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Abstract
MOdified Newtonian Dynamics (MOND) is an alternative explanation for the rotation-distance curves
of galaxies that modifies Newton’s law for gravity at low gravitational accelerations, opposing dark matter.
Since its initial proposal, many interpolation functions for MOND have been proposed.
One potential interpolation function is the de Sitter interpolation, based on the properties of the de

Sitter space. It is newly tested on globular clusters through simulation in this thesis. A simulation is
needed because no analytical solution exits. Although the de Sitter interpolation function is quite old,
limited research has gone into it so far.

In this thesis, the credibility of this function will be examined by comparing it to one of the most
popular functions: the standard interpolation. It will be tested on two globular clusters (NGC 6101 and
NGC 5466), using the approximation of an isothermal sphere for initialization and an N-body particle
mesh code to simulate the systems according to the gravitational law obtained through both of these
functions. Afterwards, the resulting star density and velocity dispersion, both as function of distance to

the centre of the cluster, will be compared to their observed counterparts.
The credibility of the results will be discussed in depth, comparing the system to the isothermal sphere,
considering what changes variations in the parameters cause and assuring the system is in equilibrium

after simulation.

The results show the de Sitter interpolation is on par with the standard interpolation, producing very
similar results. Both match very well to the observed star count densities, and the velocity dispersion of
NGC 6101 matches well to the observations too, whereas the velocity dispersion of NGC 5466 does not,
in which case both functions match equally badly and predict a too high velocity dispersion.

In short, this thesis proves the usability of the de Sitter interpolation on globular clusters approximated
as isothermal spheres, but further research is required to prove or disprove its superiority - in terms of its
ability to match the observations - to the standard function.

1 Introduction

For a long time now, it has been well established
that the visible (baryonic) matter in the universe does
not behave in accordance with Newton’s law for grav-
ity, when one assumes all mass in the universe is
baryonic.
too high relative speeds between galaxies, too strong
gravitational lensing and much more, all points to
the existence of unobserved mass (McGaughl [2021al).
When dark matter was first proposed, it could have
consisted of many hard to detect baryonic sources of
mass; neutrinos, gas, faint stars, black holes or plan-
ets. But through observations it has been determ-
ined that none of these sources, nor their sum, could

Phenomena such as flat rotation curves,

make up the discrepancy. This leads, by necessity
when Newton’s laws are assumed as true, to some
unknown non- or weakly interacting particle, which
is how dark matter is understood (McGaugh, |2021a)).

However, there are also issues that this dark
matter cannot explain. The Tully-Fisher relation is
one such example (McGaughl 2021b)), the stability of
galaxies another, or the rotation in barred galaxies
(Roshan et al., 2021). Much research has also gone
into attempts to find dark matter, but all attempts
so far have been unsuccessful (Astroweb) |retrieved
2025).

That is why Milgrom invented and published his
alternative idea: MOND, MOdified Newtonian Dy-
namics. It proposes alternate gravitational behaviour



(or an alternate understanding of inertia, but this will
not be considered in the scope of this thesis) in the
low acceleration limit only. There is no reason after
all, to believe that Newton’s law is not an excellent
approximation in the high-acceleration-regime.

MOND is able to explain most of the discrepan-
cies that dark matter explains: The shape of the velo-
city dispersion, the stability of galaxies, the strength
of the gravitational lensing, the temperature of in-
tracluster gas and the relative speeds of galaxies
can all be explained by MOND as well (McGaughl,
2021a). An exception to this is the bullet cluster,
where more mass than observed is needed to make
things work, either in MOND or in Newton. How-
ever, this could be unobserved baryonic mass (Mil-
grom, 2015). Meaning, all this is without the need for
any additional non-interacting mass (Milgrom, |2001)).

To reconcile the two regimes, an interpolation
- which is able to describe gravity at every acceler-
ation - is needed. Many interpolations have previ-
ously been suggested, but in this thesis, two will be
tested: the standard interpolation function and a less
well-known one, based on the de Sitter space, both
proposed by Milgrom (Milgrom), 1999).

These tests will be executed using a previously
developed N-body particle mesh code by (de Nijs
et al., 2024). The model will be applied on the ob-
served physical parameters of a selection of globular
clusters, and the result will be a velocity dispersion
and a mass distribution of each cluster, both as func-
tion of distance to the centre, and both of which can
be compared to their observed counterparts.

Globular clusters are small galaxies, in the or-
der of 10° stars, that are distributed approximately
spherically symmetrically. The ones examined in this
thesis all orbit the Milky Way, meaning they are quite
nearby on a cosmological scale and observations are
fairly precise. Globular clusters will be tested be-
cause they often have both a Mondian and Newtonian
component (meaning parts of the galaxy where either
approximation works well), meaning that there must
also be a region where the interpolation is necessary.
Apart from that, globular clusters behave similarly to
isothermal spheres, for which an analytical solution
exists in the deep MOND regime. This solution can
be used both as a sanity check, and an initial state.
These similarities are in the randomness of direction
of motion, the shape and the mass distribution.

Ideally, the clusters will be chosen to represent
both approximations, deep MOND and Newton, as
well as the transition regime, by selecting ones with
parameters that give dominant components in one of

them.

The fact that these clusters all orbit the Milky
Way means they experience a significant external
field effect from the gravity of the central galaxy. In
this thesis, it will be considered if this effect is signi-
ficant enough that it should be taken into account.

