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Abstract
Gaussian processes are well-established Bayesian machine learning algorithms with significant merits, despite a strong
limitation: lack of scalability. Clever solutions address this issue by inducing sparsity through low-rank approximations,
often based on the Nystrom method. Here, we propose a different method to achieve better scalability and higher accuracy
using quantum computing, outperforming classical Bayesian neural networks for large datasets significantly. Unlike other
approaches to quantum machine learning, the computationally expensive linear algebra operations are not just replaced with
their quantum counterparts. Instead, we start from a recent study that proposed a quantum circuit for implementing quantum
Gaussian processes and then we use quantum phase estimation to induce a low-rank approximation analogous to that in
classical sparse Gaussian processes. We provide evidence through numerical tests, mathematical error bound estimation,
and complexity analysis that the method can address the “curse of dimensionality,” where each additional input parameter
no longer leads to an exponential growth of the computational cost. This is also demonstrated by applying the algorithm in a
practical setting and using it in the data-driven design of a recently proposed metamaterial. The algorithm, however, requires
significant quantum computing hardware improvements before quantum advantage can be achieved.

Keywords Gaussian processes · Low-rank approximation · Design of materials · Data-driven design

1 Introduction

Gaussian processes (GPs) are a Bayesian machine learning
method capable of inference from noisy data while
quantifying uncertainty (Williams and Rasmussen 2006;
Seeger 2004; Murphy 2012). They are used in classification
and regression tasks (Williams and Rasmussen 2006; Seeger
2004; Murphy 2012), and also in Bayesian optimization
(Shahriari et al. 2015; Acerbi and Ji 2017) where a trade-
off between exploration and exploitation is sought based on
their uncertainty quantification capabilities.

Among many domains of application (Belgacem et al.
2020; Li et al. 2020; Czekala et al. 2017; Ažman and
Kocijan 2007; Bessa et al. 2019), the advantages of GPs
over other machine learning methods are well illustrated
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by the data-driven design and optimization of materials
(Bessa et al. 2019; Tancret et al. 1999; Lookman et al. 2017;
Frazier and Wang 2016; Bessa et al. 2017) and structures
(Bessa and Pellegrino 2018) with uncertain behavior. In
these problems, GPs obtain robust and realistic solutions
by estimating uncertainty, avoiding overfitting and dealing
with imperfect data. However, data-driven solutions using
GPs are limited to relatively small datasets (a few thousands
of data points) due to the computational cost involved in
Bayesian inference. Unfortunately, this limitation cripples
the application of GPs to problems involving a large number
of parameters due to the “curse of dimensionality,” i.e., each
new design parameter implies an exponential growth of the
design space (exponentially larger datasets).

More scalable Bayesian machine learning methods exist,
such as Bayesian neural networks and the more scalable
alternative of ensembles of neural networks (Wilson and
Izmailov 2020; Pearce et al. 2018), but they also have
limitations not present in GPs. GP models are easier
to train and interpret (Williams and Rasmussen 2006;
Seeger 2004; Tancret et al. 1999) because they have
fewer hyperparameters and the optimization benefits from
convexity of the GP posterior (Williams and Rasmussen

/ Published online: 17 February 2021

http://crossmark.crossref.org/dialog/?doi=10.1007/s42484-020-00032-8&domain=pdf
http://orcid.org/0000-0002-6216-0355
mailto: M.A.Bessa@tudelft.nl


Quantum Machine Intelligence (2021) 3: 6

2006). Conversely, training neural network is an NP-
complete problem for both proper (Blum and Rivest 1992;
Bartlett and Ben-David 2002) and improper (Daniely et al.
2014) learning approaches. In practice, training neural
network is hampered by ubiquitous local minima because
the typical procedure involves random initialization of a
very large number of parameters that are fitted by minimi-
zing a generally non-convex loss function using gradient
descent approaches (Geiger et al. 2020; Lee et al. 2019).

In this work, we address the problem of scalability of
GPs, therefore enlarging their applicability and making
them competitive with traditionally more scalable methods
like neural networks. In particular, we consider a recently
proposed quantum algorithm for GP regression (Zhao et al.
2019a) and explore enhancing its computational perfor-
mance by incorporating classical concepts for improving
GP scalability, specifically through inducing sparsity in GP
model via low-rank approximation.

