
Delft University of Technology
Master’s Thesis in Embedded Systems

Sensing human activity with dark light

Hajo Kleingeld





Sensing human activity with dark light

Master’s Thesis in Embedded Systems

Embedded Software Section
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands

Hajo Kleingeld
hajokleingeld@gmail.com

12th December 2017

mailto:hajokleingeld@gmail.com


Author
Hajo Kleingeld (hajokleingeld@gmail.com)

Title
Sensing human activity with dark light

MSc presentation
19th December 2017

Graduation Committee
Prof. dr. K.G. Langendoen (Chair) Delft University of Technology
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Abstract

Nowadays, 19% of the global energy consumption is used for lighting. For
this reason, saving energy in lighting is vital. A simple way to save energy is
to simply turn the lights off, or reduce the amount of light used when nobody
is around. This thesis proposes a new method for luminaires to detect the
presence of humans and objects which only uses a photodiode and a fraction
of the light a luminaire normally emits, namely Dark Sensing.

Dark sensing works by sending out short flashes of light. These short
flashes use little energy and are barely visible to the user. These flashes
get reflected by the environment and received by a photodiode placed next
to the light. By extracting a key feature of the received flash, we obtain a
metric representing the surrounding area. If an object enters the observed
area, the reflections of light will change. These changes will be noticed by
the system, which triggers a detection resulting in the light being turned on.

A prototype was created which shows the potential of the newly developed
method. The prototype was tested in two different environments and detects
between 73% and 90% of bypassing pedestrians, depending on the accepted
false positive ratio (0 to 0.05).
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Chapter 1

Introduction

Nowadays, 19% of the global energy consumption is used for lighting. For
this reason, saving energy in lighting is vital. A simple way to save energy
is to simply turn the lights off, or reduce the amount of light used when
nobody is around. This thesis proposes a new method for luminaires to
detect the presence of humans and objects, namely Dark Sensing.

The idea of human sensing is not new. Everybody in the western world has
walked into a room where the lights suddenly turned on once they entered.
The most common method to create this effect is to make use of a PIR
(passive-infrared) sensor. By monitoring the infra-red radiation (heat) in
the area, it can detect changes in the environment and toggle the light
based on these changes. This method works very well but has several draw-
backs. The first is that it’s unable to detect objects with the same surface
temperature as the environment, for example a car where the engine has just
been turned on. Another drawback is that the PIR method has no potential
for communication without the addition of extra components. Dark sensing
attempts to overcome these drawbacks by only using a photodiode and the
light in the visible spectrum a luminaire normally emits.

This thesis explores the idea of detecting changes in the environment
with reflections of visible light. The proposed system works in the following
manner: If nothing is in the area, the light will be turned on, but outputting
a very low light level. Some of the light will reflect off the environment back
to the light source. This can be measured with the photodiode. The signal
received is a measure of the illuminated area. If something were to change in
that area, a car drives by for example, then the reflections in the environment
will change and therefore the light perceived by the photodiode will change
as well. These changes will then result in a detection by the system which
will turn the light on at full brightness. An overview of the scenario can be
seen in 1.1.

The ultimate goal of the proposed system is to reduce the time the light
needs to be on the nearly zero. This will lead to a light which barely con-
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Figure 1.1: When no object is in the area, the luminaire will barely generate
any light. If an object drives into the area, the reflections will be picked up
by the photodiode, which will then turn the light on.

sumes any energy while nobody is around but is still able to detect people,
cars or other objects passing by. It might even be possible to decrease the
light output to an amount which is invisible to the human eye, resulting in
an unnoticeable, activity detecting, energy-saving device.

1.1 Problem statement

Is it possible to create a system which can detect the activity of
humans or objects by measuring reflections of visible light while
being invisible to the human eye?

This problem can be divided into three sub-questions:

• How strong is a reflection obtained from a flash in a realistic scenario
and how much does this reflection change if an object enters the area?

• What are the challenges in obtaining reflections when using a low-
intensity light and how can they be tackled?

• What additional signals are received by the system (noise) and what
algorithm can be used to convert the received signal in a reliable logical
signal: Detection or no detection?

1.2 Contributions

This thesis proposes Dark Sensing, a system that uses reflections of an
LED controlled with a low duty cycle (4%), and therefore nearly invisible
to the human eye, to detect changes in the surrounding area.

• A model, estimating the change in signal (reflected light) when a object
moves under, leaves or passes by the LED in different environments.
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• A method to convert a captured reflection of the LED into a usable
measure of the environment.

• An algorithm which analyses features of consecutive flashes and is
capable of detecting objects moving under, leaving or passing through
the illuminated area.

• A prototype capable of detecting between 73% and 90% of all humans
passing by in a realistic environment dependent on the allowed false
positive ratio (0 - 5%).

1.3 Organisation

This thesis describes the development path of the new technique ”Dark
Sensing” from idea to a working prototype. Chapter 2 will present the re-
quired background knowledge to understand several choices made in this
thesis and present the related work. In chapter 3 a model will be presented,
which calculates the theoretical response of bypassing objects. Chapter 4
describes the created experimentation platform. Chapter 5 will focus on
finding the ideal settings for generating an analysable flash and will explain
what the best method is for extracting data from this flash. Chapter 6 ex-
plores the possibilities for analysing sets of consecutive flashes and proposes
an algorithm to detect significant changes in the signal. Chapter 7 tests
the prototype created and evaluates the performance of system. The thesis
concludes with an evaluation of the new ”Dark Sensing” technology and
suggests several possible directions for future work.

3
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Chapter 2

Background and related work

2.1 Background

This section presents the required field knowledge to understand this thesis.
It therefore starts with an explanation on how a light source behaves when
it turns on and off rapidly and why this is preferable over other light saving
strategies. It then follows up with an explanation of how light beams travel
and reflect off of surfaces.

2.1.1 Dimming of an LED

In this thesis, an LED will be used to illuminate the environment which will
cause reflections in the room. It’s therefore important to understand how
the light responds to different methods of adjusting the light output, as this
directly influences power of the reflections.

In general, there are two methods of dimming (reducing the light output
of) an LED: Analogue and digital. A light which is dimmed in an analogue
manner has its total light output reduced by reducing the current flowing
into the LED. This leads to a light which has a constant light output directly
proportional to the current flowing into the LED. If we for example want a
light to produce 25% of its normal light output, we simply supply it with a
quarter of the current. A graphical representation of analogue dimming is
shown in Figure 2.1(a) and is marked as ”average power”.

Digital dimming works in another way. Instead of controlling the amount
of current flowing into the LED, we control the amount of time current is
allowed to flow into the LED. This can be achieved by turning the LED on
and off rapidly. If we for example want to reduce the light output of an LED
to 25% with the help of digital dimming, then we would turn the light on at
full strength for 25% of the time, while turning it off for 75%, with the help
of a Pulse Width Modulated (PWM) signal. A graphical representation of
digital dimming is shown in Figure 2.1(a).
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(a) (b)

Figure 2.1: Figure (a) shows the difference between analogue and digital
dimming, Figure (b) shows a realistic response of the light when a short
electric pulse is applied[7].

The resulting light produced by both types of dimming are indistinguish-
able for humans if the switching frequency of digital dimming is high enough.
Both methods have the same apparent brightness and use the same amount
of power. For photodiodes however, there is a clear difference. The analogue
signal will show up as a constant, but weak signal. The digital signal shows
up as a square wave with high peaks (when the light is on) and valleys (when
the light is off). This becomes especially apparent if we want the system
to work at only 1% of it’s original illumination level. The signal dimmed in
an analogue manner will be nearly invisible as it is turned on constantly at
1% of it’s original power. This in contrast to the digital signal, which only
shows up for 1% of the time, but at maximum power, resulting in a shorter
but much brighter peak. Because the 1% time constrain is no problem for an
electronic system, it was chosen to explore Dark Sensing with this dimming
method.

There is however a limit to how much the energy consumption can be
reduced with digital dimming, if we want to be able to observe the signal
with a photodiode. When an LED is turned on, it does not produce light at
maximum intensity instantly[7]. It first has a short ”turn-on delay” where
the light does not output any light, followed by a ”rise time” where the
light ”slowly” powers up until it has reached it’s desired intensity level. A
graphical representation of this process can be seen in figure 2.1(b). This
limit on digital dimming forces a hard minimum to the amount of digital
dimming the system can work with and therefore limits the amount of energy
it can save.
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Figure 2.2: Overview of angles, vectors and distances used in the model.
It represents a street light illuminating the street (I). This light is then
observed by a photodiode (PD), aimed at the ground. Note that φ always
represents an exit angle and θ always represents an incidence angle.

2.1.2 The Phong model

When a light shines on a surface, some parts of the surface appear brighter
than other parts. This is caused by three major factors:
• The light used to illuminate the wall and it’s position relative to the

wall.
• The surface of the wall itself.
• The position of the observer relative to the wall.

If all of these factors are known, then the complete pathing of the light can
be approximated with the help of the Phong model. This section presents a
simplified version of the Phong model which is used in chapter 3. All used
angles can be seen in Figure 2.2. The full model can be found in [17].