2 Physical background
2.1 MOND

MOND introduces a new constant with the di-
mensions of an acceleration, ag, such that the stand-
ard Newtonian law of gravity is a good approxima-
tion only for accelerations a > ag. In the opposite
limit, a < ag, the following applies to a spherically
symmetric system (Milgrom, [2001)):
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In eq , a is the deep MOND gravitational ac-
celeration, M is the mass enclosed by a sphere with
radius r, G is the gravitational constant and r is the
distance to the centre of the cluster.

Several values of the parameter ag have been pro-
posed, always in the order of magnitude of 10719
m/s?, and have been established in many different
ways. These ways include observation of rotation
curves of different galaxies and star clusters, the velo-
city of galaxies in galactic clusters, from the Hubble
constant and from the cosmological constant (Mil-
grom), |1983b)). The best estimation today, based on
fits, is 1.2 - 1071 m/s? (McGaugh et al.l |2016) and
(Lelli et al., 2017). This is the value that shall be
used for ag in this thesis.

The Newtonian and Mondian expressions can be
interpolated around a = ag as (Milgrom) 2001):

a MG
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In eq and everywhere else from here on, a
is the gravitational acceleration at any point in the
combined regime. p(z) is an interpolation function
that satisfies pu(x) — 1 for x > 1 and u(x) — x for
r < 1. (Milgrom, [2001])
The following partial differential equation de-
scribes the Mondian potential:

Vol
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This is used in the algorithm of the N-body code.
The interpolation function can take any smooth
shape that satisfies the two limits, there is no theory



stating it should be one in particular. One of the
most popular functions is the standard interpolation
function. Many previous examinations have found
this function to match well to the observational data.

(4)

(5)

Eq. is the standard interpolation function,
and eq. the inverse of it, the inverse is defined so
that p(z)z =y and v(y)y = x = ;- It is needed to
retrieve the Mondian acceleration from z.

One of many alternatives is the de Sitter inter-
polation, named for the de Sitter space it is based

on.
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Milgrom has pointed out that the de Sitter space
might be able to explain Mondian behaviour (Mil-
orom), (1999)). The paper posits ag is very close in
value to cHy, where c is the speed of light and Hy the
Hubble constant, as well as to ¢?(A/3)'/2. Here, A is
the cosmological constant. This means there might
well be a physical connection between MOND and ag
on one hand and the cosmological constant and/or
the expansion of the universe on the other (Milgrom),
2009).

In five-dimensional Minkowski space-time - of
which the de Sitter space is a submanifold, there
exists the five-acceleration (Smolin, 2016) and (Mil-

grom), 1999):
[A ?
as = <02 3> + a?

This can be equalled to p(z)z to derive the in-
terpolation function. This function is not unique,
but can be chosen so that the requirements posed by
MOND are met. Egs @ and are the result.

In this thesis, these two interpolations will be
compared, as well as the deep MOND situation,
meaning that p(z) = x.

(8)
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Figure 1: Comparison of the two selected
interpolation functions in the domain (0,30).

As can be observed in Fig [l the de Sitter inter-
polation transitions a lot slower than the standard
function. This might mean the results will be visibly
different between the two.

2.2 Initial distribution: isothermal sphere

It has previously been proven that models based
on an isothermal sphere, such as the King model -
which is a model based on the isothermal sphere ap-
proximation, derived from Newton’s laws - are very
good approximations of globular clusters (Madson),
1996)), though to make sure the simulation behaves as
expected, the results can be compared against these
analytical ones.

In perfect thermodynamic equilibrium, with an
infinite number of particles with equal masses, in the
deep MOND regime, it holds that: (de Nijs et al.,
2024)

-2
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In eq @, b is a measure for the size of the
cluster, it is the quarter-mass radius, the radius a
sphere of which encompasses a quarter of the total
mass. It is proportional to the half-mass radius by
a factor, which in this model is 0.556. In eq ,
kp is the Boltzmann-constant, T is a measure for
the random movement of the particles, not the ac-
tual temperature, m is the mass of one particle, (v?)
is the average squared speed, M is the total mass
of the cluster. Eq. can be used to rewrite the
Maxwell-Boltzmann velocity distribution so that it



depends only on a root-mean square velocity and the
velocity of a particle.

2\\ ~3 3
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p(v) is the probability density that a particle
has velocity v. The average speed satisfies vgyrg =
\/{(v?), which can be calculated using eq using
the mass of the system.

These distributions, combined with the paramet-
ers of the cluster, will be used to initialize the system
so that it starts close to the equilibrium state and
little time is needed to move toward it.

In this isothermal sphere for deep MOND, the
3D mass density can be established analytically too
(de Nijs et al., 2024)).

3M r3/2 -
p(r) = 47h3 L+ b3/2
This means in the tail, where the acceleration is

very low and deep MOND is expected to be a good
approximation, the density should fall off with r—9/2.

(11)
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2.3 How clusters will be selected

The interpolation function should encompass all
regimes, as it converges to the Newtonian regime and
the Mondian regime for a > ag and a < ag respect-
ively. To examine the applicability of the functions,
it is therefore important to test it in all three regimes,
also including the regime close to the transition.

Clusters are often largely in one regime or the
other, with only small parts in the transition. How
Mondian or Newtonian it is (or what the values of x
are throughout the system) can be calculated from
the accelerations. But that requires simulations first.
To be able to select the clusters upfront, the approx-
imation of the isothermal sphere in deep MOND will
again be used.

a
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From eq , the maximal acceleration can be
calculated by differentiating over r and equalling the
result to 0. At this maximal acceleration, amax, the
following holds:
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The dimensionless maximum acceleration will be
called A from now on. If A < 1, then a < ag at

all points of the cluster, meaning it is dominantly
Mondian. For a value of A ~ 1, there will also be
a considerable component in the transition regime.
If A > 1, it will have a dominant Newtonian com-
ponent, although also a Mondian one and one in the
transition regime.