Formally, given a training dataset D = {X, y} consisting
of n d-dimensional input points X = {xi ∈ Rd}ni=1 and
n corresponding outputs y = {yi = y(xi ) ∈ R}ni=1, GP
regression provides a non-parametric approach to inference
of a latent function f (x) based on the observe value y

affected by noise such that y = f (x)+ε and ε ∼ N (0, σ 2
ε ),

where σ 2
ε is the noise variance. Note that this article follows

a notation where matrices are referred to by bold capital
letters, vectors by bold small case letters, and scalars by
letters that are not in bold. The inference relies on the
definition of GPs, which specifies them as a collection
of random variables following a joint multivariate normal
distribution (in this case the random variable is the value
of the function at a given point). This definition gives rise
to a prior distribution where both observed and unobserved
values of the inferred function (y and f∗ respectively)
follow a joint multivariate distribution, completely specified
by mean and variance:[
y
f∗

]
∼ N

(
0,

[
K + σ 2

ε I k∗
kT∗ k∗∗

])
(1)

In this case, the mean is conventionally assumed to be 0
for convenience. K is a n × n covariance matrix obtained
by calculating covariance between the training points X,
e.g., Kij = k(xi , xj ) is the element (i, j) of the matrix
K, and I is a n × n identity matrix. Similarly, kT∗ is a
1×n vector obtained by calculating covariance between the
training points X and each test input point x∗, i.e., k∗ =
{k(x1, x∗), ..., k(xn, x∗)}, and k∗∗ by calculating covariance
between each test input, i.e., k∗∗ = k(x∗, x∗). The kernel
function usually defines similarity between the points and
controls smoothness of GP. For instance, the most common
kernel function is the Radial Basis Function (RBF):

k(x, x′) = σ 2
f exp

( |x − x′|2
2l2

)
(2)

Covariance functions often also depend on additional free
parameters, e.g., for the RBF function the signal variance
σ 2

f and the length-scale l. Those hyperparameters are
usually tuned by maximizing the log of marginal likelihood
(Williams and Rasmussen 2006).

Following the approach of Bayesian inference, the prior
distribution is then conditioned on the observed data to
yield the posterior distribution specified by mean μ(x∗) and
variance σ 2(x∗) as:

μ(x∗) = kT∗
(
K + σ 2

ε I
)−1

y

σ 2(x∗) = k∗∗ − kT∗
(
K + σ 2

ε I
)−1

k∗ (3)

The mean can be used to predict values of the latent
function at some new test point x∗, while variance σ 2(x∗)
provides with an estimate of the corresponding uncertainty.
As can be seen from this expression, calculating the
posterior mean and variance requires inversion of the full
covariance matrix

(
K + σ 2

ε I
)

of size n × n, where n is
the number of training points. This is the origin of the
scalability issues of GPs, as in general this operation scales
as O(n3).

Recent efforts have focused on improving the scalability
of GPs by inducing sparsity in GP models (Quiñonero-
Candela and Rasmussen 2005; Snelson and Ghahramani
2006; Titsias 2009; Chalupka et al. 2013; Hensman et al.
2013; Hensman et al. 2015; Liu et al. 2018). In this case
the term “sparsity” is used by machine learning community
to refer to approximate GP models, where only a subset
of latent variables is given exact treatment (Quiñonero-
Candela and Rasmussen 2005), with the aim to reduce the
cost of inverting the kernel matrix. The simplest approach
to realizing GP sparsity is by selecting only a subset of
data points m � n. This reduces the size of the kernel
matrix to m × m and the complexity to O(m3) (Quiñonero-
Candela and Rasmussen 2005; Chalupka et al. 2013).
However, finding a suitable subset is a non-trivial problem
(Quiñonero-Candela and Rasmussen 2005).

Alternatively, effective sparse GP models are obtained
by relying on low-rank representations of the kernel
matrix (Quiñonero-Candela and Rasmussen 2005; Liu
et al. 2018). The Nystrom approximation is particularly
suitable as it provides an approximation (rank m) in
a form: Qn×n = Kn×mK

−1
m×mK

T
n×m which allows for

inversion with the Sherman-Morrison-Woodbury formula,
reducing complexity from O(n3) to O(nm2) (Williams
and Seeger 2001; Kumar et al. 2009). Consequently,
satisfying m � n allows for significant speed-ups
(Williams and Seeger 2001). Yet, the key to achieving high-
quality approximations is in the construction of the inner
covariance matrix Km×m. Different methods were proposed
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(Williams and Seeger 2001; Wilson and Nickisch 2015),
but one of the most relevant relies on introducing a set
of m � n artificial points, called inducing points (Titsias
2009; Snelson and Ghahramani 2006; Quiñonero-Candela
and Rasmussen 2005). The position of the inducing points is
optimized akin to other GP hyperparameters, which allows
for achieving high-quality approximations. This concept
gives rise to two significant sparse GP methods: variational
free energy (Titsias 2009) and fully independent training
conditional (Snelson and Ghahramani 2006).

Sparse Gaussian processes, however, provide only
limited solutions for countering the curse of dimensionality.
The number of inducing points, which determines the
speed-up, strongly affects the quality of the approximation.
Consequently, if the number of inducing points is not
sufficient, the quality deteriorates quickly. Therefore, the
speed-up does not match the exponential growth of the
design space. A different pathway was revealed recently
by Zhao et al. (2019a) where the scalability of Gaussian
processes is addressed with quantum computing.

