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Abstract
Network covert timing channels are techniques to covertly transmit information over computer networks,
by utilizing the time between subsequent network packets. Previous work on the detection of the various
techniques has introduced numerous new methods, with high reported success. From these previous
works we have noticed that there is little confirmation on these results in subsequent works, as well as
there being a lack of an overview for the efficiency of each method. Next to this, we have found that
many works use data in their experiments that may not be representative of real network scenarios.

In this thesis we attempt to remedy this lack of information, by performing a broad performance
evaluation on the currently existing singular detection metrics. This performance evaluation was done
on a total of 18 different detection methods, applied to the 8 most prevalent covert timing channels.
For the underlying network data, we gathered SSH and HTTPS traffic from the TU Delft, and applied
varying amounts of simulated network jitter to them.

From the resulting evaluations we find that there are cases where the detection methods do perform
similarly to what has been shown in previous work, but we also find those that have a large difference in
performance. Further, we discuss possible strengths and weaknesses of each of the detection meth­
ods, based on their performance, and in some cases how this performance might be improved. Using
the (simulated) network scenarios we show the effects that jitter and different traffic types can have
on each of the detection methods, and also find those that are resilient to network effects. Finally,
we combine the full experimental performance evaluations into a comprehensive overview, for each
combination of detection method and covert channel technique.

We find that the current detection methods are likely not sufficient to be reliably applied in a realistic
network setting, and more work needs to be done in this field to reach that point. The overview and
discussions we have provided can then serve as a basis for future research, to give an indication of
where performance needs to be improved.
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1
Introduction

Covert channels are a form of hidden communication, that alters certain values not intended for com­
munication, to establish transmission of information. In a computer network scenario the network traffic
is altered to create this form of communication. One of the two main methods to hide communication
is to hide the information within the network packets, such as adding information to the timestamp
field. The other method is to use the time between subsequent packets, the inter­packet delay (IPD),
to transfer information. The latter form of covert channels are called covert timing channels (CTCs),
and they are what this thesis will focus on. The method of modulating the time between packets can
be very simple, by having set delays, up to basing the delays on models of legitimate traffic, in order
to mask this communication taking place. The CTCs can be used in any place where there is network
traffic present, with a wide variety of possible applications. One such an example is the use of covert
channels in data exfiltration, from within a company, where the use of covert channels would allow this
to happen undetected. Since CTCs can be created anywhere that network traffic exists, there is a risk
that data leakage or other unwanted communication can occur. It is thus important to be able to detect
the presence of covert channels, in order to disrupt this communication taking place.

Previous work on the subject of CTC detection has introduced a significant amount of detection
methods, with high reported performance [2, 8, 16]. However, each work mainly focuses on introduc­
ing new detection methods and only uses some previously presented methods to compare these to
their performance. In all of the research each detection method is only performed on a handful of dif­
ferent CTCs, with a limited amount of variation in the used settings. There is also little reproduction of
the results of previous work in realistic network scenarios, so there is no significant confirmation for the
reported performances. Due to these points there is no clear overview of the overall performance of
detection methods for all covert channel techniques. Next to this, there has been little research done
on the impact of network jitter on the performance of detection methods. The main form we have seen
in which jitter is added to the traffic is by replaying it over a single real or simulated network. This
means that there is no comparison between different amounts of jitter, and how the detection methods
are affected by different intensities of this network effect. Further, the data that is used to represent the
legitimate traffic is largely comprised of traffic taken from certain models based on statistical distribu­
tions, that are assumed to represent real traffic. When real traffic is used in the performance analyses,
this is mostly either a small amount or it is taken from datasets that might not represent current traffic.
We would like to provide insight into the current state of detection methods for covert timing channels,
and their applicability in real network scenarios. For this purpose we have formulated the following
research questions, from the above identified gaps in current research for this subject:

Research question 1: Is there a single detection method or combination of detection meth­
ods that can sufficiently detect the most prevalent covert timing channels?

Research question 2: How does the existence of network effects, such as jitter, affect the
performance of detection methods?
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2 1. Introduction

To provide answers to these research questions a broad evaluation of the current detection methods
is performed, under a common methodology. With the evaluation we attempt to reproduce the results
obtained in previous work, and examine the strengths and weaknesses of the detection methods. To
perform the tests, covert packets are injected in recorded HTTPS and SSH traffic from the TU Delft,
with varying network conditions, in the form of simulated network jitter. The detection methods are
performed on this traffic, and results are obtained in the form of true, and false positive rates for each
combination of detection method (18) and covert channel (8). This thus resulted in 144 analyses for
both examined traffic types, with multiple variants for each covert channel technique. From the results
we can make conclusions on the current state of detection methods, for the detection of a broad range
of CTCs, using these (combinations of) metrics. Next to this, the use of real network traffic and the
inclusion of jitter shows the performance of the detection methods, as it would when applied in a more
realistic network scenario.

The remainder of the thesis is structured as follows: Section 2 gives an overview of the prevalent
CTC techniques and detection methods, and provides a summary of what is currently covered. Next,
Section 3 explains how tests are performed to obtain results, as well as provide more detail on the
used data, and settings for the CTCs and detection methods. Following from the performed tests,
Section 4 gives an in­depth analysis into the performance of the detection methods on the various
CTCs. Section 5 provides answers to the aforementioned research questions on the current state of
detection methods. Finally, in Section 6 the possible directions of further research on this subject are
identified and discussed.



2
Background and related work

A covert channel, also called network steganography or information hiding, is a communication method
that is achieved by using channels that are not intended for information transfer. Compared to a method
such as cryptography, which tries to make the message unreadable for everyone that is not supposed
to receive the message, a covert channel hides the fact that communication is taking place altogether,
by having the communication mixed in with with the normal operation of a process. The first definition
of a covert channel in this sense is given in 1973 by Lampson [10], where they discuss possible data
leakage that can result from the existence of these channels. Lampson notes that even though a
confined program might be secure against unauthorized access, there are still subtle ways in which
this program may leak data. A program might, for example, encode the information in the bill the
program generates for the use of the service, or place or remove a read/write lock on a file in certain
time intervals. From this action another program could then see whether or not there is a lock on the
file, which would indicate a transmitted boolean value. In 1984 Simmons describes a model for covert
channels in a malicious scenario [19]. In this scenario two prisoners intend to escape the prison, and
are attempting to communicate their plan. To communicate they are able to relay messages to each
other through intermediate parties, but these messages can be read and altered by the prison warden.
If their plan is found out, the warden will lock them up in solitary confinement and they will not be able
to escape. The prisoners therefore have to hide the information for their escape in the messages, in
such a way that it is difficult for the warden to detect, which is the covert channel in this scenario.

Covert channels can be broadly classified into covert storage channels, which the aforementioned
scenarios fall into, and covert timing channels. In the context of computer networks, storage channels
use direct or indirect writing of object values in network packets, such as the timestamp or unused
header values, to transmit data. A timing channel on the other hand manipulates the timing or ordering
of network events as a communication channel. In both cases an attacker can be situated inbetween
unsuspecting users of an overt channel, and manipulate their traffic, or generate and change its own
traffic to create a covert channel. It is also possible that the attacker is both the sender and the receiver
of the channel, such as extracting information from a different location to their own computer. Covert
channels can be used in a variety of scenarios where communication is desired, and attackers are
very creative in finding ways to implement them in places where this communication is not intended.
It should be noted however that a covert channel is not inherently malicious, much like how the use
of cryptography is not inherently malicious. An application is presented by Nagaraja et al. [13], where
they show a covert channel using images with encoded information, that are uploaded to social media.
Infected users that are connected to each other on the social media platform can extract the information
from the uploaded images and communicate covertly through them. This communication is then used
for the purpose of command­and­control messages for the botnet of infected users. Another example
is data exfiltration from a high security environment, which has access to privileged information, to a
low security environment. In this case low can send information to high, but not the other way around,
with the exception of acknowledgement responses for the receipt of low’s messages. This restriction
on the communication should prevent high from leaking data to low. However, a covert channel can be
created by modulating the timing of the acknowledgements and in this way high can communicate the
privileged information to low. The main downside of covert channels is that the amount of information
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4 2. Background and related work

that can be transmitted per second is very limited, with channel capacity in the order of bits per second.
If the covert channel makes use of overt traffic from an unsuspecting user, this limits the capacity even
further. On the other hand, if the channel can stay undetected it can slowly transfer information over a
longer period of time, which might be more lucrative than other means.

Hindering malicious covert channels mainly looks at the detection, elimination, and capacity limita­
tion of these channels. By detecting the use of covert channels (early), infected hosts can be found
and stopped, which will limit the amount of data that can be transferred. Eliminating covert channels
involves finding security flaws that can be exploited, and removing these opportunities for creating
covert channels. For instance in the case of unused bits in packet headers, there can be a default
value ascribed to them so that they cannot be used for covert channel purposes anymore. Next to this,
due to the limited channel capacity of covert channels, time­sensitive data is hard to acquire before it
is not relevant anymore. If the capacity can be limited even more, then this data cannot be extracted
in time. Since there are such a large number of possible covert channels this thesis focuses on covert
timing channels in computer networks, meaning those that use the time between network packets for
information transfer. The rest of this chapter discusses prevalent covert timing channels and the related
work on evaluation of detection methods for these channels.

2.1. Covert timing channels
2.1.1. Simple Covert Channel
One of the first and simplest covert timing channels (CTCs) is the aptly named Simple Covert Channel
(SCC) [11]. The SCC consists of a set of symbols {𝑠1, ..., 𝑠𝑘} and the related output alphabet {𝑡1, ..., 𝑡𝑘}
of delay times, with 𝑡𝑗 < 𝑡𝑗′ if 𝑗 < 𝑗′. This creates a k­symbol channel, with k different inter­packet
delays (IPD), which is the time between subsequent packets. The sender and receiver agree on a time
or the occurrence of a network event, such as the first packet being sent. When this time is reached
or the event has occurred, the sender starts transmitting information to the receiver. The sender does
this by selecting the corresponding delay from the output alphabet for each symbol that needs to be
sent, and transmits a packet for each symbol such that the time between the previous packet and the
following packet sent is equal to the selected IPD. The receiver can then compare the perceived IPD of
the received packet to the output alphabet and look up the transmitted symbol. Due to various delays
in the network it is unlikely that the receiver will record an IPD with the exact amount as it was sent,
so the receiver chooses the IPD that is closest in the output alphabet. A binary form of the SCC would
use two symbols, 𝑠1 = 0 and 𝑠2 = 1, and two static delays, 𝑡1 and 𝑡2. When a zero is to be transmitted
the delay between the subsequent packets will be 𝑡1, and 𝑡2 for a one. Figure 2.1 shows an example
of such a binary SCC, which transmits the string ”010100”.

Figure 2.1: Simple covert channel example

2.1.2. On­Off Covert Timing Channel
The On­Off CTC [5] is a solely binary covert channel that takes a different approach from the SCC,
where it uses a time slot to send its covert traffic. For each time slot either no packets or a single packet
is sent over the network. The size of the time slot can be agreed upon beforehand by the sender and
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receiver, or a default size can be used to exchange a new time slot at the start of the channel. To
communicate a zero the CTC stays silent during the entire time slot, and sends a single packet in
the middle of the time slot to transmit a one. The receiver can then receive covert communication by
listening for packets during each time slot. If there are no packets during the time slot it records a zero
and waits for the next time slot to end. However if there is a packet during the time slot it records a
one and shifts the start and end of the next time slot earlier or later, under the assumption that the
packet occurred exactly in the middle of the last time slot. This will help protect the channel against
desynchronization, for example due to jitter in the network, and aligns the timing windows of the sender
and receiver. Figure 2.2 shows an example of an On­Off covert timing channel, with indicated time
slots, which transmits the string ”10110101”.

Figure 2.2: On­off timing channel example

2.1.3. Delayed Packet One Indicator

Delayed Packet One Indicator (DPOI) [17] is a binary covert channel that aims to improve on the On­Off
CTC, wherein it does not utilize the silence periods that are present in the On­Off CTC. By not using
silence intervals DPOI can send more packets, and thus transmit more covert information, in the same
intervals as On­Off CTC, and therefore DPOI can achieve improvements such as a higher channel
capacity. The covert channel requires a (legitimate) overt traffic stream, which can be created by the
covert sender themselves, and a mutual covert timing value 𝑇𝑐𝑡 between the sender and receiver. For
this CTC technique the use case is more aimed towards a man­in­the­middle approach, where the
process of the covert channel alters the network traffic of another user. While others can also be used
in this way, it is much more difficult to obtain the exact values required for them, from adding delays to
existing traffic. Using this stream of traffic and their IPDs, each packet is sent without a delay to transmit
a zero, and the delay 𝑇𝑐𝑡 is added to IPD of the subsequent packet to signal a one. In this case the
first packet sent does not transmit any covert information, but acts as a starting packet to acquire the
first IPD between the first and second packet. Receiving is done by running a timer for the time 𝑇𝑐𝑡 and
waiting to receive a packet. If a packet is received before the timer runs out, a zero is recorded and
the timer is reset for receiving the next packet. When a packet is received after the timer has run out,
a one is recorded and the timer is reset as well. In Figure 2.3 an example is shown of a DPOI covert
channel transmitting the string ”0100110”, with 2.3a the original traffic with equal IPDs, and 2.3b the
covert channel traffic with added delay 𝑇𝑐𝑡.
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(a) The original traffic

(b) The delayed DPOI traffic

Figure 2.3: Delayed Packet One Indicator example

2.1.4. JitterBug
The JitterBug (JB) [18] covert channel was designed to intercept interactive network application traffic,
such as keystroke input in SSH, as added malicious hardware to a keyboard. It should however be
noted that the covert channel can also be implemented in software and thus such a device is not
necessary, and the intercepted traffic can be replaced by pre­recorded or self­generated traffic. JB
transmits data covertly by applying a delay to the intercepted traffic before sending it over the network.
For covert communication an integer timing window𝑤 and a random number generator seed are known
between the sender and the receiver. To encode a binary sequence {𝑏𝑖} the intercepted sequence {𝑡𝑖}
of times when an event occurs are each delayed by a time 𝜏𝑖. The new sequence then becomes {𝑡′𝑖 },
with 𝑡′𝑖 = 𝑡𝑖 + 𝜏𝑖 and 𝜏𝑖 < 𝑤. The IPDs 𝛿𝑖, with 𝛿𝑖 = 𝑡′𝑖 − 𝑡

′
𝑖−1, that are applied to the packets are

calculated such that:

𝛿𝑖mod 𝑤 = {
0 if 𝑏𝑖 = 0;
⌊𝑤/2⌋ if 𝑏𝑖 = 1;

The intercepted packets are thus delayed such that the IPD in milliseconds modulo 𝑤 is equal to
0 to transmit a zero, or the IPD modulo 𝑤 is equal to ⌊𝑤/2⌋ to transmit a one. Additionally, to avoid
regularity in the time between packets, a random delay 𝑠𝑖 (with 0 ≤ 𝑠𝑖 < 𝑤) is added to the IPD, which
is generated using the seed value. For example, given a sequence of intercepted IPDs in milliseconds
{88, 164, 204, 73, 120} and a timing window 𝑤 = 20, a sequence of bits {0, 1, 0, 1, 0} would be given by
the IPDs {100, 170, 220, 90, 120}. These values are then each adjusted with the added random delay,
which removes the perceived regularity. The receiver in turn records the perceived times of the packets
{𝑡𝑖} and can obtain the sequence of IPDs {𝛿𝑖 = 𝑡𝑖− ̂𝑡𝑖−1}. If the added random delay is used, the receiver
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can generate this value with the same random seed and simply subtract it from the received IPD. From
the sequence of IPDs the received symbols are decoded as follows:

if − 𝜀 < 𝛿𝑖 ≤ 𝜀 (mod 𝑤) then 𝑏𝑖 = 0;
if 𝑤/2 − 𝜀 < 𝛿𝑖 ≤ 𝑤/2 + 𝜀 (mod 𝑤) then 𝑏𝑖 = 1;

The value 𝜀 is the parameter that sets the guard bands for compensating against variations in
perceived delays, for example due to network jitter. This decides whether a received IPD is considered
a zero or a one, when it is not strictly the value that is expected. It can be adjusted to accommodate
different network conditions. Note that the value of 𝜀 cannot exceed 𝑤/4, or else the windows of
receiving either zero or one would overlap.

