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Executive summary

Public transport systems are a cornerstone of sustainable urban mobility, offering high-capacity, energy-efficient
travel that alleviates congestion and reduces emissions. Yet, the effectiveness of these systems is frequently un-
dermined by operational inefficiencies—most notably, in-vehicle crowding. This thesis investigates the critical
interplay between in-vehicle crowding, headway variability, and route overlapping, with a focus on understanding
how these factors interact to shape passenger comfort and transit service reliability.

The central question guiding this research is how much of the variability in in-vehicle crowding can be explained
by fluctuations in vehicle headways, and to what extent overlapping transit routes exacerbate this relationship. This
inquiry is motivated by the observed instability in high-frequency bus and tram corridors, where uneven headways
and shared route segments often lead to service bunching, passenger surges, and highly variable load distributions.
Despite the wealth of literature describing these phenomena qualitatively, there remains a lack of robust empirical
models that quantify their combined effects using operational data.

To address this gap, a data-driven methodology was developed using detailed records from Automatic Vehicle
Location (AVL) and Automatic Passenger Count (APC) systems. These datasets were integrated and harmonized
with GTFS schedule information to construct a fine-grained panel of vehicle stop events. Each observation in the
dataset corresponds to a single vehicle-stop interaction and includes features such as observed headway, boarding
and alighting counts, vehicle type, and the degree of route overlapping at that location.

An ordered logistic regression model with random effects was employed to estimate the relationship between
these variables and an ordinal measure of passenger comfort, defined on a five-point scale. The model accounts
for unobserved heterogeneity at the stop-day-line level and enables consistent inference on the effects of service
irregularity and network design on crowding.

The findings reveal that headway variability is a primary driver of in-vehicle crowding. When actual head-
ways deviate significantly from the schedule, vehicles tend to experience uneven passenger loads, with late arrivals
absorbing accumulated demand and becoming overcrowded. Line overlapping further compounds this effect by in-
troducing operational interdependencies between routes. Shared corridor segments, while beneficial in increasing
perceived frequency, also intensify the risk of bunching and uneven load distribution, especially in the absence of
coordinated dispatching.

Additional factors, such as vehicle type and corridor-level service frequency, influence passenger comfort but
do not fully offset the negative effects of headway irregularity. Notably, articulated vehicles and high-frequency
services offer some mitigation, yet remain vulnerable to demand surges and dwell time extensions when bunching
occurs.

This thesis contributes to both academic literature and practical transit planning. Scientifically, it advances
empirical modeling of crowding by incorporating both temporal service irregularity and spatial network structure.
The proposed framework demonstrates how large-scale operational datasets can be leveraged to inform service
planning, reliability analysis, and network design. Societally, the research supports the development of strategies
that improve service quality—such as dynamic headway control, coordinated scheduling across overlapping lines,
and targeted infrastructure enhancements.

The policy implications are significant. Transit agencies can utilize these insights to implement proactive inter-
ventions, such as holding controls, transit signal priority, and real-time passenger information systems. Further-
more, the findings emphasize the importance of designing networks with balanced overlapping and the need for
continuous performance monitoring to identify and mitigate emerging crowding issues.

While the model captures key operational dynamics, it does not account for all sources of variability, including
weather, special events, or individual travel behavior. Future research could explore the integration of predictive
machine learning models, real-time feedback systems, or multimodal interactions to further enhance crowding
management.

In conclusion, this thesis underscores the importance of addressing headway variability and line overlapping
as interconnected challenges. By quantifying their impacts on in-vehicle crowding, it offers a valuable toolkit for
designing more resilient, efficient, and passenger-centered public transport systems.
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Chapter 1

Introduction

Public transportation systems are essential in modern urban environments, playing a pivotal role in reducing traffic
congestion, lowering per-capita emissions, and cutting energy consumption by moving large numbers of passengers
in single vehicles rather than as individual cars. By maximizing vehicle occupancy and leveraging dedicated rights-
of-way or high-occupancy lanes, public transport networks achieve far higher throughput and energy efficiency
per passenger-kilometer than private automobiles. Moreover, efficient public transport service supports land-use
patterns that favor densification, further reducing urban sprawl and associated infrastructure costs.

However, one of the most persistent challenges in these systems is in-vehicle crowding, which not only under-
mines passenger comfort and satisfaction but also diminishes operational efficiency. When vehicles exceed their
design capacity, boarding and alighting times increase, dwell times become more variable, and the risk of delays
propagates through the network. These disruptions force operators to pad schedules, reduce reliability, and allocate
additional resources, actions that drive up operating costs and can ultimately discourage ridership.

A central determinant of crowding is headway variability, defined as a statistical metric that computes the
deviation between the actual and scheduled time interval for consecutive vehicles. Formally, if two vehicles are
planned to depart every five minutes, but one departs after three minutes and the next after seven, the resulting
variability creates uneven passenger accumulation at stops: the late vehicle picks up a large backlog of waiting
passengers, while the early one may run nearly empty. Over time, these imbalances intensify, leading to cyclic
patterns of overcrowding and under-utilization that erode service quality and passenger confidence, also known as
vehicle bunching.

This thesis explores the complex relationships among in-vehicle crowding, headway variability, and network
design, placing particular emphasis on the role of line overlapping. Line overlapping occurs when two or more
public transport routes share a segment of their corridors. While overlapping can enhance actual frequency and
offer riders more route options, it also introduces operational inter-dependencies: delays on one route can spill
over to the other, exacerbating headway irregularities and triggering bus or tram bunching. In high-frequency
systems, these effects combine to generate uneven passenger loads and heightened levels of crowding, creating a
feedback loop in which irregular service intervals fuel crowding, and crowding in turn leads to further reliability
deterioration.

This chapter introduces the primary issues addressed in this research and outlines the scope, objectives, and con-
tributions of the thesis. Section 1.1 provides a detailed description of the core problem, including the mechanisms
linking headway variability and line overlapping to crowding. Section 1.2 outlines the research scope, objectives,
and guiding questions. In Section 1.3, the scientific and societal contributions of the research are discussed in
depth. Finally, Section 1.4 presents an overview of the thesis structure.

1.1. Problem Description

Public transportation is vital for urban mobility, connecting people to jobs, education, and essential services. How-
ever, many cities face challenges in providing efficient, affordable, reliable and passenger comfort. One of the
most significant challenges is crowding, which can lead to decreased service quality and user dissatisfaction. This
section delves into the factors contributing to crowding, with a particular focus on headway variability and net-
work design, including the phenomenon of line overlapping. These factors exacerbate passenger accumulation at
certain points, leading to unpredictable and often unpleasant travel experiences. Addressing these issues requires
a multifaceted approach, encompassing optimized scheduling, improved infrastructure, and innovative demand
management strategies. Data-driven solutions and real-time monitoring are crucial for proactive adjustments.

1



A.D. Guzmán Fallas 1.2 Research Design

1.1.1. Problem Context

Efficient public transport systems are essential for improving urban living conditions by reducing car dependency,
traffic congestion, and emissions (Figliozzi et al., 2012). However, systems such as buses, trams, and trolleybuses
often suffer from in-vehicle crowding when demand exceeds capacity at specific times or locations. Crowding is not
merely an inconvenience; it significantly decreases passenger comfort and satisfaction, thereby potentially reducing
ridership.

Crowding levels are influenced by several factors including passenger demand, vehicle capacity, and service
frequency. Headway variability, the inconsistency in time intervals between consecutive vehicles, plays a critical
role in this dynamic. Unpredictable factors such as traffic conditions, road incidents, or fluctuations in passenger
demand contribute to irregular headways. These disruptions cause some vehicles to be overcrowded while others
remain underutilized. The challenge is further compounded in systems where overlapping routes are common.
When multiple lines share a corridor, the synchronization of headways across different services becomes more
complex, often resulting in bus bunching, where vehicles arrive in close succession. Such bunching amplifies
the uneven distribution of passengers and prolongs dwell times at stops, thereby intensifying in-vehicle crowding
(Drabicki et al., 2023; Godachevich & Tirachini, 2021).

1.1.2. Problem Statement and Knowledge Gaps

Although the qualitative relationship between headway variability and crowding is well-documented, the quan-
titative aspects of this relationship remain underexplored. Previous studies, such as Chen and Liu (2011), have
attempted to assess the impact of headway variability on crowding using limited, manually collected data. How-
ever, the use of large-scale datasets, such as Automatic Vehicle Location (AVL) and Automatic Passenger Count
(APC) data, has not been fully exploited in this context.

This thesis addresses this knowledge gap by developing a data-driven analytical framework to empirically ex-
plore and model the interdependent relationships among crowding, headway variability, and overlapping service
configurations in public transport networks. Leveraging AVL and APC data, the study aims to derive measurable
indicators that capture the systemic feedback loops and variability patterns across different operational scenarios.
The ultimate goal is to provide insights that inform more resilient network design principles and targeted control
strategies for improving service reliability and passenger experience in overlapping and high-demand corridors.

1.2. Research Design

1.2.1. Research Scope

This research focuses on bus, tram, and trolleybus systems, as these modes offer greater flexibility for network
adjustments (e.g., rerouting, modifying stop locations) compared to more rigid systems like metros. These systems
also frequently share road space with other vehicles, introducing unique challenges related to headway variability.
The study emphasizes two primary factors: headway variability and network design, with a special focus on corridor
effects and line overlapping.

Headway Variability in Overlapping vs. Non-Overlapping Segments

Headway variability is a well-documented driver of uneven passenger loads and crowding (Tirachini et al., 2016;
Drabicki et al., 2023). In this research, we quantify headway variability in two complementary ways: the per-
centage difference between actual and scheduled headway at each stop and the occurrence of successive vehicles
arriving within a short threshold, indicating service compression. We compare these metrics across overlapping seg-
ments, where two or more lines share the same corridor, and non-overlapping segments to isolate the amplifying
effect of network structure on variability and crowding.

Network Structure and Corridor Effects

The geometry of the public transport network, particularly the degree of route overlap on shared arcs, shapes
passenger distribution and operational interactions. Overlapping lines can increase effective frequency but also
introduce inter-line dependencies that magnify the impact of delays. By focusing on corridor segments with varying
levels of line overlap, we assess how the number of overlapping line contribute to crowding levels and the role
of aggregate corridor frequency; summing all services on the arc, in mitigating or exacerbating crowding under
different headway variability regimes.

2



A.D. Guzmán Fallas 1.3 Scientific and Societal Contributions

1.2.2. Research Objectives and Research Questions

The primary objective of this research is to develop a statistical model that estimates how headway variability and
line overlapping affect in-vehicle crowding; using a data-driven approach. By analyzing real-world data from public
transport systems, this study seeks to quantify the interactions among these factors and provide actionable insights
for optimizing service planning and delivery.

The central research question is:

How much of the variability in in-vehicle crowding levels can be explained by headway variability
in bus or tram lines, and what is the impact of line overlapping on this relationship?

To address this overarching question, the following sub-questions will be investigated:

1. What is the theoretical relationship between in-vehicle crowding, headway variability, and line over-
lapping in a public transport system?

This question aims to establish a conceptual framework by reviewing existing literature and theoretical mod-
els. Understanding the theoretical underpinnings will help delineate how each factor influences crowding
and provide a basis for subsequent empirical analysis. By clarifying the inter-dependencies among these vari-
ables, this research can identify potential mechanisms and pathways that lead to crowding in public transport
systems.

2. How can AVL and APC data be used to accurately measure and analyze in-vehicle crowding and head-
way variability?

The ability to reliably quantify crowding and headway variability is critical for empirical analysis. This ques-
tion addresses the methodological challenges associated with processing and interpreting large-scale opera-
tional datasets. By establishing robust data collection and analysis methods, the research will improve the
accuracy of performance assessments in public transportation systems and enable more precise identification
of operational issues.

3. What is the result of incorporating both headway variability and line overlapping to crowding models
in public transport?

Current models of in-vehicle crowding often overlook the combined effects of headway variability and over-
lapping routes. Enhancing these models to include the impact of network design factors is essential for
capturing the complex dynamics that drive passenger load imbalances. This question seeks to refine and
extend empirical models, thereby offering a more comprehensive tool for public transport system evalua-
tion and planning. The improved models could lead to more effective strategies for managing crowding and
improving service reliability.

1.3. Scientific and Societal Contributions

This thesis contributes both to academic research and to societal advancements in urban mobility. The outcomes of
this study are expected to provide new insights that lead to better management of public transportation systems,
enhancing both operational efficiency and the overall passenger experience.

1.3.1. Scientific Contributions

This research offers several key scientific contributions:
Data-Driven Modeling:

The primary scientific contribution is the development of a quantitative, data-driven model that integrates headway
variability and network design factors, especially line overlapping, to predict in-vehicle crowding. By leveraging
large-scale Automatic Passenger Count (APC) and Automatic Vehicle Location (AVL) datasets, the model provides
an empirical basis for understanding the dynamics of passenger loads. This approach not only advances current
modeling techniques in transportation research but also sets a precedent for using operational data to quantify
complex interactions within public transport systems.

Enhanced Theoretical Framework:
By rigorously linking headway variability, line overlapping, and crowding, this research expands the theoreti-
cal framework that describes public transport system performance. The study synthesizes insights from multiple
strands of literature, providing a clearer conceptual basis for how operational factors interrelate. This enhanced
framework can serve as a foundation for future research, guiding subsequent empirical investigations and theoret-
ical advancements in public transportation studies.

3



A.D. Guzmán Fallas 1.4 Structure of the thesis

Empirical Validation:
Through the application of the developed models to real-world data, this research provides concrete empirical
validation of the theoretical predictions. By demonstrating how headway variability and overlapping routes con-
tribute to in-vehicle crowding, the study offers robust evidence that supports and refines existing models. This
empirical grounding is essential for ensuring that theoretical insights translate into practical solutions in the field
of transportation engineering.

1.3.2. Societal Contributions

Beyond academic contributions, the findings provide practical value for public transport operators and planners. By
quantifying how headway variability and route overlap influence in-vehicle crowding, the study offers evidence to
support targeted interventions such as holding strategies, better coordination of overlapping lines, or adjustments
in schedule design. These measures can help reduce the most disruptive crowding episodes and improve service
predictability without necessarily requiring large investments. For passengers, this translates into fewer extreme
discomfort situations and more consistent reliability. At the system level, even modest improvements in regularity
can make public transport a more dependable alternative to private cars, thereby supporting wider urban mobility
and sustainability goals.

1.4. Structure of the thesis

The remainder of this thesis is organized into seven chapters. Chapter 2 presents a comprehensive literature review,
synthesizing theoretical and empirical research on public transport crowding, headway reliability, and network
design. Chapter 3 details the methodology, including data sources, feature derivation, and the panel-data ordinal
regression framework. Chapter 4 describes the case study context, outlining the operational characteristics of the
bus and tram network under analysis and the specific corridor segments examined as well as showing detailed
KPIs and statistical description of the analyzed data. Chapter 5 reports the empirical results, quantifying the
effects of headway variability and line overlap on passenger comfort levels. Chapter 6 discusses these findings in
light of existing theory and practice, exploring implications for public transport planning and potential strategies to
mitigate crowding. Finally, Chapter ?? concludes by summarizing the key contributions, acknowledging limitations,
and proposing avenues for future research. An overview of the report structure is depicted in Figure 1.4.1.

4



A.D. Guzmán Fallas 1.4 Structure of the thesis

Chapter 1. Introduction

- Context
- Problem description
- Scope
- Objetives and research questions
- Approach
- Contributions

Chapter 2. Literature review

- In-vehicle crowding
- Headway variability
- Line overlapping
- Theoretical relationships
- Scientific gaps

Chapter 3. Method

- Conceptual framework
- APC / AVL data
- GTFS data
- Feature derivation
- Methods for analysis

Chapter 4. Case study

- Geographical scope
- Temporal scope
- Data
- Exploratory data analysis
- APC / AVL KPI's

Chapter 5. Results

- Regression results
- Results analysis

Chapter 6. Discussion

- General remarks
- Research limitations
- Contributions to theory

Chapter 7. Conclusion

- Conclusions and recommendations
- Future research directions

Problem

Bacjground

Approach and case study

Discussion and conclisions

Figure 1.4.1: Report structure
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Chapter 2

Literature review

2.1. Introduction

The relationship between in-vehicle crowding and headway variability in public transportation is a complex dy-
namic that has far-reaching impacts on passenger experience and system reliability. Public transport systems face
ongoing challenges in managing the flow of passengers and maintaining consistent service, particularly in high-
demand urban areas where small disruptions can lead to compounding delays (Daganzo, 2009). Crowding and
headway variability are core issues within this domain, as both can create a cycle of service degradation that affects
operational efficiency and passenger satisfaction. Understanding how these two elements interact is essential to
developing effective strategies for improved public transport performance.

