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On wavemodes at the interface of a fluid and a fluid-saturated
poroelastic solid
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Pseudo interface waves can exist at the interface of a fluid and a fluid-saturated poroelastic solid.
These waves are typically related to the pseudo-Rayleigh pole and the pseudo-Stoneley pole in the
complex slowness plane. It is found that each of these two poles can contribute �as a residue� to a
full transient wave motion when the corresponding Fourier integral is computed on the principal
Riemann sheet. This contradicts the generally accepted explanation that a pseudo interface wave
originates from a pole on a nonprincipal Riemann sheet. It is also shown that part of the physical
properties of a pseudo interface wave can be captured by loop integrals along the branch cuts in the
complex slowness plane. Moreover, it is observed that the pseudo-Stoneley pole is not always
present on the principal Riemann sheet depending also on frequency rather than on the contrast in
material parameters only. Finally, it is shown that two additional zeroes of the poroelastic Stoneley

dispersion equation, which are comparable with the P̄-poles known in nonporous elastic solids, do
have physical significance due to their residue contributions to a full point-force response.
© 2010 Acoustical Society of America. �DOI: 10.1121/1.3308473�
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I. INTRODUCTION

Interface waves such as Rayleigh and Stoneley waves
are often used to investigate materials. One can think of ap-
plications in ultrasonic testing of structures, borehole logging
in geotechnical and reservoir engineering, and surface seis-
mics in geophysics, see, e.g., Refs. 1–4. In the case of porous
materials, interface waves carry information on elastic prop-
erties but also on properties such as porosity, permeability,
and fluid mobility.1 Rosenbaum5 found that, compared to all
other surface and body wavemodes, the Stoneley-type wave
that travels along the open-pore interface of a fluid and a
porous medium, carries the best measure of permeability.

Several theoretical studies were performed on interface
waves that propagate along the boundary of a porous me-
dium. These studies were carried out in the context of Biot’s
theory for wave propagation in fluid-saturated poroelastic
solids. Deresiewicz6 showed the existence of a Rayleigh-type
wave that propagates along the free surface of a poroelastic
half-space and analyzed the frequency-dependent phase ve-
locity and attenuation.

For a fluid/poroelastic-medium configuration, Rosen-
baum5 predicted the existence of the pseudo-Rayleigh �pR�
and the pseudo-Stoneley �pSt� wave. The latter was explic-
itly named as such by Feng and Johnson,7,8 since a pseudo
interface wave has part of its energy leaking into slower bulk
modes as it propagates along the interface. Feng and
Johnson7 also showed the existence of another interface
wavemode, the nonleaky true interface wave. It was found
that the existence of this wave depends on whether or not the
pores are open for pore fluid to flow across the interface.
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Feng and Johnson8 derived Green’s functions �impulse re-
sponses� for high-frequency Biot theory that confirmed the
existence of the three different waves.

Experimental evidence was found for all three types of
interface wavemodes, see, e.g., Refs. 9–11.

Feng and Johnson7 argued that other zeroes of the po-
roelastic Stoneley dispersion equation have no physical sig-
nificance as pseudo interface modes. The corresponding
propagation velocities would be larger than that of shear
waves, which is not realistic.

In order to obtain the characteristics of the interface
wavemodes, Feng and Johnson7 used the zeroes of the non-
viscid poroelastic Stoneley dispersion equation in the com-
plex plane to obtain the propagation velocities and attenua-
tions. Gubaidullin et al.12 went a step further and analyzed
the frequency dependence of the interface wavemodes by
incorporating the viscous loss mechanism of Johnson et al.13

They also used the zeroes of the dispersion equation to de-
rive the characteristics of the interface waves. The same ap-
proach was adopted by Edelman and Wilmanski,14 Albers,15

and Markov.16 In most of the papers, specific restrictions for
the involved square roots �i.e., their Riemann sheets� are
given.

The generally accepted explanation for a pseudo inter-
face wave is that it originates from a zero that forms a pole
singularity on another Riemann sheet than the so-called
“principal” sheet. It affects the behavior of the integrand on
the principal Riemann sheet by causing a local maximum in
the integrand.17 In case the pole lies close to the real axis, it
might have a contribution to the Green’s function.

In a series of publications, Allard et al.11,18,19 studied the
propagation of interface waves along the boundaries of po-
roelastic and nonporous elastic media. In the case of an air/

air-saturated poroelastic-solid configuration, they found that
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taking the residue of the pseudo-Rayleigh pole is sufficient to
describe the entire pseudo-Rayleigh waveform.19 For the
water/water-saturated poroelastic-solid configuration, they
found that the pseudo-Stoneley pole residue describes the
entire waveform of the pseudo-Stoneley wave.11 However,
for the water/elastic-solid configuration, they found that the
pseudo-Rayleigh waveform is strongly affected by the loop
integrals along the branch cuts.

