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Acceleration of Seed Extension for BWA-MEM
DNA Alignment Using GPUs

Abstract

NA aligning is a compute-intensive and time-consuming task required for all further
DNA processing. It consists in finding for each DNA string from a sample its location
in a reference genome. Usual techniques for short reads (hundreds of bases) involve
seed-extension, where a small matching seed is found with quick search through FM-
index and then extended on both ends with a custom Smith-Waterman algorithm, giving
optimal solution. However this seed-extension takes a tremendous amount of time. This
is why we present in this thesis a solution to offload extension on a GPU to be done
in a parallel fashion. This is possible thanks to the fact that the DNA reads do not
present any kind of relation between each other. We used the Burrows-Wheeler Aligner
- Maximal Exact Match (BWA-MEM), a reference program in the field, to which we
integrated a GPU-accelerated library for extension, GASAL2. However, BWA-MEM
has a left-right dependency on extension starting scores, with the left alignment starting
with the seed score, then the right part starting with the previously calculated left score.
We designed a solution by starting both extensions with the seed score, we called this
method the ”seed-only” paradigm. On our test machine featuring 12 hyperthreaded
cores and an NVIDIA Tesla K40c, when running with 12 threads, we could observe a
raw kernel speed-up of 4.8× ; but if we allow non-blocking calls to let the CPU run the
seeding tasks while the GPU computes the extension, we can reach a 16× effective speed-
up for the extension. This extension part takes around 27% of the total time but our
acceleration introduces a small overhead due to memory preparations and copying, which
makes the whole application 1.28× faster, getting close to the theoretical maximum of
1.37×. Additionally, the paradigm shift we operated creates minimal differences in the
final main scores on good quality alignments, with a 1.82% difference for our 5.2 million
sequences data set. This makes our acceleration with GASAL2 an solid and efficient
solution for a single machine.
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Introduction 1
The work in this thesis is about using the latest computational techniques to speed up
a bioinformatics application. To understand the context in which this work takes place,
an introduction to some biological concepts is presented in this chapter.

1.1 Context

Desoxyribonucleic Acid, commonly known as DNA [1] is the general medium of informa-
tion common to all known living creatures. It defines the traits that all individuals from
a species share, and thus, is the most important source of biological information for the
understanding of life in general. This information is replicated when a cell goes under
mitosis. It is the phase when a cell replicates its DNA and splits up to create two new
cells. This ensures that the whole organism has a coherent DNA across all its cells.

DNA takes the form of two long string of proteins connected to each other to form a
helical structure. These proteins are called ”nucleotides” or ”bases”, as they are the base
of the DNA code. There are four of them: adenine [A], thymine [T], cytosine [C] and
guanine [G], often referred to by their first letter for ease of use. Adenine and thymine
are linked together, and cytosine and guanine are also paired together, forming a double-
helix, as shown in Figure 1.1. This double-helix string is compacted in chromosomes,
with an X-shape. Most animals are diploids, meaning they carry each chromosome
twice, one from the mother and one from the father. Each species has its own number of
chromosomes: for example, humans have 46 (23 pairs of chromosomes [2]), cats have 38
(19 pairs [3]), and dogs have 78 (39 pairs [4]). The full DNA information of an individual
is the genome of this individual.

Inside a species, DNA can present small differences from one individual to another,
in regions that are usually defining a variable trait (for example, hair colour). Portions of
DNA defining a characteristic are called genes, and there can be multiple viable variants
of a gene. These variants are called allels. Sexual reproduction is a key step to mix
DNA from two individuals and create diversity among a species. These variations can be
introduced at sexual reproduction. If the mutation gives the bearer an advantage in life
over the non-bearers, it has a high probability to get passed to the bearer’s descendants,
fostering its propagation in the population (for example, having coloured petals for
flowers makes them attractive for insects, and since coloured flowers have become more
pollinated, their heirs will inherit this trait). On the contrary, if the mutation becomes
a drawback, it is unlikely to be passed to the descendants.

Some DNA mutations are proven deadly, and the most well-known in this category
is cancer [6]. A cell whose DNA has been damaged or altered can start multiplying in
an uncontrollable fashion, creating a pack of cells growing ever bigger, becoming malign
and threatening the normal behaviour of an organ. This process, known as carcinoma,
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: DNA double-helix with nucleotides (from [5])

can be detected by multiple ways, some more empirical than others (for example, an
easy setup with X-rays can allow a doctor to detect a small abnormal spot, which could
be a sign of carcinoma). One way to detect this is by getting a sample of DNA from
a patient, and comparing it with a known reference. Reference genomes are build from
a pool of donors: it is meant to be representative of a species’ genes. In the case of
the human genome sequences in 2009 ”hg19”, it has been put together from thirteen
American individuals from Buffalo, NY [7]. To achieve this comparison, one needs to
find which area of the reference genome matches with the samples, or said differently,
one needs to align the sample DNA with the reference and find how similar these two
are.

1.2 DNA alignment, a time-consuming process
Mapping is the process of finding the location in the reference genome where a DNA
read from a sample probably belongs to. Since 99% of the genome is the same in a
species, finding the location in the reference genome is similar to identify the position of
a read in the sample DNA. Moreover, the mapping must also provide the information
about how well the read is aligned to the reference genome giving the exact location and
nature of each kind of mutation (insertion, deletion or modification of one or multiple
bases). Mapping DNA reads is a complex task due to large sequencing data and reference
genome size. Different types of mutations also increase the complexity of the mapping.
In the case of the human, we can write the whole sequence of nucleotides with A, T, C,
and G letters, just like a long string of characters. If each character is encoded on a byte,
the whole text would be around 3.4GB. Even though it seems small regarding today’s
standards of data storage, looking for a particular area that would match a string is far
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from trivial. As such, a sophisticated way to look into the genome and find an alignment
is needed.

Today, DNA mapping represents the first genomics analysis step of many DNA anal-
ysis approaches in practice. The complicated process of DNA mapping is rather time
consuming, both due to the high complexity of the analysis involved as well as the
amount of data that needs to be processed. In many cases, mapping can take between
30% and 50% of the total DNA analysis time. Figure 1.2 shows that the time taken by
mapping which is about a third of the total pipeline time. Moreover, the time taken for
this part is counted in thousands of CPU-core hours for this example data set. There-
fore DNA mapping is a computational challenge and various techniques to achieve it in
a timely manner. The problem at stake is then to find an effective way to compute DNA
alignment as fast as possible.

Figure 1.2: DNA pipeline process time share for a typical 30× coverage cancer DNA
data set. The data set consists of three tumor samples and one normal tissue sample
(time given in CPU-core hours). (from [8])

1.3 The alignment problem

Mapping DNA has become possible with the democratisation of sequencing machines or
sequencers. The first sequencing technique was invented by Sanger in 1977 [9] and the
first sequencing machine was released in 1986, making it a rather recent invention. These
machines take a DNA sample and find the sequences of A, T, C and G bases from it.
The latest ones are called third generation sequencers, and are remarkable for their long
sequences reads of more than 5000 bases and their ability to compensate for their low raw
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read precision with prediction algorithms [10]. Different technologies exist depending on
the machine manufacturer. For example, one technique involves using a nanopore as an
electrical sensor with a hole through which the DNA string passes, much like a sensor
reading a cassette tape. The ionic composition of each base creates a different current
change in the sensor, making it possible to deduce which nucleotide it is [11].

In this thesis, we focus on Next Generation Sequencing (NGS) with Illumina sequenc-
ing machines. Their technology is called ”Sequencing by Synthesis” [12]. All steps are
summarised in Figure 1.3. First, DNA is broken into small pieces of 200 to 600 bases
pairs called fragments during the sample preparation phase. At the end of each frag-
ment, special molecules called adapters are added to give each fragment an index, and
a binding site for the rest of the process. Each fragment is attached by one of its ends
to a substrate, the flow cell. It is replicated by bending over, attaching its other end to
the substrate, and letting a polymerase create the complement of each base (pairing A
with T, T with A, C with G and G with C), then washing away the reverse-complement
strand newly created. This is the cluster generation phase. By bending over, creating
the complement, then washing it away, the direct strand is replicated millions of times.
The direct strand is then sequenced by sending particular DNA nucleotides that have a
photosensitive end. After being attached, they are excited by a laser, and the attached
base emits a wavelength characteristic of the base (A, T, C or G). The colour of the
emitted light is captured by a camera to deduce the base attached. The reverse strand
is then created by complementing the direct strand. With another cluster generation
phase, millions of copies of the reverse strand are created, and sequenced using the same
photosensitive bases. Illumina machines output both the forward and reverse reads,
which are called pair-end reads.

This process generates millions of pair-end reads, representing all the fragments.
These fragments have to be mapped to a reference genome to deduce information about
the sample they come from.

Read sequences and the reference genome are composed of nucleotides or bases,
which are reported from their first letter: A, T, C and G. First, we need to introduce
the fact that the alignment should provide some kind of metric, to quantify how good
the alignment is. Basically, this metric should be a score that increases when there is
very few to no differences between the two string of characters, and decreases if they
differ, so when letters are not matching. In the case of DNA, mutations often take the
form of adding bases, deleting bases, or changing some bases, as seen in Figure 1.4, so
the meaning of the score value should reflect these mutations.

Another challenge is to process a huge number of sequences as fast as possible. In
fact, DNA sequencers produce strings of a given length proper to each machine. While
older sequencers produce short strings of 80 or 150 bases, more recent ones can output
several thousand of bases per string, and millions of strings are produced. These strings
are not related to each other, hence, there is no obstacle in processing multiple of them
at the same time. This mode is called inter-sequence parallelisation. It is also possible
to parallelise the alignment calculation for each sequence, but this mode, named intra-
sequence parallelisation, requires extra care about synchronisation.
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Figure 1.3: Sequencing by Synthesis process for Illumina sequencers. (from [13]

1.4 Research questions
In the sections above, we detailed the alignment problem and how GPUs can help in
solving it in a timely manner. The heart of the problem addressed in this thesis is how
to accomplish this task. We can formulate this in the following research questions.

• How can we accelerate DNA alignment in an already existing program?

• How much speed-up can we get from GPU acceleration?

• How close can the results with a different computing method be to the original
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Figure 1.4: Examples of mutation (from [14])

software?

• How to ensure that the GPU resources are well used while leaving more space if
needed for future evolution?

1.5 Thesis overview
This thesis is organised as follows. In Chapter 2, an overview of the background to
understand DNA alignment is given. We also provide explanations about GPU comput-
ing and its usage in this application. This aims to show the reason why we chose this
approach to solve the problem of DNA alignment.

Chapter 3 contains details about the accelerator discussed in this thesis. While it
originally supported few features, more functionality and flexibility are added and its
integration to an existing aligning software is presented.

The implementation of proposed improvements is shown in Chapter 4. In particu-
lar, we provide a detailed view of how we adapted the original software to include our
accelerator. We also review the modifications we brought to our solution to integrate it
successfully.

Chapter 5 presents the experimental setup used to test the implemented accelerator
and also discusses the measurement results showing its performance and accuracy.

Finally we will conclude in Chapter 6 with the final thoughts and possible future
works.



Background 2
2.1 Seed-and-extend mappers

DNA mapping comes at a time where sequencing machines become more and more
available and affordable. The principle behind mapping is to find a match between reads
coming out of a sequencing machine in a given reference genome misc:mapping.