Modelling an LED

A light can be modelled if several parameters of the light are known, with
the help of equation 2.1. This formula describes how much light is leaving
the light source at angle φ relative to the normal of the LED.

I(φ) = Φlum
α+ 1

2π
cosα(φ1) (2.1)

The equation consists of three parts. Φlum represents the total amount of
light emitted in lumen by the LED. cosα(φ1) represents the radiation pattern
of the LED. α represents the order of Lambertian emission which describes
the illumination pattern of the LED. If α is low (e.g. 1), then this equation

7



(a) (b)

Figure 2.3: (a) shows an overview of how adjusting α changes the light cone
of a simulated light source. (b) shows a modelled light cone, modelled with
the shown measured light cone.

represents a luminaire with a very wide spread of light, for example a street
light. If α is high (e.g. 200+), then the light source is much more focused
like a laser. An overview of α values versus their angle is shown in Figure
2.3. α+1

2π is a normalisation factor that ensures that integrating equation
2.1 results in the total amount of light produced (Φlum), as reshaping the
cone of light with α would otherwise lead to a change in produced light. An
example of a modelled light with α = 14.3 and Φlum = 260lm can be seen
in Figure 2.3(b).

We can now take any light ray from the luminaire and calculate how much
light hits a specific surface with the help of equation 2.2. This calculation
also consists of three parts. The first part is, I(φ1), the strength of the light
ray calculated with equation 2.1. The second part, d, represents the distance
the light needs to travel before it hits the surface. The final variable, θ1,
represents the incidence angle of the light ray on the surface.

Ehor =
I(φ1)

d2
cos(θ1) (2.2)

Modelling a reflection

Light impinging on a surface can reflect in three different ways: Diffuse,
spread and specular. Almost all surfaces combine several of these reflection
types. A visualisation of these reflections can be seen in Figure 2.4. The
specular reflection is a so called perfect reflection. It reflects each incident
ray outward, with the reflected ray having the same exit angle to the normal
vector N as the incident ray. A material with this kind of property is
a mirror. The diffuse reflection is the opposite. Instead of reflecting
light in one direction, the light ray is scattered in all directions following

8



Figure 2.4: The possible ways for light to reflect when it hits a surface [1].

a Lambertian emission pattern. This leads to a point, which appears to
have the same brightness, no matter the observation angle. A common
material with this property is plain white paper. The final kind of reflection
is the called the spread reflection. It’s a scattered reflection, aimed in the
direction of the ideal reflection. A material which has mainly this kind of
reflection is matte aluminium.

All of these reflections can be modelled with the help of equation 2.3,
where φ2 represents the observation angle. The first part of the equation
calculates how much of the impinging light is reflected off the surface and not
converted into heat. This is determined by A, which represent the albedo
of the observed surface.

The second part describes the actual reflection of the surface. α+1
2π cosα(θ′1−

φ2) describes the spread reflection and is modelled as a light source pointing
in the direction of the ideal reflection θ′1 (see equation 2.1). The higher α
is chosen, the more focused the reflection. If α is chosen to be infinite, the
surface is modelled as a mirror instead.

1
π cos(φ2) describes the diffuse part of the equation and is also modelled

with 2.1 where α = 1. This results in a diffuse reflection. The final term of
the equation is rd. This value represents the ratio between the diffuse and
spread reflection.

R(θ2) = Ehorρ(λ)

[
rd

1

π
cos(φ2) + (1− rd)

α+ 1

2π
cosα(θ′1 − φ2)

]
(2.3)

Modelling a photodiode

The final part missing in the model is the observer. The observer, or re-
ceiver in our case, is a photodiode which can be modelled with the help of
Equation 2.4. This equation is very similar to equation 2.2, but has one
major difference: The rec(x) function. This function checks if the light in-
coming at angle θ2 lies in the field of view of the photodiode. If it is, then

rec
(

θ2
FOV

)
returns 1, otherwise it’s 0 and the ray of light wont be counted.

9



PD =
I cos(θ2)

d2
rec

(
θ2

FOV

)
rec(x) =

{
1, |x| ≤ 1

0, |x| > 1
(2.4)

Creating a 3D model

All equations shown in the previous sections can be combined into one big
equation, calculating how much a point on the wall is illuminated, reflected
and perceived by the observer. This equation is 2.5. It has however a lot of
variables, which will make it hard to create a proper simulation.

PDtot = I(φ, αlight,Φlum)R(θ1, φ2, λ, rd, αfloor)PD(θ2, d2) (2.5)

This can be solved by making the problem concrete and simulate it in a
3D space with an xyz coordinate system. If we assume the floor is a plane
spanning x and y (thus z = 0) and fix the positions and normals of the LED
and photodiode, we can express all angles and distances as formulas of x,y
and z. If we then want to calculate the total amount of energy perceived by
the photodiode, all we need to do is integrate over all the points of the floor
(the xy plane).

PDtot =

∫
x

∫
y
I(x, y, z, αlight,Φlum)R(x, y, z, λ, rd, αfloor)PD(x, y, z) (2.6)

This model was used to create the model used in chapter 3. That chapter
will also explain what changes were made to obtain the presented model.
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2.2 Related Work

This section presents the related work of this thesis. It starts with giving a
short overview of several methods used for passive localisation. It shows the
projects which use visible light in their localisation schemes. This section
finalises by highlighting a paper which attempts to reduce the visible light
used in a similar way to this thesis.

2.2.1 Passive localisation

Passive localisation is a hot topic in research and has been tackled by
many different research groups in several different ways. The most com-
mon method found in literature to detect and track humans is by using
Passive Infra-Red (PIR) sensors. These sensors detect the infra-red (heat)
radiating from objects and draw conclusions from the observed signals. The
passive infrared sensor has been around since 1982 [5] and has been used to
detect humans since 1994 [10].

These days, the research in PIR sensors for detecting and tracking humans
focuses in two directions. The first direction is to get more information out
of PIR sensors by examining the raw data. M. Waelchli et al. for example
created a method for estimating the location of a person within the view of
the sensor [11]. The second direction is to track humans with the help of
several linked sensors. An example of this, by P. Zappi et al. is [18]. They
linked a server to multiple binary human activity sensors, in order to locate
and track humans in an indoor building.

Another method for passive localisation, which popped into existence
more recently, is developed by M. Youssef et al.[16]. They created a de-
tect and track application with the help of WIFI access-points (APs), WIFI
monitoring-points (MPs) and an application server (AS). The MPs measure
the signal strength of the APs, and transmit this data to the AS. The server
runs a moving variance algorithm on all of the received signals to detect
significant changes in the signal.

Another approach to passive localisation is to use the tiles upon we walk
as sensors. This was done by M. Valtonen et al. [14]. The system measures
the capacity between several floor tiles and a receiving electrode. With the
help of the measurements, they estimate the position of the person standing
on top of the tiles.

2.2.2 Passive Visible Light Localisation

In recent years, a new method for locating and tracking humans has been
explored: Passive Visible Light Localisation (PVLL). This method is fo-
cussed on using visible light and photo sensors to detect and track humans
and objects. Several of these project will be explained briefly, followed by a

11



Figure 2.5: Overview of the LocalLight system of E.D. Lascio et al.[4]. Lights
on the ceiling and light sensing RFID tags on the floor.

short comparison between these projects and Dark Sensing.

Local Light

Local light, developed by Lascio et al.[4], is a system which implements
passive localization with the help of visible light. The system consists of 3
parts. A light, light sensing RFID tags and a server. The light illuminates
the environment. The RFID tags are mounted in the floor, detecting the
light produced by the luminaire. The tags transmit their data to a server
which processes the data. An overview of the system can be seen in Figure
2.5.

The system works by detecting changes in the light intensity. If the photo
diode suddenly senses a huge drop in light, because a shadow is casted on
the photo diode by an object or person, the system triggers a detection.
The server knows the exact location of all luminaries and photo diodes and
is therefore capable to of determining where the object or person is at this
moment in time.

Activity sensing using ceiling photo diodes

Three different projects have been found which have develop a passive loc-
alisation scheme using several light/photo diode pairs mounted together on
the ceiling. Both take a slightly different approach.

The first project, by J. Zhang [19], created a method capable of localising
objects on a line between two light/photo diode pairs. By moving an object
with three reflective surfaces underneath a light, he managed to localise
them at several points on the line by using the specular component of the
reflections bouncing of the object. His test set-up can be seen in figure 2.6.

The second project, by M. Ibrahim et al. 2.7, makes use of modulated
lights. Each luminaire transmits light in a different pattern. The photo
diode, which is placed next to the light, detects what patterns of light it
perceives. If the photo diode does not sense one of the lights it normally
does, it triggers a detection as the light was intercepted by a bypassing
object. An overview of the set-up can be seen in Figure 2.7/
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Figure 2.6: Overview of the system used by J. Zhang [19]

Figure 2.7: Overview of the system set-up used by M. Ibrahim[15]. In this
specific situation node 2 and 5 detect no light from node 1, because a person
is blocking the light.
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Comparison with Dark Sensing

The Dark Sensing project differs from the existing projects in several ways.
It’s the only project tempting to create a sensing device, only requiring one
sensor node instead of multiple and is therefore easier to install and expand.
It’s also the only project which attempts to save energy. It’s also the only
project which potentially can be implemented outdoor, mounted on a light
post for example, as the other PVLL projects where require either a server in
reach of the sensors, or other specific environmental features. Dark Sensing
has the potential to be a stand alone product.

