to handle long sequences effectively. The authors use 
the self-attention mechanism to calculate “association 
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discrepancy” between “prior association” and “series 
association”. “Series association” refers to the association 
of a specific time point with the entire data of the chosen 
sliding window, whereas “prior association” refers to 
the association with the adjacent region represented 
by a learnable Gaussian kernel. The assumption of the 
dataset is that anomalies are rare, and most of the data 
is “normal.” Therefore, a normal data point would have 
a high association with the whole data series, while an 
abnormal point would have a higher association with 
adjacent points containing more abnormal patterns 
due to continuity. The difference between the prior 
association and the series association is called association 
discrepancy. A low discrepancy indicates an anomaly, 
while a high discrepancy indicates a normal point. 
The algorithm employs minimax association learning, 
which is depicted in Fig. 1. In the “minimize” phase, the 
prior association is adjusted to approximate the series 
association and adapt to the temporal patterns to decrease 
the association discrepancy. In the “maximize” phase, the 
series association is optimized to increase the association 
discrepancy and focus more on the non-adjacent horizon.

This paper has demonstrated excellent results on 
benchmark datasets and is one of the first to utilize 
transformers. The authors use a new association-based 
detection criterion, which they pair with reconstruction error 
to obtain an anomaly score. They use the outlier fraction to 
determine the threshold.

The authors of the study concatenated individual anom-
aly sequences from the test datasets into a single data-
set file [35], which raises two issues. Firstly, calculating 
the metric score by summing up the classes of the con-
fusion matrix and calculating the metric using this sum 
can lead to inflated scores. This is explained further in 
Subsect. 3.2 where an improved method is suggested and 
used in our experiments. Secondly, by concatenating the 
anomaly sequences, the dataset becomes discontinuous. 

The anomaly sequences are not necessarily related to each 
other and are from different times. This means that at the 
time step where one sequence transitions to another, there 
will be a sudden difference in values. Datasets suffer from 
run-to-failure bias, where anomalies often occur toward 
the end of a sequence [34]. The sudden change in input at 
the transition point could lead to flagging the entire time 
window around that point as an anomaly. While the algo-
rithm correctly detects the anomaly, it may only detect the 
beginning of a new sequence rather than an actual anom-
aly. Furthermore, the anomaly sequences in the dataset are 
independent of each other involving various subsystems 
and channel types. Therefore, the training and testing is 
run per anomaly sequence in our experiments.

3.1.2 � LSTM: detecting spacecraft anomalies using LSTMs 
and nonparametric dynamic thresholding [14]

This algorithm utilizes LSTM and nonparametric dynamic 
thresholding (NPT) to detect spacecraft anomalies. During 
training, the LSTMs are fitted to the normal operating data 
of the spacecraft to predict future telemetry data. However, 
while the input is multivariate, the algorithm only predicts 
one channel (feature) of the data stream. Therefore the 
performance of the algorithm might depend on the channel 
that was selected. The trained LSTMs are then used to 
generate anomaly scores by calculating the prediction 
error in the testing phase. In the testing phase, the NPT 
algorithm is used to set a threshold for the anomaly scores 
generated by the LSTMs. The threshold is dynamically 
adjusted based on the past anomaly scores, which allows 
for the detection of anomalies with varying degrees of 
severity. Additionally, error pruning techniques are used 
to ensure that anomalous sequences are not considered 
as a result of regular noise within a stream. This helps 
to filter out false positives and improves the accuracy of 
anomaly detection by focusing on significant deviations 
from normal patterns. Overall, this algorithm utilizes 

Fig. 1   Minimax association learning as shown by Xu et  al. [18]. At 
the minimize phase, the prior association minimizes the association 
discrepancy within the distribution family derived by Gaussian ker-

nel. At the maximize phase, the series-association maximizes the 
association discrepancy under the reconstruction loss
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LSTMs to model the spacecraft’s normal behavior and 
dynamic thresholding to detect deviations from the normal 
behavior, enabling the detection of spacecraft anomalies 
in real time.