In summary, taking just the location of the zeroes of the
dispersion equation rather than computing the full transient
response is a very fast way to predict the kinematic proper-
ties of pseudo interface waves, but the question arises if
these predictions are always complete.

Therefore, in this paper we analyze the three-
dimensional transient wave propagation due to a point force
applied at the interface of a fluid and a fluid-saturated po-
roelastic solid. The aims are as follows.

�1� To investigate if a zero of the poroelastic Stoneley dis-
persion equation indeed yields the pertinent physical
properties of the corresponding pseudo interface wave-
mode. This is done by quantitative comparison between
the residues of specific poles and the full transient re-
sponse.

�2� To verify if a pseudo interface wave indeed necessarily
originates from a pole on a nonprincipal Riemann sheet.

�3� To verify the physical significance of additional zeroes
of the poroelastic Stoneley dispersion equation that are
not related to pseudo interface waves.7

The paper is organized as follows. In Sec. II, we present
the model to analyze the fluid/poroelastic-medium configu-
ration. Subsequently, in Sec. III, the derivation of Green’s
function is summarized. The implementation of the numeri-
cal integration is discussed in Sec. IV. We discuss the results
in Sec. V. The conclusions are given in Sec. VI.

II. MODEL

To study the transient wave propagation in a fluid/
poroelastic-medium configuration, we consider a configura-
tion that consists of a fluid half-space on top of a fluid-
saturated poroelastic half-space. A vertical point force F�t� is
applied at the interface �see Fig. 1�a�; Fig. 1�b� is referred to
later�. Both half-spaces are considered to be homogeneous
and isotropic. The configuration is similar to the one applied
by Gubaidullin et al.12 but extended to three dimensions.

The behavior in the lower half-space �x3�0� is gov-
erned by the well-known Biot equations of motion for a
fluid-saturated poroelastic solid that were extensively dis-
cussed in this journal, see, e.g., Refs. 20 and 21. Following
Biot’s theory, we assume that for long wavelength distur-
bances with respect to the characteristic pore scale, average
local displacements can be defined for the solid �frame�
u�x , t�= �u1 ,u2 ,u3�T and the fluid U�x , t�= �U1 ,U2 ,U3�T.
Considering a cube of unit size of bulk material �porosity ��,
the forces per unit bulk area applied to that part of the cube
faces occupied by the solid are denoted by �ij. They are
constituted by both fluid pressure pf and intergranular

stresses �ij according to
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�ij = − �ij − �1 − ��pf�ij , �1�

where �ij is the Kronecker delta. The total normal tension
force per unit bulk area applied to the fluid faces of the unit
cube, denoted by �, is constituted by pf only,

� = − �pf . �2�

Here, �ij and pf are defined positive in compression and,
consequently, �ij and � are positive in tension, see also Ref.
12. In the case of isotropic materials, the stress-strain rela-
tions for the solid and the fluid can be written as

�ij = G��iuj + � jui� + A�kuk�ij + Q�kUk�ij , �3�

� = Q�kuk + R�kUk, �4�

where Einstein’s summation convention for repeated indices
is applied, and � j =� /�xj. A, Q, and R are generalized elastic
constants that can be related via Gedanken experiments to
porosity, grain bulk modulus Ks, fluid bulk modulus Kf, bulk
modulus of porous drained frame Kb, and shear modulus G
of both drained frame and total composite.22,23 The physical
background of Eqs. �3� and �4� is discussed in more detail in
Ref. 20.

The equations of motion are found from combination of
momentum conservation and the stress-strain relations, Eqs.
�3� and �4�, and can be written as20,21

�11�t
2u + �12�t

2U + b � �t�u − U� = P � � · u − G � � � � u

+ Q � � · U , �5�

�12�t
2u + �22�t

2U − b � �t�u − U� = Q � � · u + R � � · U , �6�

where the asterisk denotes convolution, P=A+2G, and the
effective densities are defined as

