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ABSTRACT

Autonomous driving can bring revolutionary advancements in transportation, by mak-
ing vehicles navigate and operate independently without human intervention. To achieve
this, autonomous vehicles are equipped with sensors, including cameras, Light Detec-
tion and Ranging (LiDAR), and radar, which provide them with a comprehensive view of
their surroundings. Frequency-Modulated Continuous Wave (FMCW) radar is the most
popular radar sensor employed on autonomous vehicles (AVs), for its long working dis-
tance, simultaneous accurate measurements of range and radial velocity of the target,
and its robustness for all weather conditions. However, there are still many problems to
be solved for FMCW radar for detecting vulnerable road users (VRUs), such as pedestri-
ans. The Constant False Alarm Rate (CFAR) detector plays a crucial role in FMCW radar
signal processing, for its adaptive capability to estimate multiple potential targets ver-
sus variable clutter and noise backgrounds, and it is often the first step of processing in
many automotive radar pipelines.

There have been several published methods for detecting pedestrians. However,
most methods hardly consider public real-world radar datasets for their performance
evaluation. Meanwhile, conventional CFAR used in autonomous driving, such as Cell
averaging CFAR (CA-CFAR) and Ordered-statistic CFAR (OS-CFAR) are not specially de-
signed for Doppler-spread targets (DSTs), while pedestrians are typical DSTs which shows
Doppler extension in range-Doppler-map (RDM). This is due to the movement of the
arms and legs of pedestrians that make them not only extended targets at mm-wave fre-
quencies but also present a spread Doppler signature.

Therefore, in this thesis a proposed CFAR detector for DSTs enhances the probabil-
ity of detection compared to two-dimensional (2D) CA-CFAR and two-dimensional (2D)
OS-CFAR. The parametric study is conducted on CA-CFAR and OS-CFAR detectors. Ad-
ditionally, the computation time is reduced dramatically.
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1
INTRODUCTION

1.1. AUTONOMOUS DRIVING
The potential of autonomous vehicles (AVs) as an alternative mode of transportation has
drawn significant attention from both within and outside industry [1], [2]. This section
examines the impact of AVs on traffic safety and congestion, considering their advanced
sensor technologies and potential to reduce human error:

1. AVs can reduce accidents and losses through advanced sensors. The widespread
adoption of AVs will significantly impact everyone’s current way of life. The equipped
onboard sensors in vehicles have the potential to help reduce traffic accidents and
financial loss because they improve the human perception of the environment and
minimize human error. In general, Millimeter-Wave (MMW) FMCW radar, cam-
era, LiDAR are primarily used for their fast senses of everything on the road. AVs in-
tegrate video cameras that are installed from different viewpoints, AVs are offered
360° observation of their external surroundings. FMCW radar sensors transmit
signals and measure the distance, velocity, and azimuth of objects in relation to
the vehicle in real time. LiDAR works similarly with radar, albeit employing lasers
rather than radio waves. LiDAR can create three-dimensional visual representa-
tions of detected items and the comprehensive mapping of the surroundings.

2. AVs can reduce human errors. The U.S. Department of Transportation estimates
that there was a total of approximately 7,277,000 police-reported traffic accidents
in 2016, accounting for 37,461 fatalities and approximately 3,144,000 injuries [3].
Over half of all fatalities worldwide are caused by VRUs, including motorcyclists,
cyclists, and pedestrians, and 26% of fatalities involve pedestrians and cyclists ac-
cording to World Health Organization [4]. Human errors are to blame for 94% of
motor vehicle collisions [5]. It is discovered that other human errors, such as dis-
traction or speeding, regularly cause car crashes, suggesting the scope of potential
human error even when the vehicle, roadway, or environment is the primary rea-
son for the crash. Therefore, the popularity of AVs can contribute to alleviating
human errors and increasing the safety of every road traffic participant.

1
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3. AVs can help address traffic safety and congestion challenges. Simulations pre-
dicted that replacing all light vehicles on French roads with AVs will reduce injury
crashes and fatal crashes by about 60% [6]. Additionally, the flow will be smoothed
out and bottlenecks will be reduced, which will relieve the traffic congestion. The
predicted reduction in highway congestion delays for all cars is 15% at the level
of 10% AV market penetration. This analysis projects a 35% reduction in freeway
delays at the 50% market penetration level. Lastly, it is assumed that freeway con-
gestion will decrease by 60% at the 90% level [7].

The six progressive levels of autonomy for self-driving cars are described on a scale
(from 0 to 5) by the Society of Automotive Engineers International [8]. Table 1.1 illus-
trates the spectrum of autonomy, encompassing six levels that progress from "No driving
autonomy" (Level 0) to "Full driving autonomy" (Level 5).

Level Name Description
0 No driving autonomy The responsibility for the driving en-

counter lies entirely with the driver.
1 Driver assistance Vehicle systems are integrated to provide

support. Meanwhile, drivers remain ac-
tively engaged.

2 Partial driving autonomy Although the system can manage steer-
ing, acceleration, and braking, at level 2,
the driver’s participation and conscious-
ness are still required.

3 Conditional driving autonomy While the driving system handles all driv-
ing functions comprehensively, it’s es-
sential for the driver to be prepared to as-
sume control when required.

4 High driving autonomy When malfunctions occur, vehicles can
take action without the need for imme-
diate driver participation. Nevertheless,
the driver is able to manually assume
control of the vehicle.

5 Full driving autonomy Regardless of driving conditions or road
state, driving systems require no human
involvement.

Table 1.1: The six levels of driving autonomy [8]. The levels progress from no autonomy,
through partial driving autonomy, conditional driving autonomy, and high driving au-
tonomy, to full driving autonomy.

There are no fully AVs on the market yet. Many vehicles today have features that help
drivers in particular situations, like preventing drivers from swerving out of lane or as-
sisting drivers in stopping in time to prevent an accident or lessen its severity. Recent ve-
hicles are equipped with hardware like cameras and radar, to prevent drifting into other
lanes, make risky lane changes, or warn other drivers when they are backing up their
cars. These Level 1 AV driver assistance technologies have proliferated in automobiles
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in recent years. Based on National Highway Traffic Safety Administration’s analysis, it is
predicted that more fully automated safety features will be implemented in AVs through
2025 [9].

Therefore, regardless of the type of sensor, it is crucial to enhance their detection
accuracy and efficiency by applying more advanced algorithms, which is essential for
achieving full driving autonomy.

1.2. SENSOR COMPARISON AND RADAR PROCESSING PIPELINE
The sensors that have been installed heavily influence the quality of information that AVs
will receive. Table 1.2 provides an overview of the pros and cons of the aforementioned
sensors.

Sensor Advantages Disadvantages

FMCW Radar 1) Long working distance
2) Small in dimension
3) Robust for all-weather

1) Poor detection of relatively sta-
tionary objects
2) Poor azimuth and elevation reso-
lution

Camera 1) Providing a colorful perspective of
the environment
2) Small in dimension

1) Powerful computation system re-
quired
2) Sensitive to heavy rain, fog and
snowfall

LiDAR 1) High angle resolution
2) Wide field of view

1) High cost
2) Highly influenced by adverse
weather

Table 1.2: The list of pros and cons of sensors on AVs [10]

In conclusion, while cameras, LiDAR, and FMCW radar each have their strengths
and limitations, the abilities of FMCW radar that provides accurate range and velocity
information of objects in relation to the radar in real time, sets it apart as an essential
tool for enhancing the capabilities of AVs. Also, FMCW radars detect at long distances
and are more robust under lighting or adverse weather conditions than cameras and
LiDAR. FMCW radars are relatively cheap and compact making it practical to employ
multiple units, thereby enhancing overall performance [11].