2.4 Description of the Simulation

Here will be described a short version of how the
N-body mesh code functions. A more detailed ver-
sion can be read in (de Nijs et al., 2024)). The code
can be accessed on https://github.com/Joost987/
MONDPMesh.

The code first creates an initial state where each
particle is assigned a randomly distributed velocity
and position. This initial state is based on the iso-
thermal sphere for deep MOND, as described in sec
m one parameter for the position: the quarter-mass
radius of the system, and one parameter for the ve-
locity: the total mass.

The program treats each particle as having equal
mass. The mass of each of the particle is spread out
over a sphere, following a Gaussian distribution with
a standard deviation of 1 pixel. This spreading is per-
formed to counteract the effect of close encounters:
Very high accelerations can be generated when two
particles are close to each other. At the next step, the
particle should be accelerated in the direction of the
centre of the system, but if the next step is too tem-
porally distant, the particle will already have moved
outside the system, or have moved to a high-velocity
orbit. By spreading the particles out over multiple
pixels, when two would get very close to each other,
they exert reduced net force on the other. Never-
theless, this was found to be a constraining factor in
performing the simulations.

Then, all the simulations are performed, one
timestep at a time. An iterative calculation is per-
formed as follows: the Newtonian acceleration in each
pixel is calculated from its deterministic function,
and from it is calculated a vector field that consists
of the Newtonian field and an orthogonal component.
From this field and the inverse interpolation function,
the Mondian vector field can be calculated. This
field is projected onto a curl-free part, and now it
can be used to calculate the Newtonian vector field
with orthogonal component. From this, the ortho-
gonal component alone is found which can be pro-
jected onto the divergence-free part, and this is then
used to construct the new vector field of the combined
Newtonian and its orthogonal acceleration. All these
calculations are performed in the Fourier-domain for


https://github.com/Joost987/MONDPMesh
https://github.com/Joost987/MONDPMesh

fast computing. This whole process is repeated a pre-
set number of times, that needs to be sufficient for the
result to be close enough to both the analytical solu-
tion (for a system where one exists) and to stability,
meaning the system doesn’t change with increasing
number of iterations.

The acceleration field is used to update the ve-
locities and they to update the positions using the
leapfrog method. These velocities and positions at
the end of the simulation are treated as the state
in which the system would be according to the law
tested in that simulation.

The final results of the simulation are a set of
matrices that include the whole system at each simu-
lated time, showing 3D velocity and position of each
particle, and the different energies and the angular
momentum and linear momentum in the whole sys-
tem at each time. It also returns all of that for the
analytical solution, if it is available, meaning it is
simulated in deep MOND with no external field ef-
fect (de Nijs et al., [2024).

The whole code has been optimized by (Koster,
2024]) so that it performs the computations in parallel
using the GPU, rather than the CPU which Python
would use by default. Performance is still PC de-
pendent, the specs of the PC used can be seen in sec
8.2

3 Finding Parameters

To be able to obtain good results from the sim-
ulations, a plethora of parameters is needed. The
numbers of particles and pixels, the size of the pixels,
the number of timesteps and their length, the number
of iterations per timestep, the mass and quarter-mass
radius of the cluster, the distance between the cluster
and the sun and the centre of the Milky Way and the
observed number of stars. These parameters include
both the observed physical parameters of the glob-
ular clusters as well as ones that are related to the
simulation and the spatial and temporal pixelation of
the system. The former group will be found by con-
sidering experimental values of previously examined
clusters to find a selection representative of all three
regimes: deep MOND, Newtonian and the transition
between the two.

An overview of all chosen parameters can be seen

in sec 83

3.1 Physical parameters

As described in section (2.3, the parameter A
takes a value close to 1 when it has both a Newto-

nian and Mondian component, if A > 1, it is expec-
ted to be in the Newtonian regime and if A < 1 it
can be considered to be in deep MOND everywhere.
So the aim was to find one cluster with each of these
values. Unfortunately, in practice it turned out hard
to simulate clusters with high A, as the parameters
of these systems caused them to easily explode and
thus demonstrate non-physical behaviour. This be-
haviour can be seen in sec[8.1] The required number of
timesteps to compensate made the simulations take
longer than permissible. Therefore, only the domains
A <« 1and A = 1 will be considered in this thesis.

It is also important that a mass distribution or
mass density function, as well as a velocity profile
have been created based on observational data.

The selected clusters are NGC 6101 with A =
1.04 (Baumgardt et al., retrieved 2025) and NGC
5466, which has A = 0.569 (Baumgardt et al., re-
trieved 2025).

To run the simulation, only the total mass of the
system and the quarter-mass radius, which will be
derived from the half-mass radius, are needed. Both
of these values are provided by (Baumgardt et al.,
retrieved 2025), and are based on a best fitted King
model. To inspect the need to include the external
field effect from the Milky Way, the galactocentric
distance (the distance between the cluster and the
centre of the Milky Way) is also required. But for
processing the results, the distance to the sun and
observed number of stars are also needed. The num-
ber of stars is needed because it is convention to ex-
press a mass density in number of stars. This means
this number is not the total number of stars in the
system, but the total star count in the member se-
lection of (de Boer et al.l 2019)), whose star density
distribution will be used to compare against.

