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Abstract

This thesis proposes a novel design approach for a monitoring system that can detect
hidden leaks in intermittent water supply (IWS) systems. Cities with IWS conditions in
their drinking water network, such as Nairobi and Harare, often have a high percentage of
non-revenue water (NRW) in their system. Estimations of the amount of NRW in these
cities range from 40% to 50%, of which a large part is due to a leaky infrastructure. In-
termittency of water supply is usually caused by a shortage of available supply, making
it extra poignant to notice that these areas lose significant volumes of water. The leaks
are also important locations for contaminant intrusion, which deteriorate the quality of
drinking water. Additionally, intermittency of supply results in people using storage to
fulfill themselves with their weekly water demand, which provides new challenges when
constructing hydraulic models. Hidden leaks, which are leaks that do not appear at the
surface, can be noticed in continuously supplied areas through reports of pressure defi-
ciencies or the absence of supply. As these are regular circumstances in IWS areas, these
hidden leaks are seldom noticed. Therefore, methods that are applicable in IWS systems
need to be developed to detect these hidden leaks.

This thesis proposes a new approach to detect hidden leaks in IWS areas with a smart
hydraulic monitoring system. The approach optimizes the design of such a system in a
district metered area (DMA) with IWS conditions in sub-Saharan Africa, by balancing
information density and investment costs. By using as little equipment as possible, this
optimization study aims to be not only scientifically and practically relevant, but also
cost-effective.

The methodology that was used to design the monitoring system makes use of a similar
concept as the Dynamical Bandwidth Monitor (DBM), which is a smart hydraulic mon-
itoring system that has been applied regularly in networks with continuous supply. The
monitoring system consists of sensors that continuously measure flow or pressure and it
compares these measurements to a range of expected values, attributing deviations from
these expected values to a potential leak. A case study of Ashdown Park, a DMA with
IWS conditions in Harare, was used to assess the performance of the design. The flow
into this DMA and the pressure at its inlet had been monitored for one year. Two de-
signs of the monitoring system were made, one which mainly consisted of flow sensors and
one with mostly pressure sensors, to showcase which type of sensor could best be used
in Ashdown Park. A hydraulic model was constructed for the DMA using pressure de-
pendent outflow modelling. Daily demand patterns were constructed from analyzing the
inflow measurements and used to calibrate the hydraulic model. The proposed calibration
method assumes linear relationships between the demands and inlet pressure on one side
and the pressure at a specific node and flow at a specific pipe on the other side. The range
of expected flows and pressures within the DMA was calculated by Monte Carlo analyses,
during which demand realizations were modelled by using a novel method which made use
of a random weighted choice of demand, based on the outflow from a single tap. The ability
of the monitoring system to detect leaks during different demand realizations was stored
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in a three-dimensional Boolean matrix, which was then used to determine the optimal
sensor placement. A social and financial analysis, summarized in a business model canvas,
shows more practical challenges and opportunities that could arise from implementing the
monitoring system. The lessons learnt from this thesis were used to showcase whether the
monitoring system could be applicable for IWS systems around the globe.

Several conclusions can be drawn from the results of this thesis. The daily demand
patterns in Ashdown Park showed a different pattern than in continuously supplied sys-
tems, showing less strong peaks. This could be due to a constant water demand for filling
storage, leaks in the system or different consumer behaviour. The calibration method
made it possible to model flows and pressures at the DMA inlet which were comparable
to the measurements. The novel method to model demand realizations with a random
weighted choice and a single tap capacity, showed promising results since the spread of
the modelled inflow was well comparable to the spread of the inflow measurements. This
standard tap capacity is especially suitable for IWS areas, since most people in IWS areas
usually only have one tap directly connected to the water supply system and water end-use
devices are not directly connected to the network. Furthermore, it was found that the wa-
ter use behaviour of inhabitants of Ashdown Park had been more constant than the supply
behaviour of the water utility. This irregular supply behaviour of the utility increased the
difficulty of designing a pressure monitoring system. Using a flow monitoring system to
detect leaks showed a better performance (leaks could be found on a daily basis in 25%
of the pipes in the DMA) than using a monitoring system with pressure sensors (leaks
could be found in 1% of the pipes). Making the monitoring system with pressure sensors
dependent on the inlet pressure increased its performance (from 1% to 8.3%). Branched
parts of the system were more favorable locations to place sensors and sensors at the
DMA inlet were crucial for calibrating the hydraulic model. Practical barriers that were
identified during this thesis were irregular operational schemes, unknown demand patterns
and incomplete GIS data. Furthermore, costs can be saved as soon as leaks are detected,
making the financial profitability very dependent on the performance of the system and
the occurrence of leaks. The applicability of the monitoring system in IWS areas around
the globe is determined by the priorities of a local water utility, its network characteristics
and the ability of the local utility to overcome implementation barriers.

The main limitations in this research are due to making some simplified assumptions,
such as assuming a constant flow-rate from the tap in all households in Ashdown Park,
and due to a lack of understanding of the local situation, since this research was performed
in the Netherlands. To validate assumptions and get better understanding of the local
situation, it is advised to conduct follow-up research at the location of interest. Especially
a pilot project of the proposed monitoring system would likely find more practical barriers
and limitations than could be thought off in this thesis and therefore bring more valuable
information for the implementation of a smart hydraulic monitoring system.

If prioritized, properly installed and operated, the proposed smart hydraulic monitoring
system could generate substantial water savings and provide many social benefits, such
as an increased access to clean drinking water and employment opportunities. Above all,
it can assist a local utility with fulfilling their responsibility: supplying people with the
basic need of drinking water.
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1. Introduction

1.1 Problem description

Every year the World Economic Forum publicises a list of top threats which face our
world, ranked by likelihood and impact. In both categories “Water crisis” comes out at
the largest societal risk to our world. Among all possible risks, it scores 8th in likelihood
and 5th in impact (Edmond, 2020). This highlights the strong need for the sustainable
use of our water resources globally and also the impact that can be expected when water
shortages are faced. Many world leaders point out the need for re-evaluation of water,
which makes it more poignant to see that cities with millions of inhabitants such as Nairobi
(Ndegwa, 2016) or Harare, discussed with Shana (2020), loose 40% to 50% of their daily
produced drinking water before it ends up at the customer. On top of that, these same
cities do not have the production capacity to supply the demand of its entire population,
resulting in intermittent water supply (IWS) during which water is supplied to an area
at only for a few times a week. This water that does not reach the customer is labelled
as Non-Revenue Water (NRW). A proportion of this NRW is lost due to a leaky infras-
tructure, but financial constraints limit the water utility to make large investments in new
infrastructure (KAM, 2020). Apart from the water loss, various research has also shown
an impaired water quality in intermittent supply systems (Yassin et al., 2006)(Andey and
Kelkar, 2007)(Elala et al., 2011), which is likely caused by contaminant intrusion through
leaks (Kumpel and Nelson, 2013).

Let us compare the struggles that are involved with improving the performances of
drinking water system by comparing the situation at hand to the growth of the mobile
network in Africa. The last years Africa has had a gigantic growth of its mobile network,
thereby connecting a lot of people to internet and the entrepreneurial opportunities that
come along with it. For example, Nyirenda-Jere and Biru (2015) showed that Africa’s in-
ternational bandwidth increased 20-fold and its terrestrial network more than doubled over
the period from 2009 to 2014. These steep growth rates were partially possible because
there was not yet an extensive infrastructure in place to deal with the service provided.
Also, technologies that did not have to be placed at the location, such as satellites, made
it possible for the mobile network to grow at the rate it did. The drinking water supply
network however, can not be newly built as it evolves as the city evolves. Nairobi, for ex-
ample, has grown with a factor 34 in the last 70 years (World Bank, 2020). With limited
funds it has always been a challenge to connect everyone to its drinking water system,
let alone make detailed descriptions of the locations and characteristics of the installed
network. Amsterdam, which has only grown by a factor 1.4, has information about its
drinking water network that is up-to-date. This has allowed its utility to use this data
to build models and perform difficult calculations. In Nairobi however, there is not such
a basis, mainly due to the large growth challenges that were faced. The transition to a
water system that connects everyone and has a low NRW is a lot harder than was the case
for improving the mobile network, as the former continues on previously built infrastruc-
ture and registration. This research therefore aims on taking the current situation of the
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drinking water system (with IWS) as the basis and aims on improving this system, still
functioning with IWS. By accepting IWS as the existing situation and the situation to be,
it opposes other research which focus on the transition from IWS to continuous supply
systems (Mohapatra et al., 2014)(Ilaya-Ayza et al., 2016).

Monitoring the performance of the system of today can give valuable information for
predicting the performance in the future, when water demand and supply change and
infrastructure deteriorates. Furthermore, a well-working monitoring system is a key in-
strument in efforts to reduce NRW (Jang and Choi, 2017) and could as well be used to
identify intrusion hot spots (Sakomoto et al., 2020). It can be used to construct water
balances in isolated and metered sections of the drinking water network, called District
Metered Areas (DMA). By isolating and monitoring these different parts, a utility is able
to find which city section looses most water and is therefore a weak point of the network
(Jang and Choi, 2017). Investments in a monitoring system can therefore not only help
to set up management strategies to provide enough water access and quality in the fu-
ture, they can also lead to higher revenues and more efficient water use for the water utility.

An elaborate interview with the local NRW-manager of the local water utility of
Nairobi, engineer Mugo, showed which data is already monitored in Nairobi and which
data is still lacking.1. The main issue for Nairobi’s utility comes with the assessment of
real losses, that are the volumes of leaks in the system. Whereas visible leaks are reported
to the utility, hidden leaks are a nightmare. These hidden leaks are leaks that do not ap-
pear at the surface, but still leak away through perforated pipes. These leaks increase the
amount of NRW and are potential locations for contaminant intrusion. They are difficult to
locate, since they are not visible at the surface. In continuous systems, they can be notified
due to customer complaints about a decrease in pressure or absence of supply. Since these
are regular circumstances in an intermittent supply, these customer notifications are less
likely to occur and different methods to become aware of their presence should be explored.

This research uses a new approach in order to optimize the monitoring system of a
DMA with IWS conditions in sub-Saharan Africa, by balancing information density and
investment costs. It has a twofold objective. Firstly, it aims at designing a monitoring
system with flow and pressure meters in a DMA with IWS that can create awareness of
hidden leaks in a the drinking water supply network and give direction to their location,
using as little measurement devices as possible. Secondly, it aims at exploring new sustain-
able business cases for the implementation of this monitoring system. By using as little
equipment as possible, this optimization study aims to be not only scientifically practi-
cally relevant, but also cost-effective. Finally, by providing suggestions about the possible
business cases that come around with the new system, this research aims to provide a full
picture which also shows required financial and social relevance of the system.

1Notes of the entire interview can be read at appendix A.1
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1.2 Organizational framework

This thesis is conducted as part of the WaterWorX program, a program of 10 Dutch water
utilities together with the Dutch ministry of foreign affairs that has set the goal to increase
access to sustainable water services for 10 million people between 2017 – 2030. The Dutch
water utility overseeing this thesis is Waternet. Their international branch, WorldWater-
net, has the goal to support foreign public water utilities by offering sustainable, integral
solutions for water challenges. They have constructed a Water Operational Partnership
(WOP) with the Nairobi City Water and Sewerage Company (NCWSC). Later in this
thesis, data from the Harare Water Department was used as a case study. This data was
retrieved through Vitens Evides International (VEI), which is also an international branch
of Dutch water utilities (Vitens and Evides) operating as part of the WaterWorX program
(see Figure 1.1).

Figure 1.1: Organizational framework of this thesis.

Page 9



2. Literature review

This literature review chapter describes the literature that was consulted during this
thesis. It provides background information about the international NRW-framework and
methods to measure NRW. Furthermore, it shows the challenges that arise when modelling
IWS systems. Lastly, it provides more information that was used for designing the leak
localization system.

2.1 NRW background information

The literature about NRW is mainly used to explore the international guidelines and
terminology, to find common ground for discussing the challenges in NRW for NCWSC.

The IWA water balance

The most important strategies that are currently adopted by WaterWorX and other in-
ternational standards to determine the amount of NRW in a network are the bottom-up
approach and the top-down approach (Ziegler et al., 2011). Both strategies divide the
water balance over a network in a part of the water that is not billed to the customers
(NRW) and a part that is billed to the customer. The water balance that is mostly used
is the one adopted by the International Water Association (IWA), which can be seen in
Table 2.1 (Lambert and Hirner, 2000)(Ziegler et al., 2011). It has five different columns,
splitting the water entering the system in different segments. The original version does
not include any headings in the columns, but in this thesis different levels are added in the
headings to facilitate referencing and clarify the use of this water balance. As a next step,
the differences between the top-down approach and bottom-up approach will be regarded.

Table 2.1: IWA water balance with column headings
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Top-down vs. Bottom-up

As a first step in the top-down approach, the system input volume (level 0) is determined.
Afterwards it determines volumes of water on level 2 from the top of the balance down-
wards. So it first determines the billed authorised consumption (QBA), then the unbilled
authorised consumption (QUA) and then the apparent losses (QRL). These volumes are
estimated by first estimating their subvolumes (level 3) and summing them to get the
cohering level 2 volumes. The remaining real losses (QRL) are determined by subtracting
the preceding volumes from the system input volume, so not by actual measurements. Ad-
vantages of using this method is that it is quick and therefore cheap, since most volumes
can be estimated from the consumers data that are present in the database of the utility.
Nevertheless, the estimations in this method are prone to inaccuracies. These inaccuracies
aggregate when water balances of larger time periods are constructed. 1

The bottom-up approach starts with measuring the real losses in the system. Since
the losses are measured and calculated, they can be determined more accurately than with
the top-down approach. The other losses in level 2 (apparent losses, unbilled authorised
consumption and billed authorised consumption) are estimated the same way as in the
top-down approach. However, estimation errors are more easily noticed since the sum of
the aforementioned volumes should equal the system input volume. An advantage of this
approach is that the results are more reliable and substantiated, whereas disadvantages
are that measuring real losses is a challenging practice and that the approach is time con-
suming and expensive.

In order to better understand both approaches, a closer look is taken to the definition
of the volumes of the IWA water balance and how they can be measured.

System input volume (level 0)

The success of the water balance is highly dependent on the right determination of the
incoming volume of water into an area. By measuring the incoming volume and outgoing
volumes in the area, you consequently create a District Metered Area (DMA). A DMA is
originally defined by Morrison et al. (2007) as: “A discrete area of a distribution system
usually created by the closure of valves or complete disconnection of pipe work in which
the quantities of water entering and leaving the area are metered.” Since you measure
incoming volumes, one needs flow meters in order to determine a system input volume.

Billed and unbilled authorised consumption (level 2)

The billed authorised consumption consists of: 1) billed water exported, 2) billed me-
tered consumption and 3) billed unmetered consumption. Billed water exported takes
account for the volume of water that is produced by NCWSC but sold to another utility.
Billed metered consumption represents the volume of customers that are billed according
to the volume of water that they consumed. Billed unmetered consumption is the vol-
ume of water that is billed, but not based on an actual measurement. Usually this is the

1This happens for instance when estimations of monthly billed volumes are aggregated for a yearly
assessment of the percentage of NRW in the supplied area.
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case when the customer meter is broken, or the meter reader did not acquire the right data.

The unbilled authorised consumption is the volume of water that is used, but not billed
for a reason. This can be for instance the volume of water that is used for firefighting,
which is not billed in most countries or for flushing the drinking water system. If this
volume is measured, it is labelled “unbilled metered consumption”. If this volume is not
measured, it is labelled “unbilled unmetered consumption”.

The methods to determine the volume of billed and unbilled authorized consumption
are per definition dependent on rules and regulations of the authority. Metered consump-
tion can be measured by using an automated software or by meter reading personnel.
Types of water that are not billed, but authorized, can be found within the regulations of
the utility.

Apparent losses (level 2)

Apparent losses account for the drinking water that has been produced, transported and
has reached the customer, but it has not been registered. Sometimes apparent losses are
referred to as “commercial losses”, both terms have similar meanings (VEI, 2020). The
apparent losses can have three causes: 1) Meter inaccuracies, 2) Data handling errors and
3) Unauthorised consumption.

Meter inaccuracies can happen at every point where a meter is placed. When determining
meter inaccuracies, usually only meter inaccuracies in customer meters are taken into ac-
count since these represent the largest volumes (Ziegler et al., 2011). The data handling
errors are human errors that are often linked to the database software that is used to
register the data. Unauthorised consumption comes from people that consume water ille-
gally and can also be described as “water theft”. Forms of unauthorised consumption are:
Meter by-pass, illegal connections, illegal re-connection, fetching water before the meter,
meter reversal and meter tampering (UN-Habitat, 2012).

The volume lost due to meter inaccuracies can be estimated by making a selection of
in field meters from a similar brand, size and age group and testing them on a bench.
The inaccuracies that can be concluded from these test can be used to re-estimate the
measurements from the whole group (scale them up or down, depending on the inaccuracy)
(Ziegler et al., 2011). Another way to estimate the inaccuracy of meters is to use a bucket
and calculate the flow into the bucket. It is advised to calibrate DMA meters and large
consumer meters every 6-12 months. The frequency of calibration of consumer meters
should be guided by the performance history, according to VEI (2020). Data handling
errors are human errors that can be reduced by training personnel and creating a better
understanding of the database (Ziegler et al., 2011). The amount of illegal water use can
be best determined by conducting surveys in a pilot area or giving incentives to the local
inhabitants to notify illegal connections at the local utility (UN-Habitat, 2012).

Real losses (level 2)

Real losses can be defined based on their location and their visibility (Ziegler et al., 2011).
The different locations where leaks can occur are at: 1) Transmission and distribution
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mains, 2) service connections and 3) storage tanks. Leaks at transmission and distribu-
tion mains can occur at pipes, joints and valves and usually have medium to high flow
rates and short to medium run-times. Leaks at service connections can occur at joints and
fittings, which often low flow rates and long run-times. In terms of visibility, leaks can
be classified as “visible”, “hidden” and “background leakage”. Visible leaks will quickly
appear at the surface and can therefore be identified and repaired quickly. Hidden leaks
will not appear at the surface, but can be detected by leak detection methods due to its
significant size. Farley (2001) assumes that background leaks are almost never detected
and they have a large share in the amount of real water losses and a long run-time. They
can also be referred to as “Unavoidable Real Losses (UARL)”.

Let us first consider the way leaks in the transmission and distribution mains are mea-
sured. Visible leaks are usually reported by local inhabitants. A repair team measures the
leak and repairs it. The volume lost is given by the flow rate through the leak and the re-
sponse time of the repair, which is often assumed equal to the run-time of the leak. Hidden
leaks have to actively be identified. The process of leak identification, location and repair
is known as Active Leakage Control (ALC) (Morrison et al., 2007). First, the utility needs
to become aware of the hidden leak. This can be done by applying continuous monitoring
and flow analysis. Structural changes of the flow regime within pipes can be due to the
formation of hidden leaks. Often continuous measurements are not available, or difficult
to analyse since flow patterns differ too much over the day. In those cases a Minimum
Night Flow (MNF) analysis can be used to determine the amount of hidden leaks. In an
MNF-analysis a minimum night consumption is determined, as well as the background
leakage. The difference between the sum of the two and the flow that is actually flowing
in the tube is regarded as the volume of the hidden leaks. After being aware of a leak,
its location should be narrowed down to a range within 300m. This can be done by using
step-testing in DMA’s. During step-testing, parts of the DMA are closed to form different
sections and water is allowed to flow within these section. At every section it is measured
if water is lost. Also leak noise loggers and sounding surveys can be used to detect the
location within a 300m-reach (Kober and Gangl, 2009). Finally, the location range should
be narrowed down to the exact location of the leak (within a range of +/- 0.3m). Applied
methods to achieve this are a combination of listening sticks and ground microphones,
leak noise correlation and non-acoustic methods such as tracing gas or ground penetrating
radar (Ziegler et al., 2011). Due to the small magnitude, background leakage can not
be detected by active leak detection. There is an empirical formula constructed by the
Lambert et al. (1999) on behalf of the IWA for the background leakage that takes into
account the network length, the number of service connections, the the length of private
pipes after the property line up to the customer meter and the average operating pressure2.

Leaks up to the point of the customer meter can be approached differently than leakage in
mains, since in the location of the leakage is already known. The volume of these leakages
can be estimated by doing house-to-house visits and surveys. Eventually, a very practical
strategy to decrease this volume is to replace all leaking household connections by high

2This formula however is based on data from developed countries with a continuous water supply, so
one should be careful in applying this formula in IWS systems. Another method has been constructed by
DeSilva et al. (2005) that takes into account the pipe material, number of joints and a pressure factor.
This method has been applied in South Australia and resulted in a background leakage that was only 67%
of the IWA-value. This formula has less international recognition.
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quality connections provided by the utility as suggested by Preston and Sturm (2002).
Leakage and overflow at storage tanks are usually visible, since most tanks are placed
above ground. The volume of small leaks can be determined by using a bucket to measure
the flow. Hidden leaks at the storage tank can be identified by continuous monitoring,
when flow meters are installed at the inflow and outflow point of the tank.

2.2 Modelling IWS systems

The behaviour of water flows and pressures in intermittent supply systems is often very
difficult to predict and therefore challenging to model. Main reasons for this difficulty are
usually differences in demands, high leakage levels and the occurrence of low pressures in
the system compared to continuous supply systems (De Marchis et al., 2010).

Demands in IWS systems

The differences in demand pattern, compared to pressurized systems, is mainly due to the
need of people to store water during days with supply to ensure themselves with water
during the days without supply. This results in a different pattern and an increased water
demand during the days with supply (De Marchis et al., 2010). Next to demand patterns,
per capita water demand can differ as well. A relatively high per capita demand is men-
tioned in a modelling report of the Republic of Zimbabwe (2017). Here, they refer to a
commercial report of 2016 which indicated an average consumption of 497 L/p/day for
high density areas and 412 L/p/day for low density areas. The per capita water use was
calculated by dividing the inflow into an area by its number of inhabitants. Underlying
reasons for this high base demand could therefore be meter inaccuracies, high leakage
levels, unregistered bulk consumers and a higher personal water use than expected. 3

Lastly, it is a challenge to model the spatial and temporal variation of demand within the
network. A stochastic model that can be used to model this spatial variation in contin-
uous supply systems is SIMDEUM. This model uses different parameters for household’s
occupancy (e.g. household size, ages), household appliances (typical flows and volumes)
and consumers’ water using behaviour (e.g. number of toilet flushes, duration of shower)
(Blokker et al., 2017). However, no model was found that had similar water use statistics
for IWS areas, stressing the need for more survey data on consumption behaviour.

Leakages in IWS systems

High leakage levels are often due to the fast deterioration of an IWS network (Al-Washali
et al., 2019). These leakages can be modelled by adding a certain demand to a model
(Casillas Ponce et al., 2013) or by relating the leak volume to the pressure in the system
(Crowl and Louvar, 2011).

3Whilst having measured this high use, the same report considers these numbers unreliable, stating
that a large proportion of the consumer meters would not be working or read and consumption would
largely be based on estimates. Therefore, the report uses unit demands of South Africa for its hydraulic
model later on.
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Low pressures and the nominal pressure

At last, intermittent supply systems regularly experience low pressures in the system. If
the system’s pressure drops below a certain minimum, only part the system can be supplied
with water. This results for some systems in a water demand that is highly dependent on
the system’s pressure. In order to model such as situation, pressure dependant outflow
(PDO) modelling should be applied instead of demand based modelling, according to
Vairavamoorthy et al. (2001). In these models, the demand decreases when the pressure
drops below a certain limit. This limit is called the “nominal pressure”, represented by Hs

in Figure 2.1 (Wagner et al., 1988). The pressure at which no demand occurs is called the
“minimum pressure” (represented by Hm in Figure 2.1). This Figure assumes a non-linear
relation and is used in WNTR, which is a Python-package that can be used to run pressure
dependant outflow models (NTESS, 2019).

Figure 2.1: Demand decreases when insufficient pressure is available

2.3 Design of a leak localization and detection system

In order to optimally allocate sensors for leak detection purposes, first a leak detection
method was chosen. More research was done into allocating demand and implementing
leaks in the hydraulic model, as these fields provided some challenges. Finally, some extra
literature was studied for solving the optimization problem.

Leak detection method

In order detect hidden leaks, the same leak detection principle is used as for the “Dy-
namische Bandbreedte Monitor” (DBM)4, a leak detection method design by the Dutch
utility Vitens. It uses historical measurement data to construct a bandwidth of expected
hydraulic values in the water supply system, so either expected pressures or expected
flows. This bandwidth is bounded by so-called “alarm values”. An alarm is raised when
measured values exceed this bandwidth, as this exceedance might be caused by a leak

4In English: Dynamic Bandwidth Monitor
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(Van Vossen-van den Berg, 2017). To distinguish between false alarms and an actual leak,
it is advised to take a certain detection time frame into account during which the mea-
surement values need to exceed the alarm values before an alarm is raised (Van Steen,
2020). Furthermore, it should be noted that most research in sensor allocation for leak
detection in water distribution networks focuses around the placement of pressure sensors
(Perez et al., 2009)(Khorshidi et al., 2020), whilst in cities such as Nairobi and Harare
flow sensors are used with higher frequency than pressure sensors, as told by Shana (2020)
and Mugo (2020).

Modelling demand allocation

The key to a successful DBM is the construction of the boundaries for the expected range
of values, the so called “alarm values”. The boundaries represent extreme scenarios which
can still be expected and occur usually when demand concentrates locally. Therefore the
method of spatially allocating demand is important for constructing of these alarm values.
Spatially allocating demand has been a challenge for many years in continuous supply ar-
eas (Kanakoudis and Gonelas, 2014) as well as in IWS areas (De Marchis et al., 2010). For
this spatial allocation, researchers and operators constantly have to trade off the ability
to accurately model the human water consumption behaviour against the simplicity of the
model to allow for fast hydraulic calculations. One of the simplifications that induce errors
is the representation of demand in only two terminal nodes connected to a pipeline, whilst
actual withdrawals might take place at several locations along the pipeline (Kanakoudis
and Gonelas, 2014). Furthermore, the random component within human behaviour makes
it impossible to model water demand allocation completely accurate. Other struggles arise
in assessing the quantity of demand. This quantity can be estimated by using bottom-up
approaches, usually based on clustered water meter data, and top-down approaches, based
on a water balance constructed from the water volume that enters the network. According
to Kanakoudis and Gonelas (2014), most proposed methods are a combination of these
approaches .

Later in this thesis, a DMA in Harare (Zimbabwe) called “Ashdown Park” is used as
a case study for which a hydraulic model is constructed to model IWS conditions. VEI
had shared an EPANET model of Ashdown Park, which formed the basis of the hydraulic
model which will later be constructed. The spatial demands in this EPANET model have
been allocated by employees of VEI using service polygons within a GIS network. Each
polygon contained a certain number of households, each with the same average household
consumption. GIS can serve as a logical and helpful demand allocation tool, due to its
spatial analysis capabilities (Haestad Methods et al., 2003). EPANET, which is often
used in hydraulic modelling, can be used to show the average flows in the network at
specific times, but it does not include a multitude of possible flow scenarios at the same
time within the network’s pipes (Rossman, 2000). For this additional software such as
SIMDEUM can be used, which uses random draws from probability density functions
that represent human behaviour and parameters with physical meaning, to predict which
scenarios might occur in the area (Blokker et al., 2017). As previously mentioned, this
type of software is unfortunately not yet available for IWS systems.
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Modelling leaks

Determining the leak size, which should be used in the leak detection model, is a problem
that many researches have faced. The water utilities of Harare and Nairobi do register
their leaks, but unfortunately not their sizes. Therefore, a similar leak size as used in
other literature should be taken into account. A range of leak sizes that were used in
comparable literature is listed below:

• 7.5 - 15 m3/h. These leak sizes were artificial and used in a modelling study to
test a leak localization method in Leimuiden (the Netherlands) (Moors, 2016).

• 2.5 - 7.5 m3/h. These artificial leak sizes were used in a modelling study to
determine a suitable leak detection time (Van Steen, 2020).

• 20.6 m3/h. This leak was created by opening a fire hydrant in Barcelona and used
to test a new data driven leak localization method (Soldevila et al., 2019).

• 8.1 m3/h ; 0.72 - 13.0 m3/h. A real DMA in the UK with approximately
1000 properties showed a leak flow rate of 8.1 m3/h, although it could not be made
certain whether this was one leak or multiple leaks. In a model study with the same
DMA, the algorithm was tested with single leaks ranging from 0.72 to 13.0 m3/h
(Sophocleous et al., 2019).

• 2.52 - 10.8 m3/h ; 2.52 - 22.7 m3/h. This paper describes a new approach
for model-based leak detection and localization in the drinking water network in
Barcelona. In this paper, the water utility in Barcelona states that the leaks to be
detected range from 2.52 m3/h to 10.8 m3/h. The modelling study aims to isolate
leaks that range from 2.52 m3/h to 22.7 m3/h (Casillas Ponce et al., 2013).

The leak size range of 2.52 - 10.8 m3/h was defined by the experiences of a local water
utility in the research of Casillas Ponce et al. (2013), which gives this range more practical
weight than most other leak sizes that were found in literature. Furthermore, the leak size
that is implemented in the hydraulic model should be in reasonable proportion to the flow
into the DMA (Moors, 2016).

Notably, most literature about leak localization and detection methods defines a leak
size in their model in terms of a given flow rate (Moors, 2016)(Van Steen, 2020)(Soldevila
et al., 2019)(Sophocleous et al., 2019)(Casillas Ponce et al., 2013). The main reason for
this is the usage of demand-driven models, such as EPANET, that require to insert the
leak into the model as a demand. However, other research has shown that leak size might
better be defined by its surface area, as its flow rate depends on the occurring pressure
(Marchis and Milici, 2019). In pressure-dependant modelling, which is performed in the
models in this thesis, the flow-rate that is lost through the leak (dleak) can be written as
a function of the pressure in the leaky pipe (p), a unitless discharge coefficient (Cd), the
area of the hole (A), a unitless exponent related to characteristics of the leak (α) and the
density of the fluid (ρ) (Crowl and Louvar, 2011). The leak volume in WNTR is therefore
defined as in equation 2.1 (NTESS, 2019).

dleak = CdAp
α

√
2

ρ
(2.1)
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Intermittency in supply systems can also reduce the total leakage in the network
through equation 2.1 as well, since there is no volume lost in areas without pressure.
This absence of pressure occurs on days without supply.

Boolean leak detection

In similar methods to design a configuration of sensors for leak detection purposes, Boolean
classifiers are used to describe whether a leak is found at a certain location or not (Perez
et al., 2009)(Khorshidi et al., 2020). These methods store information whether a leak can
be detected by a sensor in another node as 1’s in a Boolean matrix with two dimensions
(one dimension for the leaks and one dimension for the sensors). A shortcoming of these
methods is that it only takes a single demand realization into account, thereby ignoring
other flow scenarios which might occur during different demand realizations.

Optimization

The optimization solver Gurobi can solve certain classes of optimization problems (Gurobi
Optimization LLC, 2020). It can optimize quadratic problems, which is useful to find
the least squares solution between two vectors (Boyd and Vandenberghe, 2018), and solve
mixed-integer problems, such as the Boolean case which solely consists of the integers 0 and
1. It therefore allows for mixed-integer quadratic-constrained programming (MIQCP).
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3. Objective and research questions

3.1 Objective

As previously stated, the main objective of this research will be:

“Design an optimized configuration of flow or pressure meters in a
monitoring system in a DMA with IWS that can locate hidden leaks with as
little equipment as possible and explore the business opportunities of such a

system.”