To achieve this in a timely manner, most software solutions rely on the seed-and-
extend technique. In the first step, the seeding part consists in finding a substring of
a given length that matches exactly in the read and in the reference. Depending on
the parameter used in various software products, a maximum of zero, one, or several
mismatches can be allowed. For this step, it is necessary to look into the whole genome
for a match, and an index of the reference genome is used. The indexing algorithm which
is commonly being used in today’s DNA mappers is based on the Burrows-Wheeler
transform [15]. During this step, multiple seeds can be found in various parts of the
reference genome, and depending on how they overlap, they can be grouped in chains.

2.2 The DNA mapper BWA-MEM

BWA-MEM is a popular DNA read mapper used in many real-life applications. Its
name stands for Burrows-Wheeler Aligner - Maximal Exact Match. In this section, we
will provide details of the BWA-MEM algorithms.

2.2.1 Considerations about mapping and alignment

First, we will start with some definitions. Mapping is the process of finding correspon-
dence between a data set of DNA fragments called ”reads” and a reference genome. To
do so, for each read, we first find small areas where the read exactly matches somewhere
in the reference genome. This is the seeding phase. Then, for all seeds, a seed-extension
is performed.

After seeding, overlapping seeds or seeds that are close enough in the reference are
grouped into chains. This allows to fetch a single area in the reference to perform the
mapping with the read. The area fetched is larger than the read, since there may be
deletions in the read.

When we have a read and a segment of the reference with a corresponding seed, we
perform the seed-extension, which consists in two alignments on both left and right sides
of the seed. If the seed is located at the beginning or the end of the read, only one
seed-extension is performed (there is nothing to extend if the seed is on the border). In
the extension process, we call query the string coming from the read, and target the one

7



8 CHAPTER 2. BACKGROUND

from the reference. When both sides of the seed must be aligned, we have then a left
query to align with a left target, and a right query to align with the right target.

BWA-MEM operates in three major steps [16]: seeding, chaining, and seed-extension.
We will detail these three phases.

2.2.2 Seeding

Seeding consists in finding small areas in the read that exactly match in the reference.
This search is done with an FM-index.

The FM-index is a compressed representation for the reference genome. It is widely
used due to its lightweight memory footprint, which is sub-linear with respect to the size
of the data. Searching for a pattern in the compressed text is also sub-linear in time,
which makes it ideal for seeding. When a seed is located, a chunk is taken from the
genome around the seed to perform the alignment with the query sequence. This chunk
should be larger than the query with which it shares a seed, since there could be gaps
in the alignment. More details are available online [17], but the following work does not
rely on how FM-index works.

When finding seeds, multiple areas can overlap in the read and the reference, or
some seeds can be contained in others. To produce the most useful results, BWA-MEM
produces seeds that have two characteristics:

• they cannot be extended any further,

• each seed is not contained in any other seed of the read.

These seeds are called Super-maximal Exact Matches, or SMEM s[18].

2.2.3 Chaining

During seeding, multiple seeds can be found in various parts of the reference genome,
and depending on how they overlap, they can be grouped in chains. Colinear seeds, or
seeds very close to each other are grouped. Very small seeds, or seeds largely contained
in longer seeds are filtered out. This heuristics reduces the number of seeds to extend
by only keeping the most valuable ones. Seeding and chaining are shown in Figure 2.1.
In this example, the dark-blue seed has been found as substring of the red string in the
query. But since it is long enough to be considered and close enough to the already
existing light-blue seed, these two seeds are grouped in a chain, as shown at the bottom
of the Figure. The light blue seed is extended and its extension reaches the dark-blue
seed. This is taken into account, and the dark-blue seed is not extended since it is
contained in the alignment of the light-blue seed.

When starting extension, seeds are ordered by decreasing score of their chain. Seeds
within longest chains are aligned first, since they have a high probability of reaching
other seeds of their chains when aligned.

2.2.4 Seed-extension

After seeding, we have to continue to align on both sides of the seed.
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Figure 2.1: Seeding process along with chaining. (from [19])

We define a match score corresponding to the score when two bases are equal. In the
case of mismatches, they can appear in the form of insertion or deletion of one or multiple
bases, in either the read or the reference. We then define an insertion mismatch score and
a deletion mismatch score. The matching score has a positive value, and the mismatch
scores are negative, and often both insertion and deletion mismatch scores are set at the
same value. For the query sequences, it may happen that a base cannot be correctly
retrieved by the sequencing machine, and if this happens, the unknown base is denoted
as ”N” and is always counted as a mismatch. Furthermore, in real-life mutations, it is
much more likely to have a small number of long gaps rather than multiple short gaps.
To reflect this, the model ”affine gap penalty” for DNA mutation is used. We define a
big mismatch score for opening a gap, and a smaller mismatch score for extending the
gap. This way, during the alignment, we apply a bigger penalty when trying to open a
gap rather than when a mismatch only causes a gap to get wider.

For extension, dynamic programming algorithms are used. They are compute-
intensive (and compute-bound), but they provide an optimal solution to the alignment
problem. We could actually use them to compute the whole alignment but it is much
more efficient to run smaller alignments as left and right extensions of the seed. They
rely on computing a matrix of size N ×M , N and M being the length of the query and
target sequences respectively. As shown in Figure 2.2, we place the target sequence as a
row, and the query as a column. Each cell is filled with a score depending on the north
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cell, the west cell, and the north-west cell, and the current bases to align. For the pair
of bases, it corresponds to row and the column. We assume that we count matches with
a score α > 0, mismatches with a score β < 0, and a score for insertion and deletion
γ < 0. For affine gap penalty, we need to differentiate when the alignment opens a gap
and when it expands a gap. To this end, we define g < 0 as score applied to open a
gap, and h < 0 as score applied when expanding an existing gap. We have |g| > |h| as
opening a gap should be more costly than widening it. Equation 2.2 defines the score to
apply when opening or widening a gap in the query, and Equation 2.3 shows the same
for target. We define the relation for the score S[i, j] on cell i, j related to bases ai and
bj with affine gap penalty in Equation 2.1.

In the example in Figure 2.2, we have α = 2 and β = γ = −1. More detailed
information can be found in [20].

S[i, j] = max


S[i− 1, j − 1] + α if ai = bj
S[i− 1, j − 1] + β if ai 6= bj
GA[i, j]
GB[i, j]

(2.1)

GA[i, j] = max

{
S[i− 1, j] + g + h
GA[i− 1, j] + h

(2.2)

GB[i, j] = max

{
S[i, j − 1] + g + h
GB[i, j − 1] + h

(2.3)

(a) Global alignment (b) Local alignment

Figure 2.2: Dynamic programming alignments (from [20])

Among dynamic programming (DP) algorithms, we can cite main techniques:

• Needleman-Wunsch [21], or global alignment: it tries to match the whole sequences.
The results contains both sequences completely, as Figure 2.2a shows, with the
alignment path traversing the matrix. Mismatches on ends cause a penalty, as
shows the negative scores on the edges;

• Smith-Waterman [22], or local alignment: it aligns two sequences but only looks
for the maximal score, which reports the best alignment there is. On Figure 2.2b,
one can see we select the best score, the score is initialised at 0 and stays positive;
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• A mix of the two, semi-global [23] alignment, that performs a global alignment but
allows to skip both ends of the query sequence. In practical, semi-global is often
used instead of global;

• BLAST [24]-like extension: it performs two alignments on both ends of the chain
instead of aligning the sequences entirely. If first makes a local alignment on the
left side, starting with a non-zero score, but taking the chain score instead. Then
it makes a local alignment on the right side, starting as initial score the previous
computed score (taking the chain and left alignment). This splits the alignment
problem in two, which makes it much faster. This is the technique used in seed-
extension.

The pseudocode for local alignment is presented in Algorithm 1. It computes the
whole dynamic programming matrix S with the equation 2.1 showed above. There are
small difference between global, local and semi-global alignments in the initialisation
step, the computing formula, and how the final score is obtained from the matrix. For
the local alignment, which is the one we will use in the rest of the thesis, initialisation
is done with a score of zero along both north and west edges of the matrix. This means
that no penalty is made on the ends of both sequences. Second, in the computing
formula showed in equation 2.1, the score can actually go negative if a lot of mismatches
occur. We do not want this behaviour with local alignment, meaning that there is no
penalty if an area is not aligned (the alignment can occur later on in the sequence). In
Algorithm 1, this is shown by taking the maximum of the computed score with 0. Finally,
in local alignment, we want the best possible score without constraints on the end of the
alignment, so we simply take the maximum value in the dynamic programming matrix
as the end position of the alignment.

Another optimisation called z-dropoff is interrupting the calculation of a row when
the score drops sharply. This is meant to stop computing as soon as the sequences are
visibly not aligned anymore. As shown in Figure 2.3, the goal is to avoid finding a
matching area after a non-matching one, since it does not bear any biological meaning
and the next aligned region could simply be another seed.

Figure 2.3: Z-dropoff use case: when a badly matching region is found between two
matching alignments. (from 2.1)

Finally, it can be noticed that the north-east and south-west corners of the dynamic
programming matrix are often useless to compute, since reaching these cells would mean
that the alignment is containing a huge gap (and hence has a mediocre score). One can
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Algorithm 1 Dynamic programming matrix computation algorithm
1: procedure Compute the dynamic programming matrix, local align-

ment(query_string, target_string, query_length, target_length) .
2: Initialise score
3: for i from -1 to query_length do
4: Si,−1 ← 0
5: end for
6: for j from -1 to target_length do
7: S−1,j ← 0
8: end for
9: compute S matrix

10: for (i from 0 to query_length− 1 do
11: for j from 0 to target_length− 1 do
12: Read base query_basei in query_string
13: Read base target_basej in target_string

14: Si,j ← max


Si−1,j−1 + α if query_basei = target_basej
Si−1,j−1 + β if query_basei 6= target_basej
GA[i, j]
GB[i, j]
0

15: end for
16: end for
17: Find imax and jmax for which Simax,jmax = max(Si,j)
18: score← Simax,jmax

19: end_position_query ← imax

20: end_position_target← jmax

21: end procedure

simply avoid to compute them, resulting in only calculating a band around the diagonal,
hence calling this technique banded dynamic programming.

2.2.5 BWA-MEM output

BWA-MEM outputs the alignments in the Sequence Alignment Mapping [25] (SAM)
format. It is a text-based format with fields separated by tabulations. The first eleven
fields are mandatory and Table 2.1 describes them. In particular, the 5th field ”Mapping
quality” describes how good the obtained mapping is. In downstream analysis, low-
quality mapping are often filtered out using the value of this field. The threshold usually
taken for filtering is 20: mapping with a quality strictly lower than 20 are removed.

BWA-MEM outputs in the 6th field the CIGAR string, which is a compact way to
write the alignment, and describes the way the read maps with the reference. Each
letter bears a meaning concerning the alignment. They are presented in Table 2.2. Each
number before a letter means how many times the next letter is applied. For example,
a CIGAR string of 100M3D12I means that the first 100 bases of the read are matching,
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Table 2.1: The mandatory fields for SAM format. (from [25])

then the 3 next bases are deletions (gaps in the target), then the next 12 bases are
insertions (gap in the query). In the table, ”consumes query” and ”consumes target” is
a way to define if, when reading the CIGAR string, one should go forward in the target
or query DNA string.