It is important to note that the simulations will
be performed with very high mass per particle: 17
or 5.6 M® per particle, as will be explained in sec
whereas the mass of stars in globular clusters is
typically below 1 M©® (Baumgardt et al., 2023). This
means that one particle is not 1 star, but a repres-
entation of a multitude of stars. The mass per star in
the count is even higher, but this is of course because
the number of stars in the selection is not nearly the
total number, which would be in the order of 10°.

It will also be considered if the external field ef-
fect could have a significant influence on the simula-
tion, for which the stellar mass of the Milky Way is
also needed, as this will be the largest contributor to
the effect. Magikyway = 4.6 +2.0/ — 1.3-10°°Me
(Licquia and Newman) [2013]).



Totalmass |Half-mass Galactocentric |Distanceto |Number of
Cluster [:I.()4 M®] |radius[pc] |distance [kpc] |Sun [kpc] stars [-]
NGC 6101 17 13.87 10.360 14.450 1750
NGC 5466 5.6 13.75 16.480 16.120 1007

Table 1: Used parameters of the clusters. All data

from (Baumgardt et all, |retrieved 2025), except the

considered number of stars (not the total number) by
(de Boer et al., 2019).

3.2 Simulation parameters

The number of particles would, to ideally model
the system, corroborate with the number of stars, but
as this number is typically in the order of magnitude
of 10° and the simulation time scales with N2, where
N is the simulated number of particles, this is unfeas-
ible. Instead, N has been pinned to 10%, which has
previously been proven to already be a good approx-
imation of the isothermal sphere for this mesh code
(de Nijs et al., |2024]). It has also been found to have
an acceptable simulation time of two hours with all
other parameters as described in this chapter.

The same research also proved four iteration
steps were needed to get an error (deviation from
the analytical solution of the isothermal sphere) <
1 %. To prove this is a sufficient number, six itera-
tions were also tested and compared against the four
iterations, as can be seen in figure .
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Figure 2: 3D star density of NGC 6101 simulated
with the de Sitter interpolation with four and siz
iterations per timestep. It also shows the absolute

difference between the two.

To determine the needed timescale, a mass dens-
ity plot of different simulated times was made, this
means the other parameters were already needed:
they have been chosen over an iterative process.
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Figure 3: 3D-mass density of NGC 6101 at three
times, and the changes between these snapshots.

Simulation with the de Sitter interpolation.
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As can be seen in Fig after 30 Myrs, A1 jmax <
0.1 - A9 mae, where subscripts 1 and 2 denote the
first and second half of the simulated time. Similar
plots have been made for the other tested regimes for
both clusters, from which it was concluded that 30
Myr is a sufficient simulation time to reach a close-to
equilibrium state, when using the isothermal sphere-
distribution for deep MOND as start condition.

A constraint is put upon the number of timesteps
by the necessity that the length of these steps is
not too long. There is no hard definition for what
too long is, but explosions caused by close encoun-
ters, as described in sec are a clear indicator the
timesteps of that simulation were chosen too large.
This would be recognized as happening when all
particles would suddenly leave the system, or the av-
erage velocity would suddenly change radically. The
effect can be seen in figs [T9] and When this oc-
curred, the timesteps were known to be chosen too
long, and then more steps were needed so that each
is smaller. Through a process of trial-and-error, a
number of 6000 steps has been found to usually give
stable results.

The number of pixels per half-axis has been
found to be the most problematic. Ideally, it would
be quite high to allow for a high resolution. This
means the potential, and with that the acccelera-
tion, can be accurately determined for each particle.
However, to force physical behaviour, the particle
distribution must be smooth, meaning that an in-
crease in resolution demands an increase in number
of particles. In this thesis, it has also been found
experimentally, though with no explanation, that a
greater number of pixels causes an explosion much



easier, to prevent this, a larger number of timesteps
is also needed. And a greater number of pixels itself
also requires more computing. All this means that
the possible number of pixels is very much limited by
the computational power of the used PC (specs de-
scribed in sec . 64 pixels per half-axis of the sim-
ulated box is found to be the most achievable within
a few hours of computing.

The ratio between quarter-mass radius and half-
length of the box was similarly established: for a too
large ratio, the particles could easily leave the system.
But b should not be chosen too small in comparison
to the box as this comes at the cost of spatial resolu-
tion. b = %~ % was found to work well. It has been
compared to b = 2—10- %, and an attempt has been
made to compare it to %- % Here, % is the half-
length of the simulated box. However, it was found
that in the last case, the cluster gets too close to the
edge causing the system to easily explode, meaning
an unfeasible number of timesteps was needed.
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Figure 4: 3D star density of NGC 6101 with bfy.
= 0.1 compared to bpe. = 0.05 after a de Sitter
interpolation simulation. The difference has the

same units as the densities.

Since b = L - L

i - 5 is feasible and offers a higher
resolution than the alternative considered, it will be
used. Fig [] demonstrates that, although there are
considerable differences caused by the ratio between
b and the size of the box, the result will largely follow
the same pattern. It is as good as certain an even
higher resolution will further improve results when
paired with required increase in timesteps and num-
ber of particles, but the chosen ratio will have to do.

The isothermal distribution for deep MOND is
used as an initial state because the analytical solu-
tion of the deep MOND regime is found to be a good
approximation, supported by Fig[3] Although it is a

solution of the deep MOND regime, it is also found
experimentally to be a good start (meaning already
close to the equilibrium state) for the transition re-
gime, and will therefore be used as an initial state in
testing the interpolation functions as well, by lack of
an analytical solution.

4 Preliminary tests

In this chapter, the reliability of the simulations
will be examined by comparing to analytical solu-
tions, considering stability in time and considering
the smoothness of the distribution. After that, the
central density will be compared to the theoretical
value. It will also be checked that the total energy
remains constant. The need to examine the external
field effect will also be considered here.

