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Data-Driven Semi-Supervised Machine
Learning with Safety Indicators for
Abnormal Driving Behavior Detection

Yongqi Dong1* , Lanxin Zhang1*, Haneen Farah1 ,
Arkady Zgonnikov2 , and Bart van Arem1

Abstract
Detecting abnormal driving behavior is critical for road traffic safety and the evaluation of drivers’ behavior. With the
advancement of machine learning (ML) algorithms and the accumulation of naturalistic driving data, many ML models have
been adopted for abnormal driving behavior detection (also referred to in this paper as ‘‘anomalies’’). Most existing ML-based
detectors rely on (fully) supervised ML methods, which require substantial labeled data. However, ground truth labels are not
always available in the real world, and labeling large amounts of data is tedious. Thus, there is a need to explore unsupervised
or semi-supervised methods to make the anomaly detection process more feasible and efficient. To fill this research gap, this
study analyzes large-scale real-world data revealing several abnormal driving behaviors (e.g., sudden acceleration, rapid lane-
changing) and develops a hierarchical extreme learning machine (HELM)-based semi-supervised ML method using partly
labeled data to accurately detect the identified abnormal driving behaviors. Moreover, previous ML-based approaches predo-
minantly utilized basic vehicle motion features (such as velocity and acceleration) to label and detect abnormal driving beha-
viors, while this study seeks to introduce event-level safety indicators as input features for ML models to improve the
detection performance. Results from extensive experiments demonstrate the effectiveness of the proposed semi-supervised
ML model with the introduced safety indicators serving as important features. The proposed semi-supervised ML method
outperforms other baseline semi-supervised or unsupervised methods as far as various metrics are concerned: for example,
it delivers the best accuracy at 99.58% and the best F1-score at 0.9913. The ablation study further highlights the significance
of safety indicators for advancing the detection performance of abnormal driving behaviors.

Keywords
abnormal driving behavior, semi-supervised machine learning, hierarchical extreme learning machines, self-supervised training,
safety indicators

Road traffic safety has become a growing concern world-
wide. The World Health Organization reported that
approximately 1.19million people die each year in road
traffic crashes, with over 30million suffering non-fatal
injuries (1). These crashes not only result in disabilities
but also cause significant economic loss, reaching as high
as 3% of the gross domestic product in some countries. It
is alarming that, in most crashes, human factors were
identified as contributing factors (2–4). This highlights the
urgent need to identify abnormal driving behaviors and
find ways to prevent or mitigate crashes caused by them.

Driving behavior encompasses various variables and
factors, including driving performance, environmental
awareness, risk-taking propensity, and reasoning abilities

(5). Abnormal driving behavior refers to reckless actions
that deviate from safe and normal driving, posing risks
to the driver, passengers, and other road users, and typi-
cally occurs within a short period of time (6). Examples
of such behavior include excessive speeding, tailgating,
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and erratic lane changes (7). These abnormal driving
behaviors frequently engender severe traffic altercations,
including collisions, crashes, and other minor incidents;
this underscores the necessity of addressing and preclud-
ing these actions (6, 7). Effective monitoring of abnormal
driving behaviors is integral to augmenting driving
safety, enhancing driver awareness of driving patterns,
and reducing the chances of road crashes.

Machine learning (ML)-based approaches have
shown great promise in detecting abnormal driving beha-
viors. They can learn complex patterns, adapt to chang-
ing scenarios, handle large and diverse datasets, and
detect unusual behaviors with optimized processes (8).
However, most of the available studies have adopted
fully supervised ML models to do the detection, and few
of them explored unsupervised or semi-supervised ML
methods. While, in the real world, ground truth labels
are sometimes missing or inaccurate, plus labeling large
amounts of data is tedious and even dangerous under
certain critical situations. Therefore, examining and
developing unsupervised or semi-supervised methods is
imperative to achieve more feasible and efficient abnor-
mal driving behavior detection.

On the other hand, safety indicators and, particularly,
surrogate measures of safety (SMoS) offer a proactive
approach to safety evaluation by using proximity mea-
sures. Since SMoS do not rely directly on crash data,
employing them allows road safety assessment without
the need to collect crash data (9). As Tarko notes, SMoS
facilitates detecting excessive crash risk, better under-
standing crash-precipitating conditions, and estimating
countermeasure efficacy (10). By providing insights into
potential safety issues, the safety indicators help prioritize
improvement efforts. Wang et al. categorize safety indica-
tors into three classes: time-based (e.g., time-to-collision
[TTC] and post-encroachment time), deceleration-based
(e.g., deceleration rate to avoid a crash), and energy-based
(e.g., DeltaV) (11). Commonly, these safety indicators are
applied in road safety research in combination with
thresholds to identify traffic conflicts (9, 12, 13). There is
no doubt that safety indicators can serve as important
features in various tasks, for example, in traffic safety
assessment and in detecting traffic conflicts. However, for
data-driven-based abnormal driving behavior detection,
previous studies predominantly employed basic vehicle
motion (e.g., speed, acceleration) as features to label and
detect abnormal behaviors, and seldom explored the ben-
efits of safety indicators.

To fill the aforementioned research gaps, this study
aims to develop a data-driven approach for abnormal
driving behavior detection using real-world naturalistic
driving data and leveraging semi-supervised ML with
self-supervised training to enhance the performance and
effectiveness of the detection method. Specifically, this

study first analyzes a large-scale dataset, the CitySim
dataset, with vivid visualizations, and extracts various
abnormal driving behaviors (14). Then, the study devel-
ops a hierarchical extreme learning machine (HELM)-
based semi-supervised ML model using unlabeled data
to carry out self-supervised pre-training and leveraging
only partly labeled data to fine-tune the model for accu-
rately detecting the identified abnormal driving beha-
viors. Furthermore, this study conducts a significative
ablation study introducing event-level safety indicators
as input features for the developed semi-supervised ML
model to further improve the detection performance.
Extensive experiments verified the proposed method.
The proposed semi-supervised HELM model using safety
indicators as input features outperforms other baseline
models, delivering the best accuracy at 99.58% and the
best F1-measure at 0.9913.