CFAR detector is a critical component in FMCW radar signal processing shown in
Figure 1.1, specifically tailored to enhance the detection capability of FMCW radar sys-
tems. The CFAR algorithm assesses the statistical properties of the received signal of
a potential target echo and calculates the detection threshold adaptively. This adap-
tive threshold allows the radar system to detect valid target echoes against background
noises, clutter, and interferences, thus enhancing the accuracy and reliability of target
detection. Therefore, CFAR is an important step in FMCW radar processing. The target
echoes after CFAR are initial steps preceding a series of critical operations. Clustering in-
volves the application of algorithms like Density-based spatial clustering of applications
with noise (DBSCAN) to group relevant targets. Tracking employs methods such as the
Unscented Kalman Filter (UKF) to trace target trajectories over time. Classification and
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segmentation are carried out using techniques like Neural Networks, distinguishing var-
ious target types and marking out distinct regions within the environment respectively.
This sequence of processes contributes to the comprehensive analysis of FMCW radar
data.

raw ADC
data

2D
FFT

Range
Doppler

Map

CFAR

Detection

DBSCAN

Clustering UKF

Tracking

Neural
Network

Classification

Neural
Network

Segmentation

Figure 1.1: Conventional FMCW radar signal processing pipeline. The FMCW radar data
processing encompasses the stages of raw analog-to-digital (ADC) data, RDM generated
by 2D fast Fourier transform (FFT), and the subsequent application of clustering, track-
ing, classification, and segmentation for target analysis. The detection stage via CFAR
algorithm is highlighted as the block this thesis focused on.

1.3. CONTRIBUTIONS OF THIS THESIS
The primary contribution of this thesis is summarized as:

• Use a public real-world radar dataset to compare three CFAR detectors in the same
scenario. This usage of experimental data guarantees practical environmental in-
formation that is difficult to replicate in simulated software to evaluate and en-
hance the robustness of radar detectors.

• Propose a modified CFAR detector that detects both the range and the Doppler
information of targets exhibiting a spread signature in Doppler, which is typical
of pedestrians and cyclists in automotive radar. This detector improves the prob-
ability of detection under the same probability of false alarms compared to 2D
CA-CFAR and 2D OS-CFAR. Meanwhile, the proposed method decreases the com-
putation time by reducing the search dimension in RDM.

1.4. THESIS OUTLINE
In chapter 2, the challenges caused by pedestrians and related work about detecting
pedestrians with automotive radar are reviewed. The research questions are also in-
cluded. The principles of FMCW radar and the detection fundamentals are provided
in chapter 3. In addition, the chapter covers the principles of CFAR techniques, high-
lighting their significance in radar target detection. The focus of chapter 4 is on the
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description of the utilized real-world radar dataset and its properties. Then, this chap-
ter introduces three conventional CFAR algorithms, explaining their working principles.
Furthermore, the chapter presents the proposed modified OS-CFAR tailored to DSTs that
detects both range and Doppler information of targets. Chapter 5 presents the outcomes
of the study’s experiments, including the analysis of ROC curves. The parametric study
of two CFAR detectors and their performance among three kinds of targets. Addition-
ally, computational costs associated with each algorithm under different parameter set-
tings among targets are discussed. Chapter 6 concludes the research findings and the
contributions of the study. Meanwhile, some potential avenues for future research and
improvements are provided.



2
LITERATURE REVIEW

This chapter touches on the intricate landscape of radar target detection, focusing on
the particular solutions to the challenges caused by Doppler-spread targets (DSTs). The
targets with their extension in the Doppler spectrum, resulting from the micromotion of
pedestrian limbs when walking, are called DSTs. These challenges emerge from the low
signal-to-noise ratio (SNR) and dispersed received energy because of DSTs. Solving these
challenges demands robust detection methods that can detect weak target echoes amid
clutter and noise. In addressing these challenges, researchers have extensively explored the
application of various CFAR detectors.

2.1. RELATED WORK
There have been several published methods for detecting pedestrians with autonomous
radar. The primary approach to address the challenges associated with pedestrians of
small RCS is to enhance the qualities of the reflected echoes and mitigate the impact of
clutter. Clutter refers to unwanted echoes that appear in a radar system’s received sig-
nal due to various non-target sources, such as reflections from the ground, buildings,
and other objects in the environment. The masking effect caused by other targets can
be mitigated by 2D CFAR [12], but algorithms with this family are typically designed for
point targets. Conventional CFAR detection methods for point-based targets, such as
CA-CFAR and OS-CFAR [13], fail to utilize the Doppler-spread information from pedes-
trians. They will perform worse because of the low SNR and dispersed received energy
[13]; this is particularly true in the case of automotive radar where the wide bandwidth
and the short wavelength with respect to the target size makes the point target assump-
tion not valid. In [14], by utilizing the diagram features in the range-Doppler domain
with 77-GHz FMCW radar, a deep recurrent neural network-based pedestrian detection
approach was presented. However, maintaining a high detection performance requires
a longer period for collecting data, which is not always operationally possible in auto-
motive scenarios. A waveform based on the interlaced chirp sequence was developed to
improve range and Doppler resolution, leading to the improved detection performance

6
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of pedestrians [15]. By using a coherent phase difference method, the information about
pedestrians is separated from the background noise [16]. Zhang et al. proposed the tar-
get energy accumulation along continuous Doppler cells to improve the ability to detect
[17], but this approach fails to detect the Doppler velocity of targets. Despite the afore-
mentioned approaches, to the best of the author’s knowledge the detection of pedestri-
ans and DSTs in automotive radar is still a challenge.

2.2. PRESENT GAPS
Pedestrians are the most important class of VRUs on the urban road. FMCW radar still
faces difficulty in reliably detecting pedestrians. The radar cross Section (RCS) of a pedes-
trian is about −8 dBsm [18], causing weak reflected energy. Therefore, when pedestrians
are walking on the road, they are easily hidden by other strong reflections, such as build-
ings and trucks [19]. As a result, the facts above will degrade the detection performance
of pedestrians, which leads to worse performance of subsequent tracking and classifica-
tion, as shown in Figure 1.1. It is important to note that conventional CFAR detectors are
not optimized for the challenges of DSTs.

In addition, although recent related work has made great progress, most of them have
not considered the actual road traffic scenarios or just use their own created (oftentimes
simulated) scenarios, rather than a publicly available dataset. These created scenarios
are impractical to duplicate to obtain the same environmental noise, clutter, etc. There-
fore, assessing detectors using public real-road traffic datasets is crucial. Firstly, it allows
for a realistic understanding of how these detectors perform in complex and dynamic
traffic scenarios. Real datasets encompass diverse environmental conditions and ve-
hicle behaviors that may not be fully captured in simulated environments. Secondly,
evaluating CFARs with actual road traffic data helps identify potential challenges and
limitations that might arise during real-world deployment. This process aids in refining
the algorithms to enhance their robustness and reliability. Also, using a public dataset
contributes to the comparisons of other radar detectors in the same scenario. Over-
all, assessing CFAR detectors in real road traffic datasets ensures that these algorithms
are well-equipped to handle the complexities of driving scenarios, ultimately facilitating
safer and more efficient autonomous driving systems.

2.3. SUMMARY
Enhancing the detection quality of DSTs, especially pedestrians, in automotive radar is
important. Otherwise, poor detection results will jeopardize following radar perception,
such as clustering, tracking, classification, or segmentation shown in Figure 1.1. Mean-
while, the small size of pedestrians results in them being masked by stronger radar reflec-
tions and DSTs lead to the low SNR because of the dispersed energy in the Doppler spec-
trum. Some advanced CFAR detectors are proposed to address such problems and en-
hance the target detection capability but are not evaluated on a public real-world radar
dataset, which can be compared with other widely used radar detectors in the same sce-
nario. Therefore, some more work is needed to be done around these problems.



3
FUNDAMENTALS OF FMCW RADAR

AND TARGET DETECTION

In this chapter, a foundational guide of FMCW radar is presented in section 3.1 includ-
ing the formulas of the transmitted and received signal, and the critical parameters de-
termining range and velocity resolution. Section 3.2 is around the core concept of target
detection and delves into the fundamentals of target detection in radar. A comprehensive
exploration of the CFAR family of algorithms is presented, emphasizing its significance in
the adaptive estimation of clutter power and scaling factor in section 3.3.

3.1. FMCW RADAR
The radar equation is a fundamental formula in radar systems that relates the transmis-
sion power Pt , transmit antenna gain Gt , receive antenna gain Gr , wavelength λ, RCS of
the target σ and the distance between the radar and the target d and the received power
Pr , given in (3.1). It tells factors that influence the strength of the received radar signal
and helps to understand how the performance of a radar system can be optimized.