In this article, we discuss the quantum algorithm for
Gaussian processes (QGP) introduced by Zhao et al.
(2019a) and propose a modification of the quantum phase
estimation routine to induce a low-rank approximation,
which gives rise to a sparse QGP model (SQGP). We
demonstrate our implementation of a sparse variant of the
QGP algorithm (SQGP), analyze its accuracy and scala-
bility, and compare to the classical alternatives: Gaussian
processes, sparse Gaussian processes, and Bayesian neu-
ral networks (in particular, the scalable ensembling method
by Pearce et al. (2018)). The primary contribution of this
work is to present a mechanism for inducing a low-rank
approximation (SQGP) in the original QGP algorithm by
introducing a cutoff in the eigenspectrum. This is achieved
by exploiting finite resolution of QPE such that the smallest
eigenvalues which fall below a carefully selected resolu-
tion threshold are approximated as 0. We note that this
effectively realizes a quantum equivalent of principal com-
ponent analysis, which is known to be an optimal low-rank
approximation. We address the relation of SQGP to the clas-
sical low-rank approximations used for sparse GP methods,
in particular the Nystrom method which stands behind the
most effective classical sparse GP methods. With numer-
ical experiments and error bounds, we demonstrate that
QGP and its sparse version (SQGP) are not only more
scalable and accurate than classical sparse Gaussian pro-
cesses, but they can also outperform classical Bayesian
neural networks.

We note that despite current quantum computing hard-
ware not being sufficiently developed to experimentally
show quantum advantage for large datasets (Zhao et al.
2019b), this article ends by demonstrating the feasi-
bility of SQGP in the design of a recently presented

supercompressible metamaterial (Bessa et al. 2019). The
results show great promise.

2 Inducing sparsity in quantumGaussian
processes

The QGP algorithm proposed by Zhao et al. (2019a) relies
on a common concept of quantum machine learning, where
quantum computing is applied to speed-up linear algebra
operations in classical machine learning (Biamonte et al.
2017). In particular, QGP employs the well-known HHL
algorithm (Harrow et al. 2009) to accelerate the matrix
inversion in GP regression. The concept was later extended
also to a continuous variable setting by Das et al. (2018).
The algorithm is formulated to solve a problem posed in the
form q = uTA−1v. As shown with the schematic circuit
in Fig. 1, the procedure is carried out in three steps: (1)
initialization of the input vectors u and v in superposition,
(2) matrix inversion with controlled HHL, and (3) applying
the measurement operator to efficiently retrieve the result
in the form of uTA−1v. This allows to solve (3), where
the posterior mean can be found by substituting u = k∗,
A = (K + σ 2

n I) and v = y, and similarly for the posterior
variance.

In this paper, we implement and analyze Zhao’s QGP
algorithm (Zhao et al. 2019a) to reveal a natural yet
unexplored way of inducing a low-rank approximation
(analogous to that in classical sparse GPs) by controlling
the quantum phase estimation (QPE) subroutine used by
the HHL algorithm for system diagonalization (Harrow
et al. 2009). QPE is an approximate algorithm (Nielsen
and Chuang 2000) that encodes the eigenvalues as a
finite binary expansion with k digits precision (where
k is the number of qubits in the eigenvalue register).
This effectively discretizes the eigenspectrum with a finite
resolution determined by k. Since k qubits allow to resolve
2k values in a range [0, λmax], the minimum non-zero
eigenvalue that can be resolved is λmin = λmax

2k−1
(see

also the “Eigenspectrum cut-off strategy” section in the
Supplementary Information). All eigenvalues below this
threshold are approximated as 0, which results in a cut-off
of the corresponding eigenmodes. This cut-off associated to
the number of qubits k creates a low-rank approximation
of the input matrix, An×n ≈ Un×m�m×mUT

n×m, where
m corresponds to the number of resolved eigenmodes.
This is equivalent to principal component analysis (PCA)
with the only difference that the eigenvalues are resolved
with finite accuracy determined by k. Therefore, QPE
with limited k can effectively realize quantum principal
component analysis (qPCA) (yet in a different setting
that the commonly known qPCA algorithm proposed by
Lloyd et al. (2014)).
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Fig. 1 Schematic circuit of the QGP algorithm

This feature can be used for fixing rank of ill-conditioned
systems to perform matrix inversion on a subspace (Harrow
et al. 2009; Wossnig et al. 2018). However, the above
observation has also important implications for the QGP
algorithm because QPE within the HHL subroutine can be
the source of a low-rank approximation if the number of
qubits k is appropriately chosen, to yield SQGP model.
Note that the term “sparsity” is used in the machine
learning community with a broader sense than the exclusive
exploration of sparse matrices. Instead, the sparsity in GP
models arises from an approximate treatment of latent
variables, which allows to address the scalability issue
created by inverting the covariance matrix. As mentioned in
Section 1, in practice, this is achieved by relying on low-
rank approximations. In other words, QPE (or equivalently
quantum PCA) can have a similar effect as the above-
mentioned classical Nystrom approximation which induces
sparsity in classical Gaussian process models to improve
scalability of the method. Yet, this raises an important
question: why is PCA not already used as a means to induce
sparsity in Gaussian processes with classical computers?