3.1.3 � USAD: unsupervised anomaly detection 
on multivariate time series [31]

Audibert et al. have developed an algorithm that employs 
two adversarial autoencoder networks, inspired by GAN, to 
achieve high stability, robustness, and training speed without 
compromising accuracy. Unsupervised anomaly detection 
(USAD) consists of an encoder network and two decoder 
networks, which are combined into an architecture that 
includes two autoencoders, AE1 and AE2, sharing the same 
encoder network. The architecture can be seen in Fig. 2. 
The training of USAD is carried out in two phases. In the 
first phase, the two autoencoders are trained to reconstruct 
the normal input windows. In the second phase, the two 
autoencoders are trained in an adversarial manner, where 
AE1 attempts to deceive AE2 while AE2 tries to distinguish 
between real and reconstructed data. The encoder–decoder 
network is trained on the normal data to learn the tempo-
ral patterns and correlations between the variables in the 
time series. The anomaly scoring mechanism then uses the 
reconstruction error of the network to generate an anom-
aly score for each data point. The adversarial training of 
the encoder–decoder architecture is shown to amplify the 
reconstruction error and improve stability compared to GAN 
methods. Additionally, the algorithm introduces a sensitivity 
threshold that can be adjusted without retraining the model 
to increase or decrease the detection sensitivity. They use 
grid search to determine the threshold that gives the best 
F1 score.

3.2 � Metrics

The F1 score is a commonly used metric for evaluating time-
series anomaly detection algorithms. It is important to note 

that most studies use the PA technique before scoring the 
performance of an algorithm, as it was shown that using the 
F1 score without PA does underestimate the the detection 
capability [3]. For example, the authors of the anomaly 
transformer say: “We adopt the widely-used adjustment 
strategy... This strategy is justified from the observation that 
an abnormal time point will cause an alert and further make 
the whole segment noticed in real-world applications”.

The authors of the USAD algorithm rightfully criticise 
the overestimation of the PA method when another algo-
rithm performs better on the dataset by stating: “..the advan-
tage obtained with the point-adjust which validates whole 
segments of good prediction despite having potentially 
missed several abnormalities”. However, they continue to 
use the technique on the other datasets not stating the results 
without the PA method.

However, recent studies in deep anomaly detection report 
high F1 scores, leading to a perceived increase in accuracy. 
This is because they use the PA technique which was first 
used by Xu et al. [2]. The principle of PA can be seen in 
Fig. 3, where all instances in an anomalous sequence are 
considered true positives when at least one anomaly is 
detected within the sequence. This technique greatly 
amplifies the detection of true positives and artificially 
inflates the F1 score [3–6]. Hence, they propose new metrics.

Fig. 2   Architecture of the USAD algorithm as proposed by Audibert et al. [31] illustrating the information flow at training (left) and detection 
stage (right)

Fig. 3   This figure taken from Doshi et al. [4] demonstrates the com-
parison between the commonly used PA evaluation method and the 
traditional instance-based evaluation
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•	 F1C score: According to Garg et al., a perfect anomaly 
detection algorithm should be able to detect at least one 
anomalous data point per anomaly event without any 
false positives[5]. Therefore, they proposed a new metric 
called Composite F score (F1C). The F1C score is 
calculated similar to the F1 score by taking the harmonic 
mean of precision and recall. However, the recall is 
calculated event-based instead of instance-based: 
Recallevent =

TPe

TPe+FNe

•	 F1PA%k: Kim et al. argue that PA overestimates detection 
accuracy, while using F1 score without PA underestimates 
accuracy due to incomplete test set labeling [3]. The 
authors suggest a new metric, called F1PA%k, which can 
address the problems of over- and underestimation. This 
metric is similar to PA, but it only considers an event 
as detected when the proportion of correctly identified 
instances in the event exceeds a threshold value k. If 
a user wants to remove the dependency on a specific 
threshold value k, it is recommended to measure the 
area under the curve (AUC) of F1PA%k by gradually 
increasing k from 0 to 100. This approach allows for a 
comprehensive evaluation of the model’s performance 
across various threshold values, providing a more robust 
assessment of anomaly detection capability and is 
referred to as F1PA%k-AUC​.

