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1 Introduction

The global economy depends on many different factors. Of great importance to the economy
are commodities, such as grain, crude oil, iron ore and chemicals. These form the basis for
almost all products in the world. Without them, our life would be a lot less ’luxurious’. It is not
difficult to conclude that a lot of money is being invested in commodities and the commodity
value chain. Not every country has excess to these commodities directly. That is why they have
to be transported from one country to another. Sometimes they are even transported various
times, before finally being consumed. Moreover, commodities have to be carried over the entire
world. Generally, this is done by seaborne ships, although other ways of transport are also used,
such as pipelines for oil and gas, cables for electricity and trains and trucks onshore. More than
95% of global trade (in volume), however, is transported by the use of vessels (see [3, p. 1]).
The great importance of transport by floating transportation equipment can now be concluded.
This transport by vessels such as tankers, barges, capesize and others vessels is also called freight.

The freight market is a relatively new market, but it has become an increasingly important
factor in the global economy. Therefore, the interest in freight and freight-related products is
growing larger every year, not only for organizations who have a direct interest in maritime
transportation, but also for financial institutions who see great financial opportunities in this
market. As this market is relatively new, not much scientific research has been done in this area.
In chapter 2 some general information about freight will be considered. In chapter 3 the ways
in which freight can be traded and the factors the price of freight depends on will be discussed.
Chapter 4 covers the properties of financial products related to freight, also known as freight
derivatives, with special focus on freight options. Since the goal in this document is to price
such a freight option, in chapter 5 the problem and approach of pricing a freight option are set
out, together with some necessary assumptions. In chapter 6 an explicit formula for the price
of a freight option is derived and the price of one particular freight option is calculated using
this formula. In chapter 7 the validity of this explicit formula is checked by also calculating the
prices of this freight option using Monte Carlo simulations. Chapter 8 then discusses whether
the assumptions and approximations which were made are realistic and whether the explicit
formula can be used for all freight options. Finally, a conclusion is given in chapter 9.

2 Freight in general

Before discussing the trading of freight, a closer look is taken at the concept ’freight ’. As men-
tioned in the introduction, freight covers the transport of goods by vessels. It plays an important
role in the economy. Imagine that suddenly no more ships are available to transport commodi-
ties. This would mean that one would only have excess to products which are already in a
specific region, which would limit product- and food supply enormously. To make sure everyone
in the world has excess to the products they need or want, people and organizations rely greatly
on freight.

Freight has to be contracted, just like commodities. The only difference is that most com-
modities are real products, while freight is a service. So when freight is ’bought’, the service
of products being transported from place A to place B is contracted. When commodities are
contracted, the physical product is purchased. For example, one gives cash and receives coal.
As a result of the fact that freight is a service instead of a physical product, freight is also
non-storable. It will be seen later that this makes the pricing of financial products related to
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freight more complex.

With trading, there is normally someone who owns the product which is being traded and
someone who wants to buy it, like a coal producer and a coal costumer. In the case of freight,
these are called the ship-owner and the charterer. Mostly, there is another person or entity,
standing between the ship-owner and the charterer, namely the shipbroker. This person or or-
ganization forms the connection, i.e. delivers mediation services, between the owner and the
charterer. The price for which the ship-owner sells the freight to the charterer is called the
freight rate. This freight rate is very volatile. This is due to various factors freight depends on,
which is discussed in section 3.2.

2.1 Types of commodities and vessels

Trade which is transported over sea, also called seaborne trade, can roughly be divided into five
groups: dry bulk, oil tanker, container, gas tanker and other. In this document focus is only put
on dry bulk commodities, because with a market share of 38% these form a large segment of the
entire seaborne trade market. The additional 62% exists of wet bulk commodities, which is liquid
cargo in contrast to dry bulk commodities. Dry bulk commodities are commodities which are
shipped in large, unpacked amounts. Examples are coal, ore and grain. Dry bulk commodities
can be divided into major bulks and minor bulks. Major bulks are carried in very large loads,
while minor bulks do not necessarily fill an entire vessel when being transported. Major bulks
form about two thirds of the dry bulk market and therefore play a more important role in the
freight market than minor bulks.
There are vessels which are specifically suitable for the transportation of dry bulk. These can be
subcategorized according to their length. The four main categories are Handysize, Handymax,
Panamax and Capesize, with Handysize being the smallest and Capesize the largest. Panamax
and Capesize, which carry major dry bulks, are most important for the freight market, because
they represent the biggest market share. Panamax vessels are the largest ships that fit through
the slots of the Panama canal and they sail from the Pacific to the Atlantic Ocean. Capesize
vessels are too large to fit through the Panama canal, so they travel round Cape Horn (Argentina)
or Cape of Hope (South-Africa) between the Pacific and the Atlantic Ocean. Panamax ships
can transport up to 70, 000 DWT1, while Capesize vessels typically carry more than 150, 000
DWT.

1DWT stands for deadweight ton, which is the sum of the weights of cargo, fuel, fresh water, ballast water,
provisions, passengers, and crew of a ship.
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Figure 1: A Capesize vessel lying at Capre Lambert port in Australia.

Figure 1 pictures the size of a Capesize vessel. In table 1 the size in DWT of four different
types of vessels, the percentage of ships in the world of each kind, the percentage of cargo each
type of ship transports (measured in the weight of the cargo together with the distance traveled),
the price of a new ship and the price of a five year old ship are displayed.

Name Size in DWT Ships Transport New price Old price

Handysize 10000 to 35000 34% together $25 million $20 million
Handymax 35000 to 59000 37% 18% $25 million $20 million

Panamax 60000 to 80000 19% 20% $35 million $25 million

Capesize 80000 and over 10% 62% $58 million $54 million

Table 1: Properties of the four main types of dry bulk vessels (as found on www.wikipedia.org).

There are many more Handysize and Handymax than Panamax and Capesize vessels, yet
the percentage of cargo that especially Capesize vessels transport, is significantly higher than
that of Handysize and Handymax vessels. This is due to the fact that Capesize vessels can carry
significantly more cargo and mostly travel longer routes than smaller vessels. Furthermore, these
large Capesize vessels can cost a multiple of the smaller Handysize, Handymax and Panamax
vessels. In other words, buying a new Capesize vessel costs a lot more than buying a Handysize,
Handymax or Panamax vessel.

2.2 Chartering

Now that a global idea of the different types of ships is provided and the enormous amounts of
cargo they can carry is set out, the chartering of these vessels is discussed. Chartering is the
term used when the owner of a ship lets it to others for transporting cargo. The charterer can
use the ship to carry its own cargo or is able to re-let the ship to other charterers for a higher
price, so that the charterer can make profit.
There are different ways to charter a ship, below the most common ways:

• With a voyage charter the ship ánd the crew are hired for a one-way trip with a specified
cargo and a specified freight rate. The owner of the ship pays for the fuel, the crew and
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the ports. The charterer pays the owner on a per-ton or lump-sum basis2.

• With a time charter the ship is being hired for a stated period of time. In such a case the
charterer pays all the port costs, fuel costs and a daily hire. In ’exchange’ the charterer
can choose the route the ship is going to take, also the charterer can decide which ports
will be passed.

• With a bareboat charter the owner lets the boat for a specified time without any provision
like insurance, stores or crew.

To get an idea of the height of freight rates for the various types of vessels, let’s have a look at
the graph in figure 2, which shows the average charter rates per day in US dollars for different
kinds of vessels in the period 2001-2012:

Figure 2: Average time charter rates per day in USD for different vessels (as found on
www.wikipedia.org).

From 2001 until 2012 the rates have differed from $2, 000 until $256, 000. Since the rate is
the price per day that has to be paid, also the daily rate for chartering a ship, the total amount
of money circling in the freight market is enormous. This again shows the great importance of
the freight market in the global economy. Furthermore, the graph shows that in 2008 the rates
drastically dropped, which is due to the credit crisis.

2.3 Routes

Not only can ships be chartered in different ways, as described in the previous section, there are
also different routes ships can be chartered for. There are many different routes vessels have to

2When payment is accomplished on a lump-sum basis, a specified sum of money is paid for the trip, while on
a per-ton basis, payment is due per ton cargo.
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take, as cargo has to be shipped over the entire world. Some routes are used very frequently. A
few of these routes for Panamax and Capesize vessels are now considered. Two major Capesize
voyage charter routes are Richards Bay to Rotterdam (reflected by C4, whereby the C stands
for Capesize and 4 for the particular route) and Bolivar to Rotterdam (reflected by C7). Two
major Panamax time charter routes are Gibraltar to Far East (reflected by P2A, whereby the
P stands for Panamax and 2A for the particular route) and Pacific round (reflected by P3A).
Sometimes a vessel is chartered for one single route, because this route covers the precise places
the cargo has to be shipped in between. However, it is possible that cargo needs to be shipped
between two places for which no specified route exists. A vessel can then be chartered for a
collection of single routes, so that the resulting route covers the places the cargo has to be taken
from/to.

3 Trading of freight

Until now, only the fact that freight can be contracted by trading the actual service of transport-
ing goods was mentioned. However, there are other ways to trade freight. Also organizations
that are not directly interested in the service of transporting goods can still have a great interest
in the freight market. This is because financial products related to freight are provided by the
freight market. Different kinds of financial contracts exist, in which agreements are made about
paying and receiving a certain amount of money which is related to the freight rates. To give a
very simple example, one could trade a contract which states that three days from now one will
pay the seller of that contract the value which the freight rate of a certain route and charter-type
had two days ago and one will receive the value it will have two days from now. This example
gives a good insight in how freight can be traded by not actually trading the service itself, but
by ’trading the freight rates’. There are many financial contracts like this circling in the freight
market. In fact, these contracts form a much larger freight market share than the actual trading
of the freight service. In section 4 some of these contracts and reasons why the market provides
them are discussed.

3.1 Exchanges

Organizations, traders and analysts who are interested in freight are keen on data and informa-
tion regarding the freight market. Transparency is important in the process of price discovery.
There are exchanges and trading platforms for freight, just as there are exchanges for commodi-
ties and stocks. An exchange is a highly organized, regulated market where (financial) contracts
can be bought and sold. An exchange supports the process of price discovery by providing
information for everyone with interest in the contracts being traded.

3.1.1 The Baltic Exchange

The most well-known freight exchange3 is the Baltic Exchange in London, which is an indepen-
dent source of maritime market information. It was founded in 1744. The organization provides
independent daily shipping market information, maintains professional ship-broking standards
and resolves disputes. Parties with interest in trading freight contracts4 can become a member
of this foundation. A lot of the information about freight in this document has been found in
paper [5] about the Baltic Exchange.

3In fact, the Baltic Exchange is a Multilateral Trrading Facility (MTF) rather than an exchange.
4Ship-owners, charterers, shipbrokers, but also financial institutions, maritime lawyers, educators, insurers and

related associations
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Just like the S&P500 shows the development of the stock rates from the 500 largest compa-
nies on the U.S. stock exchange, the Baltic Exchange developed an index for freight. This Baltic
Freight Index BFI shows the development of freight rates for sea routes that are most used. At
the beginning, in 1985, the Baltic Freight Index was based on 13 different routes. In time, more
routes were added and after a while, the Baltic Freight Index got split into subcategories. There
are now indices which reflect freight rates for dry bulk only (Baltic Dry Index, or BDI), for
Capesize vessels (Baltic Capesize Index, or BCI), for Panamax vessels (Baltic Panamax Index,
or BPI), and so on. The Baltic Dry Index is most used in the freight market, because of the
large market share of dry bulk commodities.

3.1.2 IMAREX

Another well-known freight trading facility is offered by the International Maritime Exchange
(IMAREX) in Oslo. It was founded in 2000 and began as a small association, but nowadays it
handles financial freight products worth over USD 200 billion per year.

Figure 3: Baltic Dry Index and S&P500 during the last year (as found on www.bloomberg.com).

In figure 3 a relative chart with the Baltic Dry Index and the S&P500 over 1 year are
presented. The graphs show the percentage changes from, respectively, the Baltic Dry Index
and the S&P500, compared to the values of these two indices at the beginning of June 2013.
The absolute percentage changes of the Baltic Dry Index are much higher than those of the
S&P500. In other words, the Baltic Dry Index varies much more than the S&P500. This is in
line with the statement in subsection 1, that freight rates are very volatile.

3.2 Factors which effect freight rates

In the beginning of section 2 the high volatility of freight rates was mentioned. There are many
different events which can have an effect on the cost of sea transport. A distinction can be made
between internal and external factors. Internal factors cover factors directly related to freight,
like fleet supply and commodity demand, while external factors, such as seasonal pressures, do
not influence freight directly. When looking at some examples of this second type of factors
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more closely, it can be seen that they can have an enormous influence on the freight rates. This
makes external factors at least as important as internal drivers.

3.2.1 Internal factors

The first internal factor that drives freight rates is fleet supply. When few ships are available
for chartering, while at the same time on a relative basis many parties wish to charter a vessel,
freight rates will rise. When, on the other hand, many ships are available, freight rates will
decrease. As with all products and markets it is a matter of supply and demand. For the reason
described above, it is important for both ship owners and ship charterers to spend sufficient
time on fleet analysis. Awareness of the global and regional number of vessels per type or class
is crucial, as much as the age of those ships. When, for example, globally 50 Capesize vessels
are available, out of which 40 are over 20 years old (whereas the expected lifetime of a Capesize
vessel is only 25 years), it is reasonable to expect that soon there will be a shortage of those ships.
Therewith, tension in the market is expected. This will then most likely put upward pressure on
the freight rates for Capesize vessels. This way, ship owners, charterers and financial institution
try to forecast freight rates (at least that part which depends on fleet supply).
A logical continuation of freight rate evaluation, after looking at the fleet supply, is to look at
the demand-side, the commodity demand. When commodities have to be transported, but the
availability of ships is relatively low, freight rates will increase. Conversely, when the demand
is relatively low, freight rates will decrease. So, when, for example, the grain harvest has been
very successful, a lot of grain has to be shipped, which results in high freight rates (of course
under the condition of ceteris paribus). Market participants with interest in the freight market
usually try to forecast commodity demand in some way, because they want to make an accurate
estimation of how the freight rates will behave in the future.