2.1.5. Model Based Covert Timing Channel
Model Based­CTC (MB­CTC) [9] models the IPDs of sent packets on a probability distribution created
from observed legitimate traffic. By modeling the covert channel traffic on legitimate network packets,
it can closely resemble this traffic and is more likely to avoid detection. MB­CTC first monitors the
background network traffic and filters for the specific type of traffic that is to be mimicked. For example,
by filtering for HTTP traffic, when such traffic will be used for the covert traffic, it will give a closer model
for that type of traffic. Next, the filtered traffic is fitted in sets of 100 IPDs to the Exponential, Gamma,
Pareto, Lognormal, Poisson, and Weibull distributions, using maximum likelihood estimation. More
models can be added to fit different traffic and network conditions as needed, if such a model more
accurately describes the traffic. The accuracy of the models is compared by the root mean squared
error (RMSE) of the models compared to the IPDs, and the model with the lowest error is chosen as
the used model. The RMSE of a model and a set of IPDs can be acquired by taking samples from the
model (with equal size to the IPDs) and calculating the RMSE of the samples and the IPDs. To account
for randomness of sampling and the variation in RMSE values that may cause, it may be required to
sample multiple times and take the mean of the calculated RMSEs. Since traffic characteristics can
change over time, MB­CTC also has the possibility to modify its model after sending 100 covert IPDs,
with new packets filtered from live traffic and again fitted to the distributions. When there is a change in
the model these new parameters are sent to the receiver. The aforementioned filtering and fitting steps
can be performed in two ways, namely in an online or offline mode. In the case of the offline mode,
both sender and receiver are in possession of an identical, pre­recorded traffic sample. Then from
this sample they obtain the same model required for communication. For the online mode the sender
acquires a model from live traffic, which is then communicated to the receiver. The offline mode uses
less resources, but the retrieved model may not accurately represent the current network behaviour.
On the other hand, the online mode requires a startup protocol to transmit the model from the live traffic
to the receiver. After filtering and fitting the model, the information that is to be sent is encoded using
the parameters from the model. The discrete symbol s that needs to be transmitted is first continuized
into a value between 0 and 1. By using a seeded uniform random number r (with 0 ≤ 𝑟 < 1) for each
symbol, and the amount of possible symbols |S|, the continuized symbol 𝑟𝑠 is calculated by:

𝐹𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑧𝑒(𝑠) = (𝑠/|𝑆| + 𝑟) mod 1 = 𝑟𝑠

From the continuized symbol the delay 𝑑𝑠 is obtained, which is used as the IPD for the subsequent
packet. Note that a starting packet needs to be used to compare the time between packets and calculate
the first IPD. With the inverse distribution function of the model and its parameters, the encoded delay
is obtained:

𝐹𝑒𝑛𝑐𝑜𝑑𝑒 = 𝐹−1𝑚𝑜𝑑𝑒𝑙(𝑟𝑠) = 𝑑𝑠

To retrieve the sent symbol from the received delays the receiver inverts the operations done by the
sender. First the received delay 𝑑𝑠 is decoded by using the inverse of the inverse distribution function,
which is the cumulative distribution function of the model. The continuized symbol 𝑟𝑠 is then calculated
by:
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𝐹𝑑𝑒𝑐𝑜𝑑𝑒 = 𝐹𝑚𝑜𝑑𝑒𝑙(𝑑𝑠) = 𝑟𝑠
The transmitted symbol s is then obtained by reverting the continuized symbol 𝑟𝑠 into a discrete

symbol, using the same seeded random number r:

𝐹𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑧𝑒(𝑟𝑠) = |𝑆| ⋅ ((𝑟𝑠 − 𝑟) mod 1) = 𝑠

2.1.6. Repeat Model Based Covert Timing Channel
The Repeat Model Based­CTC (RMB­CTC) [12] is a slight variation on MB­CTC, where the covert
channel uses added repeat bits to attempt to evade entropy­based detection measures. After each
two packets that are sent, one of the two will be randomly selected with the same probability to be
repeated twice more using the same IPD. So for each two subsequent IPDs {𝑑1, 𝑑2}, each sequence
of four IPDs will be either {𝑑1, 𝑑2, 𝑑1, 𝑑1} or {𝑑1, 𝑑2, 𝑑2, 𝑑2}. Transmitting and receiving symbols works
in the same way as MB­CTC, except that the receiver can ignore the IPD of the last two packets in
the four packet sequence. The downside of using repeat bits is that it decreases the channel capacity
of the covert channel, because the two repeated packets carry no additional information. It was found
by Gianvecchio et al. [8] that MB­CTC has a higher entropy value than legitimate traffic, which has
some repeating patterns reducing this value. This means that MB­CTC can successfully be detected by
entropy detectionmetrics. Since entropy is ameasurement of complexity, adding redundant information
lowers the complexity of the measured process and can thus more likely avoid detection by entropy­
based detection methods.

2.1.7. Time Replay Covert Timing Channel
TimeReplay­CTC (TR­CTC) [4] takes a different approach tomimicking legitimate network traffic, by us­
ing a set of recorded legitimate packets. From the recorded traffic the IPDs for each flow are sorted into
bins according to a rule­set and both the sender and receiver have access to the same set of recorded
traffic and rule­sets. TR­CTC has three different types of rule matching, namely binary­matching, rule­
matching, and exact­matching channels. The binary­matching channel only uses a single rule in the
form of < 0, 𝜏𝑐𝑢𝑡𝑜𝑓𝑓 , 𝑧𝑒𝑟𝑜 >, which indicates that IPDs that are smaller than 𝜏𝑐𝑢𝑡𝑜𝑓𝑓 are sorted into
the bin for the symbol zero and all other IPDs are sorted into the bin for the symbol one. To com­
municate information covertly, the sender first transmits a starting packet. Then for each symbol it
randomly draws (and removes) a delay from the corresponding bin, which is applied as the IPD for the
subsequent packet. The receiver can then calculate the received IPD 𝜏𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 and matches it with
the rule. If 𝜏𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 < 𝜏𝑐𝑢𝑡𝑜𝑓𝑓 then the receiver records a zero and a one otherwise. Alternatively a
buffered cutoff value can be used to increase channel accuracy. In this case the receiver records a
zero if 𝜏𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 ≤ 𝜏𝑐𝑢𝑡𝑜𝑓𝑓 −𝛿, a one if 𝜏𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 ≥ 𝜏𝑐𝑢𝑡𝑜𝑓𝑓 +𝛿, and nothing otherwise, with 𝛿 being the
chosen buffer value. Rule­matching in turn can have two or more rules in the form of < 𝜏1, 𝜏2, 𝑜𝑛𝑒 >,
such that an IPD d is sorted into the bin for symbol one if the rule matches 𝜏1 ≤ 𝑑 < 𝜏2. Like the
binary­matching channel a symbol is transmitted by randomly drawing a delay from the related bin.
The receiver matches the received IPD 𝜏𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 to every rule and records the symbol indicated by the
rule that matches 𝜏1 ≤ 𝜏𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 < 𝜏2. The exact­matching variant has a rule for every possible IPD
(i.e. < 𝜏1, 𝜏1, 𝑜𝑛𝑒 >), for which the symbols are randomly assigned. The recorded traffic is then sorted
into the bin for the symbol where the delay 𝑑 = 𝜏1. Transmitting a symbol works the same as the pre­
vious channel types, and the receiver matches the 𝜏𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 exactly to the rule where 𝜏𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 = 𝜏1.
Where applicable the thresholds of rules can also be the median or maximum values of the IPDs (e.g.
< 𝑚𝑒𝑎𝑛,𝑚𝑎𝑥, 𝑧𝑒𝑟𝑜 >), which both the sender and receiver can calculate from the recorded traffic.

2.1.8. L­Bits­to­N­Packets
The L­Bits­to­N­Packets (LBtNP) [4] covert channel, as the name suggests, encodes a sequence of L
covert bits as N subsequently transmitted IPDs. The sender and receiver both have knowledge of the
amount of bits L, the number of packets N, the minimum delay Δ, and the incremental delay 𝛿. For each
2𝐿 combinations of L bits a unique sequence of N IPDs (𝑇1, 𝑇2, ..., 𝑇𝑁) is recorded in the code book for
the sender and receiver. These times are selected from the set 𝐸 = {𝑇 ∶ Δ+𝑘∗𝛿, 𝑘 = 0, 1, ...}, where the
maximum of k has to be sufficiently large so that each bit combination can have a unique sequence (i.e.
(𝑘 + 1)𝑁 ≥ 2𝐿). The covert communication starts with a starting packet, which carries no information.
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Then when a sequence of L bits is to be transmitted, the N packet delays are looked up in the code book
and sent subsequently as IPDs for the packets. From the observed packet timings the receiver can
construct sequences of N IPDs. Then by matching a sequence to the closest mapping in the code book
the receiver can recover the L bits that were transmitted. To avoid regularity in the IPDs of the packets
it is also possible to add a seeded random value to each IPD, in which case the sender and receiver
also need to possess the same seed. Before sending an IPD a random value 𝑣, uniform in (0, 𝛿), is
generated and added to the delay. The receiver can then simply generate the same random value
with the seed and subtract it from the perceived delay, after which the decoding operations continue
as normal. A variation of the standard scheme of the covert channel is also proposed, in which the
sequence of IPDs for each L bits is modeled to a distribution. The distribution can be chosen such
that it models certain types of traffic that the covert channel is trying to mimic. Instead of directly
mapping permutations of bits to timings they are mapped to sequences of length N (𝑘1𝐾 ,

𝑘2
𝐾 , ...,

𝑘𝑁
𝐾 ),

with 0 ≤ 𝑘𝑖 ≤ 𝐾 − 1 and K chosen such that 𝐾𝑁 >= 2𝐿. When transmitting L bits the sequence
is looked up in the code book as (𝑥1, ..., 𝑥𝑁). Using a seeded random number generator each 𝑥𝑖 in
the sequence is masked by a value 𝑢𝑖, uniform between 0 and 1. The masking for each entry is
calculated as 𝑟𝑖 = 𝑥𝑖⨁𝑢𝑖 ≜ 𝑥𝑖+𝑢𝑖 mod 1, resulting in the masked entries (𝑟1, ..., 𝑟𝑁). The final sequence
of IPDs (𝑇1, ..., 𝑇𝑁) is obtained by calculating 𝑇𝑖 = 𝐹−1(𝑟𝑖) for each masked value, using the inverse
distribution function of the chosen model. This sequence is then used as the IPDs for the N sent
packets. From the observed packet timings the receiver can again construct sequences of N IPDs
(𝑅1, ..., 𝑅𝑁), after which the operations performed by the sender are reversed. First from the same
generated seeded random values 𝑢𝑖 and the cumulative distribution function of the model 𝐹, the value
𝑥∗𝑖 = 𝐹(𝑅𝑖)⨁(1 − 𝑢𝑖) is calculated for each IPD. These values are then rounded to the nearest 𝑘

𝐾 ,
computed as 𝑥𝑑𝑖 = ⌊𝐾 ⋅ 𝑥∗𝑖 + 0.5⌋/𝐾. And lastly the sequence (𝑥𝑑1 , ..., 𝑥𝑑𝑁) is looked up in the code book,
which returns the sent L bits.

2.2. Detection methods
2.2.1. 𝜀­Similarity, Regularity, and Compressibility
One of the first scientific research on detection methods for covert timing channels is given by Cabuk
et al. [5]. In their paper they evaluate the efficacy of two metrics for the detection of the On­Off
covert timing channel. They also vary the timings of the covert channel during operation and add
noise to the channel, to compare how well the metrics work under those scenarios. The two detec­
tion methods under evaluation are regularity and 𝜀­similarity. The regularity metric examines whether
the variance in the IPDs remains constant over a certain window. To calculate this, the traffic is sep­
arated into non­overlapping windows of size 𝑤, for each window i the standard deviation 𝜎𝑖 is com­
puted, and for each pair of windows i<j the pairwise relative difference of 𝜎𝑖 and 𝜎𝑗 is calculated.
The regularity metric is then the standard deviation of these pairwise differences. Formally this is:
𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑦 = 𝑆𝑇𝐷𝐷𝐸𝑉( |𝜎𝑖−𝜎𝑗|𝜎𝑖

, 𝑖 < 𝑗, ∀𝑖, 𝑗). The other measure is 𝜀­similarity, which is the percentage
of relative differences that are less than 𝜀. For a sample of packets the IPD for every packet is calcu­
lated, given by 𝑃𝑖, and the IPDs are sorted in increasing order. Then from the sorted IPDs the relative
difference, |𝑃𝑖 − 𝑃𝑖+1|/𝑃𝑖, for each pair of consecutive points can be calculated. The percentage of rel­
ative differences that is smaller than 𝜀 is then the 𝜀­similarity. The values for 𝜀 and the thresholds for
𝜀­similarity and regularity can be determined from legitimate traffic, the comparison to these thresholds
will then indicate whether a sample is deemed a covert channel or not. Cabuk et al. report regular­
ity scores on the standard On­Off channel with 100% true positive rates and 0% false positive, but
very low scores on channels with varying timings or channels with added noise. They also report high
𝜀­similarity detection scores for most categories, except where there are high levels of added noise.
In a subsequent paper they also propose the compressibility metric as an extension to their previous
work [6]. The compressibility metric is an approximation of the Kolmogorov complexity of a string S,
which is the shortest universal computer program that produces this string. The metric is computed
as 𝜅(𝑆) = |𝑆|

|𝐶| , where |𝑆| is the length of the original string S derived from a sample of IPDs and |𝐶| is
the length of the compressed string of S. This value is then compared to a threshold obtained from the
compressibility values from legitimate traffic. The metric is evaluated on the same variations of On­Off
channel. For compressibility Cabuk et al. report similarly high detection scores as with 𝜀­similarity, but
note a better performance on higher noise levels.
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2.2.2. Arimoto­Blahut, and Mean IPD
In their paper Berk et al. give two detection methods, one based on the Arimoto­Blahut algorithm
and another using the mean inter­packet delays [3]. These methods are evaluated against binary and
multi­symbol simple covert channels. The mean IPD method is based on the premise that (for a binary
channel) the counted IPDs will center around two distinct values. For the covert channel the sample
mean of the IPDs will lie somewhere between two spikes (the two binary channel delays), but this can
also be extended to channels that use symbols in multiples of two. For legitimate traffic the mean of
the IPDs will be in the center of the large spike. The metric is calculated using: 𝑃𝐶𝑜𝑣𝐶ℎ𝑎𝑛 = 1 −

𝐶𝜇
𝐶𝑚𝑎𝑥

,
where 𝐶𝜇 is the packet count at the mean, and 𝐶𝑚𝑎𝑥 is the largest packet count of the histogram. The
Arimoto­Blahut requires a given a channel matrix, which contains the probabilities of receiving delay
j when delay i is sent, for a certain range of delays. Using this channel matrix the algorithm can then
estimate the optimal symbol distribution, to achieve the highest channel capacity. The traffic under
analysis is compared to the optimal symbol distribution from the algorithm. If it (closely) matches the
distribution, then it is considered a covert channel. This distinction is made under the assumption that
an attacker will choose their input such that the channel capacity is maximized. Berk et al. report that
the methods perform well, but unfortunately do not include any detection scores in their work.