Although these new metrics are generally considered an 
improvement over the F1PA, they have their advantages and 
disadvantages. To evaluate which metrics perform well in 
different scenarios, several example signals were created and 
can be seen in Fig. 4. The first simulated anomaly detec-
tor is a random signal with a 0.01 probability of flagging 
a time step as an anomaly. Y1 to Y4 are constructed sig-
nals that correctly detect portions of the anomaly, and some 
of them also have false positive sequences during normal 
operation. Y5 is a special case where the alarm is raised the 
whole time except for one instance where a false negative 
occurs in the actual anomaly. The example signals can be 
seen in Fig. 4 and their results for the four different metrics 
can be found in Table 2. As previously stated, the F1 score 
underestimates the capabilities of a detection algorithm. All 

scores are relatively low except for Y4, where most of the 
anomalous event was captured. When detecting an anoma-
lous event, it is not essential whether the whole anomalous 
segment was detected or only a fraction, since an operator 
would investigate the system as soon as an alarm is raised. 
Therefore, one could argue that detector Y1 is better than 
Y4 as no false positives were raised. However, the F1 score 
does not capture this. Therefore, PA was created, as it was 
reasoned that an anomaly detector should have minimal false 
positives and detect an anomalous event. Looking at the F1PA 
scores, it can be observed that the metric overestimates the 
detection capabilities. All detectors achieve high scores, 
and the random detector almost reaches a perfect score. 
The F1C score improves on this, as the deviation between 
a good detector (Y1) and a worse one (Y3) becomes more 
significant, and the random signal scores fewer points. The 
F1PA%k metric rightly scores the random signal even lower. 
However, it is sensitive to the parameter k. In this case, a k 
of 20 was selected, and it can be seen that signal Y1 scored 
low because the fraction of detected anomalous instances 
in the anomaly event was less than 20%. The signal Y5 can 
be regarded as a poor detector, since it raises an alarm for 
almost all the time, yet none of the metrics appear to identify 
this. The F1PA%k-AUC​ method is not sensitive to threshold 
selection; however, signals Y1, Y2 and Y3 perform worse 
than the bad signal Y5. In conclusion, the F1C score is bet-
ter than the other metrics while it still has problems with 
clearly marking the signal Y5 as a bad detector. Therefore, 
the comparison of the results in Sect. 4 will be measured 
with the F1C score.

Fig. 4   Comparison of example 
detectors in anomaly detection 
using selected evaluation meth-
ods for anomaly detection. The 
corresponding metric scores can 
be seen in Table 2

Table 2   Comparison of evaluation methods for anomaly detection

Name F1 F1PA F1C F1PA%k=20 F1PA%k-AUC​

Random 0.02 0.99 0.63 0.02 0.03
Y1 0.33 1 1 0.33 0.47
Y2 0.4 0.91 0.75 0.91 0.55
Y3 0.35 0.83 0.6 0.83 0.50
Y4 0.91 0.91 0.91 0.91 0.91
Y5 0.66 0.67 0.67 0.67 0.67
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To obtain a final metric score for a dataset with multiple 
anomaly sequences, there are two options for combining the 
individual results: taking the average of the metric results 
for all anomaly sequences or summing up the classes of the 
confusion matrix and calculating the metric using this sum. 
However, the latter approach tends to give better results 
when using the PA method, contributing to the perceived 
increase in accuracy. The following example illustrates this:

Figure  5 depicts a dataset comprising two distinct 
anomaly sequences. The first anomaly, accounting for 
approximately 50% of the anomaly sequence, is more readily 
detectable compared to the relatively brief second anomaly. 
A random signal, having a 0.01 probability, is applied as a 
detector, yielding a resultant F1PA score.

Upon computation of the average F1PA score, the outcome 
is determined to be 0.497. The first anomaly garners a 
score of 0.995, while the second anomaly, due to a lack of 
true positives, scores 0. Conversely, when the total metric 
is computed via the summation of the confusion matrix 
elements, the score is substantially higher at 0.979. This 
elevation in score is attributed to the PA mechanism, which 
assigns the entirety of the first anomaly sequence as true 
positives. Given the longer duration of the first anomaly, 
it significantly contributes to the true positive and false 
negative classifications, thereby influencing the computed 
metric. This calculation methodology inherently undermines 
the significance of shorter and more challenging-to-detect 
anomalies. Consequently, the study opts for the utilization 
of the average score methodology.