In-vehicle crowding affects not only passenger comfort but also public transport operations. When a bus or
train becomes overcrowded, dwell times at each stop increase due to the extended time needed for boarding and
alighting (Tirachini et al., 2022). This can lead to delays that cascade throughout the network, causing certain
vehicles to fall behind schedule while others, with lighter loads, move ahead, exacerbating gaps in service (Ding
& Chien, 2001; Muñoz et al., 2020; Drabicki et al., 2023). Conversely, when headway variability is high, meaning
the intervals between consecutive vehicles are inconsistent, passengers are unevenly distributed, leading to packed
vehicles and underutilized ones on the same route. This uneven distribution can trigger a negative feedback loop,
where crowded vehicles lag further behind, and less crowded ones catch up, resulting in bus or train bunching
(Daganzo, 2009; Godachevich & Tirachini, 2021). Bus bunching not only worsens crowding on certain vehicles
but also creates uncertainty in passenger wait times, which can deter people from using the service.

Enhancing crowding models to better account for the impact of headway variability and line overlapping is
an area of active research. Traditional models often assume uniform passenger arrival and demand (Lin & Ruan,
2009), but real-world conditions vary significantly due to factors like peak hours, special events, or even weather
conditions. By incorporating headway variability into these models, public transport operators can more accurately
predict crowding patterns and adjust services accordingly (Chen & Liu, 2011).

Line overlapping and passenger choice also play crucial roles in how crowding and headway variability manifest
in a network. Line overlapping occurs when two or more routes share the same physical corridor for one or more
consecutive stops. On the one hand, overlapping can improve perceived service frequency and offer passengers
more route choices; on the other hand, it introduces a layer of operational complexity that can amplify headway
variability. When multiple services compete for the same roadway segment, a delay on any one route propagates
immediately to the others: a late vehicle on Route A forces subsequent vehicles of Route B to slow down or bunch,
creating uneven intervals that cascade through the network. Similarly, any attempt to recover schedule adherence,
for example, by holding back an early vehicle, must be coordinated across all overlapping lines, which is both
technically challenging and potentially counterproductive if not perfectly timed. As a result, overlapping corridors
tend to exhibit higher variance in both scheduled versus actual headways and in the incidence of bunching events
(Diab et al., 2015).

When passengers have real-time information on crowding levels across routes, they are more likely to choose
the less crowded options, helping to balance demand across the network (Drabicki et al., 2023). For operators to
provide passengers with accurate and reliable data, Automatic Vehicle Location (AVL) and Automatic Passenger
Count (APC) technologies offer valuable outputs for monitoring and managing crowding and headway variability
(TRB, 2020b). AVL systems track vehicle locations, providing real-time insights into headways, which allows
public transport agencies to detect irregularities like bus bunching or gaps in service. Meanwhile, APC systems
capture precise boarding and alighting data, giving a detailed view of passenger load distribution across stops and
routes. Together, AVL and APC data provide a comprehensive view of network conditions, enabling public transport
agencies to not only respond to immediate operational issues but also plan strategically to improve service reliability

6



A.D. Guzmán Fallas 2.2 In-vehicle crowding

and efficiency over time (Figliozzi et al., 2012).
Ultimately, the relationship between in-vehicle crowding and headway variability is a crucial area for public

transport research and policy, as addressing these factors can lead to a more reliable, comfortable, and efficient
public transport system. As cities continue to grow and demand for public transport rises, understanding and
managing these dynamics will be essential for ensuring that public transport remains a viable and attractive option
for urban mobility.

2.2. In-vehicle crowding

The phenomenon of crowding in public transport encompasses a range of qualitative factors that significantly
influence the overall travel experience. Traditionally, the assessment of travel behavior has focused on time and cost
as primary determinants of modal choice. However, contemporary research has highlighted the growing importance
of qualitative attributes, such as comfort and convenience, particularly as the income levels of populations increase.
Among these qualitative factors, the density of passengers , known as crowding, has emerged as a critical aspect
that affects both the supply and demand dynamics of public transport systems.

Crowding in public transport is not merely a matter of physical discomfort due to limited space; it also involves
various psychological, social, and health-related issues. High passenger density can lead to increased stress, anxiety,
and a perceived invasion of privacy, all of which contribute to a negative travel experience (Batarce et al., 2016).
Moreover, crowding can affect perceptions of safety and security, further influencing passengers’ satisfaction and
their likelihood to use public transport (S. Yan et al., 2021). As such, understanding the causes and effects of
crowding, as well as developing effective methods for measuring it, is essential for improving public transport
services and enhancing passenger welfare.

This section offers an extended analysis of the theoretical and applied aspects of in-vehicle crowding, consider-
ing operational variables, passenger behavior, and the intricate causal factors involved.

2.2.1. Measuring and Quantifying Crowding

Effective crowding measurement is pivotal for public transport agencies to design responsive interventions. Tra-
ditional metrics like Load Factor (LF), calculated as the ratio of passengers to seats, can misrepresent crowding
due to their dependence on vehicle design and passenger distribution within vehicles. Multiple authors including,
Fedujwar and Agarwal (2024) and Tirachini et al. (2016) suggest as a more standardized measure, Standee Density
(SD) defined as the number of standing passengers per square meter, that addresses these design limitations and
offers a more comparable metric across diverse vehicle types.

However, SD and LF overlook an essential dimension: passenger perception. As Fedujwar and Agarwal (2024)
mention, crowding perception is a subjective construct shaped by psychological factors and contextual cues, such
as duration of travel, vehicle type, and passengers’ prior experiences. Studies suggest that even when SD remains
constant, crowding can be perceived differently under varying conditions. This highlights the need for public
transport systems to integrate passenger feedback and design crowding metrics that capture both objective density
measures and subjective experiences.

2.2.2. Causes of Crowding

Crowding results from a complex interplay of supply-demand imbalances, operational factors, and external disrup-
tions. High demand during peak hours remains a primary contributor to crowding as mentioned by Mahmoudi
et al. (2023) and Tirachini et al. (2013). Limited service capacity and infrequent schedules exacerbate this de-
mand, especially in metropolitan areas with significant commuter populations. Moreover, vehicle availability and
infrastructure constraints may limit public transport authorities’ ability to meet demand spikes.

Soza-Parra et al. (2021) and Tirachini et al. (2022) point out that beyond inherent demand-supply gaps, exter-
nal disruptions like traffic congestion and incidents disrupt service regularity, leading to uneven passenger loads
and intensified crowding. Operational decisions, such as driver adherence to scheduled headways, significantly
impact service reliability. Deviations from planned schedules amplify the variability in vehicle arrival times, con-
tributing to bus bunching. To counter this, real-time interventions, such as holding buses at strategic stops, can
help maintain headway consistency and improve crowding distribution (Martínez-Estupiñan et al., 2023).

2.2.3. Consequences of Crowding Beyond Passenger Discomfort

While passenger discomfort is the most immediate outcome, crowding extends its impact to broader system per-
formance. Crowded conditions increase dwell times, as passengers require more time to board and alight. This
delay disrupts headway regularity, resulting in an unpredictable and prolonged travel experience (Figliozzi et al.,
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2012). Additionally, crowding poses safety concerns, particularly during peak times if and when vehicle capacities
are exceeded. This exacerbates the risk of accidents, sudden stops, or fall hazards within vehicles (Tirachini et al.,
2016).

Crowding-induced inefficiencies can create a negative feedback loop. Delays from crowding reduce opera-
tional efficiency, increasing the likelihood of service irregularities that lead to further crowding. Recognizing this,
(Figliozzi et al., 2012) emphasize the necessity of crowding mitigation measures that also target these cascading
effects on operational performance.

2.2.4. Interplay of Crowding with System Variables

Crowding operates in tandem with various system parameters, including headway variability, network design, and
route configurations. Headway variability emerges as a critical factor. According to Daganzo (2009), Godachevich
and Tirachini (2021) and Muñoz et al. (2020) this variability fosters a cyclical problem; as headway irregular-
ities lead to crowding on specific vehicles, the ensuing delays disrupt the entire schedule, worsening headway
adherence. Real-time monitoring systems and interventions, such as Automatic Vehicle Location (AVL) and Auto-
matic Passenger Counting (APC) systems, can provide granular data to diagnose causes of headway variability and
identify patterns contributing to bus bunching.

Line overlapping, while offering potential relief, requires careful consideration. The effectiveness of parallel
routes in reducing crowding depends on passenger awareness of crowding levels on alternative options, highlight-
ing the importance of real-time information dissemination (Drabicki et al., 2021, 2023; Soza-Parra et al., 2019).
Godachevich and Tirachini (2021) delves into the trade-offs associated with route length and the impact of long
routes on headway variability and crowding, suggesting the need for optimal route length determination.

Network configuration, including stop spacing and route design, further affects crowding. While longer routes
might simplify network design, they are more susceptible to headway disruption due to higher variability in travel
time. In contrast, optimized stop spacing and route segmentation strategies reduce dwell times and help maintain
regular headways, ultimately mitigating crowding. Figliozzi et al. (2012) and Lin and Ruan (2009) discuss the
utilization of AVL and APC data to analyze bus bunching occurrences, identify causes, and evaluate spatial and
temporal patterns. This data-driven approach is essential for understanding crowding dynamics and developing
targeted mitigation strategies.

2.2.5. Policy Interventions

To address in-vehicle crowding, public transport agencies globally employ a range of policy interventions. Accord-
ing to Mahmoudi et al. (2023) and Tirachini et al. (2016) enhancing service capacity during peak hours, through
deploying larger vehicles or increasing trip frequencies, is a primary approach. Furthermore, holding control strate-
gies, public transport signal prioritization, and optimized stop spacing have proven effective in reducing delays and
improving headway adherence.

Optimizing operational efficiency is crucial for minimizing delays and maintaining service regularity. Hold-
ing control strategies, public transport signal priority, and optimized stop spacing are all identified as effective
approaches (Soza-Parra et al., 2021; Tirachini et al., 2022). These operational interventions aim to break the
negative feedback loop between crowding and headway variability, ensuring a smoother and more predictable
service.

Demand management strategies focus on influencing passenger behavior to distribute demand more evenly.
Drabicki et al. (2021) and (Fedujwar & Agarwal, 2024) mention how real-time crowding information, disseminated
through apps or displays at stops, empowers passengers to make informed choices, potentially reducing peak
crowding and improving the overall passenger experience.

Incorporating crowding costs into transport project appraisal guidelines is gaining traction, acknowledging the
disutility associated with crowding and its impact on passenger welfare. Australia, France, Sweden, and the United
Kingdom are examples of countries employing crowding multipliers, assigning higher values to travel time spent
standing (Mahmoudi et al., 2023; Tirachini et al., 2016). This approach ensures that crowding considerations are
integrated into planning and investment decisions, promoting a more holistic evaluation of transport projects.

In conclusion, analyzing the multifaceted nature of in-vehicle crowding, requires a balanced approach, inte-
grating operational adjustments, real-time monitoring, policy interventions, and technological innovations. By
addressing both the objective and perceived aspects of crowding, public transport agencies can enhance passen-
ger experience and operational efficiency while reducing the broader impacts of crowding across public transport
networks.
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2.3. Headway Variability

Headway variability remains one of the most critical challenges in public transportation, affecting reliability, op-
erational efficiency, and passenger satisfaction. As a key determinant of service predictability, headway variability
directly influences the attractiveness of public transport systems by shaping the passenger experience and the per-
ception of reliability (Figliozzi et al. (2012),TRB (2020a)). This section examines the core aspects of headway
variability, including its measurement, underlying causes, operational impacts, relationships with other system
variables, and policy interventions.

2.3.1. Measuring Headway Variability

Quantifying headway variability is complex, due to the intricate nature of public transport operations. To effectively
measure headway irregularity, public transport agencies use several metrics, each offering unique insights into
service consistency and reliability. The standard deviation of observed headways (σh) is a fundamental metric,
capturing the degree of variation in headway times around the mean. This metric is simple and widely used to
obteain the average waiting times at stops, but has limitations; it fails to account for deviations from the scheduled
timetable, which means it may not fully reflect the service reliability expected by passengers (Godachevich &
Tirachini, 2021). It is defined as

STD(hobs) =

√∑N
i=1 (h

obs
i − hobs)2

N
(2.3.1)

where hobs
i is the observed headway between buses i and i+ 1, hobs is the average bus headway and N is the total

number of headways observed.
A more sophisticated approach is the Index per Observation (IPO), which compares observed headways with

scheduled ones by applying a Box-Cox transformation. This metric provides a nuanced evaluation of both the
variability and adherence to the timetable, thus enabling public transport agencies to assess how well actual service
aligns with planned schedules. (Godachevich & Tirachini, 2021). It is defined as:

IPO =

∑N
i=1(

hobs

hsch
)2

N
(2.3.2)

It depends on the observed headway (hobs), scheduled headway (hsch), and number of observations made (N)
Minutes of Incidence (Minc) is another measure used to monitor deviations, particularly in public trans-

port systems that operate under contractual or regulatory frameworks. Minc penalizes headways that exceed a
set threshold, which makes it relatively straightforward to implement. However, this measure tends to overlook
broader variance patterns and does not fully capture the passenger experience, especially as it focuses more on
regulatory compliance than on enhancing service quality (Godachevich & Tirachini, 2021).

As mentioned by Soza-Parra et al. (2022), the coefficient of variation of headways (CVh) offers a dimen-
sionless measure that adjusts headway dispersion relative to the average frequency. By providing context on how
headway variability changes with service frequency, CVh enables public transport agencies to compare different
routes or service types, such as high-frequency urban lines and lower-frequency suburban routes. The CVh has a
relation to the IPO given by

IPO = CV 2 + 1 (2.3.3)

Excess wait time is another valuable metric, particularly for passenger-centered analyses, as it measures the
additional waiting time passengers incur due to irregular headways, directly linking operational variability to
passenger dissatisfaction (TRB, 2020a).

Finally, percentile-based headway values, such as the 95th percentile, help capture extreme cases of irregu-
larity that affect passengers most. This metric identifies headway outliers, such as long delays, providing insights
into the upper bounds of wait times experienced by passengers and allowing public transport agencies to address
severe irregularities more effectively (TRB, 2020a).

Each of these measures, while valuable on its own, is often used in combination to provide a comprehensive
view of headway variability in complex public transport systems.

2.3.2. Causes of Headway Variability

Headway variability arises from a complex set of factors, both within and outside the public transport system. One
primary contributor is irregular dispatching at terminals, where inconsistencies in dispatch intervals, due to issues
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like driver availability, vehicle readiness, and terminal congestion, can trigger a cascade of delays along the route.
In the the researches by Godachevich and Tirachini (2021), Soza-Parra et al. (2021) and Tirachini et al. (2022) it is
highlighted that even minor deviations in terminal dispatch can propagate through the entire service, significantly
affecting headway regularity.

Another major factor is the scheduled frequency of service, as high frequencies, though beneficial for passen-
gers, create operational challenges in maintaining consistent headways. Short intervals between buses allow less
buffer time for adjustments, meaning that even small delays can result in significant variability across the service.
According to Figliozzi et al. (2012), high-frequency public transport services require real-time adjustments and
advanced operational controls to correct minor disruptions before they escalate and propagate.

In their research, Figliozzi et al. (2012) also mention that the route distance and complexity further impact
headway variability. Longer routes, particularly those that traverse dense urban areas, are more prone to cumu-
lative delays from traffic congestion, incidents, and variations in boarding and alighting patterns. Studies using
Automatic Vehicle Location (AVL) data show that longer routes tend to exhibit greater headway variability due to
prolonged exposure to potential disruptions.