3.2 Research questions

The research is divided into four parts: A theoretical study (1), a modelling study (2),
constructing a business model (3) and a study into the world-wide applicability of this
study (4). The research questions divided over the different parts will be as follows:

Part 1: Theoretical background study

Q1: Which type of data is important to monitor in Nairobi?1

Part 2: Modelling case study Harare: Optimally design a smart hydraulic
monitoring system for a DMA with IWS

Q2: How can intermittency be included in a hydraulic model?

Q3: How can flow and pressure meters be used to detect hidden leaks?

Q4: How can the placement of the meters in the monitoring system be optimized?

Part 3: Business model

Q5: What are the financial and social benefits of implementing a monitoring system?

Part 4: General applicability for IWS systems globally

Q6: To what extent can the outcomes of this research be used to construct monitoring
systems for Water supply networks with IWS conditions around the globe?

1This question was answered by conducting an elaborate interview with the NRW-manager of NCWSC
(appendix A.1). The conclusions for this interview were used to define the objective of this thesis. There-
fore, the question was answered before the objective was formulated.
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4. Methodology

This chapter shows the main structure that was used during this research and its doc-
umentation. Furthermore, it describes the methodologies that were applied for answering
the research questions.

4.1 Thesis structure

The structure of this thesis can be seen in Figure 4.1. This thesis started with a structured
interview with the local NRW-manager of NCWSC, identifying which information was
lacking the most for their existing NRW strategies. This interview was used for formulating
the research objective. Afterwards, a case study of an IWS area in Harare was used for
a modelling study to design a monitoring system that can detect hidden leaks in an IWS
system. Reason for the switch of focus location from Nairobi to Harare will be described
below. The results of the case study are shown in chapter 5, 6 and 7. At last, a business
plan for the monitoring was constructed (chapter 8.3) and conclusions were drawn to which
extent the monitoring system could be useful for IWS systems around the globe (chapter
9).

Figure 4.1: Summary of the methodology and planning of this thesis.

The main reason for the shift from Nairobi to Harare for the case study was that the
received digital information from the water supply system in Nairobi contained contra-
dictory information about pipe lengths and diameters in different files, making it hard
to construct a trustworthy model. In Harare however, they had some DMA’s which had
complete GIS documentation, whose inlet pressure and flow at the entrance had been
monitored over the last years and even had a complete House-to-House (H2H) survey in
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one of the DMA’s. This provided the information needed to build a hydraulic model for
an IWS area. Furthermore, at the beginning of this modelling study, there were some in-
ternal switches of staff within the NRW-department in Nairobi. This came along with the
fact that Covid-19 had just reached Kenya, which added challenges to life in the city and
prevented me from visiting Nairobi to validate information. A full account of the planning
and events around this switch, as well as resulting advantages and disadvantages, can be
found in appendix A.3.

4.2 Important data to monitor in Nairobi (Q1)

In order to identify which type of would be important to monitor in Nairobi, literature
about different methodologies for assessing NRW was analyzed (section 2.1). The informa-
tion was used to conduct a well-structured interview with the NRW-manager of NCWSC,
identifying which type of data was lacking the most for their existing NRW strategies.

The interview used the same framework for distinguishing different types of NRW
as the IWA and the above mentioned literature, as its international standards help in
creating a common understanding and terminology amongst water utilities world-wide. To
give visual guidance in how different volumes of the IWA water balance depend on data,
different “data-dependency trees” were constructed. An example of a data-dependency
tree can be found in Figure 4.2 and all trees are listed in appendix A.2.

Figure 4.2: Examples of a data dependency tree. The different “levels” are explained in table 2.1

The purpose of the interview was to identify which volume of the IWA water balance
(Table 2.1) is most difficult to measure for the utility of Nairobi. These volumes were
identified by gradually discussing all data-dependency trees. The purpose of the monitor-
ing system would be to give the local utility a useful tool to be better able to measure this
specific volume, which turned out to be the hidden leaks in the system (appendix A.1).
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4.3 Hydraulic modelling of IWS systems (Q2)

This section describes the methods which were used to construct the hydraulic model
which can be used to simulate IWS conditions. It explains how the hydraulic model was
constructed and calibrated with field measurements. The results of the hydraulic model
can be found in chapter 5.

Strategy for constructing the hydraulic model

This thesis will make use of the demand patterns that were deducted from actual measure-
ments and not use standard patterns, as demands tend to very different in IWS systems
(De Marchis et al., 2010) and no standard IWS patterns could be found. The demand
patterns that were deducted from analyzing the flow into Ashdown Park are shown in
section 5.1.

It is advised to use pressure dependant outflow (PDO) modelling for IWS systems
(Vairavamoorthy et al., 2007), as low pressures often influence the demands in these ar-
eas. Another advantage of PDO-modelling is that the flow through leaks can be modelled
as a function of pressure (equation 2.1, section 2.3). Therefore, it was decided to use
WNTR to construct the hydraulic model. WNTR is a Python-package, which can be
built upon existing EPANET models and allows for pressure dependant outflow modelling
(NTESS, 2019). It has previously been used to design leak detection and localization
systems in research of Van Lagen (2020).

Harare Water Department and VEI shared the geographical outline of the drinking
water system in Ashdown Park, by sharing its EPANET model. This EPANET model
was loaded into WNTR. The larger distribution network outside the DMA was modelled
by using a reservoir, whose head can be adapted to simulate the effects of changes in
inlet pressure on the system (see Figure 4.3). The roughness coefficient of the pipes was
the only physical parameter to be adjusted, since EPANET used the Darcy-Weisbach
coefficient (measured in feet or meter) for calculating frictional energy losses and WNTR
uses the unitless Hazen-Williams coefficient Rossman (2000). The roughness coeffecient
was changed from 0.6 × 10−3 feet to 125 (-). The explanation behind these numbers can
be found in appendix A.7.

Figure 4.3: The model can use input values (in blue) to simulate the flow and pressure at the location of the sensor
(in orange).
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Calibrating the hydraulic model to field measurements

The two main parameters in the model that can be changed for the simulations are the
nodal demand and the reservoir head, as can be seen in Figure 4.3. The hydraulic model
in WNTR goes through an iterative process of solving mass and energy balances, until the
remaining mass and energy deficits of the balances approach 0. As a solution, the model
can calculate the flows that occur in pipes (noted by vector qt) and the pressure that
occurs at nodes (noted by vector ht) that result from the demands in the nodes (noted by
vector dt) and the pressure in the reservoirs and storage of the model (in this case noted
by h0t, since only one reservoir is used). Hence, equation 4.1 shows the model with its
output (qt and ht) on the left side and its input (dt and h0t) on the right side.

The resulting pressure at any node i (hi,t) and flow at any pipe j (qj,t) at time t can be
read from the indices of vectors ht and qt. The devices that measure flow and pressure
at the DMA inlet (Figure 4.3) were estimated to be closest to pipe P73 and node N24.
Therefore, the field measurements (measured flow noted by q∗

t and measured pressure
noted by h∗

t ) should be compared with the computed flow at pipe P73 (qj=P73,t) and the
computed flow at node N24 (hi=N24,t). Unfortunately the model’s computations, using
the initial demand settings in EPANET (dinit

1) and the average measured pressure at the
reservoir (h0init), did not coincide with the measured values (equation 4.2). Therefore, the
model needed to be calibrated.

f(qt,ht; dt,h0t) = 0 (4.1)

f(qt,ht; dinit, h0init) = 0 =⇒ qj=P73 6= q∗
t , hi=N24 6= h∗

t (4.2)

The calibration method introduces parameters δd and δh0, as well as variables x1t and
x2t. The demands (dinit) and the pressure in the reservoir (h0init) are multiplied by the
former parameters, to make the model’s output of pressure at node N24 and flow at pipe
P73 approach the measured values (equation 4.3). Parameters δd and δh0 are input values
of the model that influence the accuracy of the calibration (section 5.3). Variables x1t and
x2t are defined by the perturbations caused by adding extra demand to the model (vector
c [c1, c2], varies with δd) and extra pressure to the model’s reservoir (vector d [d1, d2],
varies with δh0), as well as the difference between the measurements (h∗

t and q∗
t ) and the

calculated pressure at node N24 and flow at pipe P73 (hi=N24,t and qj=P73,t). They are
the unique solution to the linear set of equations shown by equation 4.4. A derivation of
this calibration method, reported in detail for the example with δd=1 and δh0=1, can be
found in appendix A.4. Its results are shown in section 5.3.

f(qt,ht; dinit × (1 + δd × x1t),h0init × (1 + δh0 × x2t)) = 0 =⇒
qj=P73,t ≈ q∗

t , hi=N24,t ≈ h∗
t

(4.3)

[
c1
c2

]
× x1t +

[
d1
d2

]
× x2t =

[
(h∗

t/hi=N24 − 1)
(q∗

t/qj=P73 − 1)

]
(4.4)

1In the EPANET-file received from VEI there was already a demand pattern inserted to change the
demands over time. However, using this demand pattern, the output of the model did not approach the
measurements at any time. Therefore, the calibration method will “override” the inserted demand pattern
and only the initial base demands dinit are taken into account at this stage.
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Accuracy of calibration

The accuracy of the model output can be estimated by calculating the Root Mean Squared
Error (RMSE). Since this RMSE can be computed for both the pressure and the flow out-
put, which both have different units, the Normalized Root Mean Squared Error (NRMSE)
is used. This allows for a better comparisons between the two errors. The expressions of
these NRMSE’s are given in equation 4.5 and 4.6.

NRMSEflow =

√∑143
t=0(q∗

t−qj=P73,t)2

N

avg(q∗)
(4.5)

NRMSEpressure =

√∑143
t=0(h∗

t−hi=N24,t)2

N

avg(h∗
t)

(4.6)

4.4 Leak detection with Boolean matrices (Q3)

This section describes the strategy that is used for leak detection, which is based on
threshold values of flow and pressure that can be expected in a water supply system.
It proposes two methods to model different demand realizations that can be used to
model these thresholds. At last, it explains how Boolean matrices can be used to store
information whether a sensor at a certain location can detect leaks that emerge in the
DMA. The results of applying these methods can be found in chapter 6.

Threshold based leak detection strategy

The monitoring system within the DMA should give the water utility information whether
a new hidden leak has emerged in the area. The measurements need to be easily inter-
pretable, so that system operators can respond fast when the leaks emerges. Since this
thesis is conducted in cooperation with Waternet, the water utility in Amsterdam, it was
first investigated how awareness of hidden leaks is created in Amsterdam. Here, a system
is used which is called “Dynamische Bandbreedte Monitor”, which translates to “Dy-
namic Bandwidth Monitor (DBM)” in English. It consists of several flow meters which
are installed to monitor the flow into several DMAs (e.g. Figure 4.4 and 4.5).

Figure 4.4: Location of sensors (with arrows) for the
DBM that monitors the flow to Amsterdam-Noord
(light-blue DMA).

Figure 4.5: Location of sensors (with arrows) for the
DBM that monitors the flow to Amstelveen (light-
blue DMA).
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The devices send the measured values to the control room of the water utility, where
they are compared to an alarm value that has been set based on historical measurements.
When the real-time measurements exceed this alarm value for a certain period of time, it is
assumed that a leak has emerged. An example of a display of the real-time measurements
(in red), a prediction of expected values (in black) and the alarm value (in blue) is given
in Figure 4.6. Carefully a leak time, a specific time frame that the measurements need
to be above the alarm value, can help in preventing the utility from raising false alarms.
In the Netherlands, it is advised to choose smaller detection times during the night than
during the day since the nocturnal flow has less fluctuations (Van Steen, 2020).

Figure 4.6: Example of applying the Dynamic Bandwidth Monitor.

The above system was used as an inspiration to design the monitoring system in
Harare2 for leak detection purposes. However, the DBM uses a historical data-set at a
location where the sensor has already been installed (Van Vossen-van den Berg, 2017).
When a new leak detection system is designed, the sensors are not yet located in the
network. Therefore, there is no historical data set available and the expected flows and
pressures have to be modelled at the locations which are suitable for sensor placement.
The range of calculated flows and pressures at a certain location can be referred to as
”artificial DBM’s” as they predict the ranges of flow and pressure that would have been
measured by a flow or pressure logger at that location. In this thesis artificial DBM’s were
constructed for all pipes, since every pipe was considered as a potential sensor location.
The performance of each artificial DBM is measured by how many leaks it detects. The
DBM’s which can detect the most leaks are marked as the optimal location to place
sensors.

2The DMA that is used for the case study in Harare is way smaller than the DMAs in Amsterdam
(+/- 450 connections in Harare vs. +/- 40.000 connections in Amsterdam), but the same threshold based
method for leak detection (the Dynamic Bandwidth Monitor) can be applied in both cases.
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Figure 4.7: Scenario 1: Flow in system when all house-
holds subtract water.

Figure 4.8: Scenario 2: Flow in system when two of the
four households subtract water.

Figure 4.9: Example of possible flow measurements from
scenario 1 and 2.

Figure 4.10: The flow measurements from all scenarios
are converted into alarm values.

Figure 4.7 up to 4.10 show how artificial DBM’s can be created for the pipes in a simple
exemplary network. Scenario 1 and 2 show the flow in the network during different demand
configurations. These flow values are plotted in Figure 4.9. When all possible flow values
in the pipes are recorded, by modelling all possible demand scenarios, the range within
which the flow values can be expected to be are given in Figure 4.10. These ranges can be
considered as artificial DBM’s for pipe 1 up to 5. In this example the range is constructed
from flow values, but also pressure-based DBM’s can be constructed when the possible
pressure in the nodes is modelled. Whereas other research focuses mostly on pressure
sensors for leak detection and localization (Perez et al., 2009)(Khorshidi et al., 2020),
this thesis design two systems, one with flow and one with pressure sensors, allowing
for a comparison between the two. Furthermore, it will design the monitoring system
specifically for IWS systems.

Page 26



Methods for modelling demand realizations to construct alarm values for
the DBM

The proposed system for leak detection, the DBM, compares real time data with a range
of expected values in “normal” situations, so situations without leaks, and attributes
deviations from the expected values to a potential leak. The key to a successful DBM is
the construction of the boundaries for the expected range of values, the so called “alarm
values”. These alarm values represent the maximum deviations from the average scenario,
which still can be expected to happen. The boundary scenarios for flow in pipes often occur
when the demand concentrates locally. Especially a system which has a small amount of
households connected to its nodes, as is the case for Ashdown Park (Figure 4.11), can be
sensitive to situations where all or none of the houses at a single node demand water at the
same time. In this thesis, two methods were proposed to model this demand allocation.

Figure 4.11: Number of households per node in Ashdown Park

Both approaches consist of running several Monte Carlo simulations, thereby saving
the most extreme flows and pressures from these experiments as alarm values. The first
method that was designed includes creating demand realizations by random draws from
a probability density function, based on the mean value and deviation of the incoming
flow. This method was eventually not considered feasible for Ashdown Park and shall
only explained shortly. The second method uses a weighted random choice and adds a
single parameter with a physical meaning in IWS systems, the tap capacity. This method
deemed to be more feasible and shall be explained in more detail.

Method 1: Monte Carlo simulation with demand realizations as random draws
from a normal distribution

First, a normal distribution is constructed by using the mean and standard deviation
from the historical data of the flow that enters the DMA. An extensive explanation of
how the mean and standard deviation was constructed from this historical data-set can
be found in appendix A.11. A similar, scaled normal distribution3 is constructed for the

3The normal distribution for the demand in node i is scaled by multiplying the standard deviation and
average of the normal distribution of the inflow (N(Qavg,t, σQ,t)) by the ratio of the demand i to the inflow
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demand at every node. Then, a Monte Carlo simulation is performed, with each nodal
demand being determined by a random draw from its scaled normal distribution. Running
several experiments with this model allows us to calculate the different flows that can occur
in the network. For a more detailed explanation of this method please read appendix A.12.

This method gives a small chance that the demand is much lower than the average
demand and a small chance that it is much higher. However, it does not at any time
return the possibility of having no demand. Figure 4.11 shows us that some nodes only
contain few households. The chance that none of the households uses water is therefore
quite realistic. So, the flows that are calculated using this method are likely to be over-
or underestimated, making this method unsuitable for constructing the artificial DBMs.
If the modelled system would be be a water transport network of an IWS system, whose
DMAs would be presented as nodes (suggested in section 5.5), then this method could be
appropriate since its nodes would always have some demand.

Method 2: Monte Carlo simulation with demand as weighted random choice
with tap capacity parameter

Adding a parameter with a physical meaning4 has resulted into developing this second
method. The method assumes that every household has one tap that is directly connected
to the distribution system. This assumption is specifically suitable for IWS systems, since
many people have their own water storage. The only tap that is directly connected to
the distribution system is the tap that is used for filling their storage (see Figure 4.12).
Usually, the storage is filled with manually operating the tap above the storage (MSc-
Student University of Bulawayo, 2020).

Figure 4.12: One household uses one tap to withdraw water from the distribution network.

Since most people would want to fill their storage as quickly as possible, it is assumed
that the tap will mostly be fully open or closed. The volume that flows through a tap
that is fully open will be referred to as the Tap Capacity (TC). This flow rate can differ
a lot geographically, as shown by the different flows that were recorded flowing through
the tap in different places in the world (Table 4.1). Developed countries regularly put
water saving features in their taps, resulting in relatively low flow rates. The absence of
such features, as well as the urgency to collect water as quickly as possible during times

(
Di,t

Qavg,t
), resulting in a scaled normal distribution for the demand in node i (N(Di,t,

Di,t

Qavg,t
× σQ,t)).

4This is often done in in the stochastic end-use model SIMDEUM, that is being used to model drinking
water demand in the Netherlands (Blokker, 2020).
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of water availability, could all be reasons for higher flow rates in Ghana and South Africa.
However, due to the limited pressure and water supply in IWS zones, flow rates could also
be low, as was the case in India. Two experiments performed in Ashdown Park, explained
in more detail in appendix A.9, showed an average flow rate from the tap of 0.29 m3/h,
which will be rounded to 0.3 m3/h. Therefore, a TC of 0.3 m3/h will be assumed for
modelling demand realizations in Ashdown Park.

Table 4.1: Flow rates from a tap in different researches (TU Delft, 2020b)(Jacobs et al., 2015)(Oduro-Kwarteng
et al., 2009)(Kumpel et al., 2017)

The total demand of the DMA can be estimated once the hydraulic model has been
calibrated using the flow and pressure measurements at the DMA inlet (section 5.3). It
can be estimated how many storage taps are open by dividing the total demand at that
moment by the TC. For example, at 00:00 the incoming flow and the total demand are 35.5
m3/h on average, implying that 35.5

0.5 = 71 of the 424 taps are open. Modelling all possible
demand realizations with this amount of open taps would result in 8.2 × 1081 possible
combinations (appendix A.16) and is therefore regarded as impossible. It is however
possible to run a Monte Carlo simulation, modelling the demand at every household as
a weighted random choice between a demand of 0.3 m3/h (implying an open tap) or 0
m3/h (implying a closed tap). The weight for choosing an open tap equals the ratio of
open taps to the total amount of taps (e.g. 71/424) and the weight for choosing a closed
tap equals the ratio of closed taps (e.g. 353/424). An example of applying this random
weighted choice in a fictive network with five households is shown in Figure 4.13.

Figure 4.13: Example of demand allocation using weighted random choice and a tap capacity (TC).
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Using Boolean matrices for leak detection

The scenario with a leak in a certain pipe can be modelled and its result compared to the
constructed alarm values in the previous chapter. For this comparison, only situations
where a single leak occurs in the network were considered. It is important that, except
from the added leak, the other conditions remain equal to the conditions during which
the alarm values were constructed. Comparable leak sizes as mentioned in Casillas Ponce
et al. (2013) will added to hydraulic model to simulate scenarios with a leak. However,
the leak size in the hydraulic model of this thesis will be defined by its area and dependent
on the occurring pressure, as these physical relations are important for the leak flow rate
(Marchis and Milici, 2019). The resulting flow in the pipes of the scenario with leak can
be compared to the alarm values, of which an example can be seen in Figure 4.14. A
sensor in the pipes where the flow exceeds the alarm values could have detected the leak,
whereas a sensor in the pipes where the flow remains within the alarm values could have
not. The same principle holds for the new pressure at nodes that result from a leak in a
certain pipe segment.

Figure 4.14: Example of leak detection with flow sensors at 00:00.

This process, adding a leak in a certain pipe and deciding whether a sensor at a certain
pipe or node could have detected a leak, can be repeated by adding a leak at a different
pipe every time. The ability of the network to detect leaks can then be stored in a Boolean
matrix, which is often done in leak detection methods (Perez et al., 2009)(Khorshidi et al.,
2020). When designing a monitoring system with flow sensors, the potential locations to
place sensors equal the number of pipes in the network. So, if there are n pipes in the
network, there are n potential locations to place sensors. Therefore, it is possible to
construct a nxn Boolean matrix Ai,j , which stores information whether a leak in pipe i
can be detected (Ai,j = 1) by a flow sensor in pipe j or not (Ai,j = 0), see equation 4.7.

Aij =

{
1, A leak in pipe i can be detected by a sensor in pipe j

0, A leak in pipe i cannot be detected by a sensor in pipe j
(4.7)
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A similar Boolean matrix Ai,j can be constructed when designing a monitoring system
with pressure sensors, only this design has m potential sensor locations if the network has
m nodes. Therefore this matrix has size nxm. It stores the information whether a leak
in pipe i can be detected (Ai,j = 1) by a pressure sensor in node j or not (Ai,j = 0), see
equation 4.8.

Aij =

{
1, A leak in pipe i can be detected by a sensor in node j

0, A leak in pipe i cannot be detected by a sensor in node j
(4.8)

However, different demand realizations play a large role as well which can be explained
by expanding the example of Figure 4.7 and 4.8. Figure 4.15 shows the same network,
with a leak added in pipe 5. All nodes subtract water and the leak in pipe 5 could have
been detected by flow sensors in pipe 3 and 5 (Figure 4.16). However, if the demand
realization changes, this will also change the ability of the network to detect leaks. The
leak in Figure 4.17 forces the flow to the left, but the demand forces the flow to the right
since only the houses on the right subtract water. This dampens out the effect of the leaks
and results in the situation that the leak can not be detected anymore (Figure 4.18).

Figure 4.15: Scenario 3: A leak in pipe
5 and all houses subtract water.

Figure 4.16: Results Scenario 3: The leak can be detected
by flow sensors in pipes 3 and 5, since they measured
value exceeds the alarm values.

Figure 4.17: Scenario 3: A leak in pipe
5 and the houses on the right subtract
water.

Figure 4.18: Results Scenario 4: The leak cannot be de-
tected by any flow sensors.
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So, a different demand realization changes the matrix A, which stores the ability of the
network to detect leaks. As previously explained, it is possible to model a range of possible
demand realizations by using a Monte Carlo simulation, letting each demand realization
be determined by a random weighted choice. When constructing the matrix which stores
the detectability of leaks, the same Monte Carlo simulation is used to model the different
demand realizations, only this time leaks are added to the network at every realization.
Every experiment within the Monte Carlo simulation yields a different matrix A. The
result is a large 3D-matrix A (Ai,j,k), which stores information of whether a leak in pipe
i can be detected by a sensor in pipes j in experiment k, as can be seen in Figure 4.19.
Taking this third dimension into account in the Boolean matrix gives insight in how
demand allocation influences leak detection and can be regarded as a new feature in leak
localization and detection methods, which usually only take a single demand realization
into account (Perez et al., 2009)(Khorshidi et al., 2020).

Figure 4.19: Different Boolean matrix with every new experiment.

Key Performance Indicators

The performance of the hydraulic model to detect leaks can be measured by using key
performance indicators (KPIs), which result from analyzing the Boolean 3D-matrix. A
well-functioning DBM should return a low percentage of false alarms and a high detectabil-
ity. Both KPIs shall be explained below.

Percentage of false alarms

The performance of the model can be measured by computing a certain % of false alarms.
This can be best explained by taking the example of adding an extreme small leak to the
model, for instance with a diameter of 0.1mm. Using common sense, the leak would not
be detectable for any sensor. However, depending on the number of experiments chosen
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to construct alarm values on one side and to model demand realizations with leaks on the
other, the constructed 3D-matrix still shows some entries being “1”. This then does not
happen because of the leak, but because an extreme demand realization has occured in
constructing the 3D-matrix that was not taken into account when constructing the alarm
values. The % of false alarms is defined as the amount of 1’s in the 3D matrix, when
applying a leak of 0.1mm, divided by the total amount of entries in the 3D-matrix.

Detectability

The ability of the network to detect leaks at a certain time can be expressed as the “average
number of leaks detected per sensor per scenario”. Let us refer to this KPI as Detectability
(Dt (t)). For a network with m nodes, n pipes, where the demand allocation is modelled
with a Monte Carlo simulation with p simulations, the detectability of flow sensors at a
certain time is then given by equation 4.9.

Dt(t) =
1

np

n∑
j=1

(

n∑
i=1

(

p∑
k=1

Ai,j,k(t))) (4.9)

The detectability of pressure sensors at a certain time for the same network is given
by equation 4.10.

Dt(t) =
1

mp

m∑
j=1

(
n∑
i=1

(

p∑
k=1

Ai,j,k(t))) (4.10)

4.5 Optimizing sensor placement (Q4)

This section describes the optimization techniques that were applied to calculate the op-
timal sensor configuration, that can detect a maximum amount of leaks using a minimum
amount of equipment. It starts with describing the optimization technique which can be
used for a single demand realization and from there expands the method to make it appli-
cable for multiple demand realizations. At last it shows how the performance of different
sensor configurations can be assessed.

Single scenario optimization

First a closer look is taken how the optimal sensor allocation of a single matrix, so of
one demand realization, shall be taken. This 2D-matrix (Ai,j) can be right-multiplied by
a vector (x) that represents whether a pipe contains a sensor (xj = 1) or not (xj = 0).
Vector x is a Boolean vector, so it only contains the entries 0 or 1. This results in a matrix-
vector product (ŷ) which stores information how many times a leak in a certain pipe i
is detected by the installed sensors. This vector ŷ will be referred to as the estimator.
Ashdown Park contains 84 pipe segments, resulting in an estimator of equal size. To give
a simple overview of the explanation above, Figure 4.20 is created. This is not a result of
the analysis for Ashdown Park, but just an example to explain the story.
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Figure 4.20: Example of Matrix calculation.

Objective for single scenario optimization

The unknown vector to solve in this problem is vector x, which contains the information at
which pipe segments sensors should be installed. This problem can be solved by applying a
minimizing objective and constraints. The main objective is to have every entry of vector
ŷ as close to 1 as possible. The entries should be above 0, because it then can detect a
leak a certain pipe. Entries above 1 are less favorable since you then have two sensors
detected the same leak, which can be considered as double work. This objective is shown
in equation 4.11.

min
x

||ŷ − y||2

s.t. ŷ = Ax ,with x={0,1}
y = 1

(4.11)

There is a second objective, which concerns the unknown vector x directly and states
to use as few sensors as possible. Using a minimum amount of sensors is a requirement
for the optimal allocation as defined at the beginning of this chapter. This objective is
shown in equation 4.12.

min
x

||x||2 ,with x={0,1} (4.12)

These two objectives show the trade-off that has to be made. By favouring the objective
of equation 4.11 over 4.12, it would be implied that it is very important to find all the
leaks, so a lot of sensors can be used. By favouring the objective of equation 4.12 over
4.11, it is very important to use a little amount of sensors and it is fine to compromise on
leak detection. This kind of trade-offs can, in multi-objective functions, be expressed by
introducing a parameter λ (equation 4.13). If λ would be larger than 1, this would imply
that achieving the second objective is preferred over achieving the first objective. If λ
would be smaller than 1, the first objective would be preferred over the second objective.

min
x

||ŷ − y||2 + λ||x||2 ,with x={0,1} (4.13)
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Another way of adding the numbers of sensors to the optimization function, would
be to add the objective that minimizes x as a constraint, which depends on the number
of sensors that can be used in the network. For example, if no more than two sensors
are allowed in the network, the constraint that is added will be: ||x||2 ≤ 2. Solving this
optimization problem for a different number of sensors (i) shows us which amount of water
can be saved by using a certain number of sensors, as well as where they should be placed
(see equation 4.14). The optimization solver Gurobi (Gurobi Optimization LLC, 2020)
can be used to solve the optimization problem.

min
x

||ŷ − y||2

s.t. ŷ = Ax ,with x={0,1}
||x||2 ≤i

y = 1

(4.14)

Weighted optimization

As previously described, the water volume that is lost during leakage is different for places
with different pressures. In order to make sure that the sensors in the designed network
prefer detecting pipes where high losses occur over pipes where low losses occur, weights
are added to the optimization problem. This is done by constructing a vector w, whose
individual entries (wi) represent the fraction of the volume lost from a leak in pipe i,
compared the the sum of volumes lost from leaks in all pipes (see equation 4.15).

wi =
dleak,i∑84

j=1(dleak,j)
(4.15)

These weights are applied to the previous objective (equation 4.14). Adding a stronger
weight to pipe i, will prefer detecting a leak at pipe i over the other pipes. The new
weighted objective function can be seen in equation 4.165.

min
x

||
√

w(ŷ − y)||2

s.t. ŷ = Ax ,with x={0,1}
||x||2 ≤i

y = 1

(4.16)

Multi scenario optimization

The objective function from equation 4.16 can be solved for a single scenario, since it in-
cludes one Boolean A-matrix. However, different demand realizations lead to a 3D-Boolean
matrix (Ai,j,k), where the third dimension k represents the number of experiments from a
Monte Carlo Simulation. Finding the optimal solution for the sensor allocation with this
multitude of experiments looks similar to the previous objective function (equation 4.14),
but is expanded on some points.

5Adding these weights can be written as ||
√
w(ŷ−y)||2, since this can be broken down into: ||

√
w(ŷ−

y)||2 = w1(ŷ1 − y1)2 + w2(ŷ2 − y2)2 + ... + wn(ŷn − yn)2, with n being the number of pipe segments in
the DMA.
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This optimization objective can be explained by Figure 4.21. Right-multiplying the
different 2D Boolean matrices (A0,A1, ...,Ak) by the same x-vector, results in different
estimators (ŷ0, ŷ1, ..., ŷk). The indices in the different estimators should still be as all as
close to 1 as possible, since leaks should be detected in as many experiments as possible.
The x-vector remains the same in all scenarios, since only one sensor configuration can be
chosen. Another difference with the single scenario optimization, is that the weight vector
(w) changes with every scenario6, resulting in different weight vectors (w0,w1...wk).

Figure 4.21: Example of right-multiplying several scenarios.

The different estimators (ŷ0, ŷ1, ..., ŷk) are added as constraints to the objective
function. The objective itself is expanded, so that all the estimators approach the 1-
vector y. The weights by which the individual entries of the estimators approach 1 are
determined by weight vectors (w0,w1...wk). The objective function, shown in equation
4.17, can be solved for a different numbers of sensors (i) using optimization solver Gurobi.

min
x

k∑
i=0

||
√

wi(ŷi − y)||2

s.t. ||x||2 ≤i

y = 1

ŷ0 = A0x ,with x={0,1}
ŷ1 = A1x ,with x={0,1}
...