2.2.3. Kolmogorov­Smirnov, Entropy, and Corrected Conditional Entropy
On the subject of network packet watermarking, which can be considered a form of covert timing chan­
nel communication, Peng et al. apply the Kolmogorov­Smirnov (KS) test as a detection method for
watermarked IPDs [14]. The KS­test determines whether or not two samples (or a sample and a
distribution) differ. The statistic measures the maximum distance between two empirical distribution
functions, which is given by: 𝐾𝑆𝑇𝐸𝑆𝑇 = 𝑚𝑎𝑥|𝑆1(𝑥) − 𝑆2(𝑥)|. The KS test is applied by comparing
training data from legitimate traffic against possible covert traffic and determining if the distributions
are close or not. Gianvecchio et al. further evaluate the KS test and regularity metric on the On­Off,
Time Replay, and JitterBug covert channels, and propose the first order entropy (EN) and corrected
conditional entropy (CCE) detection metrics [7]. In an extension to this paper Gianvecchio et al. also
evaluate the aforementioned detection methods on the MB­CTC [8]. The proposed entropy metrics
aim to measure the regularity or complexity of a process. The first order entropy measures the entropy
of single IPDs, meaning patterns of length one. EN is given as

𝐻(𝑋1, ..., 𝑋𝑚) = −Σ𝑋1 ,...,𝑋𝑚𝑃(𝑋1, ..., 𝑋𝑚)𝑙𝑜𝑔2𝑃(𝑋1, ..., 𝑋𝑚)

where 𝑃(𝑋1, ..., 𝑋𝑚) is the conditional probability 𝑃(𝑋1 = 𝑥1, ..., 𝑋𝑚 = 𝑥𝑚). The corrected conditional
entropy (CCE) estimates the entropy rate of patterns of length m in the IPD sample. The CCE is given
by:

𝐶𝐶𝐸(𝑋𝑚|𝑋𝑚−1) = 𝐶𝐸(𝑋𝑚|𝑋𝑚−1) + 𝑝𝑒𝑟𝑐(𝑋𝑚) ⋅ 𝐸𝑁(𝑋1)
where 𝐶𝐸 is the conditional entropy, 𝑝𝑒𝑟𝑐(𝑋𝑚) is the percentage of unique patterns of length m, and
𝐸𝑁(𝑋1) is the entropy of the sample with pattern length one. The aim is to find the minimum value of
CCE, by increasing m until it is found, which is the closest estimate of the entropy rate. EN and CCE
values from possible covert traffic can then be compared to thresholds obtained from legitimate data, to
indicate the presence of a covert channel. The true positive detection results reported by Gianvecchio
et al. for each covert channel are obtained by setting the false positive rates to 0.01 during training.
The thresholds are then adjusted, so that legitimate traffic is not labeled as a covert channel higher
than this rate. For the On­Off channel all detection methods except regularity reach 100% true positive
detection rates. On the other hand for the TR­CTC and MB­CTC only CCE performs well, with near
full true positive rates. Next to this EN is the only one that has 100% true positive rates for JitterBug
detection, with the rest of the methods lower than 5%.

2.2.4. Support Vector Machine
Mou et al. present a method in which they apply Support Vector Machines (SVM) to the field of covert
channel detection [12]. An SVM is a pattern recognition technique in the form of a supervised learning
model, which can take multiple detection metrics to learn and classify covert traffic from legitimate
traffic. In this case a wavelet transform is used to get a decomposition of IPDs into different levels.
From this decomposition the maximum entropy at every level and the percentage of energy of the first
level is retrieved. These values are then used for classification in the SVM, which can use them to



2.2. Detection methods 11

make a comparison between legitimate and covert traffic. The detection of the SVM is performed on
SCC, TR­CTC, MB­CTC, and RMB­CTC with 100% detection accuracy for all except MB­CTC, which
still has a high precision of 96.5%. Next to this Mou et al. also show that the SVM can distinguish the
different covert channels that are being used, with high confidence. Further to verify that their variation
on model­based variant RMB­CTC is more likely to avoid entropy­based measures, the EN and CCE
methods are also used for detection of RMB­CTC. These metrics give detection accuracy of 79% and
64.75% respectively, which is relatively low compare to the SVM detection method. On the other hand
the main downsides of using SVMs is that they require extensive calculations and knowledge of other
detection metrics for the use in the classifier.

2.2.5. Kullback­Leibler divergence, Skew, Kurtosis, and Welch’s t­test
In their work Archibald et al. discuss the addition of fountain codes for MB­CTC communication, for
the purpose of robustness against network jitter and disruptions [1]. To quantify the security against
detection for this method, they employ the KS test and propose the Kullback­Leibler divergence (KLD)
as a metric. The KLD is the relative entropy between two (samples of) probability distributions, P and
G. KLD defines the minimum additional information, measured in logarithmic scale, needed for one
distribution to perfectly model another, providing a measure of how much these distributions differ. This
metric can be used to compare a distribution of legitimate traffic against a distribution of possible covert
traffic, to be able to differentiate between these different types of traffic. The KLD measure is given by:
𝐷𝐾𝐿(𝑃||𝐺) = ∑𝑥 𝑝(𝑥) ⋅ 𝑙𝑜𝑔(

𝑝(𝑥)
𝑔(𝑥)). In a later study Archibald et al. also perform an extensive evaluation

of detection methods on the covert timing channels JB, MB­CTC, and TR­CTC [2]. They apply the KS
test, regularity, EN, CCE, and KLD metrics from previous works on these different covert channels and
measure their efficacy. Next to this they also propose the Welch’s t­test, skew, and kurtosis metrics, as
well as SVM detection using these skew and kurtosis metrics for MB­CTC. Since JB creates its covert
communication by shifting the IPD distribution of application traffic, metrics that cannot detect these
shifts are not suited for detection of this covert channel. Among these metrics are EN, KLD, kurtosis,
and skew, which are therefore not applied for the detection of JB traffic. The proposed Welch’s t­test
tests the null­hypothesis of whether two population means are equal. A sample from legitimate traffic
is compared against possible covert traffic, and the p­value then indicates whether this null­hypothesis
can be rejected. The main benefit is that the test does not require equal sample sizes nor does it expect
equal variance of the samples. This means that a larger sample of training data can be used for a better
fingerprint of legitimate traffic. The t­value of the Welch’s t­test is given by:

𝑡 = 𝑋1 − 𝑋2
√ 𝑠21
𝑁1
+ 𝑠22
𝑁2

Further the kurtosis of a distribution describes the extremity of the values around the tail ends of the
distribution, and is given by 𝐾𝑢𝑟𝑡[𝑋] = 𝐸[(𝑋−𝜇𝜎 )4]. The skew of a distribution measures where the area
of the distribution falls, to the left or right of the mean, and is given by 𝑆𝑘𝑒𝑤[𝑋] = 𝐸[(𝑋−𝜇𝜎 )3]. From a
set of IPDs a kurtosis or skew vector can be created and from this vector the mean, standard deviation,
and regularity is extracted. Archibald et al. report high detection accuracy for the Welch’s t­test on JB
and MB­CTC, as well as high accuracy for CCE on TR­CTC and MB­CTC, both ranging in precision
from 86% to 97%. The SVM for the detection of MB­CTC traffic showed increased accuracy with more
detection metrics used for classification, to a score of around 90%. Results obtained from the other
detection methods scored relatively low on average compared to these methods.

2.2.6. Spearman­Rho, Wilcoxon Signed­Rank, and Mann­Whitney­Wilcoxon
One of the more recent studies is done by Rezaei et al. where they propose the use of non­parametric
tests for covert channel detection [15]. The tests they bring forth are Spearman­Rho (SRHO) and
Wilcoxon Signed­Rank (WSR) tests, which are used to detect On­Off, LBtNP, JB, and TR­CTC. In
addition they also published an extension to this paper, which includes a third non­parametric tests,
the Mann­Whitney­Wilcoxon (MWW) Rank Sum test, and added DPOI as a covert channel technique
under evaluation [16]. The SRHO, WSR, and MWW tests are non­parametric statistical tests which
use the rank of observed samples of IPDs, instead of their values. These ranks are then used to
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determine if two samples are drawn from the same distribution. The implementation using these tests
takes samples of two subsequent blocks of IPDs from the same flow, for which the p­values of these
tests are calculated. Both blocks are then updated by a given step size, where part of the second
block is added to the first, and new IPDs are added to the second block. Calculating the p­values and
updating the sets is repeated multiple times, to observe changes in the traffic. The average of these
p­values for each test is compared against a threshold, formed from performing the tests on flows of
legitimate traffic, which determines whether the traffic is classified as covert. The main idea is that for
flows of covert traffic the p­values will likely be large, compared to those of legitimate traffic. This is
due to the fact that the created covert traffic will have similar IPDs over the entire flow, whether in value
or distribution, which results in higher overall p­values. In the case of legitimate traffic, there can be
more differences over time within each flow, which in turn leads to lower p­values. The evaluation is
performed over 3 different settings for each covert channel technique and 8 settings for each detection
metric. The average true positives and false negatives for the reported values are 96.4% and 7.0% for
WSR, 89.0% and 8.4% for SRHO, and 99.4% and 3.9% for MWW.

2.2.7. Summary
The detection techniques presented in these previous works show promise for the detection of CTCs,
with high levels of accuracy over different channels. There are however some drawbacks, where some
methods require a lot of computational power or are only able to detect some covert channels reliably.
In a realistic scenario the type of covert channel the attacker will use is likely unknown. If a detection
method is used which does not detect that type very well, then the covert traffic might go by unnoticed.
It is therefore beneficial to recognize which metrics, or combinations of metric, do sufficiently well in
general detection over all variations of CTCs, instead of high accuracy in singular CTCs. Table 2.1
gives an overview of the related work and shows which detection methods have been applied to which
CTC. From this table it can be seen where there are still gaps missing in the evaluation of the detection
methods.

SCC On­Off DPOI JB MB­CTC RMB­CTC TR­CTC LBtNP
Regularity [5, 7, 8] [2, 7, 8] [2, 8] [2, 7, 8]
𝜀­similarity [5, 6]
Compressibility [6]
Arimoto­Blahut [3]
Mean IPD [3]
KS test [7, 8] [2, 7, 8] [2, 8] [2, 7, 8]
EN [7, 8] [7, 8] [2, 8] [12] [2, 7, 8]
CCE [7, 8] [2, 7, 8] [2, 8] [12] [2, 7, 8]
SVM [12] [2, 12] [12] [12]
KLD [2] [2]
Welch’s t­test [2] [2] [2]
Kurtosis [2] [2]
Skew [2] [2]
SRHO [15, 16] [16] [15, 16] [15, 16] [15, 16]
WSR [15, 16] [16] [15, 16] [15, 16] [15, 16]
MWW [16] [16] [16] [16] [16]

Table 2.1: Detection method evaluation overview



3
Experimental evaluation

In order to perform a broad evaluation on the performance of the aforementioned detection methods,
we apply the detection methods to every covert channel technique in Section 2.1, in varying network
conditions. Simulated network jitter is applied to the traffic, to replicate the varying conditions present
in different networks. From performing the detection methods on these scenarios of network traffic
and CTCs, we can quantify their performance and examine the results. This section will expand on
how the data, that is used for the evaluation, is obtained and processed, as well as how the evaluation
is performed and how the results are obtained from them. Next to this, an overview is given for the
parameters and settings for the covert channels and detection methods.

3.1. Dataset
The data used for the evaluation is network traffic recorded on the TU Delft network, from the building
of the faculty of Electrical Engineering, Mathematics, and Computer Science. All the HTTPS and SSH
traffic of the building was recorded over multiple weeks, and stored in pcap files. From these files
the timestamp, IP­addresses, and ports for the source and destination are extracted for each packet.
Then, from this traffic we create ten sets each for HTTPS and SSH traffic, where each set represents a
weekday from 9 AM to 5 PM. This restriction allows for reasonable consistency in using similar days and
times, but still gives variety in the data, by having different (amounts of) users occupying the network.
Outside of office hours and during the weekend there are less people on the network, and thus the
traffic will become very sparse. This will result in inconsistent datasets and will make detection training
difficult, since any training that is done on traffic during the day will not represent the night, and vice
versa.

All sets are split further into a training set, a model set, and an injection set, which are 10%, 10%,
and 80% by time of the original set respectively. The training set is used by the detection methods to
train on legitimate traffic, and themodel set is used by the covert channels to create models of legitimate
traffic, as well as a source of IPDs for transmission. The injection set is the traffic with injected covert
channels, over which the evaluation is performed.

To create different network conditions for these datasets, we simulate the addition of jitter on the
transmitted packets. The jitter is modeled as normally distributed random values with mean 0 and
standard deviations ranging from 1 to 5 ms, that are applied to every packet. This estimation creates
plausible scenarios for network conditions, which are much like what is obtained from real traffic in [16].
Since only the IPDs of subsequent packets are used, the mean of the random values will cancel out,
and is therefore not an important factor in the simulated jitter. Thus next to the sets without any added
jitter there are five variations of jitter, representing low to high network disturbance, which are applied
to all three of the sub­sets after a covert channel has been injected. It should be noted that it is unlikely
for a network to not have any form of jitter. The sets without jitter are used to show the difference in
performance of detection methods in an ideal situation, where there is no network jitter, compared to
more realistic network conditions.

To give an overview of the behaviour and differences between SSH and HTTPS traffic, we obtain
metrics from the full day sets. For the flows with a minimum of 1000 IPDs, the amount of unique flows
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1 2 3 4 5 6 7 8 9 10
Flows 71 64 83 99 61 335 136 75 50 68
IPDs/Flow 85546 40312 34434 27265 23972 4423 6101 29253 31817 34907
IPD Mean 0.102 0.135 0.239 0.303 0.327 2.638 0.881 0.217 0.241 0.173
IPD Std 2.983 3.245 4.065 4.714 4.805 20.691 9.553 4.023 4.824 4.212

Table 3.1: SSH dataset statistics

1 2 3 4 5 6 7 8 9 10
Flows 546 563 632 503 360 350 701 538 550 649
IPDs/Flow 5321 5584 4495 5290 6618 5590 4614 5228 6825 5354
IPD Mean 1.016 0.895 1.096 0.836 0.663 0.884 1.033 0.808 0.594 0.699
IPD Std 8.782 8.303 8.546 7.297 7.060 7.900 7.704 7.270 6.147 6.717

Table 3.2: HTTPS dataset statistics

are counted, together with the average amount of IPDs contained in these flows. The minimum is
chosen from the lowest sample size of the detection methods, given in Section 3.4. Flows containing
less IPDs than this sample size will not have influence on the results of the detection methods, so they
are not taken into consideration. Next to these two metrics we also calculate the mean and standard
deviation (given in seconds) of the IPDs in the flows, to give an overall idea for the distributions of the
traffic. The statistics for all ten sets can be seen in Table 3.1 and 3.2, for the SSH and HTTPS datasets
respectively.