In short, by filling the research gap and addressing
the limitations of existing methods in the literature, this
research endeavors to improve road safety and reduce
accidents caused by abnormal driving behaviors. It
addresses the limitations of traditional supervised
approaches and overcomes the scarcity of labeled abnor-
mal driving data. The study analyzes publicly available
vehicle trajectory datasets and provides meaningful
insights into the identification of abnormal human driv-
ing behavior. The conclusions and limitations of this
study, as well as future research directions, are discussed
at the end of this paper.

Related Work

Several studies have investigated abnormal driving beha-
viors, with typical examples of Chen et al. and Kim et al.
putting forth definitions reflecting different conceptuali-
zations of driving, as shown in Table 1 (15, 16). Chen
et al. emphasized whether the vehicle’s location complies
with regulations, while Kim et al. prioritized speed mod-
ulation (15, 16). In combination, despite these different
emphases, both studies suggest that sudden changes in
speed or location are key indicators of abnormal driving,
regardless of the country where the driving occurs.

Table 1. Different Classifications of Abnormal Driving Behaviors

Chen et al. (15) Kim et al. (16)

Weaving Sudden start
Swerving Speeding
Sideslipping Long-standing speeding
Fast U-turn Sudden braking
Turning with a wide radius Sudden overtaking
Sudden braking Sudden changing lanes

Sudden turning
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Building on this, the current study delineates abnormal
driving based on changes in position and velocity, con-
centrating on behaviors of abrupt starts and emergency
braking, as well as rapid and close lane changes. This
definition is supported by a comprehensive review of the
existing literature, indicating a focus on both the spatial
and temporal aspects of driving behavior.

ML-based approaches for detecting abnormal driving
behaviors have gained substantial research attention and
exhibit robust performance. Both supervised and unsu-
pervised methodologies have been commonly utilized in
prior investigations of abnormal driving behavior.
Supervised techniques necessitate labeled data during
model training, whereby the system ascertains the map-
ping between inputs and outputs to categorize and pre-
dict new data points. For example, Jia et al. devised a
model integrating long short-term memory neural net-
work and convolutional neural network (CNN) architec-
tures to pinpoint instances of extreme acceleration and
deceleration (17). Shahverdy et al. proposed a light-
weight one-dimensional CNN (1D-CNN) exhibiting high
efficiency and low computational overhead for classify-
ing drivers’ behavior into safe, distracted, aggressive,
drunk, and drowsy driving (18). Ryan et al. simulated an
end-to-end model leveraging CNN to compare human
and autonomous vehicle driving patterns and adopted a
Gaussian-processes-based method to detect driving
anomalies (19).

Conversely, unsupervised ML techniques entail
training models using raw, unlabeled data. This approach
is frequently utilized during exploratory phases to
derive insights from the dataset. As an illustration,
Mohammadnazar et al. developed an architecture lever-
aging unsupervised ML to quantify driving performance
and categorize driving styles across diverse spatial con-
texts (5). Feng et al. proposed a support vector clustering
methodology to classify driving styles (e.g., aggressive,
normal, defensive) robustly (20). Existing literature
denotes substantial challenges in accurately identifying
anomalies through solely unsupervised ML. As Chandola
et al. concluded from their review, unsupervised anomaly
detection approaches often demonstrate inferior detection
rates and heighten false positive rates on real-world prob-
lems (21). Correspondingly, Pimentel et al. found, via
benchmark assessments, that complete dependency on
unsupervised anomaly detection is not recommended, as
these techniques fail to detect all anomalies (22). Erfani
et al. further emphasized that purely unsupervised meth-
odologies lack the learning guidance to precisely differ-
entiate normal from abnormal patterns (23). Synthesizing
these conclusions, utilizing only unsupervised ML with-
out any labeled data to achieve accurate anomaly detec-
tion is hardly possible. Even if viable, it is always possible
to further enhance the detection performance of pure

unsupervised ML by the use of labeled data. Therefore,
there is a research consensus about the necessity of mak-
ing use of at least partially labeled data to supervise and
augment anomaly detection capabilities with semi-
supervised ML approaches.

Concerning the features utilized as input for ML mod-
els, traditional indicators such as velocity, acceleration,
and steering angle have been extensively employed (17,
24–27). For example, Lim and Yang considered vehicu-
lar data comprising velocity, acceleration, steering angle,
and gas pedal position, and leveraged a CNN model to
estimate driver drowsiness, workload, and distraction
levels (24). Li et al. collected lateral vehicle position,
steering angle, and speed-related information and imple-
mented a support vector machine model to differentiate
between normal and intoxicated driving states (27).
Incorporating safety indicators (e.g., TTC) into ML-
based methods is supposed to be promising for abnor-
mal driving detection but has seldom been investigated.
To the best of the authors’ knowledge, after extensive
review, there is only one relevant study—that of Lu
et al., who integrated the representation of TTC
together with the driver maneuver profiles into a deep
unsupervised learning and clustering method with their
proposed transformer-encoder-based model to identify
traffic conflicts and non-conflicts (28). However, they
only investigated situations of one intersection and one
roundabout in the U.S., neglecting other various types
of driving anomalies, especially those related to high-
way driving.

