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Abstract

Mine design and mine planning are essential to a mining operation as they do not only dictate the outline
of the mine, but essentially determine the financial robustness and success of the mining operation. How-
ever, as mining is a conservative business mine design is still mostly done by hand. To indicate the effect of
uncertainty in mine design, Vallee (2000) [29] reported that 60% of the reviewed mines had an average pro-
duction rate that was 30% lower than their designed capacity. To provide in better mine design researchers
and companies have developed and proposed number of guidance tools in recent years to help optimize
mine planning. However their efforts have mainly focussed on open-pit mine design whilst largely ignoring
underground mining, which is more versatile and therefore more difficult to assess. Furthermore, the op-
timization algorithms that have been developed are mostly based on average-type or interpolated resource
models, which do not allow assessing uncertainty. Several stochastic approaches have been proposed by
Dimitrakopoulos [36], [24], [37] and others [30], as a tool to involve stochastic techniques in mine design op-
timization as a way to assess uncertainty. However, few practical stochastic solutions have been developed
for underground mine design.To contribute to the recent efforts made by the TU Delft in the ‘Horizon 2020
– Real Time Mining’ European Union Research and Innovation Programme, this research has focussed on
combining underground mine design optimization with several stochastic analyses.
A stope layout optimizer was developed in Matlab based on standard genetic algorithms, a sub-group of evo-
lutionary algorithms. This model was tested on two validation data sets where it showed good optimization
performance. A stochastic optimization module was added and tested, but as the validation data set was lin-
ear, it showed no added value. Using a resource model of a copper / zinc VMS deposit a number of stochastic
approaches were tested. By performing a minimal downside risk / maximum upside potential analysis [36] a
stochastic optimization and elimination approach was tested under different economic scenarios by using 20
unconditional economic block model simulations. A stochastic risk analysis [37] using the same 20 economic
block models was done to study the effect of stochastic probability on economic value, ore tonnage, waste
tonnage, average ore grade and average arsenic content. Lastly, a stochastic design optimization was done
using 100 unconditional economic block models and its optimization performance was compared to that for
a traditional non-stochastic optimization.
Both the minimal downside risk / maximum upside potential analysis and the stochastic design analysis
showed better optimization results than traditional optimization using average type orebody models. How-
ever, as in the min / max approach emphasis was on robustness instead of profitability, it was unable to show
the same degree of improvement over traditional optimization
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1
Introduction and problem statement

1.1. Research context
In general, mine planning can be described as designing the optimal mine-layout that tries to maximize ore
production at minimal costs. Proper mine planning is essential as it not only dictates the outline of the mine
but essentially determines the financial robustness and success of the mining operation. The main input for
mine planning is the geological interpretation of the orebody as this will dictate the scale of the mining op-
eration and the method of extraction. Other subsequent inputs are generally: a geotechnical orebody model,
mining equipment and equipment costs and processing constraints. Furthermore, commodity price is im-
portant as different market scenarios greatly affect the optimal layout and extraction sequence.

In traditional mine planning all processes leading to the final mine design and schedule are done manu-
ally by a team of geologists and mining engineers. For most of the bigger mining operations, companies have
aimed to improve the decision making process by introducing mine design and planning software. These
have been around since the early 1980’s, but it was not until the introduction of windows 95 in the mid 1990’s
that they became widely available [9].

Where open pit mining is concerned the pit design algorithms are almost without exception based on the
Lerchs & Grossmann algorithm. One of the most notable software derivatives of this concept being Whittle
3D [40].

For underground mining it was not until 1995 that Ovanic and Young presented a mixed integer program-
ming formulation for stope boundary optimization [48]. This was quickly followed by Alford’s floating stope
concept for stope optimization [20] which has since been widely applied and extended.

However, as mining software tends to be expensive and the mining business generally conservative, soft-
ware applications are not used in all mining operations. Especially in underground mining, where the mines
tend to be more complex and their design is usually unique, software solutions are not always used on a large
scale yet.

Underground mine design in general revolves around the placement of stopes. These stopes are units (voids)
that can be mined in one series while staying within the ore body’s geotechnical constraints. They can be
approached as the smallest mineable unit given the mining equipment while ignoring infrastructure works.
In order to maximise project value, it is therefore essential to optimize the stope layout.

Over the years a number of algorithms have been developed to solve the stope layout problem. These
algorithms can either be classified as exact, meaning they are supported by mathematical proof, or heuristic.
In contrast to exact algorithms, heuristic models do not have mathematical proof but aim to solve the given
problem by restricting the search area using several constraints [55]. Some notable previous efforts on stope
layout optimization are discussed below.

Ovanic and Young (1995) [48] Present a mixed integer programming formulation optimizing the stope bound-
aries along a single dimension. The algorithm therefore offers a partial solution to the stope layout problem
and was one of the first developed for this purpose alone.

Alford (1995) [20] Developed and presented the floating stope concept for stope optimization. This approach
has since found multiple applications in stope optimization software. However, the stopes generated by this
algorithm are overlapping and therefore need post-optimization manual adjustment. The final outcome will
therefore be sub-optimal.

1
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Cawrse (2001) [32] introduced an extension to Alford’s floating stope algorithm and recommends a multiple
pass floating stope process (MPFSP). Even though the results show improvement, the model fails to overcome
the shortcomings of Alford’s model.

Ataee-pour (2000 and 2004) [21] [22] presents a heuristic method based on the maximum value neighbour-
hood (MVN). This algorithm offers a robust solution to the stope optimization problem and mitigates the
overlapping stopes. However, the algorithm fails to produce equal results when the starting location within a
block model is changed.

The MVN algorithm has been widely implemented in commercially available mining software and can
therefore be used as a benchmark.

Sens and Topal (2009) [51] came up with a heuristic approach to stope layout optimization in 3D. In con-
trary to the floating stope algorithm it eliminates overlapping stopes. Its downside is that it only generates
one unique set of stopes while, in reality, multiple solutions exist and the optimal solution should be selected
among them.

Sandanayake, Topal and Asad (2015) [49] proposed a heuristic algorithm. Using an ore body model and its
relevant economic parameters as an input, it translates the ore body model into an economic ore body block
model. From this it develops the optimal stope layout by maximizing the total economic value subject to the
geotechnical constraints. Unlike the floating stope model it does not allow for overlapping stopes. Further-
more the starting location should not influence the outcome. In tests the algorithm has shown to generate
substantially higher economic portential than the commercially available MVN model from Ataee-pour.

A key characteristic for mine design methods, such as the ones described in the previous sections, is the
use of complex optimization algorithms that assume a certain input. This input is in general an estimated
and sometimes smoothed representation of the orebody, obtained through interpolation of drill hole data.
Coupled with the uncertainty and in-situ variability allocated to those models these have been shown to be
highly inaccurate. For example, Vallee (2000) [29] reports that 60% of the surveyed mines had an average
production rate that was 30% lower than their designed capacity. These discrepancies between the actual
production and the planning expectations arise through the uncertainty about the orebody in term of ore
grade, tons and quality.

In the last decades it has been shown that implementing stochastic optimization techniques in mining can
lead to a more realistic and robust mine design. Furthermore stochastic optimization techniques applied to
mining can help in finding the optimal project NPV and production targets.

Dimitrakopoulos and Ramazan (2004) [35] propose a new optimization formulation based on linear pro-
gramming for multi-element open pit mine production scheduling which integrates orebody uncertainty.
Furthermore, the model also takes into account risk quantification, mobility restrictions and various opera-
tional requirements. With this approach they were able to produce better results than traditional approaches.

Dimitrakopoulos, Martinez and Ramazan (2007) [36] introduce the maximum upside potential / minimal
downside risk approach where they focus on open pit mine optimization based on the assessment of geo-
logical uncertainties. Their approach allows the use of conventional optimization tools. By stochastically
analysing different equally probable mine designs and their schedules they are able to select a final model
that is best suited to handle uncertainties, while at the same time meeting several production targets. How-
ever, as they mention, the approach might be operationally tedious in the case of larger ore bodies.

Leite and Dimitrakopoulos (2007) [46] propose a multi-stage framework for open pit mine scheduling at a
low-grade disseminated copper deposit. The framework considers geological uncertainty in order to mini-
mize the risk of project target deviation. Using conditionally simulated ore body models ultimate pit limits
and production schedules are generated. Using a simulated annealing algorithm a single production sched-
ule is then generated based on the probability that a mining block belongs to a given scheduling period. Their
results indicate that conventional approaches tend to wrongly estimate ore tonnages and NPV. Furthermore,
the stochastic schedule has low chances to significantly deviate from project targets.
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Benndorf and Dimitrakopoulos (2013) [24] present a stochastic integer programming based mine produc-
tion scheduling approach which considers jointly multi-element geological uncertainty. This approach was
tested on a large Australian open pit iron ore deposit. The results demonstrate the ability of the stochas-
tic approach to control production target deviation risk. Furthermore, the stochastic schedule increases the
probability of meeting production targets, therefore decreasing project risk and increasing project value.

Even though most previous researches have focussed on stochastic planning solutions for open pit mines,
some efforts have been done to connect the technique to underground mine planning. The two most notable
attempts being as follows.

Grieco and Dimitrakopoulos (2009) [37] propose a MIP programming approach for stope design in under-
ground operations that determines the optimum location, size and number of stopes based on the concept
of acceptable risk in a design they use an application on a Canadian base metal mine to demonstrate its
practical aspects. These aspects include risk quantification for contained ore tonnes, grade and economic
potential. They do note that as a result of mitigating risk, it might prove difficult to meet production de-
mands and therefore requires waste blending.

Carpentier, Gamache and Dimitrakopoulos (2016) [30] propose a stochastic integer programming model to
optimise long-term scheduling of underground operations while considering geological uncertainty. The
two-stage model considers a variable cut-off grade and accounts for maximum development, material han-
dling, flow conservation an mine and mill capacities. Through the results they show the benefits of risk con-
trol such as an increased NPV and a shorter mine life. Furthermore they suggest using zones of variability in
a flexible manner as to control risk while avoiding high-grading.

1.2. Problem statement
As the literature study indicates, mine design optimization has been the subject of research. Even though
the sector is conservative, the recent economic crisis has contributed to the awareness that there is room for
optimization in mining engineering and applying new solutions is crucial. As mining is a capital intensive
business, small improvements can potentially save large amounts of investment costs.

However, most of the research done so far has been solely aimed at open pit mining, ignoring underground
operations. As a result underground mine design is mostly still done by hand, and when computer aids have
been introduced they still heavily rely on user guidance.

Another problem is that the current software solutions tend to optimize using single input. Usually a re-
source model derived through kriging or averaging is used as representation of the resource deposit. Even
though this model might be a good enough representation of reality, it does not incorporate the uncertainty
that is naturally present in those models.

The effects of uncertainties in mining design have been noted by Vallee and Bouchard (2000) [29], who
found that 60% of the mines surveyed had an average production that was 30% below their designed capacity.

The capital intensive nature of mining means that failing to meet targets can have severe financial conse-
quences. Furthermore, mining should strive to keep its environmental impact as small as reasonably pos-
sible. This would require mining only the valuable resource while leaving un-economic zones undisturbed.
These goals can only be achieved if the amount of uncertainty in the design phase is decreased.

1.3. Motivation
As part of the Horizon 2020 Project, the biggest European Union Research and Innovation programme to date,
the ‘Real-Time Mining’ programme was started in 2015. The overall aim of Real-Time Mining is to develop
a real time framework to decrease environmental impact and increase resource efficiency in the European
raw material extraction industry. The project consists of 13 European partners from 5 countries and is led by
the Resource Engineering Section of the Delft University of Technology assisted by an international External
Expert Advisory Board. Among other sub-projects, it will include:
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“research and demonstration activities integrating automated sensor based material characterization, online
machine performance measurements, underground navigation and positioning, underground mining sys-
tem simulation and optimization of planning decisions, state-of-the art updating techniques for resource/reserve
models.” [3]

As part of this project investigations are to take place on optimal long-term planning and mine design.

This research will focus on combining mine design optimization with several stochastic analyses to quan-
tify grade-risk and to explore the potential benefit of these techniques.
For optimization, the principles of genetic algorithms will be used to develop a stochastic stope layout opti-
mizer in Matlab. Quantificationof stochastic optimization will be done in regard to a number of Key Project
Performance Indicators widely used for assessing mining operations.

1.4. Aim and objectives
The aim of this research was defined as:

“To introduce and evaluate an optimization approach for underground stope mining, based on genetic al-
gorithms, taking into account grade uncertainty and to quantify grade uncertainty risk by stochastic analysis.”

To achieve this, the following objectives were defined:

• Develop a 2D stope layout optimizer based on a binary genetic algorithm.

• Convert the algorithm to incorporate stochastic input.

• Develop a module to convert the available stochastic ore-grade simulations into economic block model.

• Use the developed model to evaluate the orebody stochastically and investigate its potential benefits.

1.5. Hypothesis and research questions
The aforementioned research goal and objectives are part of the central hypothesis:

Hypothesis:“Simulation based stochastic optimization of underground mine design will lead to better results
than optimization based on customary average grade models.”

The main research questions following from this hypothesis, which are to be answered in this research, have
been stated as follows:

1. How can metaheuristic optimization be used in underground stope geometry optimization?

2. How can stochastic optimization of stope geometries, using metaheuristic optimization, be used to
manage and eliminate uncertainty in underground mine design?

1.6. Report outline
This report consists of 4 main sections divided over 9 chapters.

I The first section consists of chapter 1, 2 and 3. Chapter 1 introduces the research context by a summary
of previous research, states the research motivation and goal, lists the aim and objectives and presents
the hypothesis and research questions Chapter 2 describes the problem case by introducing the scenario
on which this research was conducted and states what parameters were derived from this case. Chapter 3
provides a theoretical background on genetic algorithms, geological simulation and stochastic optimiza-
tion.

II The second section consists of chapter 4 and chapter 5. Chapter 4 states the model characteristics and
scope, states the model assumptions and modelling input. This is followed by an extensive model de-
scription in which justification is given for the various modelling decisions. In chapter 5 the model vali-
dation procedure is documented.



1.6. Report outline 5

III Section three consists of chapters 6, 7, 8 and 9 Chapter 6 contains the methodology. Here the analysis
scope is stated and three independent analyses are introduced and their procedure listed. Chapter 7 con-
tains the results of the three distinct stochastic analyses Chapter 8 discusses the highlights of the results
and provides explanation for the different results. Chapter 9 concludes the research done by answering
the research questions, reflecting on the previously stated research goals and hypothesis.

IV Section 4 consists of the recommendations (Chapter 10) and the appendices.





2
Description of problem case

2.1. General geologic scenario
The mineral deposit considered for this research is classified as volcano-sedimentary massive sulphides (VMS).

These deposits form on, or below, the ocean floor and are typically associated with volcanic rocks. They
typically form during periods of rifting. As rifting causes extension and thinning of the crust this allows hot
sub-volcanic magmas to rise and form metal-bearing hydrothermal cells. The location of the lenses are often
controlled by volcanic faults and fissures which can permit a discharge of hydrothermal fluids on the seafloor
(black smokers).

These deposits typically occur as lenses of poly-metallic massive sulphides rich in copper, zinc, tin and/or
lead. The lenses are commonly underlain by sulphide-silicate stockwork vain systems, although the stock-
work systems may extend into the hanging wall strata above the massive sulphide lenses.VMS deposits are
often found to have a strong metal zonation showing as a segregated zones of various metal bearing sulphides
throughout the deposit. In general chalcopyrite (copper sulphide) forms in the central part of the deposit.
Zinc and lead sulphides (sphalerite and galena) tend to form in the more outlying deposit parts. Generally
non-economic iron sulphides like pyrite and pyrrhotite occur within the base metal sulphides.

Figure 2.1: Overview of VMS, from [10]

Base metal grade distributions within the massive copper/zinc sulphide lenses typically show good in-
ternal continuity but can laterally terminate abruptly in barren pyrite. The massive sulphide deposits are
generally very large, regular, continuous and predictable. However, the geometry of high-grade zinc and cop-

7
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per zones within them can be complex due to geological alterations. In many cases boundaries between ore
grade mineralization and barren pyrite may be almost parallel to the stratigraphic contact of the sulphide
lenses.

2.2. Typical mining methods

Due to the large, but locally complex, high grade ore zones in VMS deposits they are usually mined using
underground stoping techniques as this allows for a reasonable degree of selectability. In VMS orebodies with
average geotechnical conditions and average to high grade copper or zinc ore the most common methods are
bench-and-fill and drift-and-fill.

2.2.1. Bench-and-fill

Bench-and-fill mining is commonly used where the mineralization is of sufficient thickness and continuity.
The method is highly productive and had relatively low operating costs compared to other stoping methods.
It is generally applied in orebody regions where the thickness exceeds 20m.

The bench-and-fill stopes are accessed through the footwall with drives driven along the strikes in 20m verti-
cal intervals. Upper and lower access crosscuts are driven across the orebody. The top access is opened up to
the full stope width and a slot raise is opened at the hangingwall side of the stope. Vertical sections are then
blasted on retreat to the footwall with material being recovered from the lower access drive.

Primary stopes have been mined up to 120m long, but are more typically broken up into sections of 30 –
40m. Primary stopes are usually backfilled with cemented paste fill and hydraulic sand fill. Smaller secondary
stopes are filled with either waste rock or paste fill with a low cement content.

Figure 2.2: Bench-and-fill mining, from [11]

2.2.2. Drift-and-fill

Although the method has relatively low production rates and high unit costs when compared to bench-and-
fill, it is usually chosen because it is highly flexible and can achieve high recovery rates in high grade orebodies
with complex and flat dipping geometry.

Drift-and-fill stopes are usually accessed through the footwall ramp with footwall access drives driven
along the orebody stroke at 20m vertical intervals. Access crosscuts are driven down into the orebody and a
horizontal slice is mined using drifts developed either longitudinally or transversely in sequence. Standard
drift dimensions are 5-by-5 meters. Following completion of a drift it is tightly backfilled with hydraulic sand
fill before the drift alongside is mined. When a complete 5 meters high orebody slice is mined and filled, the
back of the access drive is slashed down and mining recommences on the level above.
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Figure 2.3: Drift-and-fill mining, from [2]

2.3. Problem statement
The stockwork and lens nature of the VMS deposit mean uncertainty plays a role. Where previously stated that
most mines fail to meet their target this is especially an issue with VMS deposits. In contrast to for instance
coal mining, where deposits are predictable, the combination of high variability and the need for selective
mining pose challenges in the mine design phase.

When creating a traditional blockmodel using interpolation techniques such as kriging,the combination of
uncertainty and high variability will result in a smoothed resource model. This model cannot be used for
detailed stope positioning and target estimations as it would result in a highly inaccurate mine design.

Another option would be to create a number of orebody simulations, each equally probable. However,
due to the variability in the VMS deposit, these have a high probability to be an unfit representation of the
resource deposit.Choosing one of those simulations is impossible as each of them are equally probable to
accurately describe the real situation. Averaging the simulations would lead to a similar issues as when using
interpolation methods, as it would lead to mine design beingbased on an unfit, smoothed, representation of
the actual orebody.

Stochastic techniques deal with uncertainty in the way that they help to make a more accurate uncertainty es-
timation. By using multiple orebody simulations of equal probability, and taking each into account as equally
probable orebody representations, the orebody uncertainty can be more accurately dealt with.

Where little uncertainty is present this will not lead to large benefits. However, the high variability within
VMS deposits, and the uncertainty this leads to in orebody modelling, mean more significant gains can be
expected.