3.2.2 External factors

Next to internal factors there are external factors which affect freight rates. First of all, seasonal
pressures can have a great effect on the rates. In winter time, low temperatures (frost) can
cause ice, which affects the routes ships can take. When detours have to be taken, not only
the total freight costs rise, due to longer travel time, but also the freight rates will rise, because
longer traveling time results in less availability of ships. Season or weather can also influence
the harvest. When the weather is optimal, harvest will be successful, which results in a large
demand of transport, and therefore high freight rates.
Another factor which affects freight rates, is the price of bunker fuel. When the price of bunker
fuel rises, the costs for transport will increase as well. Therefore, high fuel prices result in high
freight rates.
Currency exchange rates are also of influence on freight rates. Consider an Australian ship
charterer who wants to transport its goods from the U.S. to Australia. The Australian company
wants to charter a ship from a U.S. charterer. Doing so, he will first need to exchange Australian
dollars for U.S. dollars. When the exchange rate between Australian and U.S. dollars is favor-
able for the Australian company, freight rates that the U.S. company will charge the Australian
company for, will be relatively low. Low freight costs will support high demand, which then in
time results in higher freight rates. Al in all this means that foreign exchange rates cause freight
rates to fluctuate (volatility).

Above, only a few of the widespread factors that influence freight rates have been mentioned. It
is not difficult to conclude that freight rates fluctuate a lot, i.e. are very volatile. They depend
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on so many factors, that it is impossible for the rates to stay constant. This high volatility
causes some concern. Ship-owners and charterers are not able to precisely forecast the freight
rates, so they carry a lot of price risk. When a charterer wants to transport goods next month,
little can be said about the price the organization will have to pay the ship-owner at that time.
Also the ship-owner is exposed to a lot of price risk; this market participant cannot forecast
what the future spot rates will be, so he cannot say anything about the amount of his future
profit or loss. To this extent, freight derivatives have been provided.

4 Freight derivatives

4.1 Derivatives in general

Because freight rates are very volatile, the trading of freight comes with a lot of price risk.
To protect ship-owners and charterers against this risk, the market provides them with finan-
cial products related to freight, also called freight derivatives, like freight futures, forwards and
options. Ship-owners and charterers can use freight derivatives to hedge their exposures. Deriva-
tives are mostly used for hedging or speculating.5 In other words, they can be used for different
business motives, namely to take away risk (hedging) or to make profit (speculation). Specu-
lating is the reason why the freight market is so interesting for non-physical players, like banks.
These organizations try to predict the future freight rates, to buy a suitable freight contract,
with which they expect to make a profit.

In sections 4.1.2 until 4.1.4 futures, forwards and options in general are briefly discussed, before
looking at freight derivatives in particular.

4.1.1 Terminology derivatives

Throughout this document some terminology according to forwards, futures and option will be
used. First, terminology for forwards/futures is discussed:

• The underlying asset is the asset which is going to be exchanged.

• The contract price F is the price at which the underlying asset is exchanged.

• The trade date T1 is the date at which the amount to be paid/received by the parties is
calculated.

• The settlement date TN is the date at which the actual exchange will take place, so the
date at which the money has to be exchanged.

• The settlement price S of the underlying asset is the price at which the underlying asset
is settled at the settlement date.

• The settlement period [T1, TN ] is the period between the trade date and the settlement
date.

• The party who buys a forward/future is called the holder and has to take delivery. The
holder of a forward/future is said to be long the forward/future. The seller of the for-
ward/future is said to be short the forward/future.

5They can also be used for arbitrage or physical trading
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For options, almost the same terminology holds. There are, however, a few differences. An
option has no settlement period, so no trade/settlement dates are considered and instead of a
contract price one speaks of a strike price.

• The strike price K of an option is the price at which the underlying asset is exchanged
when the contract is exercised.

• The exercise date of an option is the date at which the option is exercised, also the date
at which the underlying asset is exchanged. This equals the trade date and the settlement
date for forwards/futures.

• The settlement price S of the underlying asset is the price at which the underlying asset
is settled at the exercise date.

• The expiration date or maturity T of an option is the last point in time at which the option
can be exercised. After this, the option has no value anymore.

• The party who buys an option is called the holder. The seller of the contract is called the
writer. The holder of an option is said to be long the option. The seller of the option is
said to be short the option.

• A call option gives the holder the right to buy the underlying asset, while a put option gives
the right to sell it. With a call option the writer has the obligation to sell the underlying
asset if the holder decides to exercise, while with a put option the writer has the obligation
to buy it.

4.1.2 Forwards

Definition 1. A forward is a financial contract in which the holder and the writer agree to
exchange the underlying asset at the settlement date for the contract price.

Using a forward contract, a trader can lock in the price (s)he will pay/receive for a certain
asset in the future and (s)he does not have to worry about the risk that the price of the asset
will increase/decrease. However, once the future contract starts, the two parties are obliged to
exchange the underlying asset, even if it will not be profitable for (one of) them.
In figure 4 the payoff of a forward for both the buyer and the seller of the contract are shown,
where the variables F and S(T ) have the same meaning as mentioned in the terminology6 (S(T1)
is the settlement price at the trade date).

6From now on, these variables will be used to indicate the corresponding terminology throughout this document
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Figure 4: Payoffs from a forward contract for both the buyer and the seller.

4.1.3 Futures

A future is basically the same as a forward, however, there are two differences:

1. A future is exchange-traded, while a forward is traded over the counter (OTC). This
means that a forward is a private contract between two parties, which implies there is a
relatively high credit risk, also a probability of default. A future, on the other hand, is a
more formal contract, whereby the clearing house7 takes over the counterparty risk (and
therewith assures there is no credit risk for a party when the counterpart defaults).

2. Exchange-traded contracts (futures) require the two parties to settle price changes daily,
so that no party ever has a large obligation to the other. Otherwise, when one party
defaults while having a large obligation to the other party, the clearing house has to pay
a large amount to cover this obligation. By applying this so-called marking-to-market
principle, the clearing house only has small amounts of money it might has to cover. With
a forward, no daily settlement is required. Note that the marking-to-market principle does
not change the amount the contract pays off, it only spreads the payoff over more points
in time.

4.1.4 Options

Definition 2. An option is a financial contract in which the holder has the right, but not the
obligation, to buy or sell the underlying asset at the strike price on or before the expiration date.

So, the main difference between an option and a future/forward is the fact that a future
gives the holder (and its counterpart) an obligation, while an option gives the holder a right
(but the writer also a potential obligation).
Figure 5 shows the payoffs for both a put and a call option with strike price K, when both long
and short.

7A clearing house is a financial institution that provides clearing (all activities from the time a commitment is
made for a transaction until it is settled) and settlement services for financial and commodities derivatives and
securities transactions.
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Figure 5: Payoffs from a put and call option for both the buyer and the seller.

4.2 Freight derivatives

Now that standard knowledge about derivatives is set out, focus is put on freight derivatives in
particular. The first thing to notice, is that with freight derivatives the underlying asset can be,
for example, the Baltic Freight Index8 or another index which represents the spot freight rates.
Furthermore, freight derivatives are cash settled. In other words, instead of actually receiving
the underlying asset at delivery time, the owner of a freight derivative receives cash. When, for
example, an equity future (a future with a stock as underlying asset) is cash settled, the owner of
the future receives the difference between the value of the stock at settlement minus the agreed
price at the conclusion of the deal. When the same future is physically settled, the owner receives
the actual stock at expiration and pays the price which was fixed at the expiration date. So,
in the case of freight derivatives, the owner of the derivative receives at expiration the value of
the Baltic Freight Index/freight rate (settlement price) minus the price which was fixed at the
conclusion of the deal.
Furthermore, in practice, all freight derivatives consist of more than one settlement period. In
theory, first a single settlement period is considered and then a few of these single contracts are
summed up to form a contract with more settlement periods, as will be seen later when pricing
a freight option.

4.2.1 Freight futures or Forward Freight Agreements

The first freight futures to be traded were introduced on the Baltic International Freight Futures
Exchange (BIFFEX) in May 1985. This shows that the financial freight market is, with an age
of around 30 years, indeed rather new, as was stated in the beginning of this document.
Freight futures are mostly referred to as Forward Freight Agreements (FFA). This might be a
bit misleading, since the word ’forward’ is involved in this, but nowadays most of the time these
FFA’s are traded as futures, so through a clearing house.

Definition 3. A freight future is a financial contract which states that at a certain time in the
future one party will pay the contract price and receive the value of the Baltic Freight Index at
that time from the other party.

8As mentioned before, this index is now subcategorized into different indices, but we will just refer to it as the
Baltic Freight Index from now on.
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A freight future is settled against the average of the spot freight rates9 (also, the average
values of the Baltic Freight Index) during the settlement period. This averaging is done for two
reasons:

1. First of all, settling against the average values of the Baltic Freight Index limits the chance
of price manipulation by large participants. When the FFA’s would be settled against one
single freight rate, participants may try to increase or decrease the freight rate in the future
by trading a lot or very little in freight rates just before the time at which they want the
freight rate to have a certain value. When the FFA’s are settled against an average of the
freight rates, the chance of this happening, decreases significantly10.

2. Secondly, the transportation of goods generally takes more than just one day, so charterers
are exposed to freight rates for some period of time. When settling against the average of
freight rates during this period, freight rates during the entire length of the transportation
are considered, which seems more fair than just looking at a freight rate on one of the days
during this period.

Moreover, FFA’s can be based on a per day contract price or a per ton contract price. When
the FFA is based on a time-charter, the contract price will be expressed by an amount per day,
while with voyage charters, the contract price will be expressed by an amount per ton.

Example 1. Consider a ship-owner who is looking to protect the company against a possible
decrease of the freight rates. To this extent, the company sells an FFA contract for its Panamax
ship based on time chartering, with trade date T1 = 1 in years, contract price F = $18, 500 per
day, 12 settlement periods, where every settlement period has the length of one month (assume
there are 30 days in a month) and with the first settlement at 31 January 2014. If the average of
the freight rates in January, also the settlement price, turns out to be $15, 000, the ship-owner
receives the difference of $18, 500− $15, 000 = $3, 500 per day during 30 days. This sums up to
a total amount of $3, 500 × 30 = $105, 000. When the settlement price in February is $20, 000,
the ship-owner has to pay the difference $20, 000 − $18, 500 = $1, 500 per day to the holder of
the FFA, which sums up to a total amount of $1, 500× 30 = $45, 000. After paying or receiving
these differences every month, at the end of the year the ship-owner can check whether this FFA
has been profitable for them.

In figure 6 an example of the payoff of an FFA sold at WS10511 is shown, where the blue line
indicates the realized average freight rates. The pink constant line is the contract price (so the
price to be paid for the blue line). The blue and pink volumes respectively indicate the profits
and losses made by the seller of the FFA contract. Note that two vertical scales are used.

9We make a difference between spot freight rates and forward freight rates. Spot freight rates are the prices
you have to pay for immediate settlement of freight, while forward freight rates are the expected prices you will
have to pay for freight in the future.

10These large market participants would have to buy/sell an enormous amount not just once, but various times,
to be able to have a significant influence on the average of the freight rates instead of on just one single rate.

11WS stands for World Scale, which is a unified system of payment for freight in the tanker cargo world.
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Figure 6: Profits and losses made by the seller of a FFA contract for tanker cargo sold at WS105
(as found on www.balticexchange.com).

It can be seen that when the blue line, also the average Baltic Index12, transcends the pink
FFA contact price, the seller of the FFA loses money. This is because the seller now earns less
than he could have when just selling his freight against the spot freight rate. On the other hand,
when the blue line lies beneath the pink contract price, the seller makes a profit, for he can sell
his freight against a higher price than he could have, when just selling it against the spot freight
rate. Logically, when the Baltic Index line and the contract price line intersect, the seller makes
neither a profit, nor a loss.

We can of course also look at the same FFA, but now focus on the viewpoint of the buyer.
In this case, the buyer makes a profit when the seller makes a loss and conversely makes a loss
when the seller makes a profit. Figure 7 shows these profits and losses in a graph, which can be
interpreted in the same way as figure 6.

12Notice that the words ’freight rates’ and ’Baltic Freight Index’ are used interchangeable
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Figure 7: Profits and losses made by the buyer of a FFA contract for tanker cargo bought at
WS105 (as found on www.balticexchange.com).

4.2.2 Freight options

Apart from freight futures, the freight market also deals with freight options, which are insurances
against freight rates moving beyond a specified price level. There are different kinds of options.
In this document, only so-called European and Asian options are important.

Definition 4. A European option is a type of option which can only by exercised at the exercise
date of the option. Its payoff is calculated by settling against the value of the underlying asset at
exercise time. In other words, the payoff of a European (call) option with strike price K equals
max{S(T )−K, 0}.

Definition 5. An Asian option is a type of option from which the payoff is calculated by settling
against the average values of the underlying asset during some period of time [t1, tN ]. In other
words, the payoff of an Asian (call) option with strike price K equals max{ 1

N

∑N
i=1 S(ti)−K, 0}.

A freight option is an Asian option with the spot freight rates/Baltic Freight Index as
underlying asset.

Definition 6. A freight option is a financial contract which states that the holder has the right
to pay/receive the average of the values of the freight rates during some period on or before the
expiration date and receive/pay strike price. The writer then has the obligation to receive/pay
this average and pay/receive the strike price when the holder decides to exercise.

In section 5.2.2, it will be seen that a freight option can not only be seen as an Asian option
with the spot freight rates/Baltic Freight Index as underlying asset, but also as a European
option with an FFA as underlying asset.

With an option in his portfolio, the holder has no risk of losing any money due to high or
low prices of the underlying asset, because he always has the possibility not to exercise the op-
tion and thereby have zero payoff. This way, the (expected) payoff from an option can never be
negative. This differs from a future, where the holder has the obligation to exercise the contract,
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which can lead to a negative payoff for the holder. However, with an option, the holder has to
pay an upfront premium to the seller. This is the only way the seller of the option can earn
money, because the holder can never have a negative payoff. In other words, the seller can never
have a positive payoff (if this premium would not be taken into account).

Example 2. Consider a ship-owner who is looking to protect the company against possible
decreases in the freight rates. To this extent, the company buys a freight put option for its
Panamax ship based on time-chartering, with expiration date T = 1 in years, strike price K =
$18, 500 per day, a premium of $2400 per day, 12 settlement periods, where every settlement
period has the length of one month (assume there are 30 days in a month) and with the first
settlement at 31 January 2014. The total premium the ship-owner has to pay the writer of the
put option is $2400 × 30 × 12 = $864, 000. He has to pay the daily premium everyday upfront.
If the average of the freight rates in January, also the settlement price, turns out to be $15, 000,
the ship-owner receives the difference of $18, 500− $15, 000 = $3, 500 per day. This sums up to
a total amount of $3, 500 × 30 = $105, 000. When the settlement price in February is $20, 000,
in contrast to the FFA in example 1, the ship-owner will decide not to exercise his put option,
so in this month he will not receive any money with this option. For the writer of this put
option to determine whether the sale of this option was profitable for him, he has to add up the
total amount he had to pay the holder of the option (the ship-owner) and subtract this from the
total premium he received. If this resulting amount would be positive, the trade would have been
profitable for him, and the holder of the option would have had a negative profit.