Table 2.2: The CIGAR string components. (from [25])

2.3 DNA read mapping on GPU
DNA read mappers have to process a huge number of DNA reads as fast as possible.
The first way to parallelise the mapping is to use multiple CPU threads. BWA-MEM
supports multhreading mode where each CPU thread maps one DNA read. But the
number of threads on a CPU is often very limited, as a single CPU has at best a few
dozen of cores. Other types of hardware can present more parallelism.

To accelerate the computation, several approaches were tried. For example, Ahmed
et al. used a dedicated FPGA (Field Programmable Gate Array) to accelerate the re-
search with the FM-index and the extension [26]. Another approach from Mashtaq et
al. consisted in streaming DNA sequences alignment tasks to a cluster with Apache
Spark [27]. But these solutions require extra hardware and can be difficult to set up.
We would like to propose a solution using common hardware found on computers, in
particular, Graphics Processing Units, or GPUs.
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DNA computation can take advantage of the inner structure of a GPU to compute
the alignment faster. The use of GPUs have been investigated for DNA acceleration,
first for global alignment [28], then in the NVBIO CUDA library [29], and later for semi-
global and local alignment with on-GPU data compression [30]. GPUs have been proven
very efficient for these tasks. First, we will quickly review the current solutions at hand.
Then a presentation of the GPU architecture and programming paradigm will show how
these devices work and how they are adapted for this workload.

2.3.1 Parallel computing for DNA alignment

In the seed-extension stage, DNA read mapper align a pair of sequences (pairwise align-
ment) using a sequence alignment algorithm. The computation for alignment between
two DNA strings is intensive, yet simple. The main problem comes from the input data
size. Each DNA read has many seed hits and each seed have to be extended. Hence,
a large number of seed-extensions has to be performed. Still, it is important to note
that each pairwise alignment is independent from the others. A simple and effective way
to accelerate the computation is to parallelise it. On a computer, one can use multiple
threads on a CPU to achieve that parallelisation and compute several alignments at the
same time. However, the number of threads available on a CPU is limited to a dozen,
or a few dozen at best; but Graphics Computing Units (GPUs) can have hundreds to
thousands of cores at disposal. This makes GPUs a hardware of choice for acceleration
using parallel computing. Running multiple alignments in parallel is called inter-sequence
parallelisation.

It is possible to go even further with intra-sequence parallelisation, that is, to cal-
culate the dynamic programming matrix with multiple threads. This implies having
synchronisation phases: since the cells values depend on the previously calculated ones,
it implies processing with a logic order, and requires a high level of optimisation for
efficient speed-up [31]. Even though this have many advantages in speed but also in
power consumption [32], it involves complex algorithm crafting to get effective benefits,
and we will not explore this topic later on.

Currently a lot of solutions exists [33] so we will only name some of the existing
software programs for DNA alignment. These tools are most often present as libraries,
to be able to integrate them in bigger and more easy-to-use software.

• SeqAn [34] is a C++ toolbox for DNA alignment. It features a lot of various
tools, and implements its own C++ library for alignment. It runs on multiple
CPU threads, and can rely on SIMD instructions for inter- and intra-sequence
parallelisation. Both AVX2 S as well AVX512 SIMD instruction sets are supported.

• Basic Local Alignment Seach Tool (BLAST) [24] searches for pairwise alignment
with the seed-extension method,

• Bowtie2 [35] is a fast and lightweight DNA aligner that runs even on low-end
machines. It allows for up to two mismatches in the seeding phase and in general
it reaches maximum efficiency by trading exactness for reasonable heuristics.
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• NVBIO [29] is a GPU-accelerated library written in CUDA, the dedicated language
for general-purpose GPU computing on NVIDIA GPUs. It has a lot of features
including banded dynamic programming, fast FM-index construction, and efficient
data handling between CPU and GPU.

• GASAL2 [36] is also a CUDA-written library for DNA alignment, developed with
speed in mind. Despite its relatively small number of features, it runs all compute-
intensive parts on GPU for maximum speed-up.

2.3.2 General-purpose GPU computing basics

Historically, GPUs have been developed to render graphics, and because of this purpose,
have a highly parallel architecture to cope with independent parts of the picture. GPUs
can now be used for generic computing, as a separate accelerator towards which the CPU
can offload parts of the computation. As such, they have large number of cores, orders of
magnitude higher than CPUs (several thousands versus a few dozen). Yet, programming
on GPU highly depends on the hardware at hand. There is an open programming
framework called OpenCL [37] and it has the advantage of being cross-platform for all
GPUs and royalty-free; yet it is quite complex to write and run. Hence a lot of people
are rather using CUDA [38], the proprietary framework to program NVIDIA GPUs. For
the rest of the thesis, we will only focus on NVIDIA GPU architecture and CUDA.

We introduce the terms host to designate the CPU-side of the machine, constituted
of the CPU and its RAM; and device the GPU-side with its dedicated onboard memory
called global memory or VRAM, short for Video RAM. Figure 2.4 shows a summarised
view of the CPU-GPU tandem. First, the CPU ”host” transfers data from the RAM
to the device VRAM. Then the CPU launches parallel functions called kernels on the
GPU. This kernel is launched on a grid, divided into blocks, each of them having a certain
number of threads. The grid and block sizes are specified as launch parameters, and they
are adapted to divide all the data to process into a suited number of threads. Inside a
block, threads can access a shared memory. Scopes from different memories are specified
in Figure 2.5. Each thread executes an instance of the kernel, has thread ID and has
its own private memory for local variables. Threads in a block access a shared memory,
allowing to synchronise them and share data. Blocks are arranged in grids, and grids
share data with a memory space allocated for the application context in global memory.

When the computation is done on the GPU, output data is available in VRAM. The
CPU can then fetch the results from VRAM to load them in RAM, so that they can be
further processed, stored or displayed.

In our case, we use NVIDIA GPUs that present their own particularities in the archi-
tecture [40]. NVIDIA GPUs organise computing resources in Streaming Multiprocessors
(SM). We will describe the features from the Kepler architecture since it is the hardware
we used for this thesis. For example, the Kepler architecture features 15 SMs which
share an L2 cache. Each SM has an instruction cache, L1 cache used as shared mem-
ory, texture memories, and a set of computing resources. The main computing core
are CUDA cores or Stream Processors (SP) for single-precision calculation. But there
are also double-precision units, special functions units, and load/store units to manage
registry operations.
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Figure 2.4: GPU architecture schematics (from [39])

Figure 2.5: GPU memories scope (from [40])

This presents two main benefits. First, some problems that can be highly parallelis-
able will take advantage of the huge number of GPU cores. Second, being able to offload
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the calculation to a separate device means that both the CPU and the GPU are busy at
the same time: this enables hidden time computation, that is, the CPU can continue to
execute another part of the code while the kernel is running on the GPU runs its part,
and the former can retrieve the results only when the latter is done.

Hidden time capability is achieved thanks to non-blocking launches and streams [41].
Streams are execution environments for GPUs. For several years now, it is possible to
launch multiple threads of the same function on the GPU, the kernel, without needing to
wait for all kernel instances to finish. The GPU kernel launch returns immediately, and
the host can perform other tasks while the kernel is running on the GPU, and the host
simply checks if the stream has finished. For example, a program declares two streams,
the host can launch the kernel on Stream #1, then fill up the data for Stream #2 while
the first one computes. When Stream #2 is launched, by that time, Stream #1 has
finished, so results can be retrieved and Stream #1 can be filled again with the next
data to compute while Stream #2 computes; and so on. The principle is explained
here with two streams, but one can use as many streams as needed to utilise the GPU
resources as much as possible.

It is crucial to monitor some metrics to ensure the GPU is used to its fullest while
complying with its hardware limitations. We can mention:

• occupancy (in %): it represents how much of the computing resources are used, so
the fraction of SP in use when a kernel is running.

• VRAM use (in MB): it is the onboard memory and cannot be exceeded.

• data transfer time: since it is a separate device, it is important to check if data
transfers are taking more or less time than the computation part.

2.3.3 Motivation

We have seen that DNA mapping is a time-consuming task and that various techniques
have been tried to accelerate it. In particular, parallelisation is a way to reach high
throughput by using adequate hardware. However, the approaches tried present a huge
drawback for DNA scientists. When they rely on a DNA mapper like BWA-MEM, they
expect to trust the output of the tool they work with. Hence, an accelerated BWA-MEM
must provide matching results with the original BWA-MEM.

Many of the approaches used in previous works use pruning to accelerate the calcula-
tion of the matrix [42]. As shown in Figure 2.6, pruning is a strategy to avoid computing
useless cells in a banded fashion. However it does not preserve results which is unac-
ceptable for end-users. This is why we aim to provide an accelerated implementation of
BWA-MEM with trusted output that could actually comply with end-users expectations.
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Figure 2.6: An example of BWA-MEM Smith-Waterman task. Left: cells actually com-
puted in the matrix with pruning. Right: amount of elements calculated for each loop
index. (from [42])
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The following chapter is dedicated to acceleration of the seed-extension, or simply called
extension part and its integration in BWA-MEM. To do this, we developed a CUDA ker-
nel for extension in the GASAL2 library. Then, we integrated the kernel in BWA-MEM
to accelerate it. We will first show that extension acceleration can bring a substantial
benefit to BWA-MEM performance. Then we will present the current state of GASAL2,
the CUDA library for DNA sequence alignment, with its possibilities and shortcomings.
We will formulate the specifications for this integration and how to verify them.

3.1 Shortcomings of BWA

We will first introduce how the time taken by some crucial parts in BWA-MEM makes
it a good candidate for acceleration. We will then take a look at GASAL2 architecture
to see how it can be integrated in BWA-MEM to accelerate the extension phase of the
mapper.

3.1.1 BWA-MEM computational parts

BWA-MEM is a full-featured DNA read mapper based on seed-and-extend. In Chapter 2
we described the processing steps of the mapper. It performs a lot of steps to align a
batch of query sequences against a reference genome. The seed-extension part that can
be accelerated with GASAL2 represents a considerable fraction of the total time.

We profiled the mapper by mapping paired-end reads to the the human reference
genome ”hg19” [2]. The read data set consists of two files containing pair-end reads
with 5.2 million sequences each, all of them being 150 bases long. The read data set
is SRR949537 [43] downloaded from Sequence Read Archive. We used 12 threads on
our test machine, which will be presented later in Chapter 5. We reported the time
needed for the execution of each thread, then took the mean of all of them. The time
share is visible in Figure 3.1. We can see that the extension takes approximately 27% of
the total time. Depending on the data set, this can go from 25% to 33%. This makes
the extension an interesting part to accelerate, since it takes an reasonable fraction of
the total compute time. The measurements also show that a theoretical speed-up of
1/ (1− 0.27) = 1.37× can be reached by accelerating seed-extension.

3.1.2 Architecture of GASAL2

The GASAL2 library is a C++/CUDA library for DNA sequence alignment computation.
In the beginning of the project, GASAL2 was able to perform global, local and the
semi-global alignment. It features data compression on GPU: the goal is to quickly
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Figure 3.1: Fraction of time for seeding, extension in an example for BWA.

compress DNA strings directly in VRAM to fetch them faster when calculating the
dynamic programming matrix.