Pr = Pt ·Gt ·Gr ·λ2 ·σ
(4π)3 ·d 4 (3.1)

Due to their robustness in all-weather conditions and their ability to measure ra-
dial velocity by modulating a carrier wave with a high frequency over a specific band-
width, FMCW Radars have commonly deployed on AVs. Continuous Wave (CW) radar
emits continuous electromagnetic waves. One key advantage of CW radar is its capabil-
ity to determine target velocity through the Doppler effect, attained by measuring the
frequency shift between transmitted and received signals. However, CW radar lacks the
ability to estimate range due to its absence of frequency modulation. In contrast, FMCW
radar exploits frequency changes between transmitted and received signals during mod-
ulation, facilitating accurate range estimation. FMCW radar that provides accurate range
and velocity information between radar and targets. The FMCW radar transmits a se-
quence of chirp signals. A "chirp" refers to a continuous and linearly varying frequency

8
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signal that is emitted by the radar transmitter. The term "chirp" is used because the fre-
quency of the signal increases or decreases in a manner that resembles the sound of a
bird chirping. Figure 3.1 illustrates how the measurement is carried out by using a saw-
tooth modulation pattern. The Doppler shift effect causes an upward displacement. As
a consequence of the time delay, the received signal (red dashed line) moves to the right.

   Transmitted signal
   Received signal

B

Figure 3.1: Range and velocity measurement of the FMCW radar with the sawtooth shape
modulation. The time it takes for the transmitted signal to travel to the object and return
as the reflected signal is measured. Since the speed of electromagnetic waves is constant
(the speed of light), the time delay can be directly converted into a distance measure-
ment.

where τ is the time delay between the transmitted and received signals in seconds
and fD is Doppler frequency caused by the relative move to the radar. B is the bandwidth
of the signal, Tc is the time of each chirp, fb is the beat frequency due to a frequency
difference between the transmitted signal frequency and the reflected signal frequency
and f0 is the carrier frequency.

In FMCW radar hardware, a mixer stage combines the transmitted signal and re-
ceived signal and outputs beat frequency fb , illustrated in Figure 3.1. The first FFT is
applied to the beat signal and converts it from the time domain to the frequency do-
main. The distance of the target in relation to the radar is given by (3.2),

d = fbc

2k
(3.2)

where k = B/Tc is the chirp rate, illustrated in Figure 3.1.
The range resolution dr es , also known as the smallest distance that can be measured

between two objects, is given as (3.3),

dr es = c

2B
(3.3)

The measured velocity (3.4) is determined by Doppler frequency fD . The maximum
relative velocity that the radar measures and there is a limit to the smallest velocity dif-
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ference that the radar can measure between two moving targets, determined by (3.5) and
(3.6) respectively,

v = λ fD

2
(3.4) vmax = λ

4Tc
(3.5) vr es = λ

2T
(3.6)

with vr es the velocity resolution and T the observation time.
Figure 3.2 shows the Range-Doppler processing strategy. The received signal is sam-

pled and each chirp signal (also called fast time) is treated individually by FFT. Then,
the received signal is divided into several range bins. In a subsequent stage, the second
FFT is applied within each range bin (also called slow time) to determine the Doppler fre-
quency fD of a radar target. In this instance, rows of 2D matrix are individually subjected
to FFT, resulting in RDM, which provides a great capability to resolve the interested tar-
get with different relative velocities and ranges [12].

   Transmitted signal
   Received signal

...

...Sampling

Time

...

Time

FFT FFT

... ...

FFT

FFT

FFT

...

Doppler

R
ange

Figure 3.2: Range-Doppler processing strategy [12]. The first FFT is applied to each chirp
signal. Subsequent to this, the acquired signal is divided into multiple range bins. Then,
a second FFT analysis is implemented within each range bin to extract the Doppler fre-
quency fD associated with a radar target. The output signal is RDM.

3.2. DETECTION FUNDAMENTALS
Hypothesis testing is a statistical method to make inferences about parameters based on
the analysis of experience data. There are two types of hypothesis testing as below [20]:
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• Null Hypothesis: In hypothesis testing, the null hypothesis is the default model as
a starting point for the analysis, denoted as H0. It is a statement of no relationship
between variables in a statistical hypothesis test.

• Alternative Hypothesis: It is the complementary statement to the null hypothesis
in hypothesis testing, proposing a specific relationship between variables in the
experiment data, denoted by H1.

p f a , called the probability of false alarm, refers to the probability of incorrectly re-
jecting H0 when a test chooses H1. The detection performance of a detector can be
measured by p f a (3.7),

p f a = p(H1; H0) = p(Y0 ≥ T ·Z ) =
∫ ∞

S
fY0 (y) (3.7)

where T is the scaling factor, S is the detection threshold, and the estimated clutter
power is denoted as Z . fY0 (y) is the probability density function (PDF) of the clutter.

Neyman-Pearson Lemma provides a theoretical framework to determine the deci-
sion rule that maximizes the probability of detecting while keeping the probability of
false alarm at a fixed level [21], demonstrated in Figure 3.3. A decrease in the probability
of false alarms will result in a drop in the probability of detection.

Detection
Threshold 

Pr
ob

ab
ilt

y 
D

en
si

ty

Decide Decide 

Figure 3.3: Neyman-Pearson Lemma: Hypothesis Test. It is a fundamental concept in
statistical hypothesis testing, specifically in the context of binary hypothesis testing. It
provides a framework for making decisions between two competing hypotheses while
optimizing the trade-off between the probability of false alarm and detection.

A detection algorithm in radar systems is used to filter noise and clutter. Each target
can be in a region with a different cluster level. If a fixed threshold is set, it will yield false
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alarms or miss detections depending on this value. Therefore, an adaptive detection
threshold algorithm is needed to provide more accurate detection results.

3.3. BASIC CFAR PRINCIPLES
In real scenarios, clutter in the environment always has an impact on targets. Targets
are hidden by the noise, clutter, and interference inside the RDM and suffer from false
alarms because of a wide variety of objects during driving, such as railings, road signs,
and traffic cones. A frequently used detector is CFAR [22], which calculates the detection
threshold adaptively and only keeps a portion of the returned signal if it is above a prede-
termined threshold [23]. A too-high threshold will produce low false positives and high
false negatives, whereas a low threshold will cause high false positives. The fundamental
operations of various basic CFAR detectors [23], [24], [25] are shown in Figure 3.4.

Square law detector ... ...

CA: 

GO: 

SO: 

OS: 

Estimated
clutter power 

Scaling factor 

Comparator

Threshold 

Received signal
vector

Cell under
test 

Estimation strategies
   

   

Ordering 

 is the th order in the sequence

Figure 3.4: The steps of CA-CFAR [23], GO-CFAR [24], SO-CFAR [25] and OS-CFAR [23]
detectors. These four conventional CFAR detectors differ from various strategies in the
estimation of clutter power and scaling factor.

The square of the received signal amplitude vector r = |r0|2 is obtained by the square
law detector. The center sample in the detection window is the cell under test (CUT)
D . On both sides of CUT are the leading window and the lagging window with lengths
of N /2. The clutter power Z is estimated based on the leading window and the lagging
window by different estimation strategies. The mean value of the reference cells Y1 and
Y2 surrounding CUT is determined by the leading window and the lagging window, rep-
resented by (3.8) and (3.9).

Y1 = 1

N /2

∑N /2
i=1 Xi (3.8)

Y2 = 1

N /2

∑N
i=N /2+1Xi (3.9)

where Xi is the i th unit in the RDM.
For the CA-CFAR detector, the clutter power ZC A is obtained by the mean value of Y1

and Y2 [26], shown as (3.10).
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ZC A = Y1 +Y2

2
(3.10)

When multiple targets are present within the same reference window, it leads to the
masking of these targets [27].

When it comes to the GO-CFAR, the clutter power level is determined by the maximal
value of Y1 and Y2 [24]. Instead, the noise level is obtained by the minimal value of Y1

and Y2 in the SO-CFAR detector [25], demonstrated in (3.11) and (3.12).

ZGO = max{Y1,Y2} (3.11)

ZSO = mi n{Y1,Y2} (3.12)

In the OS-CFAR, the reference cells are ordered in ascending order X(1) ≤ X(2) ≤ ... ≤
X(N ). The clutter level ZOS is determined by the kth smallest reference sample [23], fol-
lowed as (3.13).