2.4. Optimization considerations
In this research a stochastic mine design optimization will be done on a copper and zinc bearing VMS deposit.
The goal will be to find the optimum size and location for stopes to be mined. In the section below the key
optimization parameters, the objective functions and constraints that will be considered are listed.

2.4.1. Key optimization parameters
Optimization will be done based in the Economic value of the stopes. The aim is to place the stopes in such a
way that they capture the full economic orebody potential by mining as much profitable parts of the deposit
as possible. This will be done while taking into consideration a number of constraints.

Furthermore, in selecting the optimum mine design, in some analyses other key drivers will be considered
in addition to the economic value:

• The inclusion of penalty elements.

• Average ore grades.
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• Ore tonnage.

• Waste tonnage.

The size of pillars and stopes used for the optimization will be closely related to the bench-and-fill mining
method, however theoretical values are used. As different VMS deposits are mined using different mining
methods due to varying geo-technical characteristics, maximum and minimum stope and pillar sizes differ
per operation. To allow different scenarios to be evaluated in the future it was decided not to focus on one
particular mining method. Instead stope and pillar sizes were used that allow the deposit variability to play a
role.

The economic parameters used for transforming the resource block model into an economic block model
were based on real mining operations where copper/zinc VMS deposits are mined using underground stop-
ing.

The aim of the model is not to accommodate one certain operation, but to allow multiple mining opera-
tions to be simulated and stochastically analysed. To do so all economic and mining related parameters have
remained accessible in the model so that they can be tailored to a desired scenario.

2.4.2. Objective function
The objective function will be to Maximize the economic value of the selected stopes.

This will be done based on an economic block model, where we aim to include as many profitable blocks
as possible within the constraint limits, whilst leaving out blocks that do not contribute economically to the
objective function.

2.4.3. Constraints
Several constraints will be taken into account.

• Geotechnical constraint: To ensure the stability of the stopes a pillar boundary should be placed
around them. This pillar cannot be mined, even after a stope has potentially been backfilled. The
width of this pillar will be fixed during optimization but can be changed within the model.

• Regularity constraint: To ensure the mineability of the stopes they will have to be rectangular in shape.
A constraint is in place to adjust the individual stopes and ensure a rectangular shape.

• Stope size constraint: To ensure geotechnical stability of the stopes and keep their size within the
desired range, both a minimum and maximum stope size will be defined. The desired maximum and
minimum length and width of the stopes can be adjusted within the model.

• Ore Grade constraint: By working with a cut-off grade the inclusion of low grade material (under cut-
off grade) will be un-linearly penalized.

• Ore Quality constraint: To accommodate the current smelter demands, the inclusion of penalty ele-
ments will be constrained. A soft constraint is in place for low grade penalty element inclusion, a hard
constraint for above-threshold values.



3
Theoretical background

3.1. Global Mathematical Optimization
Optimization, or mathematical optimization is “The selection of a best element (with regard to some crite-
rion) from some set of available alternatives” [5].

In the simplest case an optimization problem consists of maximizing or minimizing a function (objective
function) by systematically choosing input values from within an allowed set of values, and calculating the
outcome value of the function. Its goal is to find the best fitting value which will results in the highest (maxi-
mizing) or lowest (minimizing) outcome for the objective function [6].

Generally optimization algorithms can be divided in two groups: deterministic and probabilistic algorithms.
Deterministic algorithms are mostly used if there is a clear relation between the characteristics of the pos-

sible solution and its utility for a given problem exists. In that case a search space can efficiently be explored
using for instance a divide and conquer scheme [1]. If the relation between an input variable and the out-
come of the objective function are not obvious, too complicated, or the search space is too big, it becomes
harder to solve a problem deterministically. It would simply take too much computational time.

Probabilistic algorithms are better at dealing with such problems as they do not necessarily try to cal-
culate the actual best fit value, but use the result of a random process instead. One of the main groups of
probabilistic algorithms are the Monte Carlo based approaches which trade in guaranteed correctness of the
solution for an ‘as good as possible’ solution to decrease run-times.

An important sub-group of probabilistic Monte Carlo based approaches is Evolutionary Computation [1],
which groups all algorithms based on a set of multiple solution candidates.

Figure 3.1 shows a global overview of the taxonomy of optimization algorithms.

3.1.1. Metaheuristics
Heuristics are parts of an optimization algorithm that use the information gathered by the algorithm to decide
which candidate solution should be tested next, or how the next individual can be composed [1]. Metaheuris-
tics are a higher level heuristic designed to provide not a perfect solution, but a sufficiently good and efficient
solution, by treating the problems as a black-box-procedure. Metaheuristics are often performed stochasti-
cally by utilizing statistics obtained from search space samples or are based on physical processes or natural
phenomenon.

As part of the probabilistic algorithms, metaheuristics do not guarantee a globally optimal solution will be
found.

The main advantages of metaheuriscs are [7]:

• They move relatively quickly towards very good solutions and thus provide an efficient way of handling
large or complicated problems.

• They are useful in cases where other methods get stock at local optima as they are capable of escaping
them.

• They combine properties of different good solutions to generate new solutions.

Figure 3.2 provides an overview of the different classifications of metaheuristics.
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Figure 3.1: Taxonomy of global optimization algorithms, from [55]

Figure 3.2: Metaheuristics classification, from [8]
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3.2. Genetic algorithms
Genetic algorithms are a form of machine learning algorithms. This is a group of algorithms capable of learn-
ing - or ‘fine-tuning’ – while running, without being extensively programmed. These algorithms make deci-
sions based on their input data. Despite being one of the most impractical forms of machine learning it is one
of the best general-purpose learning algorithms. Even though for most problems there are more efficient solv-
ing algorithms, genetic algorithms do a very good job at solving cases with a large number of non-correlating
parameters [source].

Being a form of meta-heuristics Genetic algorithms do not guarantee an optimal solution, as would an ex-
act method, however they do a great job in approaching the optimal solution relatively quickly. As the time
to find the exact solution, if one exists at all, is several orders of magnitudes bigger than the heuristic one,
heuristic algorithms tend to be used for complex problems or problems with large datasets. Due to the latter
stochastic problems are usually approached in a heuristic manner [31].

Genetic algorithms have proven to be both a successful and powerful problem solving algorithm demon-
strating the potential powers of evolutionary concepts. They are applied in a large range of fields solving dif-
ficult problems with large sets of non-correlating parameters. The solutions they produce are usually more
complex and efficient than a human engineer could come up with by hand [31].

3.2.1. Why genetic algorithms?
For this research it was decided to use genetic algorithms as a mean to optimize a stope layout problem for
underground mining of VMS deposits. In addition the above mentioned benefits of genetic algorithms, the
main decision drivers have been:

• Genetic algorithms are intrinsically parallel. Where most other algorithms can only explore the solution
space to a problem in one direction at a time, genetic algorithms can work in multiple directions at
once. This means that where other algorithms get stuck and have to start over, Genetic algorithms can
easily eliminate the wrong search path and continue in a more promising direction.

• Genetic algorithms work well for problems where the fitness landscape is complex (discontinuous fit-
ness function, changes over time, many local optima) or very large

• Genetic algorithms need no information on the problems they need to solve. Instead of requiring do-
main specific information they make random changes to the candidate solutions and use a fitness func-
tion to determine whether those changes produce an improvement.

While the model presented in chapter 4 does not use a complex input in the optimization analyses done for
this research, it was designed to handle larger data sets and to be extended in the future. Where orebody
models are complex domains, using genetic algorithms should be able to decrease run-times and reduce the
probability of it getting stuck on a local optimum.

Furthermore, as they need limited information the algorithm can be easily adjusted and extended.

3.2.2. History
Since the 1950’s scientists have studied artificial intelligence and evolutionary computation, trying to write
programs able to simulate natural processes. In 1953 Dr. Barricelli [23] started studying artificial intelligence
at Princeton, using one of the first computers to try and mimic natural reproduction and mutation. His re-
search was not aimed at solving optimization problems or recreating biological evolution, but tried to create
artificial intelligence. In 1954 his research resulted in the first computer program related to genetic algo-
rithms.

His work was followed by dr. Fraser, an English biologist. He was the first to attempt creating a computer
model for biological evolution, as this could not be observed in nature [39] [38].

The first genetic algorithm was invented by John Holland in the 1960’s [41] and further developed by him
and his students and colleagues at the university of Michigan during the 1960’s and 70’s. Holland’s goal was
to study the phenomenon of evolution and adaptation as occurs in nature and to explore how these concepts
could be integrated in computer systems.

In the book Adaptation in Natural and Artificial Systems, released by Holland in 1975 [42], he presented



14 3. Theoretical background

the algorithm as an abstract form of biological evolution. Also he gave a framework for adaptation of the
Genetic Algorithm. His method for moving from one population to a new population incorporates all the ba-
sic techniques; cross-over, mutation and inversion. Previous works had only used mutation as evolutionary
driver. In his model individuals are represented by binary strings (e.g. 1’s and 0’s) where the more successful
individuals are allowed to produce more offspring than lesser ones.

Holland’s attempt was the first to successfully incorporate evolution in computational science and until
in the 1990’s his work was the basis of almost all theoretical work on genetic algorithms. Furthermore his
book remains popular as it demonstrates the mathematics behind evolution.

Research on genetic algorithms increased in the 1970’s and 1980’s driven by advancing computer technol-
ogy. Furthermore researchers also became increasingly aware of the shortcomings of traditional optimization
techniques for solving complex problems. It was found that genetic algorithms could tackle problems that
traditional methods so far had been unable to solve.

3.2.3. Overview of general genetic algorithm
In basic terms a Genetic Algorithm is a programming method using biological evolution as a strategy to solve
a certain problem. Given the problem to solve, the input of the model is a number of encoded potential so-
lutions which are each quantitatively evaluated by a certain fitness function. The input, or candidates, might
be solutions already known to work in order to optimize them or select the best one. Usually however these
starter candidates have been generated at random.

After the generation of the first generation, the algorithm then evaluates and ranks each candidate according
to the fitness function. After ranking most candidates will turn out to be no good solutions and are subse-
quently ignored or deleted. A few however might show potential or improvement. These will be allowed to
reproduce, usually called cross-over.

Multiple copies or ‘offspring’ are made of the first set of candidate solutions. These copies however are not the
same as the first parent generation as alterations and random changes are made. Apart from cross-over this
usually also includes some form of mutation. These offspring solutions go on to form the second generation
of candidate solutions and are subsequently evaluated by the fitness function. Again the offspring that has
worsened is deleted. However, some candidates of the offspring generation might show improvement that
has made them better or more efficient solutions.

This process is repeated over a certain number of generation steps under the assumption that each new
generation, through a new round of mating and mutations will encounter some better solution candidates
than present in any of the previous generations [31].

3.2.4. Solution representation (candidates)
In order for a Genetic Algorithm to be able to work on solving any problem, the potential solutions need to
be encoded in a form that can be processed by the program. Almost all algorithms work with a data-string in
which each position resembles a certain variable. The problem itself defines the size of the string, which, in a
problem with few variables can be short. Usually however strings can be several thousand values long.

The most common encoding scheme is binary coding. Here each possible candidate is represented by a
string of 1’s and 0’s. and each string position refers to a variable or characteristic that can be either turned ‘on’
or ‘off’. The string itself is one-dimensional but can easily be transposed to two or more dimensions.

Similar approaches are those where the string is not binary but contains integers or decimal numbers.
This would not change how the algorithm work massively but allows more complex models and greater pre-
cision. Furthermore it can be seen as more intuitive programming as it is easier to relate to string positions.

A third method is grammatical encoding. Here each individual is represented by a string of letters, where
each can, again, stand for an aspect of the solution.

A benefit of the above listed methods is that they make it easy to quickly encode random candidates. Also
they allow for a quick evaluation of the effects of mutation and cross-over. Furthermore, defining the opera-
tors referring to the final solution is made relatively easy.
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A forth method has been developed by Koza at the Stanford University [45]. In his algorithm the candidates
are not represented by a string of data but as branching data structures. These structures – or trees – are a set
of branched nodes in which each node contains a certain value. Apart from the genetic algorithm being able
to change the node values, also branches can be swapped or altered.

3.2.5. Selection and measure of optimality
Selection is the process of choosing two parent chromosomes from the population to create offspring with. Its
main purpose is to emphasize fitter individuals in the hope that their offspring has a higher fitness. The main
idea is that by taking two good chromosomes with different traits, the resulting offspring has the positives of
both parents and thus has a higher solution value. By repeating this over numerous generations eventually
this will lead to the optimal solution.

The selection pressure is defined as the degree to which the better individuals are favoured [52]. The higher
the selection pressure, the greater the chance that the individual is picked for creating offspring. The mag-
nitude of the selection pressure also greatly influences the convergence rate of the genetic algorithm. If the
selection pressure is too low, the convergence rate will be slow. However, a too high selection pressure can
result in the model getting stuck on a local optimum and thus will not result in finding the optimal solution.

Two selection schemes can typically be distinguished; proportionate based selection and ordinal based se-
lection.

The first picks out the individuals based on their fitness value relative to the fitness of other individuals
in the population. An example is roulette wheel selection, one of the most traditional selection methods.
Ordinal based selection picks individuals, not based on their fitness value, but upon their rank within the
population.

3.2.5.1. Random selection

In random selection the parent chromosomes are chosen not based on any ranking or fitness but are just
taken out of the population at random.

3.2.5.2. Fitness proportionate selection

Fitness proportionate selection, also known as roulette wheel selection is the most common operator for
selecting potentially useful solutions for reproduction. As in all selection methods it assigns a fitness value to
all individuals, which is then used to assign to it a probability of being chosen for reproduction. The selection
probability is calculated by using equation 3.1.

pi = fi

ΣN
j=1 f j

(3.1)

Where:

– pi = probability
– fi = the fitness of individual i
– N = the number of individuals in the population

This concept can be envisioned similar to a roulette wheel in a casino, where each candidate solution repre-
sents a pocket on the wheel with a size relative to its fitness. The wheel is played until the fitness proportionate
values ad up to the maximum combinatory value for that generation.

Even though it favours the stronger solutions this way, it does not eliminate the possibility of a bad solu-
tion being chosen. The prevents favourable genetic properties disappearing due to being in an overall worse
solution string.
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Figure 3.3: Roulette wheel, from [15]

3.2.5.3. Other selection methods

Roulette wheel selection is not always the preferred selection mechanism. When the fitness of the chromo-
some string varies strongly, and where there is a big difference in fitness between the best and worst solution,
roulette wheel fails to perform well. Furthermore other selection methods might be quicker or easier to im-
plement [27].

Poplar alternatives are tournament selection and stochastic universal sampling.

In tournament selection repeatedly two strings are randomly chosen for a ‘tournament’ where the better
solution is selected for reproduction. The amount of pairs selected depends on the tournament size, which is
equal to the amount of chromosomes demanded for crossover.

Stochastic universal sampling is more similar to roulette wheel selection, but uses intervals in selecting chro-
mosomes, Thus increasing the chance of weaker solutions being selected.

3.2.6. Recombination (Cross-over)

Recombination is the process of generating offspring from a set of parent solutions. It follows after the par-
ent solutions have been valuated an ranked based on their fitness. The idea is that it takes two chromosome
strings and implements a cross-over operator to create offspring with genetic properties of both parents. The
aim is to combine two good solutions so that the offspring has the beneficial properties of both parents. Usu-
ally two parent chromosomes result in two offspring chromosomes. However, variations in which two parent
strings create only one chromosome have also been used.

The two most common methods for cross-over are listed below.

3.2.6.1. Single point cross-over

The most common method in which recombination is applied is single point cross-over. For this method
two parent chromosomes are selected and a random or semi-random cut-point is chosen. At this point both
parent strings are cut in half. These halves are then recombined to form 2 new chromosomes both consisting
of genetic material from the two parent strings.
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Figure 3.4: Single point cross-over, from [16]

3.2.6.2. Dual point cross-over

Dual point cross-over works similar to the above mentioned single point cross-over. However, here each par-
ent string is not cut in two, but three pieces which are then recombined to form the offspring chromosomes.

Figure 3.5: Two point cross-over, from [18]

The idea behind dual-point or multi-point (more than 2 crossover points) is that the part of the genetic
chromosome contributing most to the objective function may not necessarily be contained in the substring
selected for cross-over [28]. Increasing the number of cuts, and therefore the number of genomes to be
swapped, should increase this probability. Furthermore, multi-point cross-over results in more emphasis
being put on the search space. This prevents the optimizer converging early, but decreases the chances of
getting stuck in a local optimum [53].

3.2.7. Mutation
Mutation is generally performed after cross-over. It introduces a random change in the genetic string in order
to prevent the genetic algorithm from getting stuck at a local optimum solution. A local optimum can be
seen as a solution that is optimal within a certain part of the domain or dataset, but is not the best possible
solution over all possible solutions. This is illustrated by figure 3.6. Furthermore it is a way of recovering lost
genetic material and introducing new solutions. Hence it covers for good genetic characteristics getting lost
due to being in an overall bad genetic string.
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Figure 3.6: Global and local maximum, from [13]

Mutation is supposed to cover the full genetic string so that it can influence all model parameters and
should have access to all genetic strings in a population. The probability of a mutation happening is usually
taken as 1/L, where L is the length of a chromosome (genetic string). However this is not a given as different
applications require different mutation probabilities to converge efficiently to the global optimum. However,
care should be taken that the mutation probability is not too high, as the algorithm would then change to
random search.

Another option could be to implement a hill-climbing mutation operator that only allows mutation if it im-
proves the solution. It is possible to accelerate the optimizer this way, however, it might also reduce the
population diversity. This could then lead to the optimizer getting stuck at a local optimum.

Below several of the most common mutation operators are described.

3.2.7.1. Flip-Bit Mutation
Goes for binary strings. One or more genes are selected and reverted. If the specific gene houses a 1 it is
changed in a 0 and vice versa.

Figure 3.7: Flip-Bit Mutation, from [14]

3.2.7.2. Swap Mutation
In swap mutation two gene locations are selected and swapped. In the case of binary chromosomes a change
is not guaranteed to happen if both genes have the same value. On non-binary coded algorithms this method
can have bigger effect.

Figure 3.8: Swap Mutation, from [14]

3.2.7.3. Scramble Mutation
In scramble mutation a number of adjacent genes are selected and shuffled randomly. The number of genes
to select depends on the algorithm and chromosome length.
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Figure 3.9: Scramble Mutation, from [14]

3.2.7.4. Inversion Mutation
Here, like in scramble mutation, a number of adjacent genes are selected. However instead of randomly
shuffling them, their order is simply reversed.

Figure 3.10: Inversion Mutation, from [14]

3.2.7.5. Displacement Mutation
Displacement mutation re-locates a number of adjacent genes within a chromosome and shifts the genes
that were originally on this location in the direction of the mutation location.

3.3. Conditional resource modelling and simulation
The underground geologic conditions on which a mine design is based are commonly defined as the ‘state of
nature’. This state is poorly known as relatively little information can be provided by drillhole data. Getting
more and more accurate data through additional drilling can reduce the geologic uncertainty but is expen-
sive. The systematic and random errors accumulated during sample collection, preparation and assaying
decrease accuracy and increase developmental risk. The information is obtained at specific data points and
must be interpreted to develop the three-dimensional geologic model necessary for mine planning and thus
adds another level of uncertainty. The quality of the model is depended, not only on the drilling data, but also
on the method used for interpolation and the expertise of the developers. The model is never better than the
information used for its development.