Passenger demand fluctuations and variable dwell times at stops are also significant causes of headway variabil-
ity. Unpredictable demand levels, combined with varied boarding and alighting times, disrupt headway consistency
by creating delays at stops. Routes with highly variable demand, such as those serving event venues, schools, or
commercial areas, are particularly vulnerable to these disruptions (Martínez-Estupiñan et al., 2023).

External factors such as traffic conditions and right-of-way availability also impact headway variability. Conges-
tion, traffic incidents, and the absence of dedicated public transport lanes often result in inconsistent travel times,
which directly affect headway regularity. Dedicated infrastructure like bus-only lanes and signal priority measures
can help mitigate these effects, providing a more predictable operating environment for public transport vehicles
((Y. Yan et al., 2016; Figliozzi et al., 2012)).

2.3.3. Explanatory Variables for Headway Variability

Headway variability, the inconsistency in the intervals between successive public transport vehicles, is a major
contributor to service unreliability, vehicle bunching, and in-vehicle crowding. Drawing on the synthesis provided
by Tirachini et al. (2022), several key determinants emerge, each influencing the degree to which scheduled service
intervals are maintained in real-world operations.

Initial Headway Irregularities at Dispatch. One of the most critical moments for ensuring headway regularity
occurs at vehicle dispatch. Variability introduced at this early stage often propagates downstream. Contributing
factors include route characteristics (length, average passenger demand, scheduled frequency, and expected travel
speed), terminal and depot logistics (such as circulation complexity and depot proximity), and the practices of indi-
vidual operators. For instance, inconsistent driver availability due to absenteeism can disrupt scheduled dispatches.
The absence of effective control mechanisms at the terminal may result in large deviations that only worsen along
the route.

Scheduled Frequency. High-frequency services, while attractive for reducing passenger waiting times, are in-
herently more susceptible to bunching. As scheduled headways shorten, the system becomes increasingly sensitive
to minor delays that disrupt spacing. Thus, operational plans must balance frequency benefits with the increased
risk of instability in inter-vehicle timing.

Distance Travelled Along the Route. The further a vehicle travels from its origin, the more exposed it becomes
to random sources of delay, such as fluctuations in boarding demand, traffic congestion, or road incidents. These
cumulative disruptions make it increasingly difficult to preserve regular headways without active control strategies.
Empirical evidence confirms that headway irregularities tend to grow with distance traveled, especially in the
absence of holding or dispatching corrections.

Passenger Demand and Dwell Time Variability. Higher passenger demand directly contributes to increased
headway variability through its impact on dwell time. As more passengers board and alight, especially during peak
periods or under crowded conditions, dwell times increase and become less predictable. Operational practices also
matter: systems that use off-board fare collection or allow all-door boarding reduce dwell time variability, while
onboard payment systems or the need to operate wheelchair lifts increase it substantially.

Traffic Conditions and Right-of-Way Design. Traffic congestion and incidents are key drivers of travel time
variability and, by extension, headway irregularity. Bus lanes or fully segregated rights-of-way can mitigate these
effects, but shared lanes, especially those allowing turning vehicles, do not necessarily improve regularity. Hence,
the degree of physical separation from general traffic is a critical determinant of operational stability.

Traffic Signals Downstream of Stops. Signalized intersections can introduce substantial and unpredictable
delays between stops. While the presence of signals generally increases travel time variability, their impact on
headway regularity can be mitigated with technologies such as public transport signal priority (TSP), especially
when configured to adjust dynamically based on actual headway deviations rather than static schedules.
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Driver Behavior and Institutional Practices. Finally, the performance and behavior of drivers also matter.
Experienced and well-supported drivers are more likely to maintain consistent operating speeds and comply with
headway management instructions. Organizational factors such as vehicle condition, scheduling flexibility, and the
responsiveness of operations staff further shape the likelihood of successful headway control.

To complement the qualitative discussion above, Table 2.3.1 presents a synthesized overview of operational, in-
frastructural, and behavioral variables identified in the literature as significant determinants of headway variability.
The strength of influence is expressed qualitatively based on the evidence presented in multiple empirical studies.
A “+” symbol indicates a weak-to-moderate effect, while “+++” signals a strong influence on the disruption of
scheduled vehicle intervals.

Variable Likely Overall Influence

Headway variability at route origin +++
Scheduled frequency +++
Distance travelled from origin ++ / +++
Passenger demand ++
Number of stops ++
Off-board payment stops ++
Right of way design + / ++
Congestion + / ++
Traffic signals + / ++
Incidents + / ++
Driver behavior or experience +
Fleet type (vehicle heterogeneity) +

Table 2.3.1: Summary of Key Factors Influencing Headway Variability (summarized from Tirachini et al. (2022))

In summary, headway variability is a complex, multifactorial issue driven by both controllable and uncontrol-
lable elements. Effective mitigation requires coordinated attention to upstream dispatching, mid-route control
strategies, network design, and operator performance, each of which plays a crucial role in determining the pas-
senger experience and the operational efficiency of the public transport system.

2.3.4. Consequences of Headway Variability

The consequences of headway variability extend well beyond operational metrics, affecting both passenger experi-
ence and system efficiency. Irregular headways lead to increased waiting times for passengers, as the unpredictabil-
ity of service intervals reduces reliability and undermines passenger confidence. According to studies by Muñoz et
al. (2020) and Fedujwar and Agarwal (2024), passengers experiencing longer and uncertain wait periods report
higher perceived wait times, which can decrease satisfaction and ultimately reduce ridership.

Bus bunching, where buses on the same route cluster together and are followed by long service gaps, is another
result of headway variability. As described by Chen and Liu (2011), Figliozzi et al. (2012), TRB (2020a) and
others, this bunching not only leads to overcrowded vehicles, delaying boarding and alighting, but also reduces
capacity utilization efficiency. The discomfort and inconvenience associated with bus bunching create a cycle of
inefficiency that impacts both passengers and operators. When bunching happens, the majority of passengers
experience reduced service quality, since more passengers travel in crowded vehicles than empty ones.

Furthermore, fluctuating headways undermine the reliability and predictability of public transport service, mak-
ing it difficult for passengers to plan trips accurately. This erosion of confidence can lead to a modal shift from
public transport to private vehicles, reducing the social and environmental benefits associated with public trans-
portation. Financially, the unpredictability of headways necessitates additional resources to maintain service levels,
leading to increased operational costs (Y. Yan et al., 2016; Tirachini et al., 2013).

2.3.5. Interaction with System Variables

Headway variability dynamically interacts with various system variables, creating interdependent challenges within
the public transport network. For example, headway variability often increases in-vehicle crowding, as irregular
intervals lead to uneven passenger loads. According to Fedujwar and Agarwal (2024), Chen and Liu (2011) and
Mahmoudi et al. (2023), this effect can create a feedback loop in which crowded buses experience longer dwell
times, worsening headway irregularity. This interaction suggests that improvements in headway management can
positively impact crowding and vice versa.

Another factor affected by headway variability is line overlapping. Overlapping or parallel routes can provide
passengers with alternative travel options, potentially mitigating the negative effects of headway variability and
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crowding on a single line. However, as noted by Fedujwar and Agarwal (2024), the effectiveness of this approach
depends on real-time information systems that keep passengers informed about crowding levels on alternative
routes.

Network configuration, including route design, stop spacing, and infrastructure availability, also influences
headway regularity. Dedicated lanes, optimally spaced stops, and simplified route designs can reduce dwell times
and travel time variability, supporting more consistent headways. Systems with long routes and frequent stops tend
to exhibit higher headway variability, indicating that route and stop configuration require careful optimization to
balance operational efficiency with accessibility Lin and Ruan (2009).

2.3.6. Policies to Reduce Headway Variability

To mitigate headway variability, public transport agencies employ a range of policies and operational strategies.
Holding control is a widely used approach in which buses are held at designated stops to regulate headways.
Supported by AVL systems, this strategy has proven effective in reducing bus bunching and maintaining predictable
service intervals (Daganzo, 2009; TRB, 2020a). However, holding requires precise calibration to avoid excessive
passenger delays, ensuring a balance between headway regularity and travel time.

Transit Signal Priority (TSP) systems, which give priority to buses at traffic signals, also help reduce travel time
variability by minimizing delays at intersections. As highlighted by TRB (2020a), TSP systems are particularly
useful in urban areas where signal-induced delays are a primary cause of headway irregularity, allowing dynamic
adjustments to signal timings that prioritize buses.

Optimized stop spacing is another effective approach. By strategically placing stops based on demand and
operational efficiency, public transport agencies can regulate dwell times more effectively, minimizing disruptions
to headways. This strategic placement enhances accessibility and operational performance, providing a balanced
approach to supporting consistent headways (TRB, 2020a).

Real-time information dissemination enhances the public transport experience by keeping passengers informed
of bus arrival times and headway status, thereby empowering passengers to make informed travel decisions. Stud-
ies by Drabicki et al. (2023) and Drabicki et al. (2021) suggest that this measure is particularly effective when
combined with mobile applications and digital displays.

Driver training and consistency programs also play a critical role in reducing driver-induced headway vari-
ability. Programs that emphasize steady driving speeds and adherence to schedules contribute to smoother, more
predictable service. According to Godachevich and Tirachini (2021), these programs are especially relevant in
public transport systems where variability often results from operator behavior.

2.4. Line Overlapping

Line overlapping refers to the condition in which two or more public transport routes share a portion of their se-
quence of stops. While this configuration can enhance service frequency in the shared segments and provide greater
route flexibility, it also introduces significant operational complexities. In high-frequency public transport systems,
overlapping routes have been consistently linked to operational instability. The following sections synthesize em-
pirical evidence and mechanistic insights from the literature regarding the relationship between overlapping routes
and in-vehicle crowding.

2.4.1. Overlapping Routes Exacerbate In-Vehicle Crowding

Several studies explicitly link line overlapping to operational dynamics that lead to worsened crowding conditions.
For instance, Diab et al. (2015) directly investigates the impacts of overlapping bus service on headway delays and
bus bunching two critical precursors to increased crowding, and concludes that service overlapping does increases
the headway delay and therefore increases the passengers’ waiting times

Similarly, Iliopoulou et al. (2020) provides clear empirical evidence that routes operating on shared corridors
experience more frequent instances of bus bunching. By applying headway deviation analysis and spatio-temporal
clustering techniques, their study distinguishes the patterns of bunching according to route characteristics, re-
vealing that overlapping corridors exhibit higher intensities of disruption. The resulting bus bunching leads to
imbalanced vehicle loading, with some buses becoming significantly more crowded than others.

Furthermore, Arriagada et al. (2019) employs GPS and Automatic Fare Collection (AFC) data to examine factors
driving bus bunching in cities such as Santiago and Gatineau. Their findings indicate that high scheduled frequen-
cies, irregular dispatch headways, and shared route segments (referred to as “common-route services”) collectively
contribute to increased bunching. Since bunching results in highly variable passenger loads across vehicles, this
study reinforces the direct connection between line overlapping and in-vehicle crowding.
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2.4.2. Dynamics between overlapping and crowding

The reviewed literature identifies several mechanisms through which line overlapping exacerbates in-vehicle crowd-
ing:

Amplification of Headway Irregularities

Studies such as Diab et al. (2015), Iliopoulou et al. (2020), and Arriagada et al. (2019) demonstrate that overlap-
ping corridors lead to inter-line interference and irregular dispatching, which in turn increases headway variance.
Foundational research by Strathman et al. (n.d.) and Figliozzi et al. (2012) establishes that longer or irregular
headways directly contribute to higher passenger accumulation at stops. This accumulation causes subsequent
vehicles to experience extended dwell times and increased crowding, as they must accommodate a larger influx of
boarding passengers.

Bunching Hotspots in Shared Sections

Empirical evidence from Iliopoulou et al. (2020) indicates that the spatio-temporal clustering of bunching events
is particularly concentrated in shared corridor segments. In instances of bus bunching, the first vehicle in a bunch
often becomes overloaded and experiences prolonged dwell times, while following vehicles may remain underuti-
lized. This dynamic of uneven load distribution directly contributes to in-vehicle crowding.

Competition Across Lines

Although not explicitly framed as competition, both Diab et al. (2015) and Arriagada et al. (2019) report that
routes sharing corridor segments suffer from increased operational instability. When multiple lines operate within
the same corridor without coordinated scheduling, the resulting uncoordinated operations lead to amplified pas-
senger surges and uneven load distributions, thereby exacerbating crowding. Additionally, as discussed by Feng
and Figliozzi (2011) and Tirachini et al. (2022), the feedback loop wherein crowding induces delays, and delays
subsequently cause further crowding, further compounds the issue.

2.4.3. Relevance to In-Vehicle Crowding

The collective findings from the reviewed studies establish clear operational relationships between line overlap-
ping, headway deviations, and bus bunching, which in turn directly impact in-vehicle crowding through several
pathways:

• Overlapping routes → Greater headway variability → Increased passenger accumulation at stops → Uneven
boarding across vehicles → In-vehicle crowding.

• Overlapping routes → More severe bunching events → Overloading of the first bus in the bunch → Increased
onboard crowding.

• Shared corridors → Uncoordinated operations across multiple lines → Amplified passenger surges → Over-
crowded vehicles.

It is important to note that while these studies provide robust observational evidence linking overlapping routes
to in-vehicle crowding, none offers a quantitative model that explicitly estimates the increase in crowding as a
function of overlapping. The evidence remains primarily observational and correlative rather than derived from
experimental or fully causal econometric analyses. Nonetheless, the convergence of findings across multiple sources
underscores the significance of line overlapping as a critical factor in understanding and mitigating in-vehicle
crowding in high-frequency, high-demand public transport systems.

2.5. Relationship Between Crowding, Headway, and Overlapping

Understanding the theoretical interplay among in-vehicle crowding, headway variability, and line overlapping is
fundamental to improving public transport system performance. This section synthesizes the relevant literature
and presents a conceptual framework that explains how these factors interrelate.
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2.5.1. Headway Variability as a Driver of Crowding

Theoretical models of public transportation have long emphasized that regular headways are crucial for maintain-
ing uniform passenger loads across vehicles. When headways become irregular, due to fluctuations in traffic con-
ditions, passenger boarding times, or other disruptions, the system experiences vehicle bunching. In such scenarios,
one bus may accumulate a high number of waiting passengers, while subsequent buses may arrive relatively empty.
This uneven distribution results in higher in-vehicle crowding for the first bus in the bunch, which is exacerbated
by increased dwell times and delayed departures (Chen & Liu, 2011; Tirachini et al., 2016).

2.5.2. The Role of Line Overlapping in Operational Dynamics

While overlapping routes can enhance service frequency and offer flexible travel options, they also introduce op-
erational complexities that affect headway stability. In a shared corridor, vehicles from different lines interact,
and their schedules may not be perfectly coordinated. This inter-line interference can lead to irregular dispatch
intervals and increased variability in headways, thus compounding the risk of vehicle bunching (Iliopoulou et al.,
2020; Diab et al., 2015). Moreover, overlapping routes can create competition for boarding passengers, especially
at shared stops. This competition intensifies during peak periods, where even small deviations in headways can
cause significant imbalances in passenger loads across vehicles.

2.5.3. Integrated Dynamics: Feedback Loops and Amplification Effects

The theoretical framework linking these factors can be conceptualized as a series of interconnected feedback loops:

1. Headway Variability and Passenger Accumulation: Irregular headways cause inconsistent intervals be-
tween vehicles, leading to the accumulation of passengers at stops. When a bus finally arrives, it must
accommodate a larger-than-average number of boarding passengers, which in turn increases dwell time.
Longer dwell times can then trigger further deviations from the scheduled headway, perpetuating the cycle
of irregular service.

2. Line Overlapping as an Amplifier: In corridors where multiple lines overlap, the impact of headway variabil-
ity is amplified. Shared routes complicate the scheduling process, as vehicles from different lines are likely
to interfere with one another’s timing. This interference increases the frequency and severity of headway
deviations, thereby exacerbating the phenomenon of bus bunching. The resulting imbalances in passenger
loads are more pronounced, leading to heightened levels of in-vehicle crowding.

3. Combined Impact on In-Vehicle Crowding: The combination of irregular headways and overlapping routes
creates a compounded effect on crowding. First, irregular headways lead to passenger surges and bunch-
ing. Second, the operational challenges introduced by overlapping, such as uncoordinated dispatching and
competition for boarding, intensify these surges. The net result is a system in which vehicles experience
significantly uneven load distributions, with certain vehicles becoming severely overcrowded while others
remain underutilized.