If making profit was the purpose of the writer for writing this option in example 2, it is
called speculation. Instead of using the option for speculation, the writer of this option could
have also used it for hedging. For example, when the writer would have been long a similar
freight put option, by writing this freight put option, he would hedge his position. No matter
what happens, the writer would always end up with no losses, respectively profits (caused by
these two options); If the put option would end in the money, the writer would exercise his put
option, whereby he would receive a positive payoff. On the other hand, the holder of the put
option he has written, will also exercise his option, also the writer has to pay this holder the
exact same amount as he received himself with his put option. Conversely, if the option would
end out of the money, no one would exercise his/her put option, so the holder (writer) of the
first option has a loss (profit) equal to the premium of the option and, similarly, the writer in
this example has a loss equal to the premium, caused by the second put option.

We can conclude that the main difference between the payoff of an option and the payoff of
an FFA, is that with an option, the negative payoff cannot grow larger than the amount of the
premium, while the negative payoff of an FFA in theory can grow until the negative value of the
contract price. This is summarized in figure 8.
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Figure 8: Payoffs from an FFA and a put option.

The payoff of the option has a lower bound, while the payoff of the future keeps on decreasing
as S(T ) decreases. The FFA makes profit with a lower S(T ) than the put option does, because
of the premium that has to be covered with an option.

Now, consider figure 9, similar to figures 6 and 7, to see how hedging using a freight option
works. Again, the blue line indicates the average Baltic Index or the spot freight rates, the blue
and pink volumes equal the profits and losses and now the pink line indicates the value of a call
option.

Figure 9: Profits and losses made by the buyer of a call option with strike price WS105 and
premium WS20 for tanker cargo (as found on www.balticexchange.com).

The losses indeed never transcend the premium of WS20, because otherwise the buyer of
the call option would not exercise his right. Furthermore, when the blue line exceeds the pink
option price line, the buyer makes a profit, while when the blue line lies beneath the pink line,
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a loss is made. Logically, when the blue and the pink line intersect, neither a profit, nor a loss
is made.

Similarly, we can look at a put option with the same strike price and premium. Figure 10
shows the profits and losses made by the buyer of this put option. The realized average freight
rates turned out to be significantly higher than the expected average freight rates. Therefore,
the strike price of the put option was determined too low, which resulted in very few profits for
the buyer of the put option. Again, we see that the losses made, never exceed the premium of
WS20.

Figure 10: Profits and losses made by the buyer of a put option with strike price WS105 and
premium WS20 for tanker cargo (as found on www.balticexchange.com).

5 The pricing of freight options

After discussing the properties of Forward Freight Agreements and freight options, we start with
the actual pricing of a freight option. We discuss what the prices of freight options depend on,
how they vary and how they can be calculated.

5.1 Assumptions

First of all, some assumptions have to be made:

1. It is possible to borrow or lend money at the same constant, deterministic and continuously
compounded interest rate r with no transaction costs.

2. At each time t a spot freight rate exists, denoted by S(t). This is a non-tradable asset and
is typically a value of the Baltic Freight Index.

3. The settlement period is denoted by [T1, TN ], where T1 < TN . Take N fixings at time
points Tn, n = 1, . . . , N , which are chosen to be days. Set N = 21, so that one settlement
period consists of 21 days (which is assumed to be the number of working days in one
month). Holidays and weekends are ignored.
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4. All FFA’s considered in this document are traded through a clearing house, so credit risk
is not taken into account.

5. The market for FFA’s is liquid, so the FFA’s can be traded continuously at each time until
the end of the settlement period TN .

6. The price of an FFA at time t, F (t, T1, TN ), is a martingale under the real-world measure
P 13. The arguments between brackets are values the price of an FFA depends on; its price
depends on the current time t and the length of the settlement period.

Definition 7. A stochastic process X is called a martingale if it satisfies

(a) E[Xn+1|X1, . . . , Xn] = Xn ∀n,

(b) E[|Xn|] <∞ ∀n

So, when using the real probabilities in the freight market, the expected price of the FFA
at time n+ 1 equals the price at time n, for all n.

7. There are no arbitrage probabilities14 in the freight market.

Theorem 1 (Fundamental theorem of asset pricing). A market has no arbitrage prob-
abilities if and only if there exists a risk-neutral probability measure Q such that every
discounted price process in this market is a martingale under the probability measure Q.

From theorem 1 it can be concluded that there exists a risk-neutral probability measure
Q such that the price of an FFA at time t is a martingale not only under the real-world
probability measure P (assumption 6), but also under the risk-neutral probability measure
Q. More formally:

Result 1. The price of an FFA equals the discounted expected payoff under the risk-neutral
probability Q.

Further explanation of Result 1 is given in section 5.1.1.

8. The payoff of an FFA starting at time t equals the difference between the average freight
rates during settlement and the price F (t, T1, TN ), multiplied by a constant D, which refers
to the number of days the FFA contract covers or an agreed cargo size. This depends on
whether the FFA is based on a time-charter service or a voyage-charter service. More
formally, the payoff of a future equals

D

(
1

N

N∑
i=1

S(Ti)− F (t, T1, TN )

)
(1)

9. Spot freight rates are assumed to be log-normally distributed with drift µ and volatility
σ.

13In section 5.1.1 this term is explained
14arbitrage is the phenomenon of making a risk-free profit by investing a certain amount of money in an asset

higher than the amount of money made when putting this amount on a savings account with risk-free interest
rate.
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5.1.1 Real-world versus risk-neutral measure

In the assumptions in section 5.1, the words real-world measure and risk-neutral measure were
used. Some explanation is needed for these terms. Financial assets entail risk; it is not known
how, for example, the underlying asset of an option will behave in the future. To cover this risk,
investors require risk premiums. These risk premiums do not only differ for different assets, since
not every asset is equally risky, they also differ for different investors, since not every investor re-
quires the same amount of ’risk-protection’. Furthermore, the risk belonging to a specific asset is
difficult to predict. In other words, pricing assets when considering these actual risk premiums,
also under the real-world probabilities, is difficult. To simplify the pricing of financial assets,
the risk-neutral measure has been constructed. When using the risk-neutral measure, financial
assets are assumed to be riskless. In other words, investors do not require risk premiums. This
way, every asset can be priced in the same way, instead of needing different pricing methods for
every asset, because of the different risk premiums. Therefore, the risk-neutral measure, instead
of the real-world measure is used in asset pricing. The real-world measure can, however, be used
to calibrate risk-neutral asset pricing models by considering historical data.
Result 1 can now be explained as follows: Under the risk-neutral probabilities, assets are as-
sumed to be risk-free. In other words, their expected payoff is assumed to equal the real payoff.
Furthermore, the freight market is assumed to have no arbitrage probabilities. Therefore, the
discounted15 expected payoff of an asset should equal its price; if the price is higher than the
discounted expected payoff, which equals the discounted real payoff under the risk-neutral prob-
abilities, no one will buy the asset, since a loss will be made. Conversely, if the price is lower
than the discounted expected payoff, also the discounted real payoff under the risk-neutral prob-
abilities, a definite profit will be made. This way, one can make a risk-less profit higher than the
amount of money made by putting an amount of money equal to the asset price on a savings
account with the risk-free interest rate. This is known as arbitrage, which was assumed not to
exist. This is why the price of an asset should always equal its discounted expected payoff under
the risk-neutral probabilities.

5.2 Dependences of FFA prices and freight option prices

5.2.1 Relationship freight rates and FFA prices

The discounted expected payoff of a future under the risk-neutral measure should always equal
zero, to avoid arbitrage opportunities16. More formally, as given in [1, p. 6], the conditional
expectation under the risk-neutral probability measure Q of the discounted version of equation
(1) should equal zero:

EQt

[
e−r(TN−t)D

(
N∑
i=1

S(Ti)

N
− F (t, T1, TN )

)]
= 0 (2)

In equation (2) e−r(TN−t) is the discount factor.
Later on, it will be shown that this equation makes sure the price of the FFA F (t, T1, TN ) equals
the expected average freight rates during the settlement period.
To avoid confusion, from now on the contract price of an FFA F will be called the price of the

15Discounting is calculating the amount of money today which will equal a certain amount of money in the
future when putting it on a savings account with risk-free interest rate r

16If the discounted expected payoff would equal a positive amount, ’money could be made for free’. No premium
has to be paid for the future, so the discounted expected profit equals the discounted expected payoff, which would
be positive in this case.
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FFA. The value of the FFA, also its discounted payoff, will simply be called its value.
When time goes by, the value of a futures contract may change. This is because the underlying
index changes in time. When the index increases, it is likely that the settlement price of the
future, also the average of the index, will increase. In that case, a profit will be made by the
holder of the future, since the contract price to be paid will be less than the settlement price.
This leads to an increase in the value of the future.
The price of a futures contract may also change in time. The price of a particular future contract
is fixed until the end of the contract. However, if for the same future the contract price would
be determined one day later, this contract price may differ from the one the day before. That is
because the contract price depends on the underlying freight rates, which change in time. That
is why it is interesting to trade future contracts. If the price of a particular future contract turns
out to be higher the day after the contract started, the buyer of the contract can decide to sell
his contract, whereby he receives the positive difference between the fixed future price at the
beginning of the contract and the price one day later.

5.2.2 Relationship FFA prices and freight options

Freight options can be seen as both arithmetic17 price Asian options on the Baltic Freight Index
or, similarly, as European options on Forward Freight Agreements. Why these two types of
options are the same, will now be discussed.

Arithmetic Asian options on freight rates have a payoff equal to the maximum of the differ-
ence between the strike price and the average of the freight rates during the settlement period,
and zero (since the holder of the option will not exercise when the payoff is less than zero). More
formally, the payoff of a freight call option with strike price K equals

C(TN , TN ) = D

[
1

N

N∑
i=1

S(Ti)−K

]+

(3)

where C(TN , TN ) is the notation for the price of a call option at time TN with exercise time TN ,
also the payoff.
Similarly, the payoff of a freight put option with strike price K can be written as

P (TN , TN ) = D

[
K − 1

N

N∑
i=1

S(Ti)

]+

(4)

where P (TN , TN ) is the notation for the price of a put option at time TN with exercise time TN ,
also the payoff. The factor D is added for the same reason as for the payoff of a future contract.

European options on Forward Freight Agreements have a payoff equal to the maximum of the
difference between the strike price and the price of the Forward Freight Agreement at exercise
time, and zero. More formally, the payoff of a freight call option with strike price K equals

C(TN , TN ) = D [F (TN , T1, TN )−K]+ (5)

Similarly, the payoff of a freight put option with strike price K can be written as

P (TN , TN ) = D [K − F (TN , T1, TN )]+ (6)

17The term arithmetic indicates the use of an arithmetic average of the freight rates, also just the sum of the
freight rates during the settlement period, divided by the number of freight rates considered
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Because the price of the Forward Freight Agreement at exercise time equals the average of the
freight rates during the settlement period, the payoff in equation (5) is the same as the maximum
of the difference between the options strike price and the average of the freight rates during the
settlement period, and zero. In other words, equation (3) and (5) (and (4) and (6)) are the
same. So, as stated, a freight option is both an average price Asian option on the spot freight
rates as well as a European option on the future price.

Because call options gain value as their underlying asset does, as shown in figure 5, freight
call options also gain value when the underlying Forward Freight Agreement does. In other
words, when the price of the FFA increases, the price of the freight call option also increases.
The exact dependence between these two will eventually be shown in an explicit formula in sec-
tion 6.2.2. Similarly, the price of a freight put option increases, when the price of the underlying
FFA decreases.

5.3 The problem

The price of an option18 with payoff (3) is desired. This is the same as finding the price of an
option with payoff (5). For F (t, T1, TN ) equation (2) must hold.

When treating the option as an Asian option, also when looking at the payoff in equation
(3), no explicit formula is known for the price of the option. Therefore, this option can only be
priced using Monte Carlo simulations. However, it is desirable to price this option by a method
that requires less computation time, since time is a valuable quantity. Therefore, this option
will be treated as a European option on the future price, so the payoff in equation (5) will be
considered. Now, it is in fact possible to derive an explicit formula for the price of the option.

5.4 Approach

When deriving an analytic expression for the freight option price, an approximation for the
volatility of the future prices will need to be made. Compared to Monte Carlo simulations,
this analytic expression can be seen as a faster, but maybe less reliable way of pricing a freight
option. Fast, due to the fact that no time-demanding simulations need to be made, since an
explicit expression is available. Less reliable, since an approximation for the volatility of the
future prices is made, which may not exactly equal the real volatility.
Next, the validity of this expression will be checked by treating the option as an Asian option;
No explicit formula for the pricing of Asian options can be derived, so now, Monte Carlo simu-
lations will have to be used to find the option price. However, now, no approximation for the
volatility of the future price has to be made, so the prices found using these simulations will
be more reliable than using the explicit formula. However, this way is in fact slower than the
explicit formula, since time-demanding simulations have to be made.
The first approach is treated in section 6 and the Monte Carlo approach is discussed in section 7.

For the first method, a model for the underlying FFA prices has to be derived. After this,
the technical and mathematical aspects of options will be discussed. Finally, after making an
approximation for the volatility of the future prices, an explicit solution for the price of freight
options will be derived.

18A freight call option is considered
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6 An explicit pricing formula for freight options

6.1 A model for Forward Freight Agreements

As mentioned, it is desirable to treat the freight option as a European option on the futures
price, for which an explicit pricing formula can be found. Doing so, a model for the underlying
future (FFA) price is needed. The model for F (t, T1, TN ) depends on S(t).

Consider equation (2). In Appendix A.1 it is shown that with some basic properties of ex-
pectations, equation (2) can be transformed into

F (t, T1, TN ) =
1

N

N∑
i=1

EQt [S(Ti)]. (7)

The goal is to find an analytic expression for F (t, T1, TN ). In other words, the conditional
expectation in (7) has to be determined. This can be done, based on a stochastic differential
equation for the spot freight rates S(t).

Definition 8. If X(t) is a lognormal random variable with drift µ and volatility σ, X(t) is the
solution of the following stochastic differential equation:

dX(t) = µX(t)dt+ σX(t)dW (t),

where W denotes a Wiener process.