The process of modelling is complicated as it is required for estimating how the mining method will in-
fluence the tonnage and grade of ore sent to the processing plant. It should also be applicable both to the
evaluation of selective mining, as well as bulk mining. Underground mining requires a differently modelled
representation than open pit operations and the geostatistical methods used must accommodate to that.

Deposit modelling required the estimation of discrete features such as geologic zones and continuous
variables such as grades, penalty elements and metallurgical properties. Knowledge of uncertainty in the lo-
cation of these discrete features can be quantified by analysing different possible interpolations of the same
data. Uncertainty in discrete features can be quantified through the use of geostatistical simulation tech-
niques.

3.3.1. Geostatistical Interpolation and kriging
Originally, in spatial statistics, geostatistics was synonymous with kriging, a statistical version of interpola-
tion. In the last decades this definition has widened through the development of other interpolation tech-
niques. In mining however kriging related interpolation methods are still preferred and used in almost every
operation.

The basic idea of kriging is to predict the value of a function at a given point (e.g. ore grade) by comput-
ing the weighted average of the known neighbourhood point values. The method is mathematically closely
related to regression analysis as both theories derive a ‘Best Linear Unbiased Estimator’, most commonly re-
ferred to as ‘BLUE’. The BLUE is based on the assumptions of covariances. Furthermore kriging makes use of
the ‘Gauss-Markov theorem’ to prove independence of the estimate and error [33] [4].

z∗
0 =Σn

i=1λi zi (3.2)

Where:

– z∗
0 = the value at an unsampled location to be estimated from a linear combination of n values of a

regionalized variable zi

– λi = the weight of the regionalized variable zi at a given location
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– zi = the regionalized variable at a given location

Several forms of kriging have been developed as depending on the properties of the random field (stochastic)
and the various degrees of stationary assumed, different methods for calculating neighbourhood points can
be used. The most common kriging methods used in mining related geostatistics are:

• Ordinary kriging, which assumes a constant unknown mean over the search neighbourhood

• Simple kriging, which assumes stationary of the first moment over the entire domain with a known
mean.

• Universal kriging, which assumes a general polynomial trend model (e.g. linear trend model)

• Co-kriging, which uses information of several variable types.

A known downside of kriging is that it smooths out the original data as it overestimates the low point values
and underestimates the highs. This characteristic results in a smoothed orebody model. This is one of the
main reasons of numerous cases where the mine was not able to meet its targets by not being optimally
designed to the actual orebody.

Because of this, in the last decades alternatives have been studied.

3.3.2. Conditional Simulation of orebody models
Deterministic methods like kriging, whose output is a single unique solution, do not attribute to the actual
variability. The smoothing characteristic of any interpolation algorithm replaces local detail with a good av-
erage value. However, the mining industry, and specifically the mining engineer are more interested in finer-
scaled details as these are needed to provide an optimal mine design.

Unlike deterministic methods, simulation methods preserve the variance observed in the data. Their stochas-
tic approach allow for calculation of many equally probable solutions, which can be used to quantify and
asses uncertainty.

Like the traditional deterministic approach, stochastic methods like conditional simulation preserve hard
data where known, and use soft data where informative. The kriged solution in itself is the average of numer-
ous realizations, and the variability in the different outcomes is a measure of uncertainty at any location. The
standard deviation of all simulated values generated for each grid point is the quantification of uncertainty.

3.3.3. Stochastic modelling
In general, these stochastic simulation techniques (i.e. conditional simulation) require that the main input
parameters (spatial models such as variograms) and the sample value distribution (i.e. cumulative distri-
bution function) remain constant over all simulations within a given geologic interval. The structural and
stratigraphic model (resource outline) remains fixed.

As each realization begins with a different random seed number, each are calculated following a unique
path, guaranteeing the uniqueness of the outcome. The random path provides the simulation algorithm with
the specific order of cells to be simulated in. Therefore, the results are different at all un-sampled locations,
producing local changes in the property distribution. This also means that selecting the same random seed
will always reproduce the same path, allowing for reproduction.

3.3.4. Methods of stochastic simulation
A large number of stochastic simulation approaches have been developed over the last decades. Most of
which are also often referred to as Monte-Carlo simulation techniques. Most notable of these approaches are
tunring bands simulation, one of the earliest simulation methods and sequential simulations.

3.3.5. Turning bands simulation
In turning bands simulation, first the data are kriged after which unconditional simulations are created using
a set of randomly distributed bands (or lines). The general procedure as described by Mantoglou and Wilson
[47] is as follows:

1. Raw data values are kriged to a regular grid.
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2. Numerous random lines (bands) with various azimuths are generated around a centroid located at the
grid or volume center. The modeler controls the number of lines.

3. Unconditional simulations of normal-score transformed data are performed along each line using the
transformed-data histogram and variogram.

4. Values along the lines are linearly interpolated to grid nodes—the more lines, the less interpolation.

5. Unconditional interpolated values are back interpolated to well locations.

6. Unconditional interpolated values and well locations are kriged.

7. The grid of unconditional interpolated values is subtracted from the grid of unconditional results in
step 5. This creates a residual map with a value of zero at the well locations.

8. The residuals are back interpolated from the y-space to the z-space.

9. The back-interpolated residuals from step 8 are added to the original kriged map from step 1.

10. The result is a grid or volume of data values that reproduce both the mean of the raw data and the
variance.

3.3.6. Sequential simulation
Sequential simulation is a collective name for three different techniques using the same basic algorithm.
These techniques are:

• Sequential Gaussean Simulation (SGS), used to simulate continuous variables such as ore grades. Is
usually applied when geological and mineralogical properties are being modelled.

• Sequential Indicator Simulation (SIS), which simulates discrete (binary) variables using the same method-
ology as SGS.

• Bayesian Indicator Simulation (BIS), a descendant from SIS, uses a combination of classification and
binary indicator methods.

The general procedure according to Deutsch and Journel [34] is as follows:

1. Perform a normal-score transformation of the raw data.

2. Randomly select a node that is not yet simulated in the grid.

3. Estimate the local conditional probability distribution function (lcpd) for the residuals at the selected
node. The residuals can be calculated by subtracting the grid of an unconditional simulation from a
kriged grid of the unconditional values sampled at the geographic coordinates of the wells.

4. Create a newly simulated value by adding together the randomly drawn residual value and the mean of
the transformed data.

5. Include the newly simulated value in the set of conditioning data, within a specified radius of the new
target location. This ensures that closely spaced values have the correct short-scale correlation.

6. Repeat until all grid nodes have a simulated value.

3.3.7. Stochastic simulations for risk analyses
As using stochastic simulation techniques to generate orebody models are a way to capture the grade un-
certainty resulting from sparse exploratory drilling, these stochastic simulations can be used to analyse and
quantify the present uncertainty. By using a large number of stochastic simulations, and by studying the
effect each of these realizations would have on the project case risks can be made visible. Now, instead of
creating one model and using that as representation of reality, the range of possible realistic outcomes is un-
veiled. This range of possible solutions can be used for several risk analyses. Risk can then be decreased by
finding a solution (mine design) that is robust towards a wide range of possible outcomes.





4
Model

4.1. Optimizer model
For this research a genetic algorithm has been coded to stochastically optimize stope locations within one
of the ore bodies of the Neves-Corvo mine in Portugal. As no similar model exists, the model was built up
from scratch based on genetic algorithm fundamentals. An overview of the model and an explanation on
the working of its individual components can be found in later sections. The scope of the model, prior to
programming, and the key assumptions made during this stage are described in the following chapters.

4.1.1. Model characteristics
The main scope of the stochastic mine-design algorithm is to optimize stope geometries within the Neves
resource deposit as part of the Neves-Corvo mine. A genetic algorithm forms the basis of the stope location
optimization, which is value driven based on economic value. Even though the model was built based on the
Neves-Corvo dataset, the aim has been to keep it dataset independent. For this, several import possibilities
were taken into account and an import function for Excel, ASCII- and CSV files is present.

In order to perform value optimization, a metal grade model was converted to an Economic block model.
Different independent models (one for each element grade) have been combined and the main penalty ele-
ment (Arsenic) has been taken into account.

Geotechnical characteristics were accounted for by taking into account pillar barriers. These un-minable
blocks are independent of the stope sizes and are to prevent stopes from becoming oversized.

The model is able to work with an unlimited amount of simulations to allow stochastic optimizing. How-
ever, it is also able to work with a single model. As the model was used to compare E-type and stochastic
optimization different realizations are compared while running.

4.1.2. Optimization assumptions
Several assumptions were made during this research. By far most of these were made while coding the al-
gorithm. As the aim of the research was not to create an industry ready product, but instead explore an
optimization concept this is justified. Also making assumptions was sometimes necessary to keep model
runtimes within reasonable ranges or to compensate for missing information. Some of the most critical as-
sumptions are listed:

• The model is limited to 2 Dimensions only as adding a third dimension would greatly increase the re-
quired run-time for each problem. However, the model was designed so that adding a third dimension
in a later stage would be possible.

• The stope geometry optimization is done on the basis of economic block values. These are calculated
taking into account the three main elements: copper, zinc and arsenic. Other elements such as silver
are not taken into consideration due to the absence of data or the fact that they do not contribute
enough to the economic block values.

• For the optimization process the amount of stopes are not taken into consideration. There is no option
available for limiting or capping the amount of stopes for the final design.

• Blending is not considered for the value model. In reality ore from the different resource deposits is
blended during upgrading and processing. As only data from one ore body has been made available it
was not possible to take this into consideration.

23



24 4. Model

• As blending was not considered and few detailed information on processing and concentration could
be found, a number of parameters used for calculating the economic block model were averaged or
estimated.

• Flexible pillar sizes have been made possible, however, these were not coded as a function of the indi-
vidual stope sizes. Instead they act as a firm barrier between the individual stopes. This does not have
an effect on the stope placement possibilities.

4.1.3. Coding language
For the programming done during this research Matlab will be used. Matlab is a numerical programming
environment and fourth-generation programming language,being developed by Mathworks since 1984. It
initially started off as a wrapper on Fortran libraries for linear algebra but has since evolved in a coding lan-
guage on its own. Some of its key features are:

• Good language for scientific and engineering computing.

• Clear desktop environment.

• Well integrated graphics and add-ons for visualizing data.

• Numerous tool boxes for a wide varyity of engineering and scientific applications.

• Good compatibility to C/C++, Java, .NET, Python, SQL and Microsoft Excel.

As a language it has grown organically over the years, and there are some flaws baked in if you look at it just as
a programming language. However, if you look at it as an environment for doing research in it has a number
of strengths.

The notation is simple and the implementation relatively fast. It is good in generating plots and there
are a large number of toolboxes for particular tasks. Furthermore there is a large community of users that
share numerical codes apart from the company offering a large database of documentation. Hence, despite
not being one of the more advanced coding languages, it remains very popular at educational institutions,
engineering departments and industries.

Some of the specific reasons to use Matlab during this research are that, as it has a lot of built-in functions it
allows for quick coding and testing and has good compatibility with most standard data processing software.
This makes it easy to write a flexible code with various import possibilities and makes it easy to distribute.

4.2. Description of the resource model
As part of the H2020 Real Time Mining WP& program Delft University of Technology has requested Geo-
variances, A geostatistical software developer and consultancy bureau, to perform a consultation aimed at
generating a geostatistical resource estimate of the Arsenic, Copper and Zinc mineralized orebodies of the
NevesCorvo deposit based on drill hole and chip sampling information.

The Neves and Corvoorebodies had previously been built for a single domain by Geovia. Geovariances used
this solid as the estimation zone.

Following that, Geovariances have tested several methods regarding data integration. These included
kriging, co-kriging and kriging with a variance of the measure of error. This wasdone with the aim of identi-
fying the most adapted method for producing the target Ground Truth Model (GTM).

In addition to this GTM estimate, a platform of conditional simulations has been produced allowing the se-
lection of separate realizations, eachfully characterizing the spatial variability of the key elements (copper,
zinc and arsenic) [25].

4.2.1. Method of orebody modelling
The simulation realizations were performed independently for the available arsenic, copper and zinc vari-
able. The simulations are turning-bands block simulations.

With the turning bands method, conditional simulations are obtained using a two-step procedure:
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1. Non conditional simulation of the specified variogram model. The number of turning bands is the only
parameter involved at this level and should be large enough to ensure good quality of the resulting
simulations

2. Conditioning the data with Co-Kriging.

The simulations were created by taking the following steps as described by Geovariances:

1. The main data set from Geovia was imported in Isatis (the main Geostatistical software) and the explo-
ration drill hole samples and chip samples were combined.

2. The raw drill hole and chip sample data was transformed into their Gaussian equivalent through Gaus-
sian Anamorphosis.

3. Sample co-kriging was done on the Gaussian drill hole and chip sample data.

4. Panel kriging was then done on the Gaussian data at the data location of the main variables. The vari-
ance used here was the measurement error.

5. This information was then transformed into a block model.

6. From this blockmodel then 100 realizations were created using turning bands simulations. The vari-
ances used were calculated from the measurement error derived from the Co-Kriging and the local
mean.

After creating the conditional simulation realizations, a statistical validation process was performed. For this
basic statistics of the main statistical parameters, plots and histograms were calculated. This analysis did not
expose any issues, such as erroneous values, with the realizations produced.

4.2.2. Delivered results
For both the Neves and the Corvoorebodies 100 conditional simulation realizations were produced for each
of the three key elements, resulting in a total of 600 conditional simulations.

Concerning the quality of the conditional simulations Geovariances has however stated that:

• The distributions of the arsenic, copper and zinc grade simulations have turned out smoother than the
raw variable distributions. However, the distributions are close to the raw variable, with more disper-
sion for the Corvo orebody when it comes to the arsenic and zinc grades.

• For the Neves data, the simulated global mean and the mean of each realization are close to the mean
of the exploration data.

In this research only the simulations of the Neves orebody will be used.

The following table presents the mean of the global statistics of the arsenic, copper and zinc conditional
simulations within the Neves dataset.

Table 4.1: Neves global statistics of As (ppm), Cu and Zn by TB block simulations

Variable Count Minimum Maximum Mean Std. Dev. Variance
As 7206000 333 50503 7291 5047 25468023

Neves Cu 7527300 0.354 16.37 2.47 1.53 2.34
Zn 7501200 0.0400 8.31 0.622 0.628 0.394

4.3. Model Schematic
The mine design optimization is done by a genetic algorithm scripted in Matlab. Figure 4.1 shows the build-
up of the optimizer. In great lines it follows the structure of a standard genetic algorithm. However, due to the
2D nature of the optimizer and the possibility of changing optimization settings it incorporates some extra
features. The next section contains a brief overview of the complete model. In the following chapters the
independent modules will be described.
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Figure 4.1: Schematic flowchart of real structured genetic algorithm

The model starts by importing the dataset. Apart from being able to import the main orebody models
provided by Geovariances as .csv files it also has the possibility to load in ASCII or Excel files of varying sizes.

After the dataset is imported all model parameters are set. This is done after importing the data as several
variables are data size dependent or use dimensional data in their calculation.

Next the first generation population is created. These parent chromosomes are created by filling a matrix
of the same dimensions as the block model layer with randomly placed stopes. The stopes are defined in a
binary one-dimensional string and are compliant with the defined minimum and maximum allowable stope
size. Furthermore they are placed so that they do not directly touch or overlap.

The solution value of the first generation chromosomes is calculated next and the strings are ranked. The
value is calculated by multiplying each first generation string with an economic representations of the two
dimensional block models.
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Based on their solution value the proportional fitness values for later roulette wheel selection are assigned.
This step is the first within the multi-generational loop and is later repeated for each consecutive generation.
After the solutions are ranked the best solutions are then taken out for later eliting.

The value calculation is followed by the standard steps in genetic algorithms: cross-over (Fitness proportion-
ate or random) and mutation (flipbit or random). As these processes will have mixed up the binary strings
they are not compliant to the constraints anymore. Hence a series of constraint operators are used to ensure
that all strings represent a viable stope distribution. These strings represent the provisional next generation
of chromosomes. The new generation is finalized after by applying the last step in the eliting process.

After each new generation is created termination is considered. The model is terminated either when no
improvements have been measured over a certain number of generations, or if the maximum amount of pre-
viously defined iterations is reached. As long as one of these two termination criteria are not fulfilled the
evolution process is continued.

After termination the last generation of binary strings, including the best optimized stope design, are saved
along with their economic values and other run data. These can then be used for visualization and analysis.

4.4. Model data Input
The optimizer model is capable of importing data of different sources, being: Excel, ASCII and CSV files. Mak-
ing the model suited for treating different inputs was done to make it independent from the NevesCorvo data
sets and allows other similar models from other cases to be optimized. Furthermore, this also allowed quick
validation of the separate optimizer modules as a smaller dataset is quicker to run.

In the upcoming sections each of the three import methods is described. The descriptions will be accom-
panied by a flow chart for each method.

4.4.1. Excel Import
The excel import, contrary to the other two methods later described, is not capable of loading in multiple
simulation scenarios. The method however allows for importing relatively small datasets which are quicker
to run. Because of this the input feature was heavily used during the model validation and the testing of sep-
arate optimizer modules. Figure C.2 shows a flowchart of the Excel file import process.

Using a built-in Matlab function the specified Excel file is loaded and its data imported as two dimensional
matrix. If the data inside the excel function is irregular, that would mean not perfectly rectangular the missing
data will translate in NaN filled cells in a rectangular matlab matrix. As empty cells would not allow further
calculations these are replaced by a ‘penalty-value’. This is to indicate they do not contribute to the optimiza-
tion process. Filling the empty cells with zeros would mean they do not penalize the optimizer for selecting
them and would therefore influence the stope geometries in an unrealistic manner.

The magnitude of this penalty value is irrelevant for later value determination as they would simply be
characterized as waste and assigned a standard mining cost. However if used purely for validation without
later value recalculation, negative penalty values of greater magnitude will aid the optimization process.

As matlab automatically determines the matrix size it is not necessary to specify them beforehand. The di-
mensional data is read out by an autonomous function and used for calculating later parameters and are
directly responsible in determining the binary chromosome lengths.

4.4.2. ASCII Import
Alongside the Excel import module, a module was scripted to allow ASCII files to be imported. Figure C.3
shows an overview flow-chart of this module. Where the Excel function only allows one layer dataset to be
used in each run, using ASCII files allowed for importing a set of conditional simulations. These were used
for validating the stochastic model properties. For this an ASCII file containing a real-case scenario accom-
panied by 200 conditional simulations of the same scenario was received.

The data contained by the ASCII-file was organized as a number of columns containing cell values, each
column representing a different scenario. After importing the data in the same format the number of sim-
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ulations and dimensions are specified. Using these parameters each simulation is transposed to a 2D value
matrix by assigning each individual value to a cell. The values are placed in the value matrix by using a double
loop to fill the empty rows from right to left and bottom to top.

The first column of ASCII data, representing the ‘known’ case, is saved as a separate two dimensional ma-
trix file for output. The simulations are stored in a separate three dimensional matrix where the first two
dimensions are concerning the individual simulated layer values and the third dimension stores all individ-
ual simulations.

For later validation the 3D matrix containing the simulations is used to calculate a separate E-type layer.
This two dimensional layer matrix contains for each coordinate cell the average value of all simulated values
on that specific coordinate.

As the simulation values used for optimization were used to test the working of the optimizer on larger scale,
these were used as-is. No cut-off grade was considered.