From these statistics we can observe some distinct differences, between the recorded SSH and
HTTPS traffic. The SSH data generally has a lower amount of flows, but with a higher amount of
packets per flow, whereas this is the opposite for HTTPS traffic. In the case of the mean and standard
deviation of their IPDs, these values are considerably lower for SSH, than for HTTPS. This means that
the IPDs are on average relatively small and have a low amount of spread for SSH, and conversely the
IPDs are relatively large with more spread for HTTPS. Both of these traffic types are fairly consistent
in the observed statistics, with the exception of day 6 and 7 for SSH. For both of these days we note
a large increase in the amount of flows, with a lower amount of IPDs per flow, as well as a significant
increase in the mean and standard deviation. These differences may be caused by an influx in the
amount of users contributing to SSH traffic, with divergent traffic behaviour. Another explanation could
be an increased utilization of multiple flows by the users, where each flow would also have higher IPDs.

3.2. Detection methodology
To be able to effectively compare the performance of the detection methods, we need to utilize the
same detection methodology for every method. We therefore change the general application for the
detection methods, from how they are applied in their respective papers, while keeping the original
functionality intact. Our methodology is based on the premise that we have no knowledge of which
covert channel technique an attacker might use. Consequently, we avoid biasing the detection method
training on any specific covert channel technique, by only training on legitimate traffic. While partially
training on covert channel traffic might improve detection rates for that specific covert channel, it might
also cause a decrease in detection performance for other covert channel techniques, and is therefore
not generally applicable in a realistic situation. Next to this, we still might not know what parameters
an attacker will use for a certain covert channel technique, and thus training on the wrong parameters
will lead to a worse performance. Taking these points into consideration, our detection methodology is
as follows.

First we apply the detection methods over the training set and calculate their scores over flows
in this set. Then depending on the direction of threshold (lower, upper, or both), a threshold value is
determined for the detection method for that specific set. The threshold will determine if a sample of
injected traffic is classified as being a covert channel, when it is over (or under) the given threshold for
that detection method. The threshold value is taken from the calculated scores, with an allowance of
0.01 false positive classification. So, for example, if there are a 100 calculated scores for a detection
method, the 99th or the 2nd value in the ordered scores will be set as the threshold, for upper or lower
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threshold directions respectively. The use of a set false positive rate allows for a certain amount of
outliers (or covert traffic) in the training set, by filtering out these scores.

Second we inject the covert channel traffic into the injection set, for each covert channel technique
and variation. In the case of MB­CTC, RMB­CTC, and LBtNP variations that are based on a model of
traffic, the model set is used to create a statistical model of legitimate traffic for a set, from which the
IPDs of the transmitted packets are generated. Other CTCs, such as JitterBug, DPOI, and TR­CTC,
use the model set as a source of legitimate IPDs, that they use to transmit their covert data. In the case
of the SCC and On­Off covert channel techniques, which do not require legitimate traffic or models
to operate, the model set will not be used. We transmit 10 kilobytes of the same random covert data
for each covert channel and variation to create new mixed sets of injected traffic, using the models or
legitimate traffic where applicable. The covert data is transmitted over a single flow using unique IP­
addresses, which allows us to later distinguish the covert traffic from its legitimate counterpart. When
using the same amount of data for each covert channel, the amount of time needed to transmit the data
will differ per covert channel variation. For example, an On­Off covert channel with a time window of
10 ms will occupy roughly 13 minutes of traffic, whereas MB­CTC can span multiple hours, depending
on the model it creates from legitimate traffic. So depending on which covert channel technique is
used, it is unavoidable that this will cause part of the covert packets to go outside of the boundary of
the time frame of the injection set. The downside from transmitting the covert data this way is that it
creates a less realistic situation, where at points in the mixed traffic there are only covert packets. As
a consequence from this we cannot realistically perform MB­CTC and RMB­CTC with refitting of the
model with live traffic, since at a certain point in transmission there are no longer any live packets to do
the refitting on. Despite these downsides we chose this method since the equal amount of transmitted
covert data gives a fair comparison of detection on different CTCs, whereas there would be a lot less
results to base the classification on for some CTCs when fitting the transmitted information inside of
the time frame.

Lastly, we apply the detection method on each flow of the mixed set of legitimate and covert traffic.
The threshold determined in the first step will then indicate for each sample in the flows whether or
not it is classified as a covert channel. Then, using these classifications, and the knowledge of which
samples were actually covert traffic, we can determine the false and true positive rates for the detection
method on the covert channel variation. We define the false positive rate as being the percentage of
legitimate traffic that is incorrectly classified as a covert channel traffic, with regards to the total amount
of legitimate traffic in the set. Conversely, the true positive rate is defined as the percentage of covert
channel traffic that is correctly classified as such, in relation to the total amount of covert traffic. Both
the false negative and true negative rates can be easily obtained at each point from these two values,
by subtracting the true positive rate and false positve rate, respectively, from 100 percent. This follows
logically from the definition of these values, where the false negative rate is the percentage of incorrectly
classified covert traffic, and the true negative rate that of correctly classified legitimate traffic. Since
these other two values are somewhat redundant, we have thus chosen to only show the false and true
positive rates to not clutter the resulting figures. Then, the false and true positive rates are obtained for
each of the 10 sets of different days, from which the reported rates are then given by the average of
these sets. The three­step process is performed for each combination of detection method and covert
channel variation, to obtain the rates for every combination.

To show the effect of jitter on the detection methods and covert channels, we repeat the process
for the different amounts of jitter as well. The jitter is first applied to the training and modeling sets, so
that both the detection methods and covert channels use jittered traffic in the first two steps. This will
lead to different thresholds for the detection methods, as well as different models, and legitimate traffic
for covert channels. Then, after the covert data has been injected, the mixed set has jitter applied to
every packet, to simulate the network conditions.

3.3. CTC settings
As discussed earlier, one of the difficulties in detecting covert channels is that it is unknown what type of
covert channel technique an attacker chooses, as well as which values such a technique might use. It is
therefore important to apply the detection methods to a broad range of settings for the covert channels.
The settings that are used are plausible values an attacker might use, that are derived (and expanded
upon) from the respective papers these techniques are discussed in. The different values generally
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have a trade­off in transmission speed, robustness against errors from network jitter, and (in some
cases) add a form of detection avoidance. For example, larger time windows will decrease the overall
transmission speed of the covert channel, but network jitter has a smaller impact on the performance.
The parameters for the variations of the covert channels are as follows:

• For the SCC the binary form will be used with 𝜏 between 10 and 100 ms, with 10 ms increments,
where the two symbols are sent with delays 𝑡1 = 𝜏 and 𝑡2 = 2 ∗ 𝜏.

• On­Off CTC will use the same 10 to 100 ms range as SCC for its time window.

• DPOI will use a 50 to 300 ms range, with 50 ms increments, for the covert time delay 𝑇𝑐𝑡.

• The JitterBug covert channel uses the values 2, 5, 10, 15, 20, 25, 50, 75, and 100 ms for its timing
window 𝑤.

• MB­CTC and RMB­CTCwill be run without refitting and determine the parameters for their models
from distribution fitting on the model set. Next to this another variant is added, where the models
are fit on the IPDs that are smaller than one second. This will increase transmission speeds, but
has the trade­off of creating models that are less accurate to the legitimate traffic.

• For TR­CTC the binary matching form will be used with the cutoff value 𝜏𝑐𝑢𝑡𝑜𝑓𝑓 as the median of
the IPDs, determined from the model set it uses to send packets. TR­CTC also includes a variant
where the used IPDs are less than one second.

• The basic variant of LBtNP will send 8 bits with 3 packets, with Δ 10 or 50 ms, and 𝛿 5 or 10 ms.
For each combination of Δ and 𝛿 the additional random delay option will also be applied, doubling
the number of variations. For the model variant 8 bits will be transmitted with 2 packets, and the
model parameters are derived from the model set, which will include a low IPD version as well.

3.4. Detection method settings
Contrary to how the covert channels are varied in their parameters, the detection methods are chosen
to be run with only one setting. In a real network setting the detection methods are likely to be setup to
run with only one setting, while attackers can more easily change the operation of the covert channels
they use. Also, without an effective way to select the settings for each detection method depending on
the network, we cannot know beforehand which settings are ideal for that network. However, this does
ensure a form of general applicability, by measuring the results without overly tuning the detection
method settings on the specific traffic. Thus the detection methods will be applied with the recom­
mended settings from their respective papers, or the settings that gave good results will be chosen,
when there is an absence of recommended settings. All detection methods discussed in Section 2.2
will be evaluated, with the exception of the SVM and Arimoto­Blahut methods. This is due the fact that
to effectively test the performance of SVM we would need to evaluate it on different amounts and com­
binations of the detection methods. Due to the amount of possible combinations, this falls outside the
scope of this research. For Arimoto­Blahut, the way the data is obtained, it is not possible to calculate
the symbol distribution using the original send time and the delay that is added from sending it over the
network. Therefore this method is not suitable for detection under our current experimental evaluation.
The settings for each detection method are as follows:

• Regularity uses a sample size of 2000, with a subsample size of 100, and a lower threshold
direction.

• 𝜀­similarity uses a sample size of 2000, and seven 𝜀­values are used as a threshold. The first six
are used as a comparison of smaller than or equal to the similarity value, with the values being
0.005, 0.008, 0.01, 0.02, 0.03, and 0.1. The last value is used as a comparison of greater than the
similarity value, with its value being 0.1. The first six values use an upper threshold direction, and
the last a lower threshold direction, with a majority vote deciding the classification of the sample
being a covert channel.
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• Mean­IPD uses a sample size of 2000, a bin size of 10 ms, and an upper threshold direction.

• Compressibility uses a sample size of 2000, and an upper threshold direction.

• The Kolmogorov­Smirnov test uses a sample size of 2000, a training sample size of 4000, and
an upper threshold direction.

• First order entropy uses a sample size of 2000, and a lower threshold direction. The distribution
for the binning is fitted from the training set, with a total amount of 65536 bins.

• Kullback­Leibler divergence uses a sample size of 1000, with a training sample of 2000, and an
upper threshold direction. The bins that are used are equally sized in 1 ms, with the maximum
amount being 300 seconds.

• Corrected conditional entropy uses a sample size of 2000, and a two­sided threshold direction.
The distribution for binning is fitted from the training set, with a total amount of 5 bins.

• Welch’s t­test uses a sample size of 2000, with a training sample size of 10 percent of the training
set, and a lower threshold direction.

• For each of the three detection methods of kurtosis and skew, the used sample sizes are 2000,
with a subsample size of 100, and a lower threshold direction.

• The non­parametric tests of Spearman­Rho,Wilcoxon Signed­Rank, andMann­Whitney­Wilcoxon
all use a sample size of 2000, with a step size of 200 IPDs. The metric is calculated from 10 p­
values for Spearman­Rho, whereas Wilcoxon Signed­Rank, and Mann­Whitney­Wilcoxon use 15
p­values. All three detection methods have an upper threshold direction.





4
Results

In this section we evaluate the results obtained from performing the detection methodology introduced
in Section 3. This is done on the basis of the true, and false positive rates of each detection method
on each covert channel technique, and their variants. Due to the large amount of results, we choose
some examples from these scores to exemplify where the strengths and weaknesses of each detection
method lie. Then for each example we give an in­depth analysis of why these differences in perfor­
mance occur. These analyses on the performance will help further the discussion on if these detection
methods are applicable in a realistic scenario. The full results of performing the detection methods on
each covert channel can be found in the appendix. Next to these analyses, a general overview is given
for the performance of all the detection methods at the end of this section.

4.1. Entropy, Kullback­Leibler, and Corrected Conditional Entropy

Figure 4.1: Entropy detection on SCC

The first detection method we will look at is the first­order entropy, for which the true and false
positive rates can be seen in Figure 4.1. This detection method has true positive rates close to one
at no added jitter and drops to zero for any of the used amounts of jitter. To explain why this occurs a
more detailed examination is done on the entropy scores of the SCC variation SCC­10­20 for no jitter
and 1 ms added jitter, which are given in Figures 4.2 and 4.3 respectively. When there is no added
jitter the entropy scores of this particular covert channel are very close together and can be properly
distinguished from the scores of the legitimate traffic. At 1 ms of added jitter, this distinction cannot be
made, because the entropy scores come much closer to legitimate traffic.
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Figure 4.2: Entropy scores with 0 ms std jitter on SCC­10­20

Figure 4.3: Entropy scores with 1 ms std jitter on SCC­10­20

As discussed earlier in Section 2.2.3 the entropy detection method is performed by sorting a sam­
ple of IPDs into bins according to the fit distribution from legitimate traffic, with higher resolution (i.e.
more and smaller bins) around IPDs with higher occurrence. Then from these filled bins the en­
tropy score is calculated over all of the bins according to the formula for entropy: 𝐻(𝑋1, ..., 𝑋𝑚) =
−Σ𝑋1 ,...,𝑋𝑚𝑃(𝑋1, ..., 𝑋𝑚)𝑙𝑜𝑔2𝑃(𝑋1, ..., 𝑋𝑚). When there is no jitter the transmitted IPDs for every varia­
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tion of the SCC have exactly two possible values, which are then sorted into exactly two bins as well.
A random string of transmitted bits will fill each of these bins close to evenly, which in turn gives similar
scores for each sample of SCC traffic (resulting in the singular spike in Figure 4.2). The addition of
jitter spreads out the possible values to the bins around the two original values, increasing the entropy
score to the point where they are similar to legitimate traffic scores. A point to note is that this method
does not take into consideration the positions where the bins are filled for a sample. For example, the
same number of bins that are filled up to the same amount for two different samples will result in the
same score, independent of if the first bins are filled or if they are anywhere else in the possible range
of bins.

Figure 4.4: Kullback­Leibler detection on SCC

In comparison, the Kullback­Leibler divergence (KLD) metric discussed in Section 2.2.5, which is
based on the relative entropy, does perform well under varying amounts of jitter. The true and false
positive rates for KLD in Figure 4.4 show that there is a high detection rate for every variation of the
SCC and jitter, with a minor performance drop for the SCC variants that use smaller IPDs. Much like
the first­order entropy detection method KLD also works with binned IPDs, but instead uses bins of
equal size and fills them beforehand with the value 0.5. Next to this, a binned sample from legitimate
traffic is taken for comparison against samples during the detection process. The KLD score is then
computed over all bins using 𝐷𝐾𝐿(𝑃||𝐺) = ∑𝑥 𝑝(𝑥) ⋅ 𝑙𝑜𝑔(

𝑝(𝑥)
𝑔(𝑥)), with 𝑝(𝑥) and 𝑔(𝑥) the probability at bin

𝑥 of the traffic and training sample respectively. So if bins in a position are equally probable or have
no occurrence in either sample, the resulting value of zero leads to no change in the score. On the
other hand when there is a difference in probability for these bins, then the change in score follows the
difference of the probabilities. In the case of the SCC with no added jitter the two possible values fill
only two bins, so many bins have differing probabilities compared to the training sample, which leads
to an increase in the KLD score. The addition of jitter does spread out values over more bins, however
mainly for the cases such as SCC­10­20 and SCC­20­40 where there is more overlap between the
IPDs of the CTC and training sample does this cause a significantly lowered KLD score closer to that of
legitimate traffic, which then leads to misclassifications. Therefore the aspect of comparing positions of
bins from the training sample and the traffic under analysis in KLD causes it to still perform well under
increasing jitter, whereas the first­order entropy scores for the SCC increase to the point where these
scores and the scores for legitimate traffic cannot be distinguished sufficiently.