�11 = �1 − ���s − �12,

�22 = �� f − �12,

�12 = − ��	 − 1��� f , �7�

where the tortuosity �	
1, and hence �12�0. Solid and
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FIG. 1. �a� Point force F�t� applied at the interface of a fluid-saturated
poroelastic half-space and a fluid half-space. Both half-spaces are homoge-
neous and isotropic. �b� Schematic snapshot of the full response with sepa-
rate arrivals: fast compressional �P1� wave, slow compressional �P2� wave,
shear �S� wave, fluid �F� wave, pseudo-Rayleigh �pR� wave, and pseudo-
Stoneley �pSt� wave. The double-mode symbols �e.g., SP1� indicate lateral
waves �¯ �. The first symbol denotes the wavemode of the specific arrival;
the second denotes the one from which it is radiated. Here, the F-wave
velocity is assumed higher than the P2-wave velocity. For clarity, we omit-
ted the following arrivals: FS, P2P1, P2S, P2pR, and P2F.
fluid densities are denoted as �s and � f, respectively. The
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linear time-convolution operator b was formulated in the fre-
quency domain as the viscous correction factor by Johnson et
al.,13 according to

b̂��� = b0�1 + 1
2 iM�/�c�1/2, �8�

where the viscous damping factor b0=�2
 /k0. Here, the dy-
namic fluid viscosity is denoted by 
 and k0 represents the
zero-frequency Darcy permeability. The shape factor M is
usually taken equal to 1.24 The rollover frequency, which
represents the transition from low-frequency viscosity-
dominated to high-frequency intertia-dominated behavior, is
defined as �c=
� / ��	� fk0�.

The behavior of the upper �fluid� half-space �x3�0� is
governed by the acoustic wave equation

�F�t
2pF = KF�2pF, �9�

where KF and �F denote the bulk modulus and density of the
fluid, respectively, and pF denotes the fluid pressure.

We assume that the behavior at the interface is governed
by conventional open-pore conditions, i.e., by continuity of
volume flux and fluid pressure, and vanishing intergranular
vertical and shear stresses. The force is applied to the solid.
The open-pore boundary is a realistic choice to model the
fluid/poroelastic-medium interface,1 and a limiting case of
the situation where a finite surface flow impedance is con-
sidered, see e.g., Refs. 12, 25, and 26. It implies that the true
interface wave is absent in the response.7,8 Hence, in the
limit of x3→0, the following conditions should be satisfied

�1 − ��u3 + �U3 − UF,3 = 0, �10�

pf − pF = 0, �11�

�13 = 0, �12�

�23 = 0, �13�

�33 = F�t���x1���x2� , �14�

where ��¯ � denotes the Dirac delta function, and UF,3 de-
notes the vertical particle displacement in the upper half-
space. The fact that the intergranular stress �33 is zero does
not imply that the total solid stress �33 vanishes, see Eq. �1�.

The medium is considered to be at rest at t�0. At infi-
nite distance from the source, the motions are bounded.

III. GREEN’S FUNCTIONS

In this section, we summarize the derivation of the
Green’s functions �impulse responses� as described by the
solution to the set of governing equations, Eqs. �5�, �6�, and
�9�–�14�. The main part of the derivation is given in Appen-
dices A and B and we refer to them where necessary.

In order to analyze the response in the plane-wave do-
main, the Fourier transform is applied over time according to

û�x,�� = �
−	

	

u�x,t�exp�− i�t�dt , �15�

where � denotes radial frequency. It is assumed that u�x , t� is

real valued and hence, it is sufficient to consider �
0. Fol-
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lowing Aki and Richards,4 the Fourier transform over hori-
zontal spatial coordinates can be defined as

ũ�p,x3,�� = �
−	

	 �
−	

	

û�x,��exp�i�p · r�dx1dx2, �16�

where p= �p1 , p2�T is the horizontal slowness vector and r
= �x1 ,x2�T is the horizontal space vector. The transforms are
applied similarly to the other field quantities. The hat refers
to the �x ,��-domain and the tilde to the �p ,x3 ,��-domain.

The response in the �p ,x3 ,��-domain is described by the
physical quantities ũi and p̃f in the lower half-space, col-
lected in the vector w̃= �ũ1 , ũ2 , ũ3 ,−�p̃f�T, and by p̃F in the
upper half-space, see Eqs. �A1�, �A4�, and �A6�. The expres-
sions for the response are obtained using Helmholtz decom-
position of the equations of motion and substitution of the
general solutions into the boundary conditions. This gives a
set of equations that is solved analytically �see Appendix A�.

