

Delft University of Technology

Online optimization with costly and noisy measurements using random Fourier
expansions

Bliek, Laurens; Verstraete, Hans; Verhaegen, Michel; Wahls, Sander

DOI
10.1109/TNNLS.2016.2615134
Publication date
2016
Document Version
Accepted author manuscript
Published in
IEEE Transactions on Neural Networks and Learning Systems

Citation (APA)
Bliek, L., Verstraete, H., Verhaegen, M., & Wahls, S. (2016). Online optimization with costly and noisy
measurements using random Fourier expansions. IEEE Transactions on Neural Networks and Learning
Systems, 29 (2018)(1), 167-182. https://doi.org/10.1109/TNNLS.2016.2615134

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TNNLS.2016.2615134
https://doi.org/10.1109/TNNLS.2016.2615134

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. X, SEPTEMBER 20XX 1

Online Optimization with Costly and Noisy

Measurements using Random Fourier Expansions
Laurens Bliek∗, Hans R. G. W. Verstraete∗, Michel Verhaegen, Member, IEEE and Sander Wahls, Member, IEEE

Abstract—This paper analyzes DONE, an online optimization
algorithm that iteratively minimizes an unknown function based
on costly and noisy measurements. The algorithm maintains a
surrogate of the unknown function in the form of a random
Fourier expansion (RFE). The surrogate is updated whenever
a new measurement is available, and then used to determine
the next measurement point. The algorithm is comparable to
Bayesian optimization algorithms, but its computational complex-
ity per iteration does not depend on the number of measurements.
We derive several theoretical results that provide insight on how
the hyper-parameters of the algorithm should be chosen. The
algorithm is compared to a Bayesian optimization algorithm for
an analytic benchmark problem and three applications, namely,
optical coherence tomography, optical beam-forming network
tuning, and robot arm control. It is found that the DONE
algorithm is significantly faster than Bayesian optimization in
the discussed problems, while achieving a similar or better
performance.

Index Terms—derivative-free optimization, Bayesian optimiza-
tion, surrogate model, learning systems, adaptive optics

I. INTRODUCTION

MANY optimization algorithms use the derivative of an

objective function, but often this information is not

available in practice. Regularly, a closed form expression for

the objective function is not available and function evaluations

are costly. Examples are objective functions that rely on the

outcome of a simulation or an experiment. Approximating

derivatives with finite differences is costly in high-dimensional

problems, especially if the objective function is costly to

evaluate. More efficient algorithms for derivative-free opti-

mization (DFO) problems exist. Typically, in DFO algorithms

a model is used that can be optimized without making use

of the derivative of the underlying function [1], [2]. Some

examples of commonly used DFO algorithms are the simplex

method [3], NEWUOA [4], BOBYQA [5], and DIRECT [6].

Additionally, measurements of a practical problem are usually

corrupted by noise. Several techniques have been developed

to cope with a higher noise level and make better use of the

expensive objective functions evaluations. Filtering and pattern

search optimization algorithms such as implicit filtering [7]

and SID-PSM [8] can handle local minima resulting from high

frequency components. Bayesian optimization, also known as

sequential Kriging optimization, deals with heteroscedastic

noise and perturbations very well. One of the first and best

known Bayesian optimization algorithms is EGO [9]. Bayesian

∗Both authors contributed equally to this work. Corresponding authors:
l.bliek@tudelft.nl, h.r.g.w.verstraete@tudelft.nl.

All authors are with the Delft Center for Systems and Control, Delft
University of Technology, Mekelweg 2, 2628 CD, Delft, Netherlands.

optimization relies on a surrogate model that represents a

probability distribution of the unknown function under noise,

for example Gaussian processes or Student’s-t processes [10]–

[13]. In these processes different kernels and kernel learning

methods are used for the covariance function [14], [15]. The

surrogate model is used to decide where the next measurement

should be taken. New measurements are used to update the

surrogate model. Bayesian optimization has been successfully

used in various applications, including active user model-

ing and reinforcement learning [16], robotics [17], hyper-

parameter tuning [11], and optics [18].

Recently, the Data-based Online Nonlinear Extremum-

seeker (DONE) algorithm was proposed in [19]. It is similar

to Bayesian optimization, but simpler and faster. The DONE

algorithm uses random Fourier expansions [20] (RFEs) as a

surrogate model. The nature of the DONE algorithm makes the

understanding of the hyper-parameters easier. In RFE models

certain parameters are chosen randomly. In this paper, we

derive a close-to-optimal probability distribution for some of

these parameters. We also derive an upper bound for the

regularization parameter used in the training of the RFE model.

The advantages of the DONE algorithm are illustrated in

an analytic benchmark problem and three applications. We

numerically compare DONE to BayesOpt [13], a Bayesian

optimization library that was shown to outperform many

other similar libraries in [13]. The first application is optical

coherence tomography (OCT), a 3D imaging method based

on interference often used to image the human retina [19],

[21], [22]. The second application we consider is the tuning

of an optical beam-forming network (OBFN). OBFNs are

used in wireless communication systems to steer phased array

antennas in the desired direction by making use of positive

interference of synchronized signals [23]–[28]. The third ap-

plication is a robot arm of which the tip has to be directed to

a desired position [29].

This paper is organized as follows. Section II gives a short

overview and provides new theoretical insights on random

Fourier expansions, the surrogate model on which the DONE

algorithm is based. We have noticed a gap in the literature,

where approximation guarantuees are given for ideal, but

unknown RFE weights, while in practice RFE weights are

computed via linear least squares. We investigate several

properties of the ideal weights and combine these results with

existing knowledge of RFEs to obtain approximation guaran-

tees for least-square weights. Section III explains the DONE

algorithm. Theoretically optimal as well as more practical

ways to choose the hyper-parameters of this algorithm are

given in Section IV. In Section V the DONE algorithm and

Aceepted Author Manuscript

mailto:l.bliek@tudelft.nl
mailto:h.r.g.w.verstraete@tudelft.nl

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. X, SEPTEMBER 20XX 2

BayesOpt are compared for a benchmark problem and for the

three aforementioned applications. We conclude the paper in

Section VI.

II. RANDOM FOURIER EXPANSIONS

In this section, we will describe the surrogate model that

we will use for optimization. There is a plethora of black-

box modeling techniques to approximate a function from

measurements available in the literature, with neural networks,

kernel methods, and of course classic linear models probably

being the most popular [30]–[32]. In this paper, we use

random Fourier expansions (RFEs) [20] to model the unknown

function because they offer a unique mix of computational

efficiency, theoretical guarantees and ease of use that make

them ideal for online processing. While general neural net-

works are more expressive than random Fourier features, they

are difficult to use and come without theoretical guarantees.

Standard kernel methods suffer from high computational com-

plexity because the number of kernels equals the number of

measurements. RFEs have been originally introduced to reduce

the computational burden that comes with kernel methods, as

will be explained next [20], [33], [34].

Assume that we are provided N scalar measurements yi
taken at measurement points xi ∈ R

d as well as a kernel

k(xi,xj) that, in a certain sense, measures the closeness of

two measurement points. To train the kernel expansion

gKM (x) =
N∑

i=1

aik(x,xi), (1)

a linear system involving the kernel matrix [k(xi,xj)]i,j has

to be solved for the coefficients ai. The computational costs

of training and evaluating (1) grow cubicly and linearly in the

number of datapoints N , respectively. This can be prohibitive

for large values of N . We now explain how RFEs can be used

to reduce the complexity [20]. Assuming the kernel k is shift-

invariant and has Fourier transform p, it can be normalized

such that p is a probability distribution [20]. That is, we have

k(xi − xj) =

∫

Rd

p(ω)e−iωT (xi−xj)dω. (2)

We will use several trigonometric properties and the fact that

k is real to continue the derivation. This gives

k(xi − xj) =

∫

Rd

p(ω) cos(ωT (xi − xj))dω

=

∫

Rd

p(ω) cos(ωT (xi − xj))

+ p(ω)

∫ 2π

0

cos(ωT (xi + xj) + 2b)dbdω

=
1

2π

∫

Rd

p(ω)

∫ 2π

0

cos(ωT (xi − xj))

+ cos(ωT (xi + xj) + 2b)dbdω

=
1

2π

∫

Rd

p(ω)

∫ 2π

0

2 cos(ωTxi + b)

· cos(ωTxj + b)dbdω

= E[2 cos(ΩTxi +B) cos(ΩTxj +B)]

≈ 2

D

D∑

k=1

cos(ωT
k xi + bk) cos(ω

T
k xj + bk), (3)

if ωk are independent samples of the random variable Ω with

probability distribution function (p.d.f.) p, and bk ∈ [0, 2π]
are independent samples of the random variable B with a

uniform distribution. For ck =
∑N

i=1
2
Dai cos(ω

T
k xi + bk) we

thus have:

gKM (x) ≈
D∑

k=1

ck cos(ω
T
k x+ bk). (4)

Note that the number of coefficients D is now independent

of the number of measurements N . This is especially

advantageous in online applications where the number of

measurements N keeps increasing. We use the following

definition of a random Fourier expansion.

Definition 1. A Random Fourier Expansion (RFE) is a func-

tion of the form g : Rd → R,

g(x) =

D∑

k=1

ck cos(ω
T
k x+ bk), (5)

with D ∈ N, the bk being realizations of independent and

identically distributed (i.i.d.) uniformly distributed random

variables Bk on [0, 2π], and with the ωk ∈ R
d being

realizations of i.i.d. random vectors Ωk with an arbitrary

continuous p.d.f. pΩ. The Bk and the Ωk are assumed to be

mutually independent.

We finally remark that there are other approaches to reduce

the complexity of kernel methods and make them suitable for

online processing, which are mainly based on sparsity [35]–

[38]. However, these are much more difficult to tune than using

RFEs [34]. It is also possible to use other basis functions

instead of the cosine, but the cosine was among the top

performers in an exhaustive comparison with similar mod-

els [39]. Moreover, the parameters of the cosines have intuitive

interpretations in terms of the Fourier transform.

A. Ideal RFE Weights

In this section, we deal with the problem of fitting a RFE to

a given function f . We derive ideal but in practice unknown

weights c. We start with the case of infinitely many samples

and basis functions (see also [40], [41]), which corresponds

to turning the corresponding sums into integrals.

Theorem 1. Let f ∈ L2(Rd) be a real-valued function and

let

c̄(ω, b) =

{
1
π |f̂(ω)| cos(∠f̂(ω)− b), b ∈ [0, 2π],

0, otherwise.
(6)

Then, for all x ∈ R
d,

f(x) =
1

(2π)d

∫

Rd

∫ 2π

0

c̄(ω, b) cos(ωTx+ b)dbdω. (7)

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. X, SEPTEMBER 20XX 3

Here, |f̂ | and ∠f̂ denote the magnitude and phase of the

Fourier transform f̂(ω) =
∫

Rd f(x)e
−iωT

xdx. The sets L2

and L∞ denote the space of square integrable functions and

the space of all essentially bounded functions, respectively.