4.4.3. CSV Import
The Neves-Corvo data for the main analysis was prepared by Geovariances consulting in Isatis and deliverd
to the TU Delft as a number of .csv files. This included the copper, zinc and arsenic grade data needed for the
stope geometry optimization. In order to use these datasets within the stochastic optimizer environment a
.csv import module was scripted in Matlab. A flowchart for the import module is pictured in figure C.4. The
following section contains a description of the module.

As the .csv files received for this research have been pre-organized they can be imported into matlab as a
standard table. This table is then directly converted to an array to allow better data manipulation. The first
four columns of data contain the sample number and X, Y and Z coordinates respectively. This is followed by
a column of data contained through kriging with variance of measurement error which is not further consid-
ered in this research. These first meta-data columns are followed by the simulated grade data.

Next the layer data is isolated by filtering the z-coordinates on a certain depth. For each simulation then
the grade data and x and y coordinates are stored in an empty 3D matrix. Based on the maximum and mini-
mum coordinates recorded the model size is determined and exported. Each simulation is then, in turn, read
out of the 3D matrix and plotted on a 2D mesh using the relative coordinates (lowest x or y coordinate cor-
responds to [0,0]) . The meshes, containing grade data, are again bundled into a new 3D matrix containing
all simulations. An E-type model is calculated by averaging the grade data of all meshed simulations over the
z-axis and the first simulation is isolated and saved independently to feature as a ‘real case’ benchmark.

4.5. Economic block model creation
The resource model provided by Geovariances consists of separate models for the evaluated elements. In
order to implement the information, the grade data on copper, zinc and arsenic are used to create a sin-
gle representative model to be used for optimization. To allow value based optimization an economic block
model had to be created as this would allow valuating the individual solutions. This is important as, in order
to progress towards an optimum solution, fit individuals need to be selected for mating while less fit solutions
are replaced. The module flowchart can be found in Appendix B.

Economic block models in mining are usually calculated by using a number of straight forward calculations.
For this research it was decided to use a schematic comparable to the one proposed by W.A. Hustrulid and M.
Kuchta in ‘Open Pit Mine Planning and Design, Second edition; chapter 10.5’ [43]. However, as this method
does not take into account multi-ore deposits and contamination penalties it was extended.

The main calculation steps in determining the economic value of each minable block are as follows:

• Calculate the raw block tonnage

• Calculate the costs for mining the block

• Calculate the recoverable metal
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• Calculate themetal revenue based on the metal price

• Calculate the amount of concentrate produced from this block

• Calculate the arsenic grade in the concentrate

• Calculate the concentrate value penalty related to the arsenic content

• Calculate the net value of the block if sent to the mill

The exact calculation scheme can be found in Appendix H.

The Neves-Corvo mine has independent production lines and facilities for treating copper and zinc ore. To
accommodate for this, for each block two independent values are calculated: the value of the block if it were
mined as copper ore (based on a block’s copper grade) and the value of the block if it were to be mined as zinc
ore. From these two values the highest is taken as net block ore value and the block is designated as either
copper or zinc ore.

When ore grades are low however, processing and concentrating a block can be more expensive than min-
ing it without further treatment, as waste. In that case, when the net value of a block is lower than the costs
for mining, mining costs are taken as block value and the bock is designated as waste.

4.5.1. Development costs
In calculating the block values development costs were not incorporated. This was done for two reasons.

First, mining scheduling was not intended for the stope layout optimizer presented here. If scheduling
were to be done in a later stage, it would use the optimal stope layout - in combination with a starting lo-
cation - to find the optimal mining sequence. In this additional optimization course, unviable stopes could
then be excluded.

Secondly, if development costs were to be taken into account, it would be more suiting to do this in the
string evaluation phase by adding discount or penalty factors based on the distance between stope and start-
ing location.

4.5.2. Arsenic content penalty function
The ore of the Neves deposit has been classified as having high arsenic values. The report from Geovariances
shows an average arsenic content in the ore of around 0.7%.

Arsenic is an unwanted element in copper and zinc concentrates as it is harmful to the metal smelting
process. Metal smelters therefore apply a penalty fee if arsenic values in metal concentrate are too high. In
general a ‘no penalty’ threshold of 0.2% is used. For all concentrate having higher arsenic concentrations a
penalty fee needs to be paid. The highest value accepted is 0.5% arsenic content by Chinese smelters. As the
Neves orebody contains such high arsenic grades it would render most of the ore unsellable. To overcome
this, blending of ore with other - lower in arsenic content - ore is done before concentrating.

The high arsenic concentrations mean a penalty function should be implemented for creating the economic
block model. However, no public information could be found on the specific methods applied by Neves-
Corvo, nor on any penalty sums being paid. Therefore it was decided to use the data as is and tailor a penalty
function around the available arsenic grades.

The developed penalty function itself is straightforward; any block containing within penalty limits arsenic
content is penalized linearly for the ‘over limit’ arsenic concentrate. This means that if a block has an arsenic
content of 0.3%, a penalty is paid for the 0.1% over limit. If arsenic content were to be 0.4% the penalty cost
would be double. Ore above 0.5% is classified as waste directly with a fixed mining cost.

4.5.3. Application of cut-off grades
Due to varying arsenic grade throughout the deposit it would make little sense to use a fixed cut-off value.
Where in reality the ore from different resource deposits is blended to keep the arsenic content below penalty
grades, the single deposit used for this research has an average arsenic content far above the penalty limit.
As ore blending is not considered, this would mean that for calculating the cut-off grade the average arsenic
grade should be used. However, by doing so the spatial distribution of arsenic would be abolished and cannot
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be used as a factor in optimizing stope locations.
To avoid this, a cut-off value is considered per block. By subtracting the processing costs, mining costs

and arsenic penalty costs from the block revenue, a net block value is calculated. If this value is not positive
the block is classified as waste and a fixed cost is assigned. Else the block is treated as ore and its value used
in calculating stope profitability. Depending on mining considerations the threshold net block value can be
changed.

4.5.4. Cost calculation parameters
Table 4.2 lists the economic block model input parameters and gives an explanation on how they were de-
rived. The parameter origin is listed in the sources column.

Table 4.2: Cost calculation parameters

Parameter
Value

Description and remarks Source
Cu Zn

Refining Cost [€/tonne] 188 188 Cost of refining a tonne of ore Infomine [17]

Processing Cost [€/tonne] 7.27 12.76
Cost of processing a tonne of ore Neves-Corvo 2007

– Based on old plant capacity technical report[44]

Mining Recovery [%] 95 95
Percentage of ore recovered Neves-Corvo 2013
from a block when mined technical report [54]

Processing Recovery [%] 86.94 64.98

Neves-Corvo 2013
during processing and technical report [54]

treatment – for copper 2000-
2012 average, for zinc 2006-

2012 average

Metal Price [€/tonne] 5422 2584
Price per tonne for high grade London Metal Exchange

tradable metal (December 2016) [12],[19]

Mining Cost [€/tonne] 35.53 27.11
Cost of mining a tonne of Derived from combined

material mining and processing cost

Arsenic Penalty [€/0.01%] 2500

Penalty cost for the inclusion of

Tailored to the dataset
arsenic in resource blocks. More

arsenic means higher penalty
costs. Blocks with >0.5%

arsenic are rejected.

Block Dimensions [m3] 64
Dimensions of a block in the Geovariances Statistical

economic block model Report[25]

Rock Density [tonne/m3] 3.3
Average density of a cubic Neves-Corvo 2013

meter of rock within the deposit technical report[54]

4.6. Parent Generation
As part of the initialization, together with importing the resource model and setting the parameters described
in section 4.12, the first generation of parent chromosomes is created. Depending on the population size a
number of possible solutions are created randomly. The parent chromosomes are coded as binary strings
where a 1 indicates the mining of a block (inclusion of a block within a stope, and a 0 represents no mining.
Despite the fact that the stope positioning in these first generation strings is random, the placement of the
1’s and 0’s is not. This is due to the geotechnical constraints pillar size and stope dimensions which require a
logical placement of the binary numbers.

The following section describes the module for initiating the first generation of binary chromosomes and
will elaborate on some of the choices made in its design. A schematic overview can be found in appendix C,
figure C.5.

First an empty matrix is created for storing the different parent chromosomes. The size of this matrix de-
pends on the amount of parents (rows) and size of the deposit represented by the amount of mineable blocks
(columns).
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Next, the random parent chromosomes will be generated one by one. This is done on a 2-D grid as it
requires less coding constraints and is easier to overview. Based on the deposit layer dimensions, a 2-D grid
is created in which all cells have a value of zero. A loop is then started to fill the empty base layer with viable
stopes.

To start, the loop termination criteria are checked. These criteria are the number of stopes and the num-
ber of loop iterations. If either one of these is fulfilled, the loop is terminated. Next the stope location and
stope size are determined. The location is selected by randomly generating an x and y coordinate, the stope
size is set by randomly generating a length and width. The stope sizes are limited by the minimum and max-
imum allowable stope sizes selected as model input.

When both location and size are determined an attempt is made to place the stope on the base grid. To
place the stope two criteria need to be met. A stope is not allowed to overlap another stope and there needs
to be a certain spacing (pillar) in between the individual stopes. The pillar size itself is fixed for all stopes and
independent on stope size. When met, the random stope is created by setting the grid values corresponding
to the stope to one. If not met, the program will loop back to the termination criteria.

This process is repeated until either the desirable amount of stopes is reached, or the number of iterations
are maxed.

After the base layer has been filled with stopes it is reshaped to a 1 dimensional string and stored in the
matrix for parent chromosomes. It forms the basis of the next algorithm steps.

4.7. String Evaluation and selection
In standard form, string evaluation in binary genetic algorithms is straightforward. 2 strings are presented;
one representing an individual (a binary chromosome), the other containing property values. When these
two strings are multiplied it results in a new string containing property values where the chromosome is
turned on, and zeros where the chromosome is turned off. Summing up the latter string results in the value
of the respective individual. Coupling this value to the chromosome string allows for ranking the individuals.

The stope optimization algorithm scripted works similar to the case described above. In 2D matrix form.
In the chromosomes, stopes are presented as a patch of 1’s and pillars and other empty area’s as zeroes.

The grade models available (Cu, Zn and As) are combined and an economic block model is formed in
which the individual block values are defined. Either for one E-type model, or for a number of simulations.
Both these matrices are then transposed to strings after which they are multiplied and summed.The value of
each individual is used to rank the individuals for roulette wheel selection applied in the cross-over algorithm.

Ranking is based on selection probability, calculated using formula 3.1. Based on relative value and selec-
tion pressure the probability of selection is calculated. the better the individual solution provided, the higher
this probability will be. The selection pressure acts as a measure to indicate the relative difference between
good and bad solutions. A higher selection pressure will disproportionately favour good answers in assigning
the probability of selection.

The solutions are then ordered based on the selection probability, with the highest ranking individual on
top.

4.8. Cross-Over Algorithm
In the cross-over module of the algorithm individual chromosomes are cut open and recombined to create
a series of new individuals. The number of strings selected for cross-over depends on the individual fitness
score calculated for each string based on their performance relative to the other chromosome strings. Shuf-
fling genetic information between strings aims to create better individuals without losing the genetic infor-
mation present. The cross-over operator developed for this research is a single-point cross-over operator. A
multi-point cross-over operator was considered, but it was decided to encourage search space in the muta-
tion operator instead as this allows for more flexibility in search space emphasis. In the section below the
structure of the cross-over operator will be explained in detail.

After importing the chromosomes, a maximum selection probability is determined. As strings are taken out
for cross-over, their probabilities of selection are summed until a maximum is reached. Not only does this
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value indirectly determine the number of strings selected for cross-over, but it also determines the diversity
of chromosomes chosen.

Next it is determined whether the individuals will be cut horizontally or vertically, both equally probable,
and the cutting rangeis determined. The cutting range determines the limits of where the chromosome ma-
trix can be split, and usually ranges between 0.1 and 0.9 times the model dimension.

Two adjacent strings are then taken out and the summed selection probability is updated. A cutting point
is then determined randomly and the selected chromosome strings are converted to matrices. Both matrices
are then split on the cut point resulting in 4 halves (1.1, 1.2, 2.1 and 2.2). These are then recombined (1.1 + 2.2
and 1.2 + 2.1) to form two new chromosome matrices. The matrices are then converted back to strings and
stored at their previous location within the matrix containing the individual chromosome strings.

Two versions of cross-over operator were coded. The first being a random roulette-wheel function, where
the string pairs are taken out at random, not taking into account their ranking order apart from their selec-
tion probability. The other taking out the strings in order of their sorting.

A flowchart of the scripted cross-over algorithm can be found in appendix C, figure C.6.

4.9. Mutation Algorithm
The aim of mutation in genetic algorithms is to maintain genetic diversity from one generation to the next.
It does so by introducing new ‘random’ traits to genetic chromosomes. Mutation occurs based on a certain
probability, which is usually low. If set too high too much of the old information is overwritten and the algo-
rithm will behave more like a random search operator. For the stope optimization algorithm two mutation
operators were initially coded; a classis flip-bit operator and a custom random function.

In flip bit one or multiple random chromosome operators are selected and reverted; if the cell contained
a 1 it is reverted into a 0 and vice versa.

In the model operator, all binary chromosomes are evaluated one by one. Each time one of the individ-
uals is taken out the operator will pass through all binary cells drawing a random number. If this number is
smaller than the mutation probability set the cell value will be changed from a zero to a one or the other way
around.

The bit flip algorithm however was rendered insufficient the way it was coded as, when stope sizes larger
than 1-by-1 block are selected, the algorithm would lead to non-uniform stopes. These in turn would trigger
the function constraining uniform stope sizes which, while evening out anomalies, would eventually erase all
stopes.

A better solution was found in the random mutation operator. This operator, instead of changing individual
cell values, places random stopes directly over the existing stope pattern. The basic operator for placing ran-
dom stopes was influenced by the parent chromosome operator and therefore carries a lot of resemblances.

The operator module starts by generating a random number to decide whether to perform mutation for the
current generation. If the falls out of the mutation range the operator will be immediately terminated and the
algorithm will finish its current generation without. If this is not the case the number of individuals to mutate
will be decided. A minimum of individuals can be set to guarantee mutation will be performed at all. The
strings to mutate will then be taken out in order of appearance and recomposed to a grid matching that of the
deposit size. Based on the amount of mutation operations set to perform (the amount of random stopes to
be placed), random coordinates and stope size are determined. Depending on the pillar size the stope patch
is extended with a pillar boundary around it and placed on the randomly assigned grid location. If the set
number of mutations have been executed the individual’s grid is recomposed into a binary string and placed
back in the original population matrix.

The number of mutation operations to perform on each individual can be set in the algorithm as fixed
value. However, as different inputs have frequently been used, it was found to be more convenient to have
this parameter dependent on the size of the block model and have it created automatically. Caution was taken
here to make sure the number of mutational operations increased with larger data files.

Figure C.7 from appendix C presents a flowchart of the mutation algorithm.
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4.10. Constraint function Algorithm

A constraint function was written to cope with the errors posed by the chromosome altering operators. In the
creation of first generation chromosomes care was taken to ensure rectangularity of the stopes and to have a
fixed pillar between them. However, the recombination of chromosome parts during cross-over violates both
of these constraints. Also, where mutation guarantees the placement of feasible stopes and pillars, it does not
consider the viability of its borders.

To avoid disturbing the randomness of both operators it was decided to, instead of altering both the cross-
over and mutation operators, write a single constraint function eliminating all infeasibilities. Various at-
tempts were made in the coding stage to design an operator capable of eliminating all possible errors. This
was made more complex by the strain most early versions would cause to the model run times. The defini-
tive constraint function uses a shadow grid to track the corrected area’s decreasing the number of loops, and
therefore the runtime required.

The constraint function starts by loading the dimension data, stope size constraints, preferred pillar size and
the population of individual solutions. The strings are taken out one by one and converted to 2 dimensional
matrices. Based on the size of the individual matrix, a matrix full of zeroes is summoned. This ‘shadow matrix
is used to keep track of the corrections made and determines when an individual is fully corrected. For the
individual chromosome matrix a starting position is chosen and the first stope is located by walking from the
starting point in x and y directions until no stope has been encountered for 2 steps, or, the maximum size has
been reached. The function then determines the optimal size for the stope considering all irregularities. If
the stope is too small, the stope is erased from the individual matrix, and the change locations are flagged in
the shadow matrix. In all other cases, a border is forced around the optimal stope, and both stope and border
areas are flagged as done. For each iteration the value of the shadow grid is checked. If the shadow grid is full,
the function will loop back and take the next string.

This process is repeated until all individuals have been corrected.

Figure C.8 from appendix C presents a flowchart of the mutation algorithm.

4.11. Elitism

Elitism in genetic algorithms is a way to ensure a good solution is not accidentally lost or negatively altered.
Usually this is done by taking out one or multiple good genetic solutions before the cross-over and mutation
operators are applied, and re-inserting them in the next generation unaltered. As the name suggests, usually
the best solutions of a generation are taken out to be carried over to the next generation.

The genetic algorithm coded in this research has an inbuilt feature to enable and disable eliting of one ore
multiple solutions.

Elitism is applied by taking out a copy of the two best solutions of each generation after their individual
value has been calculated and the solution sorted. These saved two best solutions are then kept and stored
parallel to the selection, cross-over, mutation and constraint operator. After all genetic operators have been
active and the generation’s results have been documented, one or two of the saved solutions is reinserted or
no action is taken (no elitism is applied).

If elitism is applied (save individuals are re-inserted) they are re-entered in the population matrix replacing
the chromosome(s) that were ranked lowest prior to the generation’s genetic operations have taken place.

4.12. Input Parameters

The input parameters used for the economic block model creator and optimization algorithm are listed in
table 4.3 and table D.4. The parameters are named as they are found in the respective Matlab scripts and are
accompanied by a short description. In addition, for each algorithm parameter listed in table 4.3, mention is
made of where in the model these parameters are used.
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Table 4.3: Explanatory list of input parameters

Parameter model name Model Assignment Description

x_model
Parentstring generation, Horizontal size of the value model used

Crossover, Mutation, and stope layout dimensions. Assigned
Constraint Function automatically

y_model
Parentstring generation, Vertical size of the value model used and

Crossover, Mutation, stope layout dimensions. Assigned
Constraint Function automatically

string_length
Model Initialization, Length of the binary chromosome string.