ZOS = X(k) (3.13)

The procedure for target detection is founded on a hypothesis test, where H0 is used
to hypothesize the existence of noise alone, and H1 is used to describe a scenario involv-
ing a target combined with noise. The hypothesis is followed as (3.14),

d(Y ) =
{

t ar g et if Y ≥ S

no t ar g et if Y < S
(3.14)

where the detection threshold S is calculated as the product of scaling factor T and
the estimated clutter power Z (3.15):

S = T ·Z (3.15)

3.4. SUMMARY
In this chapter, the background information of FMCW Radar, CFAR detection algorithm
and the target detection is introduced. FMCW Radar continuously emits a frequency-
modulated signal to measure target distance and speed. Based on the fundamentals of
target detection and CFAR, various CFAR detectors are proposed. Among these detec-
tors, CA-CFAR and OS-CFAR are two widely used algorithms in AVs [28], which will be
discussed in detail in the next chapter.
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PROPOSED METHODOLOGY

In order to evaluate the detection performance of different detectors in a public dataset,
several CFAR detectors are selected, which include conventional CFARs and some new
CFARs. An in-depth exploration of the dataset’s features and distribution is conducted
in subsection 4.1.1 and the details of algorithms are introduced. In subsection 4.1.2, a de-
tailed description of the dataset pre-processing procedures is provided. Furthermore, the
comprehensive exposition of algorithms is introduced, encompassing not only the conven-
tional CFAR detectors but also a specialized CFAR method tailored specifically to address
the unique challenges posed by DSTs in section 4.2.

4.1. THE CARRADA DATASET

The Carrada dataset [29] is a public radar and camera dataset, recorded in Canada. The
radar uses a Multiple Input Multiple Output (MIMO) system with 2 transmitter antennas
(Tx) and 4 receiver antennas (Rx). Table 4.1 defines the capabilities and performance
characteristics of the FMCW automotive radar system. Carrier Frequency is the oper-
ating frequency of the radar system, which is 77 GHz in this case. Sweep Bandwidth
decides the range of frequencies covered during a single chirp, which is 4 GHz. This pa-
rameter determines the radar’s range resolution. Field of View is the angular span of the
radar’s coverage, which is 180◦, indicating the ability of this radar to scan objects within
a given angular range. Number of Chirps per Frame describes the number of chirps sent
during each frame, which is 64. Number of Samples per Chirp is the number of samples
collected for each transmitted chirp, which is 256.

14
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Parameter Value
Carrier Frequency 77 GHz
Sweep Bandwidth 4 GHz
Maximum Range 50 m
Range Resolution 0.20 m
Maximum Radial Velocity 13.43 ms−1

Radial Velocity Resolution 0.42 ms−1

Field of View 180◦
Number of Chirps per Frame 64
Number of Samples per Chirp 256

Table 4.1: Radar system parameters for the CARRADA dataset[29]

4.1.1. DATASET FEATURES AND DISTRIBUTION

The dataset documents range-Doppler in 2D matrices of size 256×64. The dataset con-
sists of 30 sequences containing a total of 78 instances. The dataset spans 12,666 frames
in total, with sequences having frame counts ranging from 157 to 1017, and an average
of 422 frames per sequence [29]. Pedestrians, cyclists, and cars are recorded. To simulate
urban driving scenarios, one or two objects are moving in the scene simultaneously and
on different trajectories. The scenarios used in this thesis are simple with only a single
target moving. The objects under detection are in motion, with movements ranging from
approaching, receding, and moving from left to right or right to left. Figure 4.1 shows an
example of a person moving away from the sensor. The distribution of these scenarios is
depicted in Figure 4.2. Although the number of pedestrians is much higher than that of
cyclists and vehicles, the unbiased distribution has no effect on the result because 300
frames are selected randomly from each object to guarantee an equal number.

Figure 4.1: A photo of a person moving away from the sensor for the sensor, as provided
in the CARRADA dataset
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Figure 4.2: The distribution of three objects (pedestrians, cyclists, and vehicles) in the
frames of the CARRADA dataset with only one single target.

Figure 4.3 shows the received radar signal following a series of essential pre-processing
steps, displayed in RDM. Accompanied by the ground truth, this illustrates the target’s
accurate range and velocity information. The vertical blue line is the radar signal after
the notch filter [30] which eliminates the disruptive effects of the clutter created by the
ground reflections. Strong clutter reflections occasionally share comparable reflection
intensities with target objects, thereby introducing unwanted incorrect signals into the
estimation, which can interfere with accurate detection.

Figure 4.3: The received radar signal and the ground truth of a pedestrian 7m away from
the sensor, moving towards the radar sensor.



4.2. CONVENTIONAL CFAR ALGORITHMS

4

17

4.1.2. PRE-PROCESSING

The signal processing chain is thoroughly explained in this section, with a visual repre-
sentation provided in Figure 4.4.

1. RDM is generated by applying to 2D FFT, facilitating a clear visualization of the
target’s range and Doppler velocity but the clutter arising from ground reflections
affects the original received radar signal.

2. Next, the pre-processing stage is executed, comprising two key elements: the ap-
plication of a notch filter and amplitude normalization. The notch filter removes
the influence of clutter arising from ground reflections [31]. Amplitude normal-
ization is necessary to ensure consistency and comparability of signal strengths
across different radar measurements and scenarios. By normalizing the ampli-
tudes, radar signals from various sources can be standardized, facilitating accurate
signal processing and subsequent analysis.

3. The final stage is target detection, a critical process achieved through a CFAR de-
tector.

Range
Doppler Map
via 2D FFT

Notch
Filter

Pre-processing

Amplitude
Normalization

CFAR
Detectors

Detection

Figure 4.4: The signal processing chain implemented to process the CARRADA dataset,
starting from RDM and ending at the radar target detection.

4.2. CONVENTIONAL CFAR ALGORITHMS

In this chapter, a detailed explanation of the two most widely used CFAR detectors and a
special CFAR detector for DSTs is provided. When comparing it to 1D CFAR [23], the 2D
CFAR approach considers both the range and Doppler dimensions during processing. In
contrast, traditional methods focusing solely on either range or Doppler may not achieve
the same level of effectiveness.

4.2.1. 2D CA-CFAR
Conventional 1D CA-CFAR estimates the clutter power by averaging the cells in the ref-
erence window and adjusting the detection threshold adaptively. However, it just esti-
mates the potential target’s Doppler or range position. To fully utilize the information in
the RDM, 2D CFAR iterates all cells in the RDM and estimates the clutter power level. The
design of the sliding reference window of 2D CA-CFAR is shown in Figure 4.5. Therefore,
the potential target can be detected in the range and Doppler axes.
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Figure 4.5: The design of sliding reference window of 2D CA-CFAR [12]. The CUT
searches all units in RDM and estimates the arithmetic mean clutter in the reference
window. The units in the guard window are ignored.

The estimated clutter power ZC A is the arithmetic mean of cells in the two-dimensional
reference window (4.1):

ZC A = 1

N

N∑
i=1

Xi (4.1)

where N is the number of units inside the reference window. In Figure 4.5, the number
of reference cells inside the blue area is 40. Xi is the ith unit in the reference window.

The scaling factor TC A of CA-CFAR [23] is determined by (4.2),

TC A = N (p−1/N
f a −1) (4.2)

Hence, the scaling factor is derived by employing fixed p f a and a chosen reference
window to estimate the clutter power. The detection threshold is decided by the product
of the scaling factor and the estimated clutter power. In order to prevent outliers in the
reference window, the guard window is set adjacent to the CUT, shown in the red area
in Figure 4.5, because the units in the guard window are ignored and isolate the CUT
from the reference window. Outliers refer to those radar echoes that significantly deviate
from the expected statistical characteristics of the background clutter. Accordingly, im-
plementing a guard window can be beneficial in enhancing stability. In this figure, there
are 8 guard cells.
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4.2.2. 2D OS-CFAR
2D OS-CFAR utilizes all samples in the reference window and ranks values in ascending
order. The sequence is shown as (4.3):

X(1) ≤ X(2) ≤ X(3) ≤ ... ≤ X(N−1) ≤ X(N ) (4.3)

Then, the kth ordered value X(k) is selected to estimate clutter power. Generally, k
is chosen between N/2 and 3N/4 [23]. Hence, the outliers in the reference window are
difficult to hurt the estimation of clutter power level because the value of outliers is usu-
ally extremely large. After arranging elements in ascending order, outliers are on the two
sides of the order, rather than in the middle. Therefore, the influence of outliers has been
mitigated. For the same reason, the guard cells are unnecessary for OS-CFAR, which is
demonstrated in Figure 4.6.