Investigating the potential of semi-supervised
approaches, which utilize both labeled and unlabeled
data, is imperative to enhance abnormal driving beha-
vior detection, yet limited research has explored this
direction. By harnessing the additional information from
unlabeled data, semi-supervised learning might be able
to uncover subtle patterns and behaviors that conven-
tional supervised or unsupervised techniques may over-
look. This study endeavors to address this research gap.
Moreover, input features are fundamental for ML-based
approaches. To enhance detection performance, it is
advisable to explore more effective features. In this line
of thought, this study seeks to investigate the benefits of
event-level safety indicators as input variables and con-
ducts ablation analyses to verify their efficacy in upgrad-
ing the detection accuracy.

Dataset and Data Analysis

Description of the Data

To conduct data-driven research, a high-quality dataset
is imperative. After extensive exploration, this study uti-
lizes the CitySim dataset, comprising video-based trajec-
tory data concentrating on traffic safety in the U.S. (14).

Dong et al 3



The CitySim dataset encompasses vehicle trajectory
information extracted from videos at 30 frames per sec-
ond captured by 12 drones, spanning six road geometry
typologies including freeway segments, signalized inter-
sections, and stop-controlled junctions. The dataset pro-
vides precise positional details with measurements
accurate to approximately 10 cm in various formats,
including pixels, feet, and GPS coordinates, alongside
data on velocity, heading angle, and vehicle lane num-
bers. Table 2 provides the fields of the raw data record
and provides one example accessible within the dataset.

Following the research objectives, supplementary fea-
tures were derived from the CitySim dataset, encompass-
ing, for example, longitudinal acceleration, lateral
acceleration, and inter-vehicle distances, which facilitate
the calculation of event-level safety indicators. By inte-
grating these computed variables with the original data-
set, this study endeavors to strengthen the data
foundations necessary for the model. However, the data-
set initially still contains noisy and inconsistent data.
Rigorous pre-processing techniques were employed to
enhance the quality and reliability, ensuring robustness
in subsequent analysis and model training. Firstly,
entries with missing values and NULL were identified
and treated using the dropna function in the Python

pandas library, eliminating instances with incomplete
information. Then, entries with extreme values, such as
distance or speed beyond the normal range, were cleared.
For example, negative values in either distance or speed
and speed values beyond 100m/s (360 km/h) are consid-
ered extreme values.

Furthermore, a data-smoothing technique with expo-
nential smoothing was applied to attenuate high-
frequency noise while preserving the underlying trends
and patterns of the data.

Table 3 exhibits examples of the data used after the
pre-processing. As illustrated, the data after pre-
processing includes features of coordinates, that is,
carCenterX and carCenterY, speed, heading angle, and
distance. Since carCenterX, carCenterY, speed, and
heading angle are provided in the original data, they
were the fields used when smoothing the data. The data
fields of distance, together with the later introduced
longitudinal and lateral acceleration, were calculated
after the pre-processing using the relevant fields. For
example, distance was calculated using carCenterX and
carCenterY of the adjacent two vehicles.

The Methodology section delineates the precise calcu-
lations done to derive the additional features from the
raw CitySim dataset, including, as well, the selected
event-level safety indicators.

Abnormal Driving Behaviors Identified in the Dataset

Based on the classification and definition of abnormal
driving behavior in the reviewed literature (check the
Related Work section), this section illustrates the specific
abnormal driving behaviors observed in the examined
CitySim dataset. Each abnormal behavior is associated
with one or two indicators, measured or calculated at
various locations.

Rapid Acceleration and Emergency Braking Behavior. The
acceleration data corresponding to each velocity datum
in the vehicle trajectory dataset is exhibited in Figure 1.

Table 2. Data Sample of the CitySim Dataset

Feature Value

frameNum 0
carId 582
carCenterX (ft) 462.4
carCenterY (ft) 184.8
headX (ft) 469.6
headY (ft) 184.8
tailX (ft) 455.3
tailY (ft) 184.8
Speed (mph) 39.5
Heading (�) 180.7
laneId 10

Table 3. Data Examples after Data Pre-Processing

frameNum carCenterX (m)* carCenterY (m)* Speed (m/s) Heading (�) Distance (m)* Abnormal = 1; normal = 0

10 53.258 32.155 14.985 359.632 0.482 1
1,737 251.998 27.466 11.095 359.742 131.453 0
1,739 248.537 31.095 12.300 359.707 128.168 0
1,760 251.607 27.355 11.064 359.656 131.392 0
11,940 128.567 31.653 16.368 359.220 0.593 1
11,966 127.897 31.653 16.217 359.082 0.482 1
11,981 127.115 31.653 16.218 358.865 0.457 1
12,000 126.836 31.542 16.277 358.864 0.387 1

*The original distance measure in feet is converted to meters.
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Extreme acceleration and deceleration observations can
be derived, denoting abnormal maneuvers such as sud-
den braking or accelerating. Identifying these extreme
observations enables the segmentation of abnormal driv-
ing behaviors versus normal ones. A specific proportion
of extreme acceleration can be pinpointed by statistically
scrutinizing all acceleration observations at identical
speeds across all journeys. Determining an appropriate
ratio to differentiate extreme/abnormal points from nor-
mal ones is imperative. A 15% threshold appears sensi-
ble based on reiterative experimentation and associated
existing research (17, 29).

Rapid Lane-Changing Behavior. Rapid lane-changing beha-
vior is characterized by sudden and instantaneous
abnormal lateral accelerations that occur for a short
duration. In normal driving patterns, vehicles exhibit
relatively stable lateral acceleration around zero (as
shown in Figure 2). However, abnormal lane-changing
behavior manifests an abrupt variation in the vehicle’s
lateral acceleration.