Definition 9. A Wiener process W is a stochastic process with the following properties:

1. W (0) = 0;

2. W (t) does not depend upon W (t− 1);

3. The increments W (t+dt)−W (t) follow a normal distribution with mean zero and variance
(t+ dt)− t = dt for each t.
More formally,

W (t)−W (s) ∼ N(0, t− s) ∀ 0 ≤ s ≤ t.

By assumption 9 in section 5.1 and definition 8 the spot freight rates S(t) are assumed to
be a solution of the following stochastic differential equation:

dS(t) = µS(t)dt+ σS(t)dWP (t). (8)

The notation dS indicates an increment of S, also S(t+ dt)− S(t). Furthermore, dt = ti+1 − ti
and dW = W (t+ dt)−W (t). The P in the superscript of W , indicates that this equation holds
under the real-world probability measure. Because of property three of a Wiener process, we
can set

dW ∼ Y,

where Y ∼ N(0, dt), with dt the length between two time steps ti and ti+1.
Since N(0, k) ∼

√
kN(0, 1), we can also write

dW ∼
√
dtZ,
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where Z ∼ N(0, 1).

Equation (8) can be written as

dS(t) = µS(t)dt+ σS(t)
√
dtZP , (9)

where µ is the drift of the freight rates and σ is the volatility. In other words, µ can be seen as
the expectation of the freight rates. Z models the random fluctuations of the freight rates. If
µ is positive, the freight rates on average tend to increase, while a negative µ leads towards an
average decrease of the rates. Parameter σ can only be positive, because a negative volatility
does not exist. The larger σ is, the bigger random movements the freight rates tend to have.

There are different ways of solving stochastic differential equation (9). The derivation is added
in Appendix A.2. As given in [10, p. 54-56], the result is the following solution for equation (9)

S(t) = S(0)e(µ−σ
2

2
)t+σ

√
tZP , (10)

where S(0) is the freight rate at time 0, t ≥ 0 and Z ∼ N(0, 1).
Since the t in the exponent of equation (10) is obtained from t − 0 = t, where t is associated
with S(t) and 0 with S(0), the desired expression for S(Ti) can now be derived in the same way
as (10) was in [10, p. 54-56]:

S(Ti) = S(t)e(µ−σ
2

2
)(Ti−t)+σ

√
Ti−tZP , (11)

where t ≤ Ti with Ti a fixed point in the settlement period.
Now a stochastic equation for the freight rates S(Ti) under the real-world probability measure
is derived. But since these real probabilities are not known, a similar equation under the risk-
neutral probability measure has to be found.

Theorem 2 ((Version of) Girsanov’s Theorem). Let W be a Brownian motion under probability
measure P . We define W ∗(t) = W (t) +

∫ t
0 γ(s)ds or dW ∗(t) = dW (t) + γ(t)dt, where γ is the

so-called market price of risk. Then W ∗ is a Brownian motion under the risk-neutral probability
measure.

Using Girsanov’s theorem and substituting dW (t) = dW ∗(t)− γ(t)dt into equation (8) and
(9), the following equations can be found:

dS(t) = λS(t)dt+ σS(t)dWQ(t), (12)

or
dS(t) = λS(t)dt+ σS(t)

√
dtZQ(t), (13)

where λ = µ− σγ. Here γ is a real-valued function, which depends on time and it is called the
market price of risk. This is the return that is desired as compensation for taking risk. It is
clear that the higher the risk one is willing to take, the higher return one requires. So, when γ
is large, the market requires a high return to compensate for the risk it faces.

It was already mentioned that the spot freight rates S(t) are non-tradable assets, also they
cannot be bought or sold. When they would have been tradable, for example when they would
be storable, λ would equal the risk-free rate r. This is because with tradable assets, under
the risk-neutral probability measure, the return equals the risk-free rate, based on a hedging
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argument19. But since freight rates are non-tradable assets, the assumption λ = r cannot be
used. Also, the slightly more involved equation λ = µ− σγ has to be used.

Note, that setting γ = 0, which means that the market does not require a compensation for
the risk it faces, makes sure the SDE for the freight rates under the risk-neutral probability
measure equals the one under the real-world probability measure. However, a risk premium is
required by the freight market, so equation (13) is used from here. The solution of this equation
is obtained in a similar way as for equation (9).
This leads towards

S(Ti) = S(t)e(λ−σ
2

2
)(Ti−t)+σ

√
Ti−tZQ , (14)

where t ≤ Ti with Ti is a fixed time point in the settlement period.

The desired solution for S(Ti) by which the expectation in equation (7) can be determined,
is now obtained. Substituting (14) into (7) results in

F (t, T1, TN ) =
1

N

N∑
i=1

EQt

[
S(t)e(λ−σ

2

2
)(Ti−t)+σ

√
Ti−tZQ

]
. (15)

This equation can be simplified. First, assume that the distance between two fixed time points
Ti and Ti+1 in the settlement period is the same for all i. This distance TN−T1

N−1 is denoted by ∆.
In Appendix A.3 it is shown that equation (15) can be simplified into

F (t, T1, TN ) = S(t)
eλ(TN−t)

N

e−λN∆ − 1

e−λ∆ − 1
, (16)

as given in [1, p. 7]. An analytic equation for the future price F (t, T1, TN ) as a function of the
spot freight rates S(t) is now obtained. So, to know the future price at time t, the spot freight
rate at time t, the drift, the volatility and the market price of risk of the spot freight rates need
to be known. This model for future prices will be used to build a method for valuing freight
options.

6.2 Pricing method for freight options

Now that a model for future prices is established, the valuation of a freight option can start.
To be able to value an option, the parameters for the drift, the volatility and the market price
of risk from the spot freight rates need to be known. These parameters are generally known by
looking at the option market:
When the market price of a certain option is known, the parameters which belong to this option,
such as the freight rate volatility, can be found by letting the difference between the real market
option price and the option price obtained by the pricing model, equal zero. This may not
always be possible, in which case the difference has to be minimized instead of setting it equal
to zero. The values of the parameters should equal those values which lead to an option price
equal to the market option price, when used as input in the pricing model. Basically, various
values of the parameters have to be used in the pricing model, until the obtained option price
equals the option price in the market. The parameters used to find this price are now the right

19If the return would be higher than the risk-free rate, everyone would invest in this asset, since it always yields
more than when putting your money on the bank. If the return, on the other hand, would be less than the
risk-free rate, nobody would invest in this asset, since putting your money on the bank always yields more than
investing in this asset.
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parameters for this option. When the volatility of the freight rates is obtained in such a way, it
is called implied volatility.

Furthermore, the volatility of the futures has to be known. Unfortunately, this cannot be
obtained from the option market as easily as the other parameters. Estimating this volatility
can be seen as the most important ánd difficult task in freight option pricing.

6.2.1 Volatility of future prices

An expression for the volatility of the future prices is desired. This can be obtained by using
the dynamics (stochastic differential equations) for the future prices and the spot freight rates.
Dynamics for the spot freight rates are already provided in equation (12) or (13). Consider the
following theorem.

Theorem 3 (Itô’s Lemma). Let X(t) be a solution of the following stochastic differential equa-
tion:

dX(t) = a(X(t), t)dt+ b(X(t), t)dW (t).

Then f(X(t), t) is a solution of the stochastic differential equation below:

df(X(t), t) =

(
a(X(t), t)

∂f

∂X
+
∂f

∂t
+

1

2
b(X(t), t)2 ∂

2f

∂X2

)
dt+ b(X(t), t)

∂f

∂X
dW (t).

Using equation (7) and Itô’s Lemma, as given in [1, p. 7] the following dynamics for the
future prices can be found:

dF (t, T1, TN ) = σ(t)F (t, T1, TN )dWQ(t), (17)

where

σ(t) =

σ if t ≤ T1,

σ
S(t)
N

∑N
i=M+1 e

λ(Ti−t)

F (t,T1,TN ) if TM < t < TM+1,M = 1, 2, . . . , N − 1.

The derivation of these dynamics is provided in Appendix A.4.

From this expression, it can be seen that the future price is lognormally distributed for t ≤ T1,
but not lognormally distributed for TM < t < TM+1, M = 1, 2, . . . , N − 1. However, it is de-
sirable to have a lognormal distribution for F (t, T1, TN ) ∀t, because then Black’s option pricing
formula can be used to find a closed-form solution for the option price. Therefore, a lognormal
approximation for the future price in the settlement period is suggested. This lognormality is
obtained by adjusting the volatility of the future prices in equation (17), in other words, by
making an approximation for the future price volatility.
Due to this volatility approximation it is not sure whether our final option pricing formula will
be accurate.

As in [1, p. 7-8] the following dynamics are suggested:

dF (t, T1, TN ) = σa(t)dW
Q(t) (18)

where

σa(t) =

{
σ if t ≤ T1

σN−MN if TM < t < TM+1,M = 1, 2, . . . , N − 1
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We will argue, why this volatility function is a satisfactory assumption for the volatility of the
future prices. The assumption σa(t) = σ for t ≤ T1 is the same as in equation (17), since in this
period the volatility already leads towards lognormally distributed future prices. Therefore, we
consider TM < t < TM+1,M = 1, 2, . . . , N − 1.
From equation (7) it is known that the future price equals the expected average of the spot
freight rates during the settlement period [T1, TN ]. If we are far headed in the settlement pe-
riod, many spot freight rates during settlement are already known. In other words, a large
part of the average spot freight rates during settlement is already known, so the future price is
unlikely to change significantly after this. Therefore, the volatility of the future price will be
relatively small if time to maturity is small. In terms of N and M , we can state this as:
”If N −M is small, then σa is small as well.”
Conversely, ”if N − M is large, then σa is large”, because only a small part of the average
spot freight rates during the settlement period is known yet, so the future price can still vary
significantly.

It is now checked whether this is in accordance with the definition for σa(t) with TM < t <
TM+1,M = 1, 2, . . . , N − 1, given in (18). This is checked by letting N −M approach, respec-
tively, 0 and N . The first case describes zero time to maturity, so t → TN , while the second
case considers the current time t to approach T1. In the first case the volatility is expected to
be equal to zero, since all information needed to exactly calculate the future price is known. In
the second case the volatility is expected to be equal to the volatility for t ≤ T1.

Consider

lim
(N−M)→0

σ
N −M
N

= lim
Z→0

σ
Z

Z +M
= 0,

and

lim
(N−M)→N

σ
N −M
N

= σ.

To be complete, the behaviour of σa when N − M equals L is now checked, with L chosen
arbitrarily between 0 and N , to see whether the result is smaller than N −M → 0, but larger
than N −M → N .
Consider

lim
(N−M)→L

σ
N −M
N

= lim
Z→L

σ
Z

Z +M
= σ

L

L+M
< σ,

for M > 0, in other words L < N . Furthermore,

lim
(N−M)→L

σ
N −M
N

= lim
Z→L

σ
Z

Z +M
= σ

L

L+M
> 0,

for L > 0.

In figure 11 a graphical representation of the volatility function σa is shown.
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Figure 11: Volatility of the future price with T1 = 100, TN = 150, σ = 1 and N = 50

Figure 11 also shows that the fewer time left in the settlement period, the smaller the
volatility, and vice versa. It has now been shown that the volatility in equation (18) satisfies
the required properties, so from now on, this approximating volatility σa(t) will be used.

Using this volatility, F now also follows a lognormal distribution in the settlement period.

Result 2. If X ∼ logN(µ, σ2), then ln (X) ∼ N(µ, σ2) (as obtained from www.wikipedia.org).

Result 3. A lognormally distributed variable X has mean µ = ln (E[X]) − 1
2σ

2 (as obtained
from www.wikipedia.org).

Using Results 2 and 3, it can be shown that F (t, T1, TN ) is lognormally distributed as

ln (F (t, T1, TN )) ∼ N
(

ln (F (t, T1, TN ))− 1

2

∫ TN

t
σa(s)

2ds,

∫ TN

t
σ2
a(s)ds

)
.

The variance is presented by
∫ TN
t σa(s)

2ds, since the entire volatility from t until TN has to be
considered, not just the volatility at one time point. That is because the contract price of a
future at time t, F (t, T1, TN ), is determined by taking into account the entire contract period;
it does not only depend on factors at time t, it depends on factors in the entire contract period.
For example, if the underlying value of the future is expected to show a significant increase at
time k > t in the contract period, the contract price of the future will be adjusted to this. In
the same way, the contract price does not only depend on its volatility at time t, but on its
volatility during the entire contract period.

We define σ2
F =

∫ TN
t σ2

a(s)ds. In Appendix A.5 it is shown that

σ2
F = σ2(T1 − t) + σ2(TN − T1)R(N), (19)

where σ is the volatility of the spot freight rates and R(N) =
1− 3

2N
+ 1

2N2

3− 3
N

.20

20In paper [1, p. 8] the formula for σ2
F is incorrect!
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A function for the volatility of the future price σF is now obtained, which holds for all t.
Notice, that σ2

F → σ2(T1 − t) + 1
3σ

2(TN − T1), when N → ∞, so when the future price equals
the continuous expected average freight rates during settlement period, instead of working with
discrete time points.

6.2.2 An explicit equation for freight option prices

With an expression for the volatility of the future price, a method of valuing a freight option
can be derived. It is known that freight options can be seen as European options with a future
(FFA) as underlying asset. Equation (5) showed the payoff when treating a freight call option
as a European option. Because it is known from the fundamental theorem of asset pricing that
the price of an asset equals its discounted expected payoff under risk-neutral probability, an
equation for the price of a freight call option with strike price K at time t, C(t, TN ) can now be
set up, as

C(t, TN ) = e−r(TN−t)DEQt [F (TN , T1, TN )−K]+ . (20)

Similarly, the price of a freight put option with strike price K at time t equals

P (t, TN ) = e−r(TN−t)DEQt [K − F (TN , T1, TN )]+ . (21)

Based on equations (20) and (21), freight option prices can be calculated. It is, however, more
desirable to have an analytic equation. Therefore, the expectations in equations (20) and (21)
need to be calculated. Just as when the solution of the expectation in equation (7) was desired,
now, the stochastic differential equation (18) for the future prices F (t, T1, TN ) is needed. It
was shown that the future prices are approximately lognormally distributed. Therefore, Black’s
formula for option pricing can be used.