3.3 � Comparative evaluation approach

In this paper, the three selected DAD methods are 
compared to several popular classic anomaly detection 
methods and three baseline methods. The four classic 
methods used for comparison are Gaussian mixture 
model (GMM), k-nearest neighbor (kNN), one-class 
support vector machine (OCSVM), and principal 
component analysis (PCA). These methods have been 
widely used in anomaly detection research and serve as 
established benchmarks for comparison [36–39] and are 

implemented with the Python library PyOD [33]. Along 
with the selected algorithms, the importance of baseline 
testing in the evaluation of anomaly detection methods is 
highlighted, as underscored by the findings of Kim et al. 
[3]. They asserted that despite attaining high test scores, 
some detection methods might not exhibit improvement 
when compared to simple baseline methodologies. This 
underlines the significance of maintaining a fair and 
comprehensive evaluation process by including basic 
benchmark methods.

Therefore, this study incorporates three baseline 
methods to ensure a robust comparative analysis of the 
performance of the selected algorithms.

•	 The raw input method: this simple technique calculates 
the norm of the input vector, serving as a primary 
benchmark against more sophisticated methods.

•	 The untrained autoencoder: in this method, the weights 
of the autoencoder are randomly initialized from a 
standard normal distribution.

•	 The random signal method: here, each instance has a 
probability of p = 0.01 of being flagged as an anomaly. 
This method, despite its inherent randomness, offers a 
basic statistical baseline against which the detection 
capabilities of other methods can be assessed.

The incorporation of these baseline methods in the analysis 
enables a comprehensive performance evaluation of the 
selected algorithms, setting them against both conventional 
techniques and simpler benchmark approaches. This 
facilitates a holistic understanding of their effectiveness 
in the deep anomaly detection research field.

As mentioned in Subsect. 2, most of the state-of-the-
art algorithms utilize thresholding methods that suffer 
from data leakage, giving them an advantage. To ensure 
a fair comparison, the same thresholding approach was 
applied to all algorithms. A grid search was conducted, 
exploring all possible thresholds, to find the threshold that 
maximizes the F1 score, irrespective of the metric that is 
evaluated on. For the LSTM algorithm, this study reports 
the results for both thresholding methods: the original 
nonparametric method proposed by the authors and the 

Fig. 5   Impact of combining 
metric scores on anomaly detec-
tion performance
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best F1 method. This approach allows for a comprehensive 
comparison and evaluation of all algorithms using 
the same thresholding approach. It also provides an 
opportunity to assess the performance of the unsupervised 
NPT method and determine its effectiveness in anomaly 
detection.

4 � Experiments

4.1 � Case study description

This section introduces the datasets used to evaluate various 
DAD algorithms. We use a dual-approach featuring real-
world satellite telemetry data from the Sentinel-1 mission 
and recognized validation datasets such as the Mars 
Science Laboratory rover and Soil Moisture Active Passive 
satellite dataset provided by NASA. These diverse datasets 
facilitate a comprehensive assessment of the DAD methods, 
shedding light on their performance in both real-world and 
standardized scenarios. The subsequent subsections detail 
each dataset and its unique contribution to our study. An 
overview of the key characteristics of the datasets can be 
seen in Table 3.

4.1.1 � Real‑life satellite telemetry data of ESA satellites

Satellites carry four reaction wheels, a component that 
presents a compelling use case for applying machine 
learning in anomaly detection. The accumulated data from 
these identical reaction wheels—despite variations in 
satellite sizes—offers an opportunity for holistic prognostics. 
This data, relatively accessible, encapsulates a mechanical 
component’s degradation over time. Key sensor readings, 
such as temperature, current, and speed, reflect changes 
in friction—usually the culprit behind reaction wheel 
anomalies or failures [40].

The Sentinel-1 mission, comprising two polar-orbiting 
satellites, Sentinel-1A and Sentinel-1B, launched in April 
2014 and April 2015, respectively, was selected as the data 
source for this study. Its appeal lies in the existence of mul-
tiple sequences of anomalous reaction wheels, enabling label 
generation for testing algorithm efficacy. Seven anomalies, 

identified by ESA operational personnel, form the basis of 
our test sets. These are drawn from the data of 7 days before 
and after each anomaly’s onset, while the training sets com-
prise the preceding 7-day data.