The response can be written in terms of Green’s func-
tions according to

w̃ = g̃+F̂ =
ñ+

�St
F̂ , �17�

p̃F = g̃−F̂ =
ñ−

�St
F̂ , �18�

where g̃+ and g̃− are the Green’s functions in the lower and
upper media, respectively, ñ+ and ñ− are the corresponding

numerators, and F̂ is the Fourier transform of the force sig-
nature. From Eqs. �A1�, �A4�, and �A6�, it follows that g̃+

consists of a superposition of all possible body modes: the
fast �P1� and slow �P2� compressional waves, and the verti-
cally polarized shear �SV� wave. The horizontally polarized
shear �SH� mode is not excited by the vertical force. The
Green’s function g̃− only contains the fluid �F� compres-
sional mode. Both Green’s functions have the “poroelastic
Stoneley-wave denominator” �St=�St�p ,�� that is associated
with interface waves along the fluid/poroelastic-medium in-
terface, which is very similar to the “Scholte-wave denomi-
nator” for a fluid/elastic-solid interface.27 Here, p= �p1

2

+ p2
2�1/2 denotes the magnitude of the horizontal slowness.

The body-wave slownesses sj, j= �P1 , P2 ,F ,S�, are de-
fined in Appendix A �Table III�. The corresponding vertical
slownesses are defined as qj = �sj

2− p2�1/2, where Im�qj��0
due to Sommerfeld’s radiation condition.

To find the Green’s functions in the �x ,��-domain, the
inverse Fourier transform is applied according to

ĝ+ =
�2

�2��2�
−	

	 �
−	

	 ñ+�p,x3,��
�St

exp�− i�p · r�dp1dp2,

�19�

where �
0. We only show the derivation of ĝ+, but the
expressions for ĝ− are obtained by simply replacing ñ+ by ñ−.
When cylindrical coordinates are introduced, Eq. �19� can be

written as
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ĝ+ =
�2

4�
�

−	

	 ñ+�p,��,x3,��
�St

H0
�2���pr�pdp , �20�

where r= �x1
2+x2

2�1/2 and in which the horizontal derivatives
��, �= �1,2�, are applied to the Hankel function H0

�2��¯ �,
see Eqs. �B3� and �B4� �Appendix B�.

Now we change the real-axis integral into a contour in-
tegral in the complex p-plane. The idea is that by integration
in the complex plane, contributions from loop integrals and
from pole residues can be distinguished. We choose branch
cuts along the hyperbolic lines3 Im�qj�=0. In this way
Im�qj��0 ∀ p, which ensures the decay of the exponential
terms exp��i�qjx3� for large p �see Eqs. �A1� and �A4��.
The branch cuts depart from the branch points associated
with the body-wave slownesses sj, as shown in Fig. 2. The
qF-branch cut reduces to the imaginary axis and part of the
real axis since the slowness of the fluid wave �sF� is real.

The current branch cuts are referred to as the “funda-
mental” branch cuts.28 The corresponding Riemann sheet is
referred to as the principal Riemann sheet17 or the “physical”
Riemann sheet.4

In Fig. 2 the closed contour is also displayed. It is
formed by the entire real axis, the loops along the branch
cuts and around the branch points, and an arc of infinite
radius in the lower half-plane. For Re�p��0, the horizontal
part of the contour lies just below the axis due to the pres-
ence of a branch cut of the Hankel function at the negative
real axis.29

Applying Cauchy’s residue theorem,30 we obtain

ĝ+ = �
−	

	

f̃+dp = − 2�i�
m

Resp=sm
f̃+ − �

j
�

Cj

f̃+dp ,

f̃+ =
�2

4�

ñ+�p,��,x3,��
�St

H0
�2���pr�p , �21�

where every sm denotes a first-order pole of the integrand
inside the integration contour and every Cj denotes a loop
along the specific branch cut. In Eq. �21�, the contribution of
the arc vanishes because of Jordan’s lemma.31 The contribu-

1Ps

Ss

2Ps

Fs Re p

Im p

pRs*

2PC

*Pas*Pbs

1Ps

Ss

2Ps

Fs Re p
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FIG. 2. Complex p-plane with �– –� branch cuts, �•� branch points sj, j
= �P1 , P2 ,F ,S�, and �� � poles spR �pseudo-Rayleigh�, sP̄a and sP̄b �addi-
tional�, for the calculation of the Green’s functions for Bentheimer/air con-
figuration 2 �see Table I�. The branch points are formed by the body-wave
slownesses specified in Appendix A �Table III�. The hyperbolic branch cuts
are described by Im�qj�=0. Poles are zeroes of the poroelastic Stoneley
denominator, see Eq. �21�. Only part of the closed integration contour �–� is
displayed: real axis, arc in lower half-plane, and loop CP2 along the
qP2-branch cut. The direction of integration is indicated.
tions around the branch points are also zero.
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The poles sm result from zeroes of the poroelastic Stone-
ley dispersion equation ��St=0� on the principal Riemann
sheet. The number of poles N present inside contour C is
determined by applying the principle of the argument to the
Stoneley equation30