The majority of vehicles exhibiting lane divergence
comportment demonstrate a lateral acceleration bounded
by 6 1m/s2, whereby they execute lane diversions seam-
lessly at a fixed velocity. However, the accelerations of
some vehicles appear as outliers in Figure 3. A normal
distribution with a mean of 0 and a standard deviation
of 1.3 was examined. According to the characteristics of
a normal distribution, approximately 68% of data falls
within 6 1 standard deviation from the mean. These out-
liers beyond 6 1 standard deviation from the mean
accounted for approximately 32% of the total data
points. A ratio of approximately 15% is considered

reasonable based on repeated experiments and related
research (17, 29). This satisfies the heuristic definition of
outliers as observations that differ significantly from
most data. Examining outliers based on standard devia-
tion thresholds aligns with statistically grounded tech-
niques for anomaly detection using the sigma principle
for normal distributions (17, 29). According to the nor-
mal distribution, values greater than 1.3m/s2 and less
than 21.3m/s2 were used as the filter condition for
abnormal instances.

Close Lane-Changing Behavior. Close lane-changing behavior
is characterized by sudden and instantaneous abnormal
lane-changing actions with very short distances from

Figure 1. Longitudinal acceleration and deceleration scatterplot
at different speeds.
Note: dark orange dots = normal observations; light orange dots =

abnormal observations.

Figure 2. Illustration of the distribution of lateral acceleration.

Figure 3. Lateral acceleration scatterplot at different speeds.
Note: dark orange dots = normal observations; light orange dots =

abnormal observations.
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adjacent vehicles that occur for a short duration. Vehicles
in normal driving patterns maintain a certain distance
between themselves and adjacent lanes. However, during
abnormal close lane-changing behavior, there is a signifi-
cant decrease in the distance between the vehicle and vehi-
cles in the adjacent lanes, indicating a close lane-change.
In this study, when the distance between the car perform-
ing the lane-changing maneuver and its surrounding vehi-
cles is less than 0.5m, it is considered severe abnormal
driving behavior. In contrast, when the distance is less
than 1.0m but greater than 0.5m, it is considered weak
abnormal driving behavior, as seen in Figure 4.

Based on the aforementioned criteria, the labels of the
driving data samples were further examined by human
experts to remove inaccurate labeling, improving the
quality of the finalized labels. Referring to the method
adopted by Jia et al., firstly, the data samples during the
periods with large longitudinal accelerations and decelera-
tions, large lateral accelerations, and extreme close dis-
tances, that is, grey area data, were selected to be
checked and verified (17). By observing the changes in
the distribution of the extreme longitudinal acceleration
and deceleration data points, lateral accelerations, and
distance-changing dynamics, the human expert com-
bined these observations with their knowledge and
experience to verify the labels. If the human expert was
not certain with high confidence about the labeling for
the data sample, that specific data sample was removed.
It should be noted that this human-expert-examination-
based verification method may only correct the labels
of false alarms, to the degree that is possible through
examining kinematic variables, and will not correct
missed abnormal instances.

Methodology

This section first introduces event-level safety indicators,
especially the adopted two-dimensional TTC (2D-TTC)
(30, 31). Two ML models, that is, isolation forest, and
robust covariance, are then presented as baseline meth-
ods for comparison. Finally, a customized semi-
supervised mode, HELM, is proposed and explained in
detail.

Safety Indicators

In the literature, several safety indicators were devel-
oped and introduced—a comprehensive overview can
be found in Nickloaou et al. and Arun et al. (9, 32).
One of the most popular and commonly used safety
indicators is the TTC is a time-based proximity mea-
sure. TTC is defined as the time required for two road
users, on a collision course, to collide if no evasive
action is taken, and this can be and is generally com-
puted continuously (33). Its simplistic form is when
road users’ speed and path are assumed to remain
unchanged (34). For example, the TTC value, for a
car-following situation, assuming motion prediction
with constant speed, is calculated as:

TTC=
D

v1 � v2

ð1Þ

where
D = the distance between the following and the lead-

ing vehicle,
v1 = the speed of the following vehicle, and
v2 = the speed of the leading vehicle.
Over the years, several studies have further extended

the TTC safety indicator. For example, time exposed
TTC and time integrated TTC were introduced by
Minderhoud and Bovy to measure the risk associated
with the duration of dangerous driving conditions (35).
The modified TTC (MTTC) proposed by Ozbay et al.
provides an alternative way to calculate TTC at each
instant; for example, in a car-following traffic scenario,
by considering the accelerations of both the lead and fol-
lowing vehicles (36). Other approaches involve incorpor-
ating site-specific motion patterns of road users and
calculating TTC with respect to the distribution of possi-
ble trajectories (37, 38). In this study, a TTC-based safety
indicator, 2D-TTC, was implemented as an input fea-
ture, which can capture proximities of vehicles’ move-
ments and interactions in a plane in various traffic
scenarios besides a car-following scenario (30, 31). The
illustration of 2D-TTC is demonstrated in Figure 5. 2D-
TTC is calculated as follows:

Figure 4. Scatterplot of distance during lane-changing for
different CarId.
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2D-TTC=

jDTC
���!j
vi � vj

�� �� , if the direction of DTC
���!

is the same as vij =(vi � vj)

inf , if jDTC
���!j=infOR if the direction ofDTC

���!
is oppositewith vij =(vi � vj)

8>><
>>:

ð2Þ

where

jDTC
���!j = the distance-to-collision (the minimum dis-

tance between the bounding boxes of target vehicle i and
another, interacting, vehicle j along their relative speed
vij =( vi � vj) direction),

vi = the speed of the target vehicle i, and
vj = the speed of the interacting vehicle j.
If the relative movement of target vehicle i and inter-

acting vehicle j decreases the distance-to-collision, they
are approaching each other, and a potential collision
exists. Otherwise, the vehicles are moving away from
each other and no potential collision exists. For more
detailed information about the demonstration and calcu-
lation of the adopted 2D-TTC, the reader is advised to
refer to Jiao et al. (31).