ŷk = Akx ,with x={0,1}

(4.17)

6This change is caused by a changing leak flow rate, due to a slightly different nodal pressure in each
demand realization.
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Performance of optimal sensor configurations

The output of the algorithm that optimally places flow and pressure sensors should be
able to state whether a configuration of sensors is able to detect leaks in certain pipes.
The performance of a certain configuration (x-vector) can be assessed by interpreting 2D-
matrix Ŷ, with ŷ0, ŷ1, ..., ŷk as columns. This matrix Ŷi,k represents how many times a
leak in pipe i can be found in experiment k. The nonzero-function is used to see if a leak
is detected in a certain scenario. This function returns whether a value (Ŷi,j) is not zero,
in which case it returns a 1 (nnz(Ŷi,j)=1) and if the entry is zero, it returns a 0. With
this function it is possible to express the percentage of leaks in pipe i that can be found
by the sensor allocation (x) in the different scenarios. This “percentage of leaks found in
pipe i” is expressed as pfi. It formula is given by equation 4.18.

pfi =

∑k
i=0(nnz(Ŷi,k))

k
× 100 (4.18)

However, the above probability can not be translated one to one to the daily chances
of finding a leak. For example, it is very likely that if the results above show a 1% chance
of finding a leak, that this is a false alarm. For this thesis, it is assumed that a leak
should be found at least once a day. This translation of probability involves quite some
stochastic assumptions and is therefore merely an estimation of what can be expected in
reality. It also makes use of some results from chapter 7, which might add difficulties in
understanding when these results have not been read yet.

In a different MSc-thesis of Van Steen (2020) a leak detection time of 25 minutes
was proposed to distinguish a demand deviation from a actual leak. Since the algorithm
in this thesis distinguishes time steps of 10 minutes, this implies that a leak should be
able to detected for 3 time-steps in a row. The probability that the first of the three
steps finds a leak equals the percentage found (pfi). From there, it is assumed that the
probability that a leak can still be found in the sequential step is somewhere in between
the correlated scenario, in which case the sequential probability will be expressed by using
Pearson’s correlation coefficient (rt+1), and the uncorrelated scenario7, which results again
in the same probability (pfi). Doing so, the chance that a sensor detects a leak for three
consecutive time steps (Psens,leak(t : t + 2)) can be expressed, as shown in equation 4.19.
A more detailed explanation of constructing this formula can be found in appendix A.18.

Psens,leak(t : t+ 2) = pfi ×
rflow,t+1 + pfi

100

2
×
rflow,t+2 + pfi

100

2
(4.19)

The formula above assumes that the Boolean 3D-matrix does not change over time.
However, this assumption can not hold for the entire day, as results in section 6.3 show
a clear difference between the detectability of the system during night and during day
(Figure 6.7 and 6.8). Therefore, the ranges at which the detectability was considered
as “good” (in the same figures) will be used as the time frame during which the 3D-
matrix does not change. For flow sensors this time frame was between 21:40 and 05:20,

7The flow in pipes at two sequential time steps can be considered to be correlated, since the flow into
the DMA is very correlated at two sequential time steps. This correlation does however decrease for pipes
within the DMA, as shifts in demands can cause significant flow changes within the DMA. The correlation
of flow in pipes in the DMA was therefore considered to be somewhere in between the correlated and the
uncorrelated scenario.
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containing 44 different options of three consecutive time steps (t=0,1,2; t=1,2,3; etc.).
Now, it is possible to calculate a probability limit (plimit), which would result in a leak
that is being found once a day. This probability limit has to satisfy equation 4.20. It was
found that the probability limit for detecting leaks once a day with flow sensors was 0.079.
Due to the high uncertainties that arose in estimating this probability limit, it is rounded
up to 0.1 (10%).

plimit ×
rflow,t+1 + plimit

2
×
rflow,t+2 + plimit

2
× 44 ≥ 1 (4.20)

The range with “good” detectability for the monitoring system with pressure sensors
was shown to be between 00:00 and 06:30 and between 18:30 and 23:508 resulting in 68
different possible time steps (section 6.3). Furthermore, the pressure measurements that
are used as input values only occured during 5% of all Fridays (explained later in section
6.1). Therefore, this probability of 5% should be added to equation 4.19, resulting in a
probability limit of 55% for pressure sensors (for details, see appendix A.18). This prob-
ability limit would prove to be hard to obtain.

So, leaks which have a higher probability of being detected than the probability limit
are expected to be detected once a day. For the monitoring system with flow sensors
this implies that leaks should be detected in 10% of the experiments in the Monte Carlo
simulation, whilst the monitoring system with pressure sensors should be able to detect
leaks in 55% of the experiments.

When it is clear which leaks can be detected once a day, the coverage of a certain
configuration of sensors can be calculated. The coverage is defined as the percentage of
pipes in which the sensor configuration can detect leaks once a day. So, if the sensor
configuration is able to detect leaks in 50% of all pipes, than the coverage equals 50%.
The actual spatial sensor placement of the optimal solution can be found by reading which
entry of vector x equals to 1, as a sensor was placed in the coherent pipe or node.

4.6 Constructing a business model (Q5) and assessing the
applicability of the monitoring system for IWS areas
around the globe (Q6)

The input for the business model consisted of a small amount literature, but most infor-
mation was gathered by talking to the engineers and operators of the local utilities. These
interviews were conducted through online platforms, as it was not possible to visit the
utilities. Different analyses and the resulting business model canvas are shown in chapter
8.3.

To conclude whether the monitoring system is applicable in other IWS areas around
the globe, the results and conclusions of all chapters (the results from answering research
questions 1 to 5) were combined in an advice for IWS systems worldwide.

8These are two separate time frames since leak detection with pressure sensors in this design would
only occur on Fridays.
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5. Hydraulic modelling of IWS sys-
tems (case study Harare)

In this chapter, three DMA’s in Harare are analyzed to showcase demand and pressure
patterns in IWS systems. One DMA (Ashdown Park) is analyzed in more detail, since a
hydraulic model was created for this DMA. The hydraulic model was calibrated with flow
and pressure measurements conducted at the DMA entrance.

5.1 Demand and pressure in three DMA’s in Harare

Flow and pressure data from 08-06-2019 until 08-06-2020 has been analyzed for three
DMA’s in Harare. These DMA’s are Ashdown Park, Sunningdale and New-Marimba
Park. Their geographical locations are shown in Figure 5.1. The flow and pressure were
registered every 10 minutes, resulting in daily data-sets of 144 points. Daily sets with less
than 144 measurements were marked as inconsistent and removed from the overall data-
set. After this “clean-up”, a set with 223 days in Ashdown Park, 343 days in Sunningdale
and 347 days in New-Marimba Park remained. The results of the analysis will be described
below.

Figure 5.1: Locations of the analyzed DMA’s in relation to the city centre of Harare (in the middle of the figure).

Intermittency

In Figure 5.2, 5.3 and 5.4, the average weekly flow patterns can be found. All these DMA’s
are fed by a single feed, at which the flow is monitored. It can be noted that Ashdown Park
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receives water from Thursday afternoon until Tuesday afternoon, Sunningdale receives
water during the entire week and Marimba Park receives water from Monday until Friday.

Figure 5.2: Weekly flow pattern Ash-
down Park

Figure 5.3: Weekly flow pattern Sun-
ningdale

Figure 5.4: Weekly flow pattern New-
Marimba Park

Pressure patterns

The pressure patterns are given in Figure 5.5, 5.6 and 5.7. Again, all these pressures are
measured at the DMA inlet. Ashdown park is located behind a pressure reducing valve
(PRV), which aims to keep pressure in the DMA constant during the week (Kureva and
Moors, 2019). The PRV is located at the inlet of the DMA (see Figure 5.11) and monitors
the downstream and upstream pressure. The pressure in Sunningdale shows a high value
around the weekend and a low value during the other days. New-Marimba Park shows
a contrary pattern. However, the layout of the system shows that they are not directly
connected to the same source, so no conclusions can be drawn from this contrary pattern
(City of Harare, 2019). The pressure in the entrance can not be a measure for the pressure
in the rest of the system, since Harare has differences in elevation throughout the city.

Figure 5.5: Weekly pressure pattern
Ashdown Park

Figure 5.6: Weekly pressure pattern
Sunningdale

Figure 5.7: Weekly pressure pattern
New-Marimba Park

Base demands

To get an estimate of the water consumption behaviour of Harare’s inhabitants, the water
flow through the meters was translated to a personal water use (in L/p/d). It should be
noted that the DMA inflow is used for this, so possible leaks within the DMA are included
in this amount.

The available population data from Ashdown Park was quite accurate due to the
conducted customer survey (the data from this survey is used in this analysis). For the
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population data in Sunningdale and New-Marimba Park, a choice had to be made between
the number of properties that were in the customer database or the cities registry. For
this analysis the customer database is used, since this gives proof that the property is
connected to the drinking water system. To estimate the water use per person, a similar
household size was used as concluded from the H2H survey (5.8 persons per household),
but estimates could range between 4 and 8 persons per household for these DMA’s (Moors,
2020).

The base demands that were found were 238 L/p/d, 198 L/p/d and 313 L/p/d for
Ashdown Park, Sunningdale and New-Marimba Park respectively (Table 5.1). This shows
a way higher personal water use than for instance in the Netherlands, where usually
around 130 L/p/d is used as a guideline (TU Delft, 2019). This high per capita water
use seems to be in line with the high per capita water use which was found in an earlier
modelling report of the Republic of Zimbabwe (2017), which was elaborated upon in the
literature review (section 2.2). This high demand can be due to leaks in the system or
meter inaccuracies, but also due to a different human behaviour. Washing, for instance,
takes place by using many different buckets instead of a water re-using washing machine
which is likely to result in a higher personal water use.

Table 5.1: Demands per person in DMA’s.

Daily demand patterns

The daily demand patterns on days with pressure in the two intermittent DMA’s (Ash-
down Park and New-Marimba Park) were compared with an average Dutch daily demand
pattern. As can be seen in Figure 5.8, an average Dutch daily demand pattern has a peak
in the morning when people wake up and a peak at night around dinner. When the daily
patterns of the intermittent DMA’s were considered, no such strong peaks could be distin-
guished. The patterns for all the days of the week can be found in appendix A.5. Most of
the demand patterns were like the flow pattern on Monday at Ashdown Park (Figure 5.9);
quite constant over the day and a drop of demand during the night. The demand pattern
which came closest the Dutch pattern was the pattern on Tuesdays in New-Marimba park
(Figure 5.10). Still this pattern is more gradual, which could have various reasons.

From the H2H-survey at Ashdown Park, it could be concluded that 10 out of 261
questioned households had their tap constantly open (Kureva and Moors, 2019). This
creates a constant demand over the day. Most people use a certain type of storage to
fulfill their water need on days without supply. If these people fill their storage during the
day, their demand remains constant over the day as well. The demand fluctuation caused
by a single customer then cannot be measured, since they tap water directly from their

Page 41



storage tanks instead of from the distribution network. Also cultural differences can play
a role in water use behaviour and therefore result in a different demand patterns. For
example, if people in Harare are used to washing during the day and use more water for
cooking lunch at home than cooking dinner at home, their demand pattern will deviate
from the Dutch one. All the aforementioned behaviours could be reasons for the difference
in demand pattern in the Netherlands and Harare, but giving proof for certain relationships
is outside the scope of this thesis.

Figure 5.8: Example demand pattern
Amsterdam (Waternet, 2020)

Figure 5.9: Flow pattern Monday
Ashdown Park

Figure 5.10: Flow pattern Tuesday
New-Marimba Park

5.2 Ashdown Park (Harare, Zimbabwe)

In this chapter, some more detailed information about the DMA Ashdown Park is given,
as the hydraulic model shall be built for this DMA.

Introduction

Ashdown Park consists of 458 properties and has about 2656 inhabitants, of which 99% are
residential (Kureva and Moors, 2019). 261 houses were accessible (61%) for the previously
mentioned H2H-survey. The DMA is located in the North-West of Harare. Its elevation
ranges from 1472m to 1487m. At the DMA inlet there are sensors that measure the
incoming flow and the pressure. The outline of the DMA is given in Figure 5.11.

Figure 5.11: DMA Ashdown Park and inlet Figure 5.12: Weekly flow pattern Ashdown Park
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Water demand

The water demand in the DMA can be described in terms of quantity and in terms of
spatial variation.

Quantity

Of the respondents of the H2H-survey, 27% had access to water supply alternatives. 11%
because they had a bore hole on the property, 14% because they had a well on the property
and 2% through delivery. As can be seen in Figure 5.12, the DMA usually receives water
on 5 days per week. During Tuesday evenings, Wednesdays and Thursday mornings, there
is no water. As mentioned before, the calculated water demand from the inflow data is
238 L/person/day. Seven of the 261 houses had a swimming pool that they used, which
increases the water demand of these properties.

Spatial variation

The spatial variation of demand has a significant impact on the flows in the network
and therefore on the detectability of leaks. In the received EPANET-file from VEI, the
nodes were already given a certain demand. This demand had been based on a standard
procedure within VEI to calculate demands based upon the number of connections at
a node and a standard demand of 20 m3/month per connection (Moors, 2020). The
resulting division of demand among the nodes is visualised in Figure 5.13. It shows a
strong spatial variability within the DMA, mainly since some parts of the DMA are more
densely inhabited than other areas.

Figure 5.13: Demands in Ashdown Park

Storage

The H2H-survey also questioned whether people have the option to store drinking water
at home. An overview of the results of this survey can be found in Table 5.2. The storage
option of “some buckets” was not further defined. From personal experiences, I estimated
that approximately 50L could be stored in “some buckets”. The total storage capacity
was found to be 207.170 L. This is about 794 L storage per property. Extrapolating this
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number to the 458 properties1, the total storage in the area would be around 364.000 L.
This equals the estimated daily water demand of about 1500 people in the area (56% of
the total population).

Table 5.2: Overview of storage in Ashdown Park, according to the House-to-House survey

5.3 Constructing the hydraulic IWS model

The strategy and software that is used for constructing the hydraulic model is explained
in section 4.3. Here, the accuracy of the hydraulic model is shown and an estimation of
the nominal pressure in Ashdown Park is made. The nominal pressure is included as an
important parameter in the hydraulic model.

Calibrating the hydraulic model with flow and pressure measurements

The hydraulic model simulates the hydraulic behaviour of water flows resulting from the
nodal demands in the network, added pressure from the head of a reservoir and the physical
parameters of the system (Figure 5.14). The demand and reservoir head in the hydraulic
model were adjusted, to make sure that the calculated flow and pressure at the DMA inlet
approached the values of the measurements at this location. The calibration method that
was used is shortly explained in section 4.3 and explained in more detail in appendix A.4.

Figure 5.14: The model can use input values (in blue) to simulate the flow and pressure at the location of the sensor
(in orange).

The flow and pressure values that were calculated by the model at the DMA inlet and
the performed measurements can be visualized before the calibration (Figure 5.15) and
after the calibration (Figure 5.16). It can be seen that the calibration method strongly
increases the accuracy of the model.

1The H2H-survey only covered 61% (263 of the 458 properties) of the number of houses in the DMA.

Page 44



Figure 5.15: Output of the model (circles) compared to
the measurements (x’s) before calibration.

Figure 5.16: Output of the model (circles) compared to
the measurements (x’s) after calibration.

This accuracy can be expressed in numbers and is influenced by the choice of δD and
δp in the calibration method. The nominal pressure influences the accuracy as well, since
a lower nominal pressure value will increase the non-linear relationship between pressures,
demands and flows. In an iterative process, different values for δD and δp were used at
different nominal pressures to determine which values for δD and δp would result in the
lowest NRMSE’s (for the definition of NRMSE, see section 4.3). The entire process can
be found in appendix A.8 and its results can be seen in Table 5.3. All individual NRMSE
values are below 0.05, which indicates that the proposed method can perform quite well
in all scenarios given that the δD and δp values are adapted to the right values.

Table 5.3: Overview of best results from sensitivity analysis.

Estimating the nominal pressure in Ashdown Park.

Since the PDO-modelling is applied for the hydraulic model, a certain nominal pressure
will need to be estimated for Ashdown Park. This nominal pressure (explained in more
detail in section 2.2) determines whether the demand of the people can be fully met, given
the pressure that occurs in the system. When applying a nominal pressure of 12m in the
hydraulic model, it was found that the total demand was almost the same as the inflow
measurements on Monday (Figure 5.17). The fact that nearly everyone received their total
demand with a nominal pressure of 12m, implies that pressure in the hydraulic model at
all nodes with demand was above 12m on Monday. Applying a nominal pressure of 20m
resulted in a total demand that was higher than the inflow measurements (Figure 5.18).
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This implies that due to the nominal pressure inhabitants received only a part of their
total demand. This can only occur if the pressure at the nodes drops below 20m, which
occurred. This way, the nominal pressure has a significant influence on the modelled total
demand.

Figure 5.17: The difference between flow and demand at
a nominal pressure of 12m on Monday.

Figure 5.18: The difference between flow and demand at
a nominal pressure of 20m on Monday.

The nominal pressure can be estimated by taking into account the energy losses that
occur at the house connection and the elevation that the drinking water has to overcome. If
the pressure in the system is insufficient to overcome these losses, the demand of the people
can not be satisfied. Calculations to estimate these losses in Ashdown Park, described in
appendix A.9, showed a potential head losses of 6 to 8m. Since 12m is well above the
calculated head losses at the household level (6-8m), it can be concluded that there is
sufficient pressure in the DMA. Therefore, it can be stated that for Ashdown Park the
inflow into the DMA is likely to equal the total demand of the DMA (including leaks).

5.4 Output of the hydraulic IWS model

This chapter shows the output of the hydraulic model, describing which pressures and flow
are expected to occur within the DMA.

Pressures

The main pressure losses in the system are due to changes in elevation. The daily changes
in pressure (+/- 15m difference within one week) are most likely caused by the pump
operation scheme, which is explained in detail in appendix A.6. The critical point, the
point with the lowest pressure in the system, is shown in Figure 5.19. The pressure
difference between the feed and the critical point is around two meter at night and three
meter during the day, according to the results of the simulation in Figure 5.20. The
elevation difference between the feed (1484m) and the critical point (1486m) is also two
meter, which indicates that only minor head losses at night. Figure 5.21 shows that the
highest elevations (above the feed’s elevation) all occur around the same area as the critical
point.
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Flows

Figure 5.22 shows the modelled flows that occur on average on Monday at 00:00. The flow
output can be used to identify segments where large frictional losses occur, or where high
residence times occur.

Figure 5.19: Location of the feed and the critical point
N72 Figure 5.20: Pressure on Monday at 00:00 at the feed

and critical point

Figure 5.21: The area of the nodes with high elevation
(above 1484m).

Figure 5.22: The flows in the network on Monday at
00:00

5.5 Conclusions chapter 5

This chapter answers the following research question:

Q2: How can intermittency be included in a hydraulic model?

A number of conclusions can be drawn from constructing the hydraulic model. First of
all, the daily demand patterns in IWS systems show a different pattern than is continuously
supplied systems. The IWS patterns show less strong peaks. This can be due to a con-
stant water demand for filling storage, leaks in the system or different consumer behaviour.

This different daily demand pattern, subtracted from analyzing flow data at the DMA
inlet, can be used to calibrate the hydraulic model. The complicated relations between de-
mand and pressure in the model can be approached by using assuming linear relationships
between the demands, inlet pressure as input variables and the pressure (at a node) and
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flow (at a pipe) as output. When the expected pressures are below the estimated nominal
pressure, the accuracy of the method decreases as the relationship between demands and
pressure becomes more non-linear.

Lastly, the inlet pressure fluctuates considerably over the week. As shown in the
modelling study, the inlet pressure is almost entirely dependent on the pressure in the
main drinking water network to which the DMA is connected and therefore by the supply
scheme of the utility. This should be well taken into account in the hydraulic model.
Depending on the nominal pressure in the area, this inlet pressure can determine whether
demands are entirely met or not.

Suggestion

If the aim would be to model an entire city with IWS, the main factors that determine the
flow would be the pressures in the main network and the demands in the DMA. Therefore,
a suitable way of modelling these systems would be to represent the DMAs as nodes
connected to a main network (see Figure 5.23). By connecting and disconnecting these
nodes from the main network at given days, the pressure in the main network changes.
This behaviour could be modelled by estimating the right demands for the DMAs and
adding demand patterns and a distribution scheme. Unfortunately, a city with IWS does
usually not have the necessary equipment to construct or monitor the inflow and pressure
at all connected DMAs or the geographical information (GIS) of the system is missing,
making this way of modelling not possible yet for Nairobi and Zimbabwe.

Figure 5.23: Ideal way of modelling IWS systems.
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6. Boolean leak detection

The method that is used to detect leaks is the ”Dynamical Bandwidth Monitor (DBM)”,
whose concept was explained in section 4.4. This chapter highlights differences between
designing a DBM system with flow sensors and pressure sensors. Furthermore it sub-
stantiates which method for modelling demand realizations can best be used to construct
alarm values for the DBM. Finally, it identifies the sensitivity of the leak detection model
to certain important parameters.

6.1 Differences between the design with flow sensors and
pressure sensors.

There are a number of differences between the design of the monitoring system with flow
and pressure sensors. These differences arose from several analyses, whose conclusions and
emerging assumptions were used to make a distinction between the two types of design.
These analyses are shown below, as well as the differences that arose.

Filtering days with continuous supply

The DBM compares ranges of expected values to real-time measurements, after which an
anomaly in measured value is marked as a potential leak. To simulate reliable ranges of
expected values, days with a regular flow and supply pattern have to be used. Days with
irregular patterns (or no flow and pressure at all) can not be used, as anomalies would
occur without new leaks emerging in the system, resulting in false alarms. So, the DBM
can only be used on days which have a continuous supply for the entire day. Removing days
with intermittent supply during the day resulted in a significant reduction of days whose
measurements could be used to construct the monitoring systems (Table 6.1). Irregularity
of supply by the water utility so decreases the functionality of the monitoring system.

Table 6.1: Daily data-sets that were used to construct the DBM’s.

This low number of days that are available to construct the DBM let to the following
design goal: “Construct alarm values which can be used for all days with supply, instead
of creating different alarm values for each weekday. Weekly alarm values are more easy to
operate and can be used more frequently.1

1More detailed explanation: Creating different alarm values for each weekday would result in more
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Relation between hydraulics and measurements at the DMA inlet

To distinguish between designing a monitoring system with flow sensors and with pressure
sensors, it should be taken into account how the flows in pipes and pressure in nodes
depend on the flow and pressure at the DMA inlet. These relationships are listed below
and summarized in Table 6.2.

• The flow in pipes is assumed to be dependent on the inflow into the DMA, since
the magnitude of the incoming flow determines the mass balance of water entering
the system and therefore the flow rate that will go through the pipes.

• The flow in pipes is assumed to be independent on the pressure at the DMA inlet,
as the pressure in Ashdown Park is estimated to be sufficient to allow people to fulfill
their water demand (section 5.3). Therefore, it is assumed that a pressure deviation
will not likely result in a change of flows in the system.2

• The pressure in nodes is assumed to be dependent on the inflow into the DMA,
as this influences the flows in pipes, which influences the head losses over pipes and
the pressures in nodes.

• The pressure in nodes is assumed to be dependent on the pressure at the DMA
inlet as this determines the total amount of pressure that is added to the supply
system and therefore directly influences the pressures in nodes.

Table 6.2: Relation between hydraulics and DMA inflow and inlet pressure.

Similarity of flow and pressure patterns on different weekdays

A design goal for the monitoring system is to construct alarm values that can be used
for each weekday. Therefore, it was explored whether the flow and pressure patterns that
were found after analyzing the measurements at the DMA inlet at different weekdays with
continuous supply (the weekdays shown in Table 6.1) showed enough similarity to con-
struct a weekly pattern.

Comparing the differences between weekly flow averages and flow averages of each
individual weekday, resulted in a NRMSE of 0.0498, indicating that a weekly flow pattern
is able to represent the flow which can be expected on every individual week-day. The

accurate ranges of expected flow and pressure on days like Monday and Friday. They could however not be
used on Saturdays and Sundays, as 3 and 5 days were assumed to be too little days to construct a reliable
range of hydraulic values. Using weekly alarm values (for days with supply) eliminates the need for an
operator to switch alarm values on different weekdays, increasing the ease of operation. Furthermore, it
allows the system to be used on Saturdays and Sundays as well. These advantages were chosen to outweigh
the disadvantage of having a less reliable range of expected values on Monday and Friday.

2The pressure would influence the flow rate going through leaks in the system (equation 2.1, section
2.3). However, this is not taken into account at this point.
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same analysis with the weekly pressure pattern, resulted in a NRMSE of 0.101, which was
regarded to be too high3. Therefore, a weekly pressure pattern is not able to represent
the pressure of individual weekdays with continuous supply. This full analysis can be
found in appendix A.11 and the flow and pressure patterns of all individual weekdays can
be found in Figure 6.3 and 6.4. These figures show that the flows at individual weekdays
are more alike than the pressures at individual weekdays.

Figure 6.1: Average flows of days for with continuous
pressure.

Figure 6.2: Average pressures of days with continuous
pressure.

Resulting differences between the design with flow sensors and pressure
sensors.

A relatively obvious difference between a monitoring system with flow sensors and pressure
sensors is that flow sensors should be located at pipes and pressure sensors are usually
located at nodes.4 The number of suitable locations for flow sensors therefore coincides
with the number of pipes in the network, whereas the number of suitable locations for
pressure sensors coincides with the number of nodes. Furthermore, a monitoring system
with pressure sensors only uses a lower alarm value, since each leak takes away pressure
from the system and thereby can only reduce the pressure in nodes. Flow monitoring
systems use both a lower and upper alarm value, as flows in pipes can increase or decrease
when a leak emerges.

As previously explained, the hydraulic model is calibrated with the flow and pressure
measurements at the DMA inlet. There are measurements from multiple days with con-
tinuous supply, so it is possible to calibrate the hydraulic model to different circumstances
during these days. The arguments of the previous three chapters combined, result in a
distinction in circumstances during which the monitoring system with flow sensors should
be designed, compared to the monitoring system with pressure sensors. This distinction
will be explained below and is summarized in Table 6.3.

• Flow monitoring system: It is preferred to construct alarm values which can
be used for all days with supply (goal). A weekly pressure pattern is not able to
represent pressure accurately during all days with continuous supply. However, the

3the threshold for an acceptable NRMSE was set at 0.05
4This is mainly in hydraulic modelling. In reality one could drill a hole in a pipe and install a pressure

logger in that hole, which could be hydraulically modelled by adding a new node to the system.
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flow in pipes is assumed to be independent from the inlet pressure (Table 6.2), so it
can be assumed that an inaccurate inlet pressure has an insignificant influence on
the ranges of flows that will be modelled.5 Therefore, still weekly average values of
the pressure measurements can be used. A weekly flow pattern is able to represent
flows accurately during all days with continuous supply and can therefore be used as
well. The pressure measurements and flow measurements need to be from the same
days, so flow alarm values can be constructed using the average measured flow and
pressure of all days with continuous supply (as preferred).

• Pressure monitoring system: It is preferred to construct alarm values which
can be used for all days with supply (goal). However, a weekly pressure pattern is
not able to represent pressure accurately during all days with continuous supply.
Since the pressure in nodes is dependent on this inlet pressure (Table 6.2), pressure
measurements of a single weekday should be used. For this design it was chosen to
use pressure measurements from Friday, as Fridays contained most days to construct
a reliable range of values (table 6.1). It should be taken account as well that only
a lower alarm value will be constructed for the pressure monitoring system. As
the inlet pressure determines the amount of pressure that is added to the system,
the pressure alarm values should be constructed in the circumstances when a low
inlet pressure occurs.6 Therefore was chosen to use the 5-percentile pressure values
from all Fridays as pressure measurements. The pressure measurements and flow
measurements need to be from the same days, so the flow measurements should be
from Friday as well. The average flow values for Friday can be used, as the demand
allocation method will include possible flow deviations in the model (shown in section
6.2).

Table 6.3: Relation between hydraulics and DMA inflow and inlet pressure.

Especially the difference in pressure measurements at the DMA inlet that are used to
calibrate the model has a significant impact on the performance of both types of monitoring
systems. These performances are described in later sections. The different pressures that
are used can be seen in Figure 6.3.

5If this relationship was assumed to be dependent, different flow alarm values should be constructed
for different weekdays.

6If the alarm values would be constructed whilst modelling an average inlet pressure, the monitoring
system alarm value would be exceeded, and leaks would be ”detected”, every time that the inlet pressure
drops below the average. A lot of false alarms will occur, since the alarm values is exceeded because the
inlet pressure at the DMA is low and not because a leak has emerged.
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Figure 6.3: The inlet pressures that were used in the model to construct artificial DBM’s with flow sensors (in blue)
and artificial DBM’s with pressure sensors (in orange).

6.2 Method for constructing alarm values for the DBM

Two methodologies were proposed in section 4.4 to model random demand realizations,
which could be used in a Monte Carlo-simulation during which the most extreme flows
and pressures are saved as alarm values. The different methods will be referred to as
”method 1” (using random draws from a scaled normal distribution) and ”method 2”
(using weighted random choice with a tap capacity parameter). This section substantiates
which method shall be used in the leak detection model.

Alarm values from different methods for modelling demand realizations

The result of calculating the alarm values by using flow sensors and optimal input values7

for both methods can be seen in Figure 6.4. It can be seen that method 2 (the tap capacity
method) yields a wider range of flows than method 1 (drawing randomly from the scaled
normal distribution).

Figure 6.4: Differences in resulting alarm values for a monitoring design with flow sensors between method 1 (using
the scaled normal distribution) and method 2 (the tap capacity method).

7These optimal input values imply that the alarm values are constructed by running 1000 different
demand realizations at 01:20. These values will be elaborated upon in section 6.3
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This result was expected, since the tap capacity method does not model demand
everywhere, resulting in more locally concentrated demands and in a wider range of flows.
This wider range also results in lower pressure alarm values for method 2, since higher
flows in pipes occur and more pressure is lost due to frictional losses.

Spread in inflow resulting from different methods for modelling demand real-
izations

Since the analyzed data-set covers a year of flow and pressure measurements, a data spread
at a specific weekday and a specific time can be constructed. The boundaries of this data-
spread represent the boundaries of the expected flow and pressure values at the DMA
entrance. The 5-percentile and 95-percentile values of weekly flow values at the DMA
inlet that can be expected to occur are shown in blue in Figure 6.6. By constructing
different demand realizations with random choices, the random scenario can deviate from
the average scenario. The modelled inflow into the DMA, which is a result from modelling
the different demand realizations at a single time-step according to method 1, is shown in
Figure 6.5 with box plots8.

Figure 6.5: The spread of method 1.

Comparing the box plots with the spread of the measurements shows us that the spread
in inflow that was calculated by the model was significantly smaller than the spread in the
measurements. So, method 1 seems not include the expected range of inflow scenarios.
Making the same graph for method 2 resulted in Figure 6.6. This shows us that, especially
during night-time (18:40 - 05:20), the modelled spread of inflow is comparable to the spread
in measurement data. This comparison does not hold at daytime (05:20 - 18:40), since the
measured spread is larger then.

8These box plots show the the average value (small orange line in the middle) of all experiments, an
interquartile range (the small rectangle shows the range of values between the 25th and the 75th quartile),
a minimum and maximum (point up to which the continuous stripe from the interquartile range reaches)
and outliers (small circles at the edges of the box plots).
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Figure 6.6: The spread in random weighted choice.

Since weekly flow values are used in the above examples, Figure 6.6 and 6.5 show
scenarios that occur when designing a monitoring system with flow sensors. Appendix
A.13 shows a similar graph, comparing the range of modelled inflows with method 2 to
the measurements that are used to design the monitoring system with pressure sensors
(measurements on Friday, as explained in section 6.1). This graph also shows that method
2 is able to produce a realistic spread during night-time on Fridays.

Final method for constructing alarm values for the DBM.