The downside of Dark Sensing is that it only focuses on detecting activity.
It’s therefore unable to track users. All of the other projects are way better
in that specific area.

2.2.3 Other related projects

One project that is not related to passive localisation, but inspired us to
use short pusles of light is ”The dark light rises” by Z. Tian et al. [20] [21].
This group explores the idea of Visible Light Communication (VLC) with
dark light, a VLC primitive that allows light-based communication to be
sustained even when LEDs emit extremely-low luminance. The communic-
ation works by generating high power, but short light pulses (500ns). These
pulses are then used in a pulse position modulation scheme to achieve com-
munication (1.8Kbps at 1.3m) with light while being nearly invisible to the
end user. The goals of Dark sensing and Dark VLC are similar: Save light
and therefore energy. Both projects however apply this method in different
applications.
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Chapter 3

Model

A model has been made with the goal of answering two questions:
• How strong are the reflections of flashes in a realistic environment?
• How and how much, will these reflections change if an object enters

the illuminated area
This section uses the model explained in section 2.1.2. It starts by distin-
guishing the changes made to the original model [17] and shows that the
model gives a reasonable estimation of reality. It then describes two mod-
elled scenarios and presents the results. The chapter ends with answering
the posed questions.

3.1 Model description

The model made is an interpretation of the Phong reflection model (see sec-
tion 2.1.2). It calculates how much of the light leaving a luminaire, bounces
back via the environment to a photodiode placed next to the light source.
This section will first discuss the adjustments made to the Phong model,
followed by an explanation of the simulation process.

3.1.1 Model Adjustments

The model presented in section 2.1.2 is not the complete Phong model.
Several parts where simplified or removed as they should barely influence
the results of the simulation.

The first adjustment is the removal of ”time”. The methods in the liter-
ature took the travelling time of light into account in order to calculate the
possible inter-symbol interference. This is not required for this simulation
as we are only interested in the steady state situation when the light is fully
turned on and the light received by the photodiode is maximized for the
current situation.

The second adjustment is the removal of ”colour”. The original method
differentiated between different wavelengths of visible light, while producing,
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reflecting and receiving light. It was therefore maintaining colour informa-
tion. This is however not necessary for this model, as we do not care about
the colour of the reflecting objects, but only about the total amount of en-
ergy reflected by the object. For this reason, the surface reflection coefficient
(p(λ)) was replaced with the albedo of the object instead (A).

Γ =

∫ 780nm

380nm
Φep(λ)dλ→ Γ = ΦlumA (3.1)

Albedo is a property of an object representing the ratio of energy which
is reflected when sun is shining on it. Even though albedo is based on the
full spectrum of sunlight instead of only the wavelengths of visible light, it
gives a reasonable approximation of the reflection coefficient in this scenario.
This is shown in section 3.2.

The final adjustment is the amount of reflections we calculate. In reality
a light ray can be reflected an infinite amount of times of off several different
surfaces before returning back to the sensor. In the model however we only
calculated one bounce (from the light to an object and back). The reason for
this is that the first reflection provides approximately 80% of the signal where
all other reflections only make up 20% of the total power[12]. If we where
to add multiple bounces, the accuracy of the model would only increase by
a maximum 20%. Adding the extra bounces makes the model many more
times complicated, depending on the environment we are simulating. A
simple hallway model would be 8 times as complex to model and require at
least 4 times as much computation power, while only providing ”only” 16%
more accuracy.

3.1.2 Calculation process

Calculating the amount of light reflecting back to the object is a three step
process. The first step is to calculate the shadow casted by the object on the
floor and walls. This is required as the surface where the shadow is casted
can’t reflect light back directly to the photodiode. It’s important to note
that the light casting the shadow is reflected of the object instead and with
that, changes the reflection pattern of the room.

The second step is to calculate how much light reflected from all floors
and walls (where no shadow is casted) is received by the photodiode. The
final step is to calculate how much light is reflected from each side of the
object. Figure 3.1 shows an overview of an environment with rays leaving
the light, casting shadow and the resulting reflections.

3.2 Verification

The calculation method and changes in the model where verified using a
scale model featuring a LED[9], a paper box and a light meter[13]. The first
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(a) Sideview (b) Topview

Figure 3.1: Overview of the calculation process. Grey lines represent light
rays casted by the light. Black represents the shadow casted by the object
on the floor or walls. Red lines or areas show reflections bouncing from the
ground, walls or object back to the photodiode.

step of verifying the model is to check if the LED is modelled properly by
equation 2.1. This was done by hanging the LED at 100cm above the floor
and measuring the horizontal illuminance (Ehor) at the floor to see if the
measured irradiation pattern of the LED matches the theoretical pattern
produced by equation 2.2. Measurements and simulations in Appendix A
show that the LED in the test set-up was producing more light than in the
specification. These numbers where therefore adjusted for the next step of
verification.

The second step is the verification of the interpretation of the Phong
model. This was done with the test set-up shown in Figure 3.2. By moving
a paper box across a paper covered floor in steps of 5cm and measuring the
reflections in each step, we obtain the red line in figure 3.3(a). When we
compare this line with the blue line generated by the model using A = 0.75
(albedo of paper according to [6]), then the lines closely match.

The test was repeated using the original floor of the room. The albedo
of the floor was calculated to be 0.37, based on a measurement of the floor
without the paper box. The result of the second test can be seen in Figure
3.3(b). The resulting curves also seem similar. As the model has shown to
reflect reality quite closely, it seems fine to assume that the model works
and can be trusted some extent. It won’t give exact results, but it will al
least provide a proper approximation of the perceived light.
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Figure 3.2: Visualisation of the model verification set-up.

(a) (b)

Figure 3.3: Both figures show that the model provides a reasonable approx-
imation of reality. Note that the albedo of paper was taken from [6] and the
albedo of the floor was estimated with measurements.
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(a) Staggerd hallway LED pattern (b) Traveling path of the object

Figure 3.4: Figure (a) shows the position of the luminaires to obtain a
realistic illumination pattern. The red square represents the area one
light/photodiode pair should cover. Figure (b) shows an example travel-
ling path of an object.

3.3 Modelling of the hallway

The hallway modelled is based on a real hallway located at the TU Delft.
The hallway is 2.2m wide and 2.8m high. The floors albedo is set at 0.37, as
this was calculated during the verification of the model. The albedo of the
walls was set to 0.95 which represents the albedo of white plaster[6]. The
reflection of these surfaces is assumed to be fully diffuse (rd = 1).

Industry standards state that corridors in education buildings should be
illuminated with at least Emean > 100lx and a light uniformity of Uo >
0.4[22]. Emean represents the mean illumination level of the floor and Uo
the proportional difference between Emean and Eminimum. These lighting
requirements can be achieved using the same luminaire used during the
verification process if hung in the staggered formation shown in figure 3.4(a).
Calculations showing that the industry standards are met can be found in
Appendix A.

Emean =
1

y · x

∫
y

∫
x
Ehor(x, y)dydx Uo =

Emean
Eminimum

(3.2)

The object passing by the light (representing a human) will be modelled
as a cuboid 0.2m wide and 0.5m long with varying heights. Several albedos
have been assigned to the cuboid to represent the different kind of clothing
humans wear. The object will be moved in a straight line trough the hallway
with the light at a set vertical distance y. Some example paths can be seen
in Figure 3.4(b).
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(a) Topview of the street model (b) Spread reflection on cars

Figure 3.5: Figure (a) shows an overview of the model. Figure (b) shows
that a spread (or specular) reflection will only reach the light in situation
(2). This situation does not occur in the modelled scenario.

3.4 Modelling of the street

The street model is based on a real street near the TU delft. It has two
lanes for cars (each 3m wide) and sidewalk (2m wide). The albedo of the
street will be modeled with A = 0.11 which represents old asphalt[6]. The
reflections of the street are assumed to be fully diffuse (rd = 1).

Industry standards state that a street with side walk should be illuminated
with at least Emean > 3lx and a light uniformity of Uo > 0.2 [3].These
lighting requirements can be achieved using 700lx luminaires with a half
power angle of 60◦ (α = 1) placed every 15 meter in between the road and
side walk. This set-up is visualized in figure 3.5(a). Calculations showing
that the industry standards are met can be found in Appendix A.

In this model two different objects will be modelled representing humans
(walking on the side walk) and cars (driving in the two driving lanes). The
humans will be modelled in the same way as in the hallway scenario. The
car will be modelled as a cuboid with the dimensions of an Opel Corsa (4m
x 1,7m x 1,5m), a commonly seen small car. The objects where modelled
with diffuse reflection, because no reliable sources describing the reflection
parameters (rd and α) of cars could be found.