The Corrected Conditional Entropy (CCE) method, discussed in Section 2.2.3, takes a different
approach to determining the complexity of the examined traffic. Instead of the overall entropy, or relative
entropy depending on position, the CCE looks at the differences in entropy between subsequent pattern
lengths. This method is an approximation of the entropy rate which, unlike the actual entropy rate, can
be applied to a finite series. At each level of pattern lengths within a sample, the CCE is calculated from
the difference in entropy between two subsequent levels, corrected by the relative amount of unique
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Figure 4.5: Corrected conditional entropy detection on MB­CTC

patterns of that length. This is given by the following formula:

𝐶𝐶𝐸(𝑋𝑚|𝑋𝑚−1) = 𝐸𝑁(𝑋𝑚) − 𝐸𝑁(𝑋𝑚−1) + 𝑝𝑒𝑟𝑐(𝑋𝑚) ⋅ 𝐸𝑁(𝑋1)

The approximation of the entropy rate, and thus the resulting score, is then the minimum CCE value
of all the pattern lengths in the sample. For traffic with highly regular patterns, using a small amount
of values, the difference in entropy will be small between levels. Next to this, there are likely few
unique patterns at each level, which will give a low overall CCE score. On the other hand, traffic
containing more random patterns that utilize a broader range of values will have larger differences in
entropy between subsequent pattern lengths. This type of traffic is also more likely to have more unique
patterns, resulting in a higher CCE score. Legitimate traffic is assumed to lie somewhere between these
examples, which leads to the usage of two thresholds.

From applying the CCE detection method on the CTC techniques we found that it most notably
performs well on the covert channels that are based on models of traffic, which are MB­CTC, RMB­
CTC, and themodel variant of LBtNP. This performance can be seen in the detection scores for MB­CTC
in Figure 4.5, where high true positives are achieved for both traffic types. However, from this figure
we can also see that the performance is much lower on the low IPD variant, for which the model is
based only on legitimate traffic IPDs of less than a second. This difference in performance occurs for
all low IPD variants of the three CTC techniques mentioned above. One positive aspect that can be
seen from the figure is the low impact of network jitter on the CCE detection method. The similarity in
detection rates for different amounts of jitter is mainly caused by the employed coarse binning strategy.
Due to the coarse binning the addition of jitter is less likely to change the bins the IPDs in the sample
are placed into. This will then result in similar overall patterns for all variations of jitter, as well as similar
scores. Further we note middling to high detection rates for DPOI and JB for the SSH traffic type, with
no other significant results for the other CTC techniques.

The CCE scores for legitimate traffic in relation to the two variants of MB­CTC, SCC, and On­Off can
be seen in Figures 4.6 and 4.7, for HTTPS and SSH respectively. From these figures we can discern
that the full model variant of MB­CTC has relatively high CCE scores, when compared to legitimate
traffic. These differences in scores are caused by how MB­CTC creates its IPDs from the model. The
IPDs that are created are similar in occurrence to that of legitimate traffic, but not in the order in which
they occur. This means that MB­CTC will have more varied and unique patterns spanning the entire
range of the model, leading to a higher CCE score. This higher score is then sufficient to distinguish this
variant of MB­CTC from legitimate traffic. In the case of the low IPD variant we can see that the scores
are significantly lower than the other variant. These scores are much closer to those for both legitimate
traffic types, making it more difficult to differentiate them, which leads to the low detection rates we have
observed. The main cause of the lower CCE scores is the restriction on the possible values produced
by the model, from basing this model on a smaller range of IPDs. The restriction on the values causes
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Figure 4.6: Corrected conditional entropy scores HTTPS

Figure 4.7: Corrected conditional entropy scores SSH

a smaller amount of bins to be filled, which are based on the full range of legitimate traffic, lowering
the entropy at each level of pattern lengths. By placing the same amount of IPD patterns over such a
smaller range of bins will also likely produce fewer unique patterns. Both of these factors then result
in an overall lower CCE score compared to the full model equivalent of this covert channel technique,
and thus the (partial) avoidance of detection. Another point to be noted from the figures is that the
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CTC techniques that are less complex, such as SCC and On­Off, have CCE scores that are closely
grouped together around zero. These scores are to be expected from the limited amount of values
and regularity in the patterns that are used by these types of CTCs. However, for the legitimate traffic
there are also a number of samples that produce low CCE scores, causing some overlap. Due to this
overlap these covert channel techniques are not being detected well by CCE. The detection for less
complex CTCs can thus theoretically be improved by utilizing a larger training threshold percentage at
the lower side, with the trade­off being an increase in overall false positives.

4.2. Mean IPD

Figure 4.8: Mean IPD detection on SCC

Figure 4.9: Training traffic IPDs HTTPS

Intuitively the mean IPD detection method should in theory perform well on the SCC technique of
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sending information. From the two possible values there are also only two peaks of occurrences around
those values, with the mean in between the peaks having little to no occurrences. The score obtained
from 𝑃𝐶𝑜𝑣𝐶ℎ𝑎𝑛 = 1−

𝐶𝜇
𝐶𝑚𝑎𝑥

, with 𝐶𝜇 the count at the mean and 𝐶𝑚𝑎𝑥 the count at the largest peak, should
then be (close to) one. However, as can be seen in Figure 4.8 the detection rates are not as expected
from the intuition. In the case of SSH traffic the SCC variations that use smaller values have lower
detection rates. Due to the binning size of 10 ms that the mean IPD method uses, a variation such as
SCC­10­20 will have all values binned in two bins next to each other. The mean that should lie between
those values will then lie at one of these two bins, resulting in a score closer to zero. The presence
of jitter will also cause other variations, that have no occurrences at the mean under no jitter, to have
increased counts at the mean. This can decrease the detection score under the threshold, for which it
is then misclassified as legitimate traffic.

Aside from this, the main issue why this detection method does not perform well is from the as­
sumption that for legitimate traffic the mean of the IPDs lies around the point where the most packets
are. In Figure 4.9 binned training traffic IPDs for HTTPS can be seen, with their mean indicated in red
and values larger than one second truncated for clarity. Most of the IPDs occur between 0 and 10 ms,
but due to larger IPDs in the legitimate traffic the mean is shifted to the right of the bin where the most
IPDs occur. A small number of outliers of large values can change the mean in such a way that it is not
close to the highest peak. In many samples of this training traffic the count at the mean is very small
or zero, which in turn gives high mean IPD scores during training. From these scores the threshold is
determined, which is thus set to a high value. For HTTPS this threshold is set to one (i.e. the maximum
score) in all cases, so neither legitimate traffic or CTC traffic is being classified as a CTC. This means
that for all different covert channels the false positive and true positive rates are zero, which is what
can be seen in Figure 4.8 for the SCC.

A solution onemight think of is to use themedian for finding the values needed tomake this detection
method work. This does find values during training that are closer to the peaks of the most occurring
IPDs. However, since there are little to no occurrences between the peaks of the SCC, it gives no
guarantee that the median lies between those peaks, and is therefore not a suitable solution. Next to
this, the detection method also has limited usability on only covert channel techniques that use an even
amount of values. In the case of CTCs with an uneven amount of values the mean is likely to lie at one
of the peaks of those values, making it difficult to detect using this method.

4.3. 𝜀­Similarity

Figure 4.10: epsilon­Similarity detection on On­Off

Next we will look at the 𝜀­similarity detection method we discussed in Section 2.2.1. This method
takes a sample of sorted IPDs and calculates the relative differences, |𝑃𝑖−𝑃𝑖+1|/𝑃𝑖, for each subsequent
point in the sample. Then for six 𝜀 values the 𝜀­similarity scores are given by the ratio of relative
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Figure 4.11: Sorted IPDs of On­Off traffic samples

differences that are lower than 𝜀, with one more 𝜀 value that compares differences that are higher than
that value. A majority vote of the scores compared to the thresholds then determines whether or not
a sample is classified as a CTC. This detection method has high detection rates for all of the CTCs
that use set values or time intervals, which are the SCC, On­Off, and the non­model variants of LBtNP.
There is however a performance drop for the lower­valued variations of these CTCs, when there is an
increase in jitter, which can be seen for On­Off­10 in Figure 4.10.

To examine why this performance drop happens, we will take a closer look at the intermediate
process of sorting the IPDs. In Figure 4.11 the sorted IPDs of the variants On­Off­10 and On­Off­50 are
shown, under no jitter and 5 ms standard deviation of jitter. For On­Off CTC a zero in the transmitted
string leads to a set silence time interval where no packet is sent, and a packet is only sent in the middle
of this period for a one. Then depending on the amount of zeroes before a one different combinations
are formed, which will lead to distinct IPD values for those combinations. When there is no added
jitter there are clear separations for both On­Off variants between the different combinations, where
all IPDs of the same combination have the same value, creating horizontal lines and peaks at the
transitions of combinations. With the addition of jitter the horizontal lines have become inclined and the
points where transition occur are no longer visible for On­Off­10. In the case of the variant that uses
larger time intervals On­Off­50, the lines are less steep and there is still a visible transition between the
different combinations. The slopes with a larger incline will have higher relative differences between
each subsequent point, and thus more relative differences that are larger than the various 𝜀 values. The
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ratios for the similarity scores are then much more likely to be under the threshold, resulting in lower
detection scores. Conversely, the less inclined slopes of On­Off­50 retain the low relative differences
more than On­Off­10. These then lead to higher ratios of relative differences under the 𝜀 values, and
thus still have a high detection score.

Next to this, the 𝜀­similarity detection method has low performance on the other types of CTCs or
variants that use legitimate traffic or models based on that traffic. These types of CTCs have sorted IPD
samples that are too similar to legitimate traffic, resulting in similarity scores that are close to legitimate
traffic as well. JB and DPOI add an extra delay to the traffic that they use, but due to the high amount of
possible values in the legitimate IPDs, as well as the random values used in JB, this does not show in
the similarity scores. In the case of TR­CTC there is no added delay, and the pre­recorded, legitimate
traffic is merely played back in a different order. The sorting of the sample of IPDs by the detection
method removes the order that TR­CTC introduces, and so the only information left is of the legitimate
traffic IPDs. This therefore makes 𝜀­similarity unsuited for detection of this particular covert channel.

4.4. Regularity

Figure 4.12: Regularity detection on SCC

Figure 4.13: Regularity detection on On­Off
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Figure 4.14: Relative standard deviation of SCC and On­Off traffic

In Section 2.2.1 we discussed the regularity detection method, for which the score is given by the
formula 𝑆𝑇𝐷𝐷𝐸𝑉( |𝜎𝑖−𝜎𝑗|𝜎𝑖

, 𝑖 < 𝑗, ∀𝑖, 𝑗). The detection method thus works by splitting a sample of traffic
into sub­samples, and for each the standard deviation is calculated. Each of these values are then
compared to all the standard deviations that come after it, which we will call the relative standard
deviations. The regularity metric is then the standard deviation of all these relative standard deviations.
This detection method has high true positive rates on the SCC and the non­model variants of LBtNP,
with a middling performance for On­Off in SSH traffic. The detection rates can be seen in Figure 4.12
and 4.13, for the SCC and On­Off respectively. For the SCC there is a lowered performance for the
variants that use smaller values, under increased jitter. Especially for HTTPS the decrease can be
clearly seen, in order of the values that the variants use, where variants that produce smaller IPDs will
have a larger decrease.

To explain why these issues in performance on the SCC and On­Off occur, we will look at the
differences in the relative standard deviations for certain cases. In Figure 4.14 the relative standard
deviations can be seen for samples of the variants SCC­10­20 and On­Off­10, under no jitter and 5 ms
of added jitter. In the case of the SCC without jitter each sub­sample will only have different amounts of
exactly two values, which lead to similar standard deviation values for all of them. Since the standard
deviation of each sub­sample will lie very close together, the relative standard deviations will be small.
So with a majority of small relative standard deviation values, the regularity score is then also low.
In comparison with the case of 5 ms added jitter, the 10 and 20 ms IPDs are changed by such an
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amount that there are larger differences in the standard deviations of each sub­sample. The potential
differences between these values then lead to increased relative standard deviations and, following this
increase, higher regularity scores. The change caused by the jitter can be seen in the figure, where no
jitter has a maximum relative standard deviation of approximately 0.05, and 5 ms of jitter that of around
0.4. The standard deviations of sub­samples are also affected by jitter for larger­valued variants, but
since the amount of jitter is relatively small compared to the values sent, this has a lesser impact on
the change in relative standard deviations and thus the regularity score as well. As indicated earlier,
the IPDs for sent packets in the On­Off covert channel depend on the amount of zeroes before a one
in the transmitted string. Thus, depending on the string combination, this means that even for a variant
such as On­Off­10 that uses a small time window, the IPDs can vary widely between each sub­sample.
These outliers in the IPDs significantly increase a portion of the standard deviation values of sub­
samples. Comparisons between small and large standard deviation values then lead to large relative
standard deviation, which in turn produce larger regularity scores. There is also not a big difference in
the relative standard deviation for added jitter, compared to no jitter. Since On­Off already has variation
in its values, the jitter does not affect the scores by much. The figure shows that On­Off­10 has relative
standard deviations, regardless of jitter, that are comparable to that of SCC­10­20 under 5 ms jitter,
which translates into lower detection scores. So the main reason why regularity performs well on the
SCC and non­model variants of LBtNP is that they use consistent values, without any (significant)
outliers.

In the case of other covert channel techniques, that use real traffic or models, this detection method
does not perform well. The legitimate traffic or model that is used for transmission of course has
similar characteristics in variation and standard deviations as the traffic that the detection method is
trained upon. When (small) values are added to the IPDs this does not have a significant impact on
reducing the (relative) standard deviation of sub­samples, which will thus still be similar to legitimate
traffic. Therefore this detection method does not have much success in detecting these covert channel
techniques.

4.5. Compressibility

Figure 4.15: Compressibility detection on DPOI

The compressibility detection method discussed in Section 2.2.1 looks at the differences in com­
pression lengths of IPDs for legitimate and CTC traffic. The method does this by taking a sample
of traffic, and ignoring IPDs of length greater than or equal to one second, translates each IPD into a
string. The string is created by taking the rounded first two significant numbers of the IPD and prepend­
ing these numbers with a letter, signifying the amount of zeroes after the decimal point. For no zeroes
after the decimal point no letter is prepended, for a single zero the letter is an A, for two zeroes the
prepended letter is a B, and so on. Then the string, from all the combined IPDs in the sample, is com­
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pressed using an off­the­shelf compression algorithm, from which the compressibility score is given by
the length of this original string, divided by the compressed string length. A compression algorithm will
generally look for patterns and reoccurring values in the string to replace. This is why, for example, a
string with certain pattern or many of the same values will be compressed into a much smaller size,
compared to a string of random symbols. The same thing then also happens for the translated IPDs,
where values close together will have the same prepended letter and similar numerical values, with a
smaller compressed string, compared to that of values further apart. Therefore, CTC traffic with reoc­
curring values and/or patterns will result in a smaller compressed string, and should thus have a higher
compressibility score, in comparison to that of the more varied legitimate traffic. In the case of HTTPS
traffic the detection method has near full scores for the SCC, for all examined amounts of jitter, as well
as high true positive rates for On­Off. Next to this, the method produces varying results for non­model
variants of LBtNP, DPOI, and JB, depending on the used variants and the amount of jitter. From the
detection scores two main issues arise with the compressibility detection method, where for these last
three covert channel techniques the score at no jitter can be very low, and that SSH has scores that
are distinctly lower than HTTPS. In Figure 4.15 these issues can be clearly seen for the detection on
DPOI.