It was shown that method 2 is better able to model the range of inflows that can be ex-
pected at the DMA inlet than method 1. Especially during night-times, method 2 seems
to produce an accurate spread of flows at the inlet. Furthermore, method 2 models a
wider range of flows in pipes within the DMA. This results in higher (in absolute terms)
flow alarm values and lower pressure alarm values, which are less likely to be exceeded.
Since method 2 produces an more accurate spread of inflow at the DMA inlet and pro-
duces alarm values which are less likely to be exceeded9, method 2 is chosen to model the
demand realizations and construct the alarm values.

At this point it is clear how the demand realizations ought to be modelled in order to
construct alarm values for the artificial DBMs. An overview of all the steps and formulae
that are needed to construct the flow alarm values is shown in Algorithm 1, the same
overview for pressure alarm values in shown in Algorithm 2.

9This ”strict” alarm values increase the safety of the design, since they are less likely to be exceeded.
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Algorithm 1 Method that is used to construct flow alarm values.

Step 4: Construct flow alarm 
values for a single time step (t) 
with a Monte Carlo simulation.

Random choice = 0, 𝑇𝐶

Weights =
𝑛𝑡𝑎𝑝𝑠_𝑐𝑙𝑜𝑠𝑒𝑑,𝑡

𝑛𝑡𝑎𝑝𝑠
,
𝑛𝑡𝑎𝑝𝑠_𝑜𝑝𝑒𝑛,𝑡

𝑛𝑡𝑎𝑝𝑠

Monte Carlo simulation

Di:

𝑚𝑜𝑑𝑒𝑙𝑠𝑒𝑛𝑠,𝑡
𝐃𝐢𝐧𝐢𝐭 × 𝐷𝑓𝑎𝑐𝑡𝑜𝑟,𝑡

𝑝𝑖𝑛𝑖𝑡,𝑟𝑒𝑠 × 𝑝𝑓𝑎𝑐𝑡𝑜𝑟,𝑡
≈

ℎ𝑎𝑣𝑔_𝑤𝑒𝑒𝑘,𝑡
𝑄𝑎𝑣𝑔_𝑤𝑒𝑒𝑘,𝑡

Step 1: Create a model with 
the demand at nodes (Dinit) 
and the reservoir pressure 
(pinit, res) as input and gives the 
flow (Qinit,sens) and pressure 
(hinit,sens) at the location of the  
DMA-inlet as output.

Step 2: Adjust the demand and 
pressure with a factor (Dfactor,t

and pfactor,t), so that the model 
output approaches the average 
weekly flow and pressure from 
the historical measurements 
(Qavg_week,t and havg_week,t). 

𝑛𝑡𝑎𝑝𝑠 = 𝑛𝑜. ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑠 𝑇𝐶 = 0. 3 ൗ𝑚3

ℎ

𝑛𝑡𝑎𝑝𝑠_ 𝑜𝑝𝑒𝑛,𝑡 =
σ𝑖=1
𝑛 𝐷𝑖,𝑡 ∗ 𝐷𝑓𝑎𝑐𝑡𝑜𝑟,𝑡

𝑇𝐶
𝑛𝑡𝑎𝑝𝑠_𝑐𝑙𝑜𝑠𝑒𝑑,𝑡 = 𝑛𝑡𝑎𝑝𝑠 − 𝑛𝑡𝑎𝑝𝑠_𝑜𝑝𝑒𝑛,𝑡

Step 3: Determine the tap 
capacity (TC) in the DMA and 
calculate the number of open 
and closed taps (ntaps_open,t

and ntaps_closed,t).

Step 4.1: Assign demand in 
node i (Di) with random 
weighted choice and model 
the pressure in the reservoir 
(preservoir,t). 𝑝𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟,𝑡 = 𝑝𝑖𝑛𝑖𝑡,𝑟𝑒𝑠 ∗ 𝑝𝑓𝑎𝑐𝑡𝑜𝑟,𝑡

Pipe P1 P2 … Pj

Flow Q1 Q2 … Qj

Step 4.2: Run the simulation; 
calculate the flow in every 
pipe

If Qj < Qj,al_low :
Qj,al_low = Qj

Pipe P1 P2 … Pj

Lower 
alarm value

Q1,al_low Q2,al_low … Qj,al_low

If Qj > Qj,al_high :
Qj,al_high = Qj

Pipe P1 P2 … Pj

Higher 
alarm value

Q1,al_high Q2,al_high … Qj,al_high

Run 1000 experiments

Step 4.3: Save extreme flows 
in pipe j (Qj) as lower or upper 
alarm value (Qj,al_low or 
Qj,al_high). 

Step 4.4: Run Monte Carlo 
Simulation by applying 1000 
different demand realizations

FormulaeSteps

𝑚𝑜𝑑𝑒𝑙𝑖𝑛𝑖𝑡,𝑠𝑒𝑛𝑠
𝐃𝐢𝐧𝐢𝐭

𝑝𝑖𝑛𝑖𝑡,𝑟𝑒𝑠
=

ℎ𝑖𝑛𝑖𝑡,𝑠𝑒𝑛𝑠
𝑄𝑖𝑛𝑖𝑡,𝑠𝑒𝑛𝑠
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Algorithm 2 Method that is used to construct pressure alarm values.

Step 4: Construct pressure 
alarm values for a single time 
step (t) with a Monte Carlo 
simulation.

Random choice = 0, 𝑇𝐶

Weights =
𝑛𝑡𝑎𝑝𝑠_𝑐𝑙𝑜𝑠𝑒𝑑,𝑡

𝑛𝑡𝑎𝑝𝑠
,
𝑛𝑡𝑎𝑝𝑠_𝑜𝑝𝑒𝑛,𝑡

𝑛𝑡𝑎𝑝𝑠

Monte Carlo simulation

Di:

Step 1: Create a model with 
the demand at nodes (Dinit) 
and the reservoir pressure 
(pinit, res) as input and gives the 
flow (Qinit,sens) and pressure 
(hinit,sens) at the location of the  
DMA-inlet as output.

Step 2: Adjust the demand and 
pressure with a factor (Dfactor,t

and pfactor,t), so that the model 
output approaches the average 
flow and 5-percentile pressures 
on Friday from the historical 
measurements (Qavg_fri,t and 
h5_perc_fri,t). 

𝑛𝑡𝑎𝑝𝑠 = 𝑛𝑜. ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑠 𝑇𝐶 = 0.3 ൗ𝑚3

ℎ

𝑛𝑡𝑎𝑝𝑠_ 𝑜𝑝𝑒𝑛,𝑡 =
σ𝑖=1
𝑛 𝐷𝑖,𝑡 ∗ 𝐷𝑓𝑎𝑐𝑡𝑜𝑟,𝑡

𝑇𝐶
𝑛𝑡𝑎𝑝𝑠_𝑐𝑙𝑜𝑠𝑒𝑑,𝑡 = 𝑛𝑡𝑎𝑝𝑠 − 𝑛𝑡𝑎𝑝𝑠_𝑜𝑝𝑒𝑛,𝑡

Step 3: Determine the tap 
capacity (TC) in the DMA and 
calculate the number of open 
and closed taps (ntaps_open,t

and ntaps_closed,t).

Step 4.1: Assign demand in 
node i (Di) with random 
weighted choice and model 
the pressure in the reservoir 
(preservoir,t). 𝑝𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟,𝑡 = 𝑝𝑖𝑛𝑖𝑡,𝑟𝑒𝑠 ∗ 𝑝𝑓𝑎𝑐𝑡𝑜𝑟,𝑡

Node N1 N2 … Nj

Pressure h1 h2 … hj

Step 4.2: Run the simulation; 
calculate the pressure in 
every node

If hj < hj,al_low :
hj,al_low = hj

Node N1 N2 … Nj

Lower 
alarm value

h1,al_low h2,al_low … hj,al_low

Run 1000 experiments

Step 4.3: Save extreme 
pressures in node j (hj) as 
lower alarm value 
(hj,al_low). 

Step 4.4: Run Monte Carlo 
Simulation by applying 1000 
different demand realizations

FormulaeSteps

𝑚𝑜𝑑𝑒𝑙𝑖𝑛𝑖𝑡,𝑠𝑒𝑛𝑠
𝐃𝐢𝐧𝐢𝐭

𝑝𝑖𝑛𝑖𝑡,𝑟𝑒𝑠
=

ℎ𝑖𝑛𝑖𝑡,𝑠𝑒𝑛𝑠
𝑄𝑖𝑛𝑖𝑡,𝑠𝑒𝑛𝑠

𝑚𝑜𝑑𝑒𝑙𝑠𝑒𝑛𝑠,𝑡
𝐃𝐢𝐧𝐢𝐭 × 𝐷𝑓𝑎𝑐𝑡𝑜𝑟,𝑡

𝑝𝑖𝑛𝑖𝑡,𝑟𝑒𝑠 × 𝑝𝑓𝑎𝑐𝑡𝑜𝑟,𝑡
≈

𝑄𝑎𝑣𝑔_𝑓𝑟𝑖,𝑡

ℎ5_𝑝𝑒𝑟𝑐_𝑓𝑟𝑖,𝑡
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6.3 Sensitivity of the proposed model to construct the Boolean
matrices

After having constructed the alarm values for the DBM, Boolean matrices can be con-
structed that store information whether a leak can be detected by a certain sensor. The
ability of the hydraulic model to create this Boolean matrix accurately is determined
by several parameters in the model and can be indicated by using KPIs (section 4.4).
The type of KPI which can best be used differs per parameter. Calculating the effect of
changing a parameter on the KPI gives an indication of the sensitivity of the hydraulic
model.

Sensitivity analysis 1: Number of experiments

A single experiment from the Boolean 3D-matrix contains 84 scenarios (since there are
84 pipes in the network), each scenario simulating a leak in a different pipe. So, if there
are k experiments in the 3D-matrix, k x 84 scenarios need to be calculated. Therefore,
the computational time increases fast when the 3D-matrix grows with more experiments.
The computation of the alarm values also uses a certain number of experiments, assigning
a new maximum or minimum to the stored alarm values (see Algorithm 1 and 2). In
this case, each experiment contains only one scenario since no leaks need to be added to
the model, which results in less computational time for a large number of experiments.
Different combinations of the number of experiments for constructing the alarm values on
one side and constructing the 3D-matrix on the other side were compared by computing
a percentage of false alarms (KPI, section 4.4).

The number of experiments that are used to construct alarm values and to construct
the 3D-matrix, can be seen as a trade-off between computational time and a certain % of
false alarms which is allowed in the model. For example, a number of 10 experiments in
the 3D-matrix uses a computational time around 2 minutes, whereas it takes 1 second to
compute 10 experiments for the constructing of alarm values. The resulting performance
of the monitoring design with flow meters during different times of the day can be seen in
Table 6.4.

Table 6.4: Percentage of false alarms for the design with flow meters and a different number of iterations.

It was chosen to construct the alarm values using 1000 experiments and to construct the
3D-matrix using 100 experiments. These 100 samples should present a reasonable image
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of the flows that can occur in the DMA (Blokker, 2020). This resulted in a computational
time of around 25 minutes, which was feasible to further investigate the influence of other
parameters on the model. The same analysis for the monitoring system with pressure
sensors (appendix A.14), showed that 1000 experiments for constructing alarm values and
100 experiments for constructing the 3D-matrix was also a good choice for this system.

Sensitivity analysis 2: Time

The Boolean 3D-matrix is constructed for a specific time step, since demand realizations
and modelled inlet pressure are time dependent. Given the fact that the inlet pressure and
incoming flow are measuring every 10 minutes, the number of open taps (which influences
the demand realizations) and the inlet pressure change every 10 minutes. Therefore, the
above described Boolean 3D-matrix changes every 10 minutes. The performance of the
monitoring system can be expressed by calculating the detectability (KPI, section 4.4) at
every time step.

Plotting the detectability for the monitoring network with flow meters at different
times during the day10, shows us that the leaks are best detectable between 21:40 and
05:20. This time range is chosen, since the detectability during these times is clearly
higher than the detectability during the day (Figure 6.7). From now on, in order to
calculate the optimal sensor allocation, all scenarios shall be run on 01:20. This time has
a detectability that can be seen as average within the period with good detectability and
can well be used for estimating how many leaks can be detected within this period.

Figure 6.7: Detectability of leaks with flow sensors at different times of the day.

Making the same plot for the detectability of pressure sensors shows a slightly different
outcome. As one can see in Figure 6.8, the precision of the detectability is lower than

10For this calculation, the 3D-matrix needed to be calculated 144 times, resulting in a calculation time
of 64 hours. In this simulation, leaks of 20mm were used, which will later show to be too large. In the
final model leaks of 15mm will be used. This would decrease the exact detectability in Figure 6.7 and 6.8,
but its shape is likely to remain the same. Since the aim of this chapter is merely to identify which time
should be used to run scenario’s, which can be done by just using the shape of the graphs, the simulations
were not redone.

Page 59



the precision of the network with flow sensors. The results show a slightly improved
detectability during the night, but the distinction between night and day is not as strong
as was the case with flow sensors. Therefore, the distinction of the “good detectability”
range is made based on different grounds. The previous section showed that the hydraulic
model’s output at the DMA inlet (using method 2) during the night-time was comparable
to the spread of the inflow measurements (Appendix A.13 for the design with pressure
sensors). The range during which the model produced accurate results was from 00:00
until 06:30 and from 18:30 until 23:5011 (also appendix A.13). These ranges were used in
Figure 6.8 to distinguish a time during which the model performs best. Calculations for
the allocation of pressure sensors shall be performed by using the flow and pressure input
data at 03:30 (average value within the range of “good detectability”), albeit that this
time preference is less strong than was the case for designing with flow sensors.

Figure 6.8: Detectability of leaks with pressure sensors at different times of the day.

An extensive comparison of the detectability of leaks at different times of the day for the
flow and pressure monitoring system can be found in appendix A.15. Its conclusions are
that in both cases the best leak detectability occur at night. This can be explained by the
increased pressure during the night, which increases the leak’s flow rate, in combination
with the low flows at night, which increase the relative impact of the leak on the flow
rates and pressures in the network. Furthermore, the precision of the detectability is also
higher for the flow monitoring system. This can be since the modelled inlet pressure is
higher when designing with flow sensors (resulting in higher leak flow rates), the daily
pressure pattern for using flow sensors has a smoother curve (since it is calculated with
more daily data sets) or since flows in pipes are more sensitive to random changes in
demand allocation than nodal pressures. The difference in precision is likely to be due to
a combination of these factors.

11The design with pressure sensors distinguishes two ranges, since it will only be used on Fridays and
has to distinguish between Friday morning and Friday night.
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Sensitivity analysis 3: Leak size

The water utility of Harare does register its leaks, but unfortunately not its sizes. The
literature study has shown that leaks that can be expected to occur in the drinking water
system are in the range of 2.52 - 10.8 m3/h (section 2.3). However, the WNTR-package
defines leaks in terms of their area and not in terms of their flow rate (NTESS, 2019).
So, different leak size were tested to see which area would give leak flow rates within the
desired range. Applying leaks with a diameter of 10, 15 and 20 mm resulted in leak flow
rates ranging from 3 to 18 m3/h (Figure 6.912).

Figure 6.9: Different leak sizes (in terms of m3/h), which result from different leak sizes (in terms of diameter (mm))
in the algorithm for allocating flow sensors.

The hydraulic model that is used for designing the pressure monitoring system uses
lower pressure values at the DMA inlet (section 6.1). This results in smaller leak flow rates
with the same diameters sizes (10mm, 15mm and 20mm). The flow rates which occur in
the leaks are between 0.5 and 12 m3/h (Figure 6.10).

Figure 6.10: Different leak sizes (in terms of m3/h), which result from different leak sizes (in terms of diameter
(mm)) in the algorithm for allocating pressure sensors.

12Considering that a new demand realization yields in a different pressure and therefore a different leak
flow rate, the results of this graph show the average leak flow rate of 100 demand realizations with leaks.
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The flow into Ashdown Park can range between 20 and 90 m3/h, with an average value
of around 50 m3/h during days with continuous supply (Figure 6.6). The leak size should
be realistic in relation to this inflow. A leak size of 9-10 m3/h would account for about
20% of the average inflow, which is a quite a large fraction. Therefore, the leak size of
10m3/h was chosen as the maximum leak size to be detected. This leak size is within the
desired range of 2.52 - 10.8 m3/h. Figure 6.9 shows that this leak size can be included in
the model for the monitoring design with flow meters by adding a leak with a diameter
of 15mm. One of the goals of this thesis is to compare the performance of a monitoring
system with flow sensors to the performance of a system with pressure sensors. Therefore,
the leaks that are included in the model should be similar in size. So, also for the model
that is used for the monitoring system with pressure meters, a leak with a diameter of
15mm is used, although the resulting leak flow rate is only around 5m3/h (Figure 6.10).

Sensitivity analysis 4: Tap capacity

The final parameter which is an input for the hydraulic model is the tap capacity. Section
4.4 (Table 4.1) has shown that the flow rate from a tap can differ a lot at different locations
throughout the globe. For this thesis, a tap capacity of 0.3 m3/h was used, as this resulted
of a field experiment in Ashdown Park.

To validate the performance of the model with different tap capacity parameters, the
detectability KPI (equation 4.9, section 4.4) is used again. Figure 6.11 shows the de-
tectability of a network with flow sensors under the previously determined “optimal”
conditions. 13 It can be seen that a low tap capacity yields a high detectability. Earlier,
in Figure 6.4, it was noted that alarm values are less extreme when the demand is better
spread over the DMA. This is likely the cause of the high detectability for low tap capaci-
ties. As the alarm values at the sensors become less strict, leaks are more likely to surpass
these alarm values and be detected.

Figure 6.11: Influence of different tap capacities on the model’s output of detectability.

13These optimal conditions imply that the detectability was calculated at 01:20 with leaks of 15mm, 1000
demand realizations for constructing alarm values and 100 different experiments in the Boolean 3D-matrix.
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6.4 Conclusions chapter 6

This chapter answers the following research question:

Q3: How can flow and pressure meters be used to detect hidden leaks?

This chapter showed that a threshold-based strategy, in this case the ”Dynamic Band-
width Monitor”, can be used to identify single leaks in a DMA with flow and pressure
sensors. Furthermore, it has identified differences and similarities for constructing alarm
values for the two monitor systems.

During the analysis of historical data of the flow into Ashdown Park and the inlet
pressure, it was found that the weekly flow pattern on days with continuous supply was
more constant than the weekly pressure pattern. Therefore, it can be concluded that the
water use behaviour of inhabitants in Ashdown Park has been more constant than the
supply behaviour of the water utility in the concerned area. As a result, different values
for the pressure and flow at the DMA inlet were used for the flow monitoring system than
for the pressure monitoring system.

It was shown that modelling different demand realizations by allocating demand among
the nodes with a random weighted choice and a single tap capacity, showed promising
results for modelling flows that occur in Ashdown Park at night. These results were
promising, since the spread of the modelled inflow was well comparable to the spread in
the inflow measurements. Using a standard tap capacity is especially suitable for IWS
areas, since people in IWS areas usually only have one tap directly connected to the water
supply system and water ende-use devices are not directly connected to the network.

At last, the performance of the proposed monitoring systems depends on the number
of experiments that are used in the Monte Carlo simulation to construct alarm values, on
the time of the day during which the simulation is performed, on the leak sizes that should
be detected and on the tap capacity that is included in the hydraulic model.
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7. Optimizing sensor placement

The main objective of the optimization study is to place the sensors efficiently through-
out the DMA, so that with a minimum amount of sensors a maximum amount of water
can be saved. In this chapter it will be explained how this is achieved.

7.1 Results of optimizing sensor placement

This section shows the performance of optimally placing flow and pressure sensors. This
performance of a certain configuration of sensors can be expressed by calculating a certain
percentage of leaks that can be found by the sensors and calculating the areal coverage of
the sensors. Both terms have been explained previously in section 4.5.

Percentage of leaks found

Figure 7.1 shows what percentage of leaks can be found in which pipe when optimally
placing four flow sensors, as well as the pipes at which these sensors are placed. It shows
also the probability limit, the percentage above which leaks should be found in order to
be detected once a day (section 4.5).

Figure 7.2 shows the same percentages and probability limit for applying four pressure
sensors. The reason for the higher probability limit (55% compared to 10%) is mainly
since the DBM with pressure sensors is designed for conditions with a low inlet pressure
which occurs during only 5% of all Fridays (further explained in section 4.5 and 6.1).

The results of the percentages of leaks found for optimally allocating one, two, three,
four and five flow and pressure sensors can be found in appendix A.17.

Figure 7.1: Percentage of leaks (y-axis) in certain pipes (x-axis) that are detected using four flow sensors, calculated
at 01:20 for leaks of 15 mm.
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Figure 7.2: Percentage of leaks (y-axis) in certain pipes (x-axis) that are detected using four pressure sensors,
calculated at 03:30 for leaks of 15 mm.

Coverage

By optimally allocating 4 flow sensors, leaks in 25% of the pipes in the DMA can be
detected once a day. By optimally allocating 4 pressure sensors, leaks in only 1% of the
pipes in the DMA can be detected once a day. The optimal placement of different number
of sensors1 and their coherent coverage can be seen in Table 7.1. From this result it can
be concluded that a monitoring system with pressure sensors as designed in this thesis is
less applicable for Ashdown Park than a flow monitoring system.

Table 7.1: Coverage of a given amount of optimally placed sensors.

The results from Table 7.1 can be visualized to show at which locations the sensors
can be optimally placed and at which pipes leaks can be found. Figure 7.3, 7.4, 7.5 and
7.6 visualize where flow sensors would be located in the optimal scenario and where leaks
would be found. This visualization shows that the coverage of the DMA increases as the
amount of placed flow sensors increase. With more than four flow sensors, the increase in
coverage per added flow sensor seems to decline, since the coverage of five flow sensors is
only 27.4% (Table 7.1).

1This amount excludes the number of sensors that are needed to measure pressure and flow at the DMA
inlet, as will later be explained in section 7.4.
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Figure 7.3: The optimal placement of one flow sensor (at
pipe P4) for detecting leaks of 15mm.

Figure 7.4: The optimal placement of two flow sensors
(at pipes P4 and P46) for detecting leaks of 15mm.

Figure 7.5: The optimal placement of three flow sensors
(at pipes P4, P36 and P46) for detecting leaks of 15mm.

Figure 7.6: The optimal placement of four flow sensors
(at pipes P4, P36, P43 and P46) for detecting leaks of
15mm.

Figure 7.7 and 7.8 show the placement of one and four pressure sensors. As shown, the
coverage does not increase for using more than one pressure sensor. Hence, the monitoring
system with pressure sensors is not very effective in Ashdown Park for detecting leaks.

Figure 7.7: The optimal placement of one pressure sensor
(at node N46) for detecting leaks of 15mm.

Figure 7.8: The optimal placement of four pressure sen-
sors (at nodes N18, N20, N37 and N46) for detecting
leaks of 15mm.

7.2 Pressure dependent DBM with pressure sensors

So far, it has been assumed that the alarm values of the DBM remained static at all
times, since then the DBM is easily interpretative for the monitoring personnel. However,
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a consequence of this choice is that the artificial DBM’s with pressure sensors needed to
be calculated by using the 5-percentile pressure on Friday as inlet pressure at the DMA.
This resulted in low leak volumes and a low chance of finding a leak once a day.

Now, assume that is possible to construct a DBM whose alarm values change as the
measured inlet pressure changes. A visual example of this can be seen in Figure 7.9. The
consequence of this pressure dependent DBM is that any measured inlet pressures can be
used to construct the alarm values. So, when constructing the alarm values and calculating
the 3D-matrix that stores the detectability of leaks, it is possible to use the average weekly
pressure measurements and the average weekly flow measurements as input values for the
monitoring system with pressure sensors. Doing so, gives us an estimation of how many
leaks could be detected with pressure dependent DBM’s2. The same values will be used
for the parameters which are important to construct the flow and pressure monitoring
systems (section 6.3) with non-changing alarm values. Also, the probability limit will be
set similar to the monitoring design with flow meters (at 10%), since both designs use
input values with an equal chance of occurrence.

Figure 7.9: Example of how the pressure alarm values change with a different inlet pressure.

The amount of leaks that can be found using 4 pressure sensors in a pressure dependent
DBM network, together with the probability limit can be found in Figure 7.10. By opti-
mally allocating 4 pressure sensors and using a pressure dependent DBM network, leaks in
8.3% of the pipes in the DMA can be detected once a day, which is an improvement from
the “normal” pressure monitoring system with non-changing alarm values. The percent-
ages of leaks found for optimally placing one, two, three, four and five pressure sensors
can be found in appendix A.17. Table 7.1 shows the coverage that can be reached when
optimally placing a different number of pressure sensors with a pressure dependent DBM
system. Figure 7.11, 7.12, 7.13 and 7.14 visualize where one, two, three and four pressure
sensors with a pressure dependent DBM system would be optimally placed and in which
pipes they would detect leaks.

2When the inlet pressure would be higher than the average, more leaks can be detected and with a
lower inlet pressure less leaks. However, this will not be elaborated upon in this thesis.
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Figure 7.10: Percentage of leaks (y-axis) in certain pipes (x-axis) that are detected, using four pressure sensors and
a pressure dependent DBM.

Figure 7.11: The optimal placement of one pressure sen-
sor (at node N45) for detecting leaks of 15mm with a
pressure dependent DBM.

Figure 7.12: The optimal placement of two pressure sen-
sors (at nodes N38 and N45) for detecting leaks of 15mm
with a pressure dependent DBM.

Figure 7.13: The optimal placement of three pressure
sensors (at nodes 2, N38 and N45) for detecting leaks of
15mm with a pressure dependent DBM.

Figure 7.14: The optimal placement of four pressure sen-
sors (at nodes 2, N16, N38 and N45) for detecting leaks
of 15mm with a pressure dependent DBM.
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These visualizations show that the coverage of the DMA increases as the amount of
allocated pressure sensors increase, albeit its increase less than for the monitoring system
with flow sensors. When the third pressure sensor is placed, a new pipe at the other side
of the DMA becomes visible. This remarkable results occurs because a “false alarm” has
pushed to probability that the pipe was found from 9% to 10%. This can be seen in the
figures that show the percentages of leaks found in the pipes (appendix A.17). More than
two pressure sensors will not increase the coverage of the DMA significantly.

7.3 Important factors for optimal sensor placement

Pipe and node characteristics of the locations that were “chosen” to place sensors were
compared to the characteristics of unsuitable pipes and nodes, to see if certain factors
influence the suitability of a location for sensor placement. The figures of this chapter can
be found in appendix A.19.

Important factors when placing flow sensors

For this analysis, the pipes with flow sensors (Figure 7.6) were compared with the other
pipes. The chosen pipes have an average elevation, so the elevation will probably have a
limited effect on the optimal location for flow sensors (Figure A.67, appendix A.19). The
chosen pipes also have an average diameter, so the diameter will probably have a limited
effect on the optimal location for flow sensors as well (Figure A.68, appendix A.19). At
last, the chosen pipes have a relatively low flow, but these low flows are not very unique
compared to other pipes (Figure A.69, appendix A.19). The average flow in the pipes will
therefore probably have a limited effect on the optimal location for flow sensors as well.

Important factors when placing pressure sensors

For determining the important factors for allocating pressure sensors, the characteristics
of only two nodes were compared to the other nodes in the network. These two nodes
(Figure 7.12) were the only nodes that significantly increased the coverage when optimally
placing pressure sensors with a pressure dependent DBM system. The two chosen nodes
have a very low elevation, compared to the other nodes (Figure A.70, appendix A.19).
Therefore, it seems advisable to place pressure sensors for a monitoring system on loca-
tions with low elevations. The pressure, which is directly related to the elevations, in the
two chosen nodes is high as well (Figure A.71, appendix A.19). Therefore, the importance
of pressure should be seen in line with the importance of elevation, as nodes where high
pressures occur seem very suitable for allocating sensors for a pressure monitoring system.

When looking at Figure 7.3 till 7.14, it can be noted that for monitoring systems with
pressure sensors and for monitoring systems with flow sensors, favourable locations to
place sensors seem to be at the branched part of the DMA. Parts in the DMA were the
network is more looped seem less suitable for placing sensors. This is probably since nodal
demands behind leaks can be relatively easy fulfilled in looped systems, as the flow can
take detours in the system. In branched systems, more flow is “forced” to pass the leak,
causing higher pressure and flow deficits in the area behind the leak.
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7.4 Starting point of the monitoring system: The DMA
entrance

The above monitoring system is designed for the Ashdown Park DMA in Harare. The
reason to apply the modelling study to this specific DMA was that its incoming flow and
inlet pressure had been monitored over the last years. These measurements were used to
calibrate the hydraulic model and can therefore be regarded as the first measuring devices
of the monitoring system. The locations where these devices were installed, at the en-
trance pipe and node of the network, were incorporated as potential locations where the
allocation algorithm could place its pressure or flow sensor. However, the algorithm did
not place sensors at these locations, probably because locations at the networks’ branched
ends were more favorable for leak detection. These could lead to the false perception that
a monitoring system could be designed without measuring the inlet pressure and incoming
flow. However, the devices that perform this measurements are very important for the
system and should be taken into account (see Figure 7.15). In this chapter some argu-
ments are aligned as to why these devices are important for the monitoring system.

Figure 7.15: Measuring devices that measure the inlet pressure and incoming flow, which should be included into
the design of the monitoring system.

Firstly and most importantly, the incoming flow and pressure allow us to construct
and calibrate the hydraulic model of the DMA. Changing demands or the pressure of the
reservoir in the model (previously shown in Figure 4.3) is always noted at the DMA inlet,
making it such a valuable calibration point.

Furthermore, every NRW assessment method starts with estimating the system input
volume (level 0, Figure 2.1). When making an attempt to estimate the spatial division of
NRW throughout the system, it could be useful to address NRW per area. This allows
the utility to identify which areas are “weak spots” in the system and where adjustments
should be made. For the estimation of the NRW for a DMA, the system input volume
would be measured first and used to calculate or estimate other volumes. So, the flow
measurements at the DMA inlet are also very useful to make estimations of NRW per area.
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Concluding, the pressure and flow meters at the entrance of the DMA are crucial for
the monitoring system and to properly estimate NRW in different areas of the system. It
does not necessarily have to be two separate meters, as integrated meters that measure
both pressure and flow are currently finding its way into the market (Ernst Vink, 2020).
However, in this thesis it is assumed that every monitoring system starts with a flow and
pressure meter at the inlet of the DMA. If the monitoring system would be designed for a
transport network between DMAs, instead of a distribution network, pumping data about
the added flow and pressure to the system would also be sufficient for the same purposes.

7.5 Conclusions chapter 7

This chapter answers the following research question:

Q4: How can the placement of the meters in the monitoring system be opti-
mized?

A new method was shown that can be used to determine the optimal sensor placement
for constructing monitoring systems with flow and pressure sensors, building upon the
Boolean matrices that were constructed in the previous chapter.

Its results showed that a flow monitoring system in Ashdown Park with four sensors is
able to detect leaks in a larger part of the DMA (25%) than a pressure monitoring system
(1%). The performance of the pressure monitoring system slightly increased (from 1% to
8.3%) by making its alarm values dependent on the inlet pressure of the DMA, but it was
still found to be below the performance of the flow monitoring system.

Furthermore, important factors that characterize the optimal locations for flow and
pressure sensors were identified. In the case of the optimal locations for flow sensors, no
specific pipe characteristics could be found that distinguished the chosen pipes from other
pipes. The main characteristics of the sensor locations in this case was that they were
placed in the branched part of the network. The optimally allocated pressure sensors were
placed in the branched part of the network as well. Above that, the nodes that were con-
sidered as the optimal location for pressure sensors were characterized by low elevations
and high pressures.