Lacking the specular and spread reflections for this specific model should
not influence the results significantly, as no part of the car will be moved
directly underneath the light and therefore no significant amount of light of
the spread reflection should ever reach the light sensor. This is visualized in
figure 3.5(b).
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3.5 Results

Several simulated measurements have been plotted in Figure 3.6. All plots
can be observed with the tools provided by appendix A. The plots on the
left side of Figure 3.6 show the best (most deviation from steady state) and
worst case (least deviation from steady state) scenarios for the simulated
situations.

In general we can state that the extremer the albedo, the better the by-
passing object can be observed. A high albedo leads to a huge peak in the
signal. A low albedo leads to a huge drop in signal as most of the light
otherwise bouncing back to the source, is now absorbed by the object itself.
Another thing which can be observed is that the smaller the y distance, the
better the signal can be observed.

If we look specifically at the worst case scenario for the hallway (Figure
3.6(c)), we can see that the signal changes 0.1lx when a small person with
low albedo is simulated. Even though a signal of 0.1lx is a low absolute
value, the change in signal is 3% from the steady state, which should be
detectable with a correctly configured photodiode. The same goes for cars
driving in the street (Figure ??. Almost all of the bypassing cars should
be detectable, at least in lane 1, as the proportional change is at least 6%.
Detecting humans walking on the street seems however out of reach for this
project, as the relative change in signal is less than 0.5%.

Figures 3.6(b), 3.6(d), 3.6(f) and 3.6(h), show the frequency spectrum
of the received signals. They where obtained by calculating a Fast Fourier
Transfrom (FFT) over the signal with an Fs (sample rate) by assuming a
constant movement speed, 5km/h for humans and 30km/h for cars, over the
observed area. These plots show that the frequencies, carrying the signals,
lie between 0.1Hz and 2Hz for all simulated cases.

3.6 Conclusions

In this chapter, a version of the Phong model was implemented, verified and
used to estimate the light response if a person or car would move past a
light/photodiode pair. These responses gave several insights:
• The extremer the albedo compared to the environment, the better the

bypassing object can be detected.
• Detecting bypassing humans in the hallway is possible, because the

relative change in signal when a human passes by is at worst 3%.
• Detecting cars driving in a lane next to the light is probably possible,

as the change in signal is at least 6%. Detecting cars in the second lane
is harder, but might be possible unless the car has a similar albedo as
the reflecting background.
• The expected frequency of the signal lies between 0.1Hz and 2Hz for

both the street and the hallway scenario, no matter what properties
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.6: Several selected simulated responses. The left figures show the
biggest and smallest responses. The right figures show the frequency spec-
trum of those signals.
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the object has.
The insights obtained with this model will be used in several places later on
in the thesis.
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Chapter 4

Platform

A device has been made to generate, receive and analyse flashes. The com-
plete system architecture is shown in figure 4.1. Each component and their
interfaces will be discussed briefly, followed by a section describing the final
build of the platform.

Figure 4.1: System architecture of the created platform.

4.1 system components

4.1.1 Flash generator

The flash generator is a device able to control a LED with high precision. It’s
able to set the period T , and the t-on time Ton. T controls the frequency of
the flashes and Ton the length. Both parameters can be set with a resolution
of 10µs resulting in a precisely controlled PWM signal with the help of
equation 4.1. This signal is sent to a LED driver through one of three LED
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Figure 4.2: Visualization of how T and Ton determine the duty cycle and
frequency of the flash generator.

drivers, which will make the actual light turn on and off at different light
levels.

T =
1

f
DutyCycle =

Ton
T
∗ 100% (4.1)

Besides generating the PWM signal for the light, the flash generator has
another function. It sends a sync signal to the flash receiver just before
generating a flash. This allows the flash receiver to be ready when the flash
starts, so it does not waste time sampling if no flash is generated.

4.1.2 Reflection receiver

The job of the receiver is to sample values while the light is being turned on
and off, to then analyse the full reflected flash and extract a feature which
properly represents the environment. The receiver should therefore capture
flashes as precise and consistent as possible. For this reason, the receiver
receives a sync signal from the flash generator and is therefore able to start
sampling at almost the same moment every time, relative to the start of the
flash.

The receiver should continue sampling for a set period of time. Once done,
the device should do one of the following things with the received samples,
depending on the mode of the analyser:

1. Send back the full flash, uncompressed, for the analysis of separate
flashes.

2. Send back all compressed flashes, by extracting several features.

4.1.3 Analyser

The analyser will receive samples from the reflection receiver and is ran on
a PC in the form of either a C/C++ program (real-time) or as a MATLAB
script (post-time). The analyser can set the receiver to work in raw or
compressed mode. If the receiver sends raw flashes to the analyser it can
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be used to analyse these flashes in detail. This mode is used in chapter
5 to analyse single flashes in order to find the ideal settings for the flash
generator and reflection receiver. If the receiver sends compressed flashes,
the analyser is able to analyse consecutive flashes. This mode will be used
in chapter 6 to find an algorithm to determine if an object is moving in the
area under the light.

The Analyser should also be able to control the flash generator if the
system is running in real-time mode. It is therefore able to send a packet
with T , Ton and ILED to the device. This allows for real time control of the
flash generator.

4.2 Implementation

The system was build by combining several off shelf components. An over-
view of the actual platform can be seen in figure 4.3. It shows the different
components mounted on a box. This section will explain briefly how each
system component is implemented and why each part was chosen.

The flash generator is implemented on an Arduino UNO[2]. This platform
was chosen, as it’s simple to use, does not require an operating system
(OS) and has therefore no unexpected jitter. The LED used in the set-up
is the same LED as modelled in chapter3. The power used by the LED
is regulated with a single resistor. The resistors where chosen after some
experimentation with the flash generation and reception. The values and
resulting LED current can be seen in equation 4.2.

ILED =
VDD − ULED

R
ILED =

7− 3.6

[1, 3, 5]
= [3.4A, 1.1A, 0.68A] (4.2)

The reflection receiver is implemented on the shine platform [8]. This
platform was chosen because it’s a simple (no OS required) hands-on plat-
form featuring multiple photodiodes by default. The original software of
shine sampled each photodiode at 1Khz. This is way too low to see the
10µs flash resolution. For this reason the software of shine was rewritten to
sample in bursts of 50 samples at 210Khz (for a total of±240µs) when the
sync signal is received.

A downside of the shine platform is that it’s unable to communicate dir-
ectly with the analyser as it does not has a FTDI interface. This problem
was solved by using a processor-less Arduino UNO as bridge between the
analyser and shine platform.

The receiver makes use of three photodiodes of which it will use one at a
time. The original sensors on shine where replaced with ones more sensitive
to visible light. Each sensor is configured in a different way. Some feature
an increased amplification of the measured signal. Others have a longer wire
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PD# Wire length Gain EMC Shield
1 Long 1000 Slecteable
2 Short 5600 Yes
3 Short 10000 Yes

Table 4.1: Overview of photodiode configurations.

with (intentional) bad shielding which can simulate how the system preforms
in a environment with lots of electromagnetic radiation. An overview of the
PD configurations can be seen in table 4.1.

Another important decision concerns the amplification circuit of the pho-
todiode. The original circuit used by shine uses an analogue low-pass filter
to remove ripple introduced by the amplifier (See Figure 4.4). The filter has
several side effects. It reduces the signal strength and decreases the time the
signal is visible to the system. It was therefore chosen to remove al analogue
filters from shine and deal with the ripple with the help of software if re-
quired. The ripple effect might even be useful as the it’s probably dependent
on the received signal strength and therefore a measure of the environment.

4.3 Summary

The system has been built and tested. Even though the created device has
a poor build quality, it has great potential for experimentation with the
proposed method of activity detection. The main advantages are:

• Each building block has one clear purpose and can therefore be tackled
separately from other components. It’s therefore impossible that a
timing error in the flash generator software affects the sampling of the
receiver or vice versa.
• The build quality is poor. If the project works on this device, it will

definitely work on a dedicated platform.

The next steps for the project is finding a method for extracting useful
information from flashes as shown in figure 4.4(a).
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(a) Top view (b) Bottom view

Figure 4.3: The platform prototype. Each letter denotes a different com-
ponent:

A = Reflection receiver
B = Wires to the photodiodes
C = LED controller
D = Communication bridge between shine and the PC
E = LED driver
F = The LED
G = Wires to the analyser and power supply
H = Three photodiodes

(a) Unfiltered flash (b) Filtered flash

Figure 4.4: Two flashes captured with the platform. Left is unfiltered, right
is filtered.
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Chapter 5

Flash Analysis

The goal of this chapter is to find a method, capable of obtaining consistent
measures of the environment from measured flashes. Secondary goals are
to achieve this with the shortest flash and while using a small amount of
computation power.

In this chapter, the platform is set-up as seen in figure 5.1. D in the Figure
represents the distance between the device and the reflecting surface (the
wall in this case). All measurements presented in this chapter have been
made in a darkroom, a room where no lights from outside can enter, so the
test result won’t get influenced by other illumination sources.

The set-up will first be used to get a reasonable understanding of what
flashes look like and how settings of the flash generator influence the received
flash. Then, several methods for obtaining a measure of the environment
from flashes will be presented and compared. This chapter will conclude with
the final settings used in the flash generator and an algorithm to obtain a
consistent measure of the environment from the received flash.