Constructing a low-rank approximation with PCA for
GPs with classical computing is not beneficial because
PCA requires eigendecomposition of the system and in
classical computing this operation scales similarly to
matrix inversion (O(n3)). So, performing classical PCA
to approximating the covariance matrix to obtain sparse
GPs is as computationally expensive as inverting the
complete matrix to obtain full GPs. Interestingly, this is not
necessarily the case in quantum computing—given access to
data loaded in a state vector (e.g., with qRAM (Giovannetti
et al. 2008)) the eigendecomposition can be carried out
exponentially faster than classical counterparts (Biamonte
et al. 2017). Achieving exponential speed-ups, however, is
not sufficient if the accuracy of the method deteriorates with
an increase in the number of training points. Therefore, the
following sections focus on both aspects to assess the merits
and pitfalls of QGP and SQGP when compared with the
classical Bayesian machine learning algorithms (classical
GPs and Bayesian neural network ensembles).

3 Comparative scalability analysis

This section expands on work of Zhao et al. (2019a) with an
analysis of the effects of inducing low-rank approximation
on the scalability of QGP. For this purpose, we devise
a cost model that quantifies circuit depth with respect to
three parameters: the size of eigenvalue register k, the
number of time slices r controlling the approximation of the
Hamiltonian simulation in QPE, and system size n (2, 4,
8 and 16). Based on the complexity of each routine in the
implemented quantum circuit, the cost function with respect
to three parameters (k, r , n) is assumed as follows:

d = α1kr log(n)n2 + α2 · k + α3 · k2 + α4 · 2k (4)

where αi are scaling factors to be determined for each term.
The first term corresponds to Hamiltonian simulation which
exponentiates input matrix H in order to provide unitary
operator eiHt for QPE routine. In our implementation, the
exponentiation is carried out with Suzuki-Trotter scheme
(Hatano and Suzuki 2005) given by:

e(B+C)t =
(
eB t

r eC t
r

)r + O

(
1

r2

)
(5)

where B and C are some arbitrary operators with some

commutation relation [B, C] �= 0, and
(

1
r2

)
is an error

arising due to approximating the exponentiation of non-
commuting terms with a product formula. This allows to
approximate an evolution of a Hamiltonian H = ∑

i Hi by
evolving local Hamiltonians Hi over a number of r smaller
time steps

(
t
r

)
. The second and the third terms of the model

(4) correspond to Fourier transform which follows after
matrix exponentiation in QPE, and scales quadratically with
number k of ancilla qubits in the eigenvalue register. The
fourth term accounts for finding reciprocals of eigenvalues,
necessary to perform controlled rotation in HHL: RY ( 1

λ̄
)

on the ancilla qubit. Numerical experiments discussed in
the Supplementary Information (“QGP cost model” section)
demonstrate the adequacy of Eq. 4 in predicting the
circuit depth. Note that we are assuming a conservative
estimate for the Hamiltonian simulation term, as we are
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considering a scaling of O
(
n2 log(n)

)
due to limitations of

the implementation, but in theory it can become O (log(n)).
In addition, the state preparation step was neglected as
suggested in other works because this step is assumed to
be carried out efficiently using qRAM (Harrow et al. 2009;
Zhao et al. 2019a) or alternative approaches (Zhao et al.
2018). The measurement operator is disregarded because it
is implemented with only three gates, which is negligible
compared to other terms.

Observing (4), we note that k has an important
contribution to the circuit depth, which is directly related
to the computational cost of the algorithm. The number
of qubits in eigenvalue register, the parameter k, controls
the resolution of eigenvalues in QPE and determines the
cut-off threshold in qPCA approximation. The equation
shows that the overall algorithm depth is dominated by the
Hamiltonian simulation (first term) for large systems, but it
also shows that despite the other terms being less relevant
the influence of k on these terms is also stronger. Hence,
inducing sparsity by reducing k can have a significant
impact on computational cost. Note that the overhead
terms, i.e., excluding the Hamiltonian simulation term, can
have a significant contribution to the overall cost of the
algorithm. For instance, matching the accuracy typical in
classical computing, e.g., O(10−15) for Numpy (van der
Walt et al. 2011), would require k = 50 that would lead
to O(1016) gates of overhead (i.e., depth on top of the
Hamiltonian simulation cost). Therefore, inducing sparsity
provides a way for drastic reduction of this overhead by
several orders of magnitude, which might be a critical factor
for applicability of the algorithm on limited hardware.