At last, every monitoring network should consist of devices that measure the flow and
pressure at the DMA entrance, as this data is crucial for constructing and calibrating a
hydraulic model.
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8. Business model

The sequential step in this thesis is to construct a business case. The first section of
this chapter describes the monitoring system in different contexts, which should be well
considered when using the system for entrepreneurial purposes. Afterwards, potential
financial benefits of the system shall be shown. Finally, the chapter is summarized by a
sustainable business model canvas, which gives an overview of how the monitoring system
would function in the existing dynamics within a water utility and potential partnerships.

8.1 Entrepreneurial contexts

A lot of cities with continuous supply are transiting to a “smart water system”, where
water quantity and quality are monitored in real-time, allowing the utility to making
efficient repairs and interventions in the system when needed. This does not only concern
flow and pressure meters, but also water quality measurements are crucial for ensuring
a safe water supply. The first three sections in this chapter will focus on these “smart
water systems”. These sections contain (1) a roadmap for IWS to move towards smart
water systems, (2) practical barriers for implementation of the monitoring system in a
historical context and (3) different options for the local community to fulfill their drinking
water demand. After these chapters, the focus shall be more on hydraulic monitoring
systems, like designed in this thesis. These chapters will explain (4) the process chain
from leak detection to leak repair and (5) the potential positive and negative effects that
the monitoring system can have on its surrounding society.

Road map towards smart IWS systems

Whereas many continuous supply systems, such as Amsterdam, have moved towards a
smart water system, there are a number of barriers that prevent the transition of an IWS
system to a smart system. These barriers are visualized in Figure 8.1. Examples of how
these barriers have affected this thesis will be elaborated upon below.
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Figure 8.1: Roadmap for IWS systems towards a smart water system

Irregular operational schemes can be found when taking a look at the number of days
that were removed when the days with anomalies were filtered out. This reduced the
numbers of Saturdays and Sundays that could be used for constructing alarm values from
64 to 8, implying that 88% of the days in the weekend contained moments were the pres-
sure or flow dropped to 0. Also, during one of the interviews it was mentioned that some
service areas receive extra water at moments when extra water is available (Shana, 2020).
Although the intentions of this extra provision are good, it adds irregularity to the supply
scheme. This irregularity increases the number of anomalies that are not caused by leaks
and so makes the construction of alarm values and the detection of leaks with the DBM
a lot more difficult.

The unknown demand patterns result in not having a standard consumer demand pat-
terns that can be used for modelling IWS systems. This makes it difficult to construct
reliable hydraulic models, which often form a basis for smart water systems. This absence
of standard demand patterns eventually led to the novel method of modelling demand
realizations with the new tap capacity method.

Water quality deterioration is outside the scope of this research, but it has shown to
be a problem for IWS systems. When performing some general research, little data was
found that shows the water quality deterioration in IWS systems and its impact on water
quality and health quantitatively. Using rapid quality sensors, combined with hydraulic
modelling, water quality degradation in a distribution system could be easily mapped and
interventions could be proposed accordingly, as shown by Sakomoto et al. (2020).

At last, incomplete GIS data turned out to provide some challenges as well. This thesis
research started with the purpose to add value to the leak detection system in Nairobi,
with the intentions of visiting Nairobi and performing field measurements as well. Due to
Covid-19, this visit to Nairobi was cancelled, making the design of the monitoring network
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very dependent on digital information (GIS) of the water network, which could be shared
by mail. Unfortunately, the digital information was often too inconsistent to allow for
very reliable models. This is the reason why, during the design phase, the target area
shifted from Nairobi to Harare. Although Harare had some DMA’s whose digital archives
were complete, it is still working on digitizing its entire network. Without this GIS data,
no hydraulic models can be constructed and smart water systems can not be implemented.

Opportunities for IWS systems

Local utilities can overcome these barriers by starting with smart metering, which can
initiate positive feedbacks and so increase its own efficiency (further explained at the end
of this section). Furthermore, surveying and smart household metering can help in de-
termining demand patterns. Decision support tools can help local utilities divide supply
equitably and regularly. Finally, GIS systems will need to become up-to-date by a hard-
working and skilled workforce.

Despite these barriers, it is also important to stress the unique opportunities that can
be found when implementing smart water systems in IWS areas. Most utilities with con-
tinuous supply have strongly looped water distribution networks and struggle to construct
DMA’s within their networks. In IWS systems, closed off city sections are created on a
daily basis. If these areas would be monitored at their entrances, you would instantly
create DMA’s with little effort. Digitizing these DMA’s, in combination with a supply
schedule which a consistent weekly pattern, would already be a sufficient environment to
perform the calculations as described in this thesis. By determining the optimal sensor
placement for a DBM-system, it would be possible to create leak awareness and reduce
leakage efficiently.

Practical barriers in a historical context

The scope of this thesis focuses around the urban water system infrastructure of large
cities with IWS conditions. The availability and quality in urban areas in general tends to
worsen (Dos Santos et al., 2017). Ageing infrastructure and lack of finances for leakage re-
pair are problems for the local water utilities in Nairobi and Harare (Shana, 2020)(Mugo,
2020). Mismanagement is a cause that Dos Santos et al. (2017) regularly mentions as
one of the causes of this high NRW-percentage. Although corruption is a cause that still
occurs in these counties, it is important to realize that the task for the local utilities is
often very different than is the case in western countries.

Let us for instance consider the growth of some of the large cities in Sub-Saharan
Africa. In times of colonization of England in Kenya, many local rural farmers were
evicted from their farmland for not having the proper documents to prove that they were
rightful owners of the land. The land was taken by the settlers and the local farmers,
having no place to go, moved to the suburbs of Nairobi (Anderson, 2005). In the decades
after colonization, the trend shifted from settlers owning the land towards selling farmland
to large-scale investors. The poverty-reducing impact of this type of farming was little and
the shift from rural towards urban land continued (Schutter, 2011). This shift from rural
livelihoods towards urban living environments was way stronger in African cities than in
Europe of the past decades, as shown by the growth of Amsterdam, Kenya and Zimbabwe
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in Figure 8.2 and the growth of the proportion of urban population in Sub-Saharan Africa
in general (Figure 8.3). To express the growth from 1950 to 2020 in numbers, Amsterdam
has grown by a factor 1.4, Harare has grown by a factor 10.7 and Nairobi has grown by a
factor 34.4.1

Figure 8.2: The population growth of Amsterdam,
Nairobi and Harare World Bank (2020)

Figure 8.3: The population shift towards urban regions
Dos Santos et al. (2017)

.

A rapid growth of the city, as can be seen in Nairobi and Harare, puts a lot of pressure
on its drinking water infrastructure. Capital expenses should therefore be used to make
proper investments. However, the economic growth of Kenya and Zimbabwe stayed far
behind in comparison to the Netherlands, as can be seen whilst comparing the Gross
Domestic Product (GDP; in dollars) per capita per country from 1960 to 2020 in Figure
8.4.2 To express the GDP per capita growth in numbers, the GDP per capita in the
Netherlands has grown by a factor 49.0, in Zimbabwe it has grown by a factor 5.3 and in
Kenya it has grown by a factor 18.6.3

Figure 8.4: GDP per capita from 1960 until 2019 in the Netherlands, Kenya and Zimbabwe World Bank (2020).

1Amsterdam has grown from 850,777 to 1,148,972 inhabitants, Harare has grown from 142,652 to
1,529,920 and Nairobi has grown from 137,456 to 4,734,881. (World Bank, 2020)

2It is definitely the case that many more factors play a role in this economic comparison and the
population growth in the large urban cities. This historical context should not be judged by the exact
relations and numbers, but it tells a general tale about the challenges for local water utilities in cities like
Harare and Nairobi.

3Exact numbers. Netherlands: from 1,069 to 52,331 USD. Zimbabwe from 279 to 1,464 USD. Kenya
from 97 to 1,817 USD. (World Bank, 2020)
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At last, the lingering water scarcity, one of the principal causes of intermittent supply,
is a danger that comes along with urbanization (Vairavamoorthy et al., 2001). Putting
all these issues together, local utilities in cities like Harare and Zimbabwe need to connect
more people to their water supply with less capital. Although each region has its own
challenges, the cause of mismanagement is easily put and should not be named as a
standalone cause for insufficient access to drinking water, like Schutter (2011) argues
that mismanagement in large-scale land investments is not the principal cause of rural
poverty. Incomplete GIS-data or insufficient data from the system are all understandable
situations taking into account the way some IWS cities have evolved. Efforts in knowledge-
sharing, general cooperation and capacity building between Amsterdam and Nairobi, like
the efforts of WorldWaternet, with the intention to equalize the quality of both supply
networks, should therefore be encouraged. One might even call it a moral duty of former
colonizing countries.

Drinking water alternatives in Harare

Water is a basic need for humans and for life is general, since no life can occur without
water. So, in areas where water supply services limited, inhabitants still will need to
find other ways to ensure themselves with water. In IWS systems, this can be done by
storing water which was collected during days with supply. However, one can also ensure
itself with water by turning to other alternatives than piped water. This chapter shows
the results of interviews held with inhabitants from Harare. The price, quality, reliability
and collection time of different alternatives for fetching water were scored from 1 to 5 (1
referring to a bad score and 5 referring to a good score). These scores are subjective judge-
ments based on the available information. It should be realized that these comparisons
can only be made for people who are connected to a water supply system, otherwise they
would not have the option to acquire piped water.

In an attempt to view the water situation from the eyes of an inhabitant of Harare, it
was chosen to interview a local inhabitant. To ensure that this person was not related to
the local water utility, to prevent conflicting interests, it was chosen to approach someone
from my pool of personal connections. An interview was held with this person through
WhatsApp and additive information was provided by a MSc-student from the university of
Bulawayo. Due to privacy reasons, both persons shall remain anonymous. A full account
of these interviews can be found in appendix A.20.

The approached inhabitant of Harare lives in Budiriro, which is an area in the South
West of Harare. He would describe Budiriro as an area with a high-density population,
whereas he describes Ashdown Park as a low-density area. He says the condition of the
piped drinking water system has been very good and reliable until about 10 years after
the independence of Zimbabwe4. Currently, the supply of water is very irregular. When
there is water, he uses the bathtub to store pipes water (Figure 8.5). Unfortunately, the
quality of the water is insufficient to be used as drinking water, as sediments from the
water start to settle after a few hours. He fetches drinking water from a borehole in the
area, which is stored in 25L buckets (Figure 8.6) (Inhabitant Budiriro, 2020).

4Zimbabwe gained indepence in 1980
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Figure 8.5: Storage of piped water in the bathtub in
Budiriro.

Figure 8.6: Drinking water buckets of 25L.

Price: The tariff for piped drinking water at the 1st of November 2020 was pegged at 90
ZWL per cubic meter for the first five cubic meter that are consumed monthly (Magedi
MacDonald, 2020). After the first five cubic meter, the price slightly increases. Drinking
water buckets from the bore hole are priced at 7.50 ZWL per bucket and clean bottled
water from the store ranges between 30 and 50 ZWL for a 500mL bottle (MSc-Student
University of Bulawayo, 2020). Converting all prices to the price for 25L one would pay
1.25 ZWL for piped water (score:5), 7.50 ZWL for borehole water (score:4) and 1500-2500
ZWL for bottled drinking water (score:1).

Quality: Bottled water has been purified in a commercial drinking water treatment plant
and has therefore a high quality (score:5). Inhabitants in Budiriro regard borehole water
as a source with a higher water quality than piped water. However, research of Muzenda
et al. (2019) has shown that also boreholes in Harare are often unfit for drinking water
purposes. Unfortunately, no field research could be performed to determine the quality of
the different sources individually. So, the judgement of the inhabitants was followed that
borehole water (score: 3) was a source with a slightly higher water quality than piped
water (score: 2).

Reliability of supply: Bottled water is always available in the stores (score:5). Borehole
water is tapped from ground water. Ground water is available throughout the year, but
its quality and level changes throughout the year (Muzenda et al., 2019). Also, an op-
erator is needed to maintain the borehole. Therefore its reliability of supply is scored at
4. Intermittent supply conditions result in an irregular supply pattern, which results in
inhabitants not knowing when or if they receive water. The reliability of supply of piped
water was scored with a 2.
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Collection time: When there is supply, piped water comes from the taps at the houses.
Therefore, no time is needed to collect the water (score:5). Bottled water is sold at
stores, which are numerous in Harare. However, people still will need to go to the store
to buy water (score:3). Boreholes are less numerous than stores, which result in more
time needed to collect the water (score:2). Of course, the collection time can very a lot
per individual as the proximity of its house to shops or to a borehole differs per inhabitant.

The overall comparison of water alternatives in Harare can be seen in Figure 8.7. The
main aspects that make people choose borehole water over piped water (when both are
available to them) for drinking water purposes are its quality and the reliability of supply.
Actions that can still be performed with water with a lower quality, such as washing
and bathing, are usually performed with piped water, because of its pricing and better
collection time (Inhabitant Budiriro, 2020). Based on the above comparisons, solving water
quality issues and operating the water supply system according to a more regular schedule,
would increase the competitive position of piped water against other water alternatives
and increase the amount of piped water that is used by consumers. Therefore, a smart
water system could be a beneficial tool for the local water utility to improve its competitive
position against other drinking water sources.

Figure 8.7: Comparing different aspects of water alternatives in Harare.

Process chain of leak repair

It takes several steps to repair a leak after is has occurred, which were identified to de-
termine the position of the monitoring system among these steps. The duration of these
steps, the leak repair time, determines the amount of water that is lost. These steps,
together with the flows of information that take place after a leak emerges are shown
in Figure 8.8. After a leak has occurred, awareness of the leak can be created through
customer complaints, by using a monitoring system or with a minimum night flow (MNF)
analysis (Ziegler et al., 2011). Further localization and repair are then performed by the
leak repair team, after they have been notified.
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The quality and quantity of these information flows can differ per region. For example,
an inhabitant of Amsterdam would be very likely to report having low pressures or having
no supply its local utility (line 3 in Figure 8.8), since it is an abnormal situation. An
inhabitant of an area with IWS, for instance in Nairobi, will be less likely to report the
same event, since this inhabitant is used to low pressures or no supply. If local inhabitants
share information with visible leaks with the customer services, who on their shares the
information with the leak repair team, who repairs the leak, then the issue is solved.

Most people in Harare report visible leaks to the municipality, who on their terms
decide whether to respond quickly or not (MSc-Student University of Bulawayo, 2020).
Therefore, the extra benefit of having a monitoring system in this case comes from detect-
ing the leaks that are not visible nor reported. Another option to detect leaks that are
not visible at the surface is by using an MNF analysis (its concept is explained in section
2.1). Using a real-time monitoring system to detect leaks has the added benefit of the
leak being found within the same day as the operator uses the monitoring system. This
detection time, and therefore the amount of water lost, depends on the frequency of which
the operator checks the monitoring system. This is likely to be more frequent than the
rate at which the utility conducts minimum night flow analyses.

So in this case, the monitoring system could be a useful tool for repairing leaks that
are not visible at the surface. Whether a leak that is detected will be repaired depends
largely on the work of the leak repair team and its communication with the operator of
the monitoring system. In Harare the leak repair team has a lot of struggles, since they
for instance lack the budget to buy diesel to travel to areas where leaks occur (Moors,
2020). Therefore, a lot of leaks are not repaired. This is not a problem which a monitoring
system can solve, since it covers a different side of the chain of processes in leak repair.

Figure 8.8: The chain of processes from leak occurrence to leak repair
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Positive and negative effects of hydraulic monitoring on society

A smart water system can in many ways have positive (or negative) effects on the state of
the water network and on the system’s users. First of all, reducing leakage in the network
will lead to less water quality degradation. Ground water intrusion at leaky places is a
likely cause for this degradation (Sakomoto et al., 2020), which will be diminished if the
leakage reduces. Reduced leakage and less water quality degradation will on their terms
result in an improved quantity and quality of water in the network. With more quantity
and quality, the utility can generate more revenues. One of the possible investments with
this extra revenue could of course be more smart water systems, in which case this cycle
can be sustained (Figure 8.9).

On itself, flow and pressure monitoring can lead to a circle of positive feedback relations
which continuously improve each other, as shown in Figure 8.9. Less leakage will lead to
a higher pressure in the water system, which on its term increases the volume of water
that leaves through a single leak, which improves the detectability of leaks, so even more
leaks can be found and repaired. These repairs result in a reduced number of leaks in the
system and so on.

Figure 8.9: General cause and effect relations smart water systems.

This thesis focuses on hydraulic monitoring with flow and pressure meters, shown by
its scope in Figure 8.9. Therefore, economical and social associated outcomes within this
scope will be described. These outcomes often imply managerial choices. For instance,
more revenue could mainly result in a reduced water tariff or be mainly invested in smart
water systems. These choices are visualized by two arrows originating from the same
stem (Figure 8.10). Effects which are not a choice per se are visualized by straight arrows.
These positive (green) and negative (red) effects of associated outcomes on the economical
and social situation of the users of the system are visualized in Figure 8.10 as well.
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There are several positive associated outcomes which might occur. When the water
quantity increases, the water utility can choose to buffer it and improve the reliability of
supply. It can also allow more water to reach the customer and increase its revenue. This
extra revenue could be then be invested in new infrastructure to increase water access in
the city. It could also be used to reduce the water tariff and boost the local economy.
If the extra revenue would be invested in more smart water systems, it will augment the
amount of jobs in these systems. Less energy is needed for pumping when leakage reduces,
so pumping costs can be reduced (Colombo and Karney, 2005). If there are customers at
the end of a network that could not be reached due to insufficient pressure, an increased
pressure might give them access to drinking water as well. Lastly, when there are more
leaks to repair, this results in jobs for personnel in network maintenance and leak repair.

Negative associated outcomes might occur as well. First of all, the required capital
investments might demand a large share of the financial resources of the local utility, if
there are any available. Furthermore, people are known to use water with less care as its
availability increases, resulting in more spilling of water. At last, the smart water meters
add more valuable components to the water system, making it more vulnerable to theft.
Theft can be discouraged by placing concrete chambers around the water meters, which
is done in Harare, but this will increase the amount of required capital.

Figure 8.10: Positive and negative associated outcomes of hydraulic monitoring.

As one can see, there are many possible advantages for using a monitoring system
to create leak awareness, but also some potential downsides. If well-founded and solid
investment choices are made, the effects of using smart water systems to improve water
quality and quantity in IWS networks can be very valuable and many more people will
have the human right to water.
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8.2 Finances

Translating the leak detection efficiency of the monitoring system to potential savings will
inquire quite some stochastic assumptions, on top of the stochastic assumptions that have
already been made for determining this leak detection efficiency. Therefore, the outcome
of this financial analysis should not be judged by its exact numbers. The aim of this
financial analysis is merely to give an estimation of the benefits that might be expected
and to show the steps that are needed to make an estimation of the financial benefits.

Costs

The costs of the monitoring systems are divided into investment costs and variable costs.
This thesis focuses on the situation in Harare and Nairobi, but is instructed and initialized
by WorldWaternet. Retrieving the right costs of products or services has proven to be a
time-consuming process, often delayed by the large bureaucracy of the utilities of cities
with millions of inhabitants. Therefore, the costs for the required materials was asked for
in all utilities, resulting in cost data from different places. So, this cost analysis shows an
approximation which would change with time and place as these factors influence prices of
products, transport fees and exchange rates5. The costs were all converted to US Dollars
(USD) and can be seen in Table 8.1 and 8.2. Details of the reasoning behind these costs
and their sources can be found in appendix A.21. The required measurements at the
DMA inlet should be performed by a flow and a pressure meter (or an integrated meter).
It was assumed that both meters were installed together, requiring only a single data
transmitter, communication software and protection chamber for the measurements at
the DMA entrance. In Harare, these devices are already installed, thereby significantly
reducing the required investment costs (with a reduction of approximately 6350 USD).

Table 8.1: Investment costs per flow and pressure meter.

Table 8.2: Variable costs for a monitoring system.

5Especially Zimbabwe has experiences with dealing with strongly fluctuating exchange rates, as can be
concluded from the fact that the price per cubic of piped water has increased from 20 Zimbabwean Dollar
(ZWL) to 90 ZWL during the course of this thesis.
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Savings

The previously calculated probability of detecting a leak does not provide any information
about whether the leak will occur at all. This information has to be deducted from the
historical registration of leaks, which is unfortunately quite poor.

Leak frequency

It was estimated by employees of Harare Water that in Ashdown Park a new leak occurs
every two weeks. The sizes of new leaks are however not registered in Harare. Therefore,
some assumptions had to be made made. It was assumed that small leaks occur more
frequently than large leaks, so a gamma distribution with a maximum value around 2.526

was used to describe the spread in leak size, as can be seen in Figure 8.11.

Figure 8.11: Assumed Gamma distribution of leak sizes (The parameter that were used: α = 3 and scale factor =
1.25). This distribution is fictional and based on values found in Casillas Ponce et al. (2013)

The return interval (Tdet,leak,size) of detecting a leak of a certain size determines for a
large part in which time periods water losses can be prevented and how much money can
be saved. This return interval is determined by (1) the probability that a leak of a certain
size, or a larger size, emerges in the system (psize; see Figure 8.11), (2) the probability that
a leak of a certain size can be detected given the sensor placement (pdet,size; this follows
from the coverage in chapter 7) and (3) the frequency at which new leaks emerge in the
area (fleak). This is shown in equation 8.1.

Tdet,leak,size =
1

psize × pdet,size × fleak
,with fleak =

52

2
(8.1)

The proposed monitoring system with flow sensors and the monitoring system with
pressure sensors and a pressure dependent DBM can detect leaks of 9 m3/h. The prob-
ability that a newly emerged leak is 9 m3/h or larger (psize) is 0.025, following from the
distribution in Figure 8.11. If four sensors are allocated, a monitoring system with flow
sensors has a probability of detecting leaks of 0.25 (this equals the coverage, Figure 7.6),
whereas the monitoring system with pressure sensors and a pressure dependent DBM has
a probability of detecting leaks of 0.083 (Figure 7.14). The resulting Tdet,leak,size for a

6This value was chosen, since leaks that are interesting for a utility to detect were in the range of 2.52
to 10.8 m3/h in research of Casillas Ponce et al. (2013)
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monitoring system with flow sensors is 6.2 years, against 18.5 years for a pressure depen-
dent DBM system with pressure sensors.

These large return periods imply that the frequency of detecting leaks and thereby
the water savings are very low, seeming to make the monitoring system an unfavorable
investment. This is considerably impacted by the low probability at which leaks of 9 m3/h
or higher occur (psize). However, one should keep a few things in mind. The alarm values
of the DBM systems were set to register the most extreme scenarios from 1000 random
demand realizations. This assumption allowed us to pick the optimal location for the sen-
sors. However, these very strict alarm values make that only a leak of 9 m3/h or higher
could be detected. It could well be possible that, after the sensor has been installed, field
testing and calibration to distinguish alarm values from leaks could result in alarm values
that are more moderate. Imagine now that, by choosing more moderate alarm values after
field calibration, leaks of 6 m3/h could be detected by the sensors with a similar coverage.
This would increase the probability that a leak with this size emerges (psize) to 0.143.
Consequently, the return period of detecting leaks with a flow monitoring system would
decrease to 1.1 years (3.2 years for the system with a pressure dependent DBM). These
reduced return periods will show below that a monitoring system could be a financially
beneficial investment if the system would be able to detect leaks of 6 m3/h and larger.
Unfortunately, this can not be proven with the model that is constructed for this thesis,
as the main purpose of this model was to optimally place sensors within the DMA. This
could be proven by a pilot system or follow-up laboratory research.

Potential savings

The potential savings can be expressed by the monetary value of the water that is saved
due to leak detection. In many NRW-strategies, the monetary value per cubic that is
lost due to real leaks is given by the production costs of the water (Ziegler et al., 2011).
These strategies do not use the sales price of water, since the water has not yet reached
the customer. In Harare the sales price of water was pegged at 90 ZWL per cubic for the
first five cubic going gradually up to 110 ZWL per cubic for consumption above 20 cubic
per month. Usually, this sales price is set at the costs of production (Magedi MacDonald,
2020). Therefore, a monetary value of 0.28 USD/m3 (90 ZWL/m3) was used to express
the value of the water that was saved. In this financial analysis, it is assumed that the
leak is repaired immediately after it has been detected.

Figure 8.12 shows the payback periods of investing in a certain number of flow sensors,
assuming that are able to detect leaks of 9 m3/h. The costs of the required flow and
pressure meter at the DMA inlet is included in all scenarios. This shows that it can take
more than 5 years to detect a leak with this system, but once the leak has been detected
the savings start to increase quite fast, reaching a payback period of around seven years for
the placement of five flow sensors. If it would be possible to decrease the detectable leak
size to 6 m3/h, the payback period would reduce to around three years for the placement
of both four and five flow sensors (Figure 8.13). If the initial investment would be funded
by third parties such as the World Bank, profits can be made immediately after the leak
has been found.
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Figure 8.12: The costs and savings that result from de-
tecting leaks of 9 m3/h with flow sensors.

Figure 8.13: The costs and savings that result from de-
tecting leaks of 6 m3/h with flow sensors.

The monitoring system with pressure sensors and a pressure dependent DBM was not
able to detect leaks of 9 m3/h within 10 years and is therefore unlikely to be profitable. If
its performance could be increased by enabling the system to detect leaks of 6 m3/h and
larger, the system would have a payback period of around five years before it becomes
profitable. The cohering cost-saving graphs are shown in appendix A.23.

Conclusion financial analysis

As explained in the introduction of this financial analysis, the outcome of this financial
analysis should not be judged by its exact numbers. Therefore, more general conclusions
shall be mentioned.

First of all, it is important to keep in mind that the costs for a monitoring system
have a strong local component as product prices, transport fees and exchange rates differ
geographically. Only little price differences were found between flow and pressure meters,
although it should be taken into account that the provided financial data was limited.
Furthermore, in order to make a proper estimation of the expected savings, it would be
beneficial to have substantiated information of the rate at which leaks occur and some idea
about the sizes of leaks. This could be implemented within the utility by assigning the
leak repair team to register the leaks they repair (this already happens in Harare) and to
take a moment before repairing the leak to estimate the leak volume (this does not happen
yet). At last it can be concluded that significant savings begin as soon as a new leak is
detected. Therefore, the payback time is largely dependent on the performance of the leak
detection system. Since the flow monitoring system that was designed in this thesis yields
better results in leak detection than the monitoring system with pressure sensors, it also
has a lower payback time.
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8.3 Business model

Finally, all the information in this chapter was used to construct a business model canvas.
A business model canvas is a tool to help understand a business model a straightforward
and structured way. It tries to capture the essence of how an organization captures, deliv-
ers and maintains the value of a certain product. In this case, it shows how a monitoring
system with flow or pressure sensors can create value and would function in the already
existing dynamics within a water utility and with potential partnerships. It thereby at-
tempts to give a comprehensive answer to research question 5:

Q5: What are the financial and social benefits of implementing a monitoring
system?

The business model canvas, as constructed by Alexander Osterwalder and adapted by
the TU Delft to make it more applicable to sustainable business cases (TU Delft, 2020a),
was used for this purpose. The full canvas can be read in Figure 8.14. Disadvantages of
using this specific canvas are that it is unable to show improvements of the system over
time (such as its self-increasing performance, section 8.1) or the main barriers that block
areas with IWS from using such a monitoring system (explained in the road map, section
8.1). Below some important or new features shall be shortly highlighted.

The business model canvas focuses around the value proposition, which forms the
essence of why people would want to invest in your product. For the monitoring system,
the value of the product is threefold and described as:

“A hydraulic monitoring system allows the water utility to become aware of
leaks in their water system (1) and gives direction to the leaks’ location (2),
even when the leak is not visible at the surface nor notified by reports
of pressure drops or flow deficiencies by local water users (3).”

A new insight arose when taking a closer look at the customers of the product. These
customers are likely to be the board of directors of a local water utility. They will need
a strong proof of concept of the product before they make investments, since they carry
a large responsibility for the water access of many inhabitants. Therefore, first a pilot
project would be advised to substantiate the profitability and use of a hydraulic monitor-
ing system by real data. The World Bank would be an interesting party to fund such a
pilot project, since they regularly fund sustainable projects in developing countries, which
often have IWS systems.

At last, the need for proper GIS data, the need for a regularly operated supply scheme
and the strong cooperation with the leak repair team, show that personnel management
will be a key activity that determines whether a monitoring system will be a success.
Technology can be a very helpful tool to improve the livelihoods of many, but its success
still strongly depends on human effort and cooperation.
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Figure 8.14: Sustainable business model canvas
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9. Applicability IWS areas globally

In this chapter the applicability of the monitoring system for global cities with IWS
conditions in their drinking water supply system will be considered.

9.1 Priorities of the water utility

Among all of the NRW volumes in the IWA water balance, NCWSC had most trouble in
locating and estimating the amount of hidden leaks, according to its local NRW-manager
Mugo (2020) at the time of the interview. Therefore, a monitoring system as developed in
this thesis could be valuable tool for the utility, as their need for such a system is evident.
An interview with a principal engineer in Harare (Shana, 2020), showed that the utility in
Harare has trouble with both assessing the amount of visible and hidden leaks. Therefore,
this utility might prioritize leak repair in general, above implementing a system which can
detect hidden leaks. It is only up to the utility itself if NRW-strategies, and especially
the detection of hidden leaks within its system, can be prioritized among all tasks that
lie within their responsibility. Without the successful implementation having any priority,
it is unlikely that the system is applicable, as its success depends on the cooperation of
several departments within the utility.

9.2 Network characteristics

Section 7.3 showed that only a few network characteristics influence the ability of the mon-
itoring system to detect leaks. When implementing a monitoring system with pressure
meters, it is advised to place the pressure meters at locations where high pressures occur,
giving a slight preference to cities with significant elevation differences. Furthermore, sen-
sors for leak detection seem most effective at the branched parts of a network.

It should be noted that the monitoring system in this thesis is primarily designed
for leak detection within a DMA, implying the requirement of a utility to have DMAs
within their network. A second design option would be to use the monitoring system for
leak detection in a water transport system, by applying a hydraulic model using nodes to
represent DMAs (suggested in section 5.5). However, this would require the construction
of DMAs as well, which has been a struggle so far in Nairobi (Mugo, 2020). There are also
only a few DMA’s in Harare (Shana, 2020). The earlier mentioned transition from areas
in the cities’ distribution scheme to DMAs seems a promising solution for this problem,
which shall be recommended for further research. A third design option would be to have
a monitoring system which has measuring points throughout the entire city, without these
points being linked to DMAs. This increases the applicability of the monitoring system
world-wide. However, it would hugely increase the computational time of the proposed
algorithm if a design would be made for an entire city. Also the calibration method would
need more than a single point to accurately calibrate the hydraulic model. Therefore, the
sensor placement algorithm as described in this thesis would not work properly for the
third option.
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9.3 Implementation barriers

Practical barriers that were identified to prevent the transition from IWS systems to smart
(hydraulic) IWS systems were: Irregular operational schemes, unknown demand patterns
and incomplete GIS data (Figure 8.1). Irregular operational schemes can be linked to
the resilience of a water utility, as it requires the utility to deliver water regularly, also
at times when water resources are scarce. Unknown demand patterns could be clarified
by hydraulic metering itself or by customer surveys. A complete GIS registration is a
requirement for the proposed design of the monitoring system, which has so far hindered
the design of a monitoring system in Nairobi. At last, financial resources are an often
mentioned barrier that could prevent the monitoring system for being a success (Mugo,
2020)(Shana, 2020). So, the system seems more applicable for resilient utilities which
operate a regular supply scheme, have an up-to-date GIS system and preferably some
financial resources to make an investment. If these conditions are absent, the utility should
at least be able to overcome these barriers to make the monitoring system applicable for
their supply system. For financial resources, a third party like the World Bank could be
approached for the investment.