4.1 Analytical solutions

The deep-MOND simulations should resemble
the deep MOND isothermal sphere closely, as that
is the solution for an infinite number of particles.
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Figure 5: Probability density against 3D radius of
NGC 6101 at initialization. p(r) is the local mass in
the bin with width dr, divided by the total mass and

the binwidth, or ﬁdl\gy)
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Figure 6: Probability density against 3D radius of
NGC 6101 after a simulation in the deep MOND
regime. p(r) is the local mass in the bin with width

dr, divided by the total mass and the binwidth, or
1 dM(r)

M dr

In Figs 5] and [0 analytical indicates the ana-
lytical solution of the isothermal sphere for deep
MOND, the shape of which depends only on the
quarter-mass radius. This can be found by taking the
point at which a quarter of the points are included.
The quarter-mass radius can also be found from a
curve fit and the prompted value. These values were
considered and it was found that this gives extremely
close results to the number of points method, with
no more than a 0.8% discrepancy between the two
after-simulation methods, and often less. The largest

difference between observed radius and simulated is
12.8 %.

Cluster Interpolation |b (obs) b (sim) b (sim,iso)
NGC 6101 de Sitter 25.14 21.91 2105
Standard 25.14 22.88 22.85
deep MOND| 25.14 24.54 24.68
NGC 5466, de Sitter 24.92 23.49 23.46
Standard 24.92 23.97 24.16
deep MOND| 24.82 24.70 24.73

Table 2: Three quarter-mass radit per interpolation
function, one as observed and prompted, one the
point enclosing a quarter of the particles after
stmulation, and one by curvefitting the analytical
solution for the deep MOND isothermal sphere to
the simulated data.
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Figure 7: Mass per bin, dM(r) against 3D radius
of NGC 5466 after a simulation with the de Sitter
interpolation, also including a curve fit.

Figs [5] and [6] demonstrate that the initialization
works, but also that the deep MOND simulation is
not perfect, since after the simulation, the points are
no longer distributed isothermally in the deep MOND
regime. Nevertheless, the two are quite comparable.
More iteration steps or a larger number of particles
might be needed to better approximate an isothermal
sphere, but because of constraints in simulation time,
it will not be done.

The analytical solution can also be simulated in
the deep MOND-regime, not using iterations, but dir-
ect calculation. The acceleration of the analytical
solution should behave similarly to that of the iter-
ative simulation, and this is demonstrated by Fig
the plot of the orbits calculated in these two ways of
a single arbitrary particle, which are determined by
the time-dependent acceleration.
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Figure 8: Projection of the numerical and
analytical orbits on the x,y plane of a specific
particle in the deep MOND regime in NGC 5466.

The slope of the density functions should be —%
on logjo-scale, see sec The slope in Fig[d]is estim-
ated as —4.98 + 0.9. Here, the uncertainty is caused
by the noise in the tail. A slope of —4.5 falls within
the margins.

4.2 Time stability

Fig[3|already shows the mass distribution under-
goes most change in the first half of the simulation.
The stability of the velocity dispersion will be futher
demonstrated below.

« Absolute velocity of particle 0
35 ﬂ n * ' RMS velocity
30 A
25 A
'
N
2 201 /
>
15
10 ‘ U U U V \’
51 : :
0 5 10 15 20 25 30
T (Myr)

Figure 9: Root mean square velocity, vrus, of the
whole system over the simulated period (red), as well
as the velocity of a single, arbitrarily chosen,
particle. Simulated with the de Sitter interpolation
for cluster NGC 6101.

Fig [0 demonstrates vgms quickly oscillates to
a stable point and then proceeds to keep to that
value with only slight variations. The single particle
also oscillates with near-constant amplitude and fre-
quency after a change early in the simulation.
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Figure 10: 1D velocity dispersion, /{v2), of
NGC5466 simulated with the de Sitter interpolation.
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Figure 11: 1D velocity dispersion, \/{v2) of NGC
5466 simulated with the standard interpolation.
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Figs [10] and [T1] show the binned velocity disper-
sions against radius at different times, as well as the
difference between the times. The horizontal lines are
average changes, (A), over the whole system. Sur-
prisingly, the change is bigger in the second half for
the de Sitter simulation in NGC 5466, Fig[I0] though
not for any other simulations. This does not indic-
ate the total timescale is too small, as the expected
change would still be less in the second half if that
were the case.

As the changes, in all simulations, are quite small
compared to the average velocity dispersion - in the
order of a thirtieth - it is deemed no cause for con-
cern, and the changing velocities will be ascribed to
the continuous movement and interaction of particles,
which happens also in equilibrium.

From all these plots, it can be safely concluded
that the systems are indeed in equilibrium after a
simulated time of 30 Myrs.

4.3 Smoothness of distribution
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Figure 12: Cross-sectional density at z = 0 per
pizel of the NGC 6101 cluster after de Sitter
interpolation simulation.

Fig shows the smoothness in distribution of
the particles, which is needed to suppress the self-
gravity caused by the discretization of the system
(de Nijs et all 2024)). Clearly, there are no empty
pixels in between filled ones, and the density decays
gradually from the centre going outwards.

The central density is a bit lower than the deep
MOND analytical solution of the isothermal sphere
poses: 2.3 against 2.55 M® - ly~3. This discrepancy
could as well be a difference with respect to the deep
MOND isothermal sphere approximation, as an error
through the simulation or the binning of masses in
one pixel.

4.4 Central density

Here shall be expanded upon the concept of con-
sidering the density in the centre of the system.