Here is the list of features of GASAL2 before this thesis:

• Local, global, semi-global sequence alignment run on GPU,

• Operates on compressed data: there are 5 bases to describe, A, T, C, G and the
unknown base N, hence needing a minimum of 3 bits to encore the base, but each
based is stored on 4 bits to facilitate storing (more on this topic below)

• Data packing compresses the data directly on GPU: despite having to transfer un-
compressed data from host to device, the speed-up provided by parallel processing
when packing makes up for the longer transfer time,

• Capable to reverse and, or complement any sequence on the batch independently
on the GPU.

GASAL2 works with batches of sequences to align. Here, we will present the orig-
inal data structure of GASAL2 . It revolves around a single data structure called
gasal_gpu_storage_t with the following fields, commented, on Listing 1. All fields
from line 2 to 13 have their counterpart on the GPU, named the same way without
the host_ prefix in their name. Since the host and the device have distinct memo-
ries, data should be handed from the host side to the device before launching compu-
tation, then the results should be retrieved from the device when it is done. These
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similar fields have been omitted for clarity, and only reminded with the comment
//[copies of the aforementioned field on the GPU].

This structure is initialised for a given size and a number of sequences. Host fields
are filled up with the sequences data and their metadata (length, offsets). Trying to fill
more than the capacity of the fields results in a forced exit.

GASAL2 went under an important structure rework at the beginning of this thesis
to drastically improve its maintainability. In the beginning, it was entirely written in
plain C and had a simple architecture consisting in three files:

• gasal.h: contains all function prototypes and structure definition

• gasal.cu: contains all functions code and the CUDA calls

• gasal_kernels.h: contains all CUDA kernels, duplicated

Although this may seem as an easy way to split the code, it grew up to the point
where it became hardly manageable. The rewrite included separating the different parts
of the code in distinct files, adding interfaces for structure filling, and a class to handle
all parameters in an centralized way.

In addition, a shift to C++ has been operated to take advantage of C++ templates:
they allow to produce different versions of a given function at compilation time. This
will me more discussed on Chapter 4.

3.2 GASAL2 and the extension kernel

More details will be given in the workflow of GASAL2 and its distinctive features. Finally,
we will outline a list of characteristics we need for GASAL2 to be integrated in BWA-
MEM.

3.2.1 Typical workflow of GASAL2

We will now describe the workflow usually followed when using GASAL2. Figure 3.2
shows the processing flow in a graph. This flow can be instantiated multiple times from
each CPU thread.

The first step is to fill the parameters used for alignment: match and mismatch
scores, maximum number of sequences and maximum sizes. Then the GPU and host
storages are initialised with this given size. Data sizes are specified in advance, so the
initialisation takes an important amount of VRAM.

Then, the first available stream is selected. It is filled up with the query and target
sequences and their metadata (lengths, offsets, operations for reverse/complementing if
needed). Then it launches the non-blocking call for the GPU memory copies and kernel
launches. These particular calls are represented in the yellow block. Note that no direct
array links functions from outside the block to the inside. This is meant to show that
the CPU, once making the non-blocking calls, directly jumps to the next blue box in the
graph, and performs the next tasks.
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1 typedef struct {
2 uint8_t *host_unpacked_query_batch; // (string) the query sequences, butted

together↪→

3 uint8_t *host_unpacked_target_batch; // (string) the target sequences, butted
together↪→

4 uint32_t *host_query_batch_offsets; // array with the offsets to tell the
sequences apart↪→

5 uint32_t *host_target_batch_offsets;
6 uint32_t *host_query_batch_lens; // array with the length of each sequence
7 uint32_t *host_target_batch_lens;
8

9 int32_t *host_aln_score; // array with the alignment scores for all the
sequences↪→

10 int32_t *host_query_batch_end; // array with the end position of the alignment
on the query sequence↪→

11 int32_t *host_target_batch_end; // array with the end position of the
alignment on the target sequence↪→

12 int32_t *host_query_batch_start; // array with the start position of the
alignment on the query sequence↪→

13 int32_t *host_target_batch_start; // array with the start position of the
alignment on the target sequence↪→

14

15 //[copies of the aforementioned field on the GPU]
16

17 // Information about the batch
18 uint32_t gpu_max_query_batch_bytes; // size of the buffer in the GPU (in

bytes) for the query sequences↪→

19 uint32_t gpu_max_target_batch_bytes; // size of the buffer in the GPU (in
bytes) for the target sequences↪→

20 uint32_t host_max_query_batch_bytes; // size of the buffer in the host memory
(in bytes) for the query sequences↪→

21 uint32_t host_max_target_batch_bytes; // size of the buffer in the host memory
(in bytes) for the target sequences↪→

22 uint32_t gpu_max_n_alns; // maximum number of sequences for the buffers on the
GPU↪→

23 uint32_t host_max_n_alns; // maximum number of sequences for the buffers on
the host↪→

24 cudaStream_t str;
25 int is_free; // flag to know if the computation is being run (0) or if it is

finished (1)↪→

26

27 } gasal_gpu_storage_t;

Listing 1: the gasal_gpu_storage_t data structure.
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Figure 3.2: GASAL2 typical workflow
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Finally, if a stream has finished, its results are retrieved. The streams allows for full
CPU-GPU overlap execution, giving significant speed-up, as we will see later on.

An important feature of GASAL2 is that it packs and compresses the sequences on
GPU to accelerate its handling in the alignment kernel. There are 5 different bases
possible: A, T, C, G and the unknown base N. This means that a minimum of 3 bits
is needed to encore 5 different values. The bases are then stored in 32-bits words. The
goal is to allow the alignment kernel to fetch a pack of bases from the VRAM, put them
in the cache, and then perform operations on the cached bases. This cache memory
on a GPU is extremely small (for example, each SM can give its threads an access to
48KB of L1 cache for the GPU in our test machine [40]), but very fast and close to
the computing resources. However, using 3 bits would mean needing a lot of bitwise
operations to uncompress the data, since it would not align easily with 32-bits words.
This is why the decision has been made to use 4 bits to encode the base value, hence, 8
bases are stored in each 32-bit word. This way, the kernel fetches two 32 bits words (one
for query, one for target) and can easily uncompress the 8 bases stored. The dynamic
programming matrix is then computed in tiles of 8 × 8 cells.

3.2.2 Characteristics of GASAL2 launches

The kernel launch has adaptable parameters to tune it for a given data set, number of
CPU threads and number of GPU threads, depending on the hardware at hand. GASAL2
in its current state, has up to three different types of kernels:

• the packing kernel

• the reverse/complement kernel, if needed

• the alignment kernel (be it local, global, or else)

The packing and the reverse/complement kernels are very fast due to having very few
computation, and take almost no time to complete compared to the alignment kernel.
With various data sets, it has been measured that the packing kernel takes at most 0.6%
of the kernels run time, and the reverse/complement kernel takes at most 4% of the
kernels run time when all sequences must be both reversed and complemented. Data
transfer time take at most 4% of the total time. Note that these times are given here
as a rough estimate to show the importance of some tasks compared to others, and that
precise measurements are presented on Chapter 5. As expected, the large majority of
the time is taken by the alignment kernel.

The alignment kernel has a variable GPU occupation depending on the data pro-
cessed. On our test machine, with a single CPU thread, the SM utilisation oscillates
between 3% and 10%. Even though it seems a very low occupation, it is not a major
problem since the kernels are compute bound and higher occupancy does not necessarily
increase the performance.

3.2.3 Extension kernel behaviour

The aim of this project is to integrate GASAL2 in BWA-MEM to perform the extension
part on GPU. To do so, we need to reproduce the behaviour of the extension function
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of BWA-MEM to replicate it in GASAL2.
The original extension function has a BLAST-like seed-extension behaviour. It starts

from a pair of target and query sequences and knowing the position of the beginning of
the seed, its length, and its score, it proceeds as follows:

• it isolates the left part of both sequences, and reverse them.

• it computes a local alignment with the beginning score equal to the seed score.
The end position of this alignment is equal to the beginning of the alignment of
the two sequences (the alignment progresses from right to left, since the left parts
have been reversed)

• then it isolates the right part of both sequences,

• it computes a local alignment with the start score equal to the left score previously
computed (which includes the seed score).

In our case, this approach is unpractical because we would like to compute both sides
in parallel to maximise GPU usage. In this fashion, we do not have other choices than
making both extensions (left and right) start with a score equal to the seed score, which
could make a small difference in the final result. We expected this error between the
regular BLAST-like computation and our slightly different approach to be small enough
to consider this approach valid. We measured it after implementation, with results
shown in Chapter 5 and we reached the conclusion that the difference was effectively
very small and that calculating both sides at the same time only using the seed score is
an acceptable way to solve this problem. We call that paradigm the ”seed-only” method.

Another problem comes from the rigidity of GASAL2 memory scheme. Originally,
GASAL2 was not able to scale in memory and adapt if some sequences were longer than
expected, resulting in a crash of the program. This is particularly problematic when
integrating it in BWA-MEM, because the number of seeds is unknown in advance, so
each batch in GASAL2 need to have a variable size; plus, left and right parts of the
target and query sequences have an unpredictable length. An extensible data structure
should be implemented to tackle this issue with minimum overhead.

3.3 Proposed CUDA kernel

Due to the complexity of seed-extension acceleration on GPU described in the previous
section, we would like to design a library interface with a kernel that complies with the
following technical specifications:

• The library should be able to start with any amount of memory and extend it
whenever needed. Moreover, the memory allocations should remain as scarce as
possible.

• The kernel should reproduce the behaviour of BLAST-like kernels by allowing local
DNA alignment with a non-zero starting score.
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• The interface on BWA-MEM side with the library should have similar behaviour
as the original extension function, but using the seed-only approach explained in
Section 3.2.3, and the difference for the final results should be minimal.

• The end product should be readily available as an open-source project, respectful
of the original licenses, and with a complete traceback of code production.

With the above requirements, now we have to state the goals and metrics used to
verify that the end product meets the specifications:

• The integration of GASAL2 in BWA-MEM should effectively speed up the align-
ment process. We will compare the kernel execution times before and after ac-
celeration with and without hidden time execution. We will also compare total
execution times to verify the global speed-up.

• Using the seed-only paradigm should not bring any difference to the vast majority
of the alignments. Still, there is no guarantee that the results will be exactly the
same. Whenever the alignment differs, the difference with the original BLAST-
like paradigm should be minimal. Result correctness will be examined. We will
quantify the number of differences between the two results output from original
BWA-MEM and its accelerated version, for our given data sets.

• The VRAM use should not take more than what it necessary. To verify this, we will
take advantage of the feature that should allocate more VRAM when necessary to
purposefully initialise the gpu_storage structure with a small size and let it grow
bigger to just the right amount. This will keep VRAM usage as small as possible.

In the next chapter, we will detail the choices we made to meet these technical
specifications.
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In this chapter, we will review the choices we made for the implementation of the features
discussed earlier. We will discuss how the functionalities are implemented in GASAL2.
Although some code snippets are provided, the detailed implementation is available
at [44] and reviewing it can be helpful to understand the coupling between different
parts of the software.