9.4 Potential associated outcomes

There are many potential benefits of the monitoring system for utilities world-wide, most
of which have been mentioned in section 8.1. The financial benefits mainly come from
water savings and an increased revenue for the water utility. There are numerous other
social benefits which could occur, such as jobs in smart water systems, more finances
for investments in new drinking water infrastructure or drinking water resources, reduced
pumping costs and a better competitive position against other sources of drinking water.
Negative associated outcomes of the monitoring system might be events such as water
spilling or an increased vulnerability of the supply system to theft. The effects which will
occur depends on the managerial decisions within the local water utility.

9.5 Conclusions chapter 9

This chapter answers the last research question:

Q6: To what extent can the outcomes of this research be used to construct
monitoring systems for Water supply networks with IWS conditions around
the globe?

The priorities of a local water utility, its network characteristics and the ability of
the local utility to overcome barriers that prevent the implementation of a monitoring
system, are all factors that determine its applicability in IWS systems around the globe.
For example in Harare, the monitoring system might not be a priority, given that other
circumstances such as leak repair in its water supply seem more urgent. To design a moni-
toring system for DMAs throughout the city, cities with IWS conditions will have to work
on their digital registration, the regularity of supply and the construction of DMAs. If
prioritized, properly installed and operated, the monitoring system could generate signif-
icant water savings (and more) and assist local utility with fulfilling their responsibility:
supplying people with the basic need of drinking water.

Page 89



10. Research limitations

This chapter discusses the limitations of this research.

A major short-coming of this thesis was that it was performed in the Netherlands,
without having a local impression of how the water supply systems in Nairobi or Harare
operate. Especially the assessment on NRW-measuring methods (section 4.2) and the
business model (section 8.3), needed a well-provided image of the local situation. This im-
age was very dependent on the limited conversations with local employees through online
meetings. Especially the interview with Mugo (2020) was very important for the direction
of this thesis. The international guidelines of the IWA, many adopted from Ziegler et al.
(2011), were a very helpful tool to have a structured interview and minimize the subjec-
tivity.

Furthermore, the analyses from the flow and pressure data of the DMA’s in Harare
showed interesting patterns and base demands, underlining the observation of De Marchis
et al. (2010) that demands in IWS systems are indeed different. The reasons behind these
patterns and base demands could unfortunately only be guessed by reasoning, as it was
outside the scope of this thesis to proof direct relations.

The hydraulic model used pressure dependant outflow modelling, as suggested by
Vairavamoorthy et al. (2007), but still a significant amount of uncertainty should be taken
into account. Most importantly, the hydraulic model was calibrated with the measure-
ments at the DMA entrance as the only calibration point. The challenge of modelling the
possible flows within the DMA was solved by designing a new method for modelling de-
mand realizations: the tap capacity method. Due to the lack of calibration points within
the network, it was not possible to verify whether this method calculates flows within the
network accurately. The results of the capacity method were promising at most, as the
spread in its results coincided nicely with the spread in inflow data. This limitation of
spatial demand and other data is a problem that many researchers have faced during de-
mand allocation (Kanakoudis and Gonelas, 2014). Taking this new dimension of different
demand realizations into account in constructing Boolean matrices, is a feature that was
not found in other research (Perez et al., 2009)(Khorshidi et al., 2020). This does not
guarantee an improved performance, as the performance largely depends on the quality of
the underlying hydraulic model. The assumption of a constant flow rate from the tap is
also prone to uncertainties, as this flow rate is known to be dependent on local pressures
(Marchis and Milici, 2019) and can vary as people do not fully open their tap. The method
is simplified a lot by modelling only a single action (opening the tap), whereas developed
software like SIMDEUM models processes as well, which would for example take into ac-
count the favorite time of day when people would fill their storage (Blokker et al., 2017).

During the construction of the mean flow and pressure, data of all days with continu-
ous supply throughout the year was incorporated. However, the yearly variation in flow
into the DMA was not taken account for. Yearly variation can occur since people subtract
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more water for watering their gardens during the dry period, due to more leaks that result
from system deterioration or due to more house connections being added to the distribu-
tion network. Furthermore, a clear distinction between the design of a flow monitoring
system and a pressure monitoring system was made, by assuming that in Ashdown Park
the flow in pipes is independent on the pressure. In this assumption, a few processes have
been neglected. Below the nominal pressure, a situation which can not be excluded by
only looking at averages, flow in the pipes will be dependent on the pressure (Wagner
et al., 1988). Furthermore, the pressure determines leak flow rates (Marchis and Milici,
2019), which on their term influence flows in pipes as well. It is likely that the flow in
pipes will therefore to some extent depend on the systems pressure. The clear distinction
did, however, provide an overview in the differences in designing a monitoring system for
IWS systems with flow sensors and a system with pressure sensors, whereas previous re-
search has often solely focused on pressure sensors for leak detection in continuous supply
systems (Perez et al., 2009)(Khorshidi et al., 2020).

To continue, only the situation of a single leak in the DMA was taken into account for
the design of the monitoring system and the assessment of its performance, whereas mul-
tiple simultaneous leaks are likely to occur. Unfortunately, this thesis does not provide
information how multiple simultaneous leaks would affect the hydraulics in the system
and the design of the monitoring system. Furthermore, the ranges of “good detectabil-
ity”, provided in chapter 6.3, are based on a personal interpretation of the graphs. Other
people can have a different approach or opinion here. Also, all pipes and nodes were in-
corporated as potential locations to place sensors. However, pipes or nodes which will not
be accessible, for instance because they are located in private areas, should be excluded
as potential sensor locations. The leak flow rate was chosen to be within a range that was
found in literature (Moors, 2016)(Sophocleous et al., 2019)(Casillas Ponce et al., 2013) of
which Casillas Ponce et al. (2013) at all was chosen to be most normative, because it has
been defined from practical experiences in a utility. However, the range of leak sizes in
literature show a large unpredictability, which is increased by the different networks char-
acteristics that occur among utilities. Furthermore, opposite to the previous mentioned
research that defined leak size by a flow rate, this thesis’ research defined the leak size
by area, as its flow rate is dependent on the pressure in the system (Marchis and Milici,
2019). At last, the translation from leaks being found to leaks that will be found once
a day (section 4.5), is prone to a lot of uncertainty. This translation makes use of the
previously mentioned “good detectability” range and it assumes some unknown relation
between the detectability of leaks during sequential time steps.

Despite many practical issues that were mentioned in this research, a missing issue is
whether a leak of a certain size will be visible at the surface. If the leak sizes for which
the detection system is designed will be very likely to surface, than there is no need for
a high-tech detection system, since people passing by are likely to notify the leak to the
utility. This issue requires more knowledge about groundwater flows and porous media
and was considered to be outside the scope of this thesis. Furthermore, the choice of
entrepreneurial contexts which were described (section 8.1), was prone to subjectivity.
Another author might have chosen different contexts, resulting in a different view of the
situation. The financial analysis (section 8.2) is based on too many assumptions to make
a solid financial plan. It therefore merely describes the factors that can determine the
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financial feasibility of the system and the potential profits. At last, especially world-wide,
many more factors than mentioned in chapter 9 play a role to whether the monitoring
system will be a success or not.

Overall it could be said that the research in this thesis is prone to quite some uncer-
tainties. Uncertainties in the modelling of water supply systems can never be avoided, as it
attempts to model human behaviour, which will always have a random component. Some
of these uncertainties were common and known within the field of hydraulic modelling,
such as the uncertainty in spatial demand allocation. Other uncertainties arose from at-
tempting to develop new methods, such as the uncertainty of which flow rate would flow
out of the tap. The uncertainty in this thesis can be best split in two types: 1) Uncer-
tainties due to a lack of understanding of the local situation, for instance by missing out
on very important contexts for entrepreneurship. 2) Uncertainties due to assumptions
that underlie the analyses and hydraulic model, such as assuming a certain distribution
of leak sizes. Both uncertainties can be reduced by continuing with further research into
hydraulic monitoring systems, but to really understand the local situation, it is much ad-
vised to conduct this further research in the country of interest.
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11. Overall conclusions and recom-
mendations

The chapter shows the conclusions that can be drawn from this thesis’ research and
ends with recommendations for further research.

11.1 Overall conclusions

This thesis addresses the problem of the designing a monitoring system for the detection
of hidden leaks in IWS areas. In doing so, it proposes new methods in the fields of hy-
draulic modelling in IWS areas and optimal sensor placement. Furthermore, it shows the
business opportunities that could arise from such a system. Whereas the final sections of
previous chapters show the answers to the research questions1, this section summarizes
and combines these answers to show the overall conclusions.

A hydraulic model was created for a DMA with IWS in Harare (Ashdown Park) as a
case study, by using pressure dependant outflow modelling. The daily demand patterns
found in several IWS systems in Harare showed a different pattern than for continuous
supplied networks, showing less strong peaks. This can be due to a constant water demand
for filling storage, leaks in the system or different consumer behaviour. Furthermore, a
method was developed to calibrate the hydraulic model using flow and pressure measure-
ments at the entrance of the DMA. This method showed that the complicated relations
between demand and pressure in the model can be approached by using assuming linear
relationships between the demands and inlet pressure on one side and the pressure at
a specific node and flow at a specific pipe on the other. This first order approximation
showed a total Normalized Root Mean Squared Error (NRMSE) between the output of the
model and the measurements of only 0.019, when a nominal pressure of 12m was used. A
higher nominal pressure (20m) increases the non-linearity of the previous mentioned rela-
tionship, but the method still achieved an NRMSE between the flow and pressure output
and the cohering measurements of below 0.05. As well, it was noted that the inlet pressure
fluctuates considerably over the week. This is mainly caused by the pressure in the main
distribution system and therefore by the supply scheme of the utility. Since the pressure
in Ashdown Park did not drop below its estimated nominal pressure, this fluctuation is
unlikely to influence the total demand in the DMA.

With such a hydraulic model, an algorithm was developed to optimally place sensors
within the DMA for leak detection and estimate the performance of the monitoring sys-
tem. The proposed novel algorithm modelled different demand realizations by allocating
demand among the nodes with a random weighted choice and a single tap capacity, which
showed promising results for modelling flows that occur in Ashdown Park, especially at

1The research questions are answered in detail in the following sections: Q1: section 1.1, Q2: section
5.5, Q3: section 6.4, Q4: section 7.5, Q5: section 8.3, Q6: section 9.5
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night. These results were promising, since the spread of the modelled inflow was well
comparable to the spread of the inflow measurements. This tap capacity is especially
suitable for IWS areas, since people in IWS areas usually only have one tap directly con-
nected to the water supply system and water end-use devices are not directly connected to
the network. Whereas other research has often focused on a single demand configuration
(Perez et al., 2009)(Khorshidi et al., 2020), the proposed algorithm takes account for the
influence of different demand realizations on the detection of leaks.

Furthermore, it was found that the weekly flow pattern in Ashdown Park on days
with continuous supply was more constant than the weekly pressure pattern. Therefore, it
can be concluded that the water use behaviour of inhabitants in Ashdown Park has been
more constant than the supply behaviour of the water utility in the concerned area. This
irregular water supply behaviour of the water utility significantly increases the difficulty of
designing a monitoring system with pressure sensors. Since the demand of the people seems
not limited by an insufficient pressure during days with supply, using a flow monitoring
system to detect leaks showed a better performance (25% coverage of the DMA with four
optimally allocated flow sensors) in Ashdown Park than using a monitoring system with
pressure sensors (1% coverage with four optimally allocated pressure sensors). Making
the monitoring system with pressure sensors dependent on the inlet pressure increased its
performance (from 1% to 8.3%). Important factors that influence the performance of the
monitoring system are the time of day, the leak size that occurs and the tap capacity at the
household connections. Furthermore, the branched part of the system was generally more
favorable to place sensors for leak detection. Nodes with high pressures were favorable
when designing a monitoring system with pressure sensors. Additionally, the design of the
monitoring system should start with devices that measure the flow and pressure at the
DMA entrance, as this data is crucial for constructing and calibrating the hydraulic model.

The business model and financial analysis showed more practical challenges and op-
portunities that could arise from implementing the monitoring system. Main barriers that
currently prevent many IWS systems from moving towards a system with smart meters
are its irregular supply schemes, unknown demand patterns and incomplete GIS data.
The existence of these barriers is understandable when taking into account the enormous
historical growth and limited financial resources of Nairobi and Harare, compared to a city
with continuous supply such as Amsterdam. The financial analysis showed that economic
savings from a monitoring system can be made as soon as the leak is detected and repaired.
Having an improved leak registration, that measures its frequency of occurrence and sizes,
would improve the certainty of financial predictions. Important factors that determine
the world-wide applicability of the monitoring system are the priorities of a local water
utility, the technical performance of the monitoring system within the local water network
and the ability of the local utility to overcome barriers that prevent the implementation
of a monitoring system. If prioritized, properly installed and operated, the monitoring
system could generate significant water savings and assist local utility with fulfilling their
responsibility: supplying people with the basic need of drinking water.
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11.2 Recommendations for further research

Further research should focus on intermittent supply conditions in large cities in sub-
Saharan Africa as the situation to be and develop methods that specifically suit the situa-
tion. A very interesting case would be to see whether the areas that are mentioned in the
water distribution scheme, that is used by utilities to show its consumers how the water
is weekly divided among different areas, can be transformed to DMA’s. This transition
seems easily possible in theory, since the district areas are already formed to divide supply,
but they are not metered yet. These DMA’s can form a basis for the future development
of hydraulic monitoring systems, as having DMA’s is very beneficial for the design of such
a system (explained in chapter 9.2).

In the field of hydraulic modelling, it would be interesting to see if the behaviour and
demand patterns in IWS can be further researched. This could result in standard demand
patterns which could be used or software which can accurately model different demand
realizations. The demand behaviour which mainly occurs in IWS is from people filling
their storage, which seems less difficult to implement in a model than when water is used
for multiple purposes. If software like SIMDEUM can be designed for the continuous sup-
ply case, it seems that similar software could also be designed for IWS areas. A designer
could expand the tap capacity method and add processes and actions, or could choose
approach the problem from a different direction. Furthermore, it would be interested to
see if a method can be developed that predicts demands based on mathematical relations
and multiple calibration points, as attempted in this thesis. This would decrease the need
for house to house surveys, but also adds the risk of making assumptions based on pure
data instead of basing them on understanding the local situation.

Furthermore, it is definitely recommended to start a pilot project for a hydraulic
monitoring system in an IWS area. If a pilot project would be developed, it would be rec-
ommended to draw a relation between the size of a leak, the soil conditions and whether it
surfaces. This would give very valuable information about whether the monitoring system
will be a helpful or unneeded tool. Another interesting feature of a pilot project would
be whether the alarm values predicted by this research could be relaxed to find smaller
leak sizes. At last, attempting a pilot project at a certain location would likely find more
practical barriers and limitations than could be thought off in this thesis, therefore bring-
ing more valuable information for the implementation of a hydraulic monitoring system.
It would be a very good first step for moving towards smart IWS systems.
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Ilaya-Ayza, A. E., Campbell, E., Pérez-Garćıa, R., and Izquierdo, J. (2016). Network
capacity assessment and increase in systems with intermittent water supply. Water, 8.

Inhabitant Budiriro (2020). personal communication. Date of contact: 04-12-2020.

Jacobs, H., Skibbe, Y., Booysen, M., and Makwiza, C. (2015). Correlating sound and flow
rate at a tap. Procedia Engineering, 119:864 – 873. Computing and Control for the
Water Industry (CCWI2015) Sharing the best practice in water management.

Jang, D. and Choi, G. (2017). Estimation of non-revenue water ratio using mra and ann
in water distribution networks. Water, 10.

KAM (2020). Nairobi water and sewerage company seeks to raise kes 12 billion to
expand sewerage coverage in the city. http://kam.co.ke/nairobi-water-and-sewerage-
company-seeks-to-raise-kes-12-billion-to-expand-sewerage-coverage-in-the-city/. Pub-
lished by Kenya Association of Manufacturers (KAM), accessed at 06-01-2021.

Kanakoudis, V. and Gonelas, K. (2014). Accurate water demand spatial allocation for
water networks modelling using a new approach. Urban Water Journal.

Khorshidi, M. S., Nikoo, M. R., Taravatrooy, N., Sadegh, M., Al-Wardy, M., and Al-
Rawas, G. A. (2020). Pressure sensor placement in water distribution networks for leak
detection using a hybrid information-entropy approach. Information Sciences, 516:56 –
71.

Page 97



Kober, E. and Gangl, G. (2009). New monitoring methodology for water distribution
systems. RBS wave GmbH, Stuttgart, Germany.

Kumpel, E. and Nelson, K. L. (2013). Comparing microbial water quality in an intermit-
tent and continuous piped water supply. Water Research, 47(14):5176 – 5188.

Kumpel, E., Woelfle-Erskine, C., Ray, I., and Nelson, K. L. (2017). Measuring house-
hold consumption and waste in unmetered, intermittent piped water systems. Water
Resources Research, 53(1):302–315.

Kureva, T. and Moors, J. (2019). Results h2h-survey ashdown park. Technical report,
VEI.

Lambert, A. and Hirner, W. (2000). Losses from water supply systems: Standard ter-
minology and recommended performance measures. International Water Association
(IWA).

Lambert, A. O., Brown, T. G., Takizawa, M., and Weimer, D. (1999). A review of
performance indicators for real losses from water supply systems. 48:227–237.

Magedi MacDonald (2020). personal communication. Employee of Harare Water. Date of
contact: 30-10-2020.

Marchis, M. D. and Milici, B. (2019). Leakage estimation in water distribution network:
Effect of the shape and size cracks. Water Resource Management, 33:1167–1183.

Mohapatra, S., Sargaonkar, A., and Labhasetwar, P. K. (2014). Distribution network
assessment using epanet for intermittent and continuous water supply. Water Resources
Management, 28:3745–3759.

Moors, J. (2016). Model-based leak localization in small water supply networks. Master’s
thesis, TU Delft.

Moors, J. (2020). personal communication. Employee of VEI. Regular contact moments
during the course of this thesis (May 2020 - January 2021).

Morrison, J., Tooms, S., and Rogers, D. (2007). District metered areas guidance notes.
Internation Water Association (IWA).

MSc-Student University of Bulawayo (2020). personal communication. MSc. student Civil
and Water Engineering, National University Of Science And Technology in Bulawayo.
Date of contact: 03-12-2020.

Mugo, E. (2020). personal communication. Employee of NCWSC. Date of contact: 22-
05-2020.

Muzenda, F., Masocha, M., and Misi, S. N. (2019). Groundwater quality assessment
using a water quality index and gis: A case of ushewokunze settlement, harare, zim-
babwe. Physics and Chemistry of the Earth, Parts A/B/C, 112:134 – 140. 18th Water-
Net/WARFSA/GWPSA Symposium on Integrated Water Resources Development and
Management: Innovative Technological Advances for Water Security in Eastern and
Southern Africa - Part B.

Page 98



Nation (2020). State takes over six city water systems.
https://nation.africa/kenya/counties/nairobi/state-takes-over-six-city-water-systems-
1762100. Accessed at 09-09-2020.

Ndegwa, L. M. (2016). The impact of non-revenue water on water utilities and their
customers: a case study of nairobi city water and sewerage company. Bachelor thesis at
the University of Nairobi.

NTESS (2019). WNTR: Read the Docs. Full name of the company: National Technology
and Engineering Solutions of Sandia, LLC.

Nyirenda-Jere, T. and Biru, T. (2015). Internet development and internet governance in
africa. Internet Society.

Oduro-Kwarteng, S., Nyarko, K., Odai, S., and Aboagye-Sarfo, P. (2009). Water con-
servation potential in educational institutions in developing countries: Case study of a
university campus in ghana. Urban Water Journal - URBAN WATER J, 6:449–455.

Perez, R., Puig, V., Pascual, J., Peralta, A., Landeros, E., and Jordanas, L. (2009).
Pressure sensor distribution for leak detection in barcelona water distribution network.
Water Supply, 9:715–721.

Preston, S. J. and Sturm, R. (2002). Use of the infrastructure leakage index (ili) in
malaysia. In IWA Managing Leakage Conference.

Republic of Zimbabwe (2017). Harare water network hydraulic modelling report (rev 2).
Technical report.

Rossman, L. (2000). EPANET 2 USERS MANUAL. National Risk Management Research
Laboratory.

Sakomoto, T., Lutaaya, M., and Abraham, E. (2020). Managing water quality in inter-
mittent supply systems. the case of mukono town, uganda. Water, 12(3).

Schutter, O. D. (2011). How not to think of land-grabbing: three critiques of large-scale
investments in farmland. The Journal of Peasant Studies, 38(2):249–279.

Shana, V. (2020). personal communication. Principal engineer Harare Water Department.
Regular contact moments during the course of this thesis (May 2020 - January 2021).

Soldevila, A., Blesa, J., Fernandez-Canti, R. M., Tornil-Sin, S., and Puig, V. (2019).
Data-driven approach for leak localization in water distribution networks using pressure
sensors and spatial interpolation. Water, 11.

Sophocleous, S., Savic, D., and Kapelan, Z. (2019). Leak localization in a real water distri-
bution network based on search-space reduction. Journal of Water Resources Planning
and Management, 145(7).

The New York Times (2019). Nairobi’s gold-loving governor is arrested on corruption
charges. https://www.nytimes.com/2019/12/06/world/africa/nairobi-governor-mike-
mbuvi-sonko.html. Accessed at 09-09-2020.

Page 99



TU Delft (2019). Network calculations. Lecture slides CIE5550 Pumping Stations and
Transport Pipelines.

TU Delft (2020a). Business model canvas. Course document for CT3411-16 Waterworks
in Practice.

TU Delft (2020b). Design of water distribution networks. Reading material CIE5550
Pumping Stations and Transport Pipelines.

UN-Habitat (2012). Reduction of illegal water. Principal Authors: UN-Habitat Lake
Victoria Water and Sanitation Initiative team and National Water and Sewerage Cor-
poration team.

Vairavamoorthy, K., Akinpelu, E., Lin, Z., and Ali, M. (2001). Design of sustainable
water distribution systems in developing countries. Water Development Research Unit,
Faculty of the Built Environment South Bank University.

Vairavamoorthy, K., Gorantiwar, S. D., and Mohan, S. (2007). Intermittent water supply
under water scarcity situations. Water International, 32(1):121–132.

Van Lagen, G. (2020). A bayesian approach for active fault isolation with an application
to leakage localization in water distribution networks. Master’s thesis, Delft University
of Technology.

Van Steen, J. (2020). Robustness assessment of leak detection and localization in water
distribution networks under stochastic water demand. Master’s thesis, Delft University
of Technology.

Van Vossen-van den Berg, J. (2017). Overzicht en toepassing van lekopsporingstechnieken.
KWR 2017.003.

VEI (2020). Nrw master class session 3. Lecture slides NRW Master Class Vitens Evides
International (VEI).

Wagner, J., Shamir, U., and Marks, D. (1988). Water distribution reliability: Simulation
methods. Water Resources Planning Management, 114:276–294.

Waternet (2020). Processed demand data waternet 2020.

World Bank (2020). Shared data of the world bank. https://data.worldbank.org/. Accessed
at 07-12-2020.

Yassin, M. M., Amr, S. S. A., and Al-Najar, H. M. (2006). Assessment of microbiological
water quality and its relation to human health in gaza governorate, gaza strip. Public
Health, 120(12):1177 – 1187.
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A. Appendix

A.1 Interview NRW-manager NCWSC (eng. Mugo)

An interview with Ephantus Mugo, the local NRW-manager of NCWSC, was held to
identify which information is most valuable to monitor in Nairobi. The interview was
structured according to the methodology mentioned in section 4.2. The results and con-
clusions from this interview are noted below. The results are structured according to the
different volumes that are mentioned in the IWA water balance (Table A.1).

Table A.1: IWA water balance with column headings

System input volume (level 0)

Nairobi is divided in seven regions. They are currently constructing 53 DMA’s. The
NRW-team considers the 53 DMA’s as primary DMA’s and the seven regions as secondary
DMA’s. They are busy with installing regional bulk meters to measure the inflow into
all the DMA’s. The water flow is measured with electromagnetic flow meters when it is
leaving the drinking water production site, which is about 25km outside the city. From here
the water flows to the reservoirs. The flow going from the reservoirs into the distribution
system is measured with ultrasonic flow meters (Mugo, 2020).

Billed authorised consumption and unbilled authorised consumption (level 2)

There were no volumes of exported billed water found during the course of this thesis, but
this should be well-known within NCWSC. It is expected to be low, since they already face
water shortage within the county. The metered consumption is determined every month
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by the meter readers. They take a picture of the new meter reading and send it to the
company, where it is registered. Customers whose meters are broken are billed based on
an estimation from meter readings in the past. Both billed metered and billed unmetered
consumption are therefore highly dependant on flow measurements at household level.
The goal of NCWSC is to have no broken meters in the field.

The fire hydrants in Nairobi are used for fire fighting and to fill water lorries. Water
lorries are used to transport water to places within the country that have limited access
to water and to sell it there. The volume that is taken out of the fire hydrant is measured
by in-pipe flow meters. The volume that is used by the lorries is registered and added to
the billed metered consumption. The remaining volume that is subtracted from the fire
hydrant is used for fire fighting and forms the unbilled metered consumption. Therefore,
unbilled metered consumption depends on flow measurement within the fire hydrants. No
examples of unbilled unmetered consumption could be identified (Mugo, 2020).

Apparent losses

Meter inaccuracy is a problem in intermittent supply areas. Usually a mechanical pressure
meter needs a certain pressure to measure volumes flowing through. When this pressure
is not available the meter does not register. In intermittent supply areas periods with
water often come with low pressures, since everyone opens their taps when there is water.
Therefore, there is a lot of under registration. The customer meters are tested on a bench
and usually only when there are customer complaints. The NRW-team of NCWSC used
to have a portable flow meter, but it broke down. They are currently looking into the
possibility to purchase new flow meters.

A few years ago a new system was introduced that minimizes data handling errors. In this
new system, meter readers need to make pictures of their readings. Nevertheless, there
will always remain some human error in assessing and calculating the data.

Usually, around 5 to 12% of the customers have illegal connections. A recent field study in
Nairobi showed that 15% of the customers did not have any meters. This resulted from a
house-to-house study, which is performed every now and then in Nairobi and takes about
four months to finish (Mugo, 2020).1

Real losses

The visible leaks in the transmission and distribution mains are repaired by a repair team.
However, the volumes of water lost are not measured during repair. The NRW-team was
thinking about implementing this by using graduated containers to measure this volume.
According to the NRW-manager, nightmares of the drinking water supply network are
mainly the hidden leaks. The pipes in the centre of Nairobi are sometimes almost 100
years old and are perforated quite a lot. The amount of hidden leaks in this part should
be considerable. Using a minimum night flow analysis to estimate the volume of hidden

1A paradoxical situation occurs if the utility start measuring unauthorised consumption. If the utility
would measure these volumes, but take no action, it would be labelled as “authorised unbilled consump-
tion”. If the utility would say this consumption is unauthorised and take action, these volumes would be
reduced by their actions.
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leaks is difficult, since people are filling the storage tanks during the night due to the in-
termittency of supply. This makes it difficult to estimate a minimum night consumption.
Some people even have underground water tanks and use their own pump to pump the
water up to their houses. It is therefore a challenge to create awareness of hidden leaks.
Continuous pressure, flow or noise monitoring is not yet a proven practice in intermittent
supply systems. When there is awareness of a hidden leak, this is usually through cus-
tomer complaining about having no water when they should receive water according to
the schedule. If this happens, NCWSC has a team that can detect leakages. They use
ground microphones to locate the leak or use signalling through metallic pipes. However,
both methods require the supply network to be under pressure, which is not always the
case during intermittent supply. Background leakages are difficult to estimate, since often
the pressure in the system is very low or unknown.

NCWSC is entirely responsible for the drinking water infrastructure up to the customer
meters. Therefore, they go to the client and repair the pipes when customers complain
about leakages. They also repair leaks after the meter, since the customer has already
paid for the water but it is still lost. When these repairs take place, the volume lost due
to these leakages is usually not measured.

Leakages in reservoirs have also been an area of concern. Currently, there are quite some
losses due to overflow in the reservoirs. Therefore, the NRW-team is thinking about
installing level gauges at the reservoirs to measure the overflow. The leakage within the
reservoir can be repaired during the maintenance schedule. This happens once every few
years, but there is no regular schedule. Usually, the reservoirs are cleaned if there is sludge
in the reservoir. This can be seen when the water reaches a very low level, which happens
regularly. If a leak is spotted during this cleaning process, it is repaired. When leaks in
reservoirs are repaired, they are also not measured Mugo (2020).

Conclusion on important information in Nairobi

As far as authorized consumption is considered, it can be concluded that flow meters at
customer level and within fire hydrants are essential to measure volumes. Furthermore
clear regulations about which volumes to bill and which volumes not to bill will make
measuring or estimating the authorized consumption more easy.

For the assessment of apparent losses, it is quite well known within the utility which meth-
ods to use. However, a few recommendations for improvements can be made. In the case
of meter inaccuracy, the estimation of the inaccuracy can be improved by grouping meters
by a certain size, age and brand. This way, the found inaccuracy can be more presentable
for the meters within the area than when only broken meters are tested. When a portable
flow meter would be purchased, this will also help in determining the meter inaccuracy.
Getting data from a survey is a methodology that has been previously applied in Nairobi
and can therefore be considered as suitable. Most of the data that is required to make
these methods work is already available.

The real losses are a challenge for NCWSC. Visible leaks are reported by customers and
repaired at different locations in the system (transmission and distribution mains, up to
the customer meter and at the reservoirs). However, no measurements or estimations
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about the lost volumes are performed. Hidden leaks are only repaired when awareness is
raised due to customer complaints. A big question for NCWSC is how to become aware
of the leakages before there are complaints, since the regular practice of minimum night
flow does not work. After they are aware of the leak, there is a repair team which will
further locate and repair the leak. So, it can be concluded that the largest need in terms of
assessing real losses would be to create awareness of hidden leaks. Furthermore, a general
idea about the pressure in the area is needed to estimate the background losses and it is
advised to do estimations on the volumes lost when repairing visible leaks.

As can be concluded, the information that is lacking the most in the system seems to be
the awareness of hidden leaks. Therefore, the main goal of the monitoring system will be to
allow the utility to become aware of hidden leaks in the system, before customer complaints
occur. Other desirable information is flow data at the customer meter and at fire hydrants
to estimate authorized consumption and pressure data to estimate background leakage
and get insight into meter inaccuracies that occur due to low pressures.

A.2 Data dependency trees

These data dependency were used as a guiding theme during the interview with the NRW-
manager during May 2020 (Mugo, 2020).

Authorized consumption

Figure A.1: Authorized consumption
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Apparent losses

Figure A.2: Meter inaccuracies

Figure A.3: Unauthorized consumption and data handling errors
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Real losses

Figure A.4: Leakages at transmission and distribution mains (visible and background leakages)

Figure A.5: Active leakage control (1/3)
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Figure A.6: Active leakage control (2/3)

Figure A.7: Active leakage control (3/3)
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Figure A.8: Leakages on service connections up to point of customer meter

Figure A.9: Leakage and overflow at storage tanks
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A.3 Report of thesis planning

This report has been made as part of the course Research Skills 1 (CIE5431) at TU Delft.