In general, according to the literature, only encoun-
ters with a minimum TTC below 1.5 s are deemed
critical, with trained observers consistently applying
this threshold in practice (39). This study explores
the effects of the input feature 2D-TTC on the detec-
tion performance of abnormal driving behavior.
Specifically, the vehicle angle in the dataset decom-
poses each vehicle’s velocity into x-y coordinate com-
ponents, yielding velocity vectors based on the dataset
parameters. 2D-TTC is then calculated per these velo-
city vectors and the corresponding distance along the
same direction. This approach highlights how 2D-TTC
can be computed from the raw dataset by leveraging
the vehicle angle data to obtain velocity vectors in
coordinate space. The derived 2D-TTC is analyzed and
integrated with input features such as position, speed,

and acceleration to evaluate abnormal driving behavior
detection performance using the given dataset.

Baseline Models

Isolation forest and robust covariance are selected as two
baseline methods, considering their interpretability, effec-
tiveness, and broad utilization in various domains.

The isolation forest, initially developed by Liu et al.,
constitutes an effective algorithm typically utilized for
data anomaly detection (40). The isolation forest algo-
rithm is based on the principle that anomalous data
points are more readily separable from the majority of
normal samples. To isolate an abnormal data point, the
algorithm iteratively generates partitions of the sample
by randomly selecting a feature attribute and subse-
quently randomly choosing a split value within the per-
missible minimum and maximum values for the selected
feature attribute. Through recursive binary partitioning,
data points that require fewer splits to become isolated
are deemed more anomalous.

The isolation forest algorithm capitalizes on the pre-
mise that anomalies are few and different from the rest
of the data, and thereby manifest topological shorter
path lengths from the root to the external node (leaf),
(which is elucidated by averaging this value across the
trees) when random partitioning is employed. Therefore,
it leverages an ensemble of isolation trees generated
through such recursive random partitioning to identify
anomalies, with shorter average path lengths correspond-
ing to greater anomaly scores.

Figure 5. Illustration of two-dimensional time-to-collision.
Source: adapted from Jiao et al. (31).

Note: DTC = distance-to-collision.
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In practice, the isolation forest anomaly detection
algorithm involves two primary phases. Firstly, a collec-
tion of isolation trees (iTrees) is constructed utilizing
recursive partitioning on a training dataset. During
recursive partitioning, splits are performed by randomly
selecting an attribute and random split value to isolate a
data point. Secondly, each instance in the test set is pro-
pagated through the ensemble of iTrees and assigned an
‘‘anomaly score’’ based on the average path length for
that instance across the iTrees. Shorter average path
lengths correspond to fewer partitions required to isolate
the instance, indicating more anomalous behavior and
higher anomaly scores. After computing anomaly scores
for all test instances, those data points with a score
exceeding a predefined threshold specific to the domain
can be classified as anomalies.

The robust covariance estimation algorithm presup-
poses that normal data points exhibit a Gaussian distribu-
tion, and, accordingly, approximates the morphology of
the joint distribution (namely, estimates the mean and cov-
ariance of the multivariate Gaussian distribution) (41).

In statistical analysis, the deviation can be measured
by the Z-score. The generalization of the Z-score for a
point xi in the case of a p-dimensional multi-variate prob-
ability distribution with some mean m and covariance
matrix S is known as Mahalanobis distance di, which is
given by:

di =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � mð ÞT S

�1(xi � m)

q
ð3Þ

It is based on the premise that outliers increase the

values (entries) in S, thereby making the data dispersion

appear more extensive. Consequently, |S| (the determi-
nant) will also be larger, which could theoretically
decrease if extreme samples are removed. Rousseeuw
and Van Driessen devised a computationally efficient
algorithm capable of furnishing robust covariance
approximations (42). The approach assumes that, at
minimum, h of the n samples are ‘‘normal’’ (h denoting a
hyperparameter). The algorithm begins with k arbitrary
samples containing (p + 1) points. For each k sample,
m, S, and |S| are estimated, the distances are computed
and sorted in ascending order, and the smallest h dis-
tances are employed to update the estimates. In their
original publication, the process of computing distances

and revising the estimations of m, S, and |S| is entitled a
‘‘C-step’’ whereby two such increments are typically suf-

ficient to identify effective candidates (for m and S)
among the k arbitrary samples. In the succeeding step, a

subset of magnitude m with the lowest |S| (the optimal
candidates) is contemplated for computation until con-
vergence, and the sole estimate whose |S| is minimal is
furnished as output.

Note that, although isolation forest and robust cov-
ariance are usually considered unsupervised ML
approaches, in this study only normal data samples are
input to train them; thus, in this study, they can be
regarded as semi-supervised approaches and are com-
parable with the proposed semi-supervised ML
method.

HELM-Based Semi-Supervised ML

The HELM algorithm, originally proposed by Tang
et al., constitutes an advanced extension of the extreme
learning machine (ELM) algorithm that can enhance
performance in both training speed and generalization
capability (43). This approach integrates a feed-forward
neural network structure with multiple latent layers, and
it operates through two primary steps: unsupervised fea-
ture representation and supervised feature classification.
In the initial step, HELM is intended to ascertain a
sparse encoder in an unsupervised manner, which trans-
forms the raw input into superior-level representation.
The encoder is structured with multiple latent layers
which are processed sequentially, with each layer build-
ing on the previous one to capture increasingly abstract
features of the data. The second step involves using these
learned features for supervised classification or approxi-
mation tasks. By leveraging the rich, hierarchical features
extracted in the first step, HELM aims to achieve effec-
tive and accurate predictions. This two-step process
enables HELM to combine the advantages of both unsu-
pervised and supervised learning, resulting in improved
overall performance.