Figure 2 illustrates the scalability of QGP and SQGP
compared with state-of-the-art classical alternatives. As
mentioned previously, sparse GPs scale as O(nm2), which
for m � n provide significantly better scalability as

Fig. 2 An illustrative comparison of scalability of different machine
learning methods. A comparison of classical full and approximate
Gaussian processes (GP), full and sparse quantum Gaussian processes
(QGP), and Bayesian neural network (BNN) ensembles

opposed to O(n3) of the full GP models. However,
the choice of suitable m (which provides sufficient
performance) is dependent on both the problem and the
particular sparse GP method. Therefore, to account for those
variations, in Fig. 2, we illustrate scalability of sparse GPs
as a range of values. In the least favorable scenario (for
non-trivial functions), the number of inducing points scales
linearly with n, i.e., m = βn. In this case, inducing sparsity
of the GP model allows for only a constant offset over the
full GP, yielding O(β2n3), where β < 1. This is illustrated
in Fig. 2 with an upper limit, which was plotted assuming
β2 = 0.05 (note that this is not a rigorous bound). On the
other hand, some functions are relatively simple, in which
case the dataset can be well approximated with only a few
inducing points. We assume that in the best-case scenario
m scales logarithmically with n (for illustration assumed
m = log10(n)), which is plotted as the lower limit in Fig. 2.

We also include the scalability of Bayesian neural
network (BNN)—a classical machine learning model
capable of uncertainty quantification that is an alternative
to GPs. In particular, we consider the method proposed
by Pearce et al. (2018), which approximates Bayesian
posterior using ensembles of neural networks, providing
the most scalable alternative (its scaling is comparable to
that of standard neural networks, with only a multiplicative
factor overhead due to ensembling). Notwithstanding that
training neural networks is an NP-complete problem in
theory, in practice, training in polynomial time provides
satisfactory results (Blum and Rivest 1992; Livni et al.
2014). In addition, the computational cost of training neural
networks is greatly dependent on their architecture; for
instance, using the popular backpropagation algorithm for
a dataset of n points with m features and an architecture
of k hidden layers, each with h neurons with o output
neurons and training over i iterations, leads to a scaling
of O(n · m · hk · o · i) (Pedregosa et al. 2011). Also note
that deep architectures used for large datasets are usually
trained in an over-parametrized regime, i.e., the number of
parameters N is much larger than the number of datapoints
n (N >> n) (Geiger et al. 2019). Recently, it was found
that the best generalization performance can be reached for
N just beyond a value N∗ for which so-called jamming
transition occurs (Geiger et al. 2019; Geiger et al. 2020).
Based on this, it was found that in general for random data
N ≈ O(n) (Geiger et al. 2019); therefore, it can be assumed
that the simplest neural network with a single hidden layer
requires h ≈ O(n), and the overall training will scale as
O(n2). However, for structured data, it can be expected
that N might be sub-linear with n (Geiger et al. 2019) and
the neural networks could reach overall O(n) scaling. To
illustrate the possible performance variations, similarly as in
sparse GPs, the cost of BNNs is shown in Fig. 2 as varying
between the two estimated limits.
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The difference between full-rank and low-rank QGP is
significant especially at lower system sizes n, as shown in
Fig. 2, as the overhead terms dependent on k are larger
in magnitude than those dependent on system size n, and
thus dominate the overall cost. For larger system sizes
n, however, the cost term dependent on n takes over.
Consequently, in this regime, the cost of low-rank QGP
is reduced roughly proportionally to the difference in k

between QGP and SQGP (see the cost model (4)) which on
the log-scale plot in Fig. 2 can be seen as an approximately
constant offset. Nevertheless, despite a relatively modest
cost saving (up to a few orders of magnitude), due to the
logarithmic scaling (revealed as an almost flat slope of the
curve in Fig. 2), inducing sparsity allows for SQGP to tackle
dramatically larger systems compared to QGP, given the
same cost. Note that the offset between QGP and SQGP can
be increased further by lowering k, thus leading to further
gains. This indicates practical advantage of SQGP over the
full QGP, especially on a limited hardware.

Our analysis provides a qualitative comparison of scaling
based on estimated complexity rather than actual cost.
It demonstrates that QGP and SQGP can outperform all
classical methods considered herein, including Bayesian
neural networks ensembles. Yet, the usefulness of a new
method also hinges on its accuracy, not just its efficiency.

3.1 Accuracy of QGP and SQGP

Since sparsity is induced in QGP by quantum PCA,
and knowing that classical PCA is the best low-rank
approximation (Murphy 2012), we expect that SQGP
provides a better approximation than classical sparse GPs
which rely on other low-rank approximation methods. We
verify that by estimating error bounds for the two different
methods. The derivation of the various bounds is found in
the respective section of the Supplementary Information.