Figure 4.16: Compressibility scores on DPOI­200 using HTTPS

Figure 4.17: Compressibility rates on DPOI­200 using SSH
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The low detection rates at no jitter are mainly caused by the higher compressibility scores from
the training traffic. These higher compressibility scores come from more frequent occurrences of the
same or similar IPD values. In Figure 4.16 we can see that CTC traffic scores have a majority that
overlap with the most occurring legitimate scores, which thus results in many classification errors.
When subjected to jitter, the legitimate compressibility scores are reduced, since the random values of
jitter disrupt patterns and the similarity of IPDs. For DPOI the reduction in compressibility happens to
a lesser extent. In Section 3, we have shown that HTTPS traffic on average consists of large values,
with a significant amount of standard deviation. The process of compressibility then only takes the
IPDs of this traffic that are under one second, reducing the amount of traffic under consideration. DPOI
uses a set of IPDs to transmit its data and the HTTPS traffic that is used is made up of relatively
large IPDs, compared to the added value of DPOI. This means that there is a certain amount of traffic
that is not being considered by this detection method, since these IPD values are larger than one
second. Next to this, the addition of a small amount of jitter is also less likely to alter the values of the
strings, consisting of the prepended letter and significant numbers, obtained from the translated IPDs.
Therefore, the compressibility scores are reduced less than that of legitimate traffic. With this difference
in score change there is a more clear distinction between the legitimate and CTC scores, resulting in
an increase in detection rates when a small amount of jitter is added. For the compressibility scores
on SSH, given in Figure 4.17, the same score similarity can be seen under no jitter, but the distinction
between the covert channel and legitimate traffic with 1 ms jitter is not as apparent as for HTTPS. Under
no jitter SSH has higher compressibility scores on average than HTTPS. This can be caused by a higher
amount of similar values, or by processes that send packets with a certain regularity. SSH in general
consists of smaller IPD values than HTTPS, which in turn affect the IPD values produced by DPOI and
their translated strings. With more similar IPDs between the DPOI and legitimate traffic, their scores
are also affected similarly by the added jitter. Therefore, even with jitter their compressibility scores
have a major overlap, resulting in lower detection rates.

Summing up, the compressibility detection method is successful for certain covert channels, but is
dependent on the type of overt traffic that is used. For the HTTPS traffic that we used it can correctly
classify the SCC and On­Off and, depending on the conditions of jitter in the network, certain others
as well. However, in the case of SSH the detection scores are generally lower, and more sensitive to
jitter.

4.6. Welch’s t­test

Figure 4.18: Welch’s t­test detection on MB­CTC

In Section 2.2.5 the Welch’s t­test is discussed, which is an adaptation of the student’s t­test that
allows for unequal size and variance of the two samples that are tested. The t­test is used to test for the
null­hypothesis of whether the means of two populations are equal. Instead of rejecting or accepting the
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Figure 4.19: Welch’s t­test p­values for legitimate traffic, MB­CTC, JB, and SCC

null­hypothesis, the p­values obtained from the test are used by the detection method as a threshold. A
larger sample of legitimate traffic from training is compared to samples of observed traffic, to determine
if these samples are generated by a covert channel.

The Welch’s t­test detection method has decent scores on HTTPS traffic for the variants of covert
channels that use a model closely resembling the legitimate traffic, meaning MB­CTC, RMB­CTC, and
the model­variant of LBtNP, that use the full range of IPDs for their models. The detection scores for
MB­CTC can be seen in Figure 4.18, for which the scores of the other two covert channel techniques are
similar. From these scores it can also be observed that the detectionmethod is robust against the effects
of jitter. On the other hand, for the other covert channels and variations there are no notable results,
with the maximum true positive rate being around 30 percent. Next to this, the higher false positive
rate compared to the other detection methods makes it less usable in a realistic application, since
the amount of legitimate traffic that is wrongly classified diminishes the effectiveness of the detection
method. In Figure 4.19 we show the p­values (in the form of box plots) of all the observed legitimate
traffic, compared to MB­CTC, JB, and the SCC, for one of the HTTPS sets. From these values we
can observe that the covert channels have p­values that are grouped closely together, with no large
outliers. The legitimate traffic, however, does have a wide range of possible values and outliers, that
are derived from the different flows and behaviours present in the traffic. Of these three covert channels
only MB­CTC has a majority of its values under that of the legitimate traffic, which leads to more correct
classifications and thus increases performance. For the model­based covert channels the Welch’s t­
test captures the differences between values generated from a model and legitimate traffic, especially
in the case of models close to the distributions of legitimate traffic. In the case of the other covert
channels, their scores fall inside the range of legitimate traffic and are thus more likely to be wrongly
classified.

In the original work where the Welch’s t­test is evaluated [2], the scores obtained are substantially
higher than the scores we present here. For the covert channels techniques of MB­CTC and JB the true
positive rates are equal or over 82 percent, with false positive rates lower than or equal to 11 percent.
The disparity in the detection results between our tests and those described in the original work could
be caused by multiple factors. One of these factors might be the way the detection method is applied, in
their methodology. Themethodology is performed by injecting half of each training set with covert traffic,
with the other half untouched, to represent legitimate traffic. Then, by applying the detection method
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over both halves, the threshold value is optimized to yield the optimal classification rate, in terms of true
positive and negative rates. Using the threshold value obtained from the training, the detection method
is then performed against a test set, injected with the same covert channel techniques and parameters.
The issue with this methodology is that it works under the assumption that it is known which covert
channel techniques and parameters will be used by the attacker, and to train the detection method on
this. This introduces a certain amount of bias into the detection, where the general performance on
other CTCs and variations might not be similar. Next to this, training under the assumption of which
covert channels and parameters are used, creates a less realistic scenario. Another possible factor for
the difference in performance could be from the dataset that was used in the original work, which is
network traffic from the Waikato I captures from 2005. Aside from the age of the dataset, which might
not be representative of current network traffic behaviour, the data is likely dissimilar to the traffic we
perform our tests on. The threshold value obtained from training in their work is given as 0.76, which
is not close to the values we have obtained for legitimate traffic, as can be seen in Figure 4.19. This
could indicate that the traffic is more homogeneous or similarly distributed than the data that we are
working with, leading to more grouped and higher p­values for legitimate traffic.

Despite the lower performance demonstrated here, there is a potential for the Welch’s t­test to per­
form well on many of the covert channel techniques. The p­values for covert channels are generally
grouped close together with a small amount of outliers, which could make for good classification. How­
ever, the main problem that prevents it from performing well is the spread and amount of outliers of
legitimate traffic p­values, from which the low true positive and high false positive scores stem. Perhaps
with some adjustments to the detection method, that increases the overall scores for legitimate traffic
and decreases their spread, this problem could possibly be solved.

4.7. Skew and Kurtosis

Figure 4.20: Skew mean detection on On­Off

The skew and kurtosis detection methods, discussed in Section 2.2.5, are higher statistical mo­
ments describing the shape of a distribution. For a distribution, the skew measures the asymmetry in
the amount that the data is skewed within the distribution, while the kurtosis measures the amount of
(extreme) deviation around the tail­ends of the distribution. For each of these shape metrics three de­
tection methods are formed from calculations on the sub­samples, using the mean, standard deviation,
and regularity. The detection methods based on the mean are the most straightforward application
of the shape metrics, wherein the scores are directly related to the metrics. On the other hand, those
based on the standard deviation and regularity observe variations between the skew and kurtosis values
between sub­samples. The overall variation within the sample is measured by the standard deviation,
and the variation between sub­samples over time is measured by the regularity detection methods.

For the detection methods based on skew and kurtosis we report significant results on the non­
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model variants of LBtNP, On­Off, and the SCC. Under HTTPS traffic the skew mean method achieves
100 percent true positive rates for these LBtNP variants and the SCC, as well as the highest true positive
rates for On­Off of around 70 percent. In comparison, for SSH traffic the detection methods generally
perform worse. Notably with On­Off, the skew mean only achieves true positive rates between 15 and
35 percent for this type of overt traffic. In Figure 4.20 the difference in performance for the skew mean
between the two types of overt traffic can be clearly seen for the On­Off covert channel. Next to this,
the detection methods based on the standard deviation and regularity show a decrease in performance
under higher amounts of jitter.

The overall performance on only the three named covert channel techniques is due to the set values
that are used in them. From the set values, the distributions for these CTCs have distinct shapes that
are dissimilar to that of legitimate traffic. Conversely, the shapes of the other covert channels (and
LBtNP variations) are defined by the legitimate traffic or models they employ, which are thus similar to
legitimate traffic andmore difficult to detect using thesemethods. There is also a difference between the
shapes of the distributions for HTTPS and SSH, defined by processes like user interaction, that create
smaller values for SSH. As such, this variation of shapes for SSH prove to bemore difficult to distinguish
from covert traffic, compared to HTTPS. In the case of On­Off there is a greater possibility of outliers
within each sub­sample, from the amount of zeroes before a one in the covert data. These outliers shift
the shape of the distributions and increase the skew and kurtosis values, closer to those of legitimate
traffic. Especially for the detection methods using standard deviation and regularity, the larger possible
differences between sub­samples make it more difficult to detect On­Off traffic. Additionally, similar to
what we have described in the discussion for the regularity detection method, the effect of jitter also
applies for the skew and kurtosis regularity (and to a lesser extent for the standard deviation). Since
the variation in the skew and kurtosis is used as scores for these detection methods, small changes in
the IPDs due to jitter can affect these scores by a significant amount, depending on the IPD sizes used
by the CTC variants.

In comparison to the original work [2], we do not attain similar scores for the covert channels that they
discuss. Note that this work is the same as the one for the Welch’s t­test, so we argue that the concerns
regarding the dataset and methodology discussed in that section apply here as well. An example for
one of these concerns is that although their methodology achieves decent true positive scores, there
are instances where the false positive rate goes up to 50 percent. The relation of this false positive
rate is such that, for similar network conditions, half of the overt traffic would be incorrectly classified
as covert. With networks that have a large amount of overt traffic, relative to the possible amount of
covert traffic, this would provide a significant number of absolute false positives to work through. Thus,
in realistic scenarios where half of the legitimate traffic is classified as covert channel communications,
the relevance of correctly classifying covert traffic is diminished by a substantial amount. Aside from
these concerns, we find that the detection methods based on skew and kurtosis can perform well on
select covert channel techniques. However, we cannot evaluate the capabilities fully for thesemethods,
since the authors intended to apply them as classifiers for the use in SVM, which is outside the scope of
this thesis. There could be combinations of the scores from these detection methods, that are distinct
for both overt and covert traffic. These combinations would possibly allow a machine learning method,
such as SVM, to correctly classify other CTC techniques, for which the individual detection methods
show low performance. Thus, even though the detection rates of these singular detection methods on
these CTCs is low, the use of SVM could improve performance when applied with a combination of
these methods.

4.8. Kolmogorov­Smirnov
In Section 2.2.3 we discuss the Kolmogorov­Smirnov (KS) test, which measures the largest distance
between a reference distribution and an empirical distribution function, or between two empirical dis­
tributions. For the use in covert channel detection, a training sample of legitimate traffic is used as a
fingerprint and is compared against samples of possible covert traffic. Large KS­test scores between
the empirical distributions of these two samples can indicate the existence of covert channel traffic,
while smaller scores are more likely to be obtained from legitimate traffic.

For HTTPS we report near full true positive rates under no jitter for the SCC, On­Off, and the non­
model variants of LBtNP. With the addition of jitter there is a significant decrease in these rates, de­
pending on the size of IPDs used by these covert channels. The variants that use smaller IPDs show
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Figure 4.21: Kolmogorov­Smirnov detection on JB

Figure 4.22: CDF of legitimate, Time Replay, and JitterBug traffic IPDs

a steeper decline in their detection rates, with an increasing amount of jitter. For the CTCs that use
legitimate traffic or models we find no significant results, with the exception of JB. In the case of JB with
HTTPS traffic there is a wide range of detection rates, depending on the variant that is being detected.
With the variant that uses the largest 𝑤­value of 100 the true positive rates lie between 80 and 100
percent, while these rates are around 10 or 20 percent for the smallest JB variant. Next to this, the
performance on SSH is generally worse, with false positive rates of more than double that of HTTPS. In
Figure 4.21 the varying detection scores can be seen for the KS­test on JB, as well as the performance
difference between HTTPS and SSH.

The variation in detection performance is mainly caused by the dissimilarity in shapes of the empiri­
cal distributions, either between the training sample and covert channels, or between different samples
of legitimate traffic. As we have shown in Section 3, the distributions for SSH are fairly consistent,
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with overall low values and a relatively small amount of standard deviation. There are, however, two
datasets that greatly deviate from these values. This indicates that there could then also be larger
variance in distribution shapes for the different flows of SSH, within the training set, as well as the
injection set. These differences in shapes affect the capability of detecting covert channels, and due
to dissimilarity in the training sample and injection set flows, there is a large increase in false positive
rates. Under no jitter the CTCs with a limited amount of IPD values, such as SCC, On­Off, and LBtNP,
will only have peaks in their distributions at those values, with flat lines connecting them. The maximum
distance between the distributions for these covert channels and the training sample will thus likely be
great, and can be easily distinguished from legitimate traffic. With the addition of jitter, however, the
transitions from each peak of distinct values will be more gradual, which decreases the maximum dis­
tance to the training sample. This smoothing in transitions occurs more for variants that use smaller
values, with increasing jitter, as well as that the size of IPDs that they use are closer to legitimate
traffic. Both the smoothing and size of used IPDs contribute to the lowered detection performance on
these types of covert channel techniques. In the case of JB the IPDs are based on legitimate traffic,
which generally follows the distribution of the training sample. JB adds delays to the legitimate traffic,
to achieve certain values, which shift the distribution of the original traffic, determined by the 𝑤­value
used. To mask the distinct values that this creates, a random jitter is applied to each IPD, which is
based on the 𝑤­value as well. Thus, depending on the amount that the distribution is shifted, the dis­
similarity in the distributions increases and this reflects in the maximum distance and detection scores
accordingly. In comparison to the other CTCs that use models or legitimate traffic, the KS­test is more
successful in detecting JB traffic. Where JB makes changes to most of the legitimate traffic IPDs that
it uses, this is not the case for these other covert channels. TR­CTC does not alter the original traffic,
but merely reorders it, while DPOI only alters the original traffic when a one is to be transmitted, so
a decent portion of this traffic keeps the same shape in distribution (although lowered in occurrence).
The covert channels based on models generate their own IPDs, which (for a good model) are difficult to
distinguish from legitimate traffic in their distribution shapes. In Figure 4.22 these differences in shapes
can be seen as the (truncated) cumulative distribution functions of the traffic without jitter, for legitimate,
TR­CTC, and two variants of JB. Notable is that TR­CTC and the JB variant that uses the smallest 𝑤­
value follow the training sample closely, while the larger variant deviates from these distributions by a
large margin. Next to this, there are clear increments in the distributions for both JB variants. These
increments are caused by the added jitter, which are rounded to millisecond precision, such that there
is a step for each subsequent millisecond.

From the results we conclude that the KS­test is capable of detecting certain covert channel tech­
niques, under specific conditions. For the simpler CTCs that create distinct IPDs, the detection scores
are mainly dependent on the size of the values from their settings, as well as the amount of jitter present
in the network. The KS­test is also able to detect JB traffic, but this is again dependent on the size
of the 𝑤­values, and is reliant on the underlying traffic type that is used. In general this method is not
suited for use on SSH traffic, despite having some decent true positive scores. The high false positive
scores for SSH make it difficult to apply in a realistic situation.