Mutation Function of x and y dimensions

iter_model_max Termination Criterion
Maximum number of algorithm
iterations allowed

no_change_lim Termination Criterion
Maximum number of algorithm
iterations in which no positive value
change was monitored allowed

stope_max Parentstring generation
Maximum number of stopes allowed in
first generation individuals

iter_max Parentstring generation
Maximum number of stope placement
attempts allowed while composing a first
generation individual

x_stope_max
Parentstring generation,

Maximum horizontal stope size allowed
Mutation, Constraint Function

y_stope_max
Parentstring generation,

Maximum vertical stope size allowed
Mutation, Constraint Function

x_stope_min
Parentstring generation,

Minimal horizontal stope size allowed
Mutation, Constraint Function

y_stope_min Parentstring generation, Mutation Minimal vertical stope size allowed
x_stope_avg Model Initialization Theoretic average horizontal stope size
y_stope_min Model Initialization Theoretic average vertical stope size

barrier
Parentstring generation, Constraint Pillar size; number of blocks to be left

Function unmined between individual stopes

nrpar
Parentstring generation, Size of the chromosome pool. This

Value Calculator, Crossover, should be an even number.
Constraint Function

crossover_probability Crossover
Probability of crossover being executed
during an iteration

p_low_lim Crossover
The lowest cumulative P-value allowed.
Forces a minimal number individuals to
be crossed-over

cutting_range Crossover
The range on which the cut-point can be
selected

chance_mut Mutation
Probability of mutation being executed
during an iteration

chance_mut_flipbit Mutation
Probability of flip-bit mutation being
executed during an iteration

nr_mut Mutation
Number of stopes to place on an
individual if it is selected for mutation

perc_mut Mutation
Percentage of individuals to be selected
for mutation if mutation is executed

min_par_to_mut Mutation
Minimal number of strings to mutate if
mutation is executed

selection_pressure Selection
Determines the probability of the best
individual to be selected relative to the
average selection probability

nr_sim Value Calculator
Number of simulations taken into
account when running stochastically. For
average cases nr_sim = 1
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Table 4.4: Input parameters economic

Parameter Model Name Model Assignment Description

rock_density Economic Blockmodel Creation
Average density of a cubic
meter of rock within the deposit.

block_size Economic Blockmodel Creation
Size of a block within the
economic block model.

mining_recovery Economic Blockmodel Creation
Percentage of material recovered
after a block is mined.

arsenic_penalty Economic Blockmodel Creation

Penalty value for the inclusion of
high levels of arsenic within a block
of ore. Penalty dependent on
amount of arsenic present.

processing_cost_zn Economic Blockmodel Creation
Cost of processing a tonne of ore in
the zinc processing plant.

processing_cost_cu Economic Blockmodel Creation
Cost of processing a tonne of ore in
the copper processing plant.

mining_cost_zn Economic Blockmodel Creation
Cost of mining a block of zinc ore.
Derived from the mining and
processing cut-off parameter.

mining_cost_cu Economic Blockmodel Creation
Cost of mining a block of copper ore.
Derived from the mining and
processing cut-off parameter.

mining_and_processing_cutoff_zn Economic Blockmodel Creation
Limit cost of mining and processing
a tonne of zinc ore combined.

mining_and_processing_cutoff_cu Economic Blockmodel Creation
Limit cost of mining and processing
a tonne of copper ore combined.

processing_recovery_zn Economic Blockmodel Creation
Percentage of zinc ore recovered
after processing.

processing_recovery_cu Economic Blockmodel Creation
Percentage of copper ore recovered
after processing.

metal_price_zn Economic Blockmodel Creation Value of a tonne of zinc.
metal_price_cu Economic Blockmodel Creation Value of a tonne of copper.

refining_cost_zn Economic Blockmodel Creation
Cost of refining a tonne of
milled/processed zinc ore.

refining_cost_cu Economic Blockmodel Creation
Cost of refining a tonne of
milled/processed copper ore.





5
Model validation and validation results

5.1. Model validation
5.1.1. Aim of validation
It is important to understand the accuracy and performance of the model. By validating the model its accu-
racy and performance can be defined. Schlesinger defined model validation as follows: “Substantiation that
a computerized model within its domain of applicability possesses a satisfactory range of accuracy consistent
with the intended application of the model” [50].

During the model development stage several validations were done to ensure the theoretical working of the
individual model parts. As a model can be tailored to the intended input it can happen that a model works
well with one dataset, but fails to work on another. To ensure the working of basic principles different inputs
were used during different modelling stages.

5.1.2. Validation procedure
Validation was done in multiple steps during the modelling stage to filter out potential theoretical mistakes.
Apart from the random input used to check the working of individual algorithm modules (input-output val-
idation) three datasets were involved with the model validation: A small Excel generated grid, an ASCII data
file and the main CSV input files.

After the each of the following milestones were reached a validation was performed:

• Completion of the main genetic algorithm (Excel input)

• Completion of the stochastic algorithm extension (ASCII input)

• Completion of the intended model (CSV input)

In the following sections the individual validations and their procedures will be elaborated.

5.1.2.1. Validation using Excel import
The core genetic algorithm was tested and validated using a number of small excel files to represent a simplis-
tic theoretic orebody. Several small excel grids were made ranging in size from 14-by-19 to 60-by-60 blocks.
Theoretical waste zones are represented by negative block values of -10 and ore zones by a value of 10. The
‘ore’ zones are regular square shaped and do not exceed the maximum stope size selected in the model.

First these excel models were used to examine the performance of the genetic algorithm itself. By distin-
guishing clear ore and waste zones not exceeding the maximum selected stope size, a straightforward optimal
solution is presented to the model. As the ore value is fixed throughout the algorithm’s input, the search space
is limited as the algorithm does not need to look for optimality within (positive) ore zones. This benefits the
runtimes as theoretically less iterations should be required before an optimum is found.

Using small sized test inputs had two main advantages. First of all the small search space of the test case
allows for much better model performance as less calculations need to be done per iteration. Also, as the
smallest model only consists of three ‘ore’ patches it is very easy to see whether the optimum is reached, and
if not, where the non-optimalities are located and of what nature they are.

Aside from using the Excel input to check the theoretical validity of the model these inputs were used to
examine the influence of ‘elitism’ in different forms. By comparing the number of iterations required to reach
an optimum it could be decided if eliting, and if so, what form of elitism would benefit the model most.
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5.1.2.2. Stochastic validation using ASCII import
In addition to standard single layer optimization the basic genetic algorithm was extended to do stochastic
optimization. Here, instead of using a single input layer, a number of simulations are each individually taken
into account. This, contrary to the common practise in mining to use a single ‘smooth’ orebody approxima-
tion should lead to better optimization results.

In order to evaluate stochastic performance of the algorithm, stochastic runs will be compared to smoothed
representations similar to the ones used in mining. The smoothed models are generated by averaging the
simulations used in stochastic runs.

For this purpose and ASCII style data file was provided by the department consisting of 200 elevation model
simulations. These were the outcome of a previous, non-related research.

Contrary to the Excel test model used in previous validation, the ASCII contained values were not edited
prior to running, but instead used as is. This was possible as both positive and negative elevation values were
present. As higher elevations result in linearly higher values, the model should optimize its stopes so that
they are placed around the elevated (positive) areas and avoid the lower (negative) zones.

In addition to 200 elevation model simulations also the real case scenario was included. Besides enabling
comparison of the optimization performance of full stochastic optimization versus smoothed E-type mod-
els, it helps placing its performance in perspective.

5.1.2.3. CSV File adaptation
The Neves-Corvo data provided for this research consisted of 3 individual CSV files containing block infor-
mation of a 3D resource model on copper, zinc, and arsenic. In addition a model for sphalerite content was
included, however this was not used in the main research analysis. For the main research the element data
had to be combined to transform the element block model into an economic block model. This required sev-
eral steps to alter the data so that combining data and calculating economic values was possible. During this
stage several analyses / validations were performed on the data both to increase understanding of the data
and to incorporate it into the genetic algorithm.

Layer data analysis
The main optimization algorithm scripted is capable of optimizing in two dimensions. However, as the pro-
vided data contains three dimensional grade data for the various elements a layer needs to be extracted.

The orebody itself is irregular in shape and contains several lenses. To evaluate the algorithm a good
layer needed to be selected. In order to do so, 2D horizontal cross-cuts were made and layers were exported
individually from the CSV file for evaluation.

Penalty value tailoring
Despite the arsenic grade data being included in the data model Few further information was available on
arsenic processing and penalty cost factors. As they are a factor to take into consideration when optimizing
stope layout a penalty function was incorporated in the economic block model calculation. The function
allows realistic penalizing when costs are known and take into consideration worldwide inclusion acceptance
rates. To find a suitable penalty costs to use with the Neves-Corvo data economic block models were made
with various penalty costs for arsenic inclusion.

Metal cost analysis
The metal prices used in calculating the economic block values were taken from the London Metal Exchange
and are representative of the current economic metal market. However, as the block model calculator distin-
guishes copper ore, zinc ore and waste, fluctuating metal prices might play a non-linear role in the optimiza-
tion process.

The influence of fluctuating metal prices on the economic block model were evaluated by doing several
runs with various exaggerated zinc prices.

5.1.2.4. Performance tweaking
Runtimes
Initial coding and scripting was done with the main focus on algorithm functionality. This had as a result
that numerous functions being used were negatively affecting run-times. Using in-built Matlab features a
number of run-time profiles were made indicating calculation-time bottle necks, and efforts were made to
replace them with alternative functions.



5.2. Model validation results 39

Parameters

The performance of a genetic algorithm heavily depends on the way selection, cross-over and mutation are
executed. By using sub-optimal input parameters there is a risk of the algorithm getting stuck in a local opti-
mum, or the algorithm relying too heavily on random search practice. Furthermore the selected parameters
influence model run-times.

To find a good balance between performance and run-times small sensitivity analyses were done on the fol-
lowing parameters:

In the sensitivity analyses, a small theoretical Excel orebody representation was used (see section 5.1.2.1).
This was done to decrease the run-time required and also to eliminate the solution value as measure of per-
formance. As the optimal value is known, performance can be measured by the number of iterations required
to reach the optimum.

5.2. Model validation results
The validation analyses as described in the methodology were mostly performed with a fixed parameter set.
The parameter values as used are described in table 5.1 below. Note that the number of mutation operations
performed per mutation (nr_mut) is always a variable based on the model and average stope sizes.

Where in the validation analyses different parameter input has been used it is noted specifically.

Table 5.1: Parameter values for model validation

Parameter Value
iter_model_max 25.000
no_change_lim 1.000
x_stope_max 5
x_stope_min 2
y_stope_max 5
y_stope_min 2
barrier 1
nrpar 50
crossover_probability 0.9
p_low_lim 0.4
cutting_range 0.9
chance_mut 0.2
nr_mut r ound(0.1∗ (y_model/y_stope_av g )∗ (x_model/x_stope_av g ));
perc_mut 0.8
min_par_to_mut 2
nr_constr_loops 1
selection_pressure 1

5.2.1. Validating using Excel import
The aim of this analysis has been to explore the basic stope optimization performance based on a small
test orebody and to confirm the main theoretical model workings. The following results are all the result of
optimization runs on the smallest of Excel test orebodies with the aforementioned set of parameters.

5.2.1.1. Theoretical optimization performance

The small test-ore body used in this test figure 5.1 as was generated in excel is 14-by-19 blocks in size and
contains only two different values. Yellow areas represent ore zones and consist of blocks with an individual
value of 10. The blue blocks represent waste and have a value of -10. 39 ore blocks are present bringing the
total theoretical value up to 390. This is the optimization goal.
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Figure 5.1: Orebody Figure 5.2: parent grid 1

Figure 5.2 shows one of the 50 first-generation parent chromosomes, plotted in 2 Dimensions. Most of
the generated stopes within this plot only overlap partially with the ‘ore’ zones in the orebody grid or do not
overlap any at all. The worst of the initial parent chromosomes represented a value of -780.

Figure 5.3: Performance of individuals best and worst

Figure 5.3 pictures the optimization process development. Over the course of iterations (generations) the
best and worst solution values are plotted for each iteration. The blue line shows a steady and steep incline
in the first 80 iterations to then slowly flatten out around 300 iterations. The optimum value of 390 is reached
around the 550 iteration mark. However, due to the no change limiter being set at 1000 iterations, the model
continues to run until around the 1550 iteration mark.

Over the course of the optimization process the worst individual fluctuates between a value of -700 and
0. This indicates the model remained active after the the optimum solution was reached.

Figure 5.4 and figure 5.5 show the best and worst individual solutions at the end of the optimization run.
Figure 5.4, the best solution has the maximum value of 390 as it overlaps the orebody exactly. Figure 5.5 on
the other hand has negative value as there is more overlap with negative orebody blocks than there is with
positive blocks.
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Figure 5.4: Ranked individual 1 (Best) Figure 5.5: Ranked individual 40 (Worst)

5.2.1.2. Eliting

Using the same test orebody as was used in the theoretical optimization performance validation the effect of
enabling and disabling elitism was studied. For this purpose the lines for eliting present in the script were
either switched ‘on’ or ‘off’. No input parameters were changed.

Figure 5.6: Performance of individuals - no elitism
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Figure 5.7: Performance of individuals - single elitism Figure 5.8: Performance of individuals - double elitism

Figures 5.6, 5.7 and 5.8 show the optimization process development for optimization done on identical
ore body layers. Figure 5.7, where single eliting is applied shows the same pattern and behaviour as was
found for theoretical model testing. The optimum was reached between 50 and 80 iterations. However, with
no elitism applied figure 5.6 displays an inability of the model to reach the optimum, with best individual val-
ues fluctuating between 300 and 0. Compared to the case where eliting is applied, the worst solution values
are also lower. However, fluctuation is less and its value range comparable than that for the best individual.

As the best solution values were frequently going down the model, optimization stopped before the ap-
propriate no change limiter value was reached.

With double eliting enabled (figure 5.8), the model manages to reach an optimum value in under 200 iter-
ations. Worst solution value fluctuations seam more extreme than is the case with single eliting or no elitism.
The worst individual equals the best individual on 3 occasions. As individuals are sorted this would mean a
temporary unavailability of genetic variation.

For the model it was decided to use single elitism. Where converging was concerned, rates for both single
and double eliting were similar and comparably variable. However, double elitism shows a decrease in ge-
netic variability compared to single elitism. Where with large population sizes this should not have a large
impact, it can become critical when smaller populations are used.

5.2.2. Validating using ASCII import

For the stochastic model application testing and validation, no alterations were made considering the param-
eters listed at the beginning of the chapter. However the Input was changed to a set of 200 elevation model
simulations. In addition to the simulations a representation of the real scenario was also included. This al-
lowed not only for real case optimization, but also including the real scenario (Figure 5.13) in the stochastic
and average case optimizations.
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Figure 5.9: Real scenario elevation model

Examples of a provided elevation model simulation and the averaged (E-type) layer used are displayed in
Figure 5.10 and Figure 5.11. Notice the change in elevation scale as the elevation range of the E-type model is
smaller than that of simulation 128.

Figure 5.10: Elevation simulation 128 Figure 5.11: E-type (200) elevation model

5.2.2.1. Real elevation model

After preparing the simulation data to make it compliant with the model a number of optimizations were
done. First the real elevation model was optimized. Figure 5.12 and Figure 5.13 show the realization over
which was optimized, as the resulting best solution. When studied both, it can be noted that the stopes
seem to be placed well. All positive elevation zones seem to be covered by a stope, while the low (negative)
elevation areas are well avoided. Purely based on the raw elevation data the optimized solution summed up
to be 486.1083.
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Figure 5.12: Best individual solution - real case Figure 5.13: Real scenario elevation model

Figure 5.14: Performance of individuals - best and worst

The performance graph (figure 5.14) further showed good progress. After a steep performance increase in
the first 500 iterations the optimization progress increasingly slows done until it almost flattens out around
10.000 iterations. The worst individual value mainly fluctuates between a value of -350 and -50. Some spikes
are observed.

5.2.2.2. E-type analysis

Following, an analysis was done on the E-type layer of all 200 simulations. Figure 5.15 displays the stope
layout of the best individual solution and Figure 5.16 includes the relating performance graphs. One including
the performance of the best and worst individual solutions (Figure 5.16a), the other relating the performance
of the best individual solution to the real value the stope layout would have if it was used on the real case
(Figure 5.16b).
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Figure 5.15: Best solution E-type

(a) Stochastic display of best individual for real case
scenario over all simulations - E-type

(b) Performance of individuals - E-type

Figure 5.16: Performance graphs

Looking at the performance graphs no unusualities are shown apart from one instance around 7000 iter-
ations, where the worst individual solution equals the best solution. Optimization pace is comparable to the
real elevation layer optimization although the final optimized value is much lower.

The stochastic display graph compares the E-type optimization pace with the value the best individual
would result in when plotted on the actual elevation model. Where the optimization value (mean) only in-
creases, more variation can be seen in the dashed line representing the real optimization value. Over the
course of optimization it remains above the E-type solution indicating better value. It’s value is however not
as constant as the E-type solution and deteriorates both around the 600 and 4700 iteration point.

The additional labels in the legend (25/50/75 percentile, best and worst) are included as the graph doubles
purpose for stochastic runs.

5.2.2.3. Stochastic
Lastly a stochastic analysis was done using the ASCII elevation model dataset. Here all models are taken into
consideration as their value is calculated based on the average of all individual values. Apart from the usual
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performance and stope placement graphs it allowed monitoring the solution distribution over the optimiza-
tion process. Figure 5.17 shows the performance graph for the stochastic optimization.

Figure 5.17: Stochastic display of best individual solution projected over all orebody simulations

Where the average value over which is optimized flattens out from 2000 iterations onward, the influence
of optimization on the individuals remains active until the 3000 iteration mark. Furthermore, the value of the
mean optimized design for the best simulation continues increasing more than that of the mean itself. The
value of the mean optimized design over the worst simulation remains constant from 5000 iterations on. The
distribution of solution values keeps widening over the model run.

The real solution value for the mean optimized result is higher than the optimizer value as was the case
with the E-type optimization.

Another feature of the stochastic optimization module is that, as it calculates the value for all individual sim-
ulations, individual performance can be monitored. When the stochastic design is placed on each individual
simulation its value can be calculated. In the aforementioned performance graph this was displayed by plot-
ting the percentile values in the graph. In addition this data can be used to plot histogram data. This can be
done for either the E-type and Stochastic run results.

For Figure 5.18 stochastic data from 3 E-type runs and 3 Stochastic results have been merged and plotted
as histograms. The blue histogram up front shows the count of solutions based on value range. As data from
3 stochastic runs have been added the total number of solution count is 600. Peaks indicate a large number
of solutions within a certain value range with the highest peak being for solutions based on the optimized
model between 98 and 123. In that range 62 models complied. The shape of the histogram resembles a nor-
mal distribution.

Behind the histogram for stochastic data is the histogram for E-type data. Based on the optimized-type model
all related individual values were calculated and plotted in a Histogram. As this histogram does not peak as
high the distribution is slightly more spread.

Based on the histogram data normal distributions were fitted over the histograms in Figure 5.18. The blue
dashed line relates to the stochastic histogram data, the red dashed line to the E-type histogram data.

The normal distribution fits seem to confirm the flatter architecture of the E-type histogram data as it
peaks less high. However the curve range is not wider and the surfaces of both curves are not equal.
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Figure 5.18: Histograms and normal distributions E-type and stochastic case

To equalize the distribution surfaces they were plotted separately in figure 5.19 based on the calculated
means, and standard deviations. Two dashed lines were inserted, indicating the mean values of both E-type
and stochastic data.

Figure 5.19: Normal distributions E-type and stochastic case

5.2.3. CSV File adaptation
The economic block model is calculated using copper, zinc and arsenic grade data. The three .csv files con-
tained data for the full Neves orebody. The size of the individual files (over 2 GB each) meant they could not
be imported as is, and thus had to be adjusted. From previous work done on smaller files it had become clear
the layers of economic interest ranged from the 600 to the 800 layer.
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After extracting the necessary data layers they were imported, analysed and converted to economic block
model layers, to find a representative single depth layer to use in the stochastic analyses.

5.2.3.1. Parameters used

The parameters used for calculating the economic block models during validation are listed in table 5.2. An
explanatory list of input and output parameters can be found in appendix D.

Table 5.2: Parameter values for calculating the economic block models

Parameter Value
rock_density 3.3
block_size 4x4x4
mining_recovery 0.95
arsenic_penalty 2500
processing_cost_zn -12.79
mining_and_processing_cutoff_zn -39.9
processing_recovery_zn 0.6498
metal_price_zn 2584
processing_cost_cu -7.27
mining_and_processing_cutoff_cu -42.8
processing_recovery_cu 0.8694
metal_price_cu 5422

Where, in any of the csv analyses, different parameters were used it will be specified.