In classical PCA, the error of approximating matrix A
with a matrix Ãm of rank m can be roughly estimated as:

ε = ∥∥A − Ãm

∥∥
F

≈ λm+1 (6)

where λm+1 is the first truncated eigenvalue. Since the
accuracy in quantum PCA differs from the classical one by
the finite resolution of eigenvalues, the best case scenario is
that all the resolved eigenvalues in qPCA can be resolved
exactly (i.e., no error due to finite precision) and the overall
error of the approximation is the same error as the error of
the classical PCA, as in Eq. 6. In this case, the eigenvalue
λm+1 is bounded by the resolution limit λm+1 � λmax

2k−1
,

which yields the following lower bound:

∥∥A − Ã
∥∥

F
� λmax

2k − 1
(7)

On the other hand, the worst-case scenario contemplates
that every eigenvalue that contributes to the quantum
PCA approximation is resolved with maximum error. This,
combined with the error of truncating the eigenspectrum
Eq. 7, yields the following upper bound:

∥∥A − Ã
∥∥

F
� λmax

(
1

2k − 1
+

√
m

2k−log(2+1/(2δ)) − 1

)
(8)

The bound holds with probability 1 − δ. For comparison,
the bounds obtained for classical sparse GPs using the
Nystrom approximation can be derived based on the error
analysis of Wang and Zhang (2014). As mentioned, the
details are provided in the Supplementary Information.

When comparing the error bounds of the Nystrom
approximation and QPE, we note that there is an overlap.
The lower bound for the Nystrom approximation is above
the lower bound for QPE, which indicates that QPE
can outperform the classical method. However, the lower
Nystrom bound is below the upper bound of QPE, so the
bounds do not allow drawing general conclusions about the
comparative performance of the two methods. In addition,
the bounds obtained for SQGP and classical sparse GPs
cannot be compared directly due to the dependence on
different parameters that are not linearly related to each
other: in QPE, the eigenmodes are discriminated by the
threshold value controlled by k which is not necessarily the
same as m, while in the Nystrom approximation the number
of eigenmodes is directly m. We illustrate the truncation
of the eigenspectrum by the two methods in section
“Eigenspectrum cut-off strategy” of the Supplementary
Information, and in Fig. 3 we show the bounds and a
typical result from a numerical experiment where a number
of sample covariance matrices were approximated using
the two methods. The tests were carried out using several
sets of testing matrices and other cases can be seen in the
Supplementary Information as well.

In general, the results for most of the tested systems
were found to be very similar to the ones shown in Fig. 3.
The only exceptions were a few systems with artificially
mild eigenspectrum decay. Those systems, however, are
not expected to provide a good representation of real
examples. For most of the systems, the eigenspectrum is
characterized by fast decay of eigenvalues. The literature
suggests (Wathen and Zhu 2015) an exponential decay
of the eigenspectrum, but we found a decay closer to
a double exponential: λi = λmaxR

ib , where R < 1
and b ≈ 2. This combined with floating point precision
results in eigenspectrum characterized by two domains
as shown in the figure. One region with relatively few
large eigenvalues follow the double exponential decay,
and a plateau of small eigenvalues (caused by finite
precision of number representation). Direct comparison of
the two methods required finding the k − m relationship.
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Fig. 3 Numerical verification of error bounds of classical and quantum GPs. The bounds are derived for the two different low-rank approximation
methods considered herein: classical Nystrom scheme and quantum PCA

This is done numerically by counting the number of
resolved eigenmodes (m) included in the quantum PCA
approximation for each tested number k, as shown in the
figure in lower right corner.

The theoretical bounds are verified by comparing with
the actual errors obtained with the numerical experiments.
In general, the errors of QPE follow well within the bounds.
This is also the case for Nystrom method. However, here,
the bounds are considerably more loose. In particular, the
upper bound is very conservative (the value is too large to
be seen in the figure), which is an effect of inequalities used
in the derivation.

Comparing the numerical errors obtained with the two
approximation methods, shown in upper figures, it turns
out that qPCA provides a better approximation, regardless
whether the comparison is done with respect to parameter
m or k. The accuracy of Nystrom method is considerably
worse, especially for cases where QPE reaches higher
resolution (large k). The only exception is for cases with
very small eigenvalue resolution (k < 5).

3.2 Cost-accuracy trade-off

Finally, we compare numerically the cost-accuracy trade-
off of the classical sparse Gaussian processes against the
sparsity induced via qPCA. For this purpose, a small
numerical example was set up, where the two methods
were employed to approximate a full GP model inferring
a function from a small noisy dataset of 50 points. The
results are presented in Fig. 4. The accuracy of the
approximations was quantified by mean squared error
(MSE) of the discrepancy between the approximate and the
full GP model. In sparse GP, the accuracy was improved by
increasing the number of inducing points, while in qPCA
the eigenvalue resolution was increased (via parameter k).