N =
1

2�i.C

�p�St

�St
dp . �22�

The residue of the integrand at a first-order pole is given as

Resp=sm
f̃+ = 	 �2

4�

ñ+�p,��,x3,��
�p�St

H0
�2���pr�p


p=sm

. �23�

IV. NUMERICAL IMPLEMENTATION

To perform the integration along the hyperbolic branch
cuts, we choose pi=Im�p� as the variable of integration ac-
cording to

�
Cj

f̃+ �p

�pi
dpi, �24�

where

p =
Re�sj�Im�sj�

pi
+ ipi,

�p

�pi
= −

Re�sj�Im�sj�
pi

2 + i . �25�

For the qF-branch cut, the integration path is the imaginary
axis and part of the real axis, which follows from Eq. �25� for
vanishing imaginary part of the slowness Im�sF�↑0 �Fig. 2�.
Along the cut of qj, at the left side Re�qj��0 and at the right
side Re�qj��0. At the specific cut Im�qj�=0 and everywhere
else Im�qj��0.

The numerical integration is performed using an adap-
tive eight-point Legendre–Gauss algorithm,29,32 which can
handle integrable singularities such as branch points.

For the numerical implementation of the principle of the
argument, we apply Eq. �22� separately for the areas between
the various parts of the integration contour �branch cuts, real
axis, and arc, see Fig. 2� to find out where the poles can be
expected. Subsequently, the pole locations are found numeri-
cally by minimizing the left-hand side of equation ��St�=0.
Since it contains local minima and branch-cut discontinui-
ties, it is important to choose a proper starting value. This
requires some manual iteration. The accuracy, as expressed
by ��St�p=sm�� / ��St�p=0��, is typically O�10−10�. Here sm de-
notes the numerical value of the pole location.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we investigate the transient responses for
four different fluid/poroelastic-medium configurations �see
Table I�. In the first three configurations, water-saturated
Bentheimer sandstone �see Table II� is used as porous me-
dium. The upper half-space is subsequently filled with water,
air, or a light fluid. In the fourth configuration, which is the
one of Feng and Johnson,7,8 the porous medium is formed by
water-saturated fused glass beads, while the upper half-space
is filled with water.

For every configuration, we will show the vertical com-

ponent of particle velocity v3 and the fluid pressure pf for an
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observation point at the interface x3=0 at offset r=x1

=0.1 m. Fluid pressure is related to dilatation only �see Eq.
�4�� and hence, v3 and pf contain different information. Also,
the comparison between the full response and a pole residue
can be different in v3 and pf, as will be shown.

The point force has Ricker signature,33

F�t� = Fmax� 1
2�0

2t̄2 − 1�exp�− 1
4�0

2t̄2� , �26�

where t̄= t− ts, �0=2�f0, and center frequency f0=500 kHz
�see Fig. 3�. The magnitude Fmax=1 N and time shift ts

=5 �s. We perform the integration for the frequency range
0� f �2 MHz. The full response is obtained by multiplica-
tion of the spectra of the Green’s functions and the source
�see Eqs. �17� and �18��, and using a standard fast Fourier
transform algorithm.

A. Residue contribution vs full response

First, we address the relation between a pole and a
pseudo interface wave, as raised in point �1� in the Introduc-
tion �Sec. I�. For configurations 1–3, the full transient re-
sponses and separate pole residues �see Eq. �21�� are dis-
played in Figs. 3–5. We identified the different arrivals in the
full responses using the propagation velocities as obtained
from the modal slownesses. Head waves are identified geo-
metrically using the pertaining modal velocities and are in-
dicated with double-mode symbols �e.g., SP1: the shear �S�

TABLE I. Various configurations for which the transient response is calcu-
lated. The type of sandstone is Bentheimer. For fused glass beads, the bulk
modulus of the drained matrix is chosen as Kb=10 GPa and the permeabil-
ity is chosen as k0=10−11 m2. The upper half-space is filled with either
water �KF=Kf , �F=� f�, or air �KF=1.42�102 kPa, �F=1.25 kg m−3�, or
a light fluid �KF=Kf /10, �F=� f /8�. For every configuration, the poles
present on the principal Riemann sheet are indicated: pseudo-Stoneley �pSt�,
pseudo-Rayleigh �pR�, and two additional �P̄a , P̄b� poles.