_3M

p(0) = pps

(15)

Eq (de Nijs et al., [2024) can be derived
from the analytical solution of the density in deep
MOND for an isothermal sphere by simply filling in
r = 0. The densities obtained through simulation
can be compared to these values to make sure they
are trustable. This can be calculated in two ways:
the density in the most central bin, the truest to the
simulation, but influenced by the number of bins. Or
alternatively, the analytical solution of the isothermal
sphere can again be used with the radius containing
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a quarter of the total points after simulation. The
results of this can be seen in the table below.

Cluster |Method p(0) points|p(0) isotherm
Analytical 2.55
NGC 6101 De Sitter 3.73 3.86
Standard 2.56 3.39
Deep MOND 1.98 2.75
Analytical 0.86
NGC 5466 De Sitter 0.90 1.03
Standard 0.70 0.97
Deep MOND 0.79 0.89

Table 3: Analytical central densities from the
isothermal sphere approximation for deep MOND,
as well as the simulated values. Points is the density
at the innermost bin. Isotherm is simulated using
the isothermal sphere approximation. All values are
in units of M® - ly~3
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Figure 13: FEvolution of the energy through time.
FEgrav is the gravitational energy, Epot the potential
energy, Ekin the kinetic energy and E the total
energy. Simulution in deep MOND of NGC 5466

Fig shows that indeed the total energy re-
mains very constant throughout the calculation, any
fluctuation within potential and kinetic energy are
compensated by fluctuations in the other. This sup-
ports that the simulations behave in a physical man-
ner.

4.6 External Field Effect

The external field effect will most likely mainly
be caused by the Milky Way, as all examined globular
clusters are orbiting it. The Newtonian gravitational

acceleration can easily be calculated and used as an
indicator for the magnitude of the effect.

For NGC 6101 ayrw,n = 6.00 - 1071 m/s? = 0.50
ag, and for NGC 5466, ayw n = 2.37 - 1071 m/s? =
0.20 ag.

Both these accelerations are below the threshold,
so the acceleration in deep MOND would be a bet-
ter indicator. For NGC 6101: aywm = 8.49 - 10~
m/s? = 0.71 ag. And for NGC 5466, anvw, M = 5.33 -
1071 m/s? = 0.44 ay.

The maximal acceleration in NGC 6101 is equal
to A, so 1.04 ag, and that of NGC 5466 is 0.569 ag,
so that the external field acceleration is 68 % or 77
% of the maximum Mondian acceleration caused by
the body itself. It must be noted that, although the
magnitude of the external field is quite large, it might
still have little impact: according to the theory of re-
lativity, the cluster should feel no gravity from the
Milky Way when in orbit around it. This is how as-
tronauts in ISS feel no gravity. This is contradictory
to MOND, where the non-linear differential equations
that relate the potential to the acceleration cause an
external field to have a real impact on the distribu-
tion of the cluster. This means that it should at least
be examined further and cannot be simply rejected.

Unfortunately, it was unfeasible to work out how
this effect would impact the accelerations and ex-
ecute the simulations using it within the scope of
this thesis. However, other research, that could be
expanded to the case of the isothermal sphere, has
gone into this (Koster, 2024)).

5 Results

Mass density distributions and velocity disper-
sions have been made and will be compared to the ob-
served distributions of the clusters NGC 6101, NGC
6397 using different interpolations here.
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5.1 Star count densities
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Figure 14: 2D projected simulated densities of
NGC 6101 in number of stars per square arcminute
against radius in arcminutes over observational data

by (de Boer et al., 2019).

The above density plot, Fig shows the num-
ber of stars per square arcminute against the distance
from the centre of the cluster in arcminutes. This is
not the actual number of stars, but the number in the
member selection of (de Boer et al., 2019). The star
density has been determined using the ratio between
the number of particles and the star count.

In the tail, the differences between the three re-
gimes get overruled by the noise and it becomes im-
possible to tell which is best. In the centre, it can
be seen that both interpolations are slightly closer
to the data than deep MOND and the initialization
are. The latter two simulations are slightly lower
than the first few data points, and both interpola-
tions are nicely on level. This is of course unsur-
prising, as the interpolations behave very similarly
in both the centre and the tail, and only differ in the
middle. Unfortunately, the differences between the
two interpolations are quite small, so it is hard to
tell which is better, but is seems as if the de Sitter
interpolation is slightly closer.
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Figure 15: 2D projected simulated densities of
NGC 5466 in number of stars per square arcminute
against radius in arcminutes over observational data

by (de Boer et al., 2019).

Fig [15] shows that for NGC 5466 the MOND
model does not fit as well. It must also be noted
this set of observations was created from 42 % fewer
stars than that of NGC 6101. The fit performed by
(de Boer et al. 2019) showed the first point inside
the flat density in the centre, but looking only at ob-
servations, it might not be impossible the simulations
converge to the same point as the data.

Nonetheless, it seems here the simulation that
produces the lowest density in the centre must be
judged as the best, as the differences in the tail are
again overruled by noise. The closest to the observa-
tions is now the standard interpolation, but only by
a tiny difference. The de Sitter interpolation comes
in second. The deep MOND simulation again comes
in the last place.

It is also interesting to note that deep MOND
performs a lot closer to the other two simulations for
the cluster NGC 5466 than for NGC 6101, which is
as expected, since NGC 5466 is more Mondian than
the other. It reinforces the credibility of the results.
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5.2

Velocity dispersions
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Figure 16: 1D wvelocity dispersions in km/s against
radius in arcseconds of NGC 6101 plotted over the
observed velocities by (Baumgardt et all, |retrieved |

2025)

In Fig|l6] it can be seen that the all simulations
of the velocity dispersion for the cluster NGC 6101
match quite well to the observations in the region
where the velocity dispersion is flat, and also consid-
erably better than the Newton-based simulation by
(Baumgardt et al., retrieved 2025)).