4.1 C++ kernel templates

4.1.1 Factorise kernel codes with templates

During the refactoring of the library code, we have to factorise the code from the kernels
which have very similar implementation. Many similar kernels are not easy to maintain,
as a single change have to be repeated many times in different parts of the code. How-
ever, it is not viable to directly make a generic kernel with many if - then - else
conditions, since it would slow down the execution.

The solution we adopted consists in using C++ templates with light use of meta-
programming [45] to generate multiple specialised version of a kernel at compilation
time. We can then write branches in a clean fashion that would be resolved by the
compiler. However, we cannot make any conditions on integer values from the get-go:
since templates are resolved at compilation, the compiler can only resolve symbols on
classes and types, and not values.

We then use a small template as shown on Listing 2 to derive our own types from
integer values. We first define a template structure Int2Type with inside an enumeration
with a single value, equal to the one given for its template instantiation. The goal is
to instantiate empty structures which are seen distinctly by the compiler. Hence, at
compilation time, Int2Type<0> is a structure name, Int2Type<1> is another structure,
and so on.

We then create a template structure SameType that can be instantiated in two ways:
if two objects of different types are passed (line 5), it bears an enumeration with value
0, and if types are the same (line 9), it bears value 1. Writing if blocks using the
SAMETYPE(a, b) macro will expand it into 0 or 1, allowing the compiler to prune the
unused branch automatically. Note that a template std::is_same<X, Y> is already
available to achieve the same goal in the C++ standard library; but we could not use it
in CUDA kernels since this library is not implemented there.

Finally, for all the kernels to be generated, explicit calls must be written in the source
code. We decided to group all the kernels in three major kernel templates. Each of them
can specialise to various extent:

• global, that does not have any specialisation,
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1 template <int Val>
2 struct Int2Type{
3 enum {val_ = Val} dummy;
4 };
5 template<typename X, typename Y>
6 struct SameType {
7 enum { result = 0 };
8 };
9 template<typename T>

10 struct SameType<T, T> {
11 enum { result = 1 };
12 };
13 #define SAMETYPE(a, b) (SameType<a,b>::result)

Listing 2: Meta-programming template to derive types from integer values

• local, on which we can select among 4 combinations:

– start position calculation (on / off),
– second-best score calculation (on / off);

• semi-global, on which we can select among 64 combinations:

– if we allow to skip the beginning, the end, both ends or none of the ends of
either query or target (making it 16 different cases),

– start position calculation (on / off),
– second-best score calculation (on / off).

It would be highly unpractical to list all these variations hard-coded, but we need
them written before the compilation phase, where the templates are resolved. Sub-
sequently, we rely on the C++ preprocessor and use a series of macros to develop a
switch - case including all variations. This allows to write each kernel call exactly
once, and condense all calls in a clean way.

4.1.2 Porting newer version of GASAL2 in GASE

Several modifications to BWA-MEM are done to integrate GASAL2 for its extension step.
While some of them are already done when starting this thesis, substantial changes are
still required to successfully integrate GASAL2 in BWA-MEM. GASAL2 aligns batches
of sequences, and with a given batch of k alignments, it instantiates k GPU threads.
Each thread runs the alignment kernel on for its own pair of query and target on the
GPU. Before launching a kernel, we need to provide to the GPU a batch of data to
process in parallel: we have to split the set of alignments in batches. This batching
system was already implemented in a custom version of BWA-MEM for measurements
called GASE-GASAL2 [46] [47].
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Another important change in GASE-GASAL2 is about seed chaining. We reviewed
earlier that seeds are processed one after the other, so that if a seed is found in an align-
ment, it is skipped and not extended. Since GASE-GASAL2 processes the alignments in
batches, it cannot later filter seeds based on the actual result of their alignments. The
solution implemented to circumvent this issue is to estimate that all alignments for all
seeds result in a 85% coverage of the read. With this estimation, it filters seeds that are
present in a range around the seed equal to 85% of the length of the read. This feature is
necessary for a parallel aligner to be integrated in BWA-MEM: we cannot provide seed
filtering based on the previous calculations, so we use an estimation that covers most
cases. We keep this feature unchanged for our own implementation.

GASE-GASAL2 only uses standard local alignment kernel of GASAL2 and does not
provide same results as in original BWA-MEM. It has only been developed to demon-
strate how seed-extension could be accelerated. It uses an old version of GASAL2 which
has become incompatible with the changes we made previously.

The first task has been to update GASE-GASAL2 to compile it with the newer
version of GASAL2. In particular, the source code had to be ported to C++. Several
wrong writing practices had to be fixed, including naming variables “or” (which is a
keyword in C++), and defining clear context for function prototypes in the header
files. In fact, C++ features name mangling for functions: this adds information at
compilation to establish contexts where function names are declared valid. This feature
is implemented among others for function overloading. Unless plain C functions are
placed in extern 'C' { ... } blocks, they cannot be resolved at compilation, inducing
a linking error, so some code clean-up has been done on this side.

4.2 Kernel implementation

We will now describe the kernel implementation.

4.2.1 Kernel writing

The kernel in itself is written in CUDA in the GASAL2 library. It should exactly
replicate the behaviour of the original function in BWA-MEM, called ksw_extend. In the
remainder of the thesis we will refer to the original function with its name, ksw_extend,
and to its GPU implementation as the ksw_kernel.

We have seen before that previous kernels in GASAL2 were written as C++ template
functions. It has been considered using the existing local alignment kernel template to
derive an alternate kernel with the starting scores. This could have reduced the amount of
code to maintain. However, there are many differences between the seed-only kernel and
the local kernel. In particular, an important number of speed-up techniques are present
in ksw_extend and the code written to implement them presented many differences with
the way the local kernel is written. Therefore, we implement a new kernel that follows
the seed-only paradigm.

The kernel is built by copying the original ksw_extend and renaming the variables to
follow naming convention used in GASAL2 kernels. Initially, to test the implementation,
we follow the loop structure used in ksw_extend in which the fact that data is compressed
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is not exploited. The behaviour is simply to fetch the current base from query and target
and calculate the cell of the dynamic programming matrix. Therefore, the pseudocode
is the same as presented previously in Algorithm 1 in Subsection 2.2.4.

We introduce the use of compressed data by fetching the 8 bases in the 32-bit words
from query and target. This adds two innermost loops in the algorithm to perform the
alignment tile by tile, using square tiles of 8× 8 = 64 bases.

Because of memory constraints, the whole matrix is not stored in memory. Since only
the north, west, and north-west cells are needed for the computation, only one full row
having the length of the query string and a column of 8 cells need to be stored. These
are shown in Figure 4.1. All cells are computed in the order given by their number.
When a full column is computed, the orange column moves one step on the right, taking
the place of the cells numbered 1 to 8; then when cells 9 to 16 are computed, the orange
column moves forward to take their place, and so on. This column is the western cells
used to compute the score. When all cells in the tile are computed, the 8-cell section of
the yellow row moves 8 cells south, taking the place of the cells numbered 8, 16, 24 ...
64. When the cyan tile is computed, the royal blue one is computed, then the navy blue,
then the next line.

Finally, we introduce again some computing optimisations that we initially disabled,
in particular, z-dropoff. This optimisation allows to skip the calculation of some cells of
the matrix provided the score drops below a certain threshold. When this happens, it
usually means that the alignment will not improve because the difference between the
two sequences grew too big, so it is usually better to stop computing altogether instead
of wasting time trying to align two sequences that are very different.

With all of this implemented, the pseudocode for the kernel is shown in Algorithm 2.
Some parts detailed in Algorithm 1 are only summarised here for readability.

4.2.2 Score comparison

To verify the correctness of this implementation, a modified version of BWA-MEM is
made from the original BWA-MEM [48]. This version is hosted on GitHub [49] and has
different branches to switch from one behaviour to another, to compare the results with
the GPU-accelerated implementation.

In a branch called seedonly-time, we introduce our seed-only method instead of the
original BLAST-like behaviour. As the name suggests, the time for each processing step
is monitored and reported at the end of the program for each CPU thread.

The results are in the Sequence Alignment/Map (SAM) format, commonly used for
DNA mapping. SAM is text-based, extensively documented [25] and widespread among
DNA-related programs. It is the default format output for BWA. Using diff [50] and
other regular UNIX tools, we can compare the number of lines that differ between the
reference program and a modified version. Knowing the original number of lines, we can
derive a percentage of difference between the files, as shown on Listing 3.
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Figure 4.1: Visualisation of the tile-based matrix computation. Only the yellow row and
the orange column are stored in memory.

4.3 Library integration

After the C++ adaptation of GASE, the demonstrator for BWA-MEM and GASAL2
integration, we obtained a valid version of BWA-MEM processing sequences in batches,
originating from GASE-GASAL2.

BWA-MEM operates with the seed-and-extend paradigm, and GASAL2 can run the
extension part. For a single query sequence, a variable number of seeds can be found.

For every seed found in the query, the target sequences is the region in the genome
around the seed location. The extension step is then either:

• skipped, meaning that the seed is exactly the size of the sequence,

• or done only on one side, if the seed is located at the beginning or the end of the
query sequence,
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• or done on both sides, if the seed is in the middle of the sequence.

Most of the time, both sides have to be extended. We create two GPU batches. A
simple approach would be to define a batch for the left side, and one for the right side.
However, there is an optimised way to split the alignments between two batches.

GPU threads are grouped in warps. All threads in a warp run the same instructions.
For maximal performance, it is advisable to run as many grouped thread as possible, and
avoid differences in execution causing thread divergence. To avoid this thread divergence,
sequences aligned by the GPU threads in the same warp should have similar lengths.
But if one seed is located on the far left and another one on the right, knowing that
all queries have the same length, the left parts of the extension will have very different
lengths, as shown in Figure 4.2. Moreover, the processing time will be limited by the
length of its longest alignment in the GPU batch.

Figure 4.2: Illustration of chains (in yellow) being located on different places

To summarise, we note that :

• all reads have the same length,

• the final score is equal to the sum of the chain score, the left part score, and the
right part score,

• to that extent, we don’t need to know whose score is the left one and the right one
(only the sum matters),

• and we would like to process both sides in parallel.

So instead of using two batches for left and right extension, we use two batches for long
and short extension. This puts the long sides together to minimise thread divergence.
The difference between the longest and the shortest extension in each batch is now at
most half the length of the query sequence. For each chain, we log in a dedicated data
structure if it has zero, one or two alignments, and on which part (left or right) the
long alignment is. When both the ”long” and ”short” batches of extension are done, the
scores are gathered.

Another problem arises: the seeds may have zero, one or two extensions, the short
and long batches can have a different number of extension to make. To show this with
an example, we can assume that we have three seeds as in Figure 4.2. For the sake of
conciseness, only query sequences have been shown, but assume each of these queries
have a corresponding target sequence with the same seed located in it, forming pairs
of query-target sequences. Chains from Q1, Q2 and Q3 are found in this order, and
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“Long” batch “Short” batch
Pair 1, right part Pair 1, left part
Pair 2, right part Pair 3, right part
Pair 3, left part

Table 4.1: Example of how batches are filled.

the gpu_storage structure is filled in this order too. Table 4.1 shows how the batches
are filled for this case. Notice that the number of sequences are not the same in two
batches, hence two sides of the same alignments are not at the same index on both
structures. To circumvent this problem we added information in the data structure of
BWA-MEM that contains the alignment scores. After both sides of the seed-extension
of a batch are finished, this data structure is used to know how many alignments (0, 1
or 2) for a seed were computed, ensuring correct gathering. This is not an issue in the
original software as the seed is extended first to the right and then to the left. But in our
implementation we run both the extensions in parallel, with seed score as the starting
score of the alignment, to get more parallelism. Hence, if we sum both left and right
scores, we count the seed score twice. Therefore, we subtract the seed score from the
total of extension scores of left and right side. When only one extension is made (or
none), we do not have to do this subtraction.