(a) Test setup in illuminated environment (b) Test set-up in dark environment

Figure 5.1: Test set-up used to capture flashes in the darkroom.
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5.1 Flash properties

The test set-up has several parameters which can affect the perceived flash:
Ton (on time of the LED), I (brightness of the LED), SPD (sensitivity of the
photodiode) and D (distance between device and reflecting surface). This
section shows how each of these parameters influences the received signal.
Note that the period, T , is not present in the list as should not influence an
individual flash as long as the flashes are not too close together.

Figure 5.2(a) shows several responses for different Ton. The Figure shows
that all signals closely match each other, until the light is turned off. This
is a useful property as this means it’s possible to reduce the Ton with no
influence on the signal, if the ending of the flash is not used.

Figure 5.2(b) shows the influence of using the different amplification cir-
cuits of the flash generator. It can be seen that the LED powered with more
current (because of the smaller resistor) is perceived as brighter to the sys-
tem than the lights powered with a smaller current. It’s also observed that
the LED powered with higher currents show up earlier to the system. This
is because LEDs driven with higher currents turn on faster [7]. This means
that if a lower LED current is used, a longer Ton is required to obtain useful
information.

Figure 5.2(c) shows a set of measured flashes at a variety of distances from
the wall. It clearly shows that if the distance increases, the observed light
decreases. This is logical, as when light travels longer distances, the relative
intensity of the light decreases.

Figure 5.2(d) shows what happens when the different photodiodes are
used. As expected, the RSS rises once we increase the gain on the photodi-
ode. SPD3 almost instantly saturates as the gain is too strong when used in
combination with I1. SPD3 is therefore also displayed with in combination
with I3. Another noticeable change is the frequency of the ripple, caused by
the amplifier. This change is expected, as the resistor in the feedback loop
of the amplifier was changed.

5.2 Flash features

This section explores what kind of features can be extracted from a flash
signal. It will then compare the methods based on required Ton, precision,
detectability and computational complexity.

5.2.1 Feature considerations

The maximum of a flash response could contain useful information. Even
though the light at the first maximum has not fully turned on yet, it still
is some measure of the perceived light. This can be especially useful if
the maximum of the flash always occurs at the exact same moment in time
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(a) (b)

(c) (d)

Figure 5.2: Several perceived flashes generated with different settings of Ton,
ILED, D and SPD.
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relative to the light turning on. If that’s the case, then the maximum value of
the first peak could provide us with enough information of the environment.
If the maximum value of the first peak holds enough information, then a
very small Ton can be used to obtain this value, as decreasing Ton does not
significantly influence the height and form of the first peak.

Another possibility is to remove the oscillation of the signal with a low pass
filter and then take the maximum value of the filtered signal. This method
is less reliant on precise timing of the pulse. It also uses more samples of the
signal and should therefore be able to obtain a value which better represents
the reflections of the current environment than the maximum method. A
downside to this method is that a filter designed to deal with one frequency
of ripple, is not immediately suited to deal with the ripple frequencies of the
other amplifiers

Another method considered is to use the area underneath the flash. This
method has the advantage of being both simple and flexible. It does not
matter if Ton is chosen big or small, it will always give a reliable result if
Ton is not changed. It also does not care about the ripple frequency of the
amplifier. This method simply sums all information available to obtain a
measure of the reflections.

The final possibility considered is the filtered sum method. It first uses
a filter to smooth the signal to then calculate the surface underneath it. It
also requires multiple filters to be designed (one for each SPD amplifier). It
might however give a more detailed result than the filter method, as more
information is used obtaining the data point.

5.2.2 Feature comparison

A test was created to compare the effectiveness of each feature with various
settings in a full scale environment (D = 280cm). All of the features where
extracted by the flash receiver simultaneously from consecutive flashes. The
test was executed as follows:

1. Set the parameters for the given test (SPD, I, Ton).

2. Move a highly reflective piece of cloth underneath the set-up at 185cm
(D = 95cm).

3. Move the piece of cloth underneath the set-up again, but now from
the other direction.

4. Calculate the detectability Q, of the received signal.

If we refer to the ’detectability’ in this thesis we mean Q as defined in
equation 5.2. This equation calculates ratio between the standard deviation
of the signal when nothing is passing by and the absolute minimum and
maximum of when something is. The higher Q, the easier the signal should
be to distinguishable from noise.
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Q: SPD2 , I1 Q: SPD3 , I3
Ton 150µs 200µs 250µs 150µs 20µs 25µs

Maximum 35 38 40 5 5 5
Filtered maximum 39 65 66 20 27 33
Sum 45 75 95 18 20 26
Filtered sum 50 105 100 19 20 24

Table 5.1: Overview of the test results.

(a) (b)

Figure 5.3: Data extracted from consecutive flashes using the maximum and
filtered maximum methods with Ton = 250µs.

Q(PD) =

(
µ(PDNoEvent)−min(PDevent)

σ(PDNoEvent)
+
max(PDevent)− µ(PDNoEvent)

σ(PDNoEvent)

)
(5.1)

Q(PD) =
max(PDEvent)−min(PDEvent)

σ(PDNoEvent)
(5.2)

The test was done with all combinations of SPD and I. Only the combin-
ations of SPD2, I1 and SPD3 , I3 gave potential usable results at full scale as
for other combinations the flash was invisible or too bright (saturation) to
observe. Several consecutive captured features can be seen in the Figures
5.3 and 5.4. These where then used to calculated Q for each scenario. An
overview of all detectability values can be seen in table 5.1.

Based on the results of the Q test it was chosen to use the Filtered sum
method with Ton = 200µs. This method gives better results than the max-
imum and filtered maximum methods because more measurements are used
to determine the final value, leading to lower standard error. The reason
that this method works better than the sum method lies in the fact that the
filtered signal is a better representation for the environment that the rippled
signal. This can also be seen in the difference between the maximum and
filtered maximum.
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(a) (b)

Figure 5.4: Data extracted from consecutive flashes using the sum and
filtered sum method with Ton = 200µs.

5.3 Flash period

The final parameter to decide is the period of the signal, T . This value
has no influence on the detectability of the signal. It has however a clear
influence on how much light is used by the system, as decreasing T directly
increases the amount of flashes which occur. We can’t choose a too low value
for T as then users will observe the flickering of the light. Another reason T
can’t be chosen too low is that certain kind of noise still needs to be filtered
out of the system. It is almost guaranteed that some 50Hz component will
be seen in the signal, as long as it’s connected to the net.

For these reasons, T was chosen to be 800µs resulting in a flash frequency
of 125Hz. This frequency is high enough to filter the expected 50Hz noise.
Even though literature recommends at least 200Hz to prevent the visibility
of flickering, none was observed by 10 different test subjects with this setting
of T .

5.4 Conclusion

In this chapter, several methods of extracting useful data from a flashes
where presented. The Flash analyser will run at a frequency of 125Hz, a Ton
of 200µs with maximum light intensity I1 using the filtered sum method with
SPD2 to extract information from the reflections. These settings provide the
best found detectability with the given platform. The next step for the
project is creating an algorithm to analyse set of consecutive flashes.

36



Chapter 6

Analyser

The flash receiver now outputs values at 125Hz, which is a mixture of vari-
ous light and noise sources. The next step is to create a real-time binary
classification algorithm to convert the incoming samples into a logical value:
Activity detected, or no activity detected. The detection algorithm should
be designed with certain goals in mind:

• High true positive ratio - The system does not fulfil it’s purpose if
it is unable to reliably detect bypassing objects.
• Low false positive ratio - The system is useless if it classifies everything

as activity. This would result in the light being on all the time and
therefore, no energy being saved.
• Fast response time - If the algorithm manages to detect every by-

passing person correctly, but it only triggers a detection when the
object has already passed the light, then the system does not fulfil its
purpose.
• Low computational complexity - If the algorithm uses too many

calculations per incoming sample, the system would require a strong
processor to analyse all incoming data. This makes the system ex-
pensive, if it where to eventually get implemented in the real world.

This chapter is separated in three parts. The first part shows what signals
are received by the photodiode. The second part explains what methods
considered to remove unwanted signals from the signal. The final part of
this chapter shows what considerations where made to determine threshold
of the binary classifier.

6.1 Received signals

In an ideal world, the dark sensing system only perceives light it emits itself,
reflected by the environment. Figure 6.1 shows that this is clearly not the
case. Several other factors are influencing the measurements. Equation
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(a) (b)

Figure 6.1: Properties of the obtained signal with the the filtered sum
method.

6.1 has been devised and contains the most common signals the photodiode,
PD, might receive. Each term of the equation will be discussed briefly while
pointing out what the signal looks like.

PD = ILα+
n∑
i=1

IEdcnβn +
n∑
i=1

IEacnγn +N50Hz +N(µ, σ2) (6.1)

IL represents the light emitted by the our luminaire. This gets multiplied
with α, which represents the environment from the point of view of the sys-
tem. These two terms represents the ideal response. The expected frequency
of α should lie between 0.1Hz and 2Hz for by passing pedestrians and cars,
as shown in chapter 3. The goal of the complete algorithm is to isolate α
and detect significant changes in it real-time.