Proof. For b ∈ [0, 2π], we have

c̄(ω, b) =
1

π
|f̂(ω)| cos(∠f̂(ω)− b)

=
1

π
Re
{

f̂(ω)e−ib
}

. (8)

Using that f(x) is real, we find that

f(x) =Re

{
1

(2π)d

∫

Rd

f̂(ω)eiω
T
xdω

}

=Re

{
1

(2π)d

∫

Rd

(

f̂(ω)eiω
T
x
1

2π

∫ 2π

0

1db+

f̂(ω)e−iωT
x

∫ 2π

0

e−2ibdb

︸ ︷︷ ︸

=0

)

dω

}

=Re

{
1

π

1

(2π)d

∫

Rd

∫ 2π

0

f̂(ω)e−ib

1

2

[

ei(ω
T
x+b) + e−i(ωT

x+b)
]

dbdω

}

=Re

{
1

π

1

(2π)d

∫

Rd

∫ 2π

0

f̂(ω)e−ib cos(ωTx+ b)dbdω

}

(8)
=

1

(2π)d

∫

Rd

∫ 2π

0

c̄(ω, b) cos(ωTx+ b)dbdω. (9)

For b ∈ [0, 2π], we have another useful expression for the

ideal weights that is used later on in this section, namely

c̄(ω, b) =
1

π
Re
{

f̂(ω)e−ib
}

=
1

π
Re

{∫

Rd

f(x)e−i(ωT
x+b)dx

}

=
1

π

∫

Rd

f(x) cos(ωTx+ b)dx. (10)

The function c̄ in Theorem 1 is not unique. However, of

all functions c that satisfy (7), the given c̄ is the one with

minimum norm.

Theorem 2. Let c̄ be as in Theorem 1. If c̃ : Rd× [0, 2π] → R

satisfies

f(x) =
1

(2π)d

∫

Rd

∫ 2π

0

c̃(ω, b) cos(ωTx+ b)dbdω a.e.

(11)

then ||c̃||2L2 ≥ ||c̄||2L2 = (2π)d

π ||f ||2L2 , with equality if and only

if c̃ = c̄ in the L2 sense.

Proof. First, using Parseval’s theorem and
∫ 2π

0
cos(a−b)2db =

π for any real constant a, note that

||c̄||2L2 =

∫

Rd

∫ 2π

0

c̄(ω, b)2dbdω

(6)
=

∫

Rd

∫ 2π

0

1

π2
|f̂(ω)|2 cos(∠f̂(ω)− b)2dbdω

=

∫

Rd

1

π2
|f̂(ω)|2

∫ 2π

0

cos(∠f̂(ω)− b)2dbdω

=

∫

Rd

1

π
|f̂(ω)|2dω

=
(2π)d

π

∫

Rd

f(x)2dx =
(2π)d

π
||f ||2L2 . (12)

Assume that c̃(ω, b) = c̄(ω, b) + q(ω, b). Then we get

∫

Rd

f(x)2dx

(11)
=

∫

Rd

f(x)
1

(2π)d

∫

Rd

∫ 2π

0

c̃(ω, b) cos(ωTx+ b)dbdωdx

=
1

(2π)d

∫

Rd

∫ 2π

0

c̃(ω, b)

∫

Rd

f(x) cos(ωTx+ b)dxdbdω

(10)
=

π

(2π)d

∫

Rd

∫ 2π

0

c̃(ω, b)c̄(ω, b)dbdω

=
π

(2π)d

∫

Rd

∫ 2π

0

c̄(ω, b)2 + c̄(ω, b)q(ω, b)dbdω

(12)
=

∫

Rd

f(x)2dx+
π

(2π)d

∫

Rd

∫ 2π

0

c̄(ω, b)q(ω, b)dbdω.

(13)

Following the above equality we can conclude that
∫

Rd

∫ 2π

0
c̄(ω, b)q(ω, b)dbdω = 0. The following now holds:

||c̃||2L2 = ||c̄+ q||2L2

=

∫

Rd

∫ 2π

0

c̄(ω, b)2 + 2c̄(ω, b)q(ω, b) + q(ω, b)2dbdω

= ||c̄||2L2 + ||q||2L2 ≥ ||c̄||2L2 . (14)

Furthermore, equality holds if and only if ||q||L2 = 0. That

is, the minimum norm solution is unique in L2.

These results will be used to derive ideal weights for a RFE

with a finite number of basis functions as in Definition 1 by

sampling the weights in (6). We prove unbiasedness in the

following theorem, while variance properties are analyzed in

Appendix B.

Theorem 3. For any continuous p.d.f. pΩ with pΩ(ω) > 0 if

|f̂(ω)| > 0, the choice

Ck =
2

D(2π)d
|f̂(Ωk)|
pΩ(Ωk)

cos(∠f̂(Ωk)−Bk) (15)

makes the (stochastic) RFE G(x) =
∑D

k=1 Ck cos(Ω
T
k x+Bk)

an unbiased estimator, i.e., f(x) = E[G(x)] for any x ∈ R
d.

Proof. Using Theorem 1, we have

f(x) =
1

(2π)d

∫

Rd

∫ 2π

0

c̄(ω, b) cos(ωTx+ b)dbdω

= EΩ1,B1

[
1

(2π)dpB(B1)pΩ(Ω1)
c̄(Ω1, B1) cos(Ω

T
1 x+B1)

]

= EΩ1...D,B1...D

[
D∑

k=1

2πc̄(Ωk, Bk)

D(2π)dpΩ(Ωk)
cos(ΩT

k x+Bk)

]

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. X, SEPTEMBER 20XX 4

(6)
= E

[
D∑

k=1

2

D(2π)d
|f̂(Ωk)|
pΩ(Ωk)

cos(∠f̂(Ωk)−Bk)

cos(ΩT
k x+Bk)

]

= E [G(x)] . (16)

These ideal weights enjoy many other nice properties such

as infinity norm convergence [42]. In practice, however, a least

squares approach is used for a finite D. This is investigated

in the next subsection.

B. Convergence of the Least Squares Solution

The ideal weights c̄ depend on the Fourier transform of the

unknown function f that we wish to approximate. Of course,

this knowledge is not available in practice. We therefore

assume a finite number of measurement points x1, . . . ,xN that

have been drawn independently from a p.d.f. pX that is defined

on a compact set X ⊆ R
d, and corresponding measurements

y1, . . . , yN , with yn = f(xn) + ηn, where η1, . . . , ηN have

been drawn independently from a zero-mean normal distri-

bution with finite variance σ2
H . The input and noise terms are

assumed independent of each other. We determine the weights

ck by minimizing the squared error

JN (c) =

N∑

n=1

(

yn −
D∑

k=1

ck cos(ω
T
k xn + bk)

)2

+ λ

D∑

k=1

c2k

= ||yN −ANc||22 + λ||c||22. (17)

Here,

yN =
[
y1 · · · yN

]T
,

AN =






cos(ωT
1 x1 + b1) · · · cos(ωT

Dx1 + bD)
...

. . .
...

cos(ωT
1 xN + b1) · · · cos(ωT

DxN + bD)




 ,

(18)

and λ is a regularization parameter added to deal with noise,

over-fitting and ill-conditioning.

Since the parameters ωk, bk are drawn from continuous

probability distributions, only the weights ck need to be de-

termined, making the problem a linear least squares problem.

The unique minimizer of JN is

cN =
(
AT

NAN + λID×D

)−1
AT

NyN . (19)

The following theorem shows that RFEs whose coefficient

vector have been obtained through a least squares fit as in

(19) can approximate the function f arbitrarily well. Similar

results were given in [40]–[43], but we emphasize that these

convergence results did concern RFEs employing the ideal

coefficient vector given earlier in Theorem 3 that is unknown

in practice. Our theorem, in contrast, concerns the practically

relevant case where the coefficient vector has been obtained

through a least-squares fit to the data.

Theorem 4. The difference between the function f and the

RFE trained with linear least squares can become arbitrar-

ily small if enough measurements and basis functions are

used. More precisely, suppose that f ∈ L2 ∩ L∞ and that

sup
ω∈RD,b∈[0,2π]

∣
∣
∣

c̄(ω,b)
pΩ(ω)pB(b)

∣
∣
∣ < ∞. Then, for every ǫ > 0

and δ > 0, there exist constants N0 and D0 such that

∫

X

(

f(x)−
D∑

k=1

CNk cos(Ω
T
k x+Bk)

)2

pX(x)dx < ǫ

(20)

for all N ≥ N0, D ≥ D0, 0 < λ ≤ NΛ with probability

at least 1 − δ. Here, CNk is the k-th element of the random

vector corresponding to the weight vector given in (19), and

Λ ≥ 0 is the solution to
∣
∣
∣

∣
∣
∣

(
AT

NAN +NΛ ID×D

)−1
AT

NyN

∣
∣
∣

∣
∣
∣

2

2
=

D∑

k=1

(
c̄(ωk, bk)

(2π)dDpΩ(ωk)pB(bk)

)2

. (21)

The proof of this theorem is given in Appendix A. In

Section IV-B we show how to obtain Λ in practice.

III. ONLINE OPTIMIZATION ALGORITHM

In this section, we will investigate the DONE algorithm,

which locates a minimum of an unknown function f based

on noisy evaluations of this function. Each evaluation, or

measurement, is used to update a RFE model of the unknown

function, based on which the next measurement point is

determined. Updating this model has a constant computation

time of order O(D2) per iteration, with D being the number

of basis functions. We emphasize that this is in stark contrast

to Bayesian optimization algorithms, where the computational

cost of adding a new measurement increases with the total

number of measurements so far. We also remark that the

DONE algorithm operates online because the model is updated

after each measurement. The advantage over offline methods,

in which first all measurements are taken and only then

processed, is that the number of required measurements is

usually lower as measurement points are chosen adaptively.

A. Recursive Least Squares Approach for the Weights

In the online scenario, a new measurement yn taken at the

point xn becomes available at each iteration n = 1, 2, . . .
These are used to update the RFE. Let an = [cos(ωT

1 xn +
b1) · · · cos(ωT

Dxn+bD)], then we aim to find the vector of RFE

weights by minimizing the regularized mean square error

Jn(c) =
n∑

i=1

(yi − aic)
2
+ λ||c||22. (22)

Let cn be the minimum of Jn,

cn = argmin
c

Jn(c). (23)

Assuming we have found cn, we would like to use this

information to find cn+1 without solving (23) again. The

recursive least squares algorithm is a computationally efficient

method that determines cn+1 from cn as follows [44, Sec. 21]:

γn = 1/(1 + anPn−1a
T
n), (24)

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. X, SEPTEMBER 20XX 5

gn = γnPn−1a
T
n , (25)

cn = cn−1 + gn(yn − ancn−1), (26)

Pn = Pn−1 − gng
T
n /γn, (27)

with initialization c0 = 0, P0 = λ−1ID×D.