The slope in the tail also seems to match, though
this is based only on two observational points. Where
the tail begins is significantly different: in all the
simulations it begins at about 400 ” and that of the
observations begins at about 150”. A potential ex-
planation could be the same-mass particles: in a real
cluster, the masses are distributed over an interval:
0.24-0.79 M©® in NGC 6101 and 0.21-0.78 M® in
NGC 5466 (Baumgardt et al. 2023). The rotation
causes the most massive particles to move to the
inside due to the equipartition of energy in an iso-
thermal sphere. This changes the shape of the po-
tential. No such effect occurs in the simulation.

With how close all three are compared to the
noise in both simulated and observed data, this figure
does not provide information regarding which func-
tion is the best.
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Figure 17: 1D velocities in km/s against radius in
arcseconds of NGC 5466 plotted over the observed
velocities by (Baumgardt et all, \retrieved 2025)
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The simulated velocity dispersions of NGC 5466
do not match nearly as well as those of NGC 6101,
and are all significantly higher (by a factor ~ 1.3)
than any observations (see Fig , where those of
NGC 6101 matched very well in the central region. It
can also be observed the tail starts much later in the
simulations than in the observations again. (roughly
300" against roughly 100”)

6 Discussion

Several of the obtained results are as expected,
however, some are not. Here, potential causes of the
discrepancies between the point where the velocity
dispersion starts to decrease, in the value of the velo-
city dispersion in the flat region for NGC 5466, and
in the central density of NGC 5466 will be discussed.

6.1 Generic causes

First a few generic causes for all issues will be
discussed.

Generic causes like an incorrect total mass, or
an incorrect half-mass radius are always possible, but
hard to test or solve. By examining many clusters the
chance all the data is wrong is reduced, and if the is-
sues found here are found to be outliers, it follows
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that indeed the input was wrong. However, this er-
ror could also be systemic, since all parameters have
been found using Newton-based models. If the dis-
crepancy caused by this is too large, the influence
could be visible.

Another possible cause is of course that the
MOND model is wrong. But since there are many
other potential causes, this does not have to be the
conclusion, especially since there is a lot that MOND
does explain, both in this thesis and many other pa-
pers.

6.2 Velocity dispersion cutoff point

A potential cause for the discrepancy in radius
where the velocity dispersion starts to decrease in
both systems is the use of much higher masses than
can be expected to be found on average in the
clusters: in NGC 5466, for example, the stars vary
between 0.21 and 0.78 M ©® (Baumgardt et al., 2023)),
whereas they are simulated as all having a mass of
59 M@®. In an inertial system, the most massive
particles will move to the outside. The presence of
more massive particles in the simulation could cause
them to move further out than they do in the real
cluster, causing the velocity dispersion drop-off at a
later point. This is, however, contradicted by the well
fitting distribution of stars.

A small discrepancy could be caused by smooth-
ing out the particles: the standard deviation of each
particle’s mass spread is 1 pixel. This means the
whole system gets extended by about 1 pixel in each
direction. This might slightly move the cutoff point
away from the centre, by 1 pixel. That corresponds
to roughly 15 arcseconds for both systems.

6.3 Central velocity dispersion of NGC
5466

Here, there are several potential causes for the
factor ~ 1.3 between observed and simulated velo-
city dispersions. It must be noted that the observed
velocity dispersions might not yet be constant in the
first few points. It is hard to tell with so few data.
If the velocity is already decreasing in the innermost
point, that would imply there is an even larger dis-
crepancy in cutoff point.

A second potential cause is the initial velocity,
derived from the isothermal sphere solution. A cer-
tain amount of energy is given to the system and
this total energy will not change because there is no
interaction with any external system. There is no
guarantee this amount of energy is correct. If this

initial energy is indeed too high, it is only a logical
conclusion that the kinetic energy could linger in a
too high state as well. Future research could attempt
to construct an initial state based on observations of
mass and velocity distribution.

It would also be possible the difference between
the two clusters is caused by the external field effect
of the Milky Way, if NGC 5466 would be closer and
thus experience a stronger effect. This is not the case,
however. It is possible that there is another cluster
near NGC 5466 that causes a stronger external field
effect than NGC 6101 is subject to, causing the dis-
crepancy in the velocity dispersion for this cluster
and not the other.

6.4 Central star density of NGC 5466

The density of stars in the centre of NGC 5466
matches somewhat to the data, but is ever so slightly
higher. A bit further away, between 200-300’, the
simulated density is a bit lower than observed. From
this, it can be estimated the total mass checks out
and the usage of a different value for it can’t be the
cause.
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Figure 18: 2D projected simulated densities of

NGC 5466, simulated with b = 0.05 - &

of stars per square arcminute against radius in

arcminutes over observational data by (de Boer
et al., 2019).
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A potential cause is the ratio between the
quarter-mass radius and the size of the box, which
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influences resolution as well as the smoothness of
the distribution. Fig shows that for bgae = %,
the distribution matches better to the observational
data than for bg,. = %0, like in Fig The higher
resolution should improve the results but if the dis-
tribution isn’t yet smooth enough, the behaviour of
the system might be non-physical. It has been as-
sumed so far that Fig[12|showed the distribution was
smooth enough, but this is unproven. To improve
smoothness, future research could attempt the same
simulation with a larger number of particles.