5.2.3.2. Layer data analysis

To explore the dataset a large number of independent data-layers were imported into Matlab and analysed.
Figure 5.20. Shows a number of copper ore layers in the range of 600 – 800 (796) with an interval of 40 meters.
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Figure 5.20: Independent data-layers

Using the different element layers economic block model layers and ore-waste layers were plotted next.
Figure 5.21 shows the different element maps a simulation of the 720 layer, together with the resulting eco-
nomic block model and ore-waste map.
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Figure 5.21: economic block model

Arsenic grades are given in parts per million (ppm). In later calculations the arsenic grades were converted
to percentage grades. Zinc grades are very low barely exceeding 1%, where copper grades on the other hand
range up to 20% in high grade zones. As a result of low zinc grades no zinc ore has been defined in the ore
waste designation map. Arsenic high grade zones appear where copper grades are high, however, no clear
relation can be seen as not in all higher grade copper ore zones high arsenic grades are monitored.

In the economic block model it the influence of arsenic on block value can be seen as the top zones with
extreme copper content are not as valuable as the high copper grade zones in the lower part.

5.2.3.3. Penalty value tailoring

As ore from multiple orebodies is blended to keep arsenic contamination below penalty limits, Actual penalty
values for arsenic content were not defined by the Neves-Corvo mine. However, as in this research only data
from the Neves orebody was used a penalty function was implemented. The penalty value as stated in table
5.3 was used for further analyses, however, tests with various penalty values were run. Between 0.2 and 0.5%
arsenic content was penalized based on amount of arsenic included. Above 0.5% the ore is automatically
defined as waste. The penalty values tested for are listed in table 5.3.
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Table 5.3: Penalty values

Penalty value Penalty value (€) is applied linear per 0.01 % over the penalty threshold of 0.2%, up to the
No penalty penalty limit of 0.5%.

10
500

1000
2500
3500
5000

Figure 5.22 and 5.23 show the influence of penalizing for arsenic content on the economic ore / waste dis-
tribution map. Areas with high arsenic content have been assigned to waste completely. Waste is showcased
in yellow. Zones with ‘over-waste’ economic potential are shown in blue.

Figure 5.22: No arsenic penalty Figure 5.23: Penalty value 2500

5.2.4. Zinc cost analysis

For the dataset, measurements of both copper and zinc were included. However, after quick analysis and
economic block model valuation, zinc grades appeared too minor to contribute. Testing the economic block
model creator function required assessing the impact of zinc on the economic block models. Hence a num-
ber of small tests with various altered zinc prices were done.

Figure 5.24 and figure 5.25 show the ore / waste distribution maps for zinc grades 10 times and 100 times
higher than currently (December 2016) listed on the LME. The distribution maps are for simulation 100.
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Figure 5.24: Zinc price x 10 Figure 5.25: Zinc price x 100

Where standard zinc prices have been multiplied 10 times, no zinc ore is present. Zinc grades are too low
to contribute to the copper ore / waste mapping. However, when the zinc price is further upped, despite zinc
ore being of low grades it manages to contribute. Only in zones with zinc grades nearing zero copper ore is
mined.
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Methodology

6.1. Introduction
To explore the possibilities of stochastic techniquesin underground mine design, and to review the benefit
of using these techniques in comparison to traditional methods, several different methods for analysis were
selected.Some of these analyses were influenced by previous research and adapted for use with the genetic
algorithm model, taking into account the resources available and model limitations.

6.2. Analysis scope
In order to better understand the influence of grade uncertainty on underground mine design, and to see if
the genetic algorithm scripted in this research is capable of dealing with it three independent analyses have
been drawn up. With each individual analysis a different approach to grade uncertainty is taken, as well as
each individual analyses explores a different potential of stochastic optimization techniques applied to un-
derground mine optimization.

The first analysis, the ‘Maximum upside potential / Minimum downside risk’ approach, is used to explore
the influence of grade uncertainty on mine design value and to see to what extent it differs from a traditional
design approach. Furthermore it aims to select a final design that is most capable of dealing with metal price
fluctuation.

Next, the influence of grade uncertainty towards other underground mining performance parameters is ex-
plored.The average grade, arsenic content, ore tonnage and metal content are reviewed for different equally
probable scenarios in order to map the extent and potential influence of the present uncertainty. Further-
more the approach will be used to create a map of stope inclusion probabilities.

In the last analysis, instead of using, and optimizing for, individual stochastically generated orebody sim-
ulations, a single stochastic mine design optimization is done taking into account all simulations at once.
This is done to map the added value of automated stochastic optimization when compared to a more tradi-
tional approach where individual simulations are averaged to create a smoothed orebody model.

In performing these analyses, several key points are followed :

• For the different analyses only the parameters that are obtainable from the Neves grade model are used.

• For all analyses a single horizontal layer from the Neves orebody model will be used

• All 100 simulations available are taken into account. Where less simulations are required simulations
will be randomly drawn from the simulations pool.

6.3. KPPI’s
Several performance indicators are used to investigate the potential of stochastic optimization. The indica-
tors, or KPPI’s (Key Project Performance Indicators) represent the most important consideration parameters
for investors. The indicators used in this research are all obtainable from the current grade model and eco-
nomic block model by direct calculations. An overview is given in table 6.1.
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Table 6.1: Key Project Performance Indicators

KPPI Analysis

Economic Value [€]
Maximum upside potential / Minimal downside risk analysis,
Stochastic risk analysis, Stochastic design optimization

Arsenic Penalty Value [€] Maximum upside potential / Minimal downside risk analysis
Metal Price (Copper & Zinc) [€] Maximum upside potential / Minimal downside risk analysis
Average Grade (Copper) [%] Stochastic risk analysis
Average Grade (Arsenic) [%] Stochastic risk analysis
Ore Tonnage [Tonnes] Stochastic risk analysis
Waste Tonnage [Tonnes] Stochastic risk analysis

6.4. Maximum upside potential / Minimal downside risk optimization
The ‘Maximum upside potential / Minimal downside risk’ method employs the stochastically simulated ore-
body models from the Neves-Deposit to quantify grade uncertainty. Based on an approach proposed by Ra-
mazan and Dimitrakopoulos [36] it aims to capture the deposit’s upside potential, whilst minimizing the
downside risk for the deposit’s value. In contrary to traditional methods, which use estimated and smoothed
orebody models in combination with complex, input dependent algorithms, it should give an indication of
the bandwidth of grade uncertainty. The method should also result in a mine design that, unlike the design
obtained through non-stochastic optimization, is both robust towards price metal price fluctuation and, as it
incorporates grade uncertainty, is a solution better fit to the actual situation.

The individual steps are as follows:

1. From the Geovariances dataset, 20 simulations are selected randomly and from these simulations the
copper, zinc and arsenic grades for a certain depth are exported.

2. For each block within this depth layer its economic value is calculated

3. Based on economic value, for each of the 20 simulations stope geometry optimization is performed
using the genetic algorithm optimization model.

4. The 20 stope envelopes are each individually cross-referenced with all simulations. For each design a
risk profile is created based on economic value.

5. The three best performing stope geometries are selected for further evaluation

6. The final three stope geometries are tested for varying metal prices.

7. The best performing design is selected based on how robust it is in regard to metal price variation

6.5. Stochastic risk analysis
In the ‘Stochastic risk analysis’ the concept from the first analysis are extended. However, Instead of searching
for a single robust design capturing the grade uncertainty towards economic value several other KPPI’s are
analysed. For each simulation used here again an individual design in generated. These designs are then used
to determine stope inclusion probabilities. Based on the orebody input some zones might feature stoping in
all of the generated mine designs while others are specific to a certain simulation and are therefore less likely
to be beneficial to the optimum design. Using the various stope inclusion probabilities a risk quantification
is done based on metal content, ore tonnage, arsenic content and average ore grade. Using these outcomes
risk profiles can be made for the individual KPPI’s.

The individual steps are as follows:

1. From the Geovariances dataset, 20 simulations are randomly selected and from these simulations the
copper, zinc and arsenic grades for a certain depth are exported

2. For each of the 20 simulations stope geometry optimization is performed based on economic value
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3. The different solutions (stope geometry outlines) are layered to create a map of stope probabilities (5%
- 100%)

4. For different inclusion probabilities (40%/60%/80%/100%) the KPPI values are calculated for each of
the 20 simulations

5. Using this data risk profiles are generated for each KPPI

6.6. Stochastic design optimization
The final analysis, more than the other analyses, aims to find the specific value of stochastic optimization
when compared to a more traditional approach. Aside from studying the effect of grade uncertainty on un-
derground stope optimization is also tests the full capabilities of the genetic algorithm. Using all uncondi-
tional simulation models from Geovariances a stochastic design optimization is done whereby a single design
is optimized based on all simulations at the same time. While running, for each generation all solutions are
validated through all designs. Based on their resulting average values (average value for each individual over
all simulations) the best individuals are selected for further optimization. In theory this should lead to a bet-
ter final design as no data is ignored. This in contrast to optimizing using a smoothed E-type orebody model.
The results of the stochastic design optimization are compared to 3 E-type models which stem from different
amounts of simulations. Furthermore a fictional real case scenario is used to indicate the effect of grade un-
certainty on mine design optimization.

The individual steps are as follows:

1. Stope geometry is optimized by stochastically optimizing economic value over all simulations at the
same time

2. 3 E-type models are created based on 20, 50 and 100 (all) simulations.

3. The 3 E-type models and the ‘real case’ model are used for stope geometry optimization based on eco-
nomic value

4. Resulting values are used to create normal distributions for economic value.

5. The normal distribution properties are compared.





7
Results

7.1. Stochastic analyses
For the data analyses a different set of parameters were used. Based on previous experiences some parame-
ters were changed:

• Due to the larger layer size of the CSV Neves orebody models higher termination criterium values were
chosen.

• The stope sizes were changed to a range of between 3-by-3 and 8-by-8 blocks

• The barrier size was kept to 1 block

• The cutting range was increased to 0.95

The full input parameter sets are listed in table 7.1 and table 7.2. Where, during the analyses, parameters
were altered it will be specifically mentioned.

Table 7.1: Optimizer model

Parameter Value
iter_model_max 25.000
no_change_lim 10.000
x_stope_max 8
x_stope_min 3
y_stope_max 8
y_stope_min 3
barrier 1
nrpar 50
crossover_probability 0.90
p_low_lim 0.4 0
cutting_range 0.95
chance_mut 0.20
nr_mut r ound(0.1∗ (y_model/y_stope_av g )∗ (x_model/x_stope_av g ));
perc_mut 0.80
min_par_to_mut 2
nr_constr_loops 1
selection_pressure 1
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Table 7.2: Economic block model creator

Parameter Value Units
depth 700 Meters
nr_sim 100 -
rock density 3.3 Tons/m3
block size 4 * 4 * 4 meters
mining_recovery 0.95 %
arsenic penalty 2500 € / 0.1 ppm over limit
processing_cost_zn -12.79 € / tonne
processing_cost_cu -7.27 € / tonne
mining_and_processing_cutoff_zn -39.9 € / tonne
mining_and_processing_cutoff_cu -42.8 € / tonne
processing_recovery_zn 0.6498 %
processing_recovery_cu 0.8694 %
metal_price_zn 2584 €/tonne
metal_price_cu 5422 €/tonne

7.1.1. Maximum Upside / Minimum Downside Analysis
The aim of this analysis was to explore stochastic optimization under economic variability. For that purpose
20 individual design optimizations were run on 20 different random unconditional simulations. Each design
was then tested on each of the 20 simulations resulting in a total of 400 individual values (20 for each sim-
ulation). In figure 7.1 the performance of each individual stope design (stope envelope) over the different
simulations is displayed.

Figure 7.1: Stochastic solutions for 20 random simulations

7.1.2. Base-case
In the graph solution values can be seen ranging from 16 to roughly 26 million euros. The first three designs
seem to have larger data ranges relative to the other ranges, whereas most of the other 17 solutions display
similar, smaller, solution ranges. Exceptions are solution envelopes 8 and 16.

From these 20 potential stope envelopes the 5 best performing were selected to do a cost analysis with
the aim to find the most robust model. The 5 designs selected; envelopes 2, 3, 9, 15 and 17, were selected
mainly on their downside risk. Apart from having good baseline values they also have relatively better upside
potential than the average upside potential. Envelope 3 is a clear standout as it has the lowest downside risk
and highest upside potential.
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Figure 7.2: Stochastic solutions for 5 best random simulations

Figure 7.2 shows the solution ranges for the 5 selected stope envelopes only. This figure indicates the
benchmark case for the selected solutions to which, through the sensitivity analyses, the various scenarios
will be compared.

7.1.3. Price-sensitivity analysis

The five selected best performing stope designs were then tested for price fluctuation. Both copper and Zinc
prices were increased and decreased with respectively 25 and 50 percent. Figure ?? and 7.4 show scenarios
where the metal price was increased, Figure ?? and Figure 7.6 represent decreased metal values. The changed
parameters are shown in table 7.3.

Table 7.3: Changed parameters

Change factor -50% -25% No Change +25% +50%
Copper price (€) 2711 4066,5 5422 6777,5 8133
Zinc price (€) 1292 1938 2584 3230 3876
Change Factor No Change x2 x5
Arsenic penalty (€/0.1 ppm o.l.) 2500 5000 12500
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Figure 7.3: Metal price +25% Figure 7.4: Metal price +50%

With the metal prices increased the possible solution values have gone up as well. Where metal prices
were increased with 25% the values range between 26and 35 million roughly, and where a 50% increase was
considered potential values are between 33 and 45 million. For the 25% metal price increase this means
the lowest possible solution for all envelopes is now higher than their own maximum upside potential with
current - benchmark- metal prices.

Envelope 3 outperforms all other selected envelopes both in downside risk and upside potential.

Figure 7.5: Metal price −25% Figure 7.6: Metal price −50%

Decreasing the metal price by 25% has the same effect as a 25% increase in the sense that the highest
values recorded for this scenario are lower than the lowest recorded values for the baseline case. Observed is
also that envelope 2, 3, and 17 perform very similar, where previously more deviations were seen between 2
and 3 on one side and 17 on the other. Deviation partly returns when the metal prices are further reduced (-
50%). Where envelope 15 has underperformed in upside potential in all other cases, with the lowest upside
potential recorded, it now clearly outperforms envelope 9 and 17 on both upside potential and downside risk.
It has by a margin the lowest downside risk of all selected envelopes. In the worst metal price scenario, value
ranges between 2.5 and 6.5 million euros. Individual solution deviation remains similar to the other metal
price scenarios with exception of envelope 15. Where with metal prices decreased 25% stope layout 15 was
already showing relative improvement, it improved further. Not only does it have by far the best downside
risk scenario, in upside risk it now outperforms envelope 9 and 17 where previously this was not the case.

7.1.4. Penalty value impact analysis

In addition to monitoring the effect of metal price fluctuation on individual stochastic design solutions the
effect of fluctuations in arsenic penalty were studied. Figures 7.7 and 7.9 show penalty cost factor increases
of 2 and 5.
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Figure 7.7: Arsenic penalty x2 Figure 7.8: Boxplot arsenic penalty x2

Figure 7.9: Arsenic penalty x5 Figure 7.10: Boxplot arsenic penalty x5

When the arsenic penalty is doubled the economic range of solutions is between 15 and 24 million eu-
ros. This is a minor decrease (+/- 2M) when compared to the base-line solutions. As in previous analyses,
envelope 3 comes out as the best solution on upside potential. On downside risk however, it is envelope 15
that shows best performance. The worst solution is envelope 2 as it has most downside risk and most bad
solutions situated in the lower ranges. Envelope 15 has the lowest upside potential. Apart from envelope 4 all
solutions remain similar in range.

If the arsenic penalty is further increased few notable changes are monitored in both the distribution
range of the envelope solutions and the relation between the different envelopes. Economic potential de-
creases and values range between approx. 12 and 21 million. An average loss of 3 million per solution com-
pared to the base-line case.

When looking at the boxplots (Figure 7.8 and Figure 7.10) corresponding to the graphs 7.7 and 7.9, we can
have a better look at the inter quartile ranges (IQR). The IQR is the range between the 1st and 3rd quartile and
corresponds to a certainty of 50%.

Where the lowest non outlier whiskers shows that with higher arsenic penalty values, the variation be-
tween the different designs becomes less, the IQR boxes also show smoothening. Envelope 15, having lowest
downside risk, surprisingly also shows a relative increase in upside potential. This is not visible in the normal
graphs, but when looking at the boxes only it shows highest IQR upside potential from all scenarios.

7.2. Stochastic risk analysis
The stochastic risk analysis is a continuation of the minimum downside/maximum upside potential analysis.
The 20 random unconditional simulations and stope envelopes used in the first analysis were also used for
the stochastic risk analysis.

Using the different stope envelopes a maps for stope inclusion probabilities are created. Based on the
different probabilistic stope inclusion filters risk profiles are created for several Key Project Performance In-
dicators (KPPI’s). The KPPI’s studied are: average copper grade, average arsenic grade, ore tonnage, waste
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tonnage and economic value.

7.2.1. Stope inclusion probabilities

Figure 7.11 contains a stope inclusion probability map. The inclusion probabilities are given in percentages.
Higher percentages indicate blocks or stopes mined in a large portion of the stope envelopes. Small stope
occurrence probabilities indicate stopes were placed in that location only in few envelopes.

Figure 7.11: Stope inclusion probability map

In general stopes have been distributed well over the positive economic zones. Map locations associated
with high arsenic contents have been largely avoided with either stope probabilities of zero, or small percent-
ages. Most low occurrence probability zones appear on the edges of the ore zones. On its own these blocks
might not be profitable but are remnants of larger economically positive zones. few stopes seem to have been
placed outside of profitable zones at all. In most cases these have probabilities below 10 percent. Some over-
lap between these outliers occurs.

Figure 7.12 depicts different stope inclusion probability filters. They indicate stope inclusions above a certain
inclusion percentage only. Maps of 20, 40, 60 and 80 percent stope inclusion percentages are shown.
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Figure 7.12: Stope inclusion probability filters
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These maps show clearly the decreasing amount of stopes for higher inclusion percentages. Where the
20% inclusion map shows nearly all economic zones being mined. Where the contours of the copper grade
model are not followed in most cases copper grades are low. Furthermore with a 20% inclusion probability
already all outliers have disappeared.

With 40% inclusion probability more zones of low economic potential appear un-stoped. The main ore-
body zones (bottom, middle and upper isolated zones) are all still covered with one or more stopes.

For the 60% stope inclusion filter the amount of stopes has further declined. The stopes left are all in high
grade zones. All three orebody zones are still covered with one or more stopes.

The 80% filter map shows a limited amount of stopes. The top isolated orebody zone is no longer stoped.
The stoping areas left are remnants of stopes that have been more extensive for the lower inclusion probabil-
ities.

7.2.2. Risk Profile analyses

7.2.2.1. Economic value

Figure 7.13 shows the resulting economic value for the different stope inclusion probability filters. The eco-
nomic value for each filter was calculated based on the economic block models for all 20 unconditional sim-
ulations.