We implemented a square-root version of the above al-

gorithm, also known as the inverse QR algorithm [44, Sec.

21], which is known to be especially numerically reliable.

Instead of performing the update rules (24)-(27) explicitly, we

find a rotation matrix Θn that lower triangularizes the upper

triangular matrix in Eq. (28) below and generates a post-array

with positive diagonal entries:
[

1 anP
1/2
n−1

0 P
1/2
n−1

]

Θn =

[

γ
−1/2
n 0

gnγ
−1/2
n P

1/2
n

]

. (28)

The rotation matrix Θn can be found by performing a QR

decomposition of the transpose of the matrix on the left hand

side of (28), or by the procedure explained in [44, Sec. 21].

The computational complexity of this update is O(D2) per

iteration.

B. DONE Algorithm

We now explain the different steps of the DONE algorithm.

The DONE algorithm is used to iteratively find a minimum

of a function f ∈ L2 on a compact set X ⊆ R
d by

updating a RFE g(x) =
∑D

k=1 ck cos(ω
T
k x + bk) at each

new measurement, and using this RFE as a surrogate of f
for optimization. It is assumed that the function f is unknown

and only measurements perturbed by noise can be obtained:

yn = f(xn) + ηn. The algorithm consists of four steps

that are repeated for each new measurement: 1) take a new

measurement, 2) update the RFE, 3) find a minimum of the

RFE, 4) choose a new measurement point. We now explain

each step in more detail.

Initialization

Before running the algorithm, an initial starting point x1 ∈
X and the number of basis functions D have to be chosen. The

parameters ωk and bk of the RFE expansion are drawn from

continuous probability distributions as defined in Definition 1.

The p.d.f. pΩ and the regularization parameter λ have to be

chosen a priori as well. Practical ways for choosing the hyper-

parameters will be discussed later in Sect. IV. These hyper-

parameters stay fixed over the whole duration of the algorithm.

Let P
1/2
0 = λ−1/2ID×D, and n = 1.

Step 1: New measurement

Unlike in Section II-B, it is assumed that measurements are

taken in a recursive fashion. At the start of iteration n, a new

measurement yn = f(xn) + ηn is taken at the point xn.

Step 2: Update the RFE

As explained in Section III-A, we update the RFE model

g(x) =
∑D

k=1 ck cos(ω
T
k x + bk) based on the new measure-

ment from Step 1 by using the inverse QR algorithm given in

(24)-(27). Only the weights ck are updated. The parameters

ωk and bk stay fixed through-out the whole algorithm.

Step 3: Optimization on the RFE

After updating the RFE, an iterative optimization algorithm

is used to find a (possibly local) minimum x̂n of the RFE.

All derivatives of the RFE can easily be calculated. Using an

analytic expression of the Jacobian will increase the perfor-

mance of the optimization method used in this step, while not

requiring extra measurements of f as in the finite difference

method. For functions that are costly to evaluate, this is a big

advantage. The method used in the proposed algorithm is an L-

BFGS method [45], [46]. Other optimization methods can also

be used. The initial guess for the optimization is the projection

of the current measurement point plus a random perturbation:

xinit = PX (xn + ζn), (29)

where PX is the projection onto X . The random perturbation

prevents the optimization algorithm from starting exactly in the

point where the model was trained. Increasing its value will

increase the exploration capabilities of the DONE algorithm

but might slow down convergence. In the proposed algorithm,

ζn is chosen to be white Gaussian noise.

Step 4: Choose a new measurement point

The minimum found in the previous step is used to update

the RFE again. A perturbation is added to the current mini-

mum to avoid the algorithm getting trapped unnecessarily in

insignificant local minima or saddle points [47]:

xn+1 = PX (x̂n + ξn). (30)

The random perturbations can be seen as an exploration

strategy and are again chosen to be white Gaussian noise. In-

creasing their variance σξ increases the exploration capabilities

of the DONE algorithm but might slow down convergence. In

practice, we typically use the same distribution for ξ and ζ.

Finally, the algorithm increases n and returns to Step 1.

The full algorithm is shown below in Algorithm 1 for the

case X = [lb, ub]d.

Algorithm 1 DONE Algorithm

1: procedure DONE(f,x1, N, lb, ub,D, λ, σζ , σξ)

2: Draw ω1 . . .ωD from pΩ independently.

3: Draw b1 . . . bD from Uniform(0, 2π) independently.

4: P
1/2
0 = λ−1/2ID×D

5: c0 = [0 . . . 0]T

6: x̂0 = x1

7: for n = 1, 2, 3, . . . , N do

8: an = [cos(ωT
1 xn + b1) · · · cos(ωT

Dxn + bD)]
9: yn = f(xn) + ηn

10: g(x) = updateRFE(cn−1,P
1/2
n−1,an, yn)

11: Draw ζn from N (0, σ2
ζId×d).

12: xinit = max(min(xn + ζn, ub), lb)
13: [x̂n, ĝn] = L-BFGS(g(x),xinit, lb, ub)
14: Draw ξn from N (0, σ2

ξId×d).
15: xn+1 = max(min(x̂n + ξn, ub), lb)

16: return x̂n

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. X, SEPTEMBER 20XX 6

Algorithm 2 updateRFE

1: procedure UPDATERFE(cn−1,P
1/2
n−1,an, yn)

2: Retrieve gnγ
−1/2
n , γ

−1/2
n and P

1/2
n from (28)

3: cn = cn−1 + gn(yn − ancn−1)
4: g(x) = [cos(ωT

1 x+ b1) · · · cos(ωT
Dx+ bD)]cn

5: return g(x)

IV. CHOICE OF HYPER-PARAMETERS

In this section, we will analyze the influence of the hyper-

parameters of the DONE algorithm and, based on these results,

provide practical ways of choosing them. The performance of

DONE depends on the following hyper-parameters:

• number of basis functions D,

• p.d.f. pΩ,

• regularization parameter λ,

• exploration parameters σζ and σξ.

The influence of D is straight-forward: increasing D will

lead to a better performance (a better RFE fit) of the DONE

algorithm at the cost of more computation time. Hence, D
should be chosen high enough to get a good approximation, but

not too high to avoid unnecessarily high computation times.

It should be noted that D does not need to be very precise.

Over-fitting should not be a concern for this parameter since

we make use of regularization. The exploration parameters

determine the trade-off between exploration and exploitation,

similar to the use of the acquisition function in Bayesian

optimization [15], [16]. The parameter σζ influences the

exploration of the RFE surrogate in Step 3 of the DONE

algorithm, while σξ determines exploration of the original

function. Assuming both to be close to each other, σζ and

σξ are usually chosen to be equal. If information about local

optima of the RFE surrogate or of the original function

is available, this could be used to determine good values

for these hyper-parameters. Alternatively, similar to Bayesian

optimization the expected improvement could be used for that

purpose, but this remains for future work. The focus of this

section will be on choosing pΩ and λ.

A. Probability Distribution of Frequencies

Recall the parameters ωk and bk from Definition 1, which

are obtained by sampling independently from the continuous

probability distributions pΩ and pB = Uniform(0, 2π), re-

spectively. In the following, we will investigate the first and

second order moments of the RFE and try to find a distribution

pΩ that minimizes the variance of the RFE.

Unfortunately, as shown in Theorem 7 in Appendix B, it

turns out that the optimal p.d.f. is

p∗Ω(ω) =
|f̂(ω)|

√

cos(2∠f̂(ω) + 2ωTx) + 2

∫

Rd |f̂(ω̃)|
√

cos(2∠f̂(ω̃) + 2ω̃Tx) + 2dω̃
. (31)

This distribution depends on the input x and both the phase

and magnitude of the Fourier transform of f . But if both |f̂ |
and ∠f̂ were known, then the function f itself would be

known, and standard optimization algorithms could be used

directly. Furthermore, we would like to use a p.d.f. for ωk

that does not depend on the input x, since the ωk parameters

are chosen independently from the input in the initialization

step of the algorithm.

In calibration problems, the objective function f suffers

from an unknown offset, f(x) = f̃(x + ∆). This unknown

offset does not change the magnitude in the Fourier domain,

but it does change the phase. Since the phase is thus unknown,

we choose a uniform distribution for pB such that bk ∈ [0, 2π].
However, the magnitude |f̂ | can be measured in this case.

Section V-B describes an example of such a problem. We will

now derive a way to choose pΩ for calibration problems.

In order to get a close to optimal p.d.f. for ωk that is

independent of the input x and of the phase ∠f̂ of the Fourier

transform of f , we look at a complex generalization of the

RFE. In this complex problem, it turns out we can circumvent

the disadvantages mentioned above by using a p.d.f. that

depends only on |f̂ |.
Theorem 5. Let G̃(x) =

∑D
k=1 C̃ke

iΩT
k x+Bk , with Ωk being

i.i.d. random vectors with a continuous p.d.f. p̃Ω over R
d that

satisfies p̃Ωk
(ω) > 0 if |f̂(ω)| > 0, and Bk being random

variables with uniform distribution from [0, 2π]. Then G̃(x) is

an unbiased estimator of f(x) for all x ∈ R
d if

C̃k =
f̂(Ωk)e

−iBk

D(2π)dp̃Ω(Ωk)
. (32)

For this choice of C̃k, the variance of G̃(x) is minimal if

p̃Ω(ω) =
|f̂(ω)|

∫

Rd |f̂(ω̃)|dω̃
, (33)

giving a variance of

Var[G̃(x)] =
1

D(2π)2d

(∫

Rd

|f̂(ω)|dω
)2

− f(x)2.

(34)

Proof. The unbiasedness follows directly from the Fourier

inversion theorem,

E

[

G̃(x)
]

=

D∑

k=1

∫

Rd

∫ 2π

0

f̂(ωk)e
−ibkeiω

T
k x+bk

D(2π)dp̃Ω(ωk)2π
dbkp̃Ω(ωk)dωk

= D

∫

Rd

∫ 2π

0

f̂(ω)e−ib

D(2π)dp̃Ω(ω)
eiω

T
x+b 1

2π
dbp̃Ω(ω)dω

= D

∫

Rd

f̂(ω)

D(2π)dp̃Ω(ω)
eiω

T
xp̃Ω(ω)

∫ 2π

0

1

2π
dbdω

=
1

(2π)d

∫

Rd

f̂(ω)eiω
T
xdω

= f(x). (35)

The proof of minimum variance is similar to the proof of [48,

Thm. 4.3.1].