The next term,
∑n

i=1 IEdcn , represents all constant, but slowly changing
light sources in the area. An example of this is moonlight. Moonlight
illuminates the surrounding area, but slowly changes over time because moon
moves relative to the system, or clouds block the moonlight which would
otherwise be received by the photodiode. βn represents the environment
from the point of view of the moon.∑n

i=1 IEacn represents all fluctuating light sources in the area. Most lights
connected to the power grid fall into this category. They typically turn on
and off at 100Hz in Europe. Some of the light produced by these sources
could reflect off of the environment γn and reach the system and therefore
influence the received signal.

Another term in the equation is N50Hz, which represents 50Hz noise from
the powergrid. As long as the system is connected to the grid, some 50Hz
components will be seen in the system. Especially if received signals are
amplified 1000 times.
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(a) (b)

Figure 6.2: Two signals of a person walking underneath the set-up. Figure
(a) shows an optimistic case with an Q of 14.9 and (b) shows a harder
scenario with an Q of 10.5.

The final term, N(µ, σ2), represents the noise on the measurements not
created by the ”predictable” sources listed above. This noise originates
from the imperfections of the platform and electromagnetic noise in the
environment. The exact distribution of the noise is unknown, but its likely
to approximate a Gaussian curve. It is therefore represented by its mean
(µ) and variance (σ2) in the equation.

6.2 Filter methods

The goal of the filters is to get rid of unwanted signals in order to make the
detection of α easier. Several digital filter types have been considered, each
with different goals mind. The effectiveness (or failure) of each proposed
filter will be shown where possible, with the help of the signals shown in
figure 6.2. (a) shows an optimistic case with an original Q of 18.5. (b)
shows a harder case with an original Q of 10.5 and a big spike at 1700,
which is not part of the signal. This figure will display the filter working in
a much harsher condition.

6.2.1 Low-pass filters

A low-pass filter can be used to remove IEacn and N50Hz from the measured
signal as their frequencies are far removed from the signal we are interested
in α (0.1Hz - 2Hz). Low-pass filters have one big downside for the system.
They introduce a delay in the signal, which is bad for the overall response
time. Several filters have been tested. The final result is shown in figure 6.3
and is a second order IIR low-pass with its corner frequency at 5Hz. Using
this filter, the complete N50Hz component of the signal is removed and in
most cases, IEacn is removed as well. We are however unable to guarantee
the removal of IEacn because of possible signal aliasing.

Signal aliasing is a phenomenon which occurs if the sample rate Fs of a
system is too low compared to the signal being sampled. If Fs is smaller
then twice the frequency of the sampled signal, the signal will appear as
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(a) (b)

Figure 6.3: A low-pass filter (Fcutoff = 5Hz) applied to the two example
signals used to remove I50Hz and IEac. The Q for signal (a) increased to
27.9 from 14.9 and the Q of signal (b) increased to 11.7 from 10.5.

another frequency instead, an alias. This frequency is called Falias and can
be calculated with equation 6.2, where n is the closest integer multiple of
Fs to the signal being aliased (FIac).

Falias = |Fs ∗ n− FIac| (6.2)

Almost all lights have a flicker frequency higher than half the sample
rate of the system and will therefore alias. In Europe most lights have blink
frequencies which are multiples of 100z or 200Hz (2 or 4 times the frequency
of the power grid) and will therefore show up with alias frequencies of 25Hz
and 50Hz. These frequencies can still be removed with the used low-pass
filter. There is however no grantee that all lights will blink at a multiple
of 50Hz. In the Americas for example the grid is powered at 60Hz. The
chance is very high that a light in the U.S. typically flickers at 120Hz, which
will alias at 5Hz. This frequency is too low for the low-pass filter to remove
and will have to be dealt with in another way (if it occurs).

6.2.2 High-pass filters

High-pass filters can be used to remove IEdcn from the signal. In this specific
case, that’s very hard as the frequency we are interested in is very close to 0.
It works, but it takes the filter a long time to settle if the FCutoff is chosen
too low. Several filters have been tested, and the final result applied to the
two test signals is shown in figure 6.4.

6.2.3 Moving average filters

A moving average can be used to reduce N(µ, σ2) and the remaining Fallias.
A moving average is effectively a simple low-pass filter with specific frequen-
cies being removed completely at Fs

n ∗x, where n is the number of samples in
the moving average and x any integer greater than 0. Therefore, a makeshift

filter can be created instantly if Falias is known, with n =
∣∣∣ Fs
Falias

∣∣∣.
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(a) (b)

Figure 6.4: A high-pass filter (Fcutoff = 0.01Hz) applied to the two example
signals used to remove IEdc from the signal. The Q for signal (a) increased
to 30.9 from 27.9 and the Q of signal (b) increased to 13.3 from 11.7.

Falias could be determined with the help of a Fourier transformation and
then filtered away with a makeshift moving average. Yes, the Fourier trans-
form costs a lot of computation power which is against our goal of creating a
computationally light algorithm, but the transform wouldn’t have to be ran
every sample. It is probably good enough to run it once every 10 minutes
to check if Falias is detected and/or has changed.

Another advantage the moving average brings is that it reduces the noise
by a factor

√
(n), where n is the number of samples in the moving average.

It was therefore considered to scale the moving average, based on the current
standard deviation of the noise with the help of equation 6.3. The presented
formula calculates n, so that the expected noise level (T ·σ) is always smaller
after the moving average than the expected signal (µ · ss).

This method has two downsides. The first is that a moving average, cap-
able of changing every incoming sample is computational expensive. If n
changes, then the full moving average needs to be re-evaluated (n summa-
tions, 1 division)) instead of using a simple update rule (1 summation, 1
division). Another downside is that if n gets too large, the response time of
the system goes down. For these two reasons, the scaling moving average
was not implemented in the final algorithm.

signal

noise
= 1 =

µ · ss
T · σ√

n

⇒ n =

(
T · σ
µ · ss

)2

(6.3)

6.2.4 Differential filter

The differential filter makes use of the fact that the system is not only able
to sample when the light is turned on. Instead, it is possible to take samples
while the light is turned off, to obtain PDdark. This signal represents all
the signals in the environment we are not interested in. If this signal is
obtained very close to in time relative to PD (20µs), then we can assume
that all fluctuating sources in both, PD and PDdark, are equal. It’s therefore
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(a) (b)

Figure 6.5: A 28 tabs moving average applied to the two filtered example
signals used to remove the remaining 4.5Hz component of the signal. The
Q for signal (a) increased to 35.6 from 30.9 and the Q of signal (b) decreased
slightly from 16.6 to 13.3.

possible to subtract the two signals, which would result in the filtered signal
shown in equation 6.5.

PDdark =

n∑
i=1

IEdcnβn +

n∑
i=1

IEacnγn +N50Hz +N(µ, σ2dark) (6.4)

PD − PDdark = ILα+N(0, σ2 + σ2dark) (6.5)

There are several downsides to this filtering method. The first is that we are
subtracting two separate measures of the same noise signal. This leads to
a higher variance on the complete signal and therefore a higher noise level.
Another downside of this method is that it does not work properly with
the current hardware set-up because the PDdark, on its own, is below the
sensitivity threshold of the receiver and is therefore unmeasurable, unless
there is a lot of stray light in the area.

6.2.5 Filter overview

Several methods for removing unwanted parts of the received signal have
been presented and summarised in table 6.1 and result in a better Q. The
final solution implements the low-pass, high-pass and moving average with
scaling based on Falias. Figure 6.6 shows the remaining distribution of the
noise on the signal.

6.3 Detection threshold

The next step in creating the binary classification algorithm is to determine
classifying thresholds or rules. If an extracted value of the set of samples
crosses the threshold, then the set gets classified as activity detected. A
naive solution to the threshold problem would be to sample a fixed amount
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(a) (b)

Figure 6.6: Properties of the signal after filtering. Note that (b) is zoomed
in on the frequency axis compared to Figure 6.1(b)

.

Filter type Goal Notes In final algorithm?

Low pass filter
Filter IEac and
N50Hz

Can’t guarantee the removal of IEac
due to signal aliassing

Yes

High pass filter Filter I {Edc} Takes a long time to settle if a step is received Yes

FFT based
moving average

Filter Falias and
reduce N(µ, σ)

Works, as long as Falias is not too
close to ILα

Yes

SNR based
moving average

reduce N(µ, σ)
Worked, but introduced huge delays for high
σ and was is computational intensive

No

PD − PDdark
Filter IEac, N50Hz

and IEdc

Only worked in illuminated environments
which made it unreliable to filter N50Hz

No

Table 6.1: Overview of the filter methods described in this section.

43



of values when there are no objects in sight. Then, take the maximum
and minimum of the sampled values and if the signal ever moves out of the
range of the found values, activity is detected. Even though this might work
consistently in a dark room (lab environment with no lights), it fails to work
in a more realistic environment. If a ”dirty” device in the environment turns
on then this could increase the noise level in the environment. which would
lead to false detections.