Figure 7.13: Economic value

The different stope inclusion probability scenarios form a nice curve downwards as the inclusion proba-
bility increases. The first three scenario’s (10, 20 and 30 percent) however appear to show an upward trend in
the same range of solution values with spread not declining noticeably. From 30% probability on, the lower
the probability, the smaller the solution range. This trend continues all through the graph. For the lower
probability designs profits range between 25 and 37 million euros. In the most conservative scenario profits
drop to less than a million euros.

7.2.2.2. Ore tonnage

Figure 7.14 shows the ore tonnages recoverable for the different stope inclusion probability filters.
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Figure 7.14: Ore tonnage

Like in the economic value graph, the ore tonnage curve shows a downward trend with decreasing value
range as more conservative scenarios are calculated. Unlike the Economic value graph however this also in-
cludes the low inclusion probability scenarios. In the least conservative scenario prices range around 280.000
tonnes. For high probability models from 70% on, tonnages drop below 25.000 tonnes of ore to be recovered.

7.2.2.3. Waste tonnage
Figure 7.15 shows the waste tonnages recovered for the different stope inclusion probability maps.

Figure 7.15: Waste tonnage

The figure shows a convex curve downwards. Waste tonnages range between 180.000 and 130.000 tonnes
in the lowest probability scenario and curve towards 0 in the high probability scenarios. Waste-less solutions
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are present from the 60% probability envelope on with decreasing upside waste as the probabilities increase.
The worst case for 20% stope inclusion includes less waste than the most positive scenario if the 10% inclusion
probability scenario

7.2.2.4. Average ore grade

Figure 7.16 shows the resulting average ore grade for the different stope inclusion probability filters. For this
the copper grades have been taken into account as no profitable zinc ore is present on the 700 meter level.

Figure 7.16: Average copper grade

Average ore grades are lowest with low inclusion probability. They range between 4% and 5% until inclu-
sion probabilities of 40%, around 5% for inclusion probabilities of 50% and 60%. After 70% range increases
dramatically upward with average grades up to 10% found for the 90% inclusion filter. In these scenarios
however it seems freak cases are included.

7.2.2.5. Average arsenic content

Figure 7.17 shows the resulting average arsenic grade for the different stope inclusion probability filters.
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Figure 7.17: Average arsenic grade

Average arsenic grades appear to be constant all stope inclusion probability scenarios. Average grades
range between 0.13 and 0.24 percent with for the last scenarios a strong increase in range. As observed in the
average copper grade graph, the high probability scenario’s (70 – 90%) each include one model design having
mayor influence over average grade range.

7.3. Stochastic Design Optimization

For the stochastic design optimization long optimization runs were done using both the stochastic model
function, where all 100 simulations are taken into account while running, and an E-type model. The E-type
model was created by averaging 100 the random simulations. In the case of averaged layer, based on the opti-
mal solution individual solutions are calculated for all separate economic simulation models. With this data
several histograms and normal distributions were plotted.

In an attempt to increase the model accuracy and ensure good optimization performance the termination
criterion was changed by increasing maximum number of iterations from 25.000 to 50.000.

Figure 7.18 includes histograms for the four individual cases run. On these histograms normal distribution
curves have been fit. As their shape is influenced by the size of the histograms on which they are fit, they can
only be used as spread indicator.
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Figure 7.18: Histograms and normal distribution for all cases

Figure 7.19: Boxplot analysis 3

The two histograms show noticeable differences. It can be clearly seen that the histogram of Stochastic
data shows less solutions in the lower value range and its worst results are of higher value than those of the
E-type data histogram. The stochastic histogram had a wider base as can be seen well from figure 7.19, show-
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ing a box plot of the same data.
The box plot shows that the 25th percentile of the stochastic scenario depicts a higher value than the me-

dian of the e-type case. Where downside risk, the lower solutions, are equal, the stochastic results show a
much higher upside benefit (2.4E7 vs. almost 2.7E7), and over all better solutions.

In Figure 7.20 the normal distributions for the two model solutions are displayed. Instead of deriving them
from the histogram curves they were plotted from the calculated mean and standard deviation of the indi-
vidual solutions. This results in their shapes no longer being dependent of the histogram spread, but instead
being normalized.

Figure 7.20: Normal distributions

Unlike the boxplot, the normal distribution is centralized, with equal spacing between the 25th and 75th
percentile and the mean. As already noted in the boxplots, it can be seen here that the E-type distribution has
a narrower body indicating a smaller spread of solution values. The mean value of the stochastic distribution
is higher than that of the E-type distribution. The mean of the stochastic distribution being 2.2E7, the mean
of the E-type solution 2.0E7.
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Discussion of results

8.1. Stochastic analyses discussion

8.1.1. Minimum Downside Risk / Maximum Upside Potential Analysis

The ‘Maximum upside potential / Minimal downside risk’ method employs the stochastically simulated ore-
body models from the Neves-Deposit to quantify grade uncertainty. Based on an approach proposed by Ra-
mazan and Dimitrakopoulos [36] it was executed in an adjusted form with the aim to capture the deposit’s
upside potential, whilst minimizing the downside risk for the deposit’s value.

In selecting the top 5 solutions from the 20 stope designs generated through the genetic algorithm opti-
mizer, only downside risk was taken into account. Partially upside potential was discarded as models with
low downside risk in general had good upside potential. Also, if upside potential would be taken into account
this would include averaging between downside risk and upside potential. In such a scenario models with
larger solution variation would benefit disproportionally as their downside risks are diluted with good upside
potential. Stope envelope 2 could serve as an example as it has the highest upside potential from all models.
However, this is only one solution where other equally probable solution scenarios are substantially lower in
value.

From a business perspective it is more important to reduce risk than to have a large, but risky upside po-
tential. Especially as all models in the current scenarios are of positive value this risk would not be acceptable.

In the analysis 20 simulations were taken into account out of the hundred available. This was deemed enough
as the simulations used were generated unconditionally. Generating more stope layout solutions was not ex-
pected to deliver substantially better solutions. Especially as the solution ranges of the modelled individual
stope envelopes are relatively close,increasing the pool size would most probably increase the computational
time more that it would benefit the final solution.

8.1.1.1. Metal price sensitivity analysis

In the Metal price sensitivity analysis the upside potential and downside risk of the five selected stope en-
velopes was studied. Price fluctuations taken into account were: 25 and 50 percent metal price increase and
decrease and multiplying the penalty for arsenic with a factor of two or 5.

When looking at metal price decrease, the range of solutions decrease as a whole for all stope envelopes.
However, where, with metal price increase, the individual ranking of solutions is not changed, for lower metal
prices the order of solutions is changed significantly.

If we take into account envelopes 15 and 17 it can be seen that solution envelope 17 performs better then
envelope 15 for both the base-case and metal price increase scenarios for both upside potential and down-
side risk. However, for a metal price reduction of 25% the upside potential and mean for envelope 17 might
still be higher, but on downside risk envelope 15 now performs better. With a metal price decrease of 50%
envelope 17 performs worse than envelope 15 as a whole. Both on upside potential than on downside risk.

71
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Figure 8.1: Metal price −25% Figure 8.2: Metal price −50%

The different behaviour of the selected stope envelopes towards price decrease can be explained through
the constant cost of waste mining. Where, when metal prices go up, the orebody as a whole becomes more
profitable linearly, when prices decrease, zones with low metal content will become waste instead of decreas-
ing in value more. An explanation for the un-linear value decrease of envelope 15 compared to the other
stope envelopes could be because it has relatively more stopes places inhigh grade zones or zones with lower
arsenic content. In that case envelope 15 has a lower ability to decrease in value linearly before the fixed value
of waste prevents further loss and leads to un-linear behaviour.

In all metal price scenarios however it is stope design 3 that performs the best on upside potential, and,
when looking at the 25th percentile, also on downside risk . Compared to the other models it behaves stable
and its position relative to the other models does not change in any of the price scenario’s. when looking at
the range between the 25th and 75th percentile it displays most upside potential and lowest downside risk in
all cases.

8.1.1.2. Arsenic penalty sensitivity analysis
The increase of arsenic does have a negative influence on the solution values, with all profits decreasing.
However, unlike in metal price decrease scenario’s it does not affect the relative order of solutions, nor the
relative spread in solutions. This would indicate the increase of arsenic penalty has little effect on the appear-
ance of waste in high grade ore zones. Where ore grades are relatively low it would result in the transition of
economic zones is waste. However, as in good economic scenarios these contributed little to the total solu-
tion value, the transition of low profit zones into waste has no visible impact on the solution upside potential
and downside risk ranking, as no change in solution range or relative envelope can be seen.

8.1.1.3. Concusive statements
The aim of this method has been to select the most robust scenario, capable of dealing with market fluc-
tuations. For doing so, four characteristics have to be taken into account: downside risk, upside potential,
the median solution and the range of individual solutions. When selecting a stope layout based on upside
potential envelope 3 is most suitable. Through the different scenarios it shows the most stable mean value,
on average the lowest downside risk and has good upside potential. However, the envelope has a wide range
of solutions in all scenarios. This indicates a large amount of uncertainty on the final output of the mine. If
uncertainty is to mitigated envelope 15 would be the most suitable design. Even though it does not provide a
large upside potential, it has a small solution range. Where it does not benefit as much from increased metal
prices as the other models, it is best in mitigating downside risk when metal prices drop or arsenic penalties
increase. When trying to mitigate risk this would therefore be the best solution.

8.1.2. Stochastic Risk Analysis
The stochastic risk analysis can be seen as an extension to the minimum risk / maximum upside potential
analysis as the same stope envelopes, and simulations on which they were based, have been used. The stope
envelopes were layered to create a map of probability of stope occurrence. The influence of different stope
inclusion probabilities has been examined for a number of Key Project Performance Indicators.

Looking at the stope inclusion probability map few low probability stope areas can be seen that lie outside
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the orebody. As they do not contribute to the final value, they should theoretically not be there. It indicates
that in some casesthe optimization process was aborted before an optimum was reached. It indicates that
the iteration limit value used was too low. As these ‘out of orebody’ stopes have minimum probabilities (5%)
we can assume they are not regular occurrences.

Another explanation for some low probability stopes lying on the very edge of the orebody model is that
even though most of the stope is out of the orebody contributing waste, the small portion of the stope that
overlies the orebody captures such a high zone that the benefit of including these blocks overshadows the
negative contribution of the waste blocks.

When considering the individual probability layers it can be seen that the most uncertain stopes (those in-
cluded only in low probability models) are all situated in the low grade orebody zones. This would indicate
first of all that optimization has indeed succeeded and contradicts random search practices. Also this indi-
cates a higher optimization stability for higher grade orebody zones than for low grade zones.

A rapid decrease in stope inclusion is noted. Comparing the 60% stope probability map with that of 20%inclusion
probability shows that in the latter twice as much blocks are mined. When stope inclusion probability is fur-
ther increased,few blocks are left to be mined.

Where other researches have shown that for higher probabilities the number of stopes included rapidly
decreases, [37] these results show a more extreme decline. The reason for this is that in the optimized stope
layouts pillar barriers have been taken into account. These pillars are required to surround the plotted stopes
completely. As depending on the variation in the orebody simulations, stopes are not always placed in exactly
the same location,this amplifies the effect of pillars on the stope inclusion probabilities. The inclusion of pil-
lars in the optimization algorithm therefore ‘dilutes’ the high probability stope inclusion zones. What is now
indicated to have a 60 or 40% inclusion probability would most likely have a substantially higher probability
when no pillars are taken into account.

8.1.2.1. Copper grade risk
Instead of evaluating average ore grades it was decided to take into account the copper grades only. Even
though the zinc grades were taken into account whilst building the economic block model, the zinc grades
were too low to produce positive economic block values. As a result the economic block values were purely
copper driven.

Evaluating the average copper grade risk profile, a smooth upward trend can be seen indicating that as less
probable stopes are taken out, higher grade zones are mined. This as they are more certain to be of economic
interest in the varying simulated scenarios.

The estimated average copper grades at the 80 and 90% probabilities showcase great spread where spread
for other probabilities was constant. Their range is stretched upwards by one model each time indicating a
simulated orebody scenario that differs much from the other simulations.

8.1.2.2. Arsenic risk
Based on the graph for average arsenic grades it can be concluded that arsenic, although of influence on
overall profitability, does not play a large role in the stope optimization process. Although arsenic grades are
far from uniform over the orebody model, they are usually connected to the copper grades. As the mineral
containing copper also contains arsenic, zones with copper mineral abundance usually also show higher
arsenic values. However, the lack of a significant upward trend as was seen with the average copper grades
seems to indicate there is no direct linear relation between the two.

The outliers in the high probability models that could suggest some upward trend give too much of a
distorted image to prove a relationship between average copper grades and average arsenic grades for this
case.

8.1.2.3. Tonnage risk
The ore tonnage curve shows a fluent decrease in material mined as less probable stopes are left out. This is
logical, as with more certain models only high grade material is mined and therefore less stopes are present.
The flattening out of the curves in the very low and very high probability regions (10/20% &80/90% ) is the
result of there being less of a difference in how much stopes are mined. For both the 10 and 20% probability
models almost all ore is mined, for the 80 and 90% models very few stopes are mined.
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8.1.2.4. Waste Tonnage risk
The ore tonnage curve shows a convex decrease in waste mined as less probable stopes are left out. This is
logical, as with more certain models only high grade material is mined and therefore less stopes are present.
Furthermore the stopes left are mainly present in the high grade zones. Waste however remains present in
small quantities also for the higher stope inclusion probability envelopes. This is due to some high grade
zones bordering waste zones directly. In order to profit from those economic zones whilst still placing valid
stopes, some stopes overlap waste slightly. The flattening out of the curves in the very high probability regions
(70/80/90%) is the result of there being less of a difference in how much stopes are mined. For both the 80
and 90% probability models very few stopes are mined.

8.1.2.5. Economic value
The economic value probability model clearly indicates a decrease in value for the high probability stope lay-
outs. Where mining high grades gives the certainty of making a profit, it does not assure the highest possible
profit as that depends on the metal price fluctuations. In the lower probability regions we can see that the
stope inclusion model with the lowest probability is potentially less profitable than the 20% stope inclusion
probability model. One of the things contributing to this is that, as mentioned prior, in the low probability
zones several outlier stopes are placed outside the orebody. Another reason is that, where low probability
stope models can work well with some of the simulated economic block models, in less favourable scenarios
they are more influenced by the negative impact as these areas are not avoided in low probability models.

8.1.2.6. Conclusive Statements
If, based on these stochastic KPPI risk analyses a mine design is to be chosen it would most likely be the 30, 40
or 50% inclusion probability model. The choice for either of these two would be based purely on economic
value as this is the main driver of the operation. Moving down the stope inclusion probabilities from high
to low, we can see that up to the 60% model, each model of higher inclusion probability shows lower upside
potential than the next model’s downside risk. Choosing a probability of over 60% would therefore be not
feasible from a value perspective. The 30% model shows more upside potential and less downside potential
than the 40 and 50% models, however here the choice is not as easy anymore as the 30% probability model is
not better in all cases than the 40% model. The goes for the 40% model compared to the 50% model although
the difference between models is bigger. Comparing the 30% and 40% model there are few large differences
in upside potential and downside risk, whereas the 10% and 20% inclusion probability models clearly shows
more downside risk for economic value.

The other KPPI’s do not have an impact on profitability itself but do influence the processing scheme re-
quired. If the processing plant does not deal with the output of the mine efficiently this can be a source of
economic loss. The decision whether to pick the 30, 40 or 50% stope inclusion probability model can there-
fore be made considering processing preferences and plant requirements.

The average arsenic content is stable through all inclusion probability scenarios and is therefore not deci-
sive in picking either of the three models. The range indicated however can be used in designing the optimal
arsenic removal process.

A model with higher average ore grades is preferred when blending is not considered as it requires less con-
centrating to get the right concentrate grade. If blending is part of the process, the model with either the lower
or higher average grades can be picked. The range of average grades will help as blending can be modelled
more accurately.

The present mill capacity also plays a role in selecting the optimal model. If large capacity is present the
30% probability model should be chosen as it has slightly more upside potential. In capacity is less and could
be critical, choosing the 40 or 50% would be better depending on the processing

8.1.2.7. Final Remark
In the risk maps pillars are not included as all models were layered. To come to a feasible solution, optimal
pillars should be added to the stope inclusion probability models. Without them present the solution values
are not accurate enough for production scheduling.
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8.1.3. Stochastic Design Optimization

The results from the stochastic runs show significant differences between optimization results. The differ-
ences are certainly large enough to state that the stochastic model is able to achieve better optimization
results. As both the stochastic model and the E-type models average results are likely to be similar in linear
cases. It is only in non-linear cases that stochastic optimization leads to better results due to averaging being
performed in a later stage of the optimization, where during individual optimization all variance is taken into
account.

The active capping of block values in the case of waste, and the non-allowance of negative value blocks as
ore has contributed greatly to the non-linearity of the model.

Non-linearity was also shown in the minimal risk / maximal upside potential analysis. With current metal
prices and economic parameters therefore it can be expected greater stochastic benefit is to be found. This
as it will increase the un-linearity of the model.

Where in the model validation stage small differences between stochastic and E-type runs were found, these
are more likely to be the result of optimization differences and can be expected to disappear completely if
more cases are analysed, or longer run-times are allowed.

If, through adding additional non-linear constraints, un-linearity was further increased, the model should
produce more decisive results in the favour of stochastic optimizing. As the stochastic optimization module
has been built in the model effectively, this would only require minor alterations in the constraint module.

The difference in mean value (€1 700 000) found in the stochastic analysis might not seem a massive value
increase overall. However, considering that in this analysis only one orebody layer was taken into account
stochastic optimization over the whole orebody would most likely result in a value increase of €100 million
(ballpark).

Even though stochastic modelling will be more time consuming the traditional – average based – opti-
mization, its potential value gain would far outweigh the extra effort.

8.1.3.1. Conclusive Statements

The optimized stope layouts generated for the stochastic design optimization were of much better quality
than those used in the minimal risk / maximal upside potential analysis and stochastic risk analysis. No
stopes were found to be outside the ore bearing zones. This strengthens the assumption that the no change
limiter value used in the optimization runs for these analyses was too low to reach the optimal stope layout.

8.2. Comparing the Min / Max analysis with the Stochastic analysis

In the previous sections both the minimal downside risk / maximum upside potential analysis and the stochas-
tic design analysis were discussed. Where both methods aim to be beneficial over traditional mine optimiza-
tion, they both have their up and downsides. Furthermore, where the min / max analysis strives to mitigate
downside risk, it has not yet been compared to the mine design algorithm developed for this research.
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Figure 8.3: Comparison Min/Max analysis with E-type analysis and stochastic analysis

Figure 8.3 compares the results for the different optimization scenario’s. The green distribution shows the
range and probability of possible outcomes when optimization is done based on a smoothed orebody model.
The red line is a distribution based on the hand-picked best-case scenario from the minimal downside risk
/ maximum upside potential analysis. The higher mean value and the shift of the distribution to the right
shows that downside risk has been limited and upside potential has increased.

The blue distribution is resulting from the stochastic mine design optimization using the stope optimizer.
Its mean is higher than that of both other displayed scenarios and it shows lowest overall downside risk and
upside potential.

In table 8.1 the key statistical values describing the three distributions are listed.

Table 8.1: comparing mean, standard deviation and percentile

E-type Min / Max Stochastic
Mean 2.0318∗107 2.0864∗107 2.1982∗107

Standard Deviation 1.3499∗106 1.5673∗106 1.8057∗106

5th percentile value 1.7618∗107 1.7729∗107 1.8371∗107

95th percentile value 2.3018∗107 2.3998∗107 2.5593∗107

SEM (standard error of the mean) 1.3499∗106 3.5046∗105 1.8057∗105

An increase in standard deviation can be seen for the different scenarios as the mean solution valuein-
creases. Where the E-type distribution is represented by a standard deviation of 1.35, the better performing
stochastic solution has a standard deviation of 1.81.