Note that the coefficients C̃k can be complex in this case.

Next, we show that the optimal p.d.f. for a complex RFE, p̃Ω,

is still close-to-optimal (in terms of the second moment) when

used in the real RFE from Definition 1.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. X, SEPTEMBER 20XX 7

Theorem 6. Let p̃Ω be as in (33) and let G with weights Ck

be as in Theorem 3. Let P be the set of probability distribution

functions for Ωk that are positive when |f̂(ω)| > 0. Then, we

have

Ep̃Ω,pB
[G(x)2] ≤

√
3 min

pΩ∈P
EpΩ,pB

[G(x)2]. (36)

The proof is given in Appendix B. We now discuss how to

choose pΩ in practice.

If no information of |f̂ | is available, the standard approach

of choosing pΩ as a zero-mean normal distribution can be

used. The variance σ2 is an important hyper-parameter in this

case, and any method of hyper-parameter tuning can be used to

find it. However, most hyper-parameter optimization methods

are computationally expensive because they require running

the whole algorithm multiple times. In the case that |f̂ | is

not exactly known, but some information about it is available

(because it can be estimated or measured for example), this

can be circumvented. The variance σ2 can simply be chosen

in such a way that pΩ most resembles the estimate for |f̂ |,
using standard optimization techniques or by doing this by

hand. In this approach, it is not necessary to run the algorithm

at all, which is a big advantage compared to most hyper-

parameter tuning methods. All of this leads to a rule of thumb

for choosing pΩ as given in Algorithm 3.

Algorithm 3 Rule of thumb for choosing pω

1: if |f̂ | is known exactly then

2: Set pΩ = |f̂ |/
∫
|f̂(ω)|dω.

3: else

4: Measure or estimate |f̂ |.
5: Determine σ2 for which the pdf of N (0, σ2Id×d) is

close in shape to |f̂ |/
∫
|f̂(ω)|dω.

6: Set pΩ = N (0, σ2Id×d).

B. Upper Bound on the Regularization Parameter

The regularization parameter λ in the performance criterion

(17) is used to prevent under- or over-fitting of the RFE under

noisy conditions or when dealing with few measurements.

Theorem 4 guarantees the convergence of the least squares

solution only if the regularization parameter satisfies λ ≤ NΛ,

where N is the total number of samples and Λ is defined in

(21). Here we will provide a method to estimate Λ.

During the proof of Theorem 4, it was shown that the upper

bound Λ corresponds to the λ that satisfies
∣
∣
∣

∣
∣
∣

(
AT

NAN +Nλ ID×D

)−1
AT

NyN

∣
∣
∣

∣
∣
∣

2

2

=

D∑

k=1

(
c̄(ωk, bk)

(2π)dDpΩ(ωk)pB(bk)

)2

= M2. (37)

The left-hand side in this equation is easily evaluated for

different values of λ. Thus, in order to estimate Λ, all we

need is an approximation of the unknown right hand M2.

Like in Section IV-A, it is assumed that no information

about ∠f̂ is available, but that |f̂ | can be measured or

estimated. Under the assumptions that D is large and that pΩ

is a good approximation of p̃Ω = |f̂(ω)|/
∫

Rd |f̂(ω)|dω as in

Algorithm 3, we obtain the following approximation of M :

M =
2

(2π)d

√
√
√
√ 1

D2

D∑

k=1

(

|f̂(ωk)|
pΩ(ωk)

cos(∠f̂(ωk)− bk)

)2

≈ 2

(2π)d

√
√
√
√
√

1

D
E





(

|f̂(Ω1)|
pΩ(Ω1)

cos(∠f̂(Ω1)−B1)

)2




=
2

(2π)d

√

1

2πD

∫

Rd

∫ 2π

0

|f̂(ω)|2
pΩ(ω)

cos2(∠f̂(ω)− b)dbdω

=

√
2

(2π)d
√
D

√
∫

Rd

|f̂(ω)|2
pΩ(ω)

dω

≈
√
2

(2π)d
√
D

√
∫

Rd

|f̂(ω)|2
p̃Ω(ω)

dω

=

√
2

(2π)d
√
D

∫

|f̂(ω)|dω = Ma. (38)

The squared cosine was removed as in Eq. (12). Using the

exact value or an estimate of
∫

Rd |f̂(ω)|dω as in Algorithm 3

to determine Ma, we calculate the left-hand in (37) for

multiple values of Λ and take the value for which it is closest

to M2
a . The procedure is summarized in Algorithm 4.

Algorithm 4 Rule of thumb for finding an estimate of Λ

1: Run Algorithm 3 to get
∫

Rd |f̂(ω)|dω.

2: Take N measurements to get AN and yN .

3: Determine Λ for which the left-hand side of (37) is close

to M2
a = 2

(2π)2dD

(∫
|f̂(ω)|dω

)2

.

V. NUMERICAL EXAMPLES

In this section, we compare the DONE algorithm to the

Bayesian optimization library BayesOpt [13] in several nu-

merical examples.

A. Analytic Benchmark Problem: Camelback Function

The camelback function

f(x) =

(

4− 2.1x2
1 +

x4
1

3

)

x2
1 + x1x2 +

(
−4 + 4x2

2

)
x2
2,

(39)

where x = [x1, x2] ∈ [−2, 2] × [−1, 1], is a standard

test function with two global minima and two local min-

ima. The locations of the global minima are approximately

(0.0898,−0.7126) and (−0.0898, 0.7126) with an approxi-

mate function value of −1.0316. We determined the hyper-

parameters for DONE on this test function as follows. First,

we computed the Fourier transform of the function. We then

fitted a function h(ω) = C
σ
√
2π

e−
ω

2

2σ2 to the magnitude of the

Fourier transform in both directions. This was done by trial

and error, giving a value of σ = 10. To validate, two RFEs

were fit to the original function using a normal distribution

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. X, SEPTEMBER 20XX 8

with standard deviation σ = 10 (good fit) and σ = 0.1 (bad

fit) for ωk, using the least squares approach from Section II-B.

Here, we used N = 1000 measurements sampled uniformly

from the input domain, the number of basis functions D was

set to 500, and a regularization parameter of λ = 10−10 was

used. The small value for λ still works well in practice because

the function f does not contain noise.

Let g(x) denote the value of the trained RFE at point x.

We investigated the root mean squared error (RMSE)

RMSE =

√
√
√
√ 1

N

N∑

n=1

(f(xn)− g(xn))2, (40)

for the two stated values of σ. The good fit gave a RMSE

of 5.5348 · 10−6, while the bad fit gave a RMSE of 0.2321,

which shows the big impact of this hyper-parameter on the

least squares fit.

We also looked at the difference between using the real

RFE from Definition 1 and the complex RFE from Theo-

rem 5, for σ = 10, and for different values of D (D ∈
{10, 20, 40, 80, 160, 320, 640, 1280}). Fig. 1 shows the mean

and standard deviation of the RMSE over 100 runs. We see

that the real RFE indeed performs similar to the complex RFE

as predicted by Theorem 8 in Appendix B.

10 1 10 2 10 3

Number of basis functions

10 -8

10 -6

10 -4

10 -2

10 0

10 2

Mean (real)

Mean (complex)

Std (real)

Std (complex)

Fig. 1. Mean and standard deviation of the root mean square error for a real
and a complex RFE over 100 runs.

Using the hyper-parameters σ = 10 and λ = 10−10, we also

performed 10 runs of the DONE algorithm and compared it to

reproduced results from [13, Table 1] (method “BayesOpt1”).

The number of basis functions D was set to 500, one of

the smallest values with a RMSE of below 10−5 according

to Fig. 1, and the initial guess was chosen randomly. The

exploration parameters σζ and σξ were set to 0.01. The

resulting distance to the true minimum and the computation

time in seconds (with their standard deviations) for 50 and

100 measurements can be found in Table I. As in [13], the

computation time for BayesOpt was only shown for 100
samples and the accuracy below 10−5 was not shown. It can be

seen that the DONE algorithm is several orders of magnitude

more accurate and about 5 times faster when compared to

BayesOpt for this problem.

TABLE I
DONE VS BAYESOPT ON THE CAMELBACK FUNCTION

Dist. to min. (50 samp.) Time (50 samp.)

DONE 2.1812 · 10−9 (8.3882 · 10−9) 0.0493 (0.0015)

BayesOpt 0.0021 (0.0044) -

Dist. to min. (100 samp.) Time (100 samp.)

DONE 1.1980 · 10−9 (5.2133 · 10−9) 0.0683 (0.0019)

BayesOpt < 1 · 10−5 (< 1 · 10−5) 0.3049 (0.0563)

B. Optical Coherence Tomography

Optical coherence tomography (OCT) is a low-coherence

interferometry imaging technique used for making three-

dimensional images of a sample. The quality and resolution of

images is reduced by optical wavefront aberrations caused by

the medium, e.g., the human cornea when imaging the retina.

These aberrations can be removed by using active components

such as deformable mirrors in combination with optimization

algorithms [19], [22]. The arguments of the optimization can

be the voltages of the deformable mirror or a mapping of

these voltages to other coefficients such as the coefficients

of Zernike polynomials. The intensity of the image at a

certain depth is then maximized to remove as much of the

aberrations as possible. In [19] it was shown experimentally

that the DONE algorithm greatly outperforms other derivative-

free algorithms in final root mean square (RMS) wavefront

error and image quality. Here, we numerically compare the

DONE algorithm to BayesOpt [13]. The numerical results are

obtained by simulating the OCT transfer function as described

in [49], [50] and maximizing the OCT signal. The input

dimension for this example is three. Three Zernike aberrations

are considered, namely the defocus and two astigmatisms.

These are generally the largest optical wavefront aberrations in

the human eye. The noise of a real OCT signal is approximated

by adding Gaussian white noise with a standard deviation of

0.01. The results are shown in Fig. 2. For the DONE algorithm

the same parameters are used as described in [19], only λ is

chosen to be equal to 3. The number of cosines D = 1000 is

chosen as large as possible such that the computation time still

remains around 1 ms. This is sufficiently fast to keep up with

modern OCT B-scan acquisition and processing rates. The

DONE algorithm is compared to BayesOpt with the default

parameters and to BayesOpt with only one instead of 10
prior measurements, the latter is referred to as BayesOpt-1

init. Other values for the parameters of BayesOpt, obtained

with trial and error, did not result in a significant performance

increase. To use the BayesOpt algorithm, the inputs had to be

normalized between 0 and 1. For each input aberration, the

region -0.45 µm to 0.45 µm was scaled to the region 0 to

1. The results for BayesOpt and DONE are very similar. The

mean error of the DONE algorithm is slightly lower than the

BayesOpt algorithm. However, the total average computation

time for the DONE algorithm was 93 ms, while the total

average computation time of Bayesopt was 1019 ms.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. X, SEPTEMBER 20XX 9

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
e
a
n
R
M

S
w
a
v
e
fr
o
n
t
e
rr
o
r
[µ
m
]

Iteration number

BayesOpt

BayesOpt-1 init

DONE

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

BayesOpt BayesOpt-1 init DONE

B
o
x
p
lo
t
F
in
a
l
R
M

S
w
a
v
e
fr
o
n
t
e
rr
o
rs

[µ
m
]

(a)

(b)

Fig. 2. (a) The RMS wavefront error of DONE and BayesOpt averaged over
100 simulations versus the number of iterations. (b) A boxplot of 100 final
RMS wavefront errors after 100 iterations for DONE and BayesOpt.On each
box, the central line is the median, the edges of the box are the 25th and
75th percentiles, and the whiskers extend to the most extreme data points not
considered outliers. Outliers are plotted individually.