Then there is the use of same masses for all
particles. In a real cluster, the stars have a distribu-
tion of masses, and it is possible the stars are moved
closer to or further from the centre based on their
mass. In the approximation of the isothermal sphere
for deep MOND, kinetic energy should be equal for
all stars because of the thermodynamic equilibrium,
meaning the most massive ones move at lower speeds
and are thus in lower orbits. This means there would
be less stars per unit of mass in the centre, which
could explain the discrepancy in the graph.

Another potential cause is the mismatch between
observed and simulated quarter-mass radii, as
demonstrated by table[2] Since the simulated clusters
are always smaller than the real ones, this could cause
an increase in density in the centre. However, this
effect should be larger for NGC 6101 than for NGC
5466, because in that cluster, the difference is larger.

7 Conclusion

7.1 Conclusion from these results

The goal of this research has been to compare the
de Sitter interpolation function to the standard inter-
polation function for globular clusters, approximated
as isothermal spheres.

Fig shows the two are, as expected, better
than the deep-MOND case, but there is very little
difference between the two interpolations. It does
look like the de Sitter function matches slightly bet-
ter.

Fig[15]gives somewhat less affirming results, even
though it shows that all three simulations are now
very close together, which is expected since this
cluster is better approximated by deep MOND. The
issue is that all three are further from the observa-
tions than the simulations of NGC 6101 were. This
time, it looks like the standard function is slightly
better.

The velocity dispersion again is simulated better
for cluster NGC 6101 than for NGC 5466. All ob-

served data points match very well to the simulation
for NGC 6101, except for the last two. Because of
the large noise within both observational and simu-
lated data, no distinction can be made in quality of
the two interpolations. In NGC 5466, all simulations
produce too high velocity dispersions, and none of
them edges closer to the data, so no conclusion can
be drawn which works best.

It must also be taken into account that all used
simulation input parameters have been processed us-
ing Newton-based models, influencing the simula-
tions. Mistakes in the observations or calculation of
parameters are also possible, in which case the poor
matches found could be outliers.

Other potential causes, related to errors in the
simulation, include limited resolution, limited num-
ber of particles, equal masses at a wrong value, and
the energy given to the system by the initial state.

All in all, this research has been insufficient to
conclude whether the de Sitter interpolation or the
standard interpolation is superior. It can be con-
cluded, however, that the de Sitter interpolation is on
par with the standard function for isothermal spheres
and should be considered as a viable alternative be-
cause of its ability to match both observations and
the models using the standard function, as well as
because of its relation to the shape of the universe
and the physical meaning that it holds.

7.2 Future research

Future research could look into more clusters to
see if either of the two examined has been an out-
lier, and also examine the regime of stars with a lar-
ger Newtonian component to ensure the interpolation
works well for all kinds of clusters.

With a more powerful computer, or a larger
amount of time, it could also be examined what a
higher resolution (through more pixels or a larger
bfrac) could achieve, combined with a larger number
of particles to maintain smoothness and a larger num-
ber of timesteps to maintain stability.

The validity of the initial state should be further
examined because the amount of energy given to it
influences the final state as well. It could be attemp-
ted to calculate first the root mean square velocity
and use it as an initial state.

The influence of the external field effect should
also be examined.
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8 Appendices

8.1 Appendix A: explosion of particles

The explosion of particles, meaning the aver-
age velocity suddenly increases dramatically and all
particles leave the system, can be seen below. The
total simulated time of the simulation in Figs [19] and
is 500 Myr, meaning all particles simply left the
system early on.

Not all instances of particles exploding have
looked like this, some would stabilize after suddenly
increasing. Some would explode much faster, some-
times already at the first timestep. It has not suc-
ceeded to recreate these failed attempts.
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Figure 19: vgpys of the system and absolute
velocity of an arbitrary particle in it. Cluster is
NGC 5466 in the de Sitter interpolation with poorly
chosen timestep size and bpygc.

1lel0

1.50 1
_ 1251
e —=
£ 1.00
§ Ekin
2 0.75 1 — Epot
o) .
x Egrav
T 0.50

0.25 1

0.001

0 100 200 300 400 500
t{Myr]

Figure 20: Energies of the system. Cluster is
NGC 5466 in the de Sitter interpolation with poorly
chosen timestep size and bprgc.

Parameter Value
Simulated time 500 Myr
Timesteps 4000
Iteration steps 4
Number of particles |10 000
Birac 0.2
Halfpixels 32

Table 4: Example of poorly chosen parameters

8.2 Appendix B: PC specs

The PC used for all the simulations in this thesis
is one with the following components:

CPU: Intel(R) Core(TM) i5-10400F CPU @ 2.90
GHz

GPU: NVIDIA GeForce RTX 2060 (6 GB)

RAM: 16.0 GB (2x 8.0 GB)

Used storage drive: SSD 256 GB PCS PCle M.2

Operating system: Windows 10 64-bits

8.3 Parameters used in simulation

Parameter Value

Simulated time 30 Myr

Timesteps 6000

Iteration steps 4

Number of particles |10 000

Bfrac 0.1

Halfpixels 64

Table 5: Simulation parameters used in all

simulations.
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Totalmass Half-mass Galactocentric |Distanceto |Number of
Cluster [:I.()4 M®] |radius[pc] |distance [kpc] |Sun [kpc] stars [-]
NGC6101 17 13.87 10.360 14.450 1750
NGC 5466 5. 13.75 16.480 16.120 1007

Table 6: Cluster parameters used in the
stmulations.
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