2.5.4. Conceptual Model

Figure 1.2 illustrates the conceptual model developed from the literature. The model depicts how headway
variability directly leads to passenger accumulation and how overlapping routes amplify this effect by introducing
additional variability and competition among vehicles. This integrated view helps explain the observed empirical
patterns of in-vehicle crowding and provides a theoretical basis for the subsequent data-driven analysis presented
in this thesis.

In summary, the theoretical relationship among in-vehicle crowding, headway variability, and line overlapping
is characterized by a series of reinforcing feedback loops. Irregular headways directly contribute to crowding by
causing passenger accumulation, while overlapping routes amplify these effects by introducing further operational
complexity and inter-line interference. Together, these factors create a dynamic system where even minor devi-
ations in service regularity can lead to significant variations in vehicle occupancy, thereby undermining overall
service quality.
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Figure 2.5.1: Conceptual model of the relations between Crowding, Headway, and Overlapping

2.6. Chapter Conclusion

This chapter has provided a comprehensive review of the literature and theoretical foundations underlying the
relationships between in-vehicle crowding, headway variability, and line overlapping. By synthesizing previous
studies, we have established a conceptual framework that highlights the complex interdependencies among these
factors.

2.6.1. Key Findings and Certainties

Several key insights can be confidently drawn from the chapter:

• Headway variability is a primary driver of in-vehicle crowding. The literature strongly supports the asser-
tion that irregular headways lead to an uneven distribution of passengers across vehicles. When headways
deviate from their intended schedule, certain vehicles experience significantly higher occupancy levels while
others remain underutilized. This imbalance leads to excessive crowding, longer dwell times, and a deterio-
ration in service reliability (Tirachini et al., 2016; Chen & Liu, 2011).

• Line overlapping amplifies the negative effects of headway variability. In corridors where multiple pub-
lic transport lines share stops, coordination challenges arise, making it more difficult to maintain consistent
headways. Inter-line interference can cause larger deviations from scheduled headways, further exacerbating
crowding issues. Overlapping routes create additional uncertainty in service regularity, leading to unpre-
dictable passenger distributions across vehicles (Diab et al., 2015; Iliopoulou et al., 2020).

• The relationship among these factors is characterized by reinforcing feedback loops. Once headway
variability begins to manifest, it triggers a self-perpetuating cycle where uneven passenger loads cause in-
creased dwell times, which in turn lead to further deviations from the schedule. When overlapping routes
are present, this feedback loop intensifies, making it even more challenging for public transport operators to
recover regular service intervals.

These findings confirm that managing headway variability and considering the impacts of network design are
crucial for mitigating in-vehicle crowding and improving public transport service quality.

2.6.2. Unanswered Questions and Knowledge Gaps

Despite these established insights, several questions remain open, highlighting areas where further research is
needed:

• Quantifying the relationship between headway variability and crowding. While it is well understood that
headway irregularities increase crowding, precise quantitative models linking these two phenomena remain
limited. Empirical studies using large-scale datasets, such as Automatic Vehicle Location (AVL) and Automatic
Passenger Count (APC) data, could offer more concrete estimations of this relationship.
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• Understanding the network-wide impact of line overlapping. Most existing studies focus on localized
effects of overlapping routes rather than analyzing their system-wide implications. It remains unclear whether
overlapping corridors always lead to increased crowding, or whether certain network designs can mitigate
these negative effects.

Addressing these gaps will be essential for advancing both theoretical and practical understandings of public
transport system performance.
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Chapter 3

Methodology

3.1. Introduction

This chapter presents the methodological framework used to analyze how public transport service characteristics
influence in-vehicle comfort across an urban transport network. Our objective is to model the relationship be-
tween operational variables, such as headway variability, service overlap, and bunching, and the comfort levels of
passengers, which are reported as an ordinal variable ranging from 1 (least crowded) to 5 (most crowded).

The data structure reflects a fine-grained panel design. Each observation corresponds to a vehicle stop event
defined by its stop location, line-direction, and service day. For each stop-day-line combination, we chronologically
order the vehicles that serve that stop using a trip sequence variable. This structure allows us to capture the
evolution of service patterns at each physical stop over the course of a day.

Passenger comfort is treated as an ordinal outcome, and we estimate a random-effects ordered logistic regres-
sion model. This specification is well-suited to our context because it accommodates unobserved heterogeneity
across stop-day-line clusters while maintaining interpretability of the ordinal structure. Fixed-effects estimators for
ordered logit models are not feasible due to the incidental parameters problem: introducing a large number of
cluster-specific intercepts leads to inconsistent and biased estimates of the slope coefficients when the number of
time observations is limited per cluster (Hole et al., 2011).

The random-effects model instead assumes that cluster-specific intercepts are drawn from a common distribu-
tion and are uncorrelated with the predictors. While this assumption cannot be directly tested, it enables consistent
estimation of both structural coefficients and the variance of unobserved heterogeneity, provided the exogeneity
condition holds.

We detail the construction of key explanatory variables, including headway, bunching, cumulative line fre-
quency, and network overlap, and describe their hypothesized relationship with crowding. We also include opera-
tional controls such as peak-hour flags and public transport mode dummies. This chapter proceeds by defining the
panel structure and statistical model, explaining estimation procedures, and outlining the diagnostic steps used to
validate the approach.

3.2. Input Data

In this section, we describe the two primary data sources underpinning our analysis: the combined Automated
Passenger Counter and Automated Vehicle Locator (APC/AVL) feed provided by the operator, and the General
Transit Feed Specification (GTFS) schedule data. We detail how each dataset was acquired, the available fields
and their formats, and the preprocessing steps undertaken to render them analysis-ready. The fully harmonized
dataset, resulting from a composite-key join of APC/AVL and GTFS records, is denoted as events_analysis and forms
the basis for feature engineering and modeling.

3.2.1. APC/AVL Data

The Automated Passenger Counter (APC) and Automated Vehicle Locator (AVL) systems together form the primary
source of observed operational and passenger load data. These systems are deployed by the public transport
operator to monitor vehicle performance and passenger flow at a high temporal and spatial resolution. For this
study, APC and AVL records have been integrated by the operator into a unified dataset that reports detailed stop-
level information for every vehicle trip across the network. Each record in the dataset corresponds to a single
stop event, a unique occurrence of a vehicle arriving at and departing from a specific stop as part of a scheduled
trip. The data are organized chronologically within each trip and are enriched with both scheduled and actual
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departure times, allowing for the calculation of punctuality, headway deviations, and travel times. Moreover,
vehicle characteristics and capacities are merged into the dataset using the vehicle ID as a linking key to the
operator’s fleet registry.

The accuracy of APC systems varies by sensing technology. Infrared-based systems, commonly installed in buses
and trams, exhibit moderate baseline accuracy (approximately 77%) but can achieve 95–97% accuracy when a ±1
passenger tolerance is permitted. Their performance is sensitive to factors such as crowding and sensor placement
(Cavallero et al., 2023). Pressure-based systems, which infer passenger counts from weight changes, demonstrate
strong accuracy for total onboard loads (1–4% relative error), though they struggle to differentiate boarding from
alighting passengers (Cavallero et al., 2023). Finally, emerging Wi-Fi and cellular signal tracking methods can
reach up to 79% accuracy, though they introduce biases related to multi-device users and undetectable passengers.
These technological differences underscore the need for system-level calibration and tolerance-aware evaluation
when applying APC data to operational analyses (Barabino et al., 2025). After the measurement, there is a post
processing by the operator that smooths and calibrate the optputs.

Although Automatic Vehicle Location (AVL) systems are widely deployed in public transport networks to moni-
tor service reliability, they do not always provide complete or fully representative data. Even when fleets are fully
AVL-equipped, archived data often include anomalies, such as missing timestamps or erroneous positions, that can
distort reliability analyses. Research by Barabino et al. (2017) has shown that neglecting these anomalies can lead
to underestimation of headway variability and regularity issues, misrepresenting the service as experienced by pas-
sengers. According to Barabino et al. (2017) addressing AVL data anomalies significantly impacts headway-based
reliability metrics where a 5% increase in missing data can lead to a corresponding 5% increase in measured head-
way variability; but has minimal effect on schedule-based punctuality measures that remain largely unchanged.
This finding highlights the importance of targeted data validation for studies focusing on passenger-experienced
service quality.

These APC/AVL records form the empirical foundation of the methodology. They not only support the derivation
of the dependent crowding variable but also allow for the construction of key explanatory features, such as actual
headway, bunching detection, and observed passenger loads. This high-resolution view of vehicle-stop interactions
enables the application of panel-data modeling techniques, as each action of stopping is uniquely identified by its
position within the trip, the trip ID, the stop ID, the date, and the route.

By combining real-time observations with scheduled expectations, the APC/AVL dataset provides a dynamic and
operationally grounded view of public transport activity, essential for modeling the stochastic nature of passenger
comfort and vehicle performance across space and time.

3.2.2. GTFS data

The GTFS static feed is a structured data format that provides detailed and standardized information about a pub-
lic transport agency’s fixed schedules, routes, stops, and other operational details. This feed is designed to be
machine-readable, enabling developers, planners, and other stakeholders to analyze and integrate public trans-
port information into various applications, such as trip planners, scheduling tools, and urban mobility platforms
(GTFS.org, 2024).

At its core, the GTFS static feed comprises a collection of plain text files. Each file within the feed represents
a specific aspect of the public transport system, such as stops, routes, trips, schedules, and fare information. For
instance, the stops.txt file lists all public transport stops or stations, including their names, geographic coordinates,
and IDs. Similarly, the routes.txt file outlines the public transport lines or services, their IDs, names, and types (e.g.,
bus, subway, train).

One of the most critical components is the trips.txt file, which links routes to scheduled services and defines
individual trips along these routes. This file works in tandem with stop_times.txt, which specifies the exact times
each trip is expected to arrive at and depart from the stops along its route. Together, these files provide a complete
picture of the public transport agency’s operations, from when and where vehicles operate to how passengers move
through the system.

GTFS static also supports additional files to include information about fares, service exceptions in the calen-
dar_dates.txt, and sometimes geographic shapes of routes (shapes.txt). These supplementary files enhance the
richness of the data, allowing applications to provide more precise and comprehensive public transport informa-
tion, such as calculating the cost of a trip or visualizing routes on a map.

This data format is particularly valuable because it is designed for global compatibility and is easy to integrate
into a variety of tools and systems. Public transport agencies can provide GTFS feeds to make their services
discoverable in popular trip planning platforms like Google Maps, while urban planners can use the data for
modeling and analysis. By providing a consistent structure, the GTFS static feed bridges the gap between public
transport providers and the public, fostering better accessibility and understanding of public transport systems.

The relationship schema of GTFS data is shown in Figure 3.2.1.
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Figure 3.2.1: Relational structure of the GTFS datasets.

3.3. Pre-processing & Harmonization

Before any analysis can be conducted, the raw APC/AVL and GTFS feeds must undergo extensive cleaning, enrich-
ment, and alignment to ensure that each stop-level record reflects a coherent, passenger-focused view of service
performance. In this section, we describe the rationale and methods for each stage of pre-processing, emphasizing
how these operations preserve the integrity of headway, punctuality, and crowding indicators.

3.3.1. APC/AVL Cleaning & Enrichment

The combined APC/AVL dataset contains real-time observations that are subject to sensor noise, clock drift, and
vehicle-idiosyncratic conventions. First, we restrict the dataset to core service hours (05:00–20:00). overnight
operations often follow different dispatching rules or rely on reduced service patterns; excluding these periods
ensures that our analysis targets the main demand windows where crowding is most relevant while keeping the
midday valley in the data.

Next,we truncate terminal_time, to the nearest minute by setting seconds to zero. This standardization aligns
the high-precision AVL logs with the minute-resolution schedule data in GTFS, preventing misalignments.

We then assign a trip_type label to each event by grouping runs that share an identical sequence of stops. Some
of the studied routes have scheduled branching or stop skipping; trip-type classification guarantees that only truly
comparable runs are analyzed together, which is essential for robust headway and crowding calculations.

Additional metadata fields are computed to facilitate both modeling, interpretation and filtering. A day_of_week
variable helps filter out weekends from the data, while a binary peak_flag indicates whether the departure occurs
during the morning (07:00–09:00) or evening (16:00–19:00) rush periods. Finally, we perform a manual consis-
tency check on each line to resolve anomalies such as dual-stop naming at border crossings or intentional loopbacks
that revisit a stop; these cases are flagged or reconciled so that stop-sequence ordering remains consistent.

The integration of APC/AVL data with GTFS schedules is achieved through a multi-key join operation based on
the date, terminal departure time, stop sequence, line-direction identifiers, and stop IDs. This allows for each ob-
served stop-event to be matched with its corresponding planned context. Through this linkage, various operational
indicators are derived, including expected and actual headways, bunching conditions, and metrics of line overlap.
The latter include the number of lines serving the same arc, the cumulative frequency of those lines on an hourly
basis, and a normalized index representing the proportion of shared arcs remaining after the current stop.
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3.3.2. GTFS Filtering & Trip-Type Extraction

As mentioned, the GTFS static feed provides the operator’s planned schedule. The information we accessed con-
tained data for other several operators. To derive a baseline for the planned schedule we first filter trips.txt and
stop_times.txt by the relevant operator, discarding any irrelevant data. We then intersect each trip’s service_id with
calendar.txt to retain only those trips active on the dates in our APC/AVL window. Next, we extract the same
trip_type labels from the GTFS data by grouping trips that share both route, direction, and ordered stop sequences.
By mirroring the APC/AVL classification, we guarantee a one-to-one correspondence between planned and observed
runs, which is critical for accurately computing deviations.

Table 3.3.1 and Table 3.3.2 provide comprehensive schemas for the raw APC/AVL and GTFS inputs, respectively.
Together, they document the column names, data types, and sources that feed a the harmonized table, ensuring
full transparency and reproducibility of the pre-processing pipeline.

Variable Description

Date The date of the trip.
Stop Name The name of the current stop.
Stop Sequence The ordinal position of the stop within the trip.
Punctuality The deviation in seconds between actual and scheduled departure at the stop.
Terminal Time The scheduled departure time from the first stop of the trip.
Expected Departure The scheduled departure time from the current stop
Actual Departure The recorded departure time from the current stop, obtained from AVL.
Line Direction The line number and direction; all lines operate bidirectionally (e.g., “17 – Aller”).
Vehicle ID The unique identifier of the vehicle performing the trip.
PT Mode The vehicle model/type used, which determines its capacity.
Passengers On Board The estimated number of passengers on board at the time of departure from the stop.
Passengers Alighting The estimated number of passengers alighting at the stop.
Passengers Boarding The estimated number of passengers boarding at the stop.
Weekday Day of the week
Peak flag 1 if trip happens either 07:00–09:00 or 16:00–19:00, 0 else wise

Table 3.3.1: Description of trip realization data columns from APC and AVL systems (data provided by operator)

Variable Description

Date The date of the trip.
Trip ID Unique daily ID for each trip
Stop ID Unique stop identifier
Stop Name The name of the current stop.
Stop Sequence The ordinal position of the stop within the trip.
Trip headsign Final destination of the trip
Departure time The scheduled departure time from the each stop of the trip.
Terminal Time The scheduled departure time from the first stop of the trip.
Line Direction The line number and direction
PT Mode Differentiates between, bus, tram, and trolleybus

Table 3.3.2: Description of selected columns from GTFS feed

3.4. Variable Definition

In this section, we present the construction of the dependent comfort index and the suite of predictor variables
used to model crowding outcomes. Starting from the harmonized event table events_analysis, we first define the
ordinal dependent variable and then detail the computation of each potential operational predictor.

3.4.1. Comfort Index (Target Variable)

To capture passenger comfort in a manner both interpretable and sensitive to incremental load changes, we trans-
form the continuous onboard count into a five-level ordinal index Y . This discretization distinguish between ample
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seating (Levels 1–2), moderate standing loads (Level 3), and high-density or overcapacity conditions (Levels 4–5).
The levels where decided together with the data provider, since those levels are the same as they use in operation.
A visual representation:

Comfort level 1: User can easily find a seat.
Occupancy ≤ 50% of seating capacity.