The telemetry data, comprising various features like 
current, temperature, speed, and torque, is captured at 
irregular intervals, but usually multiple times per minute. To 
address the irregularity, the data was averaged within 1-min 
intervals to provide a consistent time scale for analysis. 
There were two instances when no data was recorded—18 
and 30  min long, respectively—wherein interpolation 
was used to fill the data gaps. Ultimately, the data was 
normalized based on the training set values.

4.1.2 � Validation datasets

To ascertain the efficacy of the proposed anomaly detection 
methodology, it is essential to benchmark its performance 
against datasets that are widely accepted within the 
research community. This step becomes particularly crucial 
considering the limited availability of labeled data and 
infrequency of anomalies in the use-case dataset. The Mars 
Science Laboratory (MSL) rover and Soil Moisture Active 
Passive (SMAP) satellite dataset, released by National 
Aeronautics and Space Administration (NASA), meets 
these requirements and serves as an ideal point of reference 
[14]. This dataset encompasses real-world spacecraft 
data, with input channels anonymized for security and 
privacy. It consists of a real-valued telemetry stream and 
binary commands, which are either sent or received by the 
corresponding subsystem. This data, labeled by domain 
experts, provides a robust foundation for evaluating the 
proposed anomaly detection approach.

4.1.3 � Setup

The comparison of the selected DAD methods is conducted 
against four classic anomaly detection methods and three 
baselines using three multivariate datasets. In these datasets, 
each anomaly comprises a single training sequence on which 
the algorithms are trained. Subsequently, they are tested on 
the testing sequence, which is labeled to indicate one or 
more anomalous events.

For the ESA dataset introduced in this paper, the 
decision was made to target the current channel specifically 
for prediction when employing LSTM. This choice was 
informed by the frequent association of reaction wheel 
failures with friction, and it was anticipated that current 
measurements would effectively capture this influence. 
Although a similar influence was expected on temperature, 
the results were not as promising, potentially due to the 
delayed impact of friction on temperature.

Table 3   Key characteristics of the datasets used for this study

ESA SMAP MSL

Total anomalies 7 69 36
Unique telemetry channels 10 55 27
Telemetry values evaluated 146,887 429,735 66,709
Contamination rate 0.36 0.13 0.1
Average anomaly length 1026 826 616
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After training and testing each anomaly for each dataset 
using different metrics, the average metric score is computed, 
as explained in Subsect. 3.2. Since anomalies in spacecraft 
are typically rare, and the number of failures is insufficient to 
create a validation dataset, hyper-parameter tuning was not 
performed. The three DAD algorithms use the parameters 
specified in their respective papers, and the classic anomaly 
detection methods implemented with the Python library 
pyod are trained with their default settings. An exception 
is made for the USAD algorithm, for which a grid search 
was conducted for the ESA dataset, as autoencoders are 
highly sensitive to the choice of the latent space size. The 
parameters used for USAD with the ESA dataset are as 
follows: window size K=50, sensitivity threshold �=1, and 
dimension of the latent space m=3.

4.2 � Results

In this section, the results of the three DAD algorithms, the 
four classical algorithms, and the three benchmark methods 
are first compared based on their metric performance on the 
three selected datasets in Subsect. 4.2.1. Then a qualitative 
comparison is conducted on an example anomaly in 
Subsect. 4.2.2.

4.2.1 � Metric results

Table 4 presents the results for the F1C score. It can be 
observed that the LSTM algorithm achieves the best results 
in almost all cases, only beaten by the USAD algorithm on 
the MSL dataset by a fraction. Interestingly, when the LSTM 
algorithm utilizes nonparametric thresholding instead of the 
best F1 score, the F1C score on the ESA dataset improves 
due to the filtering of false positives. However on the MSL 
and SMAP dataset, the F1C score drops when using NPT. 

This is explained by the error pruning which helps out by 
filtering false positives. In the case of the ESA dataset, this 
seems to work well and improve the metric score, but on 
the other two datasets the score drops. This might be due 
to the error pruning minimum decrease parameter being set 
too low and wrongfully pruning true alarms. The best F1 
method optimizes specifically for the F1 score and not the 
F1C score and therefore scores higher in that metric as can 
be seen in Table 5. Additionally, it can be observed that the 
NPT method scores lower on the F1 metric. This is because 
while it effectively reduces false positives, it does so at the 
expense of true positives.