4.9. Spearman­Rho,WilcoxonSigned­Rank, Mann­Whitney­Wilcoxon
Last we examine the three non­parametric statistical tests of Spearman­Rho (SRHO),Wilcoxon Signed­
Rank (WSR), and Mann­Whitney­Wilcoxon (MWW), discussed in Section 2.2.6. For these tests the
overall application is the same, with the exception of what is being examined by each of them. From
two subsequent samples of traffic from the same flow the ranks of each of the values within the sample
are determined, according to the specific test. These ranks are then used to calculate the p­values
for each of the different tests. Then, to examine how the traffic in the flow changes over time, the
average over a set number of these p­values is calculated. This average is compared to a threshold
value obtained from the same test performed on legitimate traffic, which then indicates whether covert
traffic might be present. With regards to the underlying tests, SRHO measures the correlation between
the ranks of the samples, while WSR, and MWW both test whether the samples are drawn from the
same distribution. There are also some differences in how the ranking is handled for each of these
tests. SRHO ranks the IPDs within each of the two samples independently according to their relative
values, which are then used as pairs in the calculation of the p­value. In the case of WSR the ranks
are determined by the absolute differences between each pair of values in the sample, resulting in one
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Figure 4.23: Spearman­Rho detection on TR­CTC

Figure 4.24: Wilcoxon Signed­Rank detection on TR­CTC

series of rankings for determining the p­value. MWW combines both samples and ranks all the values
as a whole, that are then used as a single list of rankings in the calculation. The detection of CTCs
by these methods is based on the premise that both legitimate and covert traffic will have grouped
p­values that are distinct from each other.

One of the main advantages of these detection methods, due to being derived from non­parametric
tests, is the usage of the relative positions within the samples. This means that the detection results
are more determined by the ordering of the traffic and less so by the actual IPD values. Therefore these
methods may detect the underlying process of CTCs such as MB­CTC or TR­CTC, where the network
traffic is determined by a model or is based on legitimate traffic, which will produce similar (or the same)
values as that traffic. Next to this, changes in the IPDs due to jitter or used variants will likely have little
effect on the performance of these methods, since the overall ordering will be similar in these cases.

For SRHO performed on HTTPS traffic we report decent true positive rates, with an average of
around 50 percent, for all covert channel techniques and their variants, under all amounts of jitter. In
the case of SSH traffic, however, the detection rates for SRHO are notably lower on all covert channels.
On the other hand, for both WSR and MWW we find the reverse of SRHO, where there are significant
scores on most CTCs for SSH traffic, but not for HTTPS. The exception to these results for WSR and
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Figure 4.25: Mann­Whitney­Wilcoxon detection on TR­CTC

Figure 4.26: Spearman­Rho scores HTTPS

MWW are DPOI and JB, for which there are no significant true positive rates on either traffic type. Most
notably we find that all three of these non­parametric methods have adequate detection of TR­CTC for
either HTTPS or SSH traffic, which the previously discussed detection methods have not been able
to achieve. In Figures 4.23, 4.24, and 4.25 the detection rates for TR­CTC are shown, using SRHO,
WSR, and MWW respectively. From these figures we can see the overall performance on TR­CTC by
all three methods, as well as the difference between both traffic types.

In the original work of these detection methods, using the same settings, the results were reported
as between 98 and 100 percent true positive rates, and false positive rates between 0 and 6.66 percent.
As we have shown in the results, this is distinctly higher than what we have obtained in our tests. We
argue that these large differences in the observed performance are caused by some main concerns
with how their methodology is set up and applied. First, we find that their overall attacker scenario, with
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Figure 4.27: Spearman­Rho scores SSH

Figure 4.28: Wilcoxon Signed­Rank scores HTTPS

how covert traffic is transmitted, differs from ours. We have modeled this as the attacker using a single
flow, over which only covert traffic is transmitted. In their case covert and overt traffic is intermittently
transmitted over a single flow, more as a man­in­the­middle scenario. In this scenario the process has
access to a legitimate flow, which it either passes through undisturbed or periodically alters to transmit
its covert data. Although it might not necessarily be a wrong assumption that this could happen, it is
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Figure 4.29: Wilcoxon Signed­Rank scores SSH

Figure 4.30: Mann­Whitney­Wilcoxon scores HTTPS

a somewhat unrealistic scenario to have multiple forms of covert traffic and different types of modeled
legitimate traffic in the same flow. Second, and likely the largest concern, is what type of data is used
to represent the legitimate traffic in their scenario. Next to the majority of traffic that is generated from
different statistical models, there are only two flows of HTTPS traffic, recorded from two users. With
the representative legitimate traffic either being from models or from a small sample of real traffic, it is
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Figure 4.31: Mann­Whitney­Wilcoxon scores SSH

likely that they will be somewhat homogeneous. Without significant variation in the legitimate traffic, the
difference between CTC and legitimate traffic might be more distinct, thus resulting in higher detection
rates. As we will later show, there can be quite some variation in the legitimate traffic scores for these
methods, when performed on a larger amount and different types of real traffic. Third, is how the
thresholds are determined during the training phase and how they relate to the testing phase. By
performing the detection methods on a training set of the data, an optimal threshold is chosen from the
observed values for legitimate and covert traffic. This method could be a valid strategy of determining
the threshold, if we can be certain that the same results are obtained for a wide range of network
conditions and covert channel variants. Otherwise this method and the threshold values obtained from
them are not generally applicable in all scenarios. As we have expressed in Section 3, there is also
some concern with basing the thresholds off of values of certain covert channel techniques and variants.
When it is not known beforehand which covert channels will be used by an attacker, determining the
detection thresholds from other CTC techniques or variants could diminish detection performance in a
general setting. Furthermore, if our point regarding homogeneity of legitimate traffic above holds, then
results for training will be too similar to testing and the detection results might not be representative of
a realistic situation. This same argument applies for the covert channel techniques that use the same
underlying traffic streams for both training and testing, as well as having little variation in which settings
are used for them.

Aside from the concerns that stem from the original work, there are some general performance
differences that we have observed in our tests. To give insight into why the differences between the
two traffic types and the detection methods occur, we provide the scores for each of the detection
methods. For this purpose we have chosen to compare the legitimate traffic scores against those for
TR­CTC, DPOI, and JB. The scores can be seen, for HTTPS and SSH respectively, in Figures 4.26
and 4.27 for SRHO, in Figures 4.28 and 4.29 for WSR, and in Figures 4.30 and 4.31 for MWW. From
these figures we can see that the overall scores for these shown CTCs are consistent for both traffic
types. However, the main difference between the detection methods lies in the scores for the legitimate
traffic. For SRHO we can observe scores more close to zero for legitimate HTTPS traffic, while they
are higher for SSH traffic. On the other hand, for both WSR and MWW we note the legitimate scores
more grouped around zero for SSH, with the scores higher and more spread out for HTTPS traffic. So
in the cases where there is significant overlap for the legitimate traffic scores and the CTCs, it becomes
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difficult to sufficiently distinguish between overt and covert traffic. This can be clearly seen for WSR and
MWWwith the HTTPS traffic in Figures 4.28 and 4.30, where TR­CTC is fully overlapped by themajority
of the values of the legitimate traffic. Another interesting observation to note are the scores for DPOI
and JB for WSR and MWW, specifically for the HTTPS traffic type. These scores are significantly lower
than the legitimate traffic for this traffic type, which could then be correctly classified by these detection
methods. However, these detection methods are applied using an upper threshold, since the original
work specifies that an upper threshold should be used for all three detection methods. This means that
the scores for these two CTCs that are under the legitimate traffic cannot be correctly classified. These
scores indicate that it might thus be beneficial to use either a two­sided threshold or a lower threshold
direction, for these specific cases of covert channels and traffic type.

4.10. Overview
To give insight into the overall performance of the detection methods we give overviews of the full
results of the analyses. For each combination of detection method and covert channel technique we
provide an aggregated rating, over all variants and amounts of jitter. We give this rating on the basis
of a simple scoring system from the false and true positive rates that are seen in the results. At each
point of jitter a positive score is noted if the true positive rate is 50 percent or higher, with the false
positive rate no higher than 20 percent. If a combination of detection method and covert channel only
has positive scores, the rating is shown as positive as well, indicated by a plus (+). Conversely, when
either the false positive rate is over 20 percent or the true positive rate is under 50 percent a negative
score is given. A negative rating is then shown, given by a minus (­), if there are only negative scores in
the combination. If there are both positive and negative scores occurring within the same combination,
we mark this as a mixed result, given by a tilde (∼). The overview of the ratings for HTTPS are given
in Table 4.1, and for SSH in Table 4.2.

In an ideal situation we would require zero false positives and 100 percent true positive rates for
a positively rated detection method. However, since these scores are unlikely to be attainable, we
set conditions under which the detection methods might need to perform. These conditions mostly
depend on the requirements of the environments in which these detection methods will be applied. For
example, in an environment where there is a small amount of overt traffic the false positive rate could
be of less significance, compared to one where there is more traffic. In the case of more traffic, the
higher amount of false positives would require more resources to further investigate the increase in
possible covert channels, that are indicated by the detection methods. Depending on the importance
of detecting covert channel traffic in the environment, even detection methods with lower true positive
rates may be of some use, when they have the possibility to detect some traffic where others do not.
Since there is no precedent as to what the required conditions are in a real scenario, we provide a
somewhat arbitrary estimate of what they could be. The ratings do not provide a full conclusion on the
applicability of the detection methods, but it does allow for a comparison between detection methods
and provides a simplified overview of our complete results.

Next to the overall performance of each of the detection methods, we also indicate in the tables
which method is likely the most suitable singular solution for each of the CTCs. This decision is primarily
determined by the true positive and false positive rates we have obtained, with a preference given to the
more consistent detection methods. When comparing two detection methods, one might have higher
overall scores, but some low scores for one or more specific variants, while the other has consistent
(but lower) scores for all variants. The most suitable solution is then chosen to be the method that
has these consistent scores for all variants. An example of this can be seen for DPOI, using HTTPS
traffic, for the KLD and SRHO detection methods. For this particular CTC, KLD has higher scores than
SRHO for most of the variants, with the exception of one where it does not perform well. Therefore,
the preference is given to SRHO, which scores consistently well over all variants of DPOI. The main
reason for this decision is that in the case that an attacker can find out which detection methods are
used, they could choose a CTC variant that is less likely to be detected by these methods. To be able
to defend against such a scenario it is thus beneficial to use a metric that performs consistently well,
even though some of its scores might be lower overall. It should be noted that it is possible to use both
of these described metrics simultaneously, to cover more of a certain CTC’s traffic, at the cost of more
computational power and amount of results to verify.
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SCC On­Off DPOI JB MB­CTC RMB­CTC TR­CTC LBtNP
Regularity + ­ ­ ­ ­ ­ ­ ∼
𝜀­similarity + + ­ ­ ∼ ∼ ­ ∼
Compressibility + + ∼ ∼ ­ ­ ­ ∼
Mean IPD ­ ­ ­ ­ ­ ­ ­ ­
KS test ∼ ∼ ­ ∼ ­ ­ ­ ∼
EN ∼ ∼ ­ ­ ­ ­ ­ ­
CCE ­ ­ ­ ­ ∼ ∼ ­ ∼
KLD + + ∼ ∼ ­ ­ ­ ∼
Welch’s t­test ­ ­ ­ ­ ∼ ∼ ­ ∼
Kurtosis mean + + ­ ­ ­ ­ ­ ∼
Kurtosis std + ­ ­ ­ ­ ­ ­ ∼
Kurtosis regularity ∼ ­ ­ ­ ­ ­ ­ ∼
Skew mean + + ­ ­ ­ ­ ­ ∼
Skew std + ­ ­ ­ ­ ­ ­ ∼
Skew regularity ­ ­ ­ ­ ­ ­ ­ ­
SRHO + ∼ ∼ ∼ ∼ ∼ ∼ ∼
WSR ∼ ­ ­ ­ ­ ­ ­ ­
MWW ­ ­ ­ ­ ­ ­ ­ ­

Table 4.1: Detection performance overview HTTPS

SCC On­Off DPOI JB MB­CTC RMB­CTC TR­CTC LBtNP
Regularity + ∼ ­ ­ ­ ­ ­ ∼
𝜀­similarity ∼ ∼ ­ ­ ­ ­ ­ ∼
Compressibility + ∼ ­ ­ ­ ­ ­ ∼
Mean IPD ­ ­ ­ ­ ­ ­ ­ ­
KS test ∼ ∼ ­ ­ ­ ­ ­ ­
EN ∼ ∼ ­ ­ ­ ­ ­ ­
CCE ­ ∼ + + ∼ ∼ ­ ∼
KLD ∼ ∼ ∼ ∼ ∼ ∼ ­ ∼
Welch’s t­test ­ ­ ­ ­ ­ ­ ­ ­
Kurtosis mean + ­ ­ ­ ­ ­ ­ ∼
Kurtosis std + ­ ­ ­ ­ ­ ­ ∼
Kurtosis regularity ∼ ­ ­ ­ ­ ­ ­ ∼
Skew mean ∼ ­ ­ ­ ­ ­ ­ ­
Skew std + ­ ­ ­ ­ ­ ­ ∼
Skew regularity ­ ­ ­ ­ ­ ­ ­ ­
SRHO ­ ­ ­ ­ ­ ­ ­ ­
WSR ∼ ∼ ­ ­ ∼ ­ ∼ ∼
MWW ∼ ∼ ­ ­ + ∼ + ∼

Table 4.2: Detection performance overview SSH
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Conclusion

In this thesis we have performed a broad performance analysis for the current detection techniques
on the most prevalent covert timing channels. This analysis was performed using real network traffic
from the TU Delft, under varying network conditions, in the form of simulated jitter. From this we have
largely seen that the performance described in previous work might not be as attainable in a more
realistic setting. We have shown that the difference in performance between our work and that of
previous work can be caused by a number of different factors. The first main factor that we identified is
what kind of traffic is used in the analyses in previous work. These analyses are largely performed on
modeled traffic, that is presumed to represent a real scenario, with in some cases actual recorded traffic
being used. In the case of real traffic we have found that there is either too little of this being used, or
the data could possibly be outdated and not represent current networks. We have thus argued that this
traffic is possibly not representative of legitimate traffic in current, real network settings. This can then
be a reason why we have observed differences in performance for these types of traffic and our traffic.
Second, we found that multiple works did not account for the effect of network jitter in their analyses.
Any network contains at least some form of jitter, so in a comparison to real network scenarios jitter
should be taken into consideration. This network effect, and its consequence to the resulting detection,
especially becomes clear in the case of CTCs that use a limited amount of set values. For these CTCs
their observed IPDs are concentrated around these sets of values without jitter, while there is more
variation when an amount of jitter is added. This has then shown considerable differences in results in
our work, compared to the previous work that did not include jitter. Third, we found that there were some
assumptions that were made, without significant evidence to back them up. One of the assumptions
that lead to a low performance can be seen for the mean IPD method, in Section 4.2. In this case,
the legitimate traffic is presumed to be normally distributed, which would theoretically lead to correct
classification for certain covert channel techniques. As we have shown, this was not how the traffic
was distributed in our real traffic. Next to this, previous work has performed their analyses on a small
amount of CTC variants, which makes assumptions on what an attacker would choose. If the attacker
has knowledge of which detection method is being performed, they could exploit the weakness of this
detection method by choosing CTC values that provide lower detection rates. By using a wide range
of possible CTC values, we assume less on what an attacker would choose, and this thesis has shown
how the usage of different covert channel variants has an effect on the detection methods. Last, we
found large differences in detection performance for the two different traffic types of HTTPS and SSH,
for many of the detection methods. This indicates that a high detection rate for one type of traffic
cannot be directly translated into good results for another. The results obtained for one traffic type, as
is mostly done in previous work, thus does not guarantee any significant results for other application
traffic. Due to these factors we argue that the results obtained in previous work are likely not indicative
of their actual performance, when applied in a real network scenario. From the performed analyses we
provide answers to the research questions posed in Section 1:

Research question 1: Is there a single detection method or combination of detection meth­
ods that can sufficiently detect the most prevalent covert timing channels?