Those two parameters were then related to the increase in
computational cost via complexity terms.

Classical sparse GP reaches a much better accuracy
compared to what could be expected from the testing of the
Nystrom approximation. This, however, is to be expected, as
in sparse GP the approximation is improved by optimizing
the locations of the inducing points. Nevertheless, the cost
of improving accuracy of sparse GP Nystrom approximation
scales quadratically with the number of inducing inputs m,
while qPCA allows for similar accuracy with only a linear
increase in cost. We note that the dip in Fig. 4 for classical
sparse GPs between values of 100 and 1000 of the relative
cost increase factor is an effect of random fluctuations in
MSE due to the stochastic nature of the optimizer.

GPs were also compared with neural networks, which
classically provide a more scalable alternative (for details

Fig. 4 Cost-accuracy trade-off for classical and quantum sparse GPs.
The classical sparse Gaussian processes with optimized locations of
inducing points are compared numerically against the SQGP with
sparsity induced via qPCA
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see the “Comparison with neural networks” section of
Supplementary Information). However, as the performance
of neural networks is strongly dependent on the architecture
and training parameters, several different configurations
were considered, but we achieved limited accuracy when
comparing with full Gaussian process model due to
overfitting. The problem could be addressed by adding
regularization, but this highlights a key issue with neural
networks: training is not trivial, and the performance is
strongly dependent on user’s experience.

4 SQGP in data-driven design of materials

In the first part of this paper, we discussed inducing spar-
sity in the quantum algorithm for Gaussian processes and
showed that it can outperform any comparable classical
algorithms including Bayesian neural networks and sparse
Gaussian processes. In this part, we argue that scalability of
sparse QGP allows overcoming the dimensionality problem
in data-driven design of materials. To support our hypoth-
esis, we demonstrate a proof-of-concept example of an
application in data-driven optimization of material design.

The example problem is based on a recent design of a
metamaterial unit cell (Bessa et al. 2019), shown in Fig. 5.
The architecture of this metamaterial exploits coiling of
the unit cell to achieve supercompressibility even when
fabricated with intrinsically brittle base materials. While
high compression rates yield considerable energy absorp-
tion capabilities, coiling provides a mechanical bi-stability
and allows for reversible deformation. Consequently, the
metamaterial has a promising potential for applications as a
reversible energy absorber.

The bi-stability, however, relies on buckling of the
longerons (see Fig. 5), which in general is known to be sen-
sitive to material and geometrical imperfections. The com-
plicated geometry of the unit cell can be effectively manu-
factured with 3D printing, where quality is a known issue
since imperfections of the geometry cannot be completely
eliminated. Alternatively, their effect can be mitigated dur-
ing the design process. The referred article (Bessa et al.
2019) shows that this problem can be addressed with a
data-driven approach using sparse GPs, which predict the
uncertainty of the unit cell performance caused by imper-
fections. Here, we replicate this work and follow the same
steps to learn the behavior of the unit cell with respect to
energy absorption, but using sparse QGP algorithm instead
of classical sparse GPs.

For demonstration purposes, however, we reduce the
problem to only two out of the seven design parameters
originally treated in the original article (Bessa et al. 2019)
due to the high computational costs of classical simulation
of quantum computation, which currently limits the QGP

Fig. 5 A unit cell of the super-compressible metamaterial (Bessa et al.
2019)

systems to at most 8 training points (with reasonable accu-
racy) using standard computer hardware. The two selected
running parameters are the cell’s pitch (P ) and the moment
of inertia of the longeron around x axis (Ixx), both nor-
malized by the diameter of the base ring D1, following the
convention from the original article (Bessa et al. 2019) (see
also Fig. 5). The values of the remaining parameters were
set based on the results provided in the original article, such
that an interesting non-trivial and nonlinear demonstration
case is obtained. Additional details are provided in the last
section of the Supplementary Information. Note that we
could have chosen any other example to illustrate SQGP.

Following the data-driven approach (Bessa et al. 2019),
first the design space spanned by the two selected
parameters was sampled according to the Sobol sequence.
Specifically, we used 99 sample points which allowed to
build a classical high-fidelity GP model acting as a ground-
truth reference for the sparse QGP results. In the second
step, the performance of each sample design is evaluated
with a numerical analysis, specifically a finite element
model simulating the unit cell under compression. This
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yields the values of buckling load and energy absorption.
The imperfections were simulated by introducing deviations
in the input parameters of the finite element model,
randomly drawn from a log-normal distribution (Bessa et al.
2019). The numerical analyses, however, indicated that
certain architectures are non-coilable, but instead deform
in a different manner. For the reversible energy absorption
applications, however, only coilable designs are acceptable.
Therefore, the design space was divided into coilable and
non-coilable domains, using a classification model (see
also the Supplementary Information). In the final step of
the data-driven framework, the response of the material
(i.e., the energy absorption and the critical buckling load)
obtained with the computational analyses at the sample
design points was used to train the machine learning

algorithm. Based on the response at those few discrete
locations, machine learning aims to predict the material
response over the complete (continuous) design space. Such
a model can be then used to find the point with optimal
desired performance.