Given a training set with N samples, indicated by
Xi, Yið Þ(Xi 2 Rn, Yi 2 Rt, i= 1, 2, 3, . . . ,N ), where Xi and

Yi denote the feature representation and the targeted out-
put of the i th sample, respectively. Suppose the encoder
consists of K hidden layers, each with Li(1 ł i ł K) neu-

rons. The output O= ½o1, o2, . . . , oN �T can be expressed
as:

XK

i= 1
big(Wi � xj + bj)= oj, j= 1, 2, . . . ,N ð4Þ

where
g( � ) = the activation function,
bi = the output weight,
Wi = the input weight, and
bj = the bias.
Ideally, there should be:

XN

j= 1
jjoj � Yjjj= 0 ð5Þ

This implies there exist weights bi, Wi, and biases bi such
that:
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Xk

i¼1

big Wi � xj + bj

� �
= Yj, for j= 1, 2, . . . ,N ð6Þ

In matrix form, this can be represented by:

Hb= Y ð7Þ

where
H = the output of the hidden layer node,
b = the output weight, and
Y = the desired output.

H(W1,W2, . . . ,WK , b1, b2, . . . , bK , x1, x2, . . . , xN )

=

g1(X1) � � � gK1
(X1)

..

. . .
. ..

.

g1(XN ) � � � gK1
(XN )

2
64

3
75 ð8Þ

To train a single hidden layer ELM neural network is
equivalent to obtaining b̂ such that:

jjH b̂� Y jj= min
b
jjHb� Y jj ð9Þ

When choosing the mean square error as the measure,
this formula is equivalent to minimizing the following
loss function:

Loss=
XN

j= 1

(
XK

i= 1

big Wi � xj + bi

� �
� Yj)

2 ð10Þ

Traditional ELMs allow the weights b and the devia-
tions between the latent layers and the inputs to be set
arbitrarily, drawn from any distribution. This flexibility
means that the learning process primarily adjusts these
weights to find the optimal connections between the
latent layers and the output. However, standard ELMs
can be limited in their ability to effectively process com-
plex data, even with many hidden nodes.

In this study, the customized HELM was introduced
to address this limitation, which stacks multiple layers
of ELM to create a deeper and more profound struc-
ture. This hierarchical approach enhances the model’s
ability to capture intricate data patterns. The proposed
HELM-based semi-supervised learning consists of two
phases: 1) self-supervised training for feature learning,
where the model extracts and learns useful features
from the data in an unsupervised manner, and 2) super-
vised fine-tuning, where the model is further optimized
using samples of labeled data to improve its perfor-
mance on the abnormal driving behavior detection
task, as visualized in Figure 6.

Figure 6. The framework of hierarchical extreme learning machine (HELM)-based semi-supervised machine learning method.
Note: MSE = mean square error.
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The HELM model is initially trained purely self-
supervised on normal data samples exclusively, with all
anomalous examples excluded from this training set.
During this phase, by minimizing a reconstruction error
loss function, the stacked ELM autoencoder layers learn
to capture the most salient features of the input data that
represent its intrinsic normal characteristics. These
extracted feature representations can encapsulate the
essential properties of standard normal behavior.
Subsequently, the learned feature embeddings are trans-
ferred to a one-class classifier, which undergoes further
supervised training to obtain a decision threshold t. This
threshold calibration phase notably utilizes an unseen
validation dataset containing only normal data samples.
Withholding this validation set during ELM feature
learning prevents overfitting the threshold to any poten-
tial anomalies in the original training data. Overall, this
staged approach enables robust unsupervised feature
extraction from normal data, followed by supervised
threshold tuning to facilitate effective anomaly detection.
Usually, a good threshold t can be expressed by:

t= g � percentilep(j1� Yvalid j) ð11Þ

where
Yvalid = the output of the one-class classifier, and
percentilep = a function of the pth percentile with

hyperparameters p and g ø 0.
Finally, in the deployment phase, newly observed data

samples are propagated through the trained HELM
model to obtain the corresponding outputs from the one-
class classifier. These outputs, denoted by Ytest, are com-
pared against the decision threshold t established during
the training process. Recall that this threshold was cali-
brated on the separate validation dataset to avoid over-
fitting. The label assignment for each new test sample is
then determined by thresholding its one-class output as
follows:

LabelYtest = sgn t� 1� Ytestj jð Þ ð12Þ

In summary, the trained HELM model generates
layered feature representations of newly observed test
data in a purely data-driven manner. Anomalies can be
effectively detected by propagating these examples
through the model and comparing the resulting one-class
classifier decisions with the calibrated threshold t. This
approach benefits from the model’s unsupervised learn-
ing of salient features from normal training data, and the
deep HELM architecture captures robust intrinsic repre-
sentations of standard normal behavior. By thresholding
the one-class outputs relative to t, deviations from the
learned normality are identified during deployment.
Overall, this framework provides a self-supervised fea-
ture-learning mechanism to represent normal data and a

thresholding technique for effective anomaly detection in
practice. The model framework of the HELM-based
semi-supervised ML method is delineated in Figure 6.