C. Tuning of an Optical Beam-forming Network

In wireless communication systems, optical beam-forming

networks (OBFNs) can be used to steer the reception or

transmission angle of a phased array antenna [23] in the

desired direction. In the case of reception, the signals that

arrive at the different antenna elements of the phased array

are combined in such a way that positive interference of the

signals occurs only in a specific direction. A device based

on optical ring resonators [24] (ORRs) that can perform

this signal processing technique in the optical domain was

proposed in [25]. This OBFN can provide accurate control of

the reception angle in broadband wireless receivers.

To achieve a maximal signal-to-noise ratio (SNR), the actu-

ators in the OBFN need to be adapted according to the desired

group delay of each OBFN path, which can be calculated from

the desired reception angle. Each ORR is controlled by two

heaters that influence its group delay, however the relation

between heater voltage and group delay is nonlinear. Even if

the desired group delay is available, controlling the OBFN

comes down to solving a nonlinear optimization problem.

Furthermore, the physical model of the OBFN can become

quite complex if many ORRs are used, and the models are

prone to model inaccuracies. Therefore, a black-box approach

like in the DONE algorithm could help in the tuning of the

OBFN. Preliminary results using RFEs in an offline fashion

on this application can be found in [28]. Here, we demonstrate

the advantage of online processing in terms of performance by

using DONE instead of the offline algorithm in [28].

An OBFN simulation based on the same physical models

as in [28] will be used in this section, with the following

differences: 1) the implementation is done in C++; 2) ORR

properties are equal for each ORR; 3) heater voltages with

offset and crosstalk [27, Appendix B] have been implemented;

4) a small region outside the bandwidth of interest has a

desired group delay of 0; 5) an 8 × 1 OBFN with 12 ORRs

is considered; 6) the standard deviation of the measurement

noise was set to 7.5 · 10−3. The input of the simulation is

the normalized heater voltage for each ORR, and the output

is the corresponding mean square error of the difference

between OBFN path group delays and desired delays. The

simulation contains 24 heaters (two for each ORR, namely

one for the phase shift and one for the coupling constant),

making the problem 24-dimensional. Each heater influences

the delay properties of the corresponding ORR, and together

they influence the OBFN path group delays.

The DONE algorithm was used on this simulation to find

the optimal heater voltages. The number of basis functions

was D = 6000, which was the lowest number that gave an

adequate performance. The p.d.f. pΩ was a normal distribution

with variance 0.5. The regularization parameter was λ = 0.1.

The exploration parameters were σζ = σξ = 0.01. In total,

3000 measurements were taken.

Just like in the previous application, the DONE algo-

rithm was compared to the Bayesian optimization library

BayesOpt [13]. The same simulation was used in both al-

gorithms, and BayesOpt also had 3000 function evaluations

available. The other parameters for BayesOpt were set to their

default values, except for the noise parameter which was set to

0.1 after calculating the influence of the measurement noise

on the objective function. Also, in-between hyper-parameter

optimization was turned off after noticing it did not influence

the results while being very time-consuming.

The results for both algorithms are shown in Fig. 3. The

found optimum at each iteration is shown for the two al-

gorithms. For DONE, the mean of 10 runs is shown, while

for BayesOpt only one run is shown because of the much

longer computation time. The dotted line represents an offline

approach: it is the average of 10 runs of a similar procedure

as in [28], where a RFE with the same hyper-parameters

as in DONE was fitted to 3000 random measurements and

then optimized. The figure clearly shows the advantage of

the online approach: because measurements are only taken in

regions where the objective function is low, the RFE model

can become very accurate in this region. The figure also shows

that DONE outperforms BayesOpt for this application in terms

of accuracy. On top of that, the total computation time shows

a big improvement: one run of the DONE algorithm took less

than 2 minutes, while one run of BayesOpt took 5800 minutes.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. X, SEPTEMBER 20XX 10

The big difference in computation time for the OBFN

application can be explained by looking at the total number

of measurements N . Even though the input dimension is high

compared to the other problems, N is the main parameter

that causes BayesOpt to slow down for a large number of

measurements. This is because the models used in Bayesian

optimization typically depend on the kernel matrix of all

samples, which will increase in size each iteration. The run-

time for one iteration of the DONE algorithm is, in contrast,

independent of the number of previous measurements.

Iteration number
0 500 1000 1500 2000 2500 3000 3500

M
S
E

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

BayesOpt

DONE

Offline RFE

Fig. 3. The mean square error of DONE and BayesOpt applied to the OBFN
application, plotted versus the number of iterations. For DONE, the values are
averaged over 10 runs. For BayesOpt only 1 run is shown. The dotted line is
the result of fitting a RFE using 3000 random measurements and optimizing
that RFE, averaged over 10 runs.

D. Robot Arm Movement

The previous two examples have illustrated how the DONE

algorithm outperforms BayesOpt in terms of speed (both OCT

and OFBN) and how its online processing scheme reduces the

number of required measurements compared to offline process-

ing (OFBN), respectively. The dimensions in both problems

were three and 27, respectively, which is still relatively modest.

To illustrate that DONE also works in higher dimensions, we

will now consider a toy example from robotics. The following

model of a three-link-planar robot, which has been adapted

from [29], is considered:

ai(k) = ui(k) + sin



π/180

i∑

j=1

αj(k − 1)



 · 9.8 · 0.05,

(41)

vi(k) = vi(k − 1) + ai(k), (42)

αi(k) = αi(k − 1) + vi(k), (43)

x(k) =

3∑

j=1

lj cos



π/2 + π/180

i∑

j=1

αj(k)



 , (44)

y(k) =
3∑

j=1

lj sin



π/2 + π/180
i∑

j=1

αj(k)



 . (45)

Here, αi(k) represents the angle in degrees of link i at time

step k, vi(k) and ai(k) are the first and second derivative of

the angles, ui(k) ∈ [−1, 1] is the control input, x(k) and y(k)
denote the position of the tip of the arm, and l1 = l2 = 8.625
and l3 = 6.125 are the lengths of the links. The variables

are initialized as ai(0) = vi(0) = αi(0) = 0 for i = 1, 2, 3.

We use the DONE algorithm to design a sequence of control

inputs ui(1), . . . , ui(50) such that the distance between the

tip of the arm and a fixed target at location (6.96, 12.66) at

the 50-th time step is minimized. The input for the DONE

algorithm is thus a vector containing ui(k) for i = 1, 2, 3 and

k = 1, . . . , 50. This makes the problem 150-dimensional. The

output is the distance between the tip and the target at the

50-th time step. The initial guess for the algorithm was set to

a random control sequence with a uniform distribution over

the set [−1, 1] for each robot arm i. We would like to stress

that this example has been chosen for its high-dimensional

input. We do not consider this approach a serious contender

for specialized control methods in robotics.

The hyper-parameters for the DONE algorithm were chosen

as follows. The number of basis functions was D = 3000,

which was the lowest number that gave consistent results. The

regularization parameter was λ = 10−3. The p.d.f. pΩ was set

to a normal distribution with variance one. The exploration

parameters were set to σζ = σξ = 5 · 10−5. The number of

measurements N was set to 10000.

No comparison with other algorithms has been made for this

application. The computation time of the Bayesian optimiza-

tion algorithm scales with the number of measurements and

would be too long with 10000 measurements, as can be seen

in Table II. Algorithms like reinforcement learning use other

principles, hence no comparison is given. Our main purpose

with this application is to demonstrate the applicability of

the DONE algorithm to high-dimensional problems. Figure 4

0 2000 4000 6000 8000 10000
Iteration number

10 -2

10 0

10 2

D
is
ta
n
ce

to
ta
rg
et

Fig. 4. The mean distance to target for the robot arm at time step 50, after
minimizing this distance with DONE, plotted versus the number of iterations,
averaged over 10 runs.

shows the distance to the target at time step 50 for different

iterations of the DONE algorithm, averaged over 10 runs with

different initial guesses. The control sequences converge to

a sequence for which the robot arm goes to the target, i.e.,

DONE has successfully been applied to a problem with a

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. X, SEPTEMBER 20XX 11

high input dimension. The number of basis functions required

did not increase when compared to the other applications in

this paper, although more measurements were required. The

computation time for this example and the other examples is

shown in Table II.

TABLE II
COMPUTATION TIME: DONE VS BAYESOPT

Problem Method Input dim. N D Time (s)

Camelback
DONE 2 100 50 0.0683

BayesOpt 2 100 - 0.3049

OCT
DONE 3 100 1000 0.093

BayesOpt 3 100 - 1.019

OBFN
DONE 24 3000 6000 99.7

BayesOpt 24 3000 - 3.48 · 105

Robot arm DONE 150 10000 3000 99.1

VI. CONCLUSIONS

We have analyzed an online optimization algorithm called

DONE that is used to find the minimum of a function

using measurements that are costly and corrupted by noise.

DONE maintains a surrogate model in the form of a random

Fourier expansion (RFE), which is updated whenever a new

measurement is available, and minimizes this surrogate with

standard derivative-based methods. This allows to measure

only in regions of interest, reducing the overall number of

measurements required. The DONE algorithm is comparable

to Bayesian optimization algorithms, but it has the distinctive

advantage that the computational complexity of one iteration

does not grow with the number of measurements that have

already been taken.

As a theoretical result, we have shown that a RFE that

is trained with linear least squares can approximate square

integrable functions arbitrarily well, with high probability.

An upper bound on the regularization parameter used in this

training procedure was given, as well as an optimal and a

more practical probability distribution for the parameters that

are chosen randomly. We applied the DONE algorithm to an

analytic benchmark problem and to three applications: optical

coherence tomography, optical beam-forming network tuning,

and a robot arm. We compared the algorithm to BayesOpt,

a Bayesian optimization library. The DONE algorithm gave

accurate results on these applications while being faster than

the Bayesian optimization algorithm, due to the fixed compu-

tational complexity per iteration.