Porous solid Saturating fluid Upper half-space Poles

1 Sandstone Water Water pSt

2 Sandstone Water Air P̄a , P̄b,a pR
3 Sandstone Water Light fluid pR, pSt a

4 Fused glass beads Water Water pSt a

aIts residue is not shown.

TABLE II. Material parameters as used for water-saturated Bentheimer
sandstone �Ref. 34�. The bulk modulus of the matrix Kb is found according
to Kb=Kp− 4

3G.

Solid �frame� density �s 2630 kg m−3

Fluid density � f 1000 kg m−3

Tortuosity �	 2.4
Porosity � 0.23
Permeability k0 3.7 �m2

Dynamic fluid viscosity 
 0.001 Pa s
Shear modulus G 6.8 GPa
Constrained modulus Kp 14 GPa
Grain bulk modulus Ks 36.5 GPa
Fluid bulk modulus Kf 2.22 GPa
2244 J. Acoust. Soc. Am., Vol. 127, No. 4, April 2010
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wave radiated by the fast �P1� compressional wave�. For the
sake of clarity, a schematic snapshot of the full response with
the different arrivals is shown in Fig. 1�b�.

We first note that the P1-wave is present quite strongly
in v3 although this component is perpendicular to the direc-
tion of propagation of this longitudinal wave �Figs. 4 and 5�.
This is due to the contraction in vertical direction that can
easily take place at the air/sandstone or light-fluid/sandstone
interface. Remarkably, there is an arrival present in pf at the
S-wave arrival time �Figs. 4 and 5�. This is not an
S-wavefront but radiated slow compressional �P2� and fluid
�F� head waves, see Fig. 1�b�.

Now, we focus on the comparison of interface waves in
the full responses and corresponding pole residues. The
pole�s� that are present on the principal Riemann sheet con-
tributing a residue are given in Table I, for each configuration
separately. We found the pseudo-Stoneley �pSt�, the pseudo-

Rayleigh (pR), and two additional �P̄a , P̄b� poles. The latter
ones are discussed in Sec. V C.
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For configuration 1 �water as upper fluid�, only the
pSt-pole is found on the principal Riemann sheet. From Fig.
3, we observe that its residue yields the entire pSt-waveform.
For configuration 2 �air as upper fluid�, the pR-pole is found
on the principal Riemann sheet. From Fig. 4, it is observed
that its residue coincides with the pR-waveform in the full
response of v3 �actually, the difference is nonzero but too
small to be observed�. However, it does not coincide with
that in the full response of pf. Its contribution is opposite,
which means that the loop integrals along the branch cuts
also contribute to the pseudo interface waveform. This was
also found by Allard et al.11 It implies that part of the perti-
nent physical properties of the pseudo interface wave is cap-
tured by the loop integrals.

This is more pronounced for configuration 3 �light upper
fluid�, as shown in Fig. 5, in which both the pR-pole and the
pSt-pole are found on the principal Riemann sheet. In both
components �v3 and pf�, the pR-pole residue does not coin-
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cide with the pR-waveform in the full response. The pSt-pole
residue is not displayed separately because the pSt-wave
strongly interferes with the F-wave.

To investigate how the residues and the interface wave-
forms in the full responses compare for an observation point
that lies off the interface, we calculated the responses for
configurations 1 to 3 at x3=0.01 m and offset r=x1=0.1 m.
The corresponding results are displayed in Figs. 6–8. Com-
pared to the previous responses at x3=0, various head waves
can now be distinguished as separate arrivals, generated by
the body wavefronts that propagate along the interface, cf.
Fig. 1�b�. From Figs. 6–8, we also observe that the residues
now yield two waveforms in the full responses. The first one
�pR or pSt� is the waveform of the specific interface wave
itself, while the second �P2pR or P2pSt� corresponds to the
P2-mode that is radiated by the propagating pseudo interface
wave. For configurations 1 �water as upper fluid, Fig. 6� and
2 �air as upper fluid, Fig. 7�, it is observed that both wave-
forms are now captured entirely by the residue of the corre-
sponding pole. For configuration 3 �light upper fluid, Fig. 8�,
this is not the case, as for x3=0.
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In addition to the observations on responses with entire
waveforms, we give attention to the characteristics of a
pseudo interface wave. With regard to the propagation veloc-
ity, we observe that it is predicted properly by the residue of
the corresponding pole for all presented numerical results.
Concerning the attenuation, it was proposed by van der
Hijden17 to quantify the true attenuation of a pseudo inter-
face wave based on the full transient response. This is also
done by Rosenbaum,5 but he only showed the decay of the
total waveform, which would result in one value for the at-
tenuation. This is quite restrictive and therefore we use the
following method to retrieve the frequency-dependent at-
tenuation from a windowed pseudo interface waveform in
the full response. Here, attenuation is defined by Im�sm