Experiment and Results

Dataset Arrangement

This study carries out comprehensive experiments to
assess the performance of various models and the impact
of different input feature conditions on the detection of
abnormal driving behavior. Initially, the built training
dataset contained 290,690 instances, which included
noisy and inconsistent data. In this study, several tech-
niques were employed to address these issues, such as
utilizing the dropna function in the pandas library to
eliminate instances with NULL, missing, and blank val-
ues, as well as refining the original data by employing
smoothing techniques to attenuate noise.

The dataset itself includes the following features:
frameNum, carId, carCenterX (ft), carCenterX (m),
carCenterY (ft), carCenterY (m), headX (ft), headY (ft),
tailX (ft), tailY (ft), speed (mph), speed (m/s), heading,
and laneId, as shown in Table 2. Next, the time interval
was determined by calculating the difference in time-
stamp values using frameNum between adjacent later
samples and their corresponding former ones. Based on
this, the speed together with acceleration (both longitudi-
nal and lateral) for each vehicle was computed.
Subsequently, using frameNum as the index, the dis-
tances and 2D-TTC between all relevant vehicles at the
same timestamp were calculated. As the quantity of nor-
mal driving data samples is far beyond the abnormal
ones, to balance the quantity of abnormal and normal
data samples, this study sampled the normal driving
samples. In the end, the examined dataset comprised a
total of 23,605 samples, consisting of 12,125 normal
instances and 11,480 anomaly instances. All anomaly
instances were utilized for testing and 3,638 normal
instances were adopted for testing. As anomaly instances
are more critical, this study examined more anomaly
instances in the estimation of model performance.

Evaluation Metrics

Various metrics are adopted to evaluate the overall per-
formance of the selected model, and the discrimination
evaluation of the optimal model can be defined based on
the confusion matrix, as shown in Table 4 (44).

In binary classification, one class constitutes the posi-
tive class, whereas the other delineates the negative class.
The positive class epitomizes the events the model endea-
vors to detect, that is, abnormal driving in this study,
while the negative class constitutes other contingencies,
that is, normal driving in this study. True positive (TP)
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and true negative (TN) denote the quantity of accurately
classified positive and negative instances. In this study,
TP represents the correctly detected abnormal driving
behavior data sample, and TN constitutes the accurately
detected normal driving samples. On the other hand,
false positive (FP) and false negative (FN) represent the
number of misclassified positive and negative instances,
meaning incorrect detection of abnormal driving beha-
vior/normal driving behavior instances. Accuracy, preci-
sion, and recall were computed based on these four
terms.

Accuracy refers to the proportion of true results
among the total number of cases examined:

Accuracy=
TP+TN

TP+TN+FP+FN
ð13Þ

Precision is utilized to gauge the accurate prediction of
positive patterns among the total predicted patterns in a
positive class:

Precision=
TP

TP+FP
ð14Þ

Another widely utilized measure is recall, which
accounts for the proportion of actual positives that are
correctly classified:

Recall=
TP

TP+FN
ð15Þ

The F1-score is a measure combining and balancing
precision and recall, and it is defined as the harmonic
mean of precision and recall:

F1� score= 2 3
precision3 recall

precision+recall
ð16Þ

Finally, the true positive rate (TPR) and false positive
rate (FPR) are also examined as evaluation metrics. As
indicated in their names, TPR and FPR are calculated as:

TPR=
TP

TP+FN
ð17Þ

FPR=
FP

FP+TN
ð18Þ

Ablation Study of Features

Three experimental settings with distinct feature repre-
sentations are designed to evaluate the impact of input
information on model performance. As illustrated in
Table 5, Setting 1 utilizes only the raw coordinates, velo-
city, and vehicle angle features inherently present in the
dataset. Setting 2 augments Setting 1 by incorporating
two additional engineered features of lateral acceleration
and inter-vehicle distance. Finally, Setting 3 further sup-
plements Setting 2 by including the 2D-TTC feature cap-
turing temporal proximity. By comparing results between
these controlled settings, the incremental value of provid-
ing basic motion features (Setting 2) and safety indica-
tors, that is, 2D-TTC (Setting 3), over the raw dataset
(Setting 1) can be quantified. The proposed three experi-
mental settings serve to illustrate the effect of step-wise
enriching the feature space on the learning capabilities of
the model under controlled conditions.

Results and Comparison

The testing results of the proposed HELM model,
together with the two baselines, are illustrated in Table 6,
as well as Figures 7 to 9. In general, the HELM model
outperforms robust covariance and isolation forest, with
the best variant delivering the best accuracy at 99.58%
and the best F1-score at 0.9913.

Experiments across three experimental settings
demonstrate enhanced abnormal driving behavior identi-
fication capabilities by incorporating the safety indicator
of 2D-TTC. Furthermore, the proposed semi-supervised
HELM model achieves consistently superior perfor-
mance compared with the alternative baseline models in
all three experimental settings.

In the baseline Setting 1, with only raw coordinates,
velocity, and angle serving as the input features, the
HELM model attains an accuracy of 0.9471. Then, aug-
menting with acceleration and inter-vehicle distance fea-
tures, in Setting 2, the accuracy of HELM is improved to
0.9614. Notably, by the further inclusion of the adopted
2D-TTC safety indicator in Setting 3, the accuracy of
HELM is dramatically enhanced to 0.9958, alongside
near-perfect scores for precision (0.9963), recall (0.9983),
F1-score (0.9913), and FPR (0.0118). This underscores

Table 4. Confusion Matrix and the Corresponding Array
Representation

Actual positive
class

Actual negative
class

Predicted positive class True positive False negative
Predicted negative class False positive True negative

Table 5. Input Features in Different Settings

Experimental
Setting Input features

1 coordinates/velocity/angle
2 coordinates/velocity/angle/acceleration/distance
3 coordinates/velocity/angle/2D time-to-collision
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the outstanding value of 2D-TTC as an important
spatial-temporal feature for this task.