Comfort level 2: User can find a seat.
Level 1 ≤ Occupancy ≤ Seating capacity.

Comfort level 3: User cannot sit but can stand comfortably.
Level 2 ≤ Occupancy ≤ 50% of Standing capacity.

Comfort level 4: User can stand but it is crowded.
Level 3 ≤ Occupancy ≤ Designed capacity.

Comfort level 5: Overcrowded.
Occupancy > Designed capacity.

Level 1 indicates conditions where fewer than half of the seats are occupied, reflecting a comfortable envi-
ronment with ample seating and space. Level 2 corresponds to near-full seating occupancy, but with no standing
required. Level 3 captures the onset of standing passengers up to the midpoint between seating and designed
capacity, a zone where comfort begins to diminish. Level 4 denotes situations approaching full capacity, often
perceived as crowded yet still within the design load. Finally, Level 5 represents overcapacity conditions, where
passenger density exceeds the vehicle’s nominal capacity, leading to potential discomfort and safety concerns.

3.4.2. Predictor Variables

To explain variations in comfort levels, we derive seven key predictor variables grounded in operational practice
and prior literature. Each variable is computed at the stop-event level from the temporal and spatial sequence
of observations in events_analysis. Below, we introduce each group of variables and provide an explanation of its
expected behavior.

Headway Metrics

Headway regularity is a foundational determinant of passenger experience. Irregular intervals between vehicles
can lead to overcrowding on delayed vehicles and underutilization of early ones.
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• Relative headway (RelHeadway): the percentage deviation of actual headway from the expected headway,
computed as:

RelHeadway =
ActHeadway − ExpHeadway

ExpHeadway

• Actual headway (ActHeadway, seconds): the observed interval between two consecutive vehicles.

• Bunching flag (BunchFlag ∈ {0, 1}): equals 1 if the actual headway is less than 90 seconds.

Relative headway quantifies the deviation between the observed headway and the scheduled interval, normal-
ized by the scheduled value. Large relative headway values indicate vehicles that are significantly delayed com-
pared to the expected interval, likely experiencing a buildup of waiting passengers. Actual headway, in contrast,
captures the absolute interval (in seconds) between successive vehicles. Longer headways are generally associated
with more crowding, as they imply longer passenger waiting times and greater stop-level accumulation. Finally,
the bunching flag is a binary indicator for extremely short headways, typically indicative of vehicles operating in
platoons. In this situation, the lead vehicle tends to be underloaded, while the trailing vehicle absorbs the excess
demand, experiencing elevated crowding levels. While the variable marks the presence of bunching, its interpre-
tation in modeling focuses on how that stop-event relates to uneven spacing and load concentration. According to
Rezazada et al. (2024) there is no single threshold value to define bunching events, as it depends on the type of the
service, time of the day, location, and service frequency. Some studies suggest using a constant threshold between
20 seconds and 1/4 of the scheduled headway. For this study we chose a threshold of 90 seconds, to accommodate
the headways distribution in the network.

Figure 3.4.1: Headway metrics

Temporal Control

• Peak-period flag (PeakFlag ∈ {0, 1}): equals 1 if the scheduled terminal time falls in peak intervals (07:00–09:00
or 16:00–19:00).

Demand in public transport systems follows strong daily cycles. To capture this, we define a peak-period flag
that indicates whether a stop-event occurs during the morning (07:00 – 09:00) or evening (16:00 – 19:00) peaks.
These intervals are associated with higher passenger volumes due to commuting activity, which often overwhelms
scheduled capacity. We expect this variable to be positively associated with crowding, even after accounting for
frequency and headway variation, due to background demand intensity.
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Line specific metrics

• Public transport mode: a distinction between the three vechicle types present in the data, namely: bus, tram
and trolleybus.

Vehicle configuration and capacity influence how much passenger load a vehicle can absorb before reaching
crowding thresholds. In our model, public transport mode is included as a categorical variable to distinguish
between buses, trams, and trolleybuses. Trams typically offer higher capacity and may serve more congested
corridors, while trolleybuses might operate in lower-demand or segregated corridors. These differences introduce
heterogeneous baseline crowding risks across modes, even under similar service conditions.

Line-Overlap Metrics

Public transport lines that share infrastructure or service arcs can produce complex interactions. On one hand,
overlap increases effective frequency at shared stops; on the other hand, it increases susceptibility to demand
surges and coordination failures. We include three metrics to capture this network structure.

• Lines in arc (LinesInArc): number of distinct lines operating over the same arc.

• Joint arc frequency (ArcFreq, trips/hour): cumulative hourly frequency of all services over the arc.

• Upstream shared-arc ratio (SharedArcRatio): fraction of upstream arcs that are shared with other lines.

Lines in arc counts the number of distinct lines traversing the same road segment. A high value reflects corridor-
level convergence and is expected to increase crowding risk, particularly if vehicle arrivals are poorly spaced or
passenger assignment is uneven. Arc frequency measures the cumulative number of vehicles operating per hour
over the arc. While higher arc frequency may reduce wait times and smooth demand, its interaction with headway
regularity is non-linear. Under irregular conditions, high frequency may still lead to crowding due to clustering and
demand peaking. Finally, the upstream shared-arc ratio captures the fraction of arcs prior to a given stop that are
shared with other lines. A high value implies prolonged network overlap, where cumulative upstream demand can
cascade into downstream segments, intensifying vehicle loading. This metric thus represents the temporal depth
of exposure to network complexity.

3.4.3. Variable Summary

Variable Type Definition / Computation Expected Effect on Com-
fort Level

Comfort (Y) Ordinal (1–5) Derived crowding index (see §3.4.1) N/A (response variable)
Relative Headway Continuous (unitless) (ActHeadway − ExpHeadway)/ExpHeadway Higher → More crowding

due to delay-based accu-
mulation

Actual Headway Continuous (seconds) Time interval between vehicles at stop level Higher → More crowding
due to longer wait times

Bunching Flag Binary (0/1) 1 if Actual Headway < 90 seconds 1 → Higher likelihood of
crowding (trailing vehi-
cles)

Peak Flag Binary (0/1) 1 if terminal time falls in peak intervals 1 → More crowding due to
increased demand

PT Mode Categorical Bus / Tram / Trolleybus Trams more crowded;
trolleybuses less, ceteris
paribus

Lines in Arc Discrete Number of lines sharing the arc Higher → Higher crowd-
ing from overlap

Arc Frequency Continuous (trips/hour) Sum of vehicle arrivals per hour on arc Mixed: mitigates or wors-
ens crowding depending
on spacing

Shared Arc Ratio Continuous (0–1) Proportion of upstream arcs with line overlap Higher → More crowding
from upstream accumula-
tion

Table 3.4.1: Summary of target and predictor variables and their expected influence on passenger comfort
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3.5. Statistical Analysis

To examine how real-time operational factors shape in-vehicle crowding, we use a panel-data structure in which
the unit of analysis is each individual stop event over the course of a service day. Specifically, we construct a
cluster identifier, panel_id, by concatenating the stop identifier (Stop ID), the date of service (Date), and the line-
direction pair (Line-Direction). Within each of these stop-day-line clusters, vehicles are ordered sequentially using
Trip Sequence, which reflects their chronological position in the service schedule.

This approach produces a rich longitudinal dataset that captures the full sequence of departures at each phys-
ical stop throughout the day, allowing us to model the progression of passenger comfort as a function of service
reliability and network structure.

3.5.1. Panel Structure and Model Formulation

Our panel data is indexed by:
(i, t, d, ℓ),

where i refers to the physical stop, t to the trip number, d to the calendar date, and ℓ to the line-direction com-
bination. Within each panel_id, multiple trips occur over time, giving us repeated observations of crowding levels
under varying operational conditions.

We estimate a random-effects ordered logistic regression model of the form:

log
Pr(Yitdℓ ≤ k)

Pr(Yitdℓ > k)
= αk +

p∑
j=1

βjXitdℓ,j + utdℓ, k = 1, 2, 3, 4,

where: - Yitdℓ is the observed comfort level (ordinal, 1–5), - Xitdℓ,j are the standardized service and network
covariates (see Section 3.4.2), - αk are the threshold parameters, - utdℓ ∼ N (0, σ2

u) is the unobserved random
intercept for each stop-day-line cluster.

This specification assumes that unobserved heterogeneity, such as persistent differences in boarding demand,
infrastructure, or stop layout, is captured by the random intercept utdℓ, which varies across clusters but not across
trips within each cluster.

3.5.2. Random Effects approach

Although fixed-effects models are often used to eliminate unobserved heterogeneity that may bias regression esti-
mates, they are not suitable in our context due to fundamental limitations of the ordered logistic model:

1. No Conditional Likelihood Exists for Ordered Logit. In binary logit models, the conditional likelihood
method (e.g., Chamberlain estimator) can eliminate fixed effects by conditioning on the number of successes.
For ordered outcomes, however, there is no analogous sufficient statistic that allows us to “condition out” the
fixed effects while retaining consistent estimates of the slope coefficients.

2. Software Limitations Reflect Fundamental Theory. Stata’s xtologit only supports random effects, this is
not a technical omission but reflects the theoretical infeasibility of fixed-effects estimation in ordered logit
models. No unbiased, consistent fixed-effects estimator is available for ordinal outcomes without relying on
strong assumptions or dropping entire clusters.

3. Practical and Theoretical Compromise. By modeling cluster-level unobserved heterogeneity as a normally
distributed random effect, we preserve the full sample and gain consistent estimates of both the slope coef-
ficients and the variance of cluster-specific crowding tendencies. The trade-off is the assumption that these
random effects are uncorrelated with the regressors.

Accordingly, all our models rely on the random-effects ordered logistic framework, striking a balance between
theoretical tractability and empirical relevance in panel data with ordinal outcomes.

3.5.3. Model Diagnostics

Robustness and internal validity are essential to ensure the reliability of regression-based inference, especially in
high-dimensional models where multiple predictors may be interrelated. A key concern in such settings is mul-
ticollinearity, which arises when two or more explanatory variables are highly correlated. In the presence of
multicollinearity, the precision of estimated coefficients may be compromised: standard errors inflate, coefficient
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estimates become unstable, and the model may be sensitive to minor changes in the data. Although multicollinear-
ity does not bias the estimated coefficients per se, it undermines their interpretability and statistical significance,
potentially obscuring true relationships between predictors and the outcome variable.

To assess the severity of multicollinearity in our model, we calculated Variance Inflation Factors (VIFs) for
each of the predictors included in the random-effects ordered logistic regression. The VIF for a given variable
quantifies how much the variance of its estimated regression coefficient is increased due to linear dependence with
the other regressors in the model. Formally, the VIF for predictor Xj is defined as:

VIF(Xj) =
1

1−R2
j

where R2
j is the coefficient of determination obtained from regressing Xj on all other independent variables.

A higher R2
j implies that a larger portion of Xj ’s variation is explained by the remaining covariates, leading to a

higher VIF. As a rule of thumb, a VIF below 5 is considered unproblematic, while values above 10 indicate serious
multicollinearity. Some researchers advocate a more conservative threshold of 2.5, particularly in models with
large sample sizes or sensitive policy implications.

In sum, while our analysis is constrained to the random-effects ordered logistic framework by both statistical
theory and software support, we implement rigorous corrections and diagnostics to ensure valid inference.

3.6. Chapter Conclusion

This chapter introduced a random-effects ordered logistic regression framework to analyze the determinants of
passenger crowding in public transport. By structuring the data as a panel of stop-day-line clusters, we captured
the temporal progression of service and crowding at the level of individual stops.

Due to the nature of our ordinal outcome variable and the limitations of fixed-effects estimation for such models,
we adopted a random-effects specification. This approach allows us to model unobserved heterogeneity across
stop-day clusters while maintaining statistical consistency and interpretability of the estimated effects, under the
assumption that the random intercepts are uncorrelated with the regressors.

Our modeling strategy includes key predictors of operational reliability and network structure, as well as con-
trols for public transport mode and peak hours. The variables are selected and defined based on theoretical
expectations and practical relevance to urban public transport planning. The chapter also established a protocol
for diagnostic evaluation, including checks for multicollinearity.
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Chapter 4

Case Study

4.1. Case Study Description and Scope

This chapter presents a case study designed to evaluate the proposed framework in the context of real world data.
Using a specific geographical and temporal scope, the case study provides insight into the operational dynamics
of public transportation and highlights the potential of APC and AVL data for measuring relevant variables. Key
aspects of this case study include its geographical setting, the datasets used, and the temporal focus.

4.1.1. Geographical Scope

The geographical setting for this research is in Geneva, Switzerland, encompassing the city and its surrounding
areas. The focus is on the public transportation network managed by *Transports Publics Genevois* (TPG), which
operates buses, trams, and trolleybuses in the area. This network spans both urban and peri-urban regions, con-
necting residential neighborhoods, business districts, and cross-border areas.

The network’s multimodal nature makes it an ideal subject for examining interactions between different public
transport modes and assessing operational performance, such as headway variability and passenger distribution
and how they can relate to line overlap. These features contribute to a deeper understanding of network efficiency
.

Figure 4.1.1 illustrates the Geneva public transport network, emphasizing its spatial complexity and compre-
hensive coverage of the region.
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Figure 4.1.1: Geneva public transport diagram map
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4.1.2. Temporal Scope

The study period spans 30 days, from November 1, 2024, to November 30, 2024. Only weekday operations are
considered to focus on regular commuting patterns. Weekends are excluded to avoid anomalies caused by irregular
demand. This temporal scope ensures that the analysis reflects typical weekday conditions under moderate seasonal
influences. As noted by van Oort et al. (2010), headway variability significantly impacts user experience, especially
for high-frequency routes where passengers arrive at stops randomly. To capture these effects, the analysis includes
only routes with headways of less than 12 minutes during peak periods (Figure 4.1.2). This criterion narrows the
study to high-frequency lines, ensuring a focus on routes where operational reliability and crowding effects are
most significant.

©	2025	Mapbox	©	OpenStreetMap

Figure 4.1.2: Map of selected routes from the network

4.2. Exploratory Data Analysis (EDA)

EDA plays a critical role in uncovering the structure and behavior of key operational variables. By leveraging APC
and AVL data, this study analyzes punctuality, headway variability, passenger flows, stop-level performance, and
their spatial and temporal variation.

4.2.1. General Dataset Characteristics

Based on extrapolations from representative daily data, the complete sample includes approximately 1.76 million
stop-level records, covering over 72,000 trips across 34 unique lines. Table 4.2.1 summarizes key indicators that
describe the magnitude and scope of the data used in the analysis.
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Key Performance Indicator (KPI) Estimated Value for November 2024

Estimated total stop events 1,757,260
Estimated unique trips 72,111
Unique stops observed 245
Unique vehicles operating 348
Number of active lines 34
Percent of trips with bunching 8.67%
Percent of trips during peak 48.81%
Average cumulative frequency 13.76 vehicles/hour
Average punctuality deviation 64 seconds late
Average number of overlapping lines (lines per arc) 2.12

Table 4.2.1: Estimated Monthly KPIs from AVL/APC Data

4.2.2. Spatial Distribution of Comfort

Passenger load discomfort is not uniform across the network. Using APC-derived crowding levels, comfort levels
were spatially mapped to detect areas of recurrent pressure. Figure 4.2.1 shows that central corridors and over-
lapping segments experience greater discomfort during peak periods, whereas peripheral stops maintain higher
comfort levels during non-peak hours.