APPENDIX A

PROOF OF CONVERGENCE OF THE LEAST SQUARES

SOLUTION

In this section, we show that using the least squares so-

lution in the RFE gives a function that approximates the true

unknown function f . To prove this, we make use of the results

in [42] and of [51, Thm. 2] and [52, Key Thm.].

Proof of Theorem 4. Let the constant m > 0 be given by

m =

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

(
1

N
AT

NAN +
λ

N
ID×D

)−1
1

N
AT

NyN

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
2

, (46)

and define the set Cm = {c ∈ R
D : ||c||2 ≤ m}. Note that

Cm is a compact set. The least squares weight vector

cN =
(
AT

NAN + λID×D

)−1
AT

NyN

=

(
1

N
AT

NAN +
λ

N
ID×D

)−1
1

N
AT

NyN , (47)

is also the solution to the constrained, but unregularized least

squares problem (see [53, Sec. 12.1.3])

cN = argmin
c∈Cm

1

N
||yN −ANc||22. (48)

Now, note that a decrease in λ leads to an increase in m. Since

λ/N ≤ Λ by assumption and the upper bound Λ in Theorem 4

satisfies
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

(
1

N
AT

NAN + Λ ID×D

)−1
1

N
AT

NyN

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
2

= M, (49)

M =

√
√
√
√

D∑

k=1

(
c̄(ωk, bk)

(2π)dDpΩ(ωk)pB(bk)

)2

, (50)

we have that m ≥ M . We will need this lower bound on m
to make use of the results in [42] later on in this proof.

Recall from Section II-B that the vector yN depends on

the function evaluations and on measurement noise η that is

assumed to be zero-mean and of finite variance σ2
H . We first

consider the noiseless case, i.e. yn = f(xn). For x ∈ X ,

c ∈ R
D, let

E(x, c) = f(x)−
D∑

k=1

ck cos(ω
T
k x+ bk). (51)

Using the Cauchy-Schwarz inequality, we have the following

bound for all x ∈ X , c ∈ Cm:

E(x, c)2 = f(x)2 +

(
D∑

k=1

ck cos(ω
T
k x+ bk)

)2

− 2f(x)

D∑

k=1

ck cos(ω
T
k x+ bk)

≤ f(x)2 +

(
D∑

k=1

ck cos(ω
T
k x+ bk)

)2

+ 2 |f(x)|
∣
∣
∣
∣
∣

D∑

k=1

ck cos(ω
T
k x+ bk)

∣
∣
∣
∣
∣

≤ f(x)2 +
D∑

k=1

|ck|2 + 2 |f(x)|

√
√
√
√

D∑

k=1

|ck|2

≤ f(x)2 +m2 + 2f(x)m

≤ (||f ||∞ +m)
2
. (52)

Note that E(x, c) is continuous in c and measurable in x. Let

now Xn denote i.i.d. random vectors with distribution pX.

Using Theorem [51, Thm. 2] we get, with probability one,

lim
N→∞

sup
c∈Cm

∣
∣
∣
∣
∣

1

N

N∑

n=1

E(Xn, c)
2 −

∫

X
E(x, c)2pX(x)dx

∣
∣
∣
∣
∣
= 0.

(53)

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. X, SEPTEMBER 20XX 12

Since almost sure convergence implies convergence in proba-

bility [54, Ch. 2], we also have:

lim
N→∞

P

(

sup
c∈Cm

∣
∣
∣
∣
∣

1

N

N∑

n=1

E(Xn, c)
2

−
∫

X
E(x, c)2pX(x)dx

∣
∣
∣
∣
> ǫ

)

= 0 ∀ǫ > 0. (54)

We will need this result when considering the case with noise.

For the case with noise, i.e. yn = f(xn) + ηn, let

Ẽ(x, η, c)2 =

(

f(x) + η −
D∑

k=1

ck cos(ω
T
k x+ bk)

)2

= E(x, c)2 + 2ηE(x, c) + η2. (55)

Using the properties of the noise η with p.d.f. pH , this gives

the following mean square error:
∫

R

∫

X
Ẽ(x, η, c)2pX(x)pH(η)dxdη

=

∫

X
E(x, c)2pX(x)

(∫

R

pH(η)dη

)

dx

+ 2

∫

X
E(x, c)

(∫

R

ηpH(η)dη

)

pX(x)dx

+

∫

X
pX(x)

(∫

R

η2pH(η)dη

)

dx

=

∫

X
E(x, c)2pX(x)dx+

∫

X
E(x, c)E[Hn]

︸ ︷︷ ︸

=0

pX(x)dx

+ E[H2
n]

=

∫

X
E(x, c)2pX(x)dx+ σ2

H . (56)

Here, Hn is a random variable with distribution pH . For any

choice of ǫ0, ǫ1, ǫ2, ǫ3 > 0 such that ǫ1 + ǫ2 + ǫ3 = ǫ0, we

have, following a similar proof as in [55, Thm. 3.3(a)]:

P

(

sup
c∈Cm

∣
∣
∣
∣
∣

1

N

N∑

n=1

Ẽ(Xn, Hn, c)
2−

∫

X

∫

R

Ẽ(x, η, c)2pX(x)pH(η)dxdη

∣
∣
∣
∣
> ǫ0

)

= P

(

sup
c∈Cm

∣
∣
∣
∣
∣

1

N

N∑

n=1

E(Xn, c)
2 +

2

N

N∑

n=1

HnE(Xn, c)

+
1

N

N∑

n=1

H2
n −

∫

X
E(x, c)2pX(x)dx− σ2

H

∣
∣
∣
∣
∣
> ǫ0

)

≤ P

(

sup
c∈Cm

{∣
∣
∣
∣
∣

1

N

N∑

n=1

E(Xn, c)
2 −

∫

X
E(x, c)2pX(x)dx

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

2

N

N∑

n=1

HnE(Xn, c)

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

1

N

N∑

n=1

H2
n − σ2

H

∣
∣
∣
∣
∣

}

> ǫ0

)

≤ P

(

sup
c∈Cm

∣
∣
∣
∣
∣

1

N

N∑

n=1

E(Xn, c)
2 −

∫

X
E(x, c)2pX(x)dx

∣
∣
∣
∣
∣

+ sup
c∈Cm

∣
∣
∣
∣
∣

2

N

N∑

n=1

HnE(Xn, c)

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

1

N

N∑

n=1

H2
n − σ2

H

∣
∣
∣
∣
∣
> ǫ0

)

≤ P

(

sup
c∈Cm

∣
∣
∣
∣
∣

1

N

N∑

n=1

E(Xn, c)
2 −

∫

X
E(x, c)2pX(x)dx

∣
∣
∣
∣
∣
> ǫ1

or sup
c∈Cm

∣
∣
∣
∣
∣

2

N

N∑

n=1

HnE(Xn, c)

∣
∣
∣
∣
∣
> ǫ2

or

∣
∣
∣
∣
∣

1

N

N∑

n=1

H2
n − σ2

H

∣
∣
∣
∣
∣
> ǫ3

)

≤ P

(

sup
c∈Cm

∣
∣
∣
∣
∣

1

N

N∑

n=1

E(Xn, c)
2 −

∫

X
E(x, c)2pX(x)dx

∣
∣
∣
∣
∣
> ǫ1

)

+ P

(

sup
c∈Cm

∣
∣
∣
∣
∣

2

N

N∑

n=1

HnE(Xn, c)

∣
∣
∣
∣
∣
> ǫ2

)

+ P

(∣
∣
∣
∣
∣

1

N

N∑

n=1

H2
n − σ2

H

∣
∣
∣
∣
∣
> ǫ3

)

.

Of these last three probabilities, the first one is proven to

converge to zero in (54), while the last one converges to zero

by the weak law of large numbers. For the second probability,

we can make use of Theorem [51, Thm. 2] again, noting that

ηnE(xn, c) is continuous in c. We use (52) to get

|ηE(x, c)| ≤ |η| (||f ||∞ +m) ∀x, η, c. (57)

Again, since uniform convergence implies convergence

in probability, and since E[HnE(Xn, c)] =
E[Hn]E[E(Xn, c)] = 0 for all n, using Theorem [51,

Thm. 2] gives the desired convergence in probability

lim
N→∞

P

(

sup
c∈Cm

∣
∣
∣
∣
∣

1

N

N∑

n=1

HnE(Xn, c)

∣
∣
∣
∣
∣
> ǫ2

)

= 0 ∀ǫ2. (58)

Together with the other two convergences and (57) we get:

lim
N→∞

P

(

sup
c∈Cm

∣
∣
∣
∣
∣

1

N

N∑

n=1

Ẽ(Xn, Hn, c)
2

−
∫

R

∫

X
Ẽ(x, η, c)2pX(x)pH(η)dxdη

∣
∣
∣
∣
> ǫ

)

= 0.

(59)

The following bound follows from (52) and (56):

0 ≤
∫

R

∫

X
Ẽ(x, η, c)2pX(x)pH(η)dxdη

≤ (||f ||∞ +m)
2
+ σ2

H . (60)

In light of this bound, [52, Key Thm.] now implies that

the mean square error between the output of the RFE with

least squares weight vector and the noisy meansurements is

approaching its ideal value as the number of samples increases.

More precisely, for any choice of ǫ4 > 0 and δ1 > 0, there

exists an N0 such that, for all N > N0,
∣
∣
∣
∣

∫

R

∫

X
Ẽ(x, η,CN)2pX(x)pH(η)dxdη

−
∫

R

∫

X
Ẽ(x, η,C0)2pX(x)pH(η)dxdη

∣
∣
∣
∣
< ǫ4 (61)

with probability at least 1− δ1. Here, CN denotes the vector

cN as a random variable as it depends on the input and

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. X, SEPTEMBER 20XX 13

noise samples and on the samples ω1, . . . ,ωD, b1, . . . , bD,

and C0 ∈ Cm minimizes
∫

R

∫

X Ẽ(x, η, c)pX(x)pH(η)dxdη.

Next, it is shown that the same holds for the mean square

error between the least-squares RFE outputs and the unknown,

noise-free function values.