R
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ge

Doppler

Reference cell

Cell under test

Figure 4.6: The design of sliding reference window of 2D OS-CFAR [12]. The CUT
searches all units in RDM and chooses kth unit in the reference window based on a range
of magnitude, in order to estimat the clutter power. There are no guard windows in 2D
OS-CFAR because the outliers have no effect on the clutter power estimation.

The false alarm probability [23] has as follows (4.4):

p f a = N !(TOS +N −k)!

(N −k)!(TOS +N )!
(4.4)

Accordingly, the scaling factor TOS can be derived from (4.4) with fixed parameters
of N , k and p f a . However, the computation cost increases dramatically because the



4

20 4. PROPOSED METHODOLOGY

iteration is from a 1D search in the range or Doppler bin to a 2D search in the range-
Doppler and the search size becomes 2D, though the principle of 1D and 2D algorithm
remains constant [32].

4.2.3. IMPROVED OS-CFAR
Pedestrians and cyclists are DSTs when limbs move forward and backward, leading to
Doppler extension. There are multiple reflected radar points along the Doppler axis. In
the range-Doppler plane, they manifest as horizontal lines that can be observed in Fig-
ure 4.7. Based on the characteristics of DSTs, W. Zhang et al. [17] introduce an OS-CFAR
algorithm tailored to DSTs. The RCS of these VRUs is usually small, and the reflected en-
ergy is dispersed to multiple Doppler cells. Therefore, when the energy is gathered from
multiple cells along the Doppler axis, it increases the capacity to detect potential targets.

Figure 4.7: Example of RDM of a walking person as recorded in the CARRADA dataset

Algorithm 1 [17] introduces the improved OS-CFAR detection scheme tailored to
DSTs. The dimension of RDM is N ·M , where N is the number of range bins and M is the
number of Doppler bins. Denoted as Xn,l in RDM, this element represents the target’s
range index (n) and Doppler frequency index (l ). The variable D denotes the number of
velocity resolution cells that the potential target occupies, with the nth range cell being
the range under test. In this context, 2n1 corresponds to the number of reference range
cells in this algorithm in Step 7.

The estimated clutter power Z is determined by the kth smallest reference unit in
the reference window,

Z = Y(k) (4.5)

The p f a is represented by [17]:
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Algorithm 1 OS-CFAR tailored to DSTs [17]

1: for n = 1,2, . . . , N do
2: for l = 1,2, . . . , M −D +1 do
3: Yn,l =

∑D−1
d=0

∣∣xn,l+d
∣∣2

4: end for
5: Choose the maximum value Yn in (M −D +1) summations
6: end for
7: Implement OS-CFAR in [Yn−n1 , · · · ,Yn−1,Yn ,Yn+1, · · ·Yn+n1 ]
8: Repeat Step 7 to detect each range bin

p f a =m

(
2×n1

m

)∫ +∞

0

(
1− γ (D,αOS ·u)

Γ (D)

)
×

(
1− γ (D,u)

Γ (D)

)2×n1−m(
γ (D,u)

Γ (D)

)m−1

× u(D−1)e−u

Γ (D)
du (4.6)

where Γ(z) is the gamma function and γ(z, x) is the lower incomplete Gamma func-
tion, denoted as (4.7) and (4.8) respectively.

Γ(z) =
∫ ∞

0
t z−1e−t d t (4.7)

γ(z, x) =
∫ x

0
t z−1e−t d t (4.8)

4.2.4. SUMMARY
Unfortunately, a common challenge faced by conventional CFAR is the masking effect
observed in multi-target and large-target scenarios. The masking effect occurs when the
presence of multiple targets or large targets in the radar scene interferes with the accu-
rate detection of individual targets, leading to worse performance [33]. The OS-CFAR
procedure involves extensive computation, including sequence sorting and scaling fac-
tor calculations, which can be time-consuming [32]. Although the authors [17] propose a
novel algorithm to enhance the detection performance of DSTs by utilizing the Doppler
extension of pedestrians and cyclists, the Doppler position can not be detected because
the cells along the Doppler axis have been accumulated and the information of Doppler
position is lost. Therefore, an improved method is needed to find the Doppler velocity
based on the introduced algorithm above.

4.3. PROPOSED OS-CFAR
After obtaining the potential range position of the target by the algorithm above, a fur-
ther 1D OS-CFAR detector [23] is implemented in each detected line, shown in Figure 4.8.
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The first picture is the original RDM under detection from the CARRADA dataset after
pre-processing. Then, combining all detected lines after OS-CFAR tailored to DSTs [17]
obtains the second figure. The range bins in the second figure are processed indepen-
dently of each other. The detection of the Doppler position becomes feasible because
of a further 1D OS-CFAR detector implemented. To provide further clarity and compre-
hension of the proposed algorithm, Figure 4.9 illustrates a real example of the detection
process, capturing the movement of a walking person. The Range and Doppler position
is clearly estimated in the third figure. For the robustness against outliers in multiple
target scenarios, OS-CFAR is selected rather than CA-CFAR.

The probability of false alarm of 1D OS-CFAR and OS-CFAR tailored to DSTs is given
as (4.4) and (4.6) respectively.

Filtered Range-
Doppler map

Detected lines
(1D results)

OS-CFAR tailored to
DST [17] Range and Doppler

position result

1D OS-CFAR
[23] 

Figure 4.8: Proposed OS-CFAR schema

Figure 4.9: An example of the proposed OS-CFAR algorithm. The figure on the left shows
the RDM after the notch filter [30]. The middle figure illustrates all detected lines. The
figure on the right is the detection result.

4.4. SUMMARY
A detailed introduction of the utilized dataset has been provided in section 4.1, including
the distribution of objects and the dataset’s features. A signal processing chain starting
from the collected radar data is explained and the processed range-Doppler matrix is
detected by CFAR detectors. Having presented the 2D CA-CFAR, 2D OS-CFAR, OS-CFAR
tailored to DSTs in section 4.2, a detection method is proposed to solve the failure to
utilize the Doppler-spread information from pedestrians in section 4.3. The subsequent
chapter will provide a comprehensive performance evaluation of these algorithms. This
assessment aims to find out the strengths and limitations of these advanced radar detec-
tion techniques. The objective of the proposed method is to detect the radial velocity of
the target to obtain more information about the target. The detection results will follow
in the next chapter.
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RESULTS

This chapter evaluates the performance of the introduced algorithms in radar target de-
tection. Before performing the assessment, the ROC curve is introduced in section 5.1,
a valuable tool for analyzing and comparing the algorithms’ detection capabilities [34].
The ROC curve provides insights into the trade-off between pd and p f a . Following the
ROC curve analysis, a parametric study is conducted to investigate the impact of various
algorithm parameters on pd and p f a in section 5.2. The detection result of the study helps
find out the optimal parameter settings for each algorithm. Additionally, different target
objects are compared, including pedestrians, cyclists, and cars in section 5.3. Moreover, the
computation time and complexity are analyzed between different detectors in section 5.4.
Finally, the findings of this chapter are summarized, highlighting the strengths and limi-
tations of the detectors in the real-world radar dataset.

5.1. ROC CURVE

To compare the detection performance of detectors in radar systems, a popular solution
is to evaluate by the ROC curve, demonstrated as a plot of p f a and pd . The probability
of detection pd is defined by the pixels of ground truth detected by the detector Nd over
the total number of the pixels of ground truth Ng t , shown as (5.1).

pd = Nd

Ng t
(5.1)

ROC curves are acquired using 300 frames of each target in the performance analysis
in this thesis. With fixed p f a from 10−6 to 100, ROC curves are derived.

To provide a clear explanation of ROC curve, a sample plot of ROC curve is demon-
strated in Figure 5.1. In ROC curve, each point on the curve represents a specific detec-
tion performance.