©	2025	Mapbox	©	OpenStreetMap
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Figure 4.2.1: Average Comfort Level by Stop During Peak and Non-Peak Hours

4.2.3. Network Load and Cumulative Frequency

Cumulative frequency, defined as the total vehicle throughput at each stop per hour across all overlapping lines,
serves as a proxy for supply density.
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©	2025	Mapbox	©	OpenStreetMap
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Figure 4.2.2: Average Cumulative Frequency Across the Network

4.2.4. Headway Patterns and Bunching Events

While most trips align with scheduled headways, a long tail is observed in the distribution, as shown in Figure 4.2.3.
Additionally, Figure 4.2.4 captures the spread of actual-minus-scheduled headways.
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Figure 4.2.3: Distribution of Actual Headways (Minutes)
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Figure 4.2.4: Difference Between Actual and Scheduled Headways

4.2.5. Temporal Dynamics and Space-Time Patterns

To observe how irregularities evolve, a representative line was selected for day-level visualization. Figure 4.2.5a
shows the progression of trips throughout a normal weekday on Line 12. A zoomed-in view of a disruption is
shown in Figure 4.2.5, which clearly displays a bunching episode and its ripple effect.
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Figure 4.2.5: Bunching Event Visualization Using Space-Time Plot

4.2.6. Crowding and Comfort Analysis

Crowding levels, derived from APC thresholds, are highly right-skewed. As shown in Figure 4.2.6, more than half
of records are classified as Level 1 (least crowded), yet crowding above Level 3 still affects a significant portion of
service, particularly in peak periods.
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Figure 4.2.6: Passenger Comfort Level Distribution

4.2.7. Headway Irregularity and Comfort Relationship

Figure 4.2.7 demonstrates a monotonic relationship: relative headway increases with discomfort level. This sup-
ports the hypothesis that irregular services induce crowding by concentrating passenger arrivals and delaying the
next available vehicle. The fitting formula for this relation is: RelativeHeadway = 0.125357 × Comfortlevel −
0.183365 with a R2= 0.468277
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Figure 4.2.7: Relative Headway by Comfort Level

4.2.8. Punctuality Trends

Punctuality deviation remains mostly centered near 64 seconds late, as visualized in Figure 4.2.8. The slightly
right-skewed pattern suggests structural scheduling delays, potentially due to high passenger loads and urban
traffic frictions.

31



A.D. Guzmán Fallas 4.3 Variable statistical description

-400 -300 -200 -100 0 100 200 300 400 500 600 700 800 900 1000

Punctuality	(bin)

0K

20K

40K

60K

80K

100K

120K

140K

160K

180K

200K

220K

240K

Co
un
t	o
f	P
un
ct
ua
lit
y

Figure 4.2.8: Distribution of Punctuality Deviations at Stops (Minutes)

4.2.9. Network Overlap and Shared Infrastructure

Network design affects operational resilience. Figure 4.2.9 illustrates how many stops per line are shared with
others. Lines with higher overlap (e.g., major radial routes) also report elevated crowding and reliability issues,
underscoring the importance of coordinated scheduling in shared corridors.
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Figure 4.2.9: Stop Sharing Across Lines

4.3. Variable statistical description

Table 4.3.1 presents descriptive statistics for the comfort level index across different service conditions and vehicle
modes. The table reports the mean, standard deviation, minimum, median, maximum, and sample size for all
observations, during peak and non-peak periods, and separately for trolleybuses, buses, and trams.
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Comfort level Mean Std Dev Min Median Max N %

Overall 1.693 0.807 1 1 5 1757897 100 %

Peak 1.786 0.864 1 2 5 861088 48 %
non-Peak 1.603 0.738 1 1 5 896899 52 %

Trolleybus 1.532 0.708 1 1 5 601886 34 %
Bus 1.608 0.733 1 1 5 634607 36 %
Tram 1.981 0.918 1 2 5 521404 30 %

Table 4.3.1: Descriptive statistics for the comfort levels for different service conditions

Table 4.3.2 presents descriptive statistics for the key explanatory variables used in the ordinal regression models,
disaggregated by peak and non-peak periods. For each variable, we report the mean, standard deviation, minimum,
median, and maximum values, providing insight into how service characteristics differ across demand conditions.

Explanatory variables Peak non-Peak

Mean Std
Dev

Min Median Max Mean Std
Dev

Min Median Max

Expected headway 504.2 209.1 20 480 40698 625.2 249.8 6 600 3048
Actual headway 503.2 260.2 0 484 3586 625.6 289.0 0 607 3592
Relative headway 0.008 0.481 -1 -0.01 65.13 0.01 0.590 -1 0 167.2
Lines in arc 2.113 1.112 1 2 8 2.142 1.234 1 2 8
Cumulative frequency 13.741 7.626 0.13 12.13 43.19 13.84 7.631 0.19 12.19 43.19
Upstream shared arcs 0.347 0.332 0 0.2727 1 0.333 0.329 0 0.25 1

Table 4.3.2: Descriptive statistics for predictor variables

Figure 4.3.1 presents the correlation matrix among the main explanatory variables. Overall, correlations remain
moderate, suggesting that multicollinearity is not a major concern for the analysis. Actual headway and relative
headway show a positive correlation ( 0.38), which is expected since both capture spacing between vehicles,
albeit in different forms. Cumulative frequency is weakly and negatively correlated with actual headway ( –0.13),
indicating that higher traffic intensity is typically associated with shorter headways. Interestingly, cumulative
frequency exhibits a stronger negative association with the percentage of upstream shared arcs ( –0.31), reflecting
that higher flow conditions might reduce route overlap consistency. Both bunching and peak flags are negatively
correlated with actual headway ( –0.28 and –0.22, respectively), which aligns with the idea that smaller headways
often precede or occur during bunching events, particularly in peak periods. Other correlations remain close
to zero, suggesting limited overlap between categorical indicators and continuous operational variables. Taken
together, these results support the inclusion of all variables in the subsequent modeling framework, as they provide
complementary information without excessive redundancy.
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Figure 4.3.1: Correlation matrix

4.4. Chapter Conclusion

This case study confirms that APC and AVL data offer a powerful foundation for diagnosing public transport perfor-
mance. From spatial comfort gradients to service irregularities, the patterns uncovered reveal complex interactions
between supply, passenger accumulation, and operational timing. In particular, the findings emphasize:

• The critical role of headway variability in shaping passenger discomfort, and viceversa.

• The amplifying effect of network overlap on both crowding and punctuality.

• The presence of delays that persist and expand in the following trips.

These dynamics directly align with the theoretical framework established in Chapter ??. The insights gener-
ated provide a solid empirical foundation for improving coordination strategies, managing corridor capacity, and
enhancing reliability in multimodal public transport networks.
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Chapter 5

Results

This chapter presents the empirical findings from the proposed random-effects ordered logistic regression model
presented in Chapter 3, applied to over 1.75 million vehicle stop observations from the case study showed in Chap-
ter 4. This model allows us to quantify the association between several operational and structural variables and
the perceived comfort level onboard public transport vehicles, as recorded through ordinal crowding levels ranging
from 1 (least crowded) to 5 (most crowded). The analysis accounts for panel-level unobserved heterogeneity by
allowing each stop-day combination to have its own random intercept, thereby capturing latent features that may
influence passenger load but are not explicitly measured in our data.

Our objective in this chapter is to explore how individual predictors affect the likelihood of experiencing higher
crowding levels, interpret these effects substantively, evaluate model diagnostics, and discuss implications for trans-
port planning and operations.

5.1. Model Estimation Output

Table 5.1.1 summarizes the output from the model. The estimation relies on the xtologit command in Stata with
Gaussian-distributed random intercepts and 12-point Gauss-Hermite quadrature for numerical integration. The
model is estimated on 1,757,852 observations, clustered in 18,893 unique panel units (stop-line-direction-day
combinations).

Variable unit Coef. Std. Err. z p-value

Service reliability and structure
Actual headway [s] 0.00073 0.00001 77.24 < 0.001
Relative headway [ratio] 0.897 0.0062 145.66 < 0.001
Cumulative frequency [veh/h] 0.161 0.0026 61.21 < 0.001
Shared arcs upstream [ratio] 2.989 0.0421 71.07 < 0.001
Lines in arc [lines] –0.090 0.0146 –6.17 < 0.001
Bunching [binary] –1.091 0.0154 –70.86 < 0.001
Peak period [binary] 0.717 0.0035 204.78 < 0.001
Vehicle type (baseline: Bus)
Tram [category] 0.873 0.0395 22.08 < 0.001
Trolleybus [category] –0.740 0.0364 –20.32 < 0.001

Model fit statistics
Log-likelihood –1,461,786.1
LR test vs. pooled ologit χ2 = 6.3e+05, p < 0.001
Random intercept variance (σ2u) 4.061 (Std. Err. = 0.054)

Cut Estimate Std. Err. 95% CI
Cut 1 4.072 0.042 [3.99 ; 4.15]
Cut 2 6.439 0.042 [6.36 ; 6.52]
Cut 3 9.276 0.043 [9.19 ; 9.36]
Cut 4 11.670 0.045 [11.58 ; 11.76]

Table 5.1.1: Random-Effects Ordered Logit Estimates

The regression model provides a nuanced understanding of the operational and network-level factors that
influence in-vehicle crowding, measured here through a comfort-level proxy derived from APC thresholds. The
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coefficients reflect the marginal effect of each predictor on the log-odds of experiencing a more crowded (i.e., less
comfortable) ride. Drawing from empirical findings and theoretical insights discussed in the literature review, this
section analyzes each significant predictor in depth.

5.1.1. Actual Headway

The coefficient for Actual headway is highly statistically significant. This variable, measured in seconds, indicates
that each additional second in headway, the time elapsed since the previous vehicle, increases the probability that
the vehicle will be more crowded. While the individual effect per second appears minor, when aggregated across
larger headway deviations (e.g., delays of several minutes), the compounded effect becomes substantial.

This finding aligns with theoretical expectations and past literature emphasizing the link between headway
irregularities and passenger accumulation. As documented by Daganzo (2009) and Tirachini et al. (2022), longer
headways create temporal gaps during which passengers accumulate at stops. The longer the interval between ve-
hicles, the more passengers are waiting for the next arrival. The arriving vehicle must then accommodate a sudden
influx, which leads to higher boarding times, increased dwell, and ultimately more severe in-vehicle crowding. This
crowding further delays the vehicle, initiating a negative feedback loop that degrades the reliability of the overall
service.

5.1.2. Relative Headway

The Relative headway variable has a coefficient of 0.897, suggesting a large and statistically significant effect. Unlike
absolute headway, this metric captures the deviation from the scheduled interval. In other words, it accounts for
whether the observed headway is longer or shorter than expected. The positive sign indicates that the greater the
deviation, especially in the direction of delay, the more likely it is that the vehicle will be crowded.

This strong effect highlights that crowding is not merely reactive to the frequency of service but also to its
predictability. According to Godachevich and Tirachini (2021) and Fedujwar and Agarwal (2024), variability in
service quality, particularly irregularity in headways, undermines passenger trust and leads to bunching, asymmet-
ric boarding patterns, and inefficient load distribution. This result confirms that even in high-frequency networks,
irregular headways disrupt demand distribution and increase system strain.

5.1.3. Cumulative Frequency

The coefficient for Cumulative Frequency (0.161) reflects the effect of aggregate vehicle throughput at a stop,
essentially the number of vehicles from all lines serving that stop within an hour. This variable captures not just
the intensity of service but also the likelihood of platform crowding and transfer demand, both of which correlate
with higher in-vehicle densities.

While increased vehicle throughput is generally associated with improved access and reduced wait times, it
can also exacerbate crowding if demand grows faster than supply. As supported by Mahmoudi et al. (2023), high-
frequency services without sufficient load balancing or real-time passenger information systems tend to exhibit
severe capacity strains during peaks. Moreover, cumulative frequency may also be capturing latent demand effects,
areas served more intensively may do so precisely because of their elevated ridership potential, thus compounding
crowding rather than alleviating it.

5.1.4. Shared Arcs Upstream

One of the most influential variables in the model is Shared Arcs Upstream (2.989), representing the percentage of
a vehicle’s upstream segment that is shared with other lines. This large and significant coefficient seems to point to
a key network structure dynamic: vehicles that traverse shared corridors tend to be substantially more crowded.

As noted in the literature, overlapping routes tend to create unstable flow conditions due to inter-line interfer-
ence. Diab et al. (2015) argue that overlapping increases the chances of bunching, reduces schedule adherence,
and complicates holding strategies. Vehicles running through these segments not only face competition for space
but also experience delay propagation from other lines. The crowding effect here reflects both greater boarding
demand and greater disruption risk. Importantly, this variable’s interpretation reinforces the idea that network
design, not just operational management, plays a critical role in shaping crowding patterns.

5.1.5. Lines in Arc

In contrast to the previous variable, Lines in Arc enters the model with a negative coefficient (–0.090), suggesting
a modest mitigating effect on crowding. While initially counterintuitive, this variable reflects the number of lines
that traverse the current arc (not just upstream), capturing an effect of network redundancy or service options.
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A plausible interpretation is that more lines in an arc may diffuse demand, giving passengers multiple alter-
natives and thus reducing load on any single vehicle. This supports the notion that some forms of overlapping,
particularly when well-coordinated, can act as passive control mechanisms by enabling load balancing. When
overlapping is coupled with real-time information, passengers may self-distribute more evenly, thereby mitigat-
ing crowding on individual vehicles. Nonetheless, this effect is likely context-dependent, and its interplay with
upstream interference (captured in the previous variable) needs to be interpreted carefully.

5.1.6. Bunching Flag

The Bunching flag coefficient (–1.091) is large and negative, which might appear paradoxical at first glance. How-
ever, this outcome is consistent with how the flag is defined: it is coded as 1 for vehicles trailing closely behind
others. In a typical bunching event, the leading vehicle absorbs the majority of waiting passengers, becoming
overloaded, while the trailing vehicle arrives nearly empty.

This result is consistent with operational findings from Figliozzi et al. (2012), who describe bunching as a
self-reinforcing dynamic where the leading vehicle is penalized (through increased dwell and crowding), while
the trailing one gets "rewarded" by encountering fewer passengers. Importantly, this variable demonstrates that
crowding is highly asymmetric within bunches, further emphasizing the critical need to prevent bunching through
headway management and not just evaluate average crowding across the fleet.

5.1.7. Peak Flag

The variable Peak flag has a coefficient of 0.717, indicating significantly greater crowding likelihood during peak
periods. This finding is consistent with intuitive and empirical expectations. Even after controlling for frequency,
headway, and structural variables, peak periods remain intrinsically more crowded due to temporal surges in
demand.

What this result affirms is that structural and operational interventions must be complemented by time-sensitive
management strategies. As reported by Drabicki et al. (2023), peak-related crowding not only degrades passenger
comfort but also increases variability in service performance, exacerbating both delay propagation and uneven
load distribution. Targeted interventions such as dynamic dispatching, signal prioritization, and adaptive boarding
policies are therefore particularly warranted during peak periods.

5.1.8. Vehicle Type – Tram and Trolleybus

Relative to the baseline vehicle type (Bus), Tram has a positive and statistically significant coefficient (0.873), while
Trolleybus has a negative coefficient (–0.740). The tram result indicates that these vehicles, while larger in capacity,
are nonetheless more crowded on average, suggesting that they serve high-demand corridors with persistent peak
loads. This aligns with their role in urban networks, where trams are typically deployed on core arteries with high
population and employment densities.

Conversely, the trolleybus result suggests these vehicles are used in lower-demand or more dispersed service
areas. The negative coefficient reflects that they are either more frequent or encounter less demand pressure.
This may also be a function of the route design or electrification priorities in quieter zones. Importantly, this
variation across vehicle types suggests that crowding management should not assume uniformity across modes but
be tailored to modal assignment and route function.

5.1.9. Estimated Cut Points

In ordered logit models, the estimated cut points (or thresholds) define the boundaries between adjacent categories
of the dependent variable. In this study, passenger crowding levels were modeled on a five-point ordinal scale (1
= least crowded, 5 = most crowded). The four cut points represent the latent utility thresholds at which the
probability of observing a higher comfort level exceeds that of the previous one.

These values indicate that the transition from lower to higher crowding categories occurs at relatively high
values of the latent index, which reflects the combined linear predictor of service reliability, network structure, and
contextual variables. In practical terms, this means that under average conditions most trips are classified at the
lower end of the discomfort spectrum, while higher levels of crowding (crowding levels 4–5) require substantially
higher contributions from predictors such as headway irregularity or high upstream overlap.

The spacing between the thresholds also provides useful insight. The relatively wide distance between Cut 1
and Cut 2 suggests that transitions from “least crowded” (level 1) to “slightly crowded” (level 2) occur more readily
than shifts to higher discomfort levels. By contrast, the close spacing of the upper thresholds indicates that once
vehicles approach higher crowding conditions, transitions between levels 3, 4, and 5 are more abrupt.
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5.2. Model Diagnostics and Robustness

In our model, all VIFs fall well below the conservative threshold of 5, with a mean VIF of just 1.62, as shown in
Table 5.2.1. The highest VIF, 2.87, corresponds to Cumulative Frequency, followed by Lines in arc at 2.78. These
variables naturally share some correlation because areas with more overlapping lines tend to have higher service
frequencies. However, the values remain safely within acceptable bounds and do not suggest harmful collinearity.
Furthermore, key operational variables such as Actual headway (VIF = 1.45), Relative headway (1.22), and Bunching
flag (1.11) show low VIFs, underscoring their independence and reliable estimation.