According to [42, Thm 3.2], for any δ2 > 0, with probability

at least 1−δ2 w.r.t. Ω1, . . . ,ΩD and B1, . . . , BD, there exists

a c ∈ Cm with the following bound∗:

∫

X

(

f(x)−
D∑

k=1

ck cos(Ω
T
k x+Bk)

)2

pX(x)dx <
γ(δ2)

2

D
,

γ(δ2) = sup
ω,b

∣
∣
∣
∣

1

(2π)d
c̄(ω, b)

pΩ(ω)pB(b)

∣
∣
∣
∣

(√

log
1

δ2
+ 4r

)

,

r = sup
x∈X

||x||2
√

σ2d+ π2/3, (62)

with σ2 denoting the variance of pΩ. For this particular c,

(55), (56) and (62) imply that
∫

R

∫

X
Ẽ(x, η, c)2pX(x)pH(η)dxdη <

γ(δ2)
2

D
+ σ2

H . (63)

Since C0 ∈ Cm minimizes the left-hand in the equation

above by definition, we also have that
∫

R

∫

X
Ẽ(x, η,C0)2pX(x)pH(η)dxdη <

γ(δ2)
2

D
+ σ2

H (64)

with probability at least 1 − δ2. Since the event in (64) only

depends on Ω1, . . . ,ΩD and B1, . . . , BD, while the event in

(61) only depends on the input and noise samples, we can

combine these two equations as follows. For any choice of

ǫ4 > 0, δ1 > 0 and δ2 > 0, there exists an N0 such that, for

all N > N0,
∫

R

∫

X
Ẽ(x, η,CN)2pX(x)pH(η)dxdη < ǫ4 +

γ(δ2)
2

D
+ σ2

H

(65)

with probability at least (1−δ1)(1−δ2). Using (56) now gives

the following result. For any choice of ǫ4 > 0, δ1 > 0 and

δ2 > 0, there exists an N0 such that, for all N > N0, we have
∫

X
E(x,CN)2pX(x)dx < ǫ4 +

γ(δ2)
2

D
(66)

with probability at least (1− δ1)(1− δ2).
Choosing D0, ǫ4, δ1 and δ2 such that D0 > γ(δ2)

2/(ǫ− ǫ4)
and (1− δ1)(1− δ2) = δ concludes the proof.

APPENDIX B

MINIMUM-VARIANCE PROPERTIES

The following theorem presents the probability density

function for Ωk that minimizes the variance of a RFE at a

fixed measurement location x.

∗The weights found in the proof of the cited theorem satisfy c ∈ Cm

if m ≥ M , which was shown in the beginning of this appendix. Here we
also made use of the result from Theorem 1 of this paper to get what is
denoted with α in [42]. We have also used, with the notation of [42], that
||f − f̂ ||µ ≤ ||f − f̂ ||∞.

Theorem 7. Given x, the p.d.f. p∗
Ω

that minimizes the variance

of the unbiased estimator G(x) =
∑D

k=1 Ck cos(Ω
T
k x + Bk)

as defined in Theorem 1, with Ck as defined in Theorem 3, is

equal to

p∗Ω(ω) =
|f̂(ω)|

√

cos(2∠f̂(ω) + 2ωTx) + 2

∫

Rd |f̂(ω̃)|
√

cos(2∠f̂(ω̃) + 2ω̃Tx) + 2dω̃
. (67)

For this choice of pΩ, the variance is equal to

1

2D(2π)2d

(∫

Rd

|f̂(ω)|
√

cos(2∠f̂(ω) + 2ωTx) + 2dω

)2

− f(x)2. (68)

Proof. The proof is similar to the proof of [48, Thm. 4.3.1].

Let qΩ be any p.d.f. of Ωk that satisfies qΩ(ω) > 0 if

|f̂(ω)| > 0. Let VarqΩ,pB
be the variance of G(x) under

the assumption that pΩ = qΩ, pB = Uniform(0, 2π), and

Ck = 2
D(2π)d

|f̂(Ωk)|
qΩ(Ωk)

cos(∠f̂(Ωk)−Bk). According to Theo-

rem 3, this choice for Ck makes sure that G(x) is an unbiased

estimator, i.e., f(x) = E[G(x)]. The variance of G(x) can be

computed as:

VarqΩ,pB
[G(x)]

= VarqΩ,pB

[
D∑

k=1

Ck cos(Ω
T
k x+Bk)

]

= D VarqΩ,pB

[

C1 cos(Ω
T
1 x+B1)

]

=
D

2π

∫

Rd

∫ 2π

0

(

2

D(2π)d
|f̂(ω)|
qΩ(ω)

cos(∠f̂(ω)− b)

)2

cos(ωTx+ b)2qΩ(ω)dbdω − f(x)2. (69)

For the stated choice of p∗
Ω

, using
∫ 2π

0

cos(∠f̂(ω)− b)2 cos(ωTx+ b)2db

=

∫ 2π

0

1

4
(1 + cos(2∠f̂(ω)− 2b))(1 + cos(2ωTx+ 2b))db

=

∫ 2π

0

1

4
db+

1

4

∫ 2π

0

cos(2∠f̂(ω)− 2b)db

+
1

4

∫ 2π

0

cos(2ωTx+ 2b)db

+
1

4

∫ 2π

0

cos(2∠f̂(ω)− 2b) cos(2ωTx+ 2b)db

=
2π

4
+

1

8

∫ 2π

0

cos(2∠f̂(ω) + 2ωTx)

+ cos(2∠f̂(ω)− 2ωTx− 4b)db

=
2π

4
+

2π

8
cos(2∠f̂(ω) + 2ωTx)

=
π

4
(cos(2∠f̂(ω) + 2ωTx) + 2) (70)

we get:

Varp∗

Ω
,pB

[G(x)] + f(x)2 = Ep∗

Ω
,pB

[G(x)2]

=
D

2π

∫

Rd

∫ 2π

0

(

2

D(2π)d
|f̂(ω)|
p∗
Ω
(ω)

cos(∠f̂(ω)− b)

)2

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. X, SEPTEMBER 20XX 14

cos(ωTx+ b)2p∗Ω(ω)dbdω

=
D

2π

∫

Rd

1

p∗
Ω
(ω)

(
2

D(2π)d

)2

|f̂(ω)|2
∫ 2π

0

cos(∠f̂(ω)− b)2 cos(ωTx+ b)2dbdω

=
D

2π

∫

Rd

1

p∗
Ω
(ω)

(
2

D(2π)d

)2

|f̂(ω)|2

π

4
(cos(2∠f̂(ω) + 2ωTx) + 2)dω (71)

(67)
=

D

2π

(
2

D(2π)d

)2

(∫

Rd

|f̂(ω)|
√

π

4
(cos(2∠f̂(ω) + 2ωTx) + 2)dω

)2

=
1

2D(2π)2d

(∫

Rd

|f̂(ω)|
√

(cos(2∠f̂(ω) + 2ωTx) + 2)dω

)2

(72)

This gives the value of the optimal variance. To show that the

variance is indeed optimal, compare it with any arbitrary p.d.f.

qΩ using Jensen’s inequality:

Varp∗

Ω
,pB

[G(x)] + f(x)2

=
D

2π

(
2

D(2π)d

)2

(
∫

Rd

|f̂(ω)|
qΩ(ω)

√
π

4
(cos(2∠f̂(ω) + 2ωTx) + 2)qΩ(ω)dω

)2

Jensen
≤ D

2π

(
2

D(2π)d

)2

∫

Rd

|f̂(ω)|2
qΩ(ω)2

π

4
(cos(2∠f̂(ω) + 2ωTx) + 2)qΩ(ω)dω

(70)
=

D

2π

∫

Rd

∫ 2π

0

(

2

D(2π)d
|f̂(ω)|
qΩ(ω)

cos(∠f̂(ω)− b)

)2

cos(ωTx+ b)2qΩ(ω)dbdω
(69)
= VarqΩ,pB

[G(x)] + f(x)2. (73)

This shows that the chosen p.d.f. p∗
Ω

gives the minimum

variance.

The following theorem compares the second moments in

real and complex RFEs for different probability distributions.

Theorem 8. Let p̃Ω, p∗
Ω

, G̃ and G be as in Theorems 5 and

7. Then

1√
3
Ep∗

Ω
,pB

[G(x)2] ≤ Ep̃Ω,pB
[G(x)2] ≤

√
3 Ep∗

Ω
,pB

[G(x)2],

(74)

1

2
Ep̃Ω,pB

[G̃(x)2] ≤ Ep̃Ω,pB
[G(x)2] ≤ 3

2
Ep̃Ω,pB

[G̃(x)2].

(75)

Proof. From

1 ≤
√

(cos(2∠f̂(ω) + 2ωTx) + 2) ≤
√
3, (76)

and from (67) and (33) it follows that

1√
3
p∗Ω(ω) ≤ p̃Ω(ω) ≤

√
3p∗Ω(ω),

1√
3

1

p∗
Ω
(ω)

≤ 1

p̃Ω(ω)
≤

√
3

1

p∗
Ω
(ω)

. (77)

Combining the above with (71) yields:

1√
3
Ep∗

Ω
,pB

[G(x)2]

=
1√
3

1

2D(2π)2d
∫

Rd

1

p∗
Ω
(ω)

|f̂(ω)|2(cos(2∠f̂(ω) + 2ωTx) + 2)dω

≤ 1

2D(2π)2d
∫

Rd

1

p̃Ω(ω)
|f̂(ω)|2(cos(2∠f̂(ω) + 2ωTx) + 2)dω

= Ep̃Ω,pB
[G(x)2]

≤
√
3

1

2D(2π)2d
∫

Rd

1

p∗
Ω
(ω)

|f̂(ω)|2(cos(2∠f̂(ω) + 2ωTx) + 2)dω

=
√
3 Ep∗

Ω
,pB

[G(x)]. (78)

Combining (76) with (34) yields:

1

2
Ep̃Ω

[G̃(x)2]

=
1

2D(2π)2d

∫

Rd

1

p̃Ω(ω)
|f̂(ω)|2dω

≤ 1

2D(2π)2d

∫

Rd

1

p̃Ω(ω)
|f̂(ω)|2

(cos(2∠f̂(ω) + 2ωTx) + 2)dω

= Ep̃Ω,pB
[G(x)2]

≤ 3

2D(2π)2d

∫

Rd

1

p̃Ω(ω)
|f̂(ω)|2dω

=
3

2
Ep̃Ω

[G̃(x)2]. (79)

ACKNOWLEDGMENT

This research was supported by the Netherlands Enter-

prise Agency (RVO) for Innovation in Photonic Devices

(IPD12020), by the European Research Council Advanced

Grant Agreement (No. 339681) and by the Dutch Technology

Foundation STW (project 13336).

REFERENCES

[1] A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to derivative-

free optimization. Siam, 2009, vol. 8.
[2] L. M. Rios and N. V. Sahinidis, “Derivative-free optimization: a review

of algorithms and comparison of software implementations,” J. Global

Optim., vol. 56, no. 3, pp. 1247–1293, 2013.
[3] J. A. Nelder and R. Mead, “A simplex method for function minimiza-

tion,” Comput. J., vol. 7, no. 4, pp. 308–313, 1965.
[4] M. J. Powell, “The NEWUOA software for unconstrained optimization

without derivatives,” in Large-scale nonlinear optimization. Springer,
2006, pp. 255–297.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. X, SEPTEMBER 20XX 15

[5] ——, “The BOBYQA algorithm for bound constrained optimization
without derivatives,” 2009.