23



5

24 5. RESULTS

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
1

4

3
2

An example of ROC curve

Figure 5.1: A plot of ROC curve, including four detection performances shown as the
black point. A perfect detector works at the (0,1) point, representing no false alarms and
100% detected points in the ground truth. Points above the dashed line denote good
detection performance, exceeding the random performance, such as point 2. A random
detector will have a curve that lies along the diagonal line from the bottom left to the top
right, representing an equal chance of true positives and false positives. Points below the
diagonal line denote unsatisfactory results, performing worse than random.

5.2. PARAMETRIC STUDY OF DIFFERENT CFAR DETECTORS
Before presenting the results of the ROC curve analysis, the parametric study of CA-CFAR
and OS-CFAR detectors investigates the influence of various parameters on their detec-
tion performance. Through a systematic analysis, key parameters such as the number
of guard cells and the number of reference cells are varied to observe their impact on
the ROC curve. After the parametric study, optimal parameter settings strike a balance
between more accurate target detection and economic computation cost, because the
2D searching in RDM spends more running time compared to 1D searching and the de-
tection performances are analyzed with 300 frames.

With the fixed number of guard cells, the computation complexity increases with the
size of the reference window. Therefore, only two sets of reference cells are tested. Fig-
ure 5.2 provides a visual depiction of the key variables that influence the performance of
CA-CFAR in target detection. These essential parameters include the number of guard
cells in the range bin, the number of guard cells in the Doppler bin, the number of refer-
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ence cells in the range bin, and the number of reference cells in the Doppler bin.
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Figure 5.2: The figure of explanation of the number of guard cells and the number of
reference cells

Table 5.1 presents the parameter settings for the parametric study conducted on CA-
CFAR and OS-CFAR detectors. The three different parameter configurations of CA-CFAR
are abbreviated as ca1, ca2, and ca3. For OS-CFAR, the abbreviations are os1 and os2.
The reason why the guard cells are missing in OS-CFAR is that the influence of outliers is
limited for OS-CFAR which has been explained in the previous chapter.

NGR NGD NT R NT D

ca1 2 2 4 4
ca2 2 2 8 8
ca3 4 4 8 8
os1 - - 4 4
os2 - - 8 8

Table 5.1: Parameter settings. In CA-CFAR, three different parameter sets, namely ca1,
ca2, and ca3, are examined, with varying numbers of guard and reference cells for range
and Doppler bins. For OS-CFAR, two parameter sets of os1 and os2 are investigated.
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where,

• NGR is the number of the guard cells of range bins

• NGD is the number of the guard cells of Doppler bins

• NT R is the number of the training cells of range bins

• NT D is the number of the training cells of Doppler bins

Specifically, ca1 uses 2 guard cells in range and Doppler bin and 4 reference cells in
range and Doppler bin, ca2 employs 2 guard cells in range and Doppler bin and 8 ref-
erence cells in range and Doppler bin, while ca3 implements 4 guard cells in range and
Doppler bin and 8 reference cells in range and Doppler bin. In this case, only the refer-
ence cells for range and Doppler bins are considered, with 4 reference cells for os1 and 8
reference cells for os2. ROC curves for both algorithms are shown in Figure 5.3 providing
a comprehensive assessment of different targets’ detection performances across various
parameter settings.

Figure 5.3: ROC curve of one pedestrian, one cyclist and one car. Comparison of con-
ventional CA-CFAR and OS-CFAR algorithms with different parameter settings.

The investigation of CA-CFAR’s performance is interesting when employing a larger
guard window (4 cells in both range and Doppler bins, green curve) while maintaining
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a constant reference window size. pd with the parameter setting of ca2 (orange curve)
is lower than that of ca3. The larger guard window includes more background clutter,
leading to increased background interference during target detection, affecting the algo-
rithm’s false alarm rate. The range resolution of this radar system is 0.2m [29] so that the
target with large size, such as cars, cyclists, and pedestrians, will occupy multiple range
and Doppler cells in RDM. If increasing the size of the guard window, though more units
will be taken into consideration, it will also isolate the reflected signal in RDM. For the
same reason, the detection performance of pedestrians is better than that of the other
two objects under the same parameter setting of the same CFAR detector.

Compared to CA-CFAR, OS-CFAR witnesses superior performance under the condi-
tion of the same reference window size (purple curve and orange curve, red curve and
blue curve). OS-CFAR is more robust to variations in clutter intensity and is capable of
effectively eliminating clutter fluctuations resulting in a lower p f a and a higher pd . On
the other hand, CA-CFAR detector relies on averaging the power levels of the reference
cells in the window to estimate the background clutter. Although this method can pro-
vide an accurate estimation of the clutter level in homogeneous clutter environments, it
might encounter challenges in scenarios with non-homogeneous clutter or strong inter-
ference from multiple objects. Consequently, CA-CFAR may be more susceptible to false
alarms and might exhibit reduced pd in detecting weak targets compared to OS-CFAR.

5.3. PERFORMANCE COMPARISON

After conducting the parametric study and identifying the optimal parameter settings,
the optimal parameter setting of CA-CFAR and OS-CFAR is selected, which are ca3 and
os2. Although an improved OS-CFAR tailored to DSTs was introduced in the previous
chapter, this algorithm is not involved in the comparison because it only detects the
range position, showing a 1D result. Therefore, compared to 2D CA-CFAR and OS-CFAR,
the detection performance cannot be analyzed equally. However, the result of the pro-
posed CFAR method introduced in section 4.3 is a 2D result of range and Doppler posi-
tion. In Figure 5.4, ROC curves are demonstrated with fixed p f a from 10−6 to 100 by com-
paring the three algorithms with three objects comprehensively. Meanwhile, a random
detector is shown as a dashed line, indicating an equivalent likelihood of true positives
and false positives.
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Figure 5.4: The performance of selected CFAR detectors on different object categories.

As expected, the proposed CFAR detector exhibits better performance in scenar-
ios with DSTs, outperforming both CA-CFAR and OS-CFAR, especially the curve of one
pedestrian using the proposed CFAR method. With p f a under 10−2, the detection per-
formance of the proposed CFAR detector exceeds that of CA-CFAR and OS-CFAR when
detecting the same type object, because the proposed CFAR algorithm is specifically tai-
lored to address the challenges posed by DSTs, which spread the reflected energy to mul-
tiple Doppler bins. Additionally, a car, as a large size and strong reflection target, should
be more detectable compared to pedestrians and cyclists with low RCS. However, its pd

is always lower than that of pedestrians and cyclists when using CA-CFAR and OS-CFAR
detectors. It probably results from the size of the window of CA-CFAR and OS-CFAR does
not fit the size of the car in RDM. Therefore, more parameter sets can be attempted, but
due to limitations in computational capacity and time, this aspect can only be consid-
ered as a part of future work.

To provide a clearer visualization, the optimal parameter setting of conventional 2D
CA-CFAR and 2D OS-CFAR are compared to the proposed CFAR detector and the random
detector of each object (pedestrian, cyclist and car) in Figure 5.5. It is shown that pd of
the proposed CFAR detector (the green line in each subfigure) outperforms CA-CFAR
and OS-CFAR for each target with p f a under 10−2. Also, there is a large improvement
when detecting a pedestrian, especially with low p f a .
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Figure 5.5: ROC curve of one pedestrian, one cyclist and one car. Comparison of the op-
timal parameter setting of conventional 2D CA-CFAR and 2D OS-CFAR algorithms with
the the proposed CFAR detector and random detector.

5.4. COMPUTATIONAL COST

Table 5.2 summarizes the computation cost of three objects by using 300 frames for each
object. With the increase in the size of the guard window and reference window, the
algorithm spends more time in searching and computation in CA-CFAR and OS-CFAR.
The proposed CFAR method not only shows a higher pd with the same p f a , but also it
saves more running time because it filters out many uninterested range bins and then
implements 1D searching along Doppler axis. Whereas, 2D CA-CFAR and 2D OS-CFAR
will go through all units in RDM, leading to much more computation time.
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CFAR detectors Pedestrian Cars Cyclists
ca1 176s 170s 173s
ca2 400s 515s 408s
ca3 889s 983s 867s
os1 557s 539s 547s
os2 1264s 1141s 1293s
Proposed CFAR detector 69s 77s 74s

Table 5.2: The computation time of CFAR detectors under different parameter settings in
seconds. Conventional CA-CFAR and OS-CFAR are compared with different parameter
settings, as well as the proposed detector.