45
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To answer this research question we mainly look at the devised rating scheme for the detection
methods, discussed in Section 4.10. From the overviews of the ratings for HTTPS and SSH, provided
in Tables 4.1 and 4.2, we can observe that the detection of these covert timing channels is likely not
sufficient in its current state. Under this rating system, this would be indicated by at least one fully
positive rating in every column representing the covert channels, which is not present in either of the
tables. However, we did find that there are some CTC techniques that can be sufficiently detected,
using particular detection methods. For both traffic types the SCC, due to its simplicity, has multiple
detection methods that are able to achieve adequately high detection rates. The same goes for the
On­Off covert channel, but only for HTTPS the detection scores are consistently high enough to attain
positive ratings. Next to this, we found positive ratings for SSH traffic with the use of CCE on DPOI
and JB, as well as for MWW on MB­CTC and TR­CTC. From the overview presented in the tables
we can also observe that the (model variant of) LBtNP, and RMB­CTC are two of the more difficult
CTC techniques to detect. This is due to these covert channels having no positive scores for either
traffic type, under the discussed rating scheme. Further, we find that some detection methods, with
improvements to the performance, could be used as a means for general detection of the covered
covert channels. In the case of HTTPS traffic, SRHO shows decent detection over all CTC techniques,
and even though these are mixed results, most detection scores are close to the true positive threshold
we have set. Likewise, MWW achieves similar results for most covert channels using SSH traffic, with
the exception of DPOI and JB, for which it has negative ratings. However, the gap in performance for
these two covert channels techniques can be supplemented by the use of CCE, which does well in
these particular cases. Thus, although their performance is currently not at a high enough standard,
these three detection methods could in the future be used to detect a wide range of CTC techniques.

Research question 2: How does the existence of network effects, such as jitter, affect the
performance of detection methods?

From performing the performance evaluation on the detection methods using varying amounts of
network jitter, we were able to show the effects that jitter has on detection. We have seen that jitter
has varying effects on the performance of detection methods, depending on the overall method with
which each detection method calculates their scores and which covert channel is being detected. The
most notable case for the negative effects of jitter can be seen for the method based on the first order
entropy, in Section 4.1. For this particular detection method the addition of any amount of jitter causes
the true positive rates of the method to decrease to zero for all covert channels. This then means that
this method cannot be used in a realistic situation, provided that there is likely some amount of jitter
present in each network. The effects of jitter for the detection of the different covert channels mainly
depends on the CTC technique, and the relative size of the values that are used, compared to the
amount of added jitter. For example, without jitter SCC might have a clear distinction from legitimate
traffic, while the calculation for some detection methods provide similar results for both sets of traffic
with the addition of jitter. In comparison, methods that model legitimate traffic and those that apply
their own random values are more likely to be similar to legitimate traffic with or without jitter. Next to
this, we found an interesting case for the compressibility detection method, discussed in Section 4.5.
For this detection method there is actually an increase in detection performance for certain covert
channels, between no jitter and a small amount of added jitter. Further, we have observed instances
where detection methods have shown robustness against the effects of jitter. This is the case for all
three detection methods based on non­parametric tests, in Section 4.9, as well as for CCE, discussed
in Section 4.1. Why jitter has little effect on the performance is caused by two main factors in the
operation of these detection methods. For the non­parametric test this is because they are less reliant
on the actual IPD values, but more on the ordering, which is similar with or without jitter. On the other
hand, for CCE this is mainly because of the large bins that it employs, which then places values in
roughly the same bin regardless of jitter. In realistic scenarios, where there could be a varied amount
of jitter present in the network, robustness against jitter is a desirable trait. This further adds to the
point mentioned in answering the previous research question, that the three named detection methods
of SRHO, MWW, and CCE might be more suitable to be applied in these network scenarios.
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Future work

We believe that this thesis has provided valuable insight into the current state of covert timing channel
detection, however there are some limitations in what our work can show. In this section we thus identify
multiple directions where future research could be performed on this subject.

Directly following from the analyses and the comparison of our results to those brought forth in pre­
vious work, we find that there is a need for validation of these results, under realistic network conditions.
We have seen that much of the previous work that has been done, performs their analyses on traffic
that is likely to not be representative of legitimate traffic. The conditions for realistic networks should at
the least involve the use of real network traffic, and an addition of some amount of (simulated) network
jitter. Even the legitimate traffic used for our evaluation is limited to that of one location, so this might
not represent traffic in a general network scenario. So our work should also be reproduced with traffic
from other networks, to lend more credibility to the results that we have obtained. Next to this, since
our work only covers two different types of application traffic, future work could also focus on other
types of traffic and their effects on detection performance. We have already seen that there are major
differences between these two traffic types, however there is still little information on the detection for
other traffic types.

From our results we have discussed some indications that several detection methods could provide
better performance, with adjustments in their operation. Therefore, there is possible advancements to
be made by improving on existing detection methods, to better distinguish between overt and covert
traffic. Next to this, future work should continue to introduce new detection methods, possibly related
to those that we have shown to perform decently well. One of the existing detection methods, that
we did not cover in this work, is the machine learning based detection of SVM. This is due to the
scale of what was needed to effectively test the performance of SVM, which would require the use of
different (amounts of) combinations of the other discussed detection methods. So a direction for future
research is possibly in testing the detection capabilities of this particular method, with a wide range of
combinations. A starting point for this research could be to apply this with the detection methods, that
we have found to provide decent detection as a single method.

We have also identified that there are some possible improvements to be made to the overall
methodology in our work. One such improvement could take the form of a pre­filtering step, for both
training and the actual detection. This filtering should be able to remove part of the legitimate outliers
within the traffic, and thus reduce the relatively high false positive rates we have seen. Next to this,
there could also be a need for a system to determine the settings for the detection methods, depending
on the type of traffic present. We have run our experiments with detection methods only using one
setting, under the assumption that performance should be similar to that of previous work, if they are to
be generally applied. However, there might be different settings for each of the detection methods, that
provide a more optimal performance for the different traffic types. The methodology we have utilized
in our experiments provides classification for samples within flows, which results in general detection
rates of all traffic. It could perhaps be a better approach to label entire flows instead, by noting how
often samples of such a flow are classified as either covert or overt traffic. In the case of flows consist­
ing purely of covert traffic, this could occur more regularly than for legitimate traffic. On the other hand,
sparse indications of covert traffic within a flow could just be outliers for legitimate traffic, which adds
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up to the overall false positive rates.
Another direction, which is less related to the subject of detection, is the possible interference to

covert communication caused by the added jitter to the network traffic. In this work we have seen that
there is some significant effect that the jitter has on the detection methods, however we have not closely
examined what its effects are on the covert channels. Some future research could thus be performed
on this form of communication disruption for covert timing channels. It could be interesting to examine
at which point jitter causes covert communication to be ineffective, due to a certain amount of bit errors
caused by the network jitter. With the interference it should also be taken into account how much it
affects legitimate communication of users on the network, in relation to what the network is used for
and the importance of disrupting covert communications. This method of disruption could then possibly
be used in combination with some of the detection methods, that we have shown to be more robust
against the effects of jitter.
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Figure 1: Regularity detection on SCC

Figure 2: Regularity detection on On­Off
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Figure 3: Regularity detection on DPOI

Figure 4: Regularity detection on JB

Figure 5: Regularity detection on MB­CTC
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Figure 6: Regularity detection on RMB­CTC

Figure 7: Regularity detection on TR­CTC

Figure 8: Regularity detection on LBtNP
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Figure 9: epsilon­Similarity detection on SCC

Figure 10: epsilon­Similarity detection on On­Off

Figure 11: epsilon­Similarity detection on DPOI
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Figure 12: epsilon­Similarity detection on JB

Figure 13: epsilon­Similarity detection on MB­CTC

Figure 14: epsilon­Similarity detection on RMB­CTC
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Figure 15: epsilon­Similarity detection on TR­CTC

Figure 16: epsilon­Similarity detection on LBtNP

Figure 17: Compressibility detection on SCC
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Figure 18: Compressibility detection on On­Off

Figure 19: Compressibility detection on DPOI

Figure 20: Compressibility detection on JB
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Figure 21: Compressibility detection on MB­CTC

Figure 22: Compressibility detection on RMB­CTC

Figure 23: Compressibility detection on TR­CTC



Bibliography 59

Figure 24: Compressibility detection on LBtNP

Figure 25: Mean IPD detection on SCC

Figure 26: Mean IPD detection on On­Off
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Figure 27: Mean IPD detection on DPOI

Figure 28: Mean IPD detection on JB

Figure 29: Mean IPD detection on MB­CTC
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Figure 30: Mean IPD detection on RMB­CTC

Figure 31: Mean IPD detection on TR­CTC

Figure 32: Mean IPD detection on LBtNP
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Figure 33: Kolmogorov­Smirnov detection on SCC

Figure 34: Kolmogorov­Smirnov detection on On­Off

Figure 35: Kolmogorov­Smirnov detection on DPOI



Bibliography 63

Figure 36: Kolmogorov­Smirnov detection on JB

Figure 37: Kolmogorov­Smirnov detection on MB­CTC

Figure 38: Kolmogorov­Smirnov detection on RMB­CTC
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Figure 39: Kolmogorov­Smirnov detection on TR­CTC

Figure 40: Kolmogorov­Smirnov detection on LBtNP

Figure 41: Entropy detection on SCC
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Figure 42: Entropy detection on On­Off

Figure 43: Entropy detection on DPOI

Figure 44: Entropy detection on JB
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Figure 45: Entropy detection on MB­CTC

Figure 46: Entropy detection on RMB­CTC

Figure 47: Entropy detection on TR­CTC
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Figure 48: Entropy detection on LBtNP

Figure 49: Corrected conditional entropy detection on SCC

Figure 50: Corrected conditional entropy detection on On­Off
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Figure 51: Corrected conditional entropy detection on DPOI

Figure 52: Corrected conditional entropy detection on JB

Figure 53: Corrected conditional entropy detection on MB­CTC
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Figure 54: Corrected conditional entropy detection on RMB­CTC

Figure 55: Corrected conditional entropy detection on TR­CTC

Figure 56: Corrected conditional entropy detection on LBtNP
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Figure 57: Kullback­Leibler detection on SCC

Figure 58: Kullback­Leibler detection on On­Off

Figure 59: Kullback­Leibler detection on DPOI
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Figure 60: Kullback­Leibler detection on JB

Figure 61: Kullback­Leibler detection on MB­CTC

Figure 62: Kullback­Leibler detection on RMB­CTC
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Figure 63: Kullback­Leibler detection on TR­CTC

Figure 64: Kullback­Leibler detection on LBtNP

Figure 65: Welch’s t­test detection on SCC
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Figure 66: Welch’s t­test detection on On­Off

Figure 67: Welch’s t­test detection on DPOI

Figure 68: Welch’s t­test detection on JB
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Figure 69: Welch’s t­test detection on MB­CTC

Figure 70: Welch’s t­test detection on RMB­CTC

Figure 71: Welch’s t­test detection on TR­CTC



Bibliography 75

Figure 72: Welch’s t­test detection on LBtNP

Figure 73: Kurtosis mean detection on SCC

Figure 74: Kurtosis mean detection on On­Off
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Figure 75: Kurtosis mean detection on DPOI

Figure 76: Kurtosis mean detection on JB

Figure 77: Kurtosis mean detection on MB­CTC
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Figure 78: Kurtosis mean detection on RMB­CTC

Figure 79: Kurtosis mean detection on TR­CTC

Figure 80: Kurtosis mean detection on LBtNP
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Figure 81: Kurtosis std detection on SCC

Figure 82: Kurtosis std detection on On­Off

Figure 83: Kurtosis std detection on DPOI
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Figure 84: Kurtosis std detection on JB

Figure 85: Kurtosis std detection on MB­CTC

Figure 86: Kurtosis std detection on RMB­CTC
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Figure 87: Kurtosis std detection on TR­CTC

Figure 88: Kurtosis std detection on LBtNP

Figure 89: Kurtosis regularity detection on SCC
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Figure 90: Kurtosis regularity detection on On­Off

Figure 91: Kurtosis regularity detection on DPOI

Figure 92: Kurtosis regularity detection on JB
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Figure 93: Kurtosis regularity detection on MB­CTC

Figure 94: Kurtosis regularity detection on RMB­CTC

Figure 95: Kurtosis regularity detection on TR­CTC
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Figure 96: Kurtosis regularity detection on LBtNP

Figure 97: Skew mean detection on SCC

Figure 98: Skew mean detection on On­Off
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Figure 99: Skew mean detection on DPOI

Figure 100: Skew mean detection on JB

Figure 101: Skew mean detection on MB­CTC
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Figure 102: Skew mean detection on RMB­CTC

Figure 103: Skew mean detection on TR­CTC

Figure 104: Skew mean detection on LBtNP
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Figure 105: Skew std detection on SCC

Figure 106: Skew std detection on On­Off

Figure 107: Skew std detection on DPOI
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Figure 108: Skew std detection on JB

Figure 109: Skew std detection on MB­CTC

Figure 110: Skew std detection on RMB­CTC
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Figure 111: Skew std detection on TR­CTC

Figure 112: Skew std detection on LBtNP

Figure 113: Skew regularity detection on SCC
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Figure 114: Skew regularity detection on On­Off

Figure 115: Skew regularity detection on DPOI

Figure 116: Skew regularity detection on JB
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Figure 117: Skew regularity detection on MB­CTC

Figure 118: Skew regularity detection on RMB­CTC

Figure 119: Skew regularity detection on TR­CTC



Bibliography 91

Figure 120: Skew regularity detection on LBtNP

Figure 121: Spearman­Rho detection on SCC

Figure 122: Spearman­Rho detection on On­Off
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Figure 123: Spearman­Rho detection on DPOI

Figure 124: Spearman­Rho detection on JB

Figure 125: Spearman­Rho detection on MB­CTC
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Figure 126: Spearman­Rho detection on RMB­CTC

Figure 127: Spearman­Rho detection on TR­CTC

Figure 128: Spearman­Rho detection on LBtNP
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Figure 129: Wilcoxon Signed­Rank detection on SCC

Figure 130: Wilcoxon Signed­Rank detection on On­Off

Figure 131: Wilcoxon Signed­Rank detection on DPOI
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Figure 132: Wilcoxon Signed­Rank detection on JB

Figure 133: Wilcoxon Signed­Rank detection on MB­CTC

Figure 134: Wilcoxon Signed­Rank detection on RMB­CTC
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Figure 135: Wilcoxon Signed­Rank detection on TR­CTC

Figure 136: Wilcoxon Signed­Rank detection on LBtNP

Figure 137: Mann­Whitney­Wilcoxon detection on SCC
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Figure 138: Mann­Whitney­Wilcoxon detection on On­Off

Figure 139: Mann­Whitney­Wilcoxon detection on DPOI

Figure 140: Mann­Whitney­Wilcoxon detection on JB
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Figure 141: Mann­Whitney­Wilcoxon detection on MB­CTC

Figure 142: Mann­Whitney­Wilcoxon detection on RMB­CTC

Figure 143: Mann­Whitney­Wilcoxon detection on TR­CTC



Bibliography 99

Figure 144: Mann­Whitney­Wilcoxon detection on LBtNP
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