Theorem 4 (Black (1976)). Let C(F, t) be the price of a call option on a future, as a function
of the underlying futures price F and time t. Let r be the risk-free interest rate, σ the volatility
of the underlying future, T the exercise time and K the strike price.
Then C(F, t) can be stated as

C(F, t) = e−r(T−t) (Fφ(d1)−Kφ(d2))

where

d1 =
ln
(
F
K

)
+ 1

2σ
2
a(T − t)

σa
√
T − t

and
d2 = d1 − σa

√
T − t

and φ is the cumulative distribution function of the standard normal distribution.

Using this expression, since σ2
a(TN − t) =

∫ TN
t σa(s)

2ds = σ2
F , the following expression for

the price of a freight call option with strike price K and maturity time TN can be employed:

C(t, TN ) = e−r(TN−t)D(F (t, T1, TN )φ(d1)−Kφ(d2)) (22)

where

d1 =
ln
(
F (t,T1,TN )

K

)
+ 1

2σ
2
F

σF
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and
d2 = d1 − σF .

Here F (t, T1, TN ) equals the future price in equation (16) and σF equals the future price volatil-
ity in equation (19).

Similarly, the following formula can be found for the price of a freight put option with strike
price K and maturity time TN :

P (t, TN ) = e−r(TN−t)D(Kφ(−d2)− F (t, T1, TN )φ(−d1)) (23)

6.3 Implementation explicit formula for freight option pricing

Now, using explicit formula (22), a freight call option, from which all parameters are known,
will be valued. We consider a freight call option with initial spot freight rate S0 = $22, 500 per
day, λ = 0.03, strike price K = $25, 000 per day and volatility of the freight rates σ = 30%.
As mentioned, in practice, most freight options consist of multiple settlement periods instead
of just one. We consider 12 settlement periods all with a length of 21 days (this is in fact the
entire length of the trading month). For all settlement periods, the corresponding option prices
are calculated. These prices are called the prices of the caplets (floorlets, when considering a
put option). When adding these 12 prices, the price of the corresponding cap (floor), also the
price of the option consisting of 12 settlement periods, is found. Since the settlement period is
considered to have a length of 21 business days, we set T1 = 1

252 and TN = 21
252 , where 252 is

the number of trading days in a year. If, for example, the settlement periods would consist of
only the last seven trading days, T1 = 21−7

252 = 15
252 and TN = 21

252 would hold. In figures 12 and
13 a graphical representation of the division of the length of the option, so one year, into 12
settlement periods is presented.

Figure 12: Graphical representation of the length of the option (one year) divided up in twelve
settlement periods.

Figure 13: Graphical representation of the length of the first (January) caplet (one month, so
21 working days) divided up in 21 fixed points.

Figure 13 is zoomed in on the ’January’ part of figure 12. Figure 13 is the same for every
month, so for every caplet. Furthermore, since the initial spot freight rate and the strike price
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are expressed by a per day amount, the factor D has to express the total number of days in a
month (since the caplets each last one month). Also, in January D equals 31, in February 28
(we ignore leap years), and so on.

In Appendix B.1 the Matlab code which is used to implement this into our formula is shown.
Table 2 reflects, respectively, the future prices for the beginning of each month at the first of
January found by using equation (16), the volatility of the future prices found by using equation
(19) and the caplet prices and the cap price at the first of January found by using equation (22).
So, for example, the caplet price in the ’February’ row shows the price one has to pay at the
first of January for the freight caplet which starts at the first of February and ends at the 28th

of February. The price of the cap is also the price that has to be paid the first of January for
the freight cap contract which runs from the first of January until the 31th of December.

Month FFA Volatility σF Caplet price

Jan $22,529 5.2% $315

Febr $22,586 10.1% $5,493

March $22,642 13.3% $12,864

April $22,699 15.9% $18,648

May $22,756 18.1% $25,242

June $22,813 20.1% $29,845

July $22,870 21.8% $36,121

August $22,927 23.5% $41,136

Sept $22,985 25.0% $44,441

Oct $23,042 26.5% $50,510

Nov $23,100 27.9% $53,153

Dec $23,158 29.2% $59,185

Cap $376,950

Table 2: Future prices, volatility of future prices and caplet prices for a freight call option with
initial spot freight rate S0 = $22, 500 per day, λ = 0.03, strike price K = $25, 000 per day and
volatility of the freight rates σ = 30%, see also [1, p. 22].

Note that the caplet prices in paper [1, p. 22] differ slightly from the ones we found, since
the volatility function σF in paper [1, p. 8] is incorrect.
As shown in table 2, the volatility σF

21 increases with time. The increasing volatility can be
explained intuitively: The internal and external factors which affect freight rates can be more
accurately forecasted for the near future than for a period of time far away. For example, at the
first of January it can be forecasted more accurately if there will be a hurricane in January, which
will influence the freight rates, than whether there will be a sign of a hurricane in December.
Therefore, the volatility for the future prices in December will be higher than that in January.

The increase in volatility can also be explained more mathematically. A short settlement period
gives rise to a high volatility: a change in a freight rate during settlement has a large impact,
since the settlement period consists of only few fixed freight rates. Therefore, this change has a
high impact on the average freight rates during settlement. In other words also, a high impact on
the future price. If the settlement period, however, is relatively long, also consists of many fixed

21This volatility is the volatility over the entire length of a contract, so, in contrast to the volatility in equation
(18), not just at one point in time.
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freight rates, a change in one of these values does not have a big impact on the average of the
freight rates during settlement. Therefore, a long settlement period gives rise to a low volatil-
ity. When considering the last settlement period of the option (December), all other settlement
periods have already past, so the last settlement period is relatively short compared to the past
time of the option (also compared to the whole year). This leads to a relatively high volatility
for the last caplet. Conversely, when considering the first settlement period (January), no other
settlement periods have past yet, so the first settlement period is relatively long compared to
the past time of the option (also compared to January itself). This leads to a relatively low
volatility for the first caplet.

Furthermore, the caplet prices increase in time. This is both due to the increasing future
prices and the increasing volatility of the future prices. First of all, high volatility means high
risk, leading to high values. Secondly, in the case of a call option, a high future price means a
high payoff (since the difference between the future price and the strike price will be relatively
large), so also a high value.
It can be seen that after April, the option prices even exceed the future prices. This means that
the average of the freight rates during settlement are expected to vary drastically; only when
these average freight rates may rise above the sum of the option price and the strike price, the
option will be interesting. If not, the profit of the holder of the option will always be negative.
For example, the average freight rates during settlement at the end of December are expected to
be able to exceed $59, 185 + $25, 000 = $84, 185, since otherwise no one would buy this option.
Reviewing figure 2, it can be seen that these expectations, unlikely as they may seem, do match
reality; freight rates in one year can in fact vary from $2, 000 until $256, 000.
However, when the future price is lower than the caplet price, it can be seen that it is more
profitable to buy the future instead of the caplet; the future will always yield more profit or less
loss than the caplet. Conversely, if the caplet is cheaper than the future, the caplet is preferred.
So, until April it is more wisely to buy the caplets instead of the futures, while from May until
December the futures are preferred.
Checking whether buying the option contract of one year (also the twelve caplets) is more prof-
itable than buying the futures every month, cannot be done beforehand. It is known that the
futures will make more profit, respectively, less loss after April, but it is not known how much
exactly. Similarly, it is known that from January until April the caplets are preferred, but it is
not known how much their profit is exactly compared to the futures. So, whether buying the
option contract of one year is more profitable than buying the futures every month, can only be
known after the contract period of the option has ended.
In reality it could be the case that the futures are not tradable (anymore). In that case, the
option contract is definitely interesting.

Note that the computational time of the Matlab code which gives the prices in table 2, is
0.021 seconds. In the next section, it will be seen that the computational time of the Monte
Carlo Matlab code is significantly longer. For this reason, it is desirable for the explicit formula
to also be accurate for pricing freight options, since time is a valuable quantity.

7 Freight option pricing using Monte Carlo Simulation

In the previous section, the price of a freight call option consisting of 12 settlement periods, all
containing 21 trading days, was obtained. However, this price was calculated using the explicit
formula for which an approximation for the volatility of the future prices had to be made, so
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it is not guaranteed that this price is accurate. To check the validity of the approximating
formula, we consider the option to be also the Asian option on the spot freight rates. This way,
the volatility of the spot freight rates, which is known, has to be used, so no approximation for
the volatility as for the future prices is made. Therefore, this way of pricing is more reliable.
However, no explicit formula for the price of an Asian option is known. Therefore, Monte Carlo
simulations have to be used to be able to price such an option.

The Monte Carlo method, although quite accurate, costs a large amount of simulations and
is thus costly. It is important for a method to be both accurate and fast; Time is a valuable
quantity, so a method which requires small time is preferable compared to a method which needs
a lot of time. However, if this rapid method is not accurate, the method is useless. Therefore,
the accuracy of our explicit formula needs to be checked.

First of all, in section 7.1, usual Monte Carlo simulations will be used. Next, in section 7.2, the
variance will be reduced by using control variates. After this, in section 7.3 and 7.4 the variance
will also be reduced by using antithetic variates and the combination of control and antithetic
variates.
In all of the simulations, 5, 000, 000 freight rate paths are used and
randn(’state’,100) is set to make sure the same random standard normal variables are used
each time we run the Matlab code.

7.1 Monte Carlo Simulations

Consider equation (3) with the same parameters as in subsection 6.3. The price of an option
with this payoff will now be calculated using Monte Carlo simulations. The basic idea is to
construct many spot freight rate paths (all with initial value S0) and for each of these paths the
average value of the rates between T1 and TN is computed. Next, the payoff of the Asian options
corresponding to each of these average freight rate values is computed. After discounting this
payoff, 5 · 106 prices for the options, belonging to the freight rate paths which were constructed,
have been found. Taking the average value of all prices, results in the desired option price.
If only one freight rate path would be used, the result would be unreliable, since the paths
are constructed using random standard normal variables. This is known as the Law of large
numbers: the average of the results from a large number of simulations is close to the expected
value and gets closer as more simulations are made.

It is important to notice that the price found using Monte Carlo simulations, is an estimate, as
Monte Carlo is a stochastic simulation technique. For the estimate to be as accurate as possible,
many freight rate paths should be constructed, according to the Law of large numbers. The more
paths, the more accurate the estimate may be. In sections 7.2 until 7.4, some other methods for
reducing the standard error in the estimate are reported. A balance has to be made between the
demand of high accuracy (many freight rate paths) and the demand of fast computation (few
freight rate paths).

The Matlab code for the Monte Carlo simulations is added in Appendix B.2. In table 3 the
prices found for the freight call option are shown, as well as the corresponding standard errors
(which arise due to the use of random variables) and the relative standard errors. Also, the
prices found in the previous section, using our explicit formula, are shown, together with the
percentage difference between the prices found by the two methods.

38



Month MC price Std. error Rel. std. err. Formula price % diff.

Jan $336 1.28 0.38% $315 -6.25%

Febr $5,515 8.29 0.15% $5,493 -0.40%

March $12,862 15.78 0.12% $12,864 0.02%

April $18,650 20.83 0.11% $18,648 -0.01%

May $25,242 26.62 0.11% $25,242 0.0%

June $29,817 30.40 0.10% $29,845 0.09%

July $36,178 35.92 0.10% $36,121 -0.16%

August $41,128 40.08 0.10% $41,136 0.02%

Sept $44,387 42.65 0.10% $44,441 0.12%

Oct $50,524 47.99 0.09% $50,510 -0.03%

Nov $53,196 50.14 0.09% $53,153 -0.08%

Dec $59,205 55.40 0.09% $59,185 -0.03%

Cap $377,040 55.40 0.01% $376,950 -8.77%

Table 3: Monte Carlo prices for a freight call option with initial spot freight rate S0 = $22, 500
per day, λ = 0.03, strike price K = $25, 000 per day and volatility of the freight rates σ = 30%,
the standard errors, the prices found in subsection 5.5 and the percentage differences. 5 · 106

paths were used and 21 time steps per month were taken.

Note that the standard errors increase with time, since for longer time periods, the con-
structed lognormal freight rate paths can vary significantly.

The percentage differences between the prices using the two methods should be as small as
possible, since then, it can be concluded that the explicit formula, is not only fast, but also ac-
curate. It can be seen that the differences are not very high, which is a positive sign. However,
since the standard errors (also the accuracy) of the prices found using Monte Carlo simulations
are not as small as desired, the validity of the prices found using our explicit formula cannot
yet be concluded. These standard errors should be reduced first, before making any conclusions
about the percentage differences.

Note that the computational time of the Matlab code which gives the prices in table 3, is
1176 seconds, also about 20 minutes. This is, as predicted in section 6.3, much higher than the
computational time of the explicit formula of only 0.021 seconds, which highlights the advantage
of this formula.

7.2 Variance reduction using control variates

There are different ways to reduce the variance with Monte Carlo simulations. In this section,
so-called control variates are used. Basically, the idea is to use estimates of the value of a known
quantity and look at the corresponding errors. These errors can now be used to reduce the errors
in the option prices. As a control variate, a variable which is ’close’ to the required option price
should be used, so a variable which has values comparable to the option values. In this case,
for example, a European option or a geometric Asian option with the same parameters as the
desired option, could be used.
Let X be the value of the desired option price obtained by Monte Carlo simulations and let E[X]
be the expectation of this price. Now, a variable Y is needed, from which we have a method
to calculate its value other than using Monte Carlo, for example, by the use of some explicit
formula. The value of Y calculated with this method is called E[Y ]. Next, the value of Y is
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estimated by Monte Carlo simulations and the error between the value E[Y ], obtained by some
explicit formula, and the estimated value Y is calculated. Now define

Z = X + E[Y ]− Y.

Notice, that
E[Z] = E[X + E[Y ]− Y ] = E[X] + E[Y ]− E[Y ] = E[X].

Also, instead of calculating the desired E[X], E[Z] can be used.
So, we obtain our desired E[X] by calculating E[Z] instead. In other words, we apply Monte
Carlo to Z = X + E[Y ]− Y .
We now argue why this method reduces the variance. It is known that var[a] = 0 if a ∈ <, also

var[Z] = var[X − Y ],

since E[Y ] ∈ <.
Also, to reduce variance, var[X − Y ] has to be smaller than var[X] (this is the reason why Y
should be ’close’ to X). Now, look at

Zθ = X + θ(E[Y ]− Y )

instead of the original Z. Notice, that E[X] = E[Zθ] still holds. Furthermore,

var[Zθ] = var[X − θY ] = var[X]− 2θcov[X,Y ] + θ2var[Y ],

since X and Y are not independent. This variance has to be minimized, which is done by using

θoptimal =
cov[X,Y]

var[Y ]
.22

7.2.1 European option as control variate

First of all, a European option with the same parameters as the desired option is used as control
variate. In this case, Y is this European call option, so for E[Y ] the well-known Black-Scholes
formula for a call option is used. This gives the exact value E[Y ] for the European call option,
namely

C(S, t) = φ(d1)S − φ(d2)Ke−r(T−t),

where

d1 =
ln
(
S
K

)
+ (r + σ2

2 )(T − t)
σ
√
T − t

,

and
d2 = d1 − σ

√
T − t.