Importantly, these diagnostic results affirm the model’s capacity to distinguish the individual contribution of
each variable. The standard errors remain small and the z-statistics are high for nearly all coefficients, providing
further confidence that no predictor’s effect is masked or distorted by collinearity. This statistical clarity is crucial
in a study of this nature, where nuanced differences in headway structure or network configuration must be
interpreted distinctly.

Overall, the multicollinearity test confirms that the model estimates are robust, stable, and well-identified.
The VIF analysis complements the broader model diagnostics, including goodness-of-fit statistics and likelihood
ratio tests discussed earlier, and reinforces the credibility of the substantive findings on the drivers of in-vehicle
crowding.

Variable VIF 1/VIF

Cumulative frequency 2.87 0.35
Lines in arc 2.78 0.36
Actual headway 1.45 0.69
Relative headway 1.22 0.82
Shared arcs upstream 1.15 0.87
Bunching flag 1.11 0.90
Peak flag 1.07 0.93
Vehicle type (Tram) 1.52 0.66
Vehicle type (Trolleybus) 1.39 0.72

Mean VIF 1.62

Table 5.2.1: Variance Inflation Factors for Model Predictors

5.2.1. Scenario-Based Predictions

To complement the regression coefficients, we simulated predicted probabilities of passenger comfort levels under
a set of representative operating conditions. These scenarios combine realistic values of headway, overlap, demand,
and vehicle type, using the estimated coefficients and cutpoints from the random-effects ordered logit model.

Table 5.2.2 reports the predicted distribution of comfort levels (1 = least crowded, 5 = most crowded) and the
expected value for each scenario. The baseline case (bus, off-peak, 8-minute headway, moderate overlap) yields
a very high probability of low crowding: 74.5% of events fall in comfort level 1 and the expected comfort index
is 1.29. In peak conditions, crowding increases moderately (expected value 1.48), while tram operations on the
same conditions show substantially higher discomfort (expected value 1.77), reflecting their deployment on high-
demand corridors. In contrast, trolleybuses under the same conditions remain less crowded, with outcomes close
to the baseline.

Bunching followers—vehicles arriving very shortly after a leader—show a markedly higher likelihood of low
crowding (expected value 1.09), confirming that asymmetry in passenger distribution is intrinsic to bunching
events. Conversely, scenarios with long headways and high overlap (13 minutes, cumulative frequency of 18
veh/h, 80% upstream overlap) display much higher crowding (expected value 2.60), with more than half of trips
in levels 3–4.
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Scenario P(Y=1) P(Y=2) P(Y=3) P(Y=4) P(Y=5) E[Level]

Baseline bus, off-peak 74.5% 22.4% 2.9% 0.2% 0.0% 1.29
Peak bus 58.8% 35.0% 5.8% 0.3% 0.0% 1.48
Peak tram 37.4% 49.1% 12.7% 0.8% 0.1% 1.77
Peak trolleybus 75.0% 22.0% 2.9% 0.2% 0.0% 1.28
Bunching follower 92.2% 7.0% 0.7% 0.0% 0.0% 1.09
Delayed + high overlap 6.4% 35.8% 50.4% 6.7% 0.7% 2.60

Table 5.2.2: Predicted comfort distributions under representative scenarios

A sensitivity analysis of actual headways confirms that expected comfort levels increase monotonically with
longer gaps. For example, at 4 minutes the expected comfort level is 1.25, rising to 1.36 at 15 minutes, even when
other conditions are held constant. Odds ratios derived from the model corroborate this pattern: each additional
60 seconds in headway increases the odds of higher discomfort by 4.5%, while a 0.1 increase in relative headway
raises the odds by 9.4%. Overlap effects are also substantial: a 0.1 increase in the upstream shared arcs ratio raises
the odds of crowding by 35%.

Finally, the random-effects structure highlights substantial unobserved heterogeneity. Simulated draws of the
random intercept show that, even under identical operational conditions, expected comfort levels can range from
near 1.0 to almost 1.9, reflecting stop-day specific factors such as localized demand surges or disruptions.

5.3. Chapter Conclusion

This chapter has presented a detailed examination of the estimated model’s statistical properties, emphasizing both
the substantive findings from the regression and the diagnostic checks necessary to ensure their validity. Using
a random-effects ordered logistic regression framework, we modeled the determinants of in-vehicle crowding as
measured through passenger comfort levels, incorporating key operational and structural features of the public
transport network. The results provide robust and interpretable evidence linking crowding outcomes to both
service reliability and network design.

Among the core insights, we observed that deviations from scheduled headways, whether measured as actual
or relative, significantly increase the likelihood of crowding, reinforcing well-established theories of how irregular
service degrades passenger distribution across vehicles. Similarly, indicators of network complexity, such as over-
lapping lines and upstream shared segments, show strong and independent effects, underscoring the operational
risks embedded in corridor-based public transport design. Temporal markers like peak-hour flags and bunching
indicators further reveal the compounding effects of demand surges and service compression on user experience.

Equally important, the statistical diagnostics confirm the robustness of these findings. The variance inflation fac-
tors (VIFs) remain comfortably within accepted thresholds, suggesting no evidence of problematic multicollinearity.
This affirms that each explanatory variable contributes unique and interpretable information to the model, and that
the parameter estimates are neither inflated nor distorted by linear dependencies among predictors.

Taken together, the results and their statistical validation provide a reliable and nuanced understanding of
how public transport operations, scheduling consistency, and network geometry interact to influence crowding
dynamics. These insights form a solid empirical foundation for the subsequent discussion chapter, where the
broader implications for system design, passenger experience, and policy interventions are explored in depth.
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Chapter 6

Discussion

This chapter synthesizes and interprets the empirical findings of the random-effects ordered logistic regression
model, placing them in the broader context of public transport theory, network design, and operational perfor-
mance. Building on the extensive analysis of over 1.75 million stop-level observations, the discussion aims to
answer the central research question: To what extent does headway variability explain observed in-vehicle crowding,
and how does the network structure, particularly overlapping lines, moderate this relationship?

In doing so, the chapter provides both theoretical insight and practical guidance for public transport agencies.
It not only evaluates the statistical magnitude and direction of each explanatory variable but also situates these
findings within real-world operational challenges. Drawing upon established literature in public transport reliabil-
ity, passenger behavior, and corridor dynamics, we explore how key service attributes, such as headway regularity,
route overlap, peak timing, and vehicle type, interact to shape crowding outcomes.

The discussion also revisits foundational assumptions from the literature review, including the role of passenger
accumulation under stochastic arrivals, the impact of bunching on load asymmetry, and the double-edged nature
of redundancy in overlapping corridors. In addition to interpreting individual coefficients, the chapter highlights
systemic implications: how poor schedule adherence, insufficient coordination, and structural design flaws can
create feedback loops that magnify discomfort and undermine network resilience.

6.1. Overview of Findings

The empirical analysis conducted in this study confirms that in-vehicle crowding is not a random occurrence nor
solely a product of passenger demand levels, it is a structured and predictable outcome of operational performance
and network design features. Using a random-effects ordered logistic regression on over 1.75 million stop-level
observations, the model successfully quantified the relationships between comfort levels (as a proxy for crowding)
and a comprehensive set of explanatory variables related to headway regularity, service coordination, and vehicle
type.

The model’s Wald ² statistic of 123,215.21 (p < 0.001) demonstrates that the included explanatory variables
jointly provide strong explanatory power. The estimated variance component for the random effects (σ̂2

u = 4.06)
indicates substantial heterogeneity across stop-day clusters, highlighting that context-specific factors beyond the
included covariates continue to influence crowding dynamics.This suggests that while operational variables explain
much of the variation, context-dependent dynamics, such as stop-specific boarding behavior, route geometry, or
external disruptions, also shape outcomes.

These findings align with and extend prior literature. As described in Chapter 2, crowding is not merely a
demand-side challenge, but a system-wide performance issue driven by the ability (or failure) of public transport
networks to deliver consistent, evenly spaced service. Importantly, the analysis validates several hypothesized feed-
back mechanisms, such as the compounding effects of bunching, the amplifying role of overlapping corridors, and
the influence of vehicle type on passenger accumulation. In doing so, the study contributes not only quantitative
estimates but also a systems-level perspective that ties together operational control, infrastructure design, and
passenger experience.

6.2. Headway Irregularity as a Key Driver of Crowding

Perhaps the most critical insight to emerge from the results is the central role that headway irregularity plays in
generating in-vehicle crowding. Two distinct but complementary metrics were used to capture this phenomenon:
Actual headway, representing the real-time interval between vehicles, and Relative headway, capturing deviation
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from the scheduled interval. Both variables exhibited strong, positive, and statistically significant effects on the
likelihood of passengers experiencing higher crowding levels.

The coefficient on Actual headway, while small in absolute magnitude (0.00073), is non-negligible when con-
textualized. Because this variable is measured in seconds, its cumulative impact becomes evident over the types of
delays commonly observed in congested networks. For instance, a five-minute increase in actual headway corre-
sponds to an increase of over 0.2 in the log-odds of a higher crowding level. This reinforces the queuing-theoretical
insight that when a vehicle is delayed, passengers continue to arrive at stops, causing the next arriving vehicle to
face a disproportionately high boarding load.

Even more influential is Relative headway, whose coefficient of 0.897 indicates that vehicles deviating from their
scheduled intervals, regardless of their average frequency, face dramatically higher odds of being overcrowded.
This finding affirms earlier work by Tirachini et al. (2022) and Daganzo (2009), which emphasize that headway
reliability is a stronger predictor of service quality than frequency alone. Passengers interpret deviation from
schedule as a reliability failure, which not only leads to uneven load distribution but also erodes trust in the system
over time.

The implications are twofold. First, service regularity should be prioritized as a performance target, particularly
in high-frequency corridors where small irregularities can quickly propagate into bunching. Second, the model
confirms that delays are not just problematic in temporal terms; they materially change the crowding environment
inside vehicles, with real implications for comfort, safety, and passenger satisfaction.

Importantly, the strength and consistency of the headway-related coefficients validate the feedback loop de-
scribed in the conceptual framework (Figure 2.5.1). A delay leads to crowding, crowding increases dwell time, and
increased dwell time further disrupts headways. Once this loop is triggered, recovery becomes progressively more
difficult without active control strategies. This underscores the operational necessity of dynamic interventions,
such as real-time holding, skip-stopping, or even dynamic re-dispatching, to mitigate the compounding effects of
early headway deviations.

In summary, this study provides rigorous empirical evidence that confirms and quantifies what many public
transport planners have long understood intuitively: headway regularity is not a peripheral concern, it is a primary
determinant of service quality. As such, it should be central to both strategic planning and day-to-day operational
control.

6.3. Bunching and Peak Effects

The dynamics of bunching, long recognized in both theoretical and empirical public transport literature, emerged
clearly in this study. The negative coefficient associated with the bunching flag variable confirms that vehicles
participating in a bunch, specifically the trailing vehicles, are significantly less crowded than the leading one. This
reflects the basic operational reality: vehicles that run closely behind another typically encounter stops with fewer
waiting passengers, as most riders have already boarded the lead vehicle. Thus, the front vehicle is "underloaded,"
while the trailing vehicle becomes increasingly crowded.

The implications of this pattern are twofold. First, underloaded trailing vehicles represent a direct efficiency
loss: energy is consumed and operator time expended to transport partially full vehicles, while leading vehicles
bear the burden of crowding. Second, from a passenger perspective, this leads to inconsistent comfort levels and
increases the randomness of service quality. Riders encountering bunched vehicles might face either an empty or
overcrowded vehicle, depending on their stop position and timing. Overall the global result is that the comfort
level of more passengers is affected.

Importantly, this phenomenon underscores the limitations of frequency-based planning in high-frequency cor-
ridors. While increased frequency can reduce average wait times, without effective headway management, the
system remains vulnerable to bunching-driven service degradation. Mitigation strategies such as dynamic hold-
ing, real-time spacing control, or even stop-skipping during bunches should be considered to restore balance and
improve load distribution.

Turning to the peak flag, the strong positive effect of peak hours on crowding is unsurprising but vital. Morning
and evening peaks coincide with concentrated travel demand, commuters heading to work or returning home,
which overloads even well-designed schedules. Even after controlling for service frequency, bunching, and vehicle
type, peak periods independently predict higher crowding levels. This indicates that demand surges outpace supply
in temporal windows, reinforcing the need for adaptive operational strategies.

While longer-term infrastructure investments (e.g., public transport signal priority, dedicated lanes) remain
important, the findings suggest that soft interventions, such as temporal dispatch smoothing, short-turning, or
capacity reallocations, may offer near-term relief. Additionally, crowding mitigation during peaks is not solely
a question of throughput; it’s about temporal fairness: ensuring that riders traveling during rush hours do not
disproportionately suffer degraded conditions.
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6.4. Line Overlap and Corridor Effects

Transit network structure plays a crucial and sometimes underappreciated role in shaping crowding dynamics. This
study included two variables, Shared upstream arcs and lines in arc, to capture different aspects of line overlap and
corridor complexity. These variables provide insight into how shared routing geometry and service interdependen-
cies affect crowding outcomes.

The percentage of shared upstream arcs demonstrates a strong positive relationship with crowding, suggesting
that as multiple lines converge before a given stop, they effectively funnel more passengers into the same down-
stream vehicles. This "funneling effect" reflects both accumulated demand and the synchronization challenge that
overlapping routes impose. When lines share segments, delays on one can propagate to others, compounding
headway variability and increasing the risk of uneven passenger loading. As observed by Drabicki et al. (2023),
overlapping services, while theoretically beneficial, often underperform unless actively managed.

Conversely, the negative coefficient for lines in arc introduces an interesting nuance. It suggests that more
lines operating on a shared arc may distribute passengers more evenly, potentially due to higher frequencies and
diversified boarding options. In essence, while upstream convergence builds up load, having multiple downstream
options may mitigate the final distribution of passengers across services. This indicates that the spatial structure of
overlap matters: convergence before a stop (upstream) has crowding risks, but co-located services at the stop itself
may enable better demand absorption, particularly when headways are managed or when stop-level information is
available to passengers.

The broader planning implication is that line overlap is not inherently good or bad; it is context-dependent.
When designed thoughtfully and paired with appropriate coordination strategies (e.g., offset dispatching, inte-
grated headway planning), overlapping routes can deliver both redundancy and resilience. However, absent con-
trol, they risk amplifying the very irregularities they were meant to mitigate. Planners must therefore distinguish
between passive redundancy (lines simply crossing) and active coordination (lines operating in synchronized har-
mony).

6.5. Role of Vehicle Type

Finally, the effect of vehicle type on crowding highlights how rolling stock selection and mode deployment strategies
intersect with operational outcomes. With buses as the reference group, both trams and trolleybuses showed
significant differences in associated crowding levels, but in opposite directions.

The positive association between tram operations and increased crowding levels (0.873 in log-odds) likely
reflects both demand and supply-side factors. Trams are often deployed on high-ridership corridors where they
act as backbone services. These corridors naturally attract larger passenger volumes due to central locations,
dense land use, and modal connectivity. Additionally, trams have higher nominal capacities, which may result in
operations being optimized closer to saturation. While this makes them efficient in terms of cost per passenger, it
also implies that crowding levels can increase even if operational targets are met. These findings align with prior
literature showing that comfort, not just capacity utilization, is a key determinant of service quality (Tirachini et
al., 2016).

By contrast, trolleybuses appear less crowded, as indicated by the negative coefficient. This may stem from their
deployment pattern: in many systems, trolleybuses serve medium-density corridors where electrification is feasible
but passenger volumes do not warrant higher-capacity vehicles. Alternatively, they may run at higher frequencies
or serve less complex routes with fewer overlaps, thereby enjoying greater headway regularity. These vehicles tend
to be more comfortable or spacious due to quieter engines and smoother acceleration, factors not captured directly
in the model.