This document contains the work I have done regarding the planning of my thesis project
in the last months. It starts with some background information which gives an idea of
my personal perspective on the subject. Later in the process, I have chosen to switch the
location of part of my study from Nairobi (Kenya) to Harare (Zimbabwe) due to several
circumstances. I will elaborate upon how I came to this decision and how this switch has
influenced my planning and final product.

Background information

My first personal interests in solving drinking water problems in Africa started to grow
after my high school. I took a gap year (between high school and university) and lived
for six months in Malindi, Kenya. I lived with a Kenyan family and worked for a local
orphanage. This period has taught me a lot about the Kenyan environment and the habits
of the Kenyan people. Later, during my minor, I have also lived in The Gambia for three
months. Whilst some living conditions and especially religion differ a lot, I also noticed
a lot of similarities. Especially the fact that people adapt a lifestyle that is more day-to-
day than compared to the Netherlands. This is usually the case because people are more
occupied by basic activities that they need to do in order to cover their daily needs.

It has been a wish for me for a long time to get involved in a project in my field of
expertise, which is drinking water, that improves the living conditions in Kenya. Therefore,
I approached Wereldwaternet (from now on referred to as WW) already in December,
whilst I had planned to begin my thesis in May. During the period from December to
May, we had several discussions about what thesis topic would be of most use for Nairobi.
We had discussed the following three topics:

1. The first topic was to locate drinking water pipelines in Nairobi, since the GIS-file
they had was not yet complete. After some discussion with geo-engineers at the TU
Delft, the best way of locating pipelines would be to use a ground penetrating radar
or to dig trenches at strategic locations in order to find the pipelines. The first of the
two options was considered to be too expensive and the latter case was difficult since
its scientific innovativeness was questionable and it absolutely required my personal
presence in Nairobi (at this part of the discussions, Covid-19 had just reached the
Netherlands).

2. The second topic would be to do research on the implementation of a certain software
in Nairobi. This was not chosen since the contract with the software developer was
not yet signed and this topic did not have my personal preference.

3. The third option would be to look more in general to the high Non-Revenue-Water
percentage (> 40%) and see how we could decrease this number. The main problem
about the high percentage is that distinct water balances, constructed in different
years, showed quite some difference in determining where the “lost water” was going
to. The goal of this topic would be to develop a monitoring system that can use
pressure and flow sensors to retrieve important information from the drinking water
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system, in order to estimate the causes for the high NRW-percentage more accurately.
This topic has eventually been chosen.

Build-up of thesis

My thesis has been divided into four parts:

• Part 1: Theoretical study. The main objective of this part of my thesis was to find
out which information is important to monitor in Nairobi. Furthermore, its objective
was to find out which DMA would be interesting to use as a case study for designing
a monitoring network.

• Part 2: Modelling case study. The focus of this part is to design an optimal moni-
toring system for a single DMA in Nairobi.

• Part 3: Financial and social study. In this part of the study, I will investigate the
financial and social benefits of implementing a monitoring network. It is a mandatory
part of my annotation “Entrepreneurship”.

• Part 4: World-wide applicability. In this part I will describe which factors are
important when implementing a similar monitoring system in other places in the
world.

Phase 1: Determining important information

During the first two months I have been working on determining which information is
important to monitor in Nairobi. I have been through literature about the causes of Non-
Revenue Water and constructed an interview structure which I could use for my interview
with Nairobi Water (the operating water utility in Nairobi). At the end of this period
and after some emails back and forth I managed to plan a meeting with the head of the
NRW-department, engineer Mugo. The meeting was very valuable, and he could explain
me a lot about the local problems for the water utility.

From this interview, I could conclude that Nairobi Water had a lot of struggles in dealing
with hidden leaks in their system. These are leaks in the pipes that result in significant
water loss but are not visible at the surface. Furthermore, the DMA which could be best
use for a modelling study was the Northern Region of Nairobi. This is a part of Nairobi
at which inflow and outflow are regularly monitored. With this information I could draw
the conclusions that I needed for my first phase and move on with the next phase of my
thesis: the modelling study. However, in the meanwhile there were some developments in
Nairobi that complicated taking this next step.

New developments in Nairobi

After phase 1 of my study, I needed some physical data (GIS/ EPANET) to construct a
hydraulic model. Previously, I had already noticed that engineer Mugo could take two or
three weeks before he answered his emails. So, whilst waiting for the physical data from
engineer Mugo, I set out a request on an online shared forum of WW and partners. I
asked if anyone had flow or pressure data from an intermittent supply system somewhere
in the world which I could analyse. I figured that having experience with analysing such a
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system would give me a head-start when I would receive information from Nairobi. I got a
reply from an employee of VEI (a partner of WW, both operating under WaterworX which
is a program of the ministry of Foreign Affairs), which had flow and pressure data from
three intermittent supply systems in Harare, Zimbabwe. This data had been monitored
for a few years and stored on an online platform. Furthermore, they had a complete GIS
and EPANET file of the DMA’s. I started analysing this data and, as expected, it gave
me quite some valuable insight about what happens hydraulically inside an intermittent
supply system.

At this point it is useful to explain a bit about the structure within the cooperation of
WW and Nairobi Water. At WW, we have one colleague who is permanently stationed
in Nairobi for two years. During the pandemic he came back to the Netherlands. This
person is responsible for introductions from both sides and gives updates when there
are changes in the local situation. After waiting for the reply of eng. Mugo for a few
weeks, I received news from this college that things had changed in Nairobi. The national
government represented by the Athi Water Works Development Agency (AWWDA) had
stepped in to take over the management of the main water facilities of Nairobi Water.
This development came after the government had committed to spend Kshs 18 billion to
upgrade the city’s water and sewer services (Nation, 2020). This development cannot be
viewed separately from other developments in the city. The governor of Nairobi has been
arrested on charges of corruption last year (The New York Times, 2019). Afterwards, the
national government has created a new administrative organisation which stepped in to
take over the responsibilities of the governor. This administrative organisation, the Nairobi
Metropolitan Services, is the driving force behind Athi Water, which are taking over a lot
of the daily management of Nairobi Water. This change of management had resulted in
several internal changes of personnel, including a new head of the NRW-department. This
new person in charge first had to orient itself on the new job, then we had to plan an
introduction and afterwards I could request the needed GIS/ EPANET data. So, I had
to wait another month before receiving the data. I also had planned a holiday during this
period, reducing the effective waiting time to a few weeks.

Phase 2: The modelling study

For the modelling study it was important to find a software that could model intermittent
supply behaviour. Therefore, whilst waiting on data from Nairobi, I experimented with
a python package that could run pressure dependant simulations. For these simulations
I used the data from Harare. I got experience in fitting the model to measurement data,
running these pressure dependant simulations and drawing conclusions from the results.
At the end of this period, I reported the progress of my planning study at Nairobi to
my supervisor, using Figure A.10. I found a suitable software for my simulations, had
requested the GIS data but not yet received it and was therefore unable to calibrate my
Nairobi model and take further steps into my research.
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Figure A.10: Progress in the modelling study for Nairobi in July

At the end of July, I received the required GIS-data from Nairobi. However, its quality
was very disappointing. A lot of the pipes seemed to be not documented in GIS, which
had been mentioned previously whilst discussing a suitable topic with WW. However, I
had hopes that the quality of the GIS data would still be well enough to construct a
simplified model. When I had received the documentation of the bulk meters and pipes,
there was a lot of contradictory information about the lengths and diameter of the pipes
as well. I showed my conclusions and the files to my supervisor and we discussed whether I
could still make a representable model from the data. The conclusion was that I could not.

At this point I considered two options. The first option was to get into contact with Nairobi
and see if I could validate which of the contradictory information was true. However, I
noticed that getting into contact with Nairobi Water through mail was time-consuming
and there were many contradictions to be validated. Also, there was no perspective for
me to visit Nairobi anywhere in the future. Furthermore, the lock-down in Nairobi had
resulted in an increase of police violence in the city, so validating the data that I needed
for my thesis, on top of covering their daily needs, would probably be low on the priorities
list for many people.

The second option would be to build a monitoring system for a DMA in Harare, since I
already obtained all the needed physical data of the system. Making this shift would speed
up the modelling process tremendously, since I had already had a working model of the
hydraulics of the DMA. This would allow me to go to the next step of my modelling study
immediately (see Figure A.11). Therefore, I decided to make this switch in consultation
with my supervisor.
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Figure A.11: Progress in modelling study when switching from a Nairobi to a Harare model

Evaluation of the switch

Switching the location of my modelling study will have both negative and positive influ-
ences on the outcome of my thesis.

To begin with the main downside, this choice will result that the final product (the mon-
itoring system) of my thesis probably cannot be directly applied in Nairobi. It will be
a suitable solution once they have completed their GIS-administration, which could take
a while. Since my personal objective was to construct a solution for the drinking water
problems in Nairobi, it deviates a bit from this objective.

However, it is in many ways the most suitable option. Firstly, one of the goals of my thesis
was already to investigate the most important factors for developing a monitoring system,
so that it can give direction how to develop such a system in other places in the world.
This would be described in phase 4 and now has the extra goal to bridge any missing links
between the problem description of phase 1 in Nairobi and the constructed model and its
conclusions in phase 2 in Harare. So, the work of my thesis can still give directions to
Nairobi how to develop their monitoring system. The financial and social benefits of such
a system, could be an incentive to use a part of the investment of the government to start
placing more sensors on strategic locations.

Furthermore, when keeping the modelling study in Nairobi, I would have had no clue when
to receive GIS-data of sufficient quality to construct a proper hydraulic model. Therefore,
it could take up way more time than initially planned. Looking back to my planning after
the switch: 1) I first made a problem analysis for Nairobi, 2) received data from Harare
soon afterwards, 3) made a hydraulic model and 4) will start developing the monitoring
system from this point on. Since I intended to take all these steps from the beginning, only
using Nairobi as a test case all the way, this switch has allowed that my initial planning
was kept mostly intact during the change in circumstances.
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A.4 Calibration method

This chapter describes how the hydraulic model was calibrated, using the measurements
at the inlet of the DMA for calibration.

Figure A.12: The model can use input values (in blue) to simulate the flow and pressure at the location of the sensor
(in orange).

The two main parameters in the model that can be changed for the simulations are
the nodal demand and the reservoir head, as can be seen in Figure A.12. The model goes
through an iterative process of solving mass and energy balances, until the remaining mass
and energy deficits of the balances approach 0. As a solution, the model can calculate
the flows that occur in pipes (noted by vector qt) and the pressure that occurs at nodes
(noted by vector ht) that result from the demands in the nodes (noted by vector dt) and
the pressure in the reservoirs and storage of the model (in this case noted by h0t, since
only one reservoir is used). Hence, equation A.1 shows the model with its output (qt and
ht) on the left side and its input (dt and h0t) on the right side.

The resulting pressure at any node i (hi,t) and flow at any pipe j (qj,t) at time t can be
read from the indices of vectors ht and qt. The devices that measure flow and pressure
at the DMA inlet (Figure A.12) were estimated to be closest to pipe P73 and node N24.
Therefore, the field measurements (measured flow noted by q∗

t and measured pressure
noted by h∗

t ) should be compared with the computed flow at pipe P73 (qj=P73,t) and the
computed flow at node N24 (hi=N24,t). Unfortunately the model’s computations, using
the initial demand settings in EPANET (dinit

2) and the average measured pressure at the
reservoir (h0init), did not coincide with the measured values (equation A.2). Therefore,
the model needed to be calibrated.

f(qt,ht; dt, h0t) = 0 (A.1)

f(qt,ht; dinit,h0init) = 0 =⇒ qj=P73 6= q∗
t , hi=N24 6= h∗

t (A.2)

2In the EPANET-file received from VEI there was already a demand pattern inserted to change the
demands over time. However, using this demand pattern, the output of the model did not approach the
measurements at any time. Therefore, the calibration method will “override” the inserted demand pattern
and only the initial base demands dinit are taken into account at this stage.
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The purpose of the calibration is to find certain factors (Dt and H0t) whereby the
demands and reservoir pressure can be multiplied, so that the model’s output for flow at
P73 and pressure at N24 approaches the measurements at all times (equation A.3).

f(qt,ht; dinit ×Dt,h0init ×H0t) = 0 =⇒ qj=P73,t = q∗
t , hi=N24,t = h∗

t (A.3)

In order to find Dt and H0t, it is assumed that there exists a linear relationship between
all demands, the pressure at the reservoir and the model’s output of flow and pressure at
the DMA inlet. This relationship is shown in equation A.4. A and B are matrices with
parameters which define this relationship, whose values are unknown. Their sizes depend
on the amount of nodes with demand and the amount of reservoirs.

A× dinit + B× h0init =

[
hi=N24

qj=P73

]
(A.4)

Now, the effect of changing the demand (whilst keeping the reservoir pressure equal)
can be examined. The amount of demand that is added to a node should be in relation to
the demand that was initially used for that node. This is done by introducing a factor δd
that allows the added demand to be a factor of the initial demand. Therefore, the vector
that stores the added demands (∆d) is given by [δd×dinit,1, δd×dinit,2, ..., δd×dinit,n] and
can be written as δd×dinit. In the example below, ∆d was set to equal the initial demand
(so ∆d = dinit and δd = 1), or in other words: the demand is doubled. The influence that
this change in demand has on the pressure and flow near the sensor’s location is shown in
equation A.5.

A× (dinit + ∆d) + B× h0 =

[
0.999× hi=N24

1.988× qj=P73

]
∆d = δd × dinit, with δd = 1

(A.5)

The perturbation caused by adding ∆d can be written explicitly, as shown in equation
A.6.

A× (dinit + ∆d) + B× h0init =

[
hi=N24

qj=P73

]
+

[
−0.001× hi=N24

0.988× qj=P73

]
(A.6)

Therefore, the sole impact of ∆d can be expressed (equation A.7).

A×∆d =

[
−0.001× hi=N24

0.988× qj=P73

]
(A.7)

The same procedure can be followed for the pressure that is added to the system by
the reservoir. Keeping the demands equal and by adding a certain ∆h0 (determined by
δh0), the perturbation caused by this ∆h0 can be expressed. Equation A.8 shows the
perturbation caused by ∆h0 = h0init (so the inlet pressure has been doubled and δh0 =
1).

B×∆h0 =

[
1.000× hi=N24

0.000× qj=P73

]
∆h0 = δh0 × h0init, with δh0 = 1

(A.8)
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The difference between the measured flow and pressure and the output of the model at
the sensor’s location, after using the initial demand and inlet pressure as input values, can
also be written as a perturbation. The magnitude of this perturbation is time-dependent,
since it depends on the values of the measurements which change over time. Equation A.9
shows how this is done.[

h∗
t

q∗
t

]
=

[
hi=N24

qj=P73

]
+

[
(h∗

t/hi=N24 − 1) ∗ hi=N24

(q∗
t/qj=P73 − 1) ∗ qj=P73

]
(A.9)

Now, the target is to tweak ∆d and ∆h0 in such a way that they result in the desired
perturbation as defined in equation A.9. The problem can be written by introducing
parameters x1t and x2t that determine the magnitude of perturbations ∆dt and ∆h0t, as
shown in equation A.10.

A×∆d× x1t + B×∆h0× x2t =

[
(h∗

t/hi=N24 − 1) ∗ hi=N24

(q∗
t/qj=P73 − 1) ∗ qj=P73

]
(A.10)

Combining equation A.7, A.8 and A.10, the problem can be rewritten to a linear
problem with two equations and two unknowns (x1t and x2t). This is shown in equation
A.11 for ∆d = dinit and ∆h0 = h0init. The right-hand side solution changes as the
measured values (h∗

t and q∗
t ) change over time. Since the number of equations equals the

number of unknowns, these equations can be solved for x1t and x2t.[
−0.001
0.988

]
x1t +

[
1
0

]
x2t =

[
(h∗

t/hi=N24 − 1)
(q∗

t/qj=P73 − 1)

]
(A.11)

Substituting equation A.4 and A.10 into equation A.9, gives:

A× (dinit + ∆d× x1t) + B× (h0init + ∆h0× x2t) =

[
h∗

t

q∗
t

]
(A.12)

With the solution for x1t and x2t, the earlier mentioned factors Dt and H0t can be
calculated. Equations A.3 and A.12 are combined to result in equations A.13 and A.14,
which express Dt and H0t as a function that is determined by δd and δh0 and the solutions
x1t and x2t. These latter solutions are determined by the measurements at the sensor
and the initial demands and inlet pressure. The equation for output of the model at the
sensor’s location for the calibrated model is given in equation A.15.

Dt × dinit = dinit + ∆d× x1t

Dt =
dinit

dinit
+
δd × dinit

dinit
× x1t = 1 + δd × x1t

(A.13)

H0t × h0init = h0init + ∆h0× x2t

H0t =
h0init

h0init
+
δh0 × h0init

h0init
× x2t = 1 + δh0 × x2t

(A.14)

f(qt,ht; dinit × (1 + δd × x1t),h0init × (1 + δh0 × x2t)) = 0 =⇒
qj=P73,t ≈ q∗

t , hi=N24,t ≈ h∗
t

(A.15)

In Figure A.13, you can see how the output of the model at the location of the sensor
compared to the flow and pressure data that were measured on Mondays, for using δD = 1
and δp = 1. It can be seen that the results of the model fit the measurements quite well.
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At higher flows, the fit is less precise. This is likely due to the assumption of linearity,
whilst the relationships are not linear in the calculations that are included in the modelling
software. The influence of choices for δD = 1, δp = 1 are shown in section 5.3.

Figure A.13: Representation of how well the model output coincides with the measured data points. The dots
represent the model output and the x’s represent the sensors measurements. The different colors represent different
hours of the day.
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A.5 Daily demand patterns

Ashdown Park

Figure A.14: Hourly factors Monday Ashdown Park Figure A.15: Hourly factors Tuesday Ashdown Park

Figure A.16: Hourly factors Wednesday Ashdown Park Figure A.17: Hourly factors Thursday Ashdown Park

Figure A.18: Hourly factors Friday Ashdown Park Figure A.19: Hourly factors Saturday Ashdown Park
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Figure A.20: Hourly factors Sunday Ashdown Park

Marimba Park

Figure A.21: Hourly factors Monday Marimba Park Figure A.22: Hourly factors Tuesday Marimba Park

Figure A.23: Hourly factors Wednesday Marimba Park Figure A.24: Hourly factors Thursday Marimba Park
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Figure A.25: Hourly factors Friday Marimba Park Figure A.26: Hourly factors Saturday Marimba Park

Figure A.27: Hourly factors Sunday Marimba Park

A.6 Pump configuration

A large part of Harare’s drinking water supply comes from the Morton Jaffray (MJ) water
treatment plant. This treatment plant also produces water for Ashdown Park. Water
from MJ is pumped to the Warren Control (WC) centre, from which it is directed towards
other pumping stations. The main part of the drinking water from WC is pumped towards
Alexandra Park pumping station (mostly called “Alex”) or towards Letombo pumping
station, before which the water is directed towards DMA’s or smaller pumping stations.
Ashdown park is connected to the transport line from WC towards Alex. A schematic
overview of this configuration is given in Figure A.28.
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Figure A.28: Schematic pump configuration from Morton Jaffray

At Waternet, in Amsterdam, variable speed pumps (VSP’s) are used to add pressure
the system. The rotations per minute (rpm) of these pumps are constantly adjusted to
retain a constant pressure at different locations throughout the system (de Groot, 2020).
Harare does not use VSP’s, resulting in pumps that are either “ON” or “OFF” (Moors,
2020). As a consequence, the number of pumps that pump water from WC to Alex should
influence the pressure in Ashdown Park.

To see whether this indeed occurs, pump data from 01-10-2019 until 19-09-2020 was
analyzed. This data-set contained information how many pumps were used to pump water
from WC towards Alex (max: 3) and how many pumps were pumping towards Letombo
(max: 3). Although the data-range does not completely coincide with the data range
from the measurements (08-06-2019 until 08-06-2020), the average weekly pattern allows
for reasonable comparisons. For example, the pressure pattern on Friday (Figure A.29)
can be compared to the average pump configuration on Friday at WC (Figure A.30). The
pressure pattern shows a comparable gradient to the average number of operational pumps
from WC to Alex, meaning that if less pumps are operational the pressure in Ashdown
Park decreases and vice versa.

Figure A.29: Pressure pattern on Friday at Ashdown
Park.

Figure A.30: Average of operational pumps on Friday
from WC.

The pressure pattern and average number of operational pumps towards Alex have a
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similar pattern on other days with supply (see Figure A.31 - A.36). This substantiates the
statements that the pump configuration at WC influences the pressure in Ashdown Park.

Figure A.31: Pressure pattern Monday Ashdown Park.
Figure A.32: Pump configuration Monday Ashdown
Park.

Figure A.33: Pressure pattern Saturday Ashdown Park. Figure A.34: Pump configuration Saturday Ashdown
Park.

Figure A.35: Pressure pattern Sunday Ashdown Park. Figure A.36: Pump configuration Sunday Ashdown Park.

The pressure of the days with intermittent supply can not be compared to the pump
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configuration, since the pressure drops to 0 when the DMA is closed off. This can be seen
for example at Tuesdays (Figure A.37 and A.38).

Figure A.37: Pressure pattern Tuesday Ashdown Park.
Figure A.38: Pump configuration Tuesday Ashdown
Park.

A.7 Roughness coefficients Darcy-Weisbach and Hazen-Williams

The initial roughness value in the received EPANET-file was 0.6× 10−3 (feet). This value
indicates that roughness of the pipe is in the range of the roughness of galvanized iron
pipes (0.5×10−3 feet) and cast iron pipes (0.85×10−3 feet), see Table A.2. Therefore, the
adjusted Hazen-Williams roughness coefficient had to be between 120 (-) (galvanized iron)
and 130 (-) (cast iron). The chosen roughness coefficient for all the pipes in the model
was 125 (-).

Table A.2: Table with roughness coefficients (Rossman, 2000).

A.8 Sensitivity analysis

For the sensitivity analysis, multiple values for δD and δp were used in the method de-
scribed in chapter ?? at different nominal pressure. The resulting NRMSE for the flow
and the pressure were used as a indicator of how well the method performed. The values
for δD and δp which resulted in the lowest NRMSE’s were used to estimate the demand
and flow factors. When a NRMSE value was below 0.05, the model output is regarded as
comparable to the measurement values. The values which were chosen during the different
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iterations can be found in the tables below. Usually the initial approach was to change
one parameter and keep the other parameter the same, to see the effect that changing a
single parameter has on the NRMSE’s.

Nominal pressure: 12m

First, δD was kept at a value of 1 and δp was changed. This showed that the optimal
value of δp would be around 1.

Table A.3: Iterations for the sensitivity analysis at a nominal pressure of 12m, whilst keeping ∆D equal.

Afterwards, δp was kept equal at 1 and δD was changed. This showed that changing
δD was of minor influence. The lowest NRMSE values were found when δp would be set
to 1 and δD would be 0.1. This can be seen in Table A.4.

Table A.4: Iterations for the sensitivity analysis at a nominal pressure of 12m, whilst keeping ∆P equal.

Nominal pressure: 20m

First, δD was kept at a value of 1 and δp was changed. This showed that the optimal
value of δp is expected to be around 0.9.
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Table A.5: Iterations for the sensitivity analysis at a nominal pressure of 20m, whilst keeping ∆D equal at 1.

Next, δp was kept at a value of 0.9 and δD was changed. This showed that quite high
values of δD needed to be chosen in order to achieve low NRMSE’s. The most promising
combination would be a δD of 17 and a δp of 0.9. This combination resulted that both
RMSE’s are below 0.05, so they are comparable to the measurements. However, the total
NRMSE was still above 0.05, making the model output not fully satisfactory. Therefore,
another round of iterations was made whilst keeping δp at 1.

Table A.6: Iterations for the sensitivity analysis at a nominal pressure of 20m, whilst keeping ∆P equal at 0.9.

The results of the iterations whilst keeping δp at 1 is shown below in Table A.7. The
best combination was a δD of 18 and a δp of 1, resulting in both NRMSE’s below 0.05
and a total NRMSE that was lower than the previously found combination. The total
NRMSE is still above 0.05, indicating that a first order approximation of the hydraulic
equations is not entirely suitable with high nominal pressures. Still, since both individual
NRMSE’s are below 0.05, this model output was regarded as sufficient for the purposes of
this thesis.
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Table A.7: Iterations for the sensitivity analysis at a nominal pressure of 20m, whilst keeping ∆P equal at 1.

Nominal pressure: 1m

First, δD was kept at a value of 1 and δp was changed. This showed that the optimal
value of δp would be around 1.

Table A.8: Iterations for the sensitivity analysis at a nominal pressure of 1m, whilst keeping ∆D equal at 1.

Afterwards, δp was kept equal at 1 and δD was changed. This showed that changing
δD had almost no influence on NMRSEpressure, but it did on NMRSEflow. The lowest
NRMSE values were found when δp would be set to 1 and δD would be 13. This can be
seen in Table A.9.

Page 126



Table A.9: Iterations for the sensitivity analysis at a nominal pressure of 1m, whilst keeping ∆P equal at 1.

A.9 Calculations nominal pressure Ashdown Park

The length of the pipe connection the houses to the network can be estimated at 10m,
with 20mm diameter. The pressure loss over the water meter (hloss,meter) is usually around
0.5m and the highest point that can be reached is the inlet of the storage tanks, which
can be 4-5m above ground level (Moors, 2020). The roughness of the pipe can be between
0mm (plastic) and 0.046mm (wrought iron) (Elger et al., 2014). The formulae that can be
used to calculate the pressure loss from the network to the storage tank can be expressed
as:

Hloss = ∆z + hloss,friction + hloss,meter (A.16)

∆z = zstorage − z0 (A.17)

hloss,friction = K
(QA )2

2g
, A =

1

4
πD2 (A.18)

K = f
L

D
+ kbends + kinlet (A.19)

Filling in formula A.17 gives us ∆z = 5m. Using the highest roughness value of
0.046mm and the Darcy-Weisbach formula, f was found to be 0.044 (-). The calculation of
f is explained in more detail in appendix A.10. A normal loss factor resulted from a bend
in the pipe is 0.2 (Elger et al., 2014). Given that there are usually a quite some bends
up to the storage tank, kbends is roughly estimated as 1. A normal value for kinlet is 0.5
(Elger et al., 2014).

To calculate frictional losses, it is needed to determine a certain maximum household
flow. During this thesis a field experiment in Ashdown Park was conducted. During
this field experiment, two 20L jerrycans were filled directly from the water distribution
system. The first jerrycan took 4 minutes to fill, so the flowrate was 0.3 m3/h, and the
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second jerrycan took 4.5 minutes to fill (flow rate: 0.27 m3/h).3 These flowrates give some
indication of the rates that can be expected to come from the tap, but it is still likely that
higher values can occur. Therefore, a safety factor of 1.5 was used to get to a design flow
rate of 0.45 m3/h, which shall be used for the head loss calculations. 4 With a flow of
0.45 m3/h, the resulting hloss,friction is 0.057m, using equation A.18. This makes the total
head loss over the connection at home roughly 5.57m. Taking some uncertainties into
account, a nominal pressure in the range of 6-8m could be expected for Ashdown Park.
The systems pressure should be above this value to fulfill people’s demand.

A.10 Friction loss house connection

In order to calculate the friction loss with the Darcy-Weisbach formula, the friction factor
f need to be calculated. First, the Reynolds is calculated with the formula:

ReD =
vD

ν
(A.20)

In this equation v is the velocity (0.22 m/s), D is the diameter (0.02 m) and ν is the
kinematic viscosity of water (1.14 ∗ 10−6 m2/s). This results in a Reynold’s number of
around 3800 (-). The formula which can be used to calculate the cohering friction factor
f is (Elger et al., 2014):

f =
0.25

[log10( ks
3.7D + 5.74

Re0.9D
)]2

(A.21)

As mentioned in chapter 5.3, the roughness (ks that is used is 0.046 ∗ 10−3 m. Filling
in equation A.21 results in a friction factor f of 0.044 (-).

A.11 Extensive consideration of calculating the mean and
spread from the historical measurements

In order to construct the alarm values, it is important to analyze which flow and pressure
values can be expected in the “normal scenario”. It is therefore very helpful to determine
the expected flow and pressure at a certain time. This is done by analyzing the data-set
as described in Figure ?? and retrieving a mean value and spread of the flow and pressure
at a certain time. Furthermore, it is important to keep in mind that this mean value and
spread can only be expected at the entrance of the DMA, since this is the location where
the measurements where conducted. The expected alarm value per pipe or per node will
result from simulations of the model.

The mean

3Only a small number of these experiments could be conducted, since I was not able to travel to Harare
myself and had to depend on the goodwill of other people for conducting experiments.

4Another way of assessing the maximum household flow, would be to simply use 1 m3/h as the maximum
flow, as this is a value that is often used for determining head losses at household connections in the
Netherlands (Clement and de Groot, 2020).
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The average flows and pressures during the different days are shown in Figure A.39
and A.40. Since the daily patterns at different weekdays can differ significantly in IMS
systems , it is important to look at the weekly pattern and take into account the differences
between these weekdays. By doing so, the choice emerges to construct a mean value in two
different ways. One could determine a separate mean (per time step) for each weekday
(Figure A.39 and A.40) or one could construct one mean value (per time step), which holds
for every day with continuous supply. Below, the consequences and differences between
the two different ways are explained.

Figure A.39: Average flows of normative days. Figure A.40: Average pressures of normative days.

First of all, the mean value for each weekday can be calculated separately. The ad-
vantage of using separate means will be that the means includes difference in hydraulic
behaviour on the separate weekdays and therefore describes the flow and pressure quite
accurately. A downside of using separate means is that they are constructed from small
data-sets. The mean value for the pressure on Saturday at 00:00 for instance would be
based on only three measuring points (see Figure ??), making the value not very reli-
able. Using separate means would also eventually result in separate alarm values for the
different days, slightly decreasing the ease of operating the Dynamical Bandwidth Monitor.

The other option would be to use one mean value for the flow and pressure, which
holds for every day at a specific time. The advantage is that it a relatively large data-
set can be used to calculate the mean. Using this mean will also result in alarm values
that can be used for every day with continuous supply, making the Dynamical Bandwidth
Monitor easy to operate. The disadvantage of using this mean is that it does not include
the hydraulic behaviour of the system during different weekdays.

The difference in using the two above described options can be understood when look-
ing into the flow factors (or pressure factors). The flow factor is defined by the measured
flow, divided by the mean flow. Using a different mean will result in different flow fac-
tors. The data-set that is used to construct the alarm values of flows consists of 4608
measurements (32 days with 144 time-intervals). So, constructing flow factors with the
two different types of means result in two different data-sets of flow factors, each with
4608 entries. The similarity of the two data-sets can be expressed by calculating the
Root-Mean-Square error (RMSE) between the two Boyd and Vandenberghe (2018). If
the RMSE is low, say below 0.05, the data-set can be considered as similar and there is
not a lot of difference whether a single mean or distinct means are used to calculate the
flow factors. If the RMSE is above 0.05, the difference between the two data-sets can be
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considered significant. A visualisation of comparing these different ways of constructing
flow factors is given in Figure A.41.

Figure A.41: Flow factors calculated with different means.

The above described comparison was both made for flow factors and for pressure fac-
tors. In case of the flow factors, the RMSE was 0.0498. This indicates that there is not
a significant difference between using a single mean or separate means for each weekday.
Therefore, a single mean was used to construct a baseline for the flow values. This gives
the added benefits of using a relatively large data-set to determine the mean and use the
same alarm values for each day with continuous supply.