The estimate of this option, Y is obtained by simply constructing freight rate paths, as usual,
deriving the (European call) payoff belonging to all of these paths, discounting these payoffs
and, finally, taking the average of these values (Monte Carlo).

The Matlab code used to implement this method is added in Appendix B.3. In table 4 the
Monte Carlo prices and the (relative) standard errors are shown, which are again compared to
our explicit formula prices.

22This value is found by taking the derivative of var[Zθ] and setting this equal to zero.
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Month MC price Std. error Rel. std. er. Formula price % diff.

Jan $334 1.11 0.33% $315 -5.69%

Febr $5,507 4.34 0.08% $5,493 -0.25%

March $12,873 6.62 0.05% $12,864 -0.07%

April $18,873 7.50 0.04% $18,648 -1.21%

May $25,260 8.54 0.03% $25,242 -0.07%

June $29,846 8.84 0.03% $29,845 -0.003%

July $36,131 9.63 0.03% $36,121 -0.03%

August $41,146 10.03 0.02% $41,136 -0.02%

Sept $44,445 10.04 0.02% $44,441 -0.01%

Oct $50,513 10.71 0.02% $50,510 -0.01%

Nov $53,146 10.62 0.02% $53,153 0.01%

Dec $59,172 11.21 0.02% $59,185 0.02%

Cap $377,246 11.21 0.003% $376,950 -0.08%

Table 4: Monte Carlo prices, using a European option as control variate, for a freight call option
with initial spot freight rate S0 = $22, 500 per day, λ = 0.03, strike price K = $25, 000 per day
and volatility of the freight rates σ = 30%, the standard errors, the prices found in subsection
5.5 and the percentage differences. 5 · 106 paths were used and 21 time steps per month were
taken.

When comparing these (relative) standard errors to those in table 3, it can be seen that
indeed the (relative) errors are smaller now. However, instead of using a European option as a
a control variate, there are also other possibilities to reduce the variance.

7.3 Variance reduction using antithetic variates

Another way to reduce the variance with Monte Carlo simulations is by the use of antithetic
variates. Basically, the idea is to reduce the variance by calculating the mean of X+Y

2 instead
of X, where Y needs to have the same distribution as X. For example, if X ∼ U(0, 1), then
Y = 1−X could be used, since 1− U(0, 1) ∼ U(0, 1).
This technique reduces the variance of our estimate, because the variance of X+Y

2 is smaller
than that of X. Notice, that

var

(
X + Y

2

)
=

1

4
(var (X + Y ) + 2cov (X,Y )) =

1

2
(var(X) + cov(X,Y )) ,

since X and Y have the same distribution, they will also the same variance. This should be
smaller than var(X). In other words,

cov(X,Y ) < var(X),

or, even,
cov(X,Y ) ≤ 0.

The standard Monte Carlo estimate is

1

M

M∑
i=1

f(Xi).
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In [10, p. 220-221] it is shown that cov(X,Y ) ≤ 0 whenever f is monotonic23. So, for a monotonic
function f ,

var

(
(f(X) + f(Y ))

2

)
≤ var (f(X)) ,

where X and Y have the same distribution.
In our case, function f equals equation (14), which is a monotonic function (if Z1 ≤ Z2, then

S(Z1) ≤ S(Z2) and vice versa, when defining S(Z1) = S(t)e(µ−σ
2

2
)(T−t)+σ

√
T−tZ1). Since Z ∼

N(0, 1), Y = −Z is used, so that Y ∼ N(0, 1). This will lead to a reduction of the variance.
The Matlab code used to implement this method is added in Appendix B.5. In table 5 the
Monte Carlo prices and the (relative) standard errors are shown, which are again compared to
the explicit formula prices.

Month MC price Std. error Rel. std. er. Formula price % diff.

Jan 334$ 0.97 0.29% $315 -5.69%

Febr 5,504$ 5.59 0.10% $5,493 -0.20%

March 12,859$ 10.39 0.08% $12,864 0.04%

April 18,646$ 13.48 0.07% $18,648 0.01%

May 25,244$ 17.07 0.07% $25,242 -0.01%

June 29,824$ 19.32 0.06% $29,845 0.07%

July 36,129$ 22.66 0.06% $36,121 -0.02%

August 41,153$ 25.19 0.06% $41,136 -0.04%

Sept 44,409$ 26.71 0.06% $44,441 0.07%

Oct 50,514$ 29.95 0.06% $50,510 -0.01%

Nov 53,175$ 31.19 0.06% $53,153 -0.04%

Dec 59,203$ 34.40 0.06% $59,185 -0.03%

Cap 376,994$ 34.40 0.01% $376,950 -0.01%

Table 5: Monte Carlo prices, using antithetic variates, for a freight call option with initial spot
freight rate S0 = $22, 500 per day, λ = 0.03, strike price K = $25, 000 per day and volatility
of the freight rates σ = 30%, the standard errors, the prices found in subsection 5.5 and the
percentage differences. 5 · 106 paths were used and 21 time steps per month were taken.

Indeed, the standard errors using antithetic variates turn out to be smaller then when using
usual Monte Carlo. However, comparing these standard errors to those when using a European
option as control variate, show that the latter method reduces the variance more then using
antithetic variates.

7.4 Variance reduction using both control variates and antithetic variates

Two methods for reducing the variance with Monte Carlo simulations have been discussed so
far. Combining these two methods, may lead towards even further reduction of variance.
First of all, we use antithetic variates, so we define 2M = 10 · 106 freight rate paths, were the
first M depend on Z ∼ N(0, 1) and the second M depend on −Z ∼ N(0, 1). For all of these
paths we compute the corresponding option prices and take the average values of the first and
the M + 1th option price, the second and the M + 2th, and so on. Next, we use a European call

23A monotonic function is a function which is decreasing, respectively increasing on its entire domain, also
∀x ≤ y f(x) ≤ f(y) (monotonic increasing) or ∀x ≤ y f(x) ≥ f(y) (monotonic decreasing)
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option as control variate, also we estimate the values of European call options corresponding
to the freight rate paths we constructed. Since we had 2M freight rate paths, we obtain 2M
European call option prices. Now, again we take the average values of the first and the M + 1th

option price, the second and the M + 2th, and so on. We also derive the Black-Scholes value
for this European call option. After calculating the optimal θ, we calculate Z which equals the
Monte Carlo option values obtained with antithetic variates plus θ×(the Black-Scholes European
call option value minus the Monte Carlo European call option values obtained using antithetic
variates). It can be seen that now both antithetic variates and control variates have been used.
The Matlab code used to implement the combination of these two methods is added in Appendix
B.6. In table 6 the Monte Carlo prices and the (relative) standard errors are shown, which are
again compared to the explicit formula prices.

Month MC price Std. error Rel. std. er. Formula price % diff.

Jan 334$ 0.78 0.23% $315 -5.69%

Febr 5,503$ 3.06 0.06% $5,493 -0.18%

March 12,871$ 4.68 0.04% $12,864 -0.05%

April 18,648$ 5.30 0.03% $18,648 0.0%

May 25,245$ 6.03 0.02% $25,242 -0.01%

June 29,840$ 6.24 0.02% $29,845 0.02%

July 36,122$ 6.80 0.02% $36,121 -0.003%

August 41,137$ 7.08 0.02% $41,136 -0.002%

Sept 44,446$ 7.10 0.02% $44,441 -0.01%

Oct 50,513$ 7.56 0.01% $50,510 -0.006%

Nov 53,148$ 7.50 0.01% $53,153 0.009%

Dec 59,181$ 7.93 0.01% $59,185 -0.007%

Cap 376,988$ 7.93 0.002% $376,950 -0.01%

Table 6: Monte Carlo prices, using both control and antithetic variates, for a freight call option
with initial spot freight rate S0 = $22, 500 per day, λ = 0.03, strike price K = $25, 000 per day
and volatility of the freight rates σ = 30%, the standard errors, the prices found in subsection
5.5 and the percentage differences. 5 · 106 paths were used and 21 time steps per month were
taken.

Indeed, comparing these standard errors to those in tables 4 and 5, show that these standard
errors are smaller than when using only control variates, respectively antithetic variates. Now
that the standard errors of the prices found using Monte Carlo are negligible, the percentage
differences between the prices found by Monte Carlo simulations and by the explicit formula can
be considered. The difference between the two cap values is −0.01% and the largest absolute
difference between two caplet values is 5.69%. These differences are, just as the standard errors,
negligible, which leads towards the conclusion that the explicit formula is valid to price freight
options under this parameter set. There is no immediate reason to assume why the formula will
not be accurate to price freight options with other parameter sets, but this will be discussed
more thoroughly in section 8.

8 Discussion

It was shown in the previous section that the exact formula is an accurate approximation for
the desired option price, since the differences between the prices found using this formula and
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the ones found using Monte Carlo simulations are relatively small. However, it is only shown for
one particular example that the formula satisfies. It is questionable whether it works for each
example. A closer look will be taken at the approximation steps made to derive the formula and
it is discussed why and when these kind of approximations are allowed to be made.

In section 5.1 a few assumptions were made. This should always be kept in mind, since the
accuracy of our formula is based on these assumptions. Consider assumption 1: in reality, it is
not always possible to borrow and lend money at the same constant interest rate. One of the
most important assumptions made, is assumption 9, which states that the spot freight rates are
lognormally distributed. This is an assumption on which all derivations are based.

8.1 Geometric Brownian motion versus mean reversion

It was assumed that the spot freight rates are lognormally distributed, also that they follow a
geometric Brownian motion. This assumption can be seen as the basic assumption of the model,
since using this assumption, a model for the spot freight rates is created, by which then a model
for the future prices is derived. In other words, if another model for the spot freight rates
would have been used, another model for the future prices and therefore another formula for the
option prices would have been found. It is questionable whether this assumption of lognormality
is realistic in practice. Based on freight data, it may be more realistic to use another distribution
for the freight rates. A more suitable assumption for the freight rates would be that of mean-
reversion, which implies that the spot freight rates always return to some long-term mean. If
spot freight rates would be modeled by mean-reversion, equation (8) could change into

dS(t) = κ(µ− S(t))dt+ σS(t)dW (t),

as given in [3, p. 9]. Here µ is the long-term mean of the freight rates and κ is the rate at which
the freight rates return to the long-term mean. Then, another analytic formula for S(t) would
be found instead of equation (14). Consequently, instead of equation (17) another formula for
F (t, T1, TN ) would be derived. Furthermore, another future price volatility opposed to the one
in equation (19) would be found. This all would result in different values found by the explicit
option pricing formula in equation (22) than the ones found in section 6.3.
This risk of choosing a ’wrong’ model, also a model which does not suit reality, is called model
risk.

8.1.1 Volatility term structure

By assuming another distribution for the spot freight rates, not only another formula for S(t)
and F (t, T1, TN ) will be found, but also another volatility for the future prices will be derived.
When the spot freight rates show mean-reversion, the volatility of the future prices will have a
term structure, also it will depend on the time to maturity. This can be explained as follows:
If the spot freight rates show a decrease in value, while there is a relatively short time to matu-
rity left, the future prices will decrease as well, since there is small time left for the spot freight
rates to return to their long-term value. On the other hand, if the spot freight rates show a
decrease in value, while there is still a relatively long time to maturity, the rates have time to
return to their long-term mean, so the future prices will not show a large decrease. In other
words, when the time to maturity is short, the volatility of the future prices is relatively large,
while long time to maturity leads to low volatility values. This volatility term structure is not
present when the freight rates follow a lognormal distribution, since in that case, the freight
rates will not return to some long-term mean.
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As given in [2, p. 7], the following volatility formula satisfies the required term structure:

σm.r.(t, T1, TN ) =

(σS − σA)
(
e−λ(T1−t)−e−λ(TN−t)

λ(TN−T1)

)
+ σA if t ≤ T1

(σS − σA)
(

1−e−λ(TN−t)

λ(TN−T1)

)
+ σA

TN−t
TN−T1

if T1 < t < TN
(24)

Here, σA is the asymptotic volatility of the spot freight rates, also the value towards which the
volatility of the future prices converges when there is a lot of time to maturity left (also, when
T1−t→∞). σS is the short-term volatility, also the value towards which the volatility converges
when there is little time to maturity left (also, when t → T1). In contrast to the volatility in
equation (18), σ is now not only a function of time t, but also of the settlement period [T1, TN ],
since, as explained above, the volatility now depends on the time to maturity. In the settle-
ment period, the volatility must have the same properties as the volatility in equation (18), also,
the further ahead in the settlement period we are, the lower the volatility must be, and vice versa.

The required properties of σm.r.(t, T1, TN ) are now checked:

• If time to maturity is large, so T1 − t→∞, σm.r. = σA is expected.

lim
T1−t→∞

σm.r. = lim
T1−t→∞

(σS − σA)

(
e−λ(T1−t) − e−λ(TN−t)

λ(TN − T1)

)
+ σA = σA

• If time to maturity is small, so t ↑ T1, σm.r. = σS is expected.

lim
t↑T1

σm.r. = lim
t↑T1

(σS − σA)

(
e−λ(T1−t) − e−λ(TN−t)

λ(TN − T1)

)
+ σA = (σS−σA)

(
1− e−λ(TN−T1)

λ(TN − T1)

)
+σA

This last term approximately equals σa, which can be seen by using the Taylor expansion
of e−λ(TN−T1).

• Inside the settlement period, if t ↓ T1, σm.r. = σS is expected.

lim
t↓T1

σm.r. = lim
t↓T1

(σS − σA)

(
1− e−λ(TN−t)

λ(TN − T1)

)
+ σA

TN − t
TN − T1

= (σS−σA)

(
1− e−λ(TN−T1)

λ(TN − T1)

)
+σA

Again, this last term approximately equals σa.

• Inside the settlement period, if t ↑ TN , σm.r. = 0 is expected.

lim
t↑TN

σm.r. = lim
t↑TN

(σS − σA)

(
1− e−λ(TN−t)

λ(TN − T1)

)
+ σA

TN − t
TN − T1

= 0

So, the volatility function σm.r.(t, T1, TN ) in equation (24) matches the requirements of the
volatility of the future prices.