Similarly, unsupervised models (which work in a semi-
supervised way in this study) exhibit substantial gains

when endowed with 2D-TTC. For instance, the precision
and recall of robust covariance are improved by over
20%, while the accuracy and F1-score of isolation forest
are increased by 5% and 10%, respectively. Nevertheless,

Table 6. Comparison Results under Different Settings

Setting Accuracy Precision Recall F1-score FPR TPR

Robust covariance
1 0.3337 0.7628 0.1779 0.3735 0.1745 0.1779
2 0.3348 0.7702 0.1767 0.3762 0.1663 0.1767
3 0.9570 0.9487 0.9973 0.9028 0.1701 0.9973

Isolation forest
1 0.5789 0.8766 0.5185 0.4680 0.2303 0.5185
2 0.4387 0.8673 0.3080 0.4219 0.1487 0.3080
3 0.9615 0.9517 1.0000 0.9131 0.1600 1.0000

HELM
1 0.9471 0.9349 1.0000 0.8766 0.2196 1.0000
2 0.9614 0.9561 0.9949 0.9144 0.1440 0.9949
3 0.9958 0.9963 0.9983 0.9913 0.0118 0.9983

Note: FPR = false positive rate; HELM = hierarchical extreme learning machine; TPR = true positive rate.

Figure 7. Robust covariance performance under (a) Setting 1, (b) Setting 2, and (c) Setting 3.

Figure 8. Isolation forest performance under (a) Setting 1, (b) Setting 2, and (c) Setting 3.
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the semi-supervised HELM approach outperforms these
two baseline models across all metrics except for TPR.

Finally, scatter visualization of the results obtained by
the proposed semi-supervised method using HELM is
provided in Figure 10. From the visualization, it is fur-
ther demonstrated that HELM can distinguish between
normal and abnormal driving behaviors. However, it
cannot tell the severe abnormal apart from the weak
abnormal instances, as the values of their 1� Ytest

�� ��=t

are similar. How to distinguish the severity of abnormal
driving behavior using semi-supervised ML can be an
interesting future research direction.

In summary, augmenting the feature space with the
adopted safety indicator, that is, 2D-TTC, consistently
improves the anomaly detection capabilities across mod-
els. The HELM framework integrating 2D-TTC mark-
edly surpasses other baseline models, demonstrating the

advantages and superiority of the proposed semi-
supervised learning method together with the spatial-
temporal feature engineering for anomalous driving
behavior detection.

Conclusion and Future Work

This study presents a semi-supervised ML framework
leveraging event-level safety indicators to enhance abnor-
mal driving behavior detection. A large-scale real-world
naturalistic driving dataset was analyzed and various
abnormal driving behaviors were revealed and categor-
ized in this study. The HELM model was proposed,
which harnesses unlabeled data for self-supervised pre-
training and partially labeled data for fine-tuning. The
2D-TTC safety indicator was introduced as an important
feature, with experiments demonstrating that integrating
2D-TTC significantly improves the detection accuracy
by over 5% for all the tested models compared with
baseline experimental feature settings.

By training on unlabeled data, and employing only a
small sample of labeled data for fine-tuning, the pro-
posed semi-supervised approach achieved competitive
performance while reducing dependency on fully labeled
datasets, making it well-suited for real-world applications
with limited labeled data. Notably, the incorporation of
event-level safety indicators, in this case 2D-TTC, greatly
enhanced the model performance. These compelling
results underscore the critical value of safety indicators in
effectively detecting abnormal driving behaviors across
diverse ML algorithms. This fusion of semi-supervised
ML and utilization of safety indicators as input features
showcases the potential for advancing abnormal driving
behavior detection capabilities, with significant implica-
tions for safety-oriented research and evaluations. To
further upgrade the detection performance, future studies
could explore other and more advanced safety indicators.

Figure 9. Hierarchical extreme learning machine (HELM) performance under (a) Setting 1, (b) Setting 2, and (c) Setting 3.

Figure 10. Scatter visualization of the result obtained by semi-
supervised hierarchical extreme learning machine (HELM).
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Furthermore, the current study focuses on detection,
future research should explore predictive capabilities to
enable earlier identification of impending abnormal
behaviors before manifestation. This involves inputting
multi-step time-series driving data and computing the
features (e.g., TTC, 2D-TTC, MTTC) over a continuous
duration period based on observed historical driving
behavior data to predict the status of the next time step
or the next few time steps. Additionally, incorporating
motion prediction (e.g., for more accurate TTC calcula-
tion) and adoption of driving risk field related metrics,
such as the human perceived driver’s risk field and the
probabilistic driving risk field, together with developing
techniques to extract robust spatial-temporal patterns as
model inputs, could further enhance the detection and
prediction performance (45, 46).

Lastly, concerning other limitations, the adopted data-
set encompassed only three abnormal driving behavior
types in this study. Future research should incorporate
an expanded diversity of abnormal driving behaviors and
more advanced safety indicators to enrich the under-
standing and identification of anomalies. Additionally,
ground truth labels are the prerequisite for evaluating the
model performance. The current human-expert-examina-
tion-based verification method adopted in this paper can-
not detect missed abnormal driving behavior instances
but it may correct possible false alarms to upgrade the
label quality. It is suggested to adopt more advanced
approaches to obtain and verify high-quality ground
truth labels, for example, employing online crowd-
sourcing with multiple experts, and using more compre-
hensive datasets with corresponding video recordings, as
well as incorporating fine-labeled accident data from
road authorities.
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