4.4 Memory management

For GASAL2 to work correctly, all data fields in the gasal_gpu_storage_t structure
must have their sizes specified at initialisation. This is problematic with BWA-MEM
because sizes cannot be inferred beforehand. Even if we process a pack of 4000 reads,
each of them have an unpredictable number of seeds. Furthermore, for each seed, the
length of the query and target sequences are unknown. We show a schematic view for
this problem in Figure 4.3. The GPU accelerated BWA-MEM align the sequences in
packs that are selected by the CPU. This pack is then split into muliple batches of
sequences, each batch being processed by a CUDA stream. The figure shows two packs
of 3 reads each (note the read numbers on the left, Q1 to Q6). For each read, there
are different number of seeds. The pack is distributed evenly between CUDA streams in
GPU batches. Reads of the same colour are processed by the same GPU batch. This is
difficult to show with a few number of sequences like here (for the first sequence pack,
reads Q1 and Q2 are in the same GPU batch and read Q3 is in another GPU batch),
but for example, a pack of 4000 sequences is split into 4 GPU batches of 1000 sequences
each, each batch processed in the same CUDA stream. After each stream has been given
its GPU batch to process, the seeding phase runs for each read, and multiple seeds are
found. For each seed, the left and right parts of the alignment are copied onto the GPU
memory and the kernel runs to compute the alignment. Alignments of the same colour
are processed in the same GPU batch, so in the same CUDA stream. For example, if we
have 2 CUDA streams, all seeds for Q4 are extended by Stream #1, then all seeds from
Q5 are processed by Stream #2, then Q6 seeds are processed by Stream #1 if we assume
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it has finished when Stream #2 was computing. We can see that the total number of
alignment is different depending on the number of seeds, and each alignment has its own
left and right lengths.

Figure 4.3: Representation of alignment distribution in sequences packs across GPU
batches.

We would need some automatic resizing whenever the initial size is insufficient. For
a given data set, during testing phase, we can estimate an upper bound. But this is not
a good approach since we have to allocate much more memory than actually required.

In this section we will review the solutions we implemented. A simple approach
was adopted for all the arrays carrying metadata for the sequences. We choose a more
refined approach for the fields bearing the actual sequences to minimise overhead caused
by reallocation.
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4.4.1 Memory reallocation for arrays fields

A large number of fields in the gasal_gpu_storage_t are containing information about
the sequences. These fields are arrays of length equal to the number of sequences. As
such, they do not store a very large amount of data, and their separation is clear (each
slot of the array is holding information about one single sequence). For example, we need
to store the length of each query and target, the offset of each each query and target, and
so on. These fields are first allocated on host side, then they are copied onto the device,
so they are allocated with CudaHostAlloc. Since there are a large number of fields and
they do not represent a major part of memory allocation, we decide to implement a
simple realloc feature for all such fields. This function is displayed on listing 4. Note
that on the gasal_gpu_storage_t shown on Listing 1, all fields do not have the same
type: some are of type uint32_t, others are uint8_t, and so on. We make a simple use
of C++ template to adapt this function to multiple types. It allocates a new memory
area, copies the content of the former area, and frees it. It returns a pointer to the
newly allocated area in memory filled with the previous data. This re-allocator is called
by a larger function resizing all the necessary fields when the number of sequences filled
exceeds the number of maximum sequences the data structure can hold.

The user of the library must take care of the sequence count and run the reallocator
when needed. Once the fields are reallocated to a bigger memory area, they keep their
new size, so they do not need to be re-allocated until the next time the new maximum
capacity is exceeded. The library keeps track of size of the array and current number of
sequences filled in it.

We choose a different approach for the arrays that hold actual sequences because
they are much bigger and reallocation is time expensive.

4.4.2 Extensible data structure for sequences

Using the same reallocation for the sequences could have been possible, but unpractical.
In fact, these memory allocations and frees are costly in time. While this is reasonable
for smaller arrays having only 4-bytes elements (like uint32_t), it takes too much time
with the sequences arrays. In the data structure, there are two fields to store the query
sequences and the target sequences respectively. Each field is a single array and all
sequences are put some following others in this array. If a batch has 1000 reads, there
may be 10 000 to even 100 000 seeds for the whole batch, making it up to 200 000
alignments to performed (most seeds needing both left and right extension). Each base
being stored in one byte, making them query and target arrays 20 to 30 times larger
than the other arrays for sequence lengths, sequence offsets, or other information.

Due to this issue, we designed a structure of linked list to allocate more memory
progressively without needing to move around already existing data. This structure
shown on Listing 5 starts with a single element and each of them carries some metadata
about its content size to ensure correct filling. It stores:

• the sequences, butted together, in the field *data,

• how many bytes are already stored, in field data_size,
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• the total size available in bytes, in the field page_size,

• the data offset, which is equal to the data size of the previous element of the
linked list,

• A flag telling is the structure can store new data or not, is_locked, set to 0 or 1,

• and of course, as for all linked list, a pointer to the next element.

The sequences are filled by a dedicated function from GASAL2 that takes care of
allocating more memory if needed. This function takes as input the sequence to add,
the storage structure, and if it is a query or target sequence to fill, Algorithm 3 shows
the pseudocode of the function. We represent the fields belonging to an element with
the symbol B, similar to the symbol -> used in C++ to access the field belonging to a
pointer of a structure.

In the beginning, the first non-locked element is selected. Then the algorithm oper-
ates in three main steps.

1. First (line 6), it checks if the selected element is the end of the linked list, and if
there is not enough space in it. If so, the only solution is to create a new element
to append at the end of the linked list.

2. Then (line 11), it checks if the current element is full and if there are more elements
down the linked list. This happens when the linked list has created new elements
during previous fillings and kernel launches. We already selected the first non-
locked element, so if it is full, we simply jumps to the next one, and lock the
previous one so that we don’t try to fill it anymore.

3. At this point (line 16), we have reached an element which have enough free space
for the sequence:

• if we had an element available from the beginning, we reach this point without
going through the previous if.
• if the last non-locked element was full, we locked it and jumped to the next
one, so we reached a non-full element,
• if we were at the end of the list, we created a new element and jumped to it.

We can now fill it with the sequence and its offset.

In the end, the function returns the current offset, corresponding to the total number
of bytes present in the linked list, which is needed to continue the filling for the next
sequence.

Globally, we have a linked list of structures filled by full sequences. We do not split
the sequences between two elements. Therefore, each element is not filled up to its
maximum capacity, leaving an area smaller than a sequence length unused.

When copying the batches onto the device, all elements are processed using
CudaMemCpy. The size to copy is directly given by the field data_size. At this mo-
ment, all the elements in the linked list are set as ”non-locked”. This way, they can
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be re-used for future launches. The linked list can only grow in size to minimise the
possibility of having to do another allocation later on. This is why we implemented this
”locked” flag to get the information if the element has been filled for the current batch,
to know where to start filling up.

All in all, this allocation scheme allows to get more memory space without moving
around already existing data by re-using all the previously created memory chunks in
the linked list, and creating bigger elements. Since we would like to keep the number
of allocations to a minimum, we allocate bigger memory chunks each time it is needed.
The more allocations are done, the bigger they are: it becomes less and less likely to
trigger a new allocation as we grow in size.

Wrap-up
In this chapter, we reviewed all the modifications and new implementation we carried
out to successfully integrate GASAL2 in BWA-MEM. We start from a demonstrator
(GASE-GASAL2) already processing in pack of reads, and we port it to C++ to run
it with the newer version of GASAL2. We create a CUDA kernel that replicates the
behaviour of the original C function in BWA-MEM. We integrate the library with our
”seed-only” paradigm to tackle the issue of processing both sides of the extension in
parallel. This creates its own issues with score synchronisation between left and right
sides, and we addresses this problem by keeping track of the number of alignments to
guarantee correctness of the score. The memory management is now done with the
help of memory reallocation for small arrays and using linked list of elements for the
actual sequences arrays to minimise the number of time expensive memory reallocation
operations. Finally, we tess this implementation in our hardware with a sample data set,
that we will present in the next chapter.



38 CHAPTER 4. IMPLEMENTATION

Algorithm 2 ksw_kernel algorithm
1: procedure Seed-extension kernel(query_string, target_string,

query_length, target_length, initial_score, zdrop) . TILE_SIDE = 8
2: Initialise score
3: Initialise maximum score score ← 0 and maximum positions

(max_query,max_target)← (0, 0)
4: query_batch_regs← query_length/TILE_SIDE + 1
5: target_batch_regs← target_length/TILE_SIDE + 1
6: for target_tile_id from 0 to (target_batch_regs− 1) do
7: gpac← Fetch a pack of 8 bases from target_string at position target_tile_id

(int32)
8: for target_base_id from 0 to TILE_SIDE − 1 do
9: i = target_tile_id ∗ TILE_SIDE + target_basei

10: target_basej ← read base in gpac at position target_base_id
11: Compute first column of the matrix
12: for query_tile_id from 0 to (query_batch_regs− 1) do
13: rpac ← Fetch a pack of 8 bases from query_string at position

query_tile_id (int32)
14: for query_base_id from 0 to TILESIDE − 1 do
15: query_basej ← read base in rpac at position query_base_id
16: j = query_tile_id ∗ TILE_SIDE + query_basej
17: if i < beg then
18: continue
19: end if
20: if i >= end then
21: break
22: end if
23: Compute S[i, j], GA[i, j] and GB[i, j]
24: end for
25: end for
26: if j == query_length then
27: Store global score and global end position
28: end if
29: if maximum calculated score > previous maximum then
30: Store new maximum score and new end position

(max_query,max_target)
31: else if zdrop > 0 then
32: if the current score dropped more than zdrop since the last maximum

score then
33: break
34: end if
35: end if
36: Cell-skipping: beg ← first cell of the stored row with non-zero score
37: Cell-skipping: end← last cell of the stored row with non-zero score
38: end for
39: end for
40: Find imax and jmax for which Simax,jmax = max(Si,j)
41: score← Simax,jmax

42: end_position_query ← imax

43: end_position_target← jmax

44: end procedure
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1 #!/bin/bash
2 DIFFLINES=$(diff --suppress-common-lines --speed-large-files -y $1 $2 | grep "[|><]" |

wc -l)↪→

3 TOTALLINES1=$(cat $1 | wc -l)
4 PERCENTDIFF=$(bc -l <<< "scale=2; (100*$DIFFLINES)/$TOTALLINES1")
5

6 echo "Different lines between " $1 " and " $2 " = " $DIFFLINES
7 echo "Total numer of lines in" $1 " = " $TOTALLINES1
8 echo "Difference = " $PERCENTDIFF "%"

Listing 3: Bash script to show percentage of difference between two files

1 // Function for general resizing
2 template <typename T>
3 T* cudaHostRealloc(void *source, int new_size, int old_size)
4 {
5 cudaError_t err;
6 T* destination = NULL;
7 if (new_size < old_size)
8 {
9 fprintf(stderr, "[GASAL ERROR] cudoHostRealloc: invalid sizes. New

size < old size (%d < %d)", new_size, old_size);↪→

10 exit(EXIT_FAILURE);
11 }
12 CHECKCUDAERROR(cudaHostAlloc(&destination, new_size * sizeof(T),

cudaHostAllocMapped));↪→

13 CHECKCUDAERROR(cudaMemcpy(destination, source, old_size * sizeof(T),
cudaMemcpyHostToHost));↪→

14 CHECKCUDAERROR(cudaFreeHost(source));
15 return destination;
16 };

Listing 4: Reallocation function for CUDA allocated fields.
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1 struct host_batch{
2 uint8_t *data;
3 uint32_t page_size;
4 uint32_t data_size;
5 uint32_t offset;
6 int is_locked;
7 struct host_batch* next;
8 };
9 typedef struct host_batch host_batch_t;

Listing 5: The linked list structure for sequences on host.