From a policy standpoint, the results suggest that mode choice should be linked not just to demand forecasts,
but also to projected crowding tolerance and desired service quality levels. Deploying trams or large-capacity
vehicles on high-demand corridors is efficient, but without supplementary crowding mitigation (e.g., larger stop
platforms, boarding control, or skip-stop operations), it risks compromising user comfort. Meanwhile, trolleybus
operations may represent an opportunity for targeted investments in underserved areas, combining low-emission
technology with lower baseline crowding.

6.6. Implications for Network Design and Operations

The empirical findings of this study carry direct and actionable implications for the design and operation of public
transport networks. Perhaps the most salient message is that crowding is not simply a by-product of demand inten-
sity, it is a systemic outcome shaped by the interaction of operational variability, service topology, and scheduling
policy. As such, improving comfort levels requires a shift from capacity-focused planning to a more integrated
approach centered on predictability and spatial coordination.
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First and foremost, the central role of headway irregularity in driving crowding highlights the need for robust
headway management strategies. Traditional frequency-based planning, while sufficient in low-demand contexts,
fails to address the cascading effects of variability under high-load conditions. This study confirms that even modest
deviations from scheduled headways produce disproportionate impacts on passenger distribution, particularly in
overlapping corridors. Agencies should therefore invest in dynamic control policies, such as real-time headway
spacing algorithms, holding strategies, and schedule adherence monitoring. Such interventions are especially
valuable in mixed-traffic environments where uncontrollable external factors (e.g., traffic congestion, signal delays)
disrupt regularity.

Second, the dual role of line overlapping underscores the importance of distinguishing between structural
redundancy and operational interdependence. Overlapping routes, when uncoordinated, introduce timing conflicts
that amplify bunching and passenger imbalance. However, when coordinated, they offer substantial benefits in
terms of service flexibility and frequency. One concrete implication is that overlapping services should not be left
to operate independently on shared corridors. Instead, they should be scheduled as a joint system, with offset
headways, harmonized stop patterns, and shared dispatching logic. This not only prevents crowding but also
ensures that the benefits of redundancy translate into usable capacity.

Network design should also consider the spatial sequence of overlaps. The finding that upstream shared seg-
ments are strongly associated with crowding suggests that where lines merge has as much impact as how many
lines merge. If overlaps occur too far upstream of major boarding stops, crowding can build prematurely, resulting
in capacity exhaustion before key transfer points. In contrast, strategically placing overlaps downstream or near
central nodes may allow for better load distribution. This insight supports the growing advocacy for demand-
sensitive route restructuring, optimizing not just line length or stop spacing, but also the interaction between lines
at key arcs.

The observed differences in crowding across vehicle types suggest that mode deployment should account for
more than just corridor demand. For instance, trams may be better suited for corridors where high volumes are
expected but must be paired with infrastructure that supports fast boarding, alighting, and dwell time management.
Trolleybuses, on the other hand, could be prioritized for routes where consistent comfort is desired, perhaps due
to demographic considerations (e.g., elderly passengers) or service branding.

Finally, the significant random effects identified at the stop-day level point to unobserved heterogeneity in
crowding determinants, such as weather, special events, or temporal anomalies. This suggests that static service
planning alone is insufficient. Agencies should develop feedback systems that incorporate day-to-day operational
data (e.g., from AVL/APC systems) into continuous planning loops. In particular, machine learning or hybrid
prediction models could anticipate crowding patterns based on temporal-spatial features, allowing for dynamic
resource reallocation or passenger information updates in real time.

In sum, the results argue for a holistic redesign of public transport planning paradigms: one that merges spatial
network design with operational responsiveness. Such integration is essential not just for efficiency, but for ensuring
a reliable, equitable, and passenger-friendly urban mobility system.

6.7. Chapter Conclusion

The findings presented in this chapter reinforce a central insight of contemporary public transport planning: that
operational reliability and spatial coordination are as critical to passenger comfort as raw capacity or frequency.
Through the lens of a large-scale, random-effects model, we have demonstrated that irregular headways, service
bunching, and uncoordinated line overlaps are not merely incidental inefficiencies, they are systematic drivers of
in-vehicle crowding, capable of eroding service quality even when overall vehicle throughput appears sufficient.

Headway variability emerged as the most potent predictor of crowding levels, both in its absolute and relative
form. This confirms longstanding theoretical models which posit that unpredictable intervals between vehicles
trigger uneven passenger accumulation, thereby producing overloaded vehicles even under moderate demand.
More importantly, the results underscore the amplifying effect of network design: overlapping lines, especially
those converging upstream of key boarding stops, compound the effect of variability by concentrating demand in
ways that cannot be resolved through frequency increases alone.

The chapter has also drawn attention to subtler dynamics such as the phenomenon of bunching, where lead-
ing vehicles are disproportionately affected by overload, and the asymmetric crowding patterns observed across
vehicle types. These nuances matter. They suggest that blanket policies (e.g., uniform headway targets or fleet
assignments) may miss opportunities for localized optimization based on stop-level or corridor-level dynamics.

From a strategic perspective, the implications are clear. Agencies must move toward network designs that are
not just redundant, but resilient, capable of absorbing fluctuations without collapsing into disorder. This requires
integrating real-time operational control with long-term corridor planning, especially in overlapping segments.
Vehicle types should be deployed with sensitivity to both capacity and boarding behavior. And, perhaps most
importantly, headway regularity must be elevated from a performance indicator to a core design principle.
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In conclusion, crowding is not simply a function of how many passengers are onboard, but of how predictably
and coherently services are delivered across space and time. Addressing it will require more than infrastructure, it
demands coordination, monitoring, and adaptive planning rooted in an empirical understanding of how variability
propagates through the system. The evidence presented here provides a strong foundation for that shift.
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Chapter 7

Conclusions

This chapter synthesizes the insights generated throughout this research, linking them back to the research ques-
tions and objectives defined in Chapter 1. Drawing upon theoretical insights from the literature and empirical
evidence from the data-driven model, the study provides a comprehensive examination of how headway variabil-
ity and line overlapping interact to influence in-vehicle crowding in urban public transport systems. The chapter
is organized as follows: first, the main findings are recapped in relation to the central research question and its
sub-questions; then, the scientific and practical contributions are summarized; finally, limitations and directions for
future research are discussed.

The primary objective of this thesis was to evaluate the relationship between headway variability, in-vehicle
crowding, and the effects of overlapping public transport lines. In doing so, the research aimed to answer the
following central question:

How much of the variability in in-vehicle crowding levels can be explained by headway variability
in bus or tram lines, and what is the impact of line overlapping on this relationship?

Through the use of a large-scale dataset derived from Automatic Passenger Count (APC), Automatic Vehicle
Location (AVL), and GTFS data, and the estimation of a random-effects ordered logistic regression model, this
research has been able to quantify the influence of headway-related variables and network configuration features
on reported passenger comfort levels, used here as a proxy for in-vehicle crowding.

7.1. Main Findings and Research Questions Answered

RQ1: What is the theoretical relationship between in-vehicle crowding, headway variability, and line overlapping in a
public transport system?

Drawing from the literature reviewed in Chapter 2, a conceptual model was constructed to understand the cyclical
feedback loops among headway irregularity, overlapping segments, and crowding. Headway variability induces un-
even passenger accumulation, resulting in differential boarding loads across vehicles. This leads to extended dwell
times and further disrupts headway consistency. Line overlapping, meanwhile, introduces inter-line dependencies,
which magnify the impact of disruptions by transmitting delays between routes. Together, these factors operate in
reinforcing cycles, exacerbating both crowding and operational instability.

RQ2: How can AVL and APC data be used to accurately measure and analyze in-vehicle crowding and headway vari-
ability?

This study successfully demonstrated that APC and AVL data can be harnessed to derive granular, high-frequency
indicators of both crowding and service irregularity. The crowding level variable, obtained from APC thresholds,
served as a reliable ordinal proxy for crowding. Headway variability was operationalized through both absolute
and relative headway metrics. APC data revealed crowding distributions, while AVL time-stamps enabled the
reconstruction of headway patterns at fine spatial and temporal resolutions. This integration of data streams
proved crucial for diagnosing systemic inefficiencies.

45



A.D. Guzmán Fallas 7.3 Policy and Operational Implications

RQ3: How can existing empirical models of crowding be enhanced by incorporating both headway variability and line
overlapping?

The random-effects ordered logistic model allowed for a nuanced exploration of how operational and network
variables influence crowding levels across more than 1.7 million stop events. Headway metrics were among the
most powerful predictors in the model: actual headway had a consistently positive association with discomfort
levels, while relative headway, capturing deviation from schedule, was even more impactful. Overlapping-specific
metrics, such as the percentage of shared upstream arcs and the number of lines in the corridor, provided addi-
tional explanatory power, suggesting that crowding is not merely a function of frequency, but of how services are
structured and interlinked.

7.2. Theoretical and Empirical Contributions

This thesis advances both theoretical and empirical understanding of crowding dynamics in high-frequency, surface-
based public transportation systems. By bringing together concepts that are often treated independently, namely
headway variability, line overlapping, and in-vehicle crowding, this work establishes a unified analytical framework
capable of capturing their interdependent effects on passenger experience.

7.2.1. Theoretical Contributions

From a theoretical perspective, the study synthesizes several threads in transportation research by embedding ser-
vice irregularity and network structure into a single explanatory model. Prior literature has typically explored
headway regularity and overlapping routes in separate domains, with crowding often treated as a downstream
outcome rather than a feedback mechanism. This thesis shows that these elements cannot be meaningfully dis-
entangled: headway variability exacerbates crowding, crowding increases dwell times, and overlapping routes
multiply the opportunities for these processes to interact in complex, path-dependent ways.

Moreover, the empirical confirmation of these interactions strengthens long-standing theoretical propositions
from queueing theory and operational control studies. The findings validate the hypothesis that overlapping lines,
although beneficial in terms of frequency and network redundancy, introduce coordination burdens that degrade
reliability and contribute to uneven passenger loading, particularly when upstream services are not designed jointly.
In doing so, the thesis not only reinforces theoretical expectations but extends them by quantifying the effects across
a large and diverse set of service instances.

7.2.2. Empirical Contributions

On the empirical front, the study makes several meaningful contributions. First, it demonstrates, using a dataset of
over 1.75 million stop-level observations, that headway irregularity is a primary and consistent driver of in-vehicle
crowding. This finding holds even after controlling for route structure, vehicle type, temporal variation, and stop-
level heterogeneity. Relative headway deviations, in particular, emerge as a potent predictor, underscoring the
central role of temporal coordination in shaping passenger experiences.

Second, the analysis reveals how overlapping routes do not uniformly alleviate crowding through increased fre-
quency; rather, they introduce interdependencies that, when unmanaged, generate concentrated loading patterns
and service inconsistencies. While shared corridors may disperse demand under ideal conditions, they also serve
as vectors for delay propagation and bunching, especially in high-volume settings where minor irregularities are
amplified downstream.

Finally, the application of a random-effects ordered logistic regression model represents a methodologically
appropriate and novel approach to modeling ordinal passenger comfort data in a repeated-observations framework.
By modeling random intercepts at the stop-day level, the model captures the latent, context-specific factors, such
as weather, special events, or localized disruptions, that influence comfort but are difficult to observe directly. This
approach balances statistical rigor with operational relevance and opens the door for more nuanced, data-rich
evaluations of public transport service quality.

7.3. Policy and Operational Implications

The findings of this thesis carry direct implications for public transportation planning, network design, and service
control. Operationally, the results reinforce the critical importance of maintaining consistent headways as a means
of crowding mitigation. Variability in inter-vehicle spacing not only reduces reliability but also distorts the distri-
bution of passengers across vehicles, leading to inefficiencies and discomfort that are both perceptible to riders and
costly to operators.
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Transit agencies should therefore prioritize headway-based control strategies, such as holding at key stops,
real-time dispatch coordination, or adaptive signal priority, as core tools for improving comfort and performance.
These measures are especially vital in corridors with overlapping lines, where the synchronization of services
becomes both more challenging and more impactful. The modeling results make clear that overlap must be actively
managed; otherwise, it risks becoming a source of network fragility rather than flexibility.

From a network design standpoint, the study highlights the trade-offs inherent in overlapping service design.
While overlapping lines can improve access and increase effective frequency at shared stops, they also introduce
a heightened risk of systemic delays when service irregularities propagate across routes. This suggests that over-
lapping segments should be carefully identified and supported with operational redundancies, infrastructure (e.g.,
dedicated lanes or queue jumps), and digital tools for real-time monitoring and passenger information.

Furthermore, the role of vehicle type in crowding dynamics suggests that fleet composition and deployment
should be sensitive not just to ridership forecasts but also to route geometry and variability profiles. Trams, while
typically larger and better suited for high-demand corridors, tend to exhibit higher reported crowding levels, per-
haps due to longer loading times or greater variance in stop density. Trolleybuses, by contrast, appear better suited
for corridors with stable or moderate demand, especially where maneuverability or precision scheduling are critical.

In short, the thesis points to a paradigm in which comfort outcomes are less a function of raw capacity and
more a product of finely tuned operations, coordinated scheduling, and context-aware network architecture.

7.4. Limitations

Despite the breadth and granularity of the dataset used, several limitations constrain the generalizability and
interpretability of this work.

First, the dependent variable, passenger comfort level, is inferred from automated passenger count thresholds
rather than direct survey data. While empirically grounded and consistently applied, this measure may not fully
reflect subjective perceptions of crowding, which are known to vary based on duration, cultural expectations, and
psychological thresholds.

Second, the assumption of proportional odds across ordinal thresholds, inherent to the ordered logistic frame-
work, may not always hold in practice. That is, the relationship between predictors and comfort may not be
uniform across all thresholds, moving from level 2 to 3 may not imply the same behavioral or experiential jump as
from 4 to 5. Future research might consider generalized ordered models or partial proportional odds specifications
to relax this assumption.

Third, the random-effects specification captures heterogeneity at the stop-day level but does not account for
higher-order clustering (e.g., at the route or operator level) that could further influence crowding dynamics. Multi-
level or hierarchical models might provide an even richer understanding of how systemic, spatial, and organiza-
tional factors interact to produce the observed outcomes.

Lastly, while the findings are statistically robust, they remain observational in nature. Causal claims, particularly
those informing intervention efficacy, would be strengthened by natural experiments, instrumental variable designs,
or simulation-based validations.

7.5. Future Research Directions

This thesis opens several promising pathways for future work. A natural extension lies in dynamic modeling of
headways and crowding over time. Rather than treating each stop-event as independent, time-series could be
employed to track the temporal evolution of irregularity and its lagged effects on passenger loads. Time-series
models would also be better suited to evaluating control strategies that unfold over successive trips or days.

Another fruitful direction involves simulating operational interventions. By embedding the empirical relation-
ships identified here into a simulation environment, one could evaluate the real-time impacts of holding, priority
signaling, or dynamic re-routing under different demand and disruption scenarios. This would provide agencies
with actionable, context-specific guidelines for control policy design.

Finally, the methods and frameworks developed in this thesis are ripe for application in comparative studies
across cities. Urban areas with different levels of network complexity, modal integration, or institutional capacity
may exhibit distinct patterns in the crowding–headway–overlap nexus. A system-wide analysis of this sort could
yield valuable typologies of public transport system resilience and reveal which structural features are most critical
to equitable and efficient public transport.
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7.6. Final Remarks

Crowding in public transportation is not merely a manifestation of excess demand; it is a signal of systemic fragility
in the face of temporal irregularity and spatial interdependence. This thesis has shown that even in high-frequency
networks, comfort outcomes are highly sensitive to deviations in scheduled operations and to the structural design
of shared corridors. It has also shown that these effects are not uniformly negative or positive, rather, they depend
on the capacity of the system to coordinate, adapt, and inform.

By combining theoretical reasoning with large-scale empirical analysis, this research has clarified how and why
crowding emerges, who it affects, and what can be done to mitigate it. The challenge now is not only to monitor
and model these dynamics, but to institutionalize them in the way public transport systems are designed, managed,
and governed.

Reliable service and dignified travel are not luxuries, they are the baseline for a sustainable and inclusive urban
future. This work aims to contribute a step in that direction.
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