Regarding the baseline methods, the results indicate that 
the raw signal method achieves results that are difficult for 
other methods to surpass, particularly on the European Space 
Agency (ESA) and SMAP dataset where the results are quite 
high. Comparing the other two deep learning methods to the 
raw signal baseline, it can be seen that the USAD algorithm 
outperforms the baseline on the MSL dataset. However, the 
anomaly transformer does not surpass the baseline results 
on any of the datasets.

Furthermore, it is observed that all of the classical 
methods outperform the anomaly transformer on all three 
datasets. This observation is intriguing as it suggests that 
the more complex methods, such as USAD and the anomaly 
transformer, do not perform well in comparison. Conversely, 
the simple deep learning algorithm, the LSTM, demonstrates 
excellent performance. This highlights the importance of 
considering the effectiveness of the algorithm design and 
complexity, rather than solely relying on the sophistication 
of the method.

It is evident that, in general, the scores obtained using 
the ESA dataset surpass those achieved with the other two 
datasets. This observation suggests that anomalies are more 
easily detected in the ESA dataset. This phenomenon can be 
attributed to the contamination rate and the average anomaly 
length, both of which are presented in Table 3. Sehili and 
Zhang have previously demonstrated that datasets with a 
higher contamination rate tend to yield better F1 scores. 
Moreover, they express greater confidence in achieving 
higher F1PA scores when the average length of the anomaly 
segment increases. Given that the F1C score, like the F1PA, 
is event based, the same principle holds true.

4.2.2 � Qualitative results

In Sect.  3.2, it was established that the F1C score is an 
improvement over other popular metrics, but still has some 
limitations. Therefore, it is valuable to qualitatively examine 
the results of the predictions. Figure 6 illustrates an example 
anomaly from the ESA dataset along with the corresponding 
predictions made by the algorithms. This qualitative analysis 

Table 4   F1C score for various methods

Bold indicates the best result or in 2% from the best result
↑ is marked when the score is higher than Baseline: Raw

Dataset ESA MSL SMAP

LSTM (NPT) 1.000 (↑) 0.413 (↑) 0.579 (↑)
LSTM 0.914 ( ↑) 0.567 (↑) 0.705(↑)
USAD 0.772 (↓) 0.574 (↑) 0.393 (↓)
Anomaly transformer 0.336 (↓) 0.201 (↓) 0.263 (↓)
GMM 0.767 (↓) 0.473 (↑) 0.409 (↑)
KNN 0.778 (↓) 0.486 (↑) 0.382 (↓)
OCSVM 0.807 (↓) 0.549 (↑) 0.371 (↓)
PCA 0.820 (↑) 0.382 (↓) 0.355 (↓)
Baseline: raw 0.820 0.387 0.404
Baseline: AE 0.558 0.346 0.344
Baseline: random 0.468 0.191 0.183
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provides further insight into the performance and behavior 
of the algorithms.

In the bottom of the figure, it can be observed that the 
anomaly starts at approximately 60% of the time series 
and continues until the end. The baseline autoencoder 
and the USAD algorithm raise an alarm for almost the 
entire sequence, thus failing to provide a useful signal. 
Surprisingly, both methods still achieve a F1C score and F1 
score of 0.61, highlighting the limitations of these metrics 
as discussed in Subsect. 3.2.

The baseline random method, as expected, randomly 
raises alarms with a relatively consistent density through-
out the sequence. On the other hand, the anomaly trans-
former raises flags throughout the entire sequence, with a 
seemingly higher density of alarms before the anomaly.

The raw signal, the four classical methods, and the 
LSTM algorithm using the best F1 threshold exhibit a more 
meaningful signal. They indicate fewer alarms before the 
anomaly while increasing the density after its onset. One 
could argue that the LSTM algorithm with the original 
unsupervised nonparametric thresholding demonstrates the 
best signal. The anomaly is identified relatively late in the 
sequence; however, it is important to note that timeliness 
is not a focus of this research. It avoids false positives and 
successfully raises an alarm during the anomaly.