[6] D. R. Jones, C. D. Perttunen, and B. E. Stuckman, “Lipschitzian
optimization without the Lipschitz constant,” J. Optimiz. Theory App.,
vol. 79, no. 1, pp. 157–181, 1993.

[7] P. Gilmore and C. T. Kelley, “An implicit filtering algorithm for
optimization of functions with many local minima,” SIAM J. Optimiz.,
vol. 5, no. 2, pp. 269–285, 1995.

[8] A. L. Custódio and L. N. Vicente, “Using sampling and simplex
derivatives in pattern search methods,” SIAM J. Optimiz., vol. 18, no. 2,
pp. 537–555, 2007.

[9] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global optimiza-
tion of expensive black-box functions,” J. Global Optim., vol. 13, no. 4,
pp. 455–492, 1998.

[10] D. Kbiob, “A statistical approach to some basic mine valuation problems
on the Witwatersrand,” Journal of Chemical, Metallurgical, and Mining

Society of South Africa, 1951.
[11] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for

hyper-parameter optimization,” in Adv. Neur. In., 2011, pp. 2546–2554.
[12] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-based

optimization for general algorithm configuration,” in LION. Springer,
2011, pp. 507–523.

[13] R. Martinez-Cantin, “BayesOpt: a Bayesian optimization library for
nonlinear optimization, experimental design and bandits,” J. Mach.

Learn. Res., vol. 15, no. 1, pp. 3735–3739, 2014.
[14] O. Roustant, D. Ginsbourger, and Y. Deville, “Dicekriging, Diceoptim:

Two R packages for the analysis of computer experiments by kriging-
based metamodeling and optimization,” 2012.

[15] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian opti-
mization of machine learning algorithms,” in Adv. Neur. In., 2012, pp.
2951–2959.

[16] E. Brochu, V. M. Cora, and N. De Freitas, “A tutorial on Bayesian
optimization of expensive cost functions, with application to active
user modeling and hierarchical reinforcement learning,” arXiv preprint

arXiv:1012.2599, 2010.
[17] R. Martinez-Cantin, N. Freitas, E. Brochu, J. Castellanos, and A. Doucet,

“A Bayesian exploration-exploitation approach for optimal online sens-
ing and planning with a visually guided mobile robot,” Autonomous

Robots, vol. 27, no. 2, pp. 93–103, 2009.
[18] S. ur Rehman and M. Langelaar, “Efficient global robust optimization

of unconstrained problems affected by parametric uncertainties,” Struct.

Multidiscip. O., pp. 1–18, 2015.
[19] H. R. G. W. Verstraete, S. Wahls, J. Kalkman, and M. Verhaegen,

“Model-based sensor-less wavefront aberration correction in optical
coherence tomography,” Opt. Lett., vol. 40, no. 24, pp. 5722–5725, Dec
2015.

[20] A. Rahimi and B. Recht, “Random features for large-scale kernel
machines,” in Adv. Neur. In., 2007, pp. 1177–1184.

[21] M.-R. Nasiri-Avanaki, S. Hojjatoleslami, H. Paun, S. Tuohy, A. Mead-
way, G. Dobre, and A. Podoleanu, “Optical coherence tomography
system optimization using simulated annealing algorithm,” Proce. of

Math. Meth. and Appl. Comp.,(WSEAS, 2009), pp. 669–674, 2009.
[22] S. Bonora and R. Zawadzki, “Wavefront sensorless modal deformable

mirror correction in adaptive optics: optical coherence tomography,” Opt.

Lett., vol. 38, no. 22, pp. 4801–4804, 2013.
[23] R. C. Hansen, Phased array antennas. John Wiley & Sons, 2009, vol.

213.
[24] C. Roeloffzen, L. Zhuang, R. Heideman, A. Borreman, and v. W. Etten,

“Ring resonator-based tunable optical delay line in LPCVD waveguide
technology,” 2005.

[25] A. Meijerink, C. G. Roeloffzen, R. Meijerink, L. Zhuang, D. A.
Marpaung, M. J. Bentum, M. Burla, J. Verpoorte, P. Jorna, A. Hulzinga
et al., “Novel ring resonator-based integrated photonic beamformer for
broadband phased array receive antennaspart i: Design and performance
analysis,” J. Lightwave Technol., vol. 28, no. 1, pp. 3–18, 2010.

[26] L. Zhuang, C. Roeloffzen, R. Heideman, A. Borreman, A. Meijerink,
and W. Van Etten, “Single-chip optical beam forming network in lpcvd
waveguide technology based on optical ring resonators,” in Microwave

Photonics, 2006. MWP’06. International Topical Meeting on. IEEE,
2006, pp. 1–4.

[27] L. Zhuang, Ring resonator-based broadband photonic beam former for

phased array antennas. University of Twente, 2010.
[28] L. Bliek, M. Verhaegen, and S. Wahls, “Data-driven minimization with

random feature expansions for optical beam forming network tuning,”
IFAC-PapersOnLine, vol. 48, no. 25, pp. 166 – 171, 2015, 16th {IFAC}
Workshop on Control Applications of Optimization CAO2015Garmisch-
Partenkirchen, Germany, 69 October 2015.

[29] J. de Lope, M. Santos et al., “A method to learn the inverse kinematics
of multi-link robots by evolving neuro-controllers,” Neurocomputing,
vol. 72, no. 13, pp. 2806–2814, 2009.

[30] T. Hofmann, B. Schölkopf, and A. J. Smola, “Kernel methods in machine
learning,” Ann. Stat., pp. 1171–1220, 2008.

[31] J. A. Suykens and J. P. Vandewalle, Nonlinear Modeling: advanced

black-box techniques. Springer Science & Business Media, 2012.
[32] S. Theodoridis, Machine learning: a Bayesian and optimization perspec-

tive. Academic Press, 2015.
[33] A. Rahimi and B. Recht, “Weighted sums of random kitchen sinks:

Replacing minimization with randomization in learning,” in Adv. Neur.

In., 2009, pp. 1313–1320.
[34] A. Singh, N. Ahuja, and P. Moulin, “Online learning with kernels:

Overcoming the growing sum problem,” in 2012 IEEE International

Workshop on Machine Learning for Signal Processing. IEEE, 2012,
pp. 1–6.

[35] C. J. Burges et al., “Simplified support vector decision rules,” in ICML,
vol. 96. Citeseer, 1996, pp. 71–77.

[36] D. Schölkopf, “Sampling techniques for kernel methods,” in Adv. Neur.

In., vol. 1. MIT Press, 2002, p. 335.
[37] J. Quinonero-Candela and C. E. Rasmussen, “A unifying view of sparse

approximate Gaussian process regression,” J. Mach. Learn. Res., vol. 6,
pp. 1939–1959, 2005.

[38] B. Chen, S. Zhao, P. Zhu, and J. C. Principe, “Quantized kernel recursive
least squares algorithm,” IEEE Trans. Neural Netw. Learn. Syst., vol. 24,
no. 9, pp. 1484–1491, 2013.

[39] L. Zhang and P. Suganthan, “A comprehensive evaluation of random
vector functional link networks,” Information Sciences, 2015.

[40] F. Girosi and G. Anzellotti, “Convergence rates of approximation by
translates,” DTIC Document, Tech. Rep., 1992.

[41] A. R. Barron, “Universal approximation bounds for superpositions of a
sigmoidal function,” IEEE Trans. Inf. Theory, vol. 39, no. 3, pp. 930–
945, 1993.

[42] A. Rahimi and B. Recht, “Uniform approximation of functions with
random bases,” in Communication, Control, and Computing, 2008 46th

Annual Allerton Conference on. IEEE, 2008, pp. 555–561.
[43] L. K. Jones, “A simple lemma on greedy approximation in Hilbert

space and convergence rates for projection pursuit regression and neural
network training,” Ann. Stat., pp. 608–613, 1992.

[44] A. H. Sayed and T. Kailath, “Recursive least-squares adaptive filters,”
Digit. Signal Process. Handbook, pp. 21–1, 1998.

[45] J. Nocedal, “Updating quasi-Newton matrices with limited storage,”
Math. Comp., vol. 35, no. 151, pp. 773–782, 1980.

[46] J. Nocedal and S. Wright, Numerical optimization. Springer Science
& Business Media, 2006.

[47] M. Pogu and J. S. De Cursi, “Global optimization by random perturba-
tion of the gradient method with a fixed parameter,” J. of Global Optim.,
vol. 5, no. 2, pp. 159–180, 1994.

[48] R. Y. Rubinstein and D. P. Kroese, Simulation and the Monte Carlo

method. John Wiley & Sons, 2011, vol. 707.
[49] H. R. G. W. Verstraete, S. Wahls, J. Kalkman, and M. Verhaegen, “Nu-

merical evaluation of advanced optimization algorithms for wavefront
aberration correction in OCT,” in Imaging and Applied Optics 2015.
OSA, 2015, p. AOM3F.3.

[50] H. R. G. W. Verstraete, B. Cense, R. Bilderbeek, M. Verhaegen, and
J. Kalkman, “Towards model-based adaptive optics optical coherence
tomography,” Opt. Express, vol. 22, no. 26, pp. 32 406–32 418, Dec
2014.

[51] R. I. Jennrich, “Asymptotic properties of non-linear least squares esti-
mators,” Ann. Math. Stat., pp. 633–643, 1969.

[52] V. N. Vapnik, “An overview of statistical learning theory,” IEEE Trans.

Neural Netw., vol. 10, no. 5, pp. 988–999, 1999.
[53] G. H. Golub and C. F. Van Loan, Matrix computations. JHU Press,

2012, vol. 3.
[54] A. W. Van der Vaart, Asymptotic statistics. Cambridge university press,

2000, vol. 3.
[55] A. Beitollahi and P. Azhdari, “Convergence in probability and almost

surely convergence in probabilistic normed spaces,” Math. Sci., vol. 6,
no. 1, pp. 1–5, 2012.

	Introduction
	Random Fourier Expansions
	Ideal RFE Weights
	Convergence of the Least Squares Solution

	Online Optimization Algorithm
	Recursive Least Squares Approach for the Weights
	DONE Algorithm

	Choice of Hyper-parameters
	Probability Distribution of Frequencies
	Upper Bound on the Regularization Parameter

	Numerical Examples
	Analytic Benchmark Problem: Camelback Function
	Optical Coherence Tomography
	Tuning of an Optical Beam-forming Network
	Robot Arm Movement

	Conclusions
	Appendix A: Proof of convergence of the least squares solution
	Appendix B: Minimum-variance properties
	References