The coilable domain included 69 out of the total 99
sample points. Those 69 points were then used to generate a
high-fidelity GP model used for reference. Next, a random
set of 8 out of the 69 points was selected arbitrarily, based
on its coverage of the coilable domain. Those 8 designs and
their corresponding energy absorption and buckling load
were used as training points for two models: the sparse QGP
model, and the classical GP model used as a reference.

The predictions of the two models are compared in Fig. 6.
The mean and uncertainty values are in good agreement,

Fig. 6 Comparison of energy absorption for a unit cell predicted with quantum Gaussian processes algorithm with induced sparsity and classical
GP model
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but we discuss in the Supplementary Information additional
details on the low-rank approximation obtained by QGP.
The two models were also validated against the classical
high-fidelity GP model, which was trained on the complete
dataset of 69 points (only coilable domain is considered).
Despite using only 8 points, the two models showed
reasonable agreement. Additional comparisons with the
models presented in the original article (Bessa et al.
2019) are included in the Supplementary Information. The
presented examples prove that SQGP achieves comparable
predictive performance, if not better, while achieving
orders of magnitude improvement in scalability. This is
of significant relevance for future applications of quantum
machine learning.

5 Discussion and conclusion

In this work, we implemented QGP algorithm proposed by
Zhao et al. (2019a) and explored its connection with the
classical methods for improving scalability of GPs, specif-
ically sparse GPs. We have demonstrated that quantum
Gaussian processes have a natural mechanism for inducing
sparsity, leading to unprecedented scalability when com-
pared to classical full and sparse Gaussian processes, as
well as other machine learning methods such as neural net-
works and their Bayesian versions. The results demonstrate
that inducing sparsity in QGP algorithm allows reduc-
ing the computational cost by a few orders of magnitude,
while preserving accuracy comparable to that achieved
by the classical sparse GPs. The findings are supported by
analytically derived error bounds and complexity analysis,
as well as a numerical verification of the algorithm which
revealed consistency with the analytical predictions.

From a broader perspective, our results provide new
insights on quantum machine learning. We show that the
common approach of replacing linear algebra routines
with their quantum counterparts can additionally benefit
from the features of quantum routines to gain a double
advantage (accuracy and scalability). Furthermore, the
implementation, and in particular the numerical cost model,
of the QGP algorithm provides a contribution toward the
costing problem of quantum algorithms, highlighted by
Biamonte et al. (2017) as one of the key problems of
contemporary quantum computing.

Our numerical implementation is limited by an ineffi-
cient Hamiltonian simulation which needs to be replaced
in the future with a better scheme which allows reaching
the exponential speed-up. One alternative for instance is the
Hamiltonian simulation based on graph coloring method as
proposed for the HHL algorithm (Childs 2010; Berry et al.
2007). The routine, however, requires strictly sparse matri-
ces, which in general is not the case for GPs. This issue was

already discussed elsewhere (Zhao et al. 2019a), who sug-
gested addressing the problem with classical techniques by
enforcing sparsity of the covariance matrix, e.g., by using
compactly supported covariance functions (Buhmann 2001;
Melkumyan and Ramos 2009). However, combining such
functions with induced qPCA might lead to more intricate
numerical effects, potentially with significant impact on the
accuracy of the algorithm. Alternatively, non-sparse matri-
ces could be tackled with techniques for dense matrices such
as those proposed by Wossnig et al. (2018) and Das et al.
(2018).

Despite those limitations our cost model provides good
estimates of the overhead costs due to the supporting
routines, which are commonly neglected in complexity
analysis in literature. We show that those costs are
significant even for relatively large systems. On the other
hand, our results show that inducing sparsity in the QGP
algorithm significantly reduces the overhead costs, which
makes the algorithm more suitable for implementation on
hardware with limited performance.

Finally, the presented proof-of-concept application
example demonstrated that sparse quantum Gaussian pro-
cesses can be successfully applied in data-driven design of
materials, reaching levels of accuracy comparable to the cur-
rent standards achieved with the classical sparse GPs. The
scaling of SQGP allows matching the exponential growth of
the design space, thus showing potential for overcoming the
curse of dimensionality.

This research opens up a new path for application of
quantum computing, which leverages quantum speed-ups to
improve machine learning use in data-driven approaches.
The concept has a promising potential for impact on mate-
rials science and beyond, yet the practical implementations
remain limited by the technical performance of current
quantum hardware.

Data availability The code and data used for the numerical tests
presented in the article are available at: https://github.com/bessagroup/
SQGP SI.
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