tr�,
where sm

tr represents the true wave slowness and m
= �pR , pSt�. As a starting point, we consider the pseudo in-
terface wave in the far field where it does not interfere with
other wavemodes, and we assume that it is described by

v̂m,3�r� � r−1/2 exp�− i�sm
trr� , �27�

which is found from the asymptotic behavior of the Hankel
function.29 The imaginary part of the wave slowness can be
retrieved by comparing the amplitude spectra of the win-
dowed waveform �v̂m,3�r�� at two different observation points
r=ra and r=rb, according to

Im�sm
tr�f�� =

1

2�f�rb − ra�
ln� rb

1/2�v̂m,3�rb��
ra

1/2�v̂m,3�ra��

 . �28�

For configurations 1 �water as upper fluid� and 3 �light upper
fluid�, the attenuations are displayed in Figs. 9 and 10, re-
spectively, together with the corresponding predictions ob-
tained from the poles p=sm. The limited frequency range is
due to the limited bandwidth of the retrieved spectra. For
configuration 1 �water as upper fluid�, we observe that the
attenuation is described very well by the pSt-pole, except for
the low frequencies where the far-field approximation of the
Hankel function in Eq. �27� is not valid. For configuration 3
�light upper fluid�, however, the true attenuation of the
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FIG. 9. True attenuation, defined as Im�spSt
tr �, retrieved from windowed

pSt-waveforms for Bentheimer/water configuration 1, at x2=x3=0 and fro-
moffsets x1=0.24–0.26 m. The attenuation Im�spSt� obtained from the cor-
responding pole residue is also displayed.
pR-wave is much greater than the value obtained from the
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pR-pole residue. Obviously, the loop integrals along the
branch cuts cannot only affect the waveform but also the
spatial decay of a pseudo interface wave.

Sometimes, a residue of a pole is �implicitly� considered
to represent the corresponding interface-wave part of the
spectrum of the Green’s function �see e.g., Refs. 7, 12, and
14–16�, while the loop integrals are considered to constitute
the part related to body waves and head waves �if present�.
This can be true but we emphasize that the choice of branch
cuts is not unique. Therefore, the integration can be per-
formed on another physically allowed Riemann sheet, i.e., a
Riemann sheet that also meets the requirement of Im�qj�
�0 for real p,2,4 which is the original path of integration �see
Eq. �20��. This was done by Allard et al.11 and Tsang,35 and
clarified by Harris and Achenbach.36 Then, the construction
of the �x ,��-domain Green’s function is different as other
poles have to be taken into account and different loop inte-
grals are to be evaluated. Therefore, it might very well be
that �part of� the pertinent physical properties of a true or
pseudo interface wave are captured by the integrals along the
closed contour, rather than by the residue of a specific pole
�alone�.

From the current observations, we conclude that a resi-
due of a pole on the principal Riemann sheet does not nec-
essarily yield all the pertinent physical properties of the cor-
responding pseudo interface wave.

B. Presence of pR-pole and pSt-pole on Riemann
sheets

Now we address the issue concerning the origin of a
pseudo interface wave, as raised in point �2� of the Introduc-
tion �Sec. I�. In the computations in Sec. V A, we already
found that a pole related to a pseudo interface wave can be
located on the principal Riemann sheet and, obviously, con-
tribute a residue to the full response �see Table I�. This con-
tradicts the conventional explanation that a pseudo interface
wave originates from a pole on a different Riemann sheet
and is accounted for only by the loop integrals along branch
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pR-waveforms for Bentheimer/light-fluid configuration 3, at x2=x3=0 and
from offsets x1=0.24–0.26 m. The attenuation Im�spR� obtained from the
corresponding pole is also displayed.
cuts by causing a local maximum in the integrand. Allard et
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al.11 already found this contradiction, but they did not refer
to this as such because their concern was to determine
whether or not a pole is related to a separate arrival in the
full response.