This failed method shows that the threshold needs to be able to adaptable
based on the noise in the environment. Two other algorithms have been
considered, which are possibly capable of adjusting their thresholds in an
intelligent manner.

6.3.1 Standard deviation based threshold

The first method is based upon the standard deviation. We could set the
detection threshold based on the current measure on σ. Several real-time
algorithms are known to calculate rolling σ, the standard deviation over
all samples which have passed by. This measure gives a good estimate
of the noise in the environment until something happens. for example, an
object passes by, an ”extreme” change in the signal will occur and the rolling
standard deviation will be deluded with non-noise samples, ruining the noise
estimate.

This issue can be solved by using a moving standard deviation. This
method only uses the most recent m samples to obtain σ and bases it’s
detection threshold on this value. This means, that if an event occurs, the
algorithm only remembers it for m samples. By using a system with only
a short-term memory, we can create a flexible system which automatically
adjust to permanent changes in the environment.

Using the idea of moving σ, we can create a simple threshold algorithm
with equation 6.6. This equation calculates the z-score for the most recent
sample out of the filter section X[i] and compares it with threshold value T .
Then if z is greater than T or smaller than −T , it triggers a detection. σi
and µi in this equation represent the moving mean and standard deviation
over the most recent m samples at i.

zi =
Xi − µi
σi

(−T < zi < T )→ detection (6.6)

Figure 6.7(a) shows the described algorithm in action. It can be seen that
the bypassing person is detected at sample 2962. This is a good result, but
rather slow, especially since we are able to see the signal rise from sample
2875. The reason why the algorithm does not trigger a detection is because
the threshold (T ∗ σ, the red line in figure 6.7(a)) has risen slightly due to
the variance on being increased, which is caused by change in the signal
itself. This problem can be solved in a very simple way. Prevent σ from

44



(a) (b)

Figure 6.7: Working of the algorithm visualized with and without delay (d)
between the standard deviation (σ) and the signal (X).

being updated before an event happens. This can be achieved by adding
a small delay of d samples between X and the threshold. An example of
this is shown in Figure 6.7(b), where the event is detected at 2879 samples,
which is 83 samples (0.66 seconds) earlier than the previous result.

Several other parameters where added to further improve the classifica-
tion algorithm. The first one is to add a linear offset k · σ to the detection
threshold, because the noise distribution of the device is not balanced, mean-
ing that there are more outliers on one side of the mean, than there are on
the other side. This can be seen in Figure 6.6(a). If we where to move µ
slightly more to the right with a factor 0.75σ, then the distribution would
be more balanced (all samples lie between ±3.5σ) which results in a better
overall sensitivity.

Another improvement we can make is to not look at only one observation
of X, but L consecutive ones instead. If we then only trigger a detection if
l out of L samples cross the threshold then it might be possible to run the
algorithm with a smaller T and therefore detect more events.

Equation 6.7 shows a mathematical representation of the threshold al-
gorithm. A graphical overview of the complete algorithm (including the
filter section) can be seen in Figure 6.8.

0∑
i=−L

⌊Xi + k · σi−d − µi−d
T · σi−d

⌋
≥ l→ detection (6.7)

6.4 Conclusion

This chapter described the considerations made into designing an algorithm
capable of classifying a set of consecutive flashes. The resulting algorithm
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Figure 6.8: Graphical overview of the presented algorithm.

(seen in Figure 6.8) feature two sections. A filter section and a threshold
section.

The filter section is used to remove the uninteresting signals from the
consecutive flashes to improve the detectability of the signal. The best
results where archived by using a low-pass filter (5Hz), a high-pass filter
(0.1Hz) and a moving average (based on the biggest noise frequency still
left in the signal). The threshold section is used to classify the remaining
signal into two groups: Activity detected and no activity detected. This
algorithm however requires several parameters to work. These parameters
will be determined in the next chapter.
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Chapter 7

System evaluation

In the previous chapter an algorithm has been proposed, which should be
capable of classifying a set of consecutive samples into two groups: Activity
detected or no activity detected. The algorithm is however dependent on
several parameters which have not been determined yet. The goal of this
chapter is to find a set of parameters for the algorithm and evaluate the
system using the algorithm tuned with those parameters.

This chapter starts with showing the test set-up which will be used to
create a diverse dataset. This dataset will then be used to find parameters
for the algorithm with which we evaluate the system. This chapter finishes
with evaluating the performance of the system.

7.1 Test set-up

The test set-up used for evaluating and tuning the system can be seen in
Figure 7.1(a). It shows the platform placed at 280cm above the ground in
a room at night. Figure 7.2 shows 15 seconds of received samples when the
system was turned on. It can be seen that all described noise sources in
section 6.1 where detected in the test environment.

Figure 7.1(a) also shows three possible paths a pedestrian can walk. Path
1, the centre path, is placed directly under the light. Path 2 and 3 where
placed at 30cm and 60cm from the centre path. The pedestrian was asked
to wear one of the hoodies shown in Figure 7.1(b) before traversing one of
the paths. The different colours where used to ensure that the system was
tested on various albedo’s.

The ground where the pedestrian walked upon also varied. It was either a
lacquered wooden floor or a blue carpet. The carpet on the floor produced
a mostly diffuse reflection. The wooden floor produced a diffuse and spread
reflection. These two floors were chosen to simulate how the system performs
in different environments.

With the described set-up we created test-cases in the following manner:
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(a) (b)

Figure 7.1: (a) shows a picture of the test set-up with the blue carpet. The
white arrows on the floor represent the three different paths the test subject
walked over. The light is placed at a height of 2.8m. (b) shows the different
clothing worn during the experiment (black, red, green, blue and grey).

1. Position a person at the beginning of a path.

2. Start the gathering of samples and let the person wait for ± 35 seconds.

3. After ± 35 seconds, the person starts walking

4. When the person has reached the end of a path, stop the measurement.

This procedure was repeated six times for each combination of floor material,
path and hoodie colour, resulting in 180 unique test-cases. An example test-
case can be seen in Figure 7.3.

A test-case is split up in three sections. The first section (the first 25
seconds of data) serves to initialise the filters of the filter section and to
fill the FIFO buffers used to calculate the moving σ and moving µ. After
these 25 seconds the system can start detecting events. This is where sec-
tion two starts. In this section, no events which should be detected by the
algorithm are present. Then, after 10 to 15 seconds, section three begins
when the person starts walking. In this section, the algorithm should trigger
a detection.
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(a) (b)

Figure 7.2: (a) shows the received signal and (b) shows the frequency of this
signal. IEac and N50Hz are best seen in figure (b). IEdc is best observed in
(a) (the slowly dropping signal).

Figure 7.3: An example scenario with the tree sections marked. The first
section is used to initialise the filters, moving mean and moving standard
deviation. The second section is use to check for false positives. The first
section is used to check if the event gets detected properly.
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d m l L T k

Min 0 1 1 1 1 -1
Max 1000 1000 10 10 10 1

Table 7.1: Overview of the possible input genes for the genetic algorithm.

d m l L T k Fitness
ALG1 980 890 7 9 4.5 0.2 91%
ALG2 860 980 8 10 5.9 -0.7 83%

Table 7.2: The settings found with the genetic algorithm. STD1 was trained
with dataset S1 and STD2 was trained with dataset S2.

7.2 Algorithm parameters

A genetic algorithm (GA) was used to find parameters fo the algorithm.
GA’s are commonly used to generate high-quality solutions to optimization
and search problems. In this case, we need to find good settings for the
algorithm.

A GA needs two things to work. The first is a way to summarise a solution
as a gene. In our case, a gene is simply a set of numbers which represent
the parameters of the algorithm. The range of allowed inputs can be seen
in Table 7.1.

The second thing a GA needs to work is a fitness function. This function
evaluates the input gene and scores it based on its performance. In our case,
we want a gene representing an algorithm, which detects persons passing
by while not triggering when nobody passes by. This can be achieved by
having the fitness function evaluate a dataset S and counting the amount
of test-cases where it correctly and incorrectly detects the pedestrians. The
final fitness can be calculated with equation 7.1, where TP is the amount
of correct detections in the observed dataset, FP is the amount of false
detections in the observed dataset and N represents the amount of test-
cases in the dataset.

Fitness =
TP − FP

N
· 100% (7.1)

The described fitness function was used to train two separate algorithms.
The first algorithm ALG1 was found using dataset S1, which contained the
90 test-cases created with the wooden floor. The second algorithm trained,
ALG2, was found using dataset S2, which contained the 90 test-cases created
with the carpet. The found algorithms can be seen in Table 7.2.
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S1 S2 S1 ∪ S2
Algorithm TP (%) FP (%) Fitness TP (%) FP (%) Fitness TP (%) FP (%) Fitness

ALG1 86 (96%) 4 (4%) 91% 81 (90%) 11 (12%) 78% 167 (93%) 15 (8%) 84%
ALG2 84 (93%) 3 (3%) 90% 81 (90%) 6 (7%) 83% 165 (91%) 9 (5%) 87%

Table 7.3: Results of testing the found algorithms against all datasets.