5.5. SUMMARY
To study the detection performance of different CFAR detectors, ROC is introduced and
then used to analyze the performance of aforementioned algorithms in chapter 4. In
conclusion, the proposed OS-CFAR outperformance than 2D CA-CFAR and 2D OS-CFAR
with the same p f a .

Before presenting the results of the ROC curves, the parametric study of CA-CFAR
and OS-CFAR detectors is conducted to investigate the influence of various parameters
on their detection performance. Although increasing the size of the guard window and
reference window holds the potential to enhance the detection capabilities, for the sake
of economic computation costs three parameter sets of CA-CFAR and two sets of OS-
CFAR are selected. It is very important to choose an appropriate size of the guard and
reference window to balance the sensitivity of detecting targets and accurately estimate
the clutter power.

The choice of window size will differ for targets with different sizes. Based on the
idea of OS-CFAR tailored to DSTs [17], the proposed method aims to provide an accurate
detection result of range and Doppler positions, which also shows more accurate de-
tection results with p f a under 10−2 than 2D CA-CFAR and 2D OS-CFAR. It accumulates
the dispersed energy of DSTs to make a stronger reflected echo energy and implements
1D OS-CFAR. The extension of DSTs such as pedestrians and cyclists in radar primarily
occurs within the Doppler bins. The detection performance of DSTs witnessed an im-
provement when using the proposed CFAR. Despite having a larger size and RCS, cars
exhibited a lower pd in ca3 and os2 in Figure 5.4 compared to pedestrians and cyclists.
This outcome might result from the size of the windows is not large enough. Ideally, a
larger window size will help improve the detection performance while the computation
time will increase heavily. For the sake of limited time, larger window sizes are not con-
sidered in this thesis.

More importantly, the proposed algorithm witnessed a dramatic drop in running
time because it finds the potential range bins first and then implements 1D searching
along the Doppler axis, while if it is employed in a multi-target scenario, the computa-
tion time is expected to increase.
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This chapter summarizes the results and the contributions of the thesis. Moreover, it offers
recommendations for potential avenues of future research.

6.1. CONCLUSIONS
The thesis explores the detection performance with three types of targets with pedestri-
ans, cyclists and vehicles by applying different CFAR detectors. At first, the sensors on
AVs which are directly related to the detection performance of surroundings play a vital
role in realizing "Full driving autonomy" (Level 5). After comparing the pros and cons
of different sensors, the abilities of FMCW radar to provide accurate range and velocity
measurement of objects in relation to the radar and robustness of all-weather conditions
make FMCW radar an essential sensor in AVs systems. During the literature review, two
main research gaps are pointed out:

1. Scarce validation on public real-world radar dataset. The assessment of detec-
tors via the publicly available real-world traffic datasets holds significant signifi-
cance. Real-world datasets include practical environmental information and ve-
hicular actions that may not be fully replicated in simulated settings. Furthermore,
the adoption of a public real-world dataset contributes to the comparability of var-
ious radar detectors within the same scenario.

2. Conventional CFAR detectors are typically not designed for DSTs but many VRUs
are extended targets, such as pedestrians. CA-CFAR and OS-CFAR are two con-
ventional detectors that fail to utilize the Doppler-spread information from pedes-
trians.

The enhancement of detection outcomes is visualized through the utilization of two
types of charts, ROC curves of selected CFAR detectors on different object categories
and the computation time of three CFAR detectors under different parameter settings
in seconds. The proposed CFAR detector demonstrates better performance in scenarios
involving DSTs, outperforming both CA-CFAR and OS-CFAR, particularly evident in the
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performance curve of the proposed CA-CFAR for pedestrian detection. The proposed
algorithm exhibits a significant reduction in running time as it identifies potential range
bins first, followed by 1D searching along the Doppler axis. In contrast, 2D CA-CFAR and
2D OS-CFAR require scanning through all units in RDM, resulting in longer computation
time.

6.2. RECOMMENDATIONS
This section aims to suggest some work to be done in the future. Suggestions are given
as follows:

• The distribution of CARRADA dataset is followed by Weibull distribution, demon-
strated in Appendix 6.2. CFAR detectors based on the statistical properties of the
received signals. Understanding the clutter distribution enables the detector to
determine the appropriate statistical metric, such as median or mean, for setting
the detection threshold. This ensures that the detector maintains a consistent false
alarm rate while effectively detecting targets. Therefore, potential improvements
can be realized by studying the parameter estimation of target clutter.

• Due to limitations in computational capacity and time, more parameter sets are
not done to explore the influence of larger window sizes on large-size targets. There-
fore, more ROC analysis can be studied by increasing the number of reference and
guard windows. In addition, more frames of targets can also be investigated.



BIBLIOGRAPHY

[1] Iis P Tussyadiah, Florian J Zach, and Jianxi Wang. “Attitudes toward autonomous
on demand mobility system: The case of self-driving taxi”. In: Information and
Communication Technologies in Tourism 2017: Proceedings of the International
Conference in Rome, Italy, January 24-26, 2017. Springer. 2017, pp. 755–766.

[2] D Mohr, D Wee, and T Möller. “Eight disruptive trends shaping the auto industry
of 2030”. In: Autom. Megatrends Mag. 1 (2016), pp. 8–10.

[3] Thomas A Hemphill. “Autonomous vehicles: US regulatory policy challenges”. In:
Technology in Society 61 (2020), p. 101232.

[4] World Health Organization et al. “Global status report on road safety 2018: Sum-
mary”. In: World Health Organization (2018).

[5] Santokh Singh. Critical reasons for crashes investigated in the national motor vehi-
cle crash causation survey. Tech. rep. 2015.

[6] Claire Pilet, Céline Vernet, and Jean-Louis Martin. “Estimated crash avoidance
with the hypothetical introduction of automated vehicles: a simulation based on
experts’ assessment from French in-depth data”. In: European transport research
review 13 (2021), pp. 1–8.

[7] Daniel J Fagnant and Kara Kockelman. “Preparing a nation for autonomous ve-
hicles: opportunities, barriers and policy recommendations”. In: Transportation
Research Part A: Policy and Practice 77 (2015), pp. 167–181.

[8] Sae International. “Taxonomy and definitions for terms related to driving automa-
tion systems for on-road motor vehicles”. In: SAE international 4970.724 (2018),
pp. 1–5.

[9] National Highway Traffic Safety Administration, Automated vehicles for safety. https:
//www.nhtsa.gov/technology-innovation/automated-vehicles-safety.

[10] Zhangjing Wang, Yu Wu, and Qingqing Niu. “Multi-Sensor Fusion in Automated
Driving: A Survey”. In: IEEE Access 8 (2020), pp. 2847–2868. DOI: 10.1109/ACCESS.
2019.2962554.

[11] Arthur Venon et al. “Millimeter Wave FMCW RADARs for Perception, Recognition
and Localization in Automotive Applications: A Survey”. In: IEEE Transactions on
Intelligent Vehicles 7.3 (2022), pp. 533–555. DOI: 10.1109/TIV.2022.3167733.

[12] Matthias Kronauge and Hermann Rohling. “Fast Two-Dimensional CFAR Proce-
dure”. In: IEEE Transactions on Aerospace and Electronic Systems 49.3 (2013), pp. 1817–
1823. DOI: 10.1109/TAES.2013.6558022.

[13] Yishan Ye et al. “Doppler-Spread Targets Detection for FMCW Radar Using Con-
current RDMs”. In: IEEE Transactions on Vehicular Technology 71.11 (2022), pp. 11454–
11464. DOI: 10.1109/TVT.2022.3190478.

33

https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety
https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety
https://doi.org/10.1109/ACCESS.2019.2962554
https://doi.org/10.1109/ACCESS.2019.2962554
https://doi.org/10.1109/TIV.2022.3167733
https://doi.org/10.1109/TAES.2013.6558022
https://doi.org/10.1109/TVT.2022.3190478


6

34 BIBLIOGRAPHY

[14] Youngwook Kim et al. “Human Detection Based on Time-Varying Signature on
Range-Doppler Diagram Using Deep Neural Networks”. In: IEEE Geoscience and
Remote Sensing Letters 18.3 (2021), pp. 426–430. DOI: 10 . 1109 / LGRS . 2020 .
2980320.