Algorithm 3 Behaviour of the sequence filler function
1: function Fills one sequence in an linked list (gasal_gpu_storage_t, seq,

seqlength, seqoffset, data_source)
2: Select query or target linked list from data_source
3: Select first non-locked linked-list element, e
4: Compute padding length padding_length
5: total_length← padding_length+ seq_length
6: if e is the last element and total_length > eB page_size− eB data_size then
7: Create new element twice as big
8: Append it to the last element e
9: Select last element (newly added) of the linked list, define it as e

10: end if
11: if e is not the last element and total_length > e B page_size − e B data_size

then
12: eB nextB offset← eB offset+ eB data_size
13: Mark e as locked
14: Select next element eB next of the linked list, define it as e
15: end if
16: Store the sequence in eB data add the padding
17: eB data_size← eB data_size+ total_size

return offset
18: end function
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We are now ready to test our software for short DNA reads produced by Illummina
sequencing machines. BWA-MEM is the industry standard for mapping short DNA
reads. We will first review our testing environment and the data set we use for the
rest of this thesis. Then we will show the performance improvement we get from the
acceleration. In the best cases we can drastically reduce the extension time due to CPU-
GPU overlapped execution. We will take a closer look to the results validity and the
difference between our solution and the original BWA-MEM. Finally, we will show the
resource use with our sample data to give the reader a glimpse of the requirements of
our solution.

5.1 Experimental setup
First we review the conditions in which we run our measurements.

5.1.1 Environment definition

The specifications of the machine used for the measurements is shown in Table 5.1. We
report hardware references in Table 5.1 and software specifications on Table 5.2.

Hardware Reference
CPU 2 * Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz [51]
RAM 32 GB DDR3
GPU NVIDIA GK110BGL - Tesla K40c [52]
VRAM 12 GB GDDR5

Table 5.1: Hardware specifications

We apply an optimisation level of -O2 for the GCC compiler since we noted that it
gave significantly faster execution than -O0 and -O1. O3 optimisation level makes no
difference in speed with respect to -O2. For NVCC (the NVIDIA CUDA compiler) we
keep the -O3 optimisation level that was originally used in all GASAL2 papers [30].

The row ”NVCC compiler options” has two particular defines passed with -D.
MAX_SEQ_LEN corresponds the maximum size of the sequence for the extension kernel. As
we have seen previously in Figure 4.1, we have to store the score of a whole row (in yellow
in the figure). This size is defined at compilation time to avoid dynamic memory alloca-
tion inside the kernel, which makes it noticeably faster. Having to define this number at
compilation is not very problematic because we know that Illumina machines produce
reads with fixed lengths. N_CODE defines the value used for the unknown base ”N”, since

41
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Software Reference
Operating
System Red Had Enterprise Linux 7

Linux kernel 3.10.0-957.5.1.el7.x86_64
C compiler g++, GCC version 4.8.5 20150623

CUDA version 10.1.105
C compiler
options

-g -Wall -Wno-unused-function -O2 -msse4.2 -
std=c++11 -fpermissive

NVCC compiler
options

-c -g -O3 -std=c++11 -Xcompiler -Wall,-
DMAX_SEQ_LEN=\$(MAX_SEQ\_LEN),-DN_CODE=\$(N_CODE) -

Xptxas -Werror -lineinfo --ptxas-options=-v --
default-stream per-thread

Table 5.2: Software specifications

each program can use its own. For example, the test program provided with GASAL2
registers the bases with their ASCII values, so the N code is 0x4E; but BWA-MEM codes
A, C, T, G, and N with integer values from 0 to 4, the ”N” code being 4.

All tests are run with 1 and 2 streams, and with 1, 2, 4, 6, 8, 10, and 12 threads. We
will observe how overlapped execution provides faster results while using 2 streams. In
addition, we run the program with only one stream to force it to wait for its completion
before re-filling the data structure containing the query and target sequences to align:
this allows to measure the actual kernel time, since the CPU is actively waiting for the
kernel to complete.

5.1.2 Data sets

For the tests, we use two paired-end data sets that are mapped to a reference genome.
Each data set is constituted of two files. The first file contains the first read of the pair,
which is the direct strand of DNA. The second file contains the second read in the pair,
made by reading the strand from the other end, hence being the reverse-complement of
the first strand.

Data set #1 called ”SRR150” [43] is made of 150-base long paired-end DNA reads.
Each file has 5.2 million sequences. These are the typical lengths that a state-of-the-art
Illumina sequencer can produce. Data set #2, that we called ”SRR250” [53] has DNA
reads with 250 bases each. This pair of files contains 8.3 million sequences in each file.

The reference we used is the Genome Reference Consortium Human Build 37
(GRCh37), also named ”hg19” [2]. It is the genome of a male human being (with X
and Y chromosomes) sequenced in 2009. This whole genome takes around 3.2GB in
its plain text version. Before running the mapper, an index of reference genome is cre-
ated with BWA-MEM indexing tool. The index is the Burrows-Wheeler transform of
the reference genome and has size of about 4.8 gigabytes. The seed-extension stage of
BWA-MEM does not require the index. It only requires the original reference genome
FASTA file which is 2-bit packed, and hence around 800 megabytes large. Since the
target sequences extracted from the reference genome on the CPU, the file is not copied
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to the GPU to accelerate the seed extension.

5.2 Performance measurement

We will measure now the execution time of our solution, that we called bwa-gasal2, and
compare it to the mainline version of BWA-MEM version 0.7.17 [48], the latest release at
the time of writing. For the measurements, bwa-gasal2 processes sequences in batches of
1000, which gives between 10 000 and 100 000 seeds to process in a single GPU stream.

5.2.1 Data set SRR150

For the first data set, full program execution times are given in Figure 5.1a and kernel
speed-ups against BWA-MEM in Figure 5.1b. We can notice that the global speed-up
fluctuates quite a lot when using different threads, but no trend can be inferred. This
may be due to our testing conditions or simply due to the nature of the data set, the
results may present uneven behaviour depending on how data is split between threads.
As we will see later on, the global speed-up profile with respect to the number of threads
has a more consistent trend with the second data set.

We obtain the most important speed-up using a single thread, reaching 1.35× the
original program speed. This is promising, but is hardly a good indicator: in fact,
these kind of program are usually run with multiple threads, and as we mentioned on
Chapter 3, a single thread running the accelerator is far from sufficient to saturate the
GPU computing resources.

In the case of 12 threads, the total speed-up almost reaches 1.28×. It is below our
theoretical maximum of 1.37×, but it is still an important acceleration. Many factors
can participate in making this difference. In particular, memory filling for the batches
requires a significant amount of time on the CPU side, in addition to the memory copies
from host to device. In this case, we started with an already large memory allocation,
to avoid any overhead caused by new allocations.

In all cases, the difference between one and two streams is striking, with the speed-up
even leaping from 1.21× to 1.28× in the 12 threads case.

When isolating the kernel times and kernel speed-up, we get the measurements shown
respectively in Figure 5.2a and Figure 5.2b. It is important to notice that what is
reported as ”kernel time” for the 2-stream variant represents only the time during which
the CPU is actively waiting for the GPU results. In other words, we have disabled
overlapped execution when using one stream, and enabled with 2 streams. We call this
”visible kernel execution time”.

With overlapped execution, in the 2-stream version, the visible kernel time is an
order of magnitude shorter. In this case, the kernel times were hugely different, so we
had to display them in log scale. While the speed-up reaches 4.7× in single stream with
12 threads, it jumps to almost 16×, effectively shrinking down the compute time of the
extension by the same amount. Single-thread results are even more impressive, with a
kernel speed-up reaching 40× with overlapping, and only 6× when actively waiting for
the result.
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5.2.2 Data set SRR250

We run the same measurements on data set SRR250. Its reads are longer, so they take
quite a substantial amount of time to complete. Execution times and overall speed-up
are shown in Figure 5.3a and Figure 5.3b, respectively.

For this data set, the extension time is taking approximately 33% of the total time,
so we would expect a bigger speed-up, with the theoretical maximum being 1.5×. With
2 streams and single thread, we can effectively reach a speed-up of 1.41×, which gets
somewhat close to the theoretical maximum. With 12 threads, the speed-up is 1.29×.
This is still a valuable improvement over the original version, and in all cases, over-
lapped execution gives a substantial boost in performance. When comparing the single
stream version to its 2-stream counterpart, we note that using 2 streams definitely helps
shrinking the execution time.

We will now examine the kernel times and speed-up, in Figure 5.4a and Figure 5.4b
respectively.

Kernel running times for BWA-MEM (running on CPU) are steady. As the number of
threads increases, we get closer to a plateau as the execution time hardly gets any lower
for all programs. Again, we can remark how overlapped execution helps in computing
it faster with two streams. The difference is tremendously high for one thread, with the
CPU waiting time for the GPU to complete being 5 times lower with 2 streams (from
1125s with 1 stream to 197s). When using 12 threads, the time the CPU waits for the
kernel to finish is 2.5 lower for the 2-stream version (from 250s for 1 stream to 89s for
2 streams). When using multiple threads, the overhead caused by filling a lot of GPU
batches and copying them to the device is substantial. It is all the more the case when
using twice as many streams, having twice as many structures needing filling and being
copied to the device. This could explain why the speed-up boost got from the overlapped
execution tends to get smaller with longer reads for 2 streams.

We can also see whether increasing the number of streams could give any performance
improvement. Results are shown in Figure 5.5. As we can see, using more than 2 streams
does not provide in any improvement.

5.3 Correctness measurement

As explained before, we use the diff utility to compare two SAM output files. Having the
number of different lines between two files, we can calculate a percentage of difference.
To be able to compare the outputs, they must be in the same order: this is why we
have to run the program on single thread for this verification. We measure the influence
of the seed-only paradigm on the results. To verify that our GPU kernel is correct,
we implement a ”seed-only” version of BWA-MEM and verify that the results from
this modified version and our GPU-accelerated version are matching. We obtained the
exact same outputs for all results that we verified comparing their checksum with the
sha256sum command.