7.3 Evaluation

The two found algorithms where evaluated against three different datasets:
S1, S2 and S3. S3, is the union of S1 and S2, and contains all 180 test-
cases. Results of this evaluation can be seen in Table 7.3. We are aware
that evaluating the algorithm with the dataset it was trained with gives
biased results, but they were added for the sake of completeness. The most
interesting sections of the table are marked blue. These sections show the
results of testing ALG1 on S2 and ALG2 on S1. It can be seen that both
algorithms seem to perform reasonably well as they achieve a fitness of over
75%.

This method however, does not give a good representation of how the
system performs in the real world, as the fitness score of an algorithm does
not tell us how much energy is saved and how much of the bypassing persons
are actually detected. A better way to gain insight in the performance of
this system is with recall and the false positive ratio.

Recall, R, is defined in equation 7.2 and gives us insight in how often the
system fails to detect an object passing by. R = 1 means that all events
are detected were R = 0 means that none of the pedestrians are detected.
The false positive ratio, FPr, is defined in equation 7.2 and gives us insight
in how often the system makes a false detection. Because it’s known how
much time we observe when we determine if a false positive occurs, we can
calculate the chance on a false positive per minute with equation 7.3.

If we evaluate the algorithms with these metrics, we see that ALG1 has
a 18% chance on a false positive every minute and ALG2 a 54% chance.
These numbers show that the system, with the current algorithm settings,
makes too much mistakes and won’t be usable to save energy. It is however
possible to manually adjust the found parameters to better suit our system.

Recall = R =
TP

TP + FN
FPr =

FP

FP + TN
(7.2)

PFP/minute = 1−
(

1− FP

FP + TN

)6t

(7.3)

The easiest way to manually adjust the algorithm is by changing the
value of T . T directly influences the detection threshold. Raising T will by
definition, decrease the amount of false positives (lowering FPr) and true
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(a) (b)

Figure 7.4: The false positive ratio and recall plotted as a function of T , for
both created algorithms.

positives (lowering recall) we detect. Two plots, showing R and FPr as a
function of T for both algorithms can be seen in Figure 7.4.

In these plots it can be seen FPr drops fairly fast if T increases, until FPr
reaches 0.1. From this point, T needs to increase a lot, to further increase
FPr significantly. This is because the false positives in these test-cases
are not caused by the previously described noise sources but by artefacts
occurring in the test data. One of such artefacts is shown in Figure 7.5(a)
at t = 32s.

These artefacts are caused by slight fluctuations in the power supply of
the flash receiver. This part of the system is powered by an USB port of
the analyser. Slight voltage drops in the USB ports are common but usually
no problem as the changes are minimal. If they get amplified 5600 times
however, they become visible and will influence the measurements of the
photodiode. this problem could be solved by powering the system with a
battery or a very stable power supply. This is however no longer possible
for this project due to time constraints.

It is however still possible to ignore the artefacts by choosing an ideal
value for T with the help of Figure 7.4. For example, if we want a system
which does not trigger any false positives (e.g. FPr = 0), then we have to
choose T = 12 for ALG1 and T = 9.6 for ALG2. This leads to the detection
results shown in Table 7.4. It can be seen that the detection ratio of persons
walking directly under the light is good (90% and 100%), but the further we
move away from the centre, the worse the detection ratio (recall) becomes.

The amount of detections can be increased by lowering T , but this leads
to more false classifications by the system. For example, if we allow a false
positive ratio of 0.05 (26% chance on a false positive every minute), we can
greatly increase the amount of true detections. This can be seen in Table 7.5.
If we look at the results by colour in this table, we can see that the system
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ALG2(S1)→ FPr = 0 ALG1(S2)→ FPr = 0
R Lane 1 R Lane 2 R Lane 3 R Lane 1 R Lane 2 R Lane 3

Red 1 1 1 1 0.5 0.83
Black 1 0.33 0 1 0.5 0
Green 1 0.83 0.67 1 0.83 0.83
Blue 1 0.83 0 1 0.83 0.17
Grey 0.5 1 0.5 1 1 1

Total: 0.9 0.8 0.43 1 0.73 0.57

Table 7.4: Overview of the performance of ALG2 when tested on S1 and
ALG1 on S2 with T set so that FPr = 0.

ALG2(S1)→ FPr = 0.05 ALG1(S2)→ FPr = 0.05
R Lane 1 R Lane 2 R Lane 3 R Lane 1 R Lane 2 R Lane 3

Red 1 1 1 1 0.5 0.83
Black 1 0.83 0.67 1 0.83 0.17
Green 1 1 1 1 0.83 1
Blue 1 1 1 1 0.83 0.5
Grey 1 1 1 1 1 1

Total: 1 0.97 0.93 1 0.8 0.7

Table 7.5: Overview of performance of ALG2 on S1 and ALG1 on S2 with
T set so that FPr = 0.05.

has trouble detecting pedestrians wearing blue and black clothing. This
makes sense. The black clothing does not reflect a lot of light compared
to the other colours and is therefore less visible to the system. The low
detection ratio of blue clothing can be explained with the help of Figure
7.5(b). This Figure shows the colour spectrum of the used LED. It can be
seen that considerably less blue light is generated by the LED than the other
tested colours. It therefore makes sense that the signals created with the
blue hoodie are less visible to the system.

7.4 Conclusion

We have developed a method which is capable of analysing a set of consec-
utive flashes with the goal of detecting bypassing pedestrians, even when a
considerable amount of noise sources are mixed in the signal. The created
filters and algorithms managed to achieve a combined recall between 0.73
and 0.9 depending on the setting of T and the amount of allowed false pos-
itives ratio (0 to 0.05). The system has shown to work on two floors types
and on several colours of clothing.

We are aware that the evaluation of the system is minimal, as the system
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(a) (b)

Figure 7.5: (a) shows an example of an artefact at t = 32s, caused by
fluctuations in the power supply. (b) shows the frequency spectrum of the
light emitted of the LED used by the system.

was with a limited dataset. The algorithm was then tweaked by adjusting
T , to fit the data even more. This method of evaluation at least shows
the potential of the system. It also manges to expose some key flaws. It
has trouble detecting pedestrians wearing black and blue clothing and has
regular false detections if we try to achieve a high detection ratio because
of a flaw in the hardware design.

The most direct approach to deal with the identified problems is to im-
prove the hardware design. Changing the LED with one, which emits light
more evenly distributed along all wavelengths, will improve the detection
ratio of bypassers wearing blue. Changing the power supply and imple-
menting the full system with a detected processor will remove the artefacts
and decrease the complexity of the project. It will also allow for the wires
to the photodiodes to be shortened and therefore reducing the total amount
of noise received by the system.
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Chapter 8

Conclusions and Future
Work

8.1 Conclusions

This thesis proposed a new method for activity detection while only using
visible light and a photodiode with the goal of saving energy. This can be
achieved by measuring reflections of light with a photodiode, produced by
a light. Our model shows that the changes in reflection are measurable by
a photodiode if a person walks by the system.

A flash does not appear as a perfect square to a photodiode. Therefore,
a method was created to extract the most relevant features from a flash.
These features were then analysed by a newly created algorithm capable of
analysing consecutive flashes.

A prototype has been made with off-the-shelve parts, implementing the
proposed system. The prototype was created to work in a hallway of a
university. The prototype showed to detect between 73% and 90% of all
bypassing pedestrians depending of what a false positive ratio was allowed
(0 to 0.05).

Even though the prototype has a relatively high false positive ratio, it
serves as a good proof of concept for detecting activity with short flashes
of visible light. Most of the found flaws in the system can be solved by
improving the hardware platform.

8.2 Future Work

The presented work serves as a proof of concept for detecting activity in the
line of sight of an LED. I personally think that the potential of this system
is huge, especially if a dedicated platform is created, as most shortcomings
of the current prototype can be solved if a better platform is built. Below I
have listed several ideas for future research.
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• Multiple units in one room - The algorithm is currently designed
for a stand-alone device. If we would hang multiple of these systems
in the same room then it’s likely that some of the light flashes overlap
and trigger a false positives regularly. This problem could be solved by
having each detector flash in another timeslot, but this requires more
research.

• Tracking - The system is currently only detecting activity. It could
also be expanded for other purposes. It might for example be possible
to use multiple photo diodes, lenses or field of view blockers to track
bypassing pedestrians.

• A dark sensing network - Multiple working units in one room is
nice, but multiple units working together to track, predict and illu-
minate the path of a pedestrian is nicer. This could be achieved by
having the devices communicate using the flashes already generated
by the device (visible light communication).
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Appendix A

Code repository

This appendix is the github repository where all the raw data, code and
MATLAB scripts can be found, used to create this thesis. It can be found
at: https://github.com/hkleingeld/DarkSensing.
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Appendix B

Flash analyser schematics

This appendix contains pictures of electronic schematic created for specific-
ally the flash analyser. Schematics of the processor boards where not added,
as only small changes small modifications (see section 4) where made to these
boards. The original scematics can be found at:

• Flash analyser - https://github.com/LennartKlaver/SDVN1

• LED controller - https://www.arduino.cc/en/uploads/Main/arduino-uno-schematic.
pdf

B.1 LED driver

Figure B.1: Drivers used to drive the LED.
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