[15] Karsten Thurn et al. “Pedestrian detection with an interlaced chirp sequence con-
cept in automotive radar”. In: 2015 16th International Radar Symposium (IRS).
2015, pp. 161–166. DOI: 10.1109/IRS.2015.7226344.

[16] Eugin Hyun, Young-Seok Jin, and Jong-Hun Lee. “A pedestrian detection scheme
using a coherent phase difference method based on 2D range-Doppler FMCW
radar”. In: Sensors 16.1 (2016), p. 124.

[17] Wei Zhang et al. “Enhanced Detection of Doppler-Spread Targets for FMCW Radar”.
In: IEEE Transactions on Aerospace and Electronic Systems 55.4 (2019), pp. 2066–
2078. DOI: 10.1109/TAES.2019.2925433.

[18] N. Yamada, Y. Tanaka, and K. Nishikawa. “Radar cross section for pedestrian in
76GHz band”. In: 2005 European Microwave Conference. Vol. 2. 2005, 4 pp.–1018.
DOI: 10.1109/EUMC.2005.1610101.

[19] Domenic Belgiovane et al. “77 GHz radar scattering properties of pedestrians”. In:
2014 IEEE Radar Conference. 2014, pp. 0735–0738. DOI: 10.1109/RADAR.2014.
6875687.

[20] Deborah J Rumsey. Statistics for dummies. John Wiley & Sons, 2016.

[21] D.A. Abraham. “Chapter 11 - Signal Processing”. In: Applied Underwater Acoustics.
Ed. by Thomas H. Neighbors and David Bradley. Elsevier, 2017, pp. 743–807. ISBN:
978-0-12-811240-3. DOI: https://doi.org/10.1016/B978-0-12-811240-
3.00011-4. URL: https://www.sciencedirect.com/science/article/pii/
B9780128112403000114.

[22] Mohamed Baadeche, Faouzi Soltani, and Fulvio Gini. “Performance comparison
of mean-level CFAR detectors in homogeneous and non-homogeneous Weibull
clutter for MIMO radars”. In: Signal, Image and Video Processing 13 (2019), pp. 1677–
1684.

[23] Hermann Rohling. “Radar CFAR Thresholding in Clutter and Multiple Target Situ-
ations”. In: IEEE Transactions on Aerospace and Electronic Systems AES-19.4 (1983),
pp. 608–621. DOI: 10.1109/TAES.1983.309350.

[24] V. Gregers Hansen and James H. Sawyers. “Detectability Loss Due to "Greatest Of"
Selection in a Cell-Averaging CFAR”. In: IEEE Transactions on Aerospace and Elec-
tronic Systems AES-16.1 (1980), pp. 115–118. DOI: 10.1109/TAES.1980.308885.

[25] G.V. Trunk. “Range Resolution of Targets Using Automatic Detectors”. In: IEEE
Transactions on Aerospace and Electronic Systems AES-14.5 (1978), pp. 750–755.
DOI: 10.1109/TAES.1978.308625.

[26] Harold M Finn. “Adaptive detection mode with threshold control as a function of
spatially sampled clutter-level estimates”. In: Rca Rev. 29 (1968), pp. 414–465.

https://doi.org/10.1109/LGRS.2020.2980320
https://doi.org/10.1109/LGRS.2020.2980320
https://doi.org/10.1109/IRS.2015.7226344
https://doi.org/10.1109/TAES.2019.2925433
https://doi.org/10.1109/EUMC.2005.1610101
https://doi.org/10.1109/RADAR.2014.6875687
https://doi.org/10.1109/RADAR.2014.6875687
https://doi.org/https://doi.org/10.1016/B978-0-12-811240-3.00011-4
https://doi.org/https://doi.org/10.1016/B978-0-12-811240-3.00011-4
https://www.sciencedirect.com/science/article/pii/B9780128112403000114
https://www.sciencedirect.com/science/article/pii/B9780128112403000114
https://doi.org/10.1109/TAES.1983.309350
https://doi.org/10.1109/TAES.1980.308885
https://doi.org/10.1109/TAES.1978.308625


BIBLIOGRAPHY

6

35

[27] Ahsan Jalil, Hassan Yousaf, and Muhammad Iram Baig. “Analysis of CFAR tech-
niques”. In: 2016 13th International Bhurban Conference on Applied Sciences and
Technology (IBCAST). IEEE. 2016, pp. 654–659.

[28] H. Rohling and R. Mende. “OS CFAR performance in a 77 GHz radar sensor for car
application”. In: Proceedings of International Radar Conference. 1996, pp. 109–114.
DOI: 10.1109/ICR.1996.573784.

[29] Arthur Ouaknine et al. “Carrada dataset: Camera and automotive radar with range-
angle-doppler annotations”. In: 2020 25th International Conference on Pattern Recog-
nition (ICPR). IEEE. 2021, pp. 5068–5075.

[30] B.-E. Tullsson. “Topics in FMCW radar disturbance suppression”. In: Radar 97 (Conf.
Publ. No. 449). 1997, pp. 1–5. DOI: 10.1049/cp:19971620.

[31] Mi He et al. “Polarimetric extraction technique of atmospheric targets based on
double sLdr and morphology”. In: 2011 IEEE International Geoscience and Remote
Sensing Symposium. 2011, pp. 3245–3248. DOI: 10.1109/IGARSS.2011.6049911.

[32] H. Rohling and R. Mende. “OS CFAR performance in a 77 GHz radar sensor for car
application”. In: Proceedings of International Radar Conference. 1996, pp. 109–114.
DOI: 10.1109/ICR.1996.573784.

[33] Chunmei Xu et al. “An improved CFAR algorithm for target detection”. In: 2017 In-
ternational Symposium on Intelligent Signal Processing and Communication Sys-
tems (ISPACS). 2017, pp. 883–888. DOI: 10.1109/ISPACS.2017.8266600.

[34] Tom Fawcett. “An introduction to ROC analysis”. In: Pattern Recognition Letters
27.8 (2006). ROC Analysis in Pattern Recognition, pp. 861–874. ISSN: 0167-8655.
DOI: https://doi.org/10.1016/j.patrec.2005.10.010. URL: https:
//www.sciencedirect.com/science/article/pii/S016786550500303X.

[35] Qiangwen Zheng et al. “A Target Detection Scheme With Decreased Complexity
and Enhanced Performance for Range-Doppler FMCW Radar”. In: IEEE Transac-
tions on Instrumentation and Measurement 70 (2021), pp. 1–13. DOI: 10.1109/
TIM.2020.3027407.

[36] Yunhan Dong. Distribution of X-band high resolution and high grazing angle sea
clutter. Citeseer, 2006.

https://doi.org/10.1109/ICR.1996.573784
https://doi.org/10.1049/cp:19971620
https://doi.org/10.1109/IGARSS.2011.6049911
https://doi.org/10.1109/ICR.1996.573784
https://doi.org/10.1109/ISPACS.2017.8266600
https://doi.org/https://doi.org/10.1016/j.patrec.2005.10.010
https://www.sciencedirect.com/science/article/pii/S016786550500303X
https://www.sciencedirect.com/science/article/pii/S016786550500303X
https://doi.org/10.1109/TIM.2020.3027407
https://doi.org/10.1109/TIM.2020.3027407


APPENDIX

This appendix demonstrates the fitting of a Weibull distribution to the experimental data
used in this thesis. This could be used in future work for a better estimation of the detection
threshold.

The road clutter shows similarities to Weibull clutter [35]. The Weibull distribution is a
two-parameter distribution and the probability density function (PDF) [36] can be ex-
pressed as (1),

f (x;k,b) = bkxk−1e−bxk
(1)

where k is the shape parameter and b is the scale parameter. The Weibull distribution
serves the exponential distribution (k=1) and the Rayleigh distribution (k=2).

The cumulative distribution function (CDF) is determined by (2),

F (x;k,b) = 1−e−bxk
(2)

Figure 1 shows the distribution of the clutter data (blue) and the curve of the Weibull
distribution (red). All non-target units are sampled and demonstrated in the bar chart.
The PDF result provides clear evidence that the clutter power is well-fitted by the Weibull
distribution. Therefore, more improvement could be around the distribution of the clut-
ter power to enhance the probability of detection.

Figure 1: The PDF of Carrada dataset and the Weibull distribution. The fitting result
indicates a close match between the PDF of clutter power and the Weibull distribution.
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