It is worth noting that, in addition to the best alignment with its score, BWA-MEM
outputs alternative alignments which may lead to different, lower quality results. In
the case of seed-only paradigm, it regularly happens that the main result is matching,
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yet the secondary alignments present very slight differences. This could be because of
the seed filtering heuristics applied: since we cannot filter seeds based on the previously
computed results, we assume every seed to reach 85% of the maximal possible alignment.
But since these secondary scores are rarely useful in real use cases, we also compared
the outputs without these results, to know the difference only for the final alignment.
Since the output files are several gigabytes big, using regular tools like sed are slow
and unpractical, processing a single file in tens of minutes. To circumvent this issue, we
wrote a small C program (that processes files in seconds) to remove unnecessary results
and filter the results depending on the alignment quality. Alignment quality is a number
located in the 5th field of each line, and ranging from 0 to 60. We are not interested in
having differences if BWA-MEM and bwa-gasal2 are outputing a low quality alignment.
The results are presented in Figure 5.6. We ran the comparison between:

• BWA-MEM and bwa-gasal2 complete output, (first bar),

• BWA-MEM and bwa-gasal2 with secondary scores removed (second bar),

• BWA-MEM and bwa-gasal2 with secondary scores removed and all alignments with
a quality lower than 50 removed (third bar).

We notice that the seed-only paradigm globally introduces a noticeable number of
differences. 11.23% of the lines are not matching. Many of the differences are due to
reordering of the secondary results. Still, when we set aside the secondary results, which
are mostly neglected in downstream analysis, this percentage drops to 2.48%. Finally,
when we remove low quality scores, the number of differences goes down to 1.82%.
Again, this small difference can come from seed filtering heuristics, as well as the seed-
only paradigm itself. This threshold of 20 for the quality score is the usual value taken
for downstream analysis. This is small enough to consider it acceptable.

5.4 Resources use
First we will discuss GPU memory use, then Streaming Multiprocessors (SM) utilisation.

GPU memory use grows strictly linearly with respect to the number of streams and
threads. When going from one to two streams, bwa-gasal2 takes twice as much memory.
In this section, we will present the case we deemed more representative of real use.

GPU memory (VRAM) use is a delicate topic to assess, since it highly depends on
various factors:

• the GPU, since the VRAM available may not be sufficient to saturate its computing
resources,

• the CPU, because how many threads we can instantiate directly impacts how much
VRAM we will need,

• the RAM, since the sequences also need to be loaded in RAM before being copied
to the GPU (although this is rarely a limiting factor, since a given machine usually
has far more RAM than its GPU has VRAM),
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• and of course, the data set running.

We cannot conduct measurements that are corresponding to any algorithmic truth in
this case. Consequently we will present the memory use as a case study corresponding to
our current machine and data sets, and we will see if, in our example case, the memory
use can be deemed as reasonable. We consider the GPU we used (Tesla K40c) with its
2880 CUDA cores and its 12GB or VRAM, as representative of the accelerators generally
used.

For this, we start bwa-gasal2 with a substantially low amount of memory, and let
the automatic memory extension grow until the end of the program. The memory use
for data set SRR150 and SRR250 is shown in Figure 5.7. We measured memory use for
what we consider a regular use case for our machine : 12 threads, with 2 streams.

In these tests, we need around 1570 MB for a data set with sequences of 150 bases,
and 2730 MB for sequences 250 bases long. We use less than 1/6th of our total available
memory with our worst case scenario. In particular, this allows to use an accelerator
with much less VRAM available if needed. Moreover,it leaves more memory to accelerate
other parts of the application.

We also measure the SM utilisation in percents with the nvidia-smi utility. We
log this utilisation during the program execution with a resolution of one measure per
second. Results are available for data set SRR150 for 1 and 2 streams in Figure 5.8 and
Figure 5.9 respectively.

We can notice several interesting points:

• SM use fluctuates noticeably when the GPU is actively used. While the mean is
around 70%, some peaks to 90% are present. Our GPU is not completely used,
but we already take the major part of its computing resources.

• Globally, the GPU stays active most of the time, so we are efficiently using its
computing power.

• SM utilisation is a bit lower with a single stream, which is logical: with two streams,
the GPU may have to compute both data sets at the same time when they overlap,
which leads to a higher SM use. Still, with 2 streams, the SM use is by no means
the double of when we use 1 stream: streams are rarely overlapping, meaning that
using 2 streams allows to use the resources more efficiently without saturating the
GPU.

• During the mapping, the GPU can be idle for short periods of time. Depending on
the data it has to process, it can be one second (in the beginning) up to 5 seconds
(at the end). These idle periods are moments where the CPU is still running the
seeding part. There is room to accelerate another part, for example seeding, on
the GPU: this could bring us close to saturation of the computing cores.

In the case of data set SRR250, results are available for one stream in Figure 5.10
and for two streams in Figure 5.11.

For this data set, the GPU is noticeably more active, as the SM utilisation is most
of the time above 80%. With two streams, it even reaches 100% use many times. Still,
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there are the same moments where the GPU goes idle for up to several seconds. These
moments could still be put to use for another part of the mapping process.
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(a) Total execution time for SSR150

(b) Speed-up for the whole program execution for SRR150

Figure 5.1: Program results for data set SRR150
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(a) Visible kernel execution time for SRR150

(b) Speed-up for the kernel execution for SRR150

Figure 5.2: Kernel results for data set SRR150
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(a) Total execution time for SSR250

(b) Speed-up for the whole program execution for SRR250

Figure 5.3: Program results for data set SRR250
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(a) Visible kernel execution time for SRR250

(b) Speed-up for the kernel execution for SRR250

Figure 5.4: Visible kernel execution for data set SRR250
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Figure 5.5: Execution time for 12 threads and different number of streams, data set
SRR150

Figure 5.6: Difference in the result with the mainline version of BWA
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Figure 5.7: Memory use for our two data sets on our testing machine

Figure 5.8: SM use for SRR150 with 1 stream on our testing machine
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Figure 5.9: SM use for SRR150 with 2 streams on our testing machine

Figure 5.10: SM use for SRR250 with 1 stream on our testing machine

Figure 5.11: SM use for SRR250 with 2 streams on our testing machine



Conclusions and
recommendations 6
In this chapter, we present the main conclusions of the thesis and reflect back on the
research questions defined in the thesis. We also discuss a number of recommendations
for future work.

6.1 Conclusion
This work presents how we addressed the challenge of accelerating time consuming ge-
nomics algorithms to make them more accessible for application in the field. The thesis
specifically focuses on BWA-MEM as one of the most widely used DNA read mapping
programs.

Below are the research questions we defined in the thesis and the answers we can
provide.

• How can we accelerate DNA alignment in an already existing program?

We chose an industry standard mapper, BWA-MEM, and we accelerated one of its
processing stages. The ”seed-extension” phase can be run in an accelerated fashion on
a dedicated hardware, the GPU. We integrated the library GASAL2 in BWA-MEM to
realise the acceleration. Still, we could not directly compute seed-extension as done in
the original BWA-MEM: the left and right parts were computed one after the other, and
starting with the previous total score (so, first the seed score is used to compute the
left part, then the score from the left alignment is used for the right part). Instead, we
compute both parts at the same time only using the seed score as starting score.

To produce a working piece of software, we had to implement multiple improvements
in GASAL2. We created a dedicated kernel for extension, copying BWA-MEM behaviour
that follows the Smith-Waterman algorithm, but able to start with any given starting
score. We also implemented an extensible memory structure for GASAL2 to adapt to an
unknown number of alignment with unpredictable lengths for each of them. Finally, we
instrumented both the new version bwa-gasal2 and the original BWA-MEM to be able
to log their execution time and compare them.

We started from the demonstrator GASE-GASAL2 (based on BWA-MEM) that we
ported to support C++ compilation before integrating the new GASAL2 version. It
features templates for generic functions and a parameters class. We implemented all the
aforementioned features to produce the current version of the software, bwa-gasal2.

• How much speed-up can we get from GPU acceleration?

We ran our solution on two data sets, with reads of 150 and 250 bases, named
SRR150 and SRR250 respectively. Depending on the data, in BWA-MEM, extension

55
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takes between 27% and 33% of the total time. This means that, depending on the
situation, we can reach a theoretical 1.37× and 1.50× speed-up.

We saw that on our test machine, parallel execution alone can provide an already
interesting speed-up. On 12 threads in SRR150, we reach 1.21× speed-up. But when
enabling overlapped execution with two CUDA streams, we can get a 1.28× speed-up,
which gets closer to the theoretical maximum of 1.37×. This is all the more visible with
data set SRR250 where the speed-up soars from 1.12× to 1.28×. We obtained a very
good acceleration, close to the theoretical maximum.

There are various reasons explaining the difference between achieved and maximum
speedup. First, the CPU has to wait to get the final result of a given pack of sequences
(it cannot start the next pack right away). Moreover, some overhead is introduced when
filling the data structure in GASAL2 on the host side, before copying them on the device.

• How close can the results with a different computing method be to the original
software?

Since the output is text-based, we compared them by logging them to text and using
the diff UNIX utility. For each sequence, the main alignment is reported, along with
secondary scores that are not always listed in the same order and can slightly differ
because of the “seed-only” paradigm.

When comparing the complete results from the SRR150 data set, we found a 11.23%
difference. This is a higher bound that includes non similar secondary score order.
This information is usually not important in downstream analysis. This is why we also
compared only using the main alignment and also discarding the low quality scores (lower
than 20). In this last case, the difference drops to 1.82%, so the two outputs are very
similar. We concluded that our solution produces acceptable results.

• How to ensure that the GPU resources are well used, while leaving more space if
needed for future evolution?

A GPU is well used when its computing resources have a high utilisation. Although
a single kernel execution from GASAL2 has a low utilisation (between 3% to 10%),
instantiating multiple CPU threads to launch more kernels at the same time allows us
to multiply this utilisation in a direct fashion. This way, we can reach 70% with peaks
at 90% of utilisation, which is a good use of resources.

On the contrary, a sane use of GPU VRAM would be not to use more memory
than what is necessary. Being frugal in memory can be useful if we want to align longer
sequences, as these take a lot of space. Also, it can prevent out-of-memory errors if other
parts were accelerated, or simply it could allow the program to run on a moderately-
sized accelerator. To this extent, we used extensible memory structures to store the DNA
strings, with a linked list structure with elements growing in size. This allows to allocate
more memory whenever needed, and since the linked list is re-used, we try to keep the
number of memory allocations to the minimum. With this, we could use around 20% of
the total memory of our accelerator for data set SRR150, or around 30% for SRR250.
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6.2 Future work
Seed-extension kernel can be further optimised. Any optimisation done at this level
could have serious repercussions on the total execution time. For example, one could
implement data packing on a 3-bit encoding, to save more memory and compute the
dynamic programming matrix by tiles of 10 × 10 bases. It would be interesting to see
whether this could bring a noticeable speed-up.

Originally, BWA-MEM is under GNU General Public License v3.0 and GASAL2 is
licenced under Apache 2.0 License. Because of the licence choice of BWA-MEM, projects
including it must follow the GPL v3.0, providing full source code disclosure. It follows
that bwa-gasal2 will get the same licence to respect BWA-MEM original rights; this
includes leaving the source open for anyone to see. It means that any volunteer can
contribute or fork the project to enlarge it, provided they ship it with the same licence.
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