This is not the result from the optimization itself, as this would decrease the standard error, as can be
seen, but not the standard deviation per se [26]. The increase of standard deviation however is likely to result
from the variation in different solutions being different for the three cases. Where an average model was used,
standard deviation is smallest. However, in the stochastic solution 100 individual simulations were used in-
creasing the variation in outcome. Even though the solution results are more accurate, as is indicated by the
standard error of the mean (SEM), this would explain the increase in standard deviation.

The lesser performance of the minimal downside risk / maximum upside potential analysis when compared
to the stochastic design optimization analysis is mainly a result of different objective aims. Where the stochas-
tic analysis takes into account one optimization scenario with fixed parameters, the min / max analysis aims
to find the most robust model for changes in metal prices and penalty costs, in addition to the economic
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value. In this analysis a solution with a higher mean in the standard scenario can be rejected based on the
fact that it shows unfavourable behaviour in other scenarios. The selected stope design (envelope 15) did
prove to be most robust in less favourable economic scenarios, it does not have the highest mean and upside
potential in the standard case.

Another explanation for the lower optimization performance of the min / max analysis compared to the
stochastic design optimization analysis is that the stochastic runs were allowed more iterations. Although
all optimization curves indicated that the optimum was approached, in most cases the no change limited
termination criterion was not reached.





9
Conclusion

The aim of this research, as formulated in Section 1.4 was:

“to introduce and evaluate and optimization approach for underground stope mining, based on genetic al-
gorithms, taking into account grade uncertainty and to quantify grade uncertainty risk by stochastic analysis.”

This aim was achieved by successfully completing the achievements set out for this research:

• A 2D stope layout optimizer was developed in Matlabbased on a binary genetic algorithm.

• The algorithm was converted to allow stochastic input in the form of unconditional orebody simula-
tions or unconditional economic block models.

• A module was created to convert the available unconditional ore-grade simulations into an equal num-
ber of unconditional economic block models

• Using this genetic algorithm stope layout optimizer the orebody was evaluated stochastically and the
potential benefits of stochastic optimization were investigating by comparing stochastic optimization
to optimization of an average case model.

In section 1.5 the research hypothesis was stated:

“Simulation based stochastic optimization of underground mine design will lead to better results than opti-
mization based on customary average grade models”

To answer this hypothesis two research questions were considered:

• How can genetic algorithms be used in underground stope geometry optimization?

• How can stochastic optimization of stope geometries, using genetic algorithms, be used to manage and
eliminate uncertainty in underground mine design?

The answer to the first question can be found in the developed model itself. An optimizer was developed
based on the basic principles of genetic algorithms in order to find the optimum and most economical stope
geometries and locations. Model validation has shown that the algorithm developed is capable of optimizing
stope locations by finding the true optimum. The model was extended to allow a stochastic input so that it
could be used to answer the second question.

Using unconditional orebody simulations the model was used to perform three different stochastic analy-
ses in order to investigate the capabilities of stochastic optimization.

The Maximum upside potential / Minimum downside risk showed the large variety of solution values when
considering the individual unconditional simulations. However by referencing each individual design to 20
different orebody simulations, the range of solution values for each stope layout was visualized and both
upside potential and downside risk could be determined. Changing the economic parameters showed non-
linear behaviour of the different design solution ranges. The most robust and favourable design could then
be selected in order to minimize the potential downside risk and maximize design potential for different eco-
nomic scenarios.
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A stochastic risk analysis was done to show the probability of stopes being mined when considering the indi-
vidual optimized mine designs. Maps for different stope inclusion probabilities were made and analysed for
a number of KPPI’s. In general larger variability was seen for the lower probability models indicating a larger
amount of uncertainty.

By investigating each solution’s upside potential and downside risk, the most economic stope location zones
could be identified and grade and penalty element ranges determined. Lastly, The optimizer was used to op-
timize stope layout while taking into account all unconditional economic block models at once. The results
were compared to similarly optimized stope layouts based on commonly used E-type models. This was done
to see if better results could be obtained while taking into account grade uncertainty.

The results showed a mean value increase of almost 10% for the stochastic optimization result. Furthermore,
Comparing the distribution of possible solutions of the E-type model to the distribution for the stochastic
case showed that the stochastic solutions downside risk and upside potential were increased even more.

When the optimization results for the E-type case were compared to the same results for both the mini-
mal downside risk / maximum upside potential analysis and the stochastic design analysis, the latter two
both showed improved results over the base case. However, as the min / max analysis aims to find a more
robust solution for different economic scenarios, its average optimized value showed less improvement over
the base case than the stochastic design analysis. Improvement was hampered by the lack of focus on mean
performance and the emphasis on downside risk instead of upside potential.

Based on these stochastic analyses results, which have shown the potential and benefits of stochastic op-
timization in underground mining the hypotheses stated can be accepted.

Simulation based stochastic optimization of underground mine design will lead to better results than op-
timization based on customary average grade models.



10
Recommendations and further work

The model as was developed for this research is not ready to be implemented as is. Further work and research
are necessary to utilize the capacity of the model. Several recommendations for further research are listed
below.

• The optimizer model used in this research was scripted in Matlab. This due to the versatility of the
language, extensive documentation and large database of functions. However, Matlab is not the most
efficient and streamlined programming language. Effort could be made to script the model in a differ-
ent programming language such as Python or C as these have proven to be faster in calculating. An-
other advantage of re-programming the model to C would be that this language allows for generating
an executive file, therefore an installed version of Matlab would no longer be needed.

• The Genetic Algorithm scripted does not separate the two different generations during the cross-over
and mutation steps. This means that after individuals have been altered, they overwrite the originals. As
good individuals have a higher chance to be selected for cross-over this increases the risk of losing good
individuals and thus decreases optimization potential. By adding a parallel generation and merging the
two after the alteration steps, faster optimization can be expected.

• The model makes used of horizontal orebody layers. Due to the size of the orebody file it was not
possible to load in the full orebody dataset, and using multiple layers would slow down optimization
significantly. As the model is now, adding a third dimension would be relatively easy and would be
recommended in further research.

• The stochastic risk analysis showed that the pillars included in the model diluted the probability of
stopes being included. It would be interesting to compare the analysis with the pillars included (as in
this research) with a case where the pillars are not taken into account.

• In order to find out the true benefit of stochastic optimization over conventional mine design optimiza-
tion a new case could be examined. By comparing the optimization results of that case to a mine design
created conventionally, its true benefit can be determined.

• Apart from mine design optimization alone, effort could be made on scheduling the optimized layout
to obtain the Net Present Value. Further research could include adding a stope scheduling algorithm to
the existing model script.

• Flexible pillar sizes were not taken into account in this optimization algorithm. This generalization
makes the model less realistic as for larger stopes in equal geological conditions, thinker pillars would
be required to keep them stable. The effect of this generalization on realism was mainly featured in the
stochastic risk analyses, where it had a profound effect on the stope inclusion probability envelopes.
In future attempts or further work it would be recommended to incorporate flexible pillar sizing in all
individual model aspects.

• Development costs were not taken into account in this stope location optimizer. Realistically isolated
stopes that are profitable in the current optimizer results, could in fact not be profitable when large
development works are required to reach them. A recommendation would be to incorporate a fixed
starting location and discount or penalize based on the distance between the start point and potential
stope location. This would have to be done in the string evaluation module.
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• For the minimal downside risk / maximum upside potential analysis different economic scenarios were
investigated and its influence on the stope design performance analysed. This most likely had an ef-
fect on the amount of improvement over the E-type optimization. It would be interesting to see if the
benefits of stochastic design optimization would also be hampered by taking into account multiple
economic scenarios, and how big this influence would be.
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Figure A.1: Flowchart legend
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90 B. Flowcharts block model creator

Figure B.1: Flowcharts block model creator
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92 C. Flowcharts optimizer model

Figure C.1: Model overview
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Figure C.2: Excel Import



94 C. Flowcharts optimizer model

Figure C.3: ASCII Import
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Figure C.4: CSV Import



96 C. Flowcharts optimizer model

Figure C.5: Parentstring Generator
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Figure C.6: Cross-Over Algorithm



98 C. Flowcharts optimizer model

Figure C.7: Mutation
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Figure C.8: Constraint Function





D
Model parameters and variables

Table D.1: Explanatory list of input parameters

Parameter Model Assignment Description
x_model Parentstring generation,

Crossover, Mutation, Con-
straint Function

Horizontal size of the value model used and stope lay-
out dimensions. Assigned automatically

y_model Parentstring generation,
Crossover, Mutation, Con-
straint Function

Vertical size of the value model used and stope layout
dimensions. Assigned automatically

string_length Model Initialization, Mutation Length of the binary chromosome string. Function of
x and y dimensions

iter_model_max Termination Criterion Maximum number of algorithm iterations allowed
no_change_lim Termination Criterion Maximum number of algorithm iterations in which no

positive value change was monitored allowed
stope_max Parentstring generation Maximum number of stopes allowed in first genera-

tion individuals
iter_max Parentstring generation Maximum number of stope placement attempts al-

lowed while composing a first generation individual
x_stope_max Parentstring generation, Muta-

tion, Constraint Function
Maximum horizontal stope size allowed

y_stope_max Parentstring generation, Muta-
tion, Constraint Function

Maximum vertical stope size allowed

x_stope_min Parentstring generation, Muta-
tion, Constraint Function

Minimal horizontal stope size allowed

y_stope_min Parentstring generation, Muta-
tion

Minimal vertical stope size allowed

x_stope_avg Model Initialization Theoretic average horizontal stope size
y_stope_avg Model Initialization Theoretic average vertical stope size
barrier Parentstring generation, Con-

straint Function
Pillar size; number of blocks to be left unmined be-
tween individual stopes

nrpar Parentstring generation, Value
Calculator, Crossover, Con-
straint Function

Size of the chromosome pool. This should be an even
number.

crossover_probability Crossover Probability of crossover being executed during an it-
eration

p_low_lim Crossover The lowest cumulative P-value allowed. Forces a min-
imal number individuals to be crossed-over

cutting_range Crossover The range on which the cut-point can be selected
chance_mut Mutation Probability of mutation being executed during an iter-

ation
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chance_mut_flipbit Mutation Probability of flip-bit mutation being executed during
an iteration

nr_mut Mutation Number of stopes to place on an individual if it is se-
lected for mutation

perc_mut Mutation Percentage of individuals to be selected for mutation
if mutation is executed

min_par_to_mut Mutation Minimal number of strings to mutate if mutation is ex-
ecuted

selection_pressure Selection Determines the probability of the best individual to be
selected relative to the average selection probability

nr_sim Value Calculator Number of simulations taken into account when run-
ning stochastically. For average cases nr_sim = 1

Table D.2: Explanatory list of model output variables

Variable Model Assignment Description
orebodies Data Import, Value Calcu-

lation,
3D matrix containing economic block
models for all individual simulations

parents Parentstring Generation,
Initialization

Matrix containing binary chromosome
strings for all individuals

iter Main Algorithm Current iteration
value Value Calculation, Popula-

tion sorting
Economic value of a certain stope layout
/ economic block model combination

value_mat_combined Value Calculation Matrix containing best, worst, mean, 25th
and 75th solution values for all stope lay-
outs, when referenced to all orebody sim-
ulations

value_mat_complete Value Calculation Matrix containing solution values of all
stope layouts for all simulations

sorted_stochastic_results Population Sorting Value sorted value_mat_combined based
on the referenced result

sorted_stochastic_results_complete Population Sorting Value sorted ‘value_mat_complete’ based
on the referenced result

best_parent Selection/Elitism The best performing stope layout
best_parent2 Selection/Elitism The second best performing stope layout
P Selection Relative selection probability value
flipbit_val_old Mutation Value of individual prior to mutation
flipbit_val_new Mutation Value of individual after mutation
solution_best_mat Post Algorithm Processing Matrix containing the best solution opti-

mization value for each iterations
solution_worst_mat Post Algorithm Processing Matrix containing the worst solution op-

timization value for each iterations
no_change_count Termination Criterion Records the number of iterations in

which the best solution value remains
unchanged

beta Selection Selection pressure, used in calculating P
population Value Calculation, Value

Sorting, Crossover, Muta-
tion, Constraint Function,
Eliting

Matrix containing stope layout chromo-
somes for all individuals in a generation
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Table D.3: Explanatory list of model output values

Output Model Location Description
runtime Main Algorithm Time needed for run to complete (in seconds)
w Termination Criterion Waitbar in which number of iterations is dis-

played live
w2 Termination Criterion Waitbar in which number of iterations without a

change is displayed live
img Termination Criterion Image used to terminate the model (when

clicked upon figure)
abort Termination Criterion Indicates whether run was aborted early (1) or

not (0)
sol_stoch_worst Post Algorithm Processing Lowest stochastic solution value for best stope

layout
sol_stoch_25 Post Algorithm Processing 25th percentile stochastic solution value for best

stope layout
sol_stoch_50 Post Algorithm Processing 50th percentile stochastic solution value for best

stope layout
sol_stoch_75 Post Algorithm Processing 75th percentile stochastic solution value for best

stope layout
sol_stoch_best Post Algorithm Processing Highest stochastic solution value for best stope

layout
sol_stoch_mean Post Algorithm Processing Mean stochastic solution value for best stope

layout
value_real Post Algorithm Processing Value of best individual stope layout when com-

bined with the ‘real’ orebody model
solution_best_mat Post Algorithm Processing Matrix containing the best solution optimiza-

tion value for each iterations
solution_worst_mat Post Algorithm Processing Matrix containing the worst solution optimiza-

tion value for each iterations
flag Termination Criterion Flag is set to one when no change limit is

reached, after which genetic algorithm is termi-
nated

iter_check Termination Criterion Registers the final number of iterations
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Table D.4: Input parameters economic

Parameter Model Name Model Assignment Description

rock_density Economic Blockmodel Creation
Average density of a cubic
meter of rock within the deposit.

block_size Economic Blockmodel Creation
Size of a block within the
economic block model.

mining_recovery Economic Blockmodel Creation
Percentage of material recovered
after a block is mined.

arsenic_penalty Economic Blockmodel Creation

Penalty value for the inclusion of
high levels of arsenic within a block
of ore. Penalty dependent on
amount of arsenic present.

processing_cost_zn Economic Blockmodel Creation
Cost of processing a tonne of ore in
the zinc processing plant.

processing_cost_cu Economic Blockmodel Creation
Cost of processing a tonne of ore in
the copper processing plant.

mining_cost_zn Economic Blockmodel Creation
Cost of mining a block of zinc ore.
Derived from the mining and
processing cut-off parameter.

mining_cost_cu Economic Blockmodel Creation
Cost of mining a block of copper ore.
Derived from the mining and
processing cut-off parameter.

mining_and_processing_cutoff_zn Economic Blockmodel Creation
Limit cost of mining and processing
a tonne of zinc ore combined.

mining_and_processing_cutoff_cu Economic Blockmodel Creation
Limit cost of mining and processing
a tonne of copper ore combined.

processing_recovery_zn Economic Blockmodel Creation
Percentage of zinc ore recovered
after processing.

processing_recovery_cu Economic Blockmodel Creation
Percentage of copper ore recovered
after processing.

metal_price_zn Economic Blockmodel Creation Value of a tonne of zinc.
metal_price_cu Economic Blockmodel Creation Value of a tonne of copper.

refining_cost_zn Economic Blockmodel Creation
Cost of refining a tonne of
milled/processed zinc ore.

refining_cost_cu Economic Blockmodel Creation
Cost of refining a tonne of
milled/processed copper ore.
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Excel Files

Figure G.1: Analysis 1 Cross value stope envelopes 20

Figure G.2: Analysis 1 Cross value stope envelopes 20
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Figure G.3: Analysis 2 Average grade arsenic risk



115

Figure G.4: Analysis 2 Average grade copper risk
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Figure G.5: Analysis 2 Economic risk
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Figure G.6: Analysis 2 Ore Tonnage risk
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Figure G.7: Analysis 2 Waste Tonnage risk
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Overview of economic block calculations

1. Calculate the raw block tonnage
Tonnage per Block [tonnes] = Block volume [m3] * Rock Density [tonnes/m3]

2. Calculate the mining cost per tonne
Mining Costs (Cu) [€/tonne] = Mining and Processing Cut-Off (Cu) [€/tonne] – Processing Costs (Cu)
[€/tonne]
Mining Costs (Zn) [€/tonne] = Mining and Processing Cut-Off (Zn) [€/tonne] – Processing Costs (Zn)
[€/tonne]

3. Calculate the block mining cost
Cost of Mining a Block (Cu) [€] = Mining Costs (Cu) [€/tonne] * Tonnage per Block [tonnes] Cost of
Mining a Block (Zn) [€] = Mining Costs (Zn)[€/tonne] * Tonnage per Block [tonnes]

4. Calculate the recovered metal
Recovered Copper [tonnes] = Copper Grade [%] * Tonnage per Block [tonnes] * Mining Recovery [%] *
Processing Recovery (Cu) [%]
Recovered Zinc [tonnes] = Zinc Grade [%] * Tonnage per Block [tonnes] * Mining Recovery [%] * Pro-
cessing Recovery (Zn) [%]

5. Calculate the metal revenue
Metal Revenue (Cu) [€] = (Metal Price (Cu) [€/tonne] + Refining Costs (Cu) [€/tonne]) * Recovered
Copper [tonnes]
Metal Revenue (Zn) [€] = (Metal Price (Zn) [€/tonne] + Refining Costs (Zn) [€/tonne]) * Recovered Zinc
[tonnes]

6. Calculate the net block value if milled
Block value if milled (Cu) [€] = (Processing Cost (Cu) [€/tonne] * Tonnage per Block [tonnes]) + Cost of
Mining a Block (Cu) [€] + Metal Revenue (Cu) [€]
Block value if milled (Zn) [€] = (Processing Cost (Zn) [€/tonne] * Tonnage per Block [tonnes]) + Cost of
Mining a Block (Zn) [€] + Metal Revenue (Zn) [€]

7. Calculate the arsenic penalty
If Arsenic grade < 0.2%
Block value if Milled (Cu) = Block value if Milled (Cu)
Block value if Milled (Zn) = Block value if Milled (Zn)

If Arsenic grade >= 0.2% and =< 0.5%
Block value if Milled (Cu) [€] = Block value if Milled (Cu) [€] – ( (Arsenic Grade [%] – 0.2) * (Arsenic
Penalty [€/0.01%] * 100) )
Block value if Milled (Zn) [€] = Block value if Milled (Zn) [€] – ( (Arsenic Grade [%] – 0.2) * (Arsenic
Penalty [€/0.01%] * 100) )

If Arsenic grade > 0.5%
Block value if Milled (Cu) = -9999999999
Block value if Milled (Zn) = -9999999999
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120 H. Overview of economic block calculations

8. Assign block value (decide if Ore / Waste)
Block value (Cu) = Maximum [ Block Value of Milled (Cu) [€] or Cost of Mining a Block [€] ]
Block value (Zn) = Maximum [ Block Value of Milled (Zn) [€] or Cost of Mining a Block [€] ]

9. Decide to mine copper ore / zinc ore
Block Value = Maximum [ Block Value (Cu) [€] or Block Value (Zn) [€] ]
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