In figure 14, a graph of the volatility of the future prices based on mean-reverting freight rates
is shown, together with the graph of the volatility based on lognormal freight rates.
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Figure 14: Volatility of the future price when the freight rates are, respectively, mean-reverting
and lognormal, with T1 = 100, TN = 150, N = 50, σ = 0.3, σa = 0.1 and σs = 0.3

Indeed, outside the settlement period, the volatility based on mean-reverting freight rates
always lies between σA and σS . The volatility approaches zero when t → TN and σA when
T1 − t→∞.

Just as in equation (19), the volatility of the future prices from t until TN is now required,
to find an explicit formula for the freight option prices. In Appendix A.6, a formula for
σ2
F,m.r.(t, T1, TN ) =

∫ TN
t σ2

m.r.(s, T1, TN )ds is shown in equation (A.14).

The volatility of the future prices is derived, when the spot freight rates exhibit mean-reversion.
Also the formula for F (t, T1, TN ), equation (16), will change when considering mean-reverting
freight rates. The derivation of this new formula is a subject for later studies.

8.2 Validity of our explicit formula

In section 7 it was shown that the prices found by using the explicit formula are quite accurate.
However, this was shown only for one example. It is questionable whether this formula will still
be as accurate when other values for the parameters are used. Furthermore, we argue why the
approximations made to derive this formula are allowed.

8.2.1 Lognormal approximation

When deriving the explicit formula, an approximation for the volatility of future prices was used.
This approximating volatility was derived by making a lognormal approximation for the future
prices. The question is, was this approximation allowed to be made?
The future price can be seen as the expectation of the average of the spot freight rates, also the
expectation of the sum of lognormally distributed variables. To be allowed to make the lognormal
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approximation, it must therefore hold that the sum of lognormally distributed variables is again
lognormally distributed. In finance it is a common thing to make a lognormal approximation for
the sum of lognormal variables, which was suggested by E. Levy (see [9]). The parameters of this
resulting lognormal distribution are found by so-called Levy’s lognormal moment matching. In
this method, the first two moments of the resulting lognormal distribution and the true first two
moments of the average spot freight rates are set equal, out of which the mean and the variance
of our approximating lognormal distribution can be found. Also, the lognormal approximation
is permissible.

8.2.2 Different parameter values

When checking the steps which were taken to find the final pricing formula, it can be seen
that an important assumption has been made in Appendix A.3. There, it was assumed that
e−λ∆ 6= 1, after which

∑N−1
i=0 e−λ∆i could be rewritten as 1−e−λ∆N

1−e−λ∆ using theorem 5. However,∑N−1
i=0 e−λ∆i cannot be rewritten like this if e−λ∆ = 1, since then, the condition in theorem 5

would not hold anymore. In other words, if λ = 0 or ∆ = 0,
∑N−1

i=0 e−λ∆i 6= 1−e−λ∆N

1−e−λ∆ . If this
equality does not hold anymore, the model for F (t, T1, TN ) in equation (18) would not be valid
anymore. Therefore, if either λ = 0, also µ = σγ, or ∆ = 0, also TN−T1

N−1 = 0 → TN = T1 or
N = ∞, the formula in equation (22) would not produce the correct option prices anymore.
This can be checked by setting, respectively, λ = 0, TN = T1 and N = ∞ in the Matlab code
in Appendix B.1. Matlab produces NaN values in all of these cases. Also, if one of the three
above cases holds, the explicit formula in equation (22) does not work anymore. In other words,
the explicit formula does not work when either the mean of the spot freight rates equals the
volatility of the rates times the market price of risk, when the exercise date equals the settlement
date, also there is no settlement period, or when continuous time in the settlement period would
be considered instead of fixed time points.

Also, precautions have to be taken when using the explicit formula, since for most parame-
ter values it does give accurate prices, but, unfortunately, not for all values. For these few
parameter values for which the formula does not work, prices have to be derived by using the
Monte Carlo method. Furthermore, keep in mind that the lognormal approximation of the future
prices is not completely accurate and the assumptions being made are not entirely realistic.

9 Conclusion

In this document two ways of pricing a freight option are discussed. First of all, a freight option
can be valued using equation (22). To obtain this formula, spot freight rates were assumed
to have a lognormal distribution. It followed that the corresponding future prices are also
lognormally distributed prior to the settlement period. However, inside the settlement period
they did not have a lognormal distribution. Next, an approximation for the volatility of the
future prices was made, whereby the future prices were now not only lognormally distributed
prior to, but also inside the settlement period. Now, Black’s formula could be used to derive an
analytic pricing formula for freight options, equation (22). Due to the volatility approximation
made to derive equation (22), it is not sure whether the prices this formula calculates are valid.
To check the validity of the formula, one particular freight option is priced using both equation
(22) and Monte Carlo simulations. After reducing the variance in the Monte Carlo simulations
using control and antithetic variates, the prices found using both the explicit formula and Monte
Carlo simulations seemed to have insignificantly small differences. It could now be concluded
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that equation (22) is valid to price freight options (for almost all parameter sets). Preference is
now given to this formula to price freight options instead of the Monte Carlo method, since this
first one has a 1000 times smaller computational time than the Monte Carlo method. Keep in
mind, however, that assumptions, like the lognormality of spot freight rates, have been made,
by which the prices found using equation (22) (and the Monte Carlo method) may differ slightly
from the real market option prices. According to freight data, the assumption of mean-reverting
freight rates would have been a more realistic assumption than lognormal freight rates. Finding
an explicit formula based on mean-reverting freight rates is a subject for later studies.
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A Appendix A

A.1 Derivation of equation (7)

Proof. Consider

EQt

[
e−r(TN−t)D

(
N∑
i=1

S(Ti)

N
− F (t, T1, TN )

)]
= 0 (A.1)
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Now, since constant factors can be taken outside the expectation:

e−r(TN−t)DEQt

[(
N∑
i=1

S(Ti)

N
− F (t, T1, TN )

)]
= 0

Multiplying both sides by er(TN−t)

D gives

EQt

[(
N∑
i=1

S(Ti)

N
− F (t, T1, TN )

)]
= 0

Using the fact that the expectation of a sum equals the sum of an expectation, leads towards

N∑
i=1

EQt

[(
S(Ti)

N
− F (t, T1, TN )

)]
= 0

Furthermore, it is known that Et [X] = X if X depends only on the first t time steps, so
Et [F (t, T1, TN )] = F (t, T1, TN ). This leads to the equation

N∑
i=1

EQt

[(
S(Ti)

N

)]
= F (t, T1, TN )

Now taking out the factor 1
N gives the required equation

F (t, T1, TN ) =
1

N

N∑
i=1

EQt [S(Ti)] (A.2)

A.2 Proof of equation (12) and (13)

See [10, p. 54-56].

A.3 Derivation of equation (16)

Proof. Consider

F (t, T1, TN ) =
S(t)

N

N∑
i=1

EQt

[
e(λ−σ

2

2
)(Ti−t)+σ

√
Ti−tZQ

]
(A.3)

S(t) can be taken out of the expectation, due to Et [Xt] = Xt, when X only depends on the first
t time steps. The argument in equation (A.3) inside the expectation is a lognormally distributed
variable (check assumption 9). Furthermore, it is known that the expectation of a lognormally
distributed variable, when the corresponding normal variable has mean µ and variance σ, equals
eµ+ 1

2
σ2

. Since our normal distribution has mean (λ− 1
2σ

2)(Ti − t) and variance σ2(Ti − t)

F (t, T1, TN ) =
S(t)

N

N∑
i=1

e(λ− 1
2
σ2)(Ti−t)+ 1

2
σ2(Ti−t) (A.4)

also

F (t, T1, TN ) =
S(t)

N

N∑
i=1

eλ(Ti−t). (A.5)
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Equation (A.5) can be transformed into

S(t)

N
eλ(TN−t)

(
1 +

N−1∑
i=1

eλ(Ti−t)

)

Now, use the assumption of equidistant observations ∆ = TN−T1
N−1 . This leads towards

λ(T1 − TN ) = −λ(TN − T1) = −λ∆(N − 1).

Similarly
λ(T2 − TN ) = −λ(TN − T2) = −λ∆(N − 2),

λ(T3 − TN ) = −λ(TN − T3) = −λ∆(N − 3),

and so on. So, in other words,

λ(Ti − TN ) = −λ(TN − Ti) = −λ∆(N − i).

Since e−λ∆×0 = 1, the previous equation can be transformed into

S(t)

N
eλ(TN−t)

(
N−1∑
i=0

e−λ∆i

)
(A.6)

Consider the following theorem.

Theorem 5. For r 6= 1, the sum of the first N terms of a geometric series is

N−1∑
i=0

ari = a
1− rN

1− r

Since
∑N−1

i=0 e−λ∆i is a geometric series with r = e−λ∆ 6= 1 and a = 1, it can be rewritten as
1−e−λ∆N

1−e−λ∆ .
So, our final expression for the future price is

F (t, T1, TN ) = S(t)
eλ(TN−t)

N

1− e−λ∆N

1− e−λ∆
(A.7)

A.4 Derivation of equation (17)

Proof. Consider equation (7). From (A.5) it is known that when t < T1,

F (t, T1, TN ) =
S(t)

N

N∑
i=1

eλ(ti−t)

Assume now that the first M < N time points of the settlement period have already passed.
In other words, TM < t < TM+1 for M = 1, 2, . . . , N − 1. Again from (A.5) it can then be
concluded that

F (t, T1, TN ) =
1

N

M∑
i=1

S(Ti) +
S(t)

N

N∑
i=M+1

eλ(ti−t)
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since Et[X] = X if X only depends on the first t time points.

Now, refer to Itô’s Lemma stated in subsection 6.2.1. In our case, X(t) = S(t), a(X, t) = λS(t)
and b(X, t) = σS(t). Since F (t, T1, TN ) is a function of S(t) and t, Itô’s lemma can be applied
now:

dF (S(t), t) =

(
λS(t)

∂F

∂S
+
∂F

∂t
+

1

2
(σS(t))2∂

2F

∂S2

)
dt+ σS(t)

∂F

∂S
dW (t) (A.8)

First consider the case where t < T1, so where

F (t, T1, TN ) =
S(t)

N

N∑
i=1

eλ(ti−t)

Since then

∂F

∂S
=

1

N

N∑
i=1

eλ(ti−t),
∂F

∂t
= −λS(t)

N

N∑
i=1

eλ(ti−t),
∂2F

∂S2
= 0,

it can be seen that

dF (t, T1, TN ) =

(
λS(t)

1

N

N∑
i=1

eλ(ti−t) − λS(t)

N

N∑
i=1

eλ(ti−t) +
1

2
(σS(t))2 × 0

)
dt

+σS(t)
1

N

N∑
i=1

eλ(ti−t)dW (t)

This equals

dF (t, T1, TN ) = σS(t)
1

N

N∑
i=1

eλ(ti−t)dW (t) = σF (t, T1, TN )dW (t) (A.9)

Now, consider the case where TM < t < TM+1 for M = 1, 2, . . . , N − 1, so where

F (t, T1, TN ) =
1

N

M∑
i=1

S(Ti) +
S(t)

N

N∑
i=M+1

eλ(ti−t)

Since then

∂F

∂S
=

1

N

N∑
i=M+1

eλ(ti−t),
∂F

∂t
= −λS(t)

N

N∑
i=M+1

eλ(ti−t),
∂2F

∂S2
= 0,

it can be seen that

dF (t, T1, TN ) =

(
λS(t)

1

N

N∑
i=M+1

eλ(ti−t) − λS(t)

N

N∑
i=M+1

eλ(ti−t) +
1

2
(σS(t))2 × 0

)
dt

+σS(t)
1

N

N∑
i=M+1

eλ(ti−t)dW (t)

This equals

dF (t, T1, TN ) = σS(t)
1

N

N∑
i=M+1

eλ(ti−t)dW (t) (A.10)

51



Summing all these results, leads towards

dF (t, T1, TN ) = σ(t)F (t, T1, TN )dWQ
t (A.11)

where

σ(t) =

σ if t ≤ T1

σ
S(t)
N

∑N
i=M+1 e

λ(Ti−t)

F (t,T1,TN ) if TM < t < TM+1,M = 1, 2, . . . , N − 1

A.5 Derivation of equation (19)

Proof. Consider

σ2
F =

∫ TN

t
σ2
a(s)ds =∫ T1

t
σ2ds+

∫ T2

T1

σ2

(
N − 1

N

)2

ds+

∫ T3

T2

σ2

(
N − 2

N

)2

ds+ . . .

+

∫ TM+1

TM

σ2

(
N −M
N

)2

ds+ . . .+

∫ TN

TN−1

σ2

(
1

N

)2

ds

This equals

σ2(T1 − t) + σ2(T2 − T1)
(N − 1)2

N2
+ σ2(T3 − T2)

(N − 2)2

N2
+ . . .