When doing the same comparison for pressure factors, the resulting RMSE was 0.101.
This indicates that there is a significant difference between using separate means for con-
structing the pressure baseline and using a single mean. In other words, the pressure
during the different weekdays deviates significantly from the mean pressure of all days
with continuous supply. So, a single value for the mean pressure can not be used for the
baseline and a mean for every weekday has to be constructed separately. This has the
disadvantage that smaller data-set has to be used to determine the mean and the resulting
alarm values will differ for each weekday.

The fact that the flows on the considered days show more similarities than the pres-
sure on the respective days, should be explained by looking at the driving force behind
the quantity. Although the quantities have some correlation, chapter 5.3 has shown that
in Ashdown park the quantities do not influence each other a lot. Therefore, it can be
stated that the inlet pressure is driven by the pressure in the main transport system and
the flow is driven by the water consumption of consumers. Apparently, the behaviour of
consumers has a more similar pattern at different days with continuous supply than the
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pressure in the main transport system.

The spread

The spread is of data is in this thesis described as the standard deviation (σ) of the flow
or pressure factors. It is feasible to use a single mean value for the flow during days with
continuous pressure, which holds for every day at a specific time. Therefore, the flow at
any day and at a specific time (Qwd,time) can be described by equation A.22, in which
Qavg is the average weekly flow, Qftime is the flow factor of that specific time and xrandom
is a random draw from a normal distribution with mean 1 and the standard deviation of
all flow factors at a specific time (σQf,time).

Qtime = Qavg ∗Qftime ∗ xrandom , xrandom ∼ N(1, σ2
Qf,time) (A.22)

Qavg,time = Qavg ∗Qftime (A.23)

The pressure at the various weekdays differs too much to use a single mean. Therefore,
a separate mean is used for each weekday. This sequentially results in different pressure
factors during different weekdays. Therefore, the pressure at any weekday and at a specific
time (hwd,time) can be described by equation A.24, in which hwd,avg is the average pressure
of that weekday and time, hfwd,time is the pressure factor of that specific weekday and time
and xrandom is a random draw from a normal distribution with mean 1 and the standard
deviation of all pressure factors of that weekday at a specific time (σhf,wd,time).

hwd,time = hwd,avg ∗ hfwd,time ∗ xrandom , xrandom ∼ N(1, σ2
hf,wd,time) (A.24)

hwd,avg,time = hwd,avg ∗ hfwd,time (A.25)

Again, it should be noted that Qwd,time and hweekday,time describe the flow and pressure
that can occur at the DMA inlet.

A.12 Detailed explanation modelling demand configurations
according to method 1.

Let us consider the average flow that enters the DMA at a specific time, say 10:00. In areas
with water supply with strong daily variations, which is common in IMS, it is even better to
consider a flow at a specific time on a specific weekday, so say 10:00 on Monday. However,
let us just assume 10:00 at any day for now. Sometimes at 10:00 the incoming flow might
be above the average and on some days, it might be below the average. The extent to
which the flow value deviates from the average value can be described by calculating
the mean and standard deviation from a historical dataset of measurements. This mean
(the average flow value, Qavg,10:00) and standard deviation (σQ;10:00) can then be used
to construct a normal distribution. The flow at any day at 10:00 can be described by a
random draw from this normal distribution, as described in equation A.26.

Q10:00 ∼ N(Qavg,10:00, σQ;10:00) (A.26)
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Dividing the mean value and the standard deviation by the mean itself, allows us to
describe the flow at 10:00 as a random draw from another normal distribution with mean
1. This results in equation A.27.

Q10:00 = Qavg,10:00 ∗Qf , Qf ∼ N(1,
σQ;10:00

Qavg,10:00
) (A.27)

Next, it is assumed that all the water that enters the DMA flows to the nodes (eq.
A.28, no leakage) and that the demand at the nodes has the same variability as the inflow
at the DMA inlet (Df = Qf ). Let the demand at node i at 10:00 be given by Di,10:00 and
let there by n nodes in the network. The demand at any node i can be described by the
equation A.30 (which results from eq. A.29).

n∑
i=1

Di,avg,10:00 = Qavg,10:00 (A.28)

n∑
i=1

Di,10:00 =

n∑
i=1

(Di,avg,10:00 ∗Df ), Df ∼ N(1,
σQ;10:00

Qavg,10:00
) (A.29)

Di,10:00 = Di,avg,10:00 ∗Df , Df ∼ N(1,
σQ;10:00

Qavg,10:00
) (A.30)

By running several simulations and letting the demand at every node being determined
by a draw from the normal distribution, deviations from the average demand allocation
can be included in the model (Figure A.42). By a shift in spatial allocation of demand,
the flow magnitudes change. When the largest and lowest flows that occur in pipes are
saved, alarm values for the Dynamic Bandwidth Monitors can be constructed.

Figure A.42: Modelling the demand as random draws from a normal distribution.
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A large advantage of using normal distributions to model different spatial demand
configurations is that the variety in demands at different moments can be taken into
account. A disadvantage, however, is that it is unsuitable to model a single household.
Whilst a household has its taps either “open” or “closed”, the normal distribution method
will not be able to model closed taps, since it can not assign 0 demand to a node. It will
always assign a certain demand to a node at any time. Therefore, the method does not
model the configurations within a distribution system which results in the most extreme
flows. If Figure A.42 were to be a transport system for water and the houses were to be
DMA’s, this method would be well suitable, since a DMA always has a certain demand
and can deviate from its mean.

A.13 Spread in demand realizations for pressure alarm val-
ues

Figure A.43 shows the spread that occurs due to modelling different demand realizations
in order to construct pressure alarm values at every time step. It compares the spread
with the 95-percentile values of flows that are expected to occur on Friday (chapter ??
explains why Friday is used) and the 5-percentile values. The figure shows that this way
of modelling different demand realizations produces the best results between 00:00-06:30
and 18:30-23:50.

Figure A.43: The spread in demand realizations compared to the modelled inflow for the construction of a monitoring
network with pressure sensors.

A.14 Number of experiments for the monitoring system
with pressure sensors

When doing the analysis as described in chapter 6.3 for the design which used pressure
meters, similar results were obtained. The percentage of false alarm seemed quite unpre-
dictable when modelling only 10 different experiments for the 3D-matrix, probably because
it does not take into account a significant part of the possible demand realizations. The
best and most steady results were obtained when using 1000 experiments to define the
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alarm values and 100 experiments to construct the 3D-matrix. The results of this analysis
for pressure meters can be found in Figure A.44.

Figure A.44: Percentage of false alarms for the design with pressure meters and a different number of iterations.

A.15 Comparing the accuracy and precision of the detectabil-
ity at different times of the day

The detectability results for using a network with flow sensors and a network with pressure
sensors shall be compared. First, a closer look is taken at the similarity in the detectability.
For this, a second degree polynomial was fitted through both plots. These polynomials
can be seen in Table A.10. This plot shows as well the ranges that were set for good
detectability. It shows that the average results of the detectability for both sensors are
quite similar in the time ranges were the leaks are best detected. In the region were both
models produce less accurate output (during the middle of the day) the similarity between
the two networks decreases. As said, the night times have the best detectability. This can
be explained by noticing that low flows occur during the night (Figure A.46). Therefore
the leak volume becomes relatively large compared to the flows in the network, increasing
its effect on flow magnitudes and pressure.

Table A.10: Detectability of leaks with pressure sensors at different times of the day.
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However, the precision of the two methods shows a significant difference. The pre-
cision, visualized by the difference between the measuring points and the polynomial fit
in Figure A.45, is significantly lower for the network with pressure sensors than for the
network with flow sensors. This low precision adds uncertainty to whether the network
will be able to detect leaks.

Figure A.45: Detectability of leaks with pressure sensors at different times of the day.

As described in previous chapters, the detectability of leaks is determined by first mod-
elling a range of expected values in scenarios without leaks and than compared to results
of scenarios with leaks. The main difference between these scenarios is logically the leak.
For the network with flow sensors, the leak volumes are slightly higher, since the modelled
pressure at the inlet of Ashdown Park is higher (Figure A.47). The flow magnitude is
similar for calculating the allocation of flow and pressure sensors (Figure A.46).

A larger leak volume in the flow sensor network does not solely explain the difference
in precision between the two networks. The difference between pressure in subsequent
time steps is also larger in the pressure network, since this only uses data from Fridays
This results in a less smooth the daily pressure curve, as can be seen in Figure A.47. This
could also add to the precision. At last a significant part of the precision is introduced
by calculating the detectability at scenario’s with random allocated demand. A model
output which is sensitive to the extreme scenarios within this randomness of allocation
will produce less precise results than a model which is less sensitive to this random al-
location. Flow magnitude and direction within the pipes is directly influenced by a new
demand allocation and so sensitive to every new scenario. The pressures at the nodes
are more indirectly influenced by a new demand allocation, as they are the result of an
equilibrium of the energy distribution over the entire system. The scenario’s that result in
large pressure drops in some parts of the system might therefore be more rare, but have a
larger impact on the detectability. The sensitivity of the model to these extremes might
explain the decreased precision in using pressure meters, but it underlying causes can not
be determined with certainty in this thesis.
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Figure A.46: Flows at Ashdown Park for pressure and
flow sensor calculations.

Figure A.47: Pressure at Ashdown Park for pressure and
flow sensor calculations.

A.16 Calculating the number of possible combinations

The number of possible combinations (C) of samples (r) from a number of objects (n) can
be calculated by applying the following formula to calculate the binomial coefficient:

C(r, n) =

(
n
r

)
=

n!

r!(n− r)!
(A.31)

Using this formula it can be calculated that 71 samples of 424 objects have 8.2 ∗ 1081

possible combinations.

A.17 Percentages of leaks found when applying a different
number of sensors

Monitoring network with flow sensors

Figure A.48, A.49, A.50, A.51 and A.52 show the percentage of leaks which can be
found in which pipes under the different scenarios for optimally allocating one, two, three,
four and five flow sensors in Ashdown Park.
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Figure A.48: Percentage of leaks found using one flow sensor.

Figure A.49: Percentage of leaks found using two flow sensors.

Figure A.50: Percentage of leaks found using three flow sensors.
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Figure A.51: Percentage of leaks found using four flow sensors.

Figure A.52: Percentage of leaks found using five flow sensors.

Monitoring network with pressure sensors

Figure A.53, A.54, A.55, A.56 and A.57 show the percentage of leaks which can be
found in which pipes under the different scenarios for optimally allocating one, two, three,
four and five pressure sensors in Ashdown Park.
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Figure A.53: Percentage of leaks found using one pressure sensor.

Figure A.54: Percentage of leaks found using two pressure sensors.

Figure A.55: Percentage of leaks found using three pressure sensors.
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Figure A.56: Percentage of leaks found using four pressure sensors.

Figure A.57: Percentage of leaks found using five pressure sensors.

Monitoring network with pressure sensors and a pressure dependent
DBM system

Figure A.58, A.59, A.60, A.61 and A.62 show the percentage of leaks which can be found
in which pipes under the different scenarios for optimally allocating one, two, three, four
and five pressure sensors with a pressure dependent DBM system in Ashdown PArk.
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Figure A.58: Percentage of leaks found using one pressure sensor in a pressure dependent DBM system.

Figure A.59: Percentage of leaks found using two pressure sensors in a pressure dependent DBM system.

Figure A.60: Percentage of leaks found using three pressure sensors in a pressure dependent DBM system.
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Figure A.61: Percentage of leaks found using four pressure sensors in a pressure dependent DBM system.

Figure A.62: Percentage of leaks found using five pressure sensors in a pressure dependent DBM system.

A.18 Detailed explanation for leak detection once a day

Earlier results show us, for each sensor allocation and leak size, a certain chance of a
sensor finding a leak in a pipe. However, this is probability can not be translated one to
one to the daily chances of finding a leak. For example, it is very likely that if the results
above show a 1% chance of finding a leak, that this is a false alarm. This leak will than
not be found once every 1000 minutes or once every 100 days, it will never be found. It
is therefore important to translate the above probabilities to whether a leak can be found
within a certain time frame. For this thesis, it is assumed that a leak should be found at
least once a day, since it would otherwise be too likely to be a false alarm. This translation
to a probability of once a day involves quite some stochastic assumptions and is therefore
merely an estimation of what can be expected in reality.

Let us explain this translation by introducing a fictive example. For instance, a flow
sensor in pipe 1 has a 60% chance of “detecting” a leak of 15mm in pipe 4 at 22:30. How-
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ever, this percentage represents the possibility of detecting a leak at a single time step,
making the detection vulnerable to reporting false leaks. By using a certain leak detection
time, which is a time frame during which the leak detection system has to report a leak
constantly, extreme demand deviations can be distinguished from actual leak detection.

In a different research Van Steen (2020), which modelled a DMA of 2825 households
in the Netherlands, a leak detection time of 25 minutes was proposed to distinguish a
demand deviation from a actual leak. The same leak detection time will be used in this
thesis. Since the algorithm in this thesis distinguishes time steps of 10 minutes, a leak
should be able to detected for 3 time-steps in a row.

So, let us continue with the example of the beginning of this section, which evaluated
the chance of finding a leak at 22:30. Let consider the second time step (22:40). If the
detectability matrix would not change, the changes of finding a leak would again be 60%,
if the two sequential time steps would be uncorrelated. However, it is very likely that
the flow or pressure measurements at two sequential time steps are correlated. So, if a
measurement exceeds the alarm value at t=t, it is likely that it will exceed the alarm value
at t=t+1 too.

A measure for correlation which is often used statistics is the Pearson correlation co-
efficient (r), which compares the strength and direction of two variables. This Pearson
correlation can be calculated from the measurement data at the DMA inlet for the most
important parameters. So, for leak detection with flow meters this would imply calcu-
lating the correlation coefficient between the average flow at the DMA inlet at t=t and
t=t+1, written as rflow,t+1 (and for the second time step between t=0 and t=2, written as
rflow,t+2). For the leak detection with pressure meters, these coefficients were calculated
for the 5-percentile of the inlet pressure at same the time steps. Figure A.63 and A.64
show the zoomed in graphs of the observed variables, which shows that the graphs of t=t
are very similar to the graphs of t=t+1. The computed correlation coefficients for the
time steps ranged between 0.90 and 1.00 (which was actually 0.998, but rounded), as can
be seen in Table A.11 and A.12. These high correlation coefficients show that there is a
very strong correlation at the subsequent time steps for flow and pressure values at the
DMA inlet.

Table A.11: Pearson correlation coefficient when com-
paring the weekly flow values of t=t to t=1 and t=t to
t=t+2.

Table A.12: Pearson correlation coefficient when com-
paring the 5-percentile pressures on Friday of t=t to t=1
and t=t to t=t+2.

So, if the detectability matrix in two sequential time steps is the same, the change that
the second matrix measures a leak as well could be 60% (time steps are uncorrelated) or
100% (time steps are the same, so completely related) or somewhere in between. A dif-
ferent demand realization does not affect the measurements at the DMA entrance much,
since all the flow passes through the inlet. The sensor which is added for the DBM how-
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Figure A.63: Similarity between flow at t=t and t=t+1. Figure A.64: Similarity between the 5-percentile pressure
values on Friday for t=t and t=t+1.

ever is not located at the DMA entrance, making the flow and pressure measurements at
the DBM sensor more sensitive to different demand realizations. Therefore, it is unlikely
that the flow and pressure at the DBM sensor at t=t and t=t+1 is as strongly correlated
as the measured flow and pressure at the DMA inlet. It is not completely uncorrelated
either. Therefore, it is chosen to give a sequential time step the average probability of the
correlated and uncorrelated option. This is shown in equations A.32, A.33 and A.34.

Psens:1,leak:4(t) = 0.60 (A.32)

Psens:1,leak:4(t : t+ 1) = 0.60×
rflow,t+1 + 0.60

2
= 0.48 (A.33)

Psens:1,leak:4(t : t+ 2) = 0.60×
rflow,t+1 + 0.60

2
×
rflow,t+2 + 0.60

2
= 0.38 (A.34)

So far, the most of these principles can apply to both flow and pressure sensors. To
clearly differentiate between the two, let us continue explain separately for flow and pres-
sure sensors how it will be calculated whether a leak can be found once a day.

Flow sensors

So, with the formulae above it is possible to calculate the possibility that a leak is
found in three consecutive time steps. As a next step, it is required to look deeper into
the assumption that the detectability matrix in two sequential time steps is the same.
Figure 4.9 has shown us that a monitoring system with flow meters detects the most leaks
weekly between 21:40 and 05:20. So, let us assume that the Boolean 3D-matrix within this
time frame remains similar. This leaves us with a time frame that consists of 46 steps (of 10
minutes). Of this consistent time steps, 44 distinct possibilities of three consecutive time
steps can be made (t=0,1,2; t=1,2,3; etc.). The change that three consecutive time steps
record a leak is 0.38 (equation A.34), so on average a leak is measured in three consecutive
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time steps 17 (=44*0.38) times a day. Now, it is possible to calculate a probability limit
(plimit), which would result in a leak that is being found once a day. This probability
limit has to satisfy equation A.35. It was found that the probability limit for detecting
leaks once a day with flow sensors was 0.079. Due to the high uncertainties that arose in
estimating this limit probability, it is rounded up to 0.1 (10%). So, leaks which have a
higher probability than 10% of being detected by flow sensors can be detected once a day.

plimit ×
rflow,t+1 + plimit

2
×
rflow,t+2 + plimit

2
× 44 ≥ 1 (A.35)

The amount of leaks that can be found using 4 flow sensors, together with the prob-
ability limit (above which the leaks can be detected once a day) can be found in Figure
A.65. By optimally allocating 4 flow sensors, leaks in 25% of the pipes in the DMA can
be detected once a day.

Figure A.65: Leaks that can be detected using 4 flow sensors and the probability limit.

Pressure sensors

Although the approach for calculating the chance of a leak occurring once a day is
similar with using pressure sensors, there is one crucial difference. Whereas the flow sensor
monitoring network is based on average weekly flow and pressure values, the pressure
monitoring network uses the 5-percentile values for pressure at the inlet of the DMA to
construct the artificial DBM’s. Adding the chance of the occurence of the 5-percentile
pressure to the chance of finding a leak in three sequential time steps decreases the chance
of finding a leak significantly (from 60% to 1.8 %, shown in equation A.36).

Psens:1,leak:4(t : t+ 2) = 0.05× 0.60× rpres,t+1 + 0.60

2
× rpres,t+2 + 0.60

2
= 0.018 (A.36)

Although the precision was lower, it was assumed that leaks were well detectable
with pressure sensors on Friday between 00:00 and 06:30 and between 18:30 and 23:50.
This results in 72 time steps, from which 68 distinct possibilities can be made of three
consecutive time steps (t=0,1,2; t=1,2,3; etc.). Calculating the probability limit again,
this time using equation A.37, resulted in a probability limit of 0.54, rounded to 0.55.
This is a high probability which is hard to obtain.
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plimit × 0.05× rpres,t+1 + plimit
2

× rpres,t+2 + plimit
2

× 68 ≥ 1 (A.37)

The amount of leaks that can be found using 4 pressure sensors, together with the
probability limit (above which the leaks can be detected once a day) can be found in
Figure A.65. By optimally allocating 4 pressure sensors, leaks in only 1% of the pipes
in the DMA can be detected once a day. From this result it can be concluded that a
monitoring system with pressure sensors as designed above is not useful. Therefore, the
possibility of using a pressure dependant DBM will be discussed in the next chapter.

Figure A.66: Leaks that can be detected using 4 pressure sensors and the probability limit.

A.19 Figures of important factors for sensor allocation

Important factors when allocating flow sensors

Figure A.67 shows the elevations of all pipes. The chosen pipes have an average elevation,
so the elevation will probably have a limited effect on the optimal location for flow sensors.

Figure A.67: Influence elevation on optimal allocation flow sensors.
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Figure A.68 shows the diameters of all pipes. The chosen pipes have an average
diameter, so the diameter will probably have a limited effect on the optimal location for
flow sensors as well.

Figure A.68: Influence diameter on optimal allocation flow sensors.

Figure A.69 shows the average flows in all pipes. The chosen pipes have a relatively
low flow, but these low flows are not very unique compared to other pipes. The average
flow in the pipes will therefore probably have a limited effect on the optimal location for
flow sensors as well.

Figure A.69: Influence average flow on optimal allocation flow sensors.

Important factors when allocating pressure sensors

For determining the important factors for allocating pressure sensors, the characteristics
of only two nodes were compared to the other nodes in the network. These two nodes
resulted of optimally allocating pressure sensors with a pressure dependent DBM system.
More than two nodes had little influence on the coverage of the network. Therefore, only
two nodes were taken into account.
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Figure A.70 shows the elevations of all nodes. In the case of optimally allocating pres-
sure sensors (with a DBM system), the chosen nodes have very low elevations. Therefore,
it seems advisable to place pressure sensors for a monitoring system on locations with low
elevations.

Figure A.70: Influence elevation on optimal allocation pressure sensors with a pressure dependent DBM.

Figure A.70 shows the pressures at all nodes. This pressure is influenced by the eleva-
tions as well, since low elevations usually have higher pressures. Therefore, the importance
of pressure should be seen in line with the importance of elevation, as nodes where high
pressures occur seem very suitable for allocating sensors for a pressure monitoring system.

Figure A.71: Influence pressure on optimal allocation pressure sensors with a pressure dependent DBM.

A.20 Details interviews Harare

Inhabitant Budiriro

This interview was held through a WhatsApp-call. Therefore the answers are not always
the exact things said, but as remembered and written down during and after the call.
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Q: Where do you live in Harare?

In Budiriro

Q: How would you compare an area such as Budiriro to an area like Ashdown Park?

Budiriro can be described like a township/ghetto. It is a high-density area. Ashdown
Park is more of a low-density area, where white people used to live.

Q: What is your opinion about the drinking water services of the municipality?

Not very positive. The water services are not like the old days anymore. This is due
to the bad economical situation and corruption. The first 10 years after independence, we
had clean water from the tap. After these 10 years the situation got worse.

Q: How would you describe the quality of the drinking water?

The water is not clean enough for drinking. If you fill the bathtub and let it rest, you
can see the dirt in the water settling after a few hours. The water can be used for washing
or for flushing the toilet, but not for drinking.

Q: What sources for drinking water do you use?

Almost everyone in Budiriro fetches drinking water from a bore hole. You pay a small
fee to the owner of the bore hole. They charge 1 USD/month to fill 3 buckets per day. It
is cheaper than water from the utility. People place buckets and pans under their roof as
well when it rains. This is free clean water.

Q: How many days do you receive water and how do you store water?

Usually there is no water a few days per week. Sometimes there is water during the
night, but not during the day. We store water by filling the bathtub. People with money
can buy a big storage tank to store water. Sometimes they pump their own groundwater
to the storage tank.

Q: Are there other things that are good to know regarding the drinking water situation in
Harare?

Harare faces a lot of problems with the sewer system as well. Wastewater at some
points can flow into the street and cause illness. Especially the area Kambuzuma has
trouble with this issue.

MSc-student university of Bulawayo

This interview was held through a WhatsApp messages. The questions are therefore some-
how elaborate at times.
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Q: For a financial analysis I am trying to compare different options of the people to sup-
ply themselves with drinking water. At this moment I know that a m3 of water from the
piped system costs ZWL 90, but that the quality is too bad for drinking water (at least
in Budiriro). People can also collect water from a constructed wellin the neighbourhood,
being able to take 3 buckets of drinking water for 1 USD/month. Would you agree with
this information in Harare? And if people were to buy a bottle of water in the store, how
much would they need to pay?

Yss.....but for drinking water it depends on the number of people....1 bucket of water
costs about 7.50 local currency and the price for a water bottle in the shop its going for
30 to 50 dollars local currency thats 500ml bottle. From a Budiriro person

Q: Furthermore, I was curious whether people will notify the water utility when they see a
leak in the drinking water distribution system. Or that they do not trust the municipality
in repairing the leak and therefore do not take the effort of notifying the municipality of
the leak.

They do notify the municipality, whether it quickly response or not that is the decision
of the council but people do report.

Q: And another final question: if people have storage at home, do they have a system that
automatically fills their storage? Or do they fill it themselves directly from the tap?

Some uses pumps to fill up from the tap, it’s ain’t automatic

A.21 Details cost analysis

Details for the prices that are mentioned in the cost analysis can be found below. Every
cost is expressed in US Dollar (USD), followed by the original costs in the local currency
between brackets.

Investment costs

The investment costs are split into flow meters, pressure meters, supplementary mate-
rials and costs for labour during the installation of the system.

Flow meters

The flow meter should be installed to pipes with a diameter of 75mm to 100mm, as
there were the physical properties of the optimal sensor allocation analysis.

Harare: The flow meter installed at Ashdown Park had cost around 2000 USD, in-
cluding the materials for communicating. The meter was attached to a pipe of 200mm.
Using an exact cost-estimation of the communication material (follows below), this would
estimate the costs of this flow meter at 430 USD. Since it measures pulse-wise, each flow
rate is a multitude of 4 m3/h, it should be a mechanical meter, most likely to measure
only in one direction. Nairobi: Earlier, a DN100 (so suitable for diameters of 100mm)
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ultrasonic flow meter was purchased in Nairobi for 4443 USD (482,906 Kshs). A DN80
ultrasonic flow meter was purchased for 3541 USD (384,943 Kshs). Amsterdam: Amster-
dam has experience with using two different brands of flange flow meters for pipes up to
200mm. The first brand is Flostar, which uses a single jet meter which can measure in
two directions. It costs 846 USD (699 EU) for a 100mm pipe and 729 USD (602 EU) for a
80mm pipe. Woltex is more cheap, but it needs a laminar flow and is sensitive to changes
in flow direction. The costs for using a Woltex flow meter are 358 USD (296 EU) for a
100mm pipe and 329 USD (272 EU) for a 80 mm pipe.

The flow meters in the monitoring system should be able to perform well when flow
directions change, as this might occur within the DMA. Therefore, the ultrasonic flow
meters from Nairobi and the single jet meter from Amsterdam seem the most suitable op-
tions. This leaves the flange meters from Flostar (from Amsterdam) as the best financial
option.

Pressure meters

Harare: Harare had previously purchased a pressure transducer (pressure meter) for
770 USD. Nairobi: Nairobi does not use pressure measurements in its system (personal
com, Mugo). Amsterdam: Not yet available.

The costs for the pressure transducer that has been purchased in Harare shall be used
for this thesis.

Supplementary materials

The supplementary materials include a protection chamber, a data transmitter, con-
nection cables, a USB and communication software.

• Protection chamber : When installing the flow meter in Ashdown Park earlier, a
concrete chamber had been built around the meter to protect it from theft. The
costs of this chamber were 2000 USD. In Nairobi, the civil works for constructing
concrete protection chambers had costed 17,137 USD (1,862,782 Kshs). It was not
clear however, whether these costs were for multiple or a single concrete chamber.
Therefore, the costs of a concrete chamber in Harare were used for this costs analysis.

• Data transmitter : The data transmitter that is used in Harare to store the data
online costs 1350 USD.

• Connection cables: The meter is connected to the data transmitter with connection
cables. This cables cost 54 USD in total.

• USB and Communication software: The USB cable and communication software
that was used in Harare to read the measurements on location costs 166 USD.

Visuals of the supplementary materials can be found in appendix A.22.

Transport costs:

Page 151



The transport costs that were charged earlier in Harare for importing a pressure log-
ger and all the supplementary materials through air from South Africa were 543 USD.
This was approximately 20% of the total costs. Therefore, the transportation costs of the
monitoring system shall be estimated at 20 % of the material costs.

Labour costs

The estimated workforce to install a meter ranged from a team of 6 people working
5 days to 10 people working 10 days. Since salaries, especially in Zimbabwe, are quite
low, it was chosen to hire a team of 10 people for 10 days. The workforce will consist
of a supervisor who earns 0.25 USD/hour (ZWL 80/ hour), a foreman who earns 0.22
USD/hour (ZWL 70/ hour) and eight other attendants which earn 0.16 USD/hour (ZWL
50/ hour). This results in a total costs of labour of 140 USD per meter.

Variable costs

The variable costs consist of maintenance and monitoring and the costs for leak repair.

Costs of maintenance and monitoring

In Harare, a fee of 121 USD/year was paid to use the online platform that stores the
measurements. Other costs of monitoring would be to hire a person which will be in charge
of operating the monitoring system. An appropriate salary of such a person would prob-
ably be comparable to the salary of a foreman in leak repair, so 0.22 USD/hour (ZWL
70/hour) Magedi MacDonald (2020). Assuming this would be a full-time function (40
hours/week, 46 weeks/year), this person would earn 405 USD/year. This is extremely low
compared to European standards, since the salaries in Zimbabwe are very low.

In Nairobi, a one-off fee of 12.42 USD (1,350 Kshs) was paid for the activation of a
per post paid sim card. However, it was not clear if the measurements where stores on an
online platform or directly send to NCWSC. Therefore, the maintenance costs in Harare
will be used as a guidelines for the maintenance costs of the platform.

Repairing costs

The most recent repair of leaks in Harare involved placing two couplings (brand: Viking
Johnson) of 33 USD each. Furthermore, also a new pipe might be useful. Pipes in
Zimbabwe are usually sold for around 35 USD for a 6m PVC pipe ?. Of course, this price
depends on the pipe diameter and its material. It was estimated that it required four
people to repair the leak, one supervisor, one foreman and two attendants. Using the
same salary as was used for the installing of the sensors and assuming that the leak can
be repaired in one day, this amounts to a labour cost of 6.32 USD per leak. At last, fuel is
needed to travel towards the leak. A proper estimation of the fuel costs would be 8 USD,
since fuel is sold for 1.20 USD/L, travel distance can be estimated at 40 km and the car
usually drives 6 km on 1 L of diesel. The total repair costs will therefore be approximately
115 USD per leak.
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A.22 Supplementary materials

Visuals of the supplementary materials and their functions are given below.

Data transmitter

The transmitter that was used in Harare to transmit data is the Cello 4S data transmitter.
It can be seen in the smart measuring system in Figure A.72 and the individual machine
is shown in Figure A.73. The machine was bought in South Africa for 16.700 R, which
was 367.400 ZWL at the time of this thesis.

Figure A.72: A data transmitter in a smart
measuring system.

Figure A.73: The Cello 4S data transmitter.

A pressure transducer that was used in Harare can be seen in Figure A.74. It had
costs 11.500 R, which converted to 253.000 ZWL during this thesis.

Figure A.74: A pressure transducer.

The connection between the Cello 4S and the pressure transducer (Figure A.75) had
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cost 805 R, so 17.710 ZWL.

Figure A.75: Connection cable smart meter.

The USB cable and communication software (Figure A.76) had cost 2480 R, so 54.560
ZWL. In a smart meter system it can be considered as an “extra feature” since the data
is already transmitted to an online platform.

Figure A.76: A USB cable and communication software.

A.23 Cost-savings graphs for monitoring system with pres-
sure sensors

The graphs below show the costs and savings for using a monitoring system with a certain
number of pressure sensors and a pressure dependent DBM. The costs and savings for
detecting leaks with a size of 9 m3/h can be seen in Figure A.78. This figure shows that
a leak of 9 m3/h is unlikely to be find within 10 years, resulting in no savings. If the
detection system would be improved to find leaks of 6 m3/h, a payback period of five
years could be reached when applying 3 pressure sensors (Figure A.78).
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Figure A.77: The costs and savings that result from de-
tecting leaks of 9 m3/h with pressure sensors and a pres-
sure dependent DBM.

Figure A.78: The costs and savings that result from de-
tecting leaks of 6 m3/h with pressure sensors and a pres-
sure dependent DBM.
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