Furthermore, as evident in Table 4 and Table 5, it can be 
observed that the raw signal surpasses some of the anom-
aly detection methods in terms of performance. Moreover, 
Table 6 confirms that the F1PA metric is not reliable, as the 

Fig. 6   Qualitative results of one anomaly of the ESA dataset

Table 5   F1 Score for various methods

Bold indicates the best result or in 2% from the best result
↑ is marked when the score is higher than Baseline: raw

Dataset ESA MSL SMAP

LSTM (NPT) 0.715 (↑) 0.478 (↑) 0.544 (↑)
USAD 0.617 (↓) 0.410 (↑) 0.286 (↓)
Anomaly transformer 0.067 (↓) 0.089 (↓) 0.113 (↓)
GMM 0.695 (↑) 0.366 (↑) 0.308 (↑)
KNN 0.713(↑) 0.365 (↑) 0.260 (↓)
OCSVM 0.677 (↓) 0.391 (↑) 0.300 (↓)
PCA 0.664 (↑) 0.322 (↓) 0.270 (↓)
Baseline: raw 0.664 0.324 0.313
Baseline: AE 0.494 0.292 0.262
Baseline: random 0.082 0.056 0.013

Table 6   F1PA score for various methods

Bold indicates the best result or in 2% from the best result
↑ is marked when the score is higher than Baseline: Random

Dataset ESA MSL SMAP

LSTM 1.000 ( ↑) 0.451 (↓) 0.612 (↓)
LSTM (NPT) 0.928 (↑) 0.643 (↓) 0.787(↑)
USAD 0.773 (↓) 0.684 ( ↓) 0.517 (↓)
Anomaly transformer 0.907 (↓) 0.568 (↓) 0.595 (↓)
GMM 0.835 (↓) 0.572 (↓) 0.519 (↓)
KNN 0.849 (↓) 0.630 (↓) 0.519 (↓)
OCSVM 0.882 (↓) 0.641 (↓) 0.468 (↓)
PCA 0.889 (↓) 0.471 (↓) 0.451 (↓)
Baseline: raw 0.889 0.482 0.501
Baseline: AE 0.673 0.489 0.477
Baseline: random 0.912 0.686 0.642
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random signal outperforms all methods except the LSTM 
algorithm.

5 � Conclusions

This paper illuminates several flaws in current DAD 
research, revealing that the performance results are 
often overestimated. Despite the escalating complexity 
of anomaly detection methods, simpler approaches and 
even baseline methods outperform some of the more 
intricate DAD algorithms. While the F1C score represents 
an improvement over other metrics, the qualitative results 
indicate that it can still lead to inflated performance for 
poor detectors. Among the DAD methods examined, the 
LSTM algorithm demonstrates highly promising results 
across all datasets and even achieves a perfect score on 
the real-life dataset. However, it is important to note 
that this dataset involves a relatively simple subsystem 
with a clear channel to predict failure, and the real-life 
dataset had relatively few anomalies due to the reliability 
of satellites in actual scenarios. The performance of the 
LSTM algorithm may not be as robust in complex systems 
lacking a single channel that reliably predicts failure, and 
a larger dataset is needed to bolster confidence in these 
results.

For the field to progress, several steps should be taken. 
Research should adopt best practices such as avoiding data 
leak, applying truly unsupervised algorithms throughout, 
abstaining from using measuring or averaging methods 
that inflate performance results, and applying proper data 
split methods.

For effective comparisons, the community needs high-
quality, pre-split datasets and metrics that correlate with 
good performance. This research compared algorithms 
using the same thresholding, but future work should also 
compare different unsupervised thresholding methods.

For satellite operators, further research could 
explore whether other prediction error methods such 
as convolutional neural networks and transformers 
also perform well on telemetry data. Modifying the 
LSTM to predict more than one channel could enhance 
explainability and potentially improve performance. 
Moreover, it would be beneficial to determine which 
subsystems are best suited to these methods.

In conclusion, while our findings highlight the 
potential of deep learning in anomaly detection, they 
also underscore the need for a more critical and nuanced 
approach to evaluating its effectiveness in real-world 
applications. The ongoing advancement in deep learning 
and the ever-increasing volume of satellite telemetry 
data open up exciting avenues for further research and 
innovation in this field.
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