+σ2(TM+1 − TM )
(N −M)2

N2
+ . . .+ σ2(TN − TN−1)

1

N2

This can be simplified into

σ2
F = σ2(T1 − t) + σ2∆

(
(N − 1)2

N2
+

(N − 2)2

N2
+ . . .+

(N −M)2

N2
+ . . .+

1

N2

)
It can be shown that the term between brackets equals 1

3N −
1
2 + 1

6N . In other words,

σ2
F = σ2(T1 − t) + σ2∆(

1

3
N − 1

2
+

1

6N
)

Since ∆ = TN−T1
N−1 , this can be rewritten as

σ2
F = σ2(T1 − t) + σ2(TN − T1)

1
3N −

1
2 + 1

6N

N − 1

This equals
σ2
F = σ2(T1 − t) + σ2(TN − T1)R(N) (A.12)

where R(N) =
1− 3

2N
+ 1

2N2

3− 3
N

.
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A.6 Derivation of formula for σ2
F,m.r.(t, T1, TN)

σ2
F,m.r.(t, T1, TN ) =

∫ TN

t
σ2
m.r.(s, T1, TN )ds (A.13)

This equals ∫ T1

t

(
(σS − σA)

(
e−λ(T1−t) − e−λ(TN−t)

λ(TN − T1)

)
+ σA

)2

ds+

∫ TN

T1

(
(σS − σA)

(
1− e−λ(TN−t)

λ(TN − T1)

)
+ σA

TN − t
TN − T1

)2

ds =

∫ T1

t
(σS − σA)2

(
e−λ(T1−t) − e−λ(TN−t)

λ(TN − T1)

)2

+ 2σA(σS − σA)
e−λ(T1−t) − e−λ(TN−t)

λ(TN − T1)
+ σ2

Ads+

∫ TN

T1

(σS − σA)2

(
1− e−λ(TN−t)

λ(TN − T1)

)2

+ 2σA(σS − σA)

(
TN − t
TN − T1

)(
1− e−λ(TN−t)

λ(TN − T1)

)
+ σ2

A

(
TN − t
TN − T1

)2

ds

Using some basic integration techniques, it can be shown that this equals

1

2
(σs − σA)2(eλTN − eλT1)2(1− e−2λ(T1−t))

e−2λTN

λ3(TN − T1)2
+

2(σS − σA)σA
1− e−λ(TN−T1) − e−λ(T1−t) + e−λ(TN−t)

λ2(TN − T1)
+ σ2

A(T1 − t)+

(σS − σA)2

2λ3(TN − T1)2

(
1− (2− e−λ(TN−T1))2 + 2λ(TN − T1)

)
+

(σS − σA)σA
λ3(TN − T1)2

(2(e−λ(TN−T1) − 1)+

λ2(TN − T1)2 + 2λe−λ(TN−T1)(TN − T1)) +
1

3
σ2
A(TN − T1) (A.14)

B Appendix B (Matlab code)

B.1 Explicit formula

%VALUE FREIGHT CALL OPTION USING BLACK’S FORMULA

%PARAMETERS:

S=22500; %Initial spot freight rate

E=25000; %Strike price

lambda=0.03; %See thesis

sigma=0.3; %Volatility

N=21; %number of timesteps in settlement period

D=[31,28,31,30,31,30,31,31,30,31,30,31]; %See thesis

for j= 1:12 %There are 12 settlement periods

T_1(j)=1/252 + N/252*(j-1); %Start of each settlement period

T_N(j)=N/252 + N/252*(j-1); %End of each settlement period
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Dt(j)=(T_N(j)-T_1(j))/(N-1); %Length timestep of each settl. period

R=(1-3/(2*N)+1/(2*N^2))/(3-3/N); %See thesis

sigmaF(j)=sigma^2*T_1(j)+sigma^2*(T_N(j)-T_1(j))*R; %Volatility of

%future prices

F(j)=S*((exp(lambda*(T_N(j)-0))/N)*((exp(-lambda*N*Dt(j))-1)/...

(exp(-lambda*Dt(j))-1))); %Future prices at t=0

d1(j)=(log(F(j)/E)+0.5*sigmaF(j))/(sqrt(sigmaF(j)));

d2(j)=d1(j)-sqrt(sigmaF(j));

N1(j)=normcdf(d1(j));

N2(j)=normcdf(d2(j));

C(j)=exp(-lambda*T_N(j))*D(j)*(F(j)*N1(j)-E*N2(j)); %Black’s formula

end

C %Value caplets using Black’s formula

B.2 Monte Carlo

%MONTE CARLO FOR VALUE OF A CAP WITH 12 SETTLEMENT PERIODS OF 21 DAYS

%PARAMETERS:

randn(’state’,100)

S=22500; %Initial spot freight rate

E=25000; %Strike price

lambda=0.03; %See thesis

sigma=0.3; %Volatility

M=5e6; %number of paths

N=21; %number of timesteps in settlement period

D=[31,28,31,30,31,30,31,31,30,31,30,31]; %See thesis

T_1=zeros(12,1);

T_N=zeros(12,1);

Dt=zeros(12,1);

schattingV=zeros(12,1);

bM=zeros(12,1);

standarderror=zeros(12,1);

for j= 1:12 %There are 12 settlement periods

T_1(j)=1/252 + N/252*(j-1); %Start of each settlement period

T_N(j)=N/252 + N/252*(j-1); %End of each settlement period

Dt(j)=(T_N(j)-T_1(j))/(N-1); %Length timestep for each settl. period

%MONTE CARLO:

V = zeros(M,1);

for i = 1:M

54



samples = randn(N+(j-1)*N,1); %Random standard normal variables

Svals = S*cumprod(exp((lambda-0.5*sigma^2)*Dt(j)+sigma*sqrt(Dt(j))*...

samples)); %Freight rate paths

Smean=1/N*sum(Svals(round(T_1(j)/Dt(j)):round(T_N(j)/Dt(j))));

%Average freight rates during settlement

V(i) = exp(-lambda*T_N(j))*D(j)*max(Smean-E,0); %Value caplets

%at t=0

end

%VALUES:

schattingV(j) = mean(V) %Estimate caplets at t=0

bM(j)=std(V); %Standarddeviation caplet prices

standarderror(j)=bM(j)/sqrt(M); %Standarderror caplets

cap=sum(schattingV); %Value cap at t=0

end

B.3 Monte Carlo using European option as control variate

%MONTE CARLO WITH EUROPEAN OPTION AS CONTROL VARIATE FOR VALUE OF A CAP

%WITH 12 SETTLEMENT PERIODS OF 21 DAYS

%PARAMETERS:

randn(’state’,100)

S=22500; %Initial spot freight rate

E=25000; %Strike price

lambda=0.03; %See thesis

sigma=0.3; %Volatility

M=5e6; %number of paths

N=21; %number of timesteps in settlement period

D=[31,28,31,30,31,30,31,31,30,31,30,31]; %See thesis

T_1=zeros(12,1);

T_N=zeros(12,1);

Dt=zeros(12,1);

schattingV=zeros(12,1);

bM=zeros(12,1);

standarderror=zeros(12,1);

Creal=zeros(12,1);

Zmean=zeros(12,1);

Zstd=zeros(12,1);

standarderrorZ=zeros(12,1);

for j= 1:12 %There are 12 settlement periods

T_1(j)=1/252 + 21/252*(j-1); %Start of each settlement period

T_N(j)=21/252 + 21/252*(j-1); %End of each settlement period
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Dt(j)=(T_N(j)-T_1(j))/(N-1); %Length timestep of each settl. period

%Black scholes value European call option:

Creal(j)=ch08(S,E,lambda,sigma,T_N(j))*D(j); %the function ch08 is

%obtained from paper [10] from Higham.

V = zeros(M,1);

Cmc=zeros(M,1);

for i = 1:M

%NORMAL MONTE CARLO:

samples = randn(21+(j-1)*21,1); %Random standard normal variables

Svals = S*cumprod(exp((lambda-0.5*sigma^2)*Dt(j)+sigma*...

sqrt(Dt(j))*samples)); %Freight rate paths

Smean=1/N*sum(Svals(round(T_1(j)/Dt(j)):round(T_N(j)/Dt(j))));

%Average freight rates during settlement

V(i) = exp(-lambda*T_N(j))*D(j)*max(Smean-E,0); %Value caplets

%at t=0

%MONTE CARLO USING CONROL VARIATES:

Cmc(i) = exp(-lambda*T_N(j))*D(j)*...

max(Svals(round(T_N(j)/Dt(j)))-E,0); %Estimate European

%call option

end

Theta=cov(V,Cmc);

theta=Theta(1,2)/Theta(2,2); %Optimal value of theta

for i=1:M

Z(i) = V(i) + theta*(Creal(j) - Cmc(i)); %Construction of Z

end

%VALUES USING NORMAL MONTE CARLO:

schattingV(j) = mean(V); %Values caplets at t=0

bM(j)=std(V); %Standarddeviation caplets

standarderror(j)=bM(j)/sqrt(M); %Standard errors caplets

cap=sum(schattingV); %Value cap at t=0

%VALUES USING CONTROL VARIATES:

Zmean(j) = mean(Z); %Values caplets at t=0

Zstd(j) = std(Z); %Standarddeviation caplets

standarderrorZ(j)=Zstd(j)/sqrt(M); %Standard errors caplets

capcv=sum(Zmean); %Value cap at t=0

end
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B.4 Monte Carlo using antithetic variates

%MONTE CARLO WITH ANTITHETIC VARIATES FOR VALUE OF A CAP WITH

%12 SETTLEMENT PERIODS OF 21 DAYS

%PARAMETERS:

randn(’state’,100)

S=22500; %Initial spot freight rate

E=25000; %Strike price

lambda=0.03; %See thesis

sigma=0.3; %Volatility

M=5e6; %number of paths

N=21; %number of timesteps in settlement period

D=[31,28,31,30,31,30,31,31,30,31,30,31]; %See thesis

T_1=zeros(12,1);

T_N=zeros(12,1);

Dt=zeros(12,1);

schattingV=zeros(12,1);

bM=zeros(12,1);

standarderror=zeros(12,1);

for j= 1:12 %There are 12 settlement periods

T_1(j)=1/252 + 21/252*(j-1); %Start of each settlement period

T_N(j)=21/252 + 21/252*(j-1); %End of each settlement period

Dt(j)=(T_N(j)-T_1(j))/(N-1); %Length timestep for each settl. period

%MONTE CARLO USING ANTITHETIC VARIATES:

V = zeros(M,1);

V2=zeros(M,1);

for i = 1:M

samples = randn(N+(j-1)*N,1); %Random standard normal variables

Svals = S*cumprod(exp((lambda-0.5*sigma^2)*Dt(j)+sigma*sqrt(Dt(j))...

*samples)); %Freight rate paths 1

Svals2 = S*cumprod(exp((lambda-0.5*sigma^2)*Dt(j)-sigma*sqrt(Dt(j))...

*samples)); %Freight rate paths 2, now using -samples

Smean=1/N*sum(Svals(round(T_1(j)/Dt(j)):round(T_N(j)/Dt(j))));

%Average freight rates 1 during settlement

Smean2= 1/N*sum(Svals2(round(T_1(j)/Dt(j)):round(T_N(j)/Dt(j))));

%Average freight rates 2 during settlement

V(i) = exp(-lambda*T_N(j))*D(j)*max(Smean-E,0); %Values caplets at

%t=0 for the first freight rate paths

V2(i)=exp(-lambda*T_N(j))*D(j)*max(Smean2-E,0); %Values caplets at

%t=0 for the second freight rate paths

Veind(i)=0.5*(V(i)+V2(i)); %Average values caplets at t=0
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end

%VALUES:

schattingV(j) = mean(Veind) %Values caplets at t=0

bM(j)=std(Veind); %Standarddeviation caplets

standarderror(j)=bM(j)/sqrt(M) %Standard errors caplets

cap=sum(schattingV) %Value cap

end

B.5 Monte Carli using the combination of control and antithetic variates

%MONTE CARLO WITH CONTROL AND ANTITHETIC VARIATES FOR VALUE OF A CAP

%WITH 12 SETTLEMENT PERIODS OF 21 DAYS

%PARAMETERS:

randn(’state’,100)

S=22500; %Initial spot freight rate

E=25000; %Strike price

lambda=0.03; %See thesis

sigma=0.3; %Volatility

M=5e6; %number of paths

N=21; %number of timesteps in settlement period

D=[31,28,31,30,31,30,31,31,30,31,30,31]; %See thesis

T_1=zeros(12,1);

T_N=zeros(12,1);

Dt=zeros(12,1);

schattingV=zeros(12,1);

bM=zeros(12,1);

standarderror=zeros(12,1);

Creal=zeros(12,1);

Zmean=zeros(12,1);

Zstd=zeros(12,1);

standarderrorZ=zeros(12,1);

for j= 1:12 %There are 12 settlement periods

T_1(j)=1/252 + 21/252*(j-1); %Start of each settlement period

T_N(j)=21/252 + 21/252*(j-1); %End of each settlement period

Dt(j)=(T_N(j)-T_1(j))/(N-1); %Length timestep of each settl. period

%Black scholes value European call option:

Creal(j)=ch08(S,E,lambda,sigma,T_N(j))*D(j);

V = zeros(M,1);

Cmc=zeros(M,1);

V2=zeros(M,1);

Veind=zeros(M,1);
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Cmc2=zeros(M,1);

Cmceind=zeros(M,1);

for i = 1:M

%MONTE CARLO USING ANTITHETIC VARIATES:

samples = randn(21+(j-1)*21,1); %Random standard normal variables

Svals = S*cumprod(exp((lambda-0.5*sigma^2)*Dt(j)+sigma*sqrt(Dt(j))*...

samples)); %Freight rate paths 1

Svals2 = S*cumprod(exp((lambda-0.5*sigma^2)*Dt(j)-sigma*sqrt(Dt(j))*...

samples)); %Freight rate paths 2

Smean=1/N*sum(Svals(round(T_1(j)/Dt(j)):round(T_N(j)/Dt(j))));

%Average freight rates 1 during settlement

Smean2= 1/N*sum(Svals2(round(T_1(j)/Dt(j)):round(T_N(j)/Dt(j))));

%Average freight rates 2 during settlement

V(i) = exp(-lambda*T_N(j))*D(j)*max(Smean-E,0); %Value caplets

%at t=0 for the first freight rate paths

V2(i)=exp(-lambda*T_N(j))*D(j)*max(Smean2-E,0); %Value caplets

%at t=0 for the second freight rate paths

Veind(i)=0.5*(V(i)+V2(i)); %Average values caplets at t=0

%CONTROL & ANTITTHETIC VARIATES:

Cmc(i) = exp(-lambda*T_N(j))*D(j)*...

max(Svals(round(T_N(j)/Dt(j)))-E,0); %Estimate European

%call options at t=0 for the first freight rate paths

Cmc2(i) = exp(-lambda*T_N(j))*D(j)*...

max(Svals2(round(T_N(j)/Dt(j)))-E,0); %Estimate European

%call options at t=0 for the second freight rate paths

Cmceind(i)=0.5*(Cmc(i)+Cmc2(i)); %Average values options at t=0

end

Theta=cov(Veind,Cmceind);

theta=Theta(1,2)/Theta(2,2); %Optimal value of theta

for i=1:M

Z(i) = Veind(i) + theta*(Creal(j) - Cmceind(i)); %Construction of Z

end

%VALUES USING ANTITHETIC VARIATES:

schattingV(j) = mean(Veind); %Values caplets at t=0

bM(j)=std(V); %Standarddeviation caplets

standarderror(j)=bM(j)/sqrt(M); %Standard errors caplets

cap=sum(schattingV) %Value cap at t=0

%VALUES USING ANTITHETIC & CONTROL VARIATES:

Zmean(j) = mean(Z) %Values caplets at t=0
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Zstd(j) = std(Z); %Standarddeviation caplets

standarderrorZ(j)=Zstd(j)/sqrt(M) %Standard errors caplets

capcv=sum(Zmean) %Value cap at t=0

end
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