Surprisingly, in case of fused glass beads saturated with
water and covered with water �configuration 4, Fig. 11� the
pSt-pole is present on the principal Riemann sheet only for a
limited frequency range. In Fig. 12, the position of the pole
in the complex plane is given, as expressed by Im�spSt�. Also
the position of the qP2-branch cut is displayed, as expressed
by its imaginary part at Re�p�=Re�spSt�. As frequency in-
creases, the pSt-pole moves toward the branch cut and as
soon as it reaches the cut, it vanishes from the sheet. The
pole is not present on the principal sheet for 310 kHz� f
�2 MHz. Therefore, the residue of the pSt-pole is not
shown in Fig. 11. For the material properties used by
Gubaidullin et al.,12 exactly the same situation occurs, al-
though the transition takes place at a different frequency.
Obviously, the presence of a pole on a certain Riemann sheet
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response pf has been scaled down by a factor 10 to make it entirely visible.
The double-mode symbols are explained in Fig. 1�b�.
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is not only a matter of the contrast in material parameters of
the half-spaces37 but can also depend on frequency in case of
viscous poroelastic media.

The behavior of the pSt-pole illustrates both the noncon-
ventional and the conventional explanation about the origin
of a pseudo interface wave. The pole does contribute a resi-
due over a certain frequency range and not outside that spe-
cific range. For the pR-wave present in the full response of
configuration 4 �Fig. 11�, only the conventional explanation
holds as the pR-pole is not found on the principal Riemann
sheet and the entire waveform is captured by the loop inte-
grals.

C. Physical significance of additional poles

Finally, we give attention to the physical significance of
two additional zeroes of the poroelastic Stoneley dispersion
equation ��St=0� as raised in point �3� of the Introduction
�Sec. I�. In configuration 2 �air as upper fluid�, these zeroes
show up as poles on the principal Riemann sheet at p=sP̄a

and p=sP̄b. They are located to the left of the fast
compressional-wave slowness �Re�sP̄a,P̄b��Re�sP1�� close to
the qP1-branch cut �see Fig. 2; p=sP̄a signifies the pole that

lies the closest to p=sP1�. The additional �P̄a , P̄b� poles are

comparable with the so-called P̄-poles that occur in nonpo-
rous elastic solids with an interface, as described by Gilbert
and Laster38 and Aki and Richards.4 The scaled real and
imaginary parts of the poles are displayed in Fig. 13. The

P̄b-pole is only present on the principal Riemann sheet for
limited frequency range 818.75 kHz� f �2 MHz.

Allard et al.18 also found one of the poles and refer to it
as an improper surface mode. Feng and Johnson7 stated that
poles located to the left of shear-wave branch point �Re�p�
�Re�sS�� have lost all physical significance as pseudo inter-
face modes. In the latter paper, the authors consider pseudo
interface modes in the conventional way. In their configura-
tion, the additional poles might indeed lie on a different Rie-
mann sheet, but we find that they can also show up on the
principal Riemann sheet. From Fig. 4 we observe that the
¯
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sponse, although it does not correspond to an interface wave-

mode �P̄b-pole similarly�. Any pole that contributes to the
full response should be considered as physically significant.

Gilbert and Laster38 and Aki and Richards4 related the

P̄-poles in elastic solids to a separate arrival. Van der
Hijden,17 however, stated that the concept of a separate pulse
should be dismissed because it is just a peculiar tail to the
compressional head-wave arrival. Harris and Achenbach36

confirmed this by stating that the poles yield features of the
lateral waves. The observations in the current computations
for poroelastic media also confirm this. From Fig. 7, we ob-

serve that the P̄a-pole contributes to the head waves gener-
ated by the P1-wavefront. It also contributes to the
P1-wavefront itself because it yields a strong pulse that ar-
rives even earlier �Figs. 4 and 7�, which is obviously ex-
plained by the pole lying to the left of the compressional-

wave slowness. The same is true for the P̄b-pole. The early-
arriving parts are not present in the full responses and hence,
the P1-waveform is constituted by both the residues of the

P̄-poles and the loop integrals along the branch cuts. The fact
that a pole contributes to the P1-waveform illustrates that it
lies in the vicinity of the saddle point of the body wave, as
used in asymptotic ray theory.35,39

There is one remarkable difference between the P̄-poles
in elastic and the ones in poroelastic media. In former, the
poles never show up on the principal Riemann sheet4 while
this is possible for the latter. A similarity lies in the fact that
in elastic solids �with rather small values of Poisson’s ratio�,
the poles lie also to the left of the compressional-wave
slowness.35

VI. CONCLUSIONS

In this paper, we analyze the three-dimensional transient
response of a fluid/poroelastic-medium configuration that is
subjected to a vertical point force at the interface. For differ-
ent materials, we quantitatively compare the full transient
response with the residue contributions of pole singularities
present on the so-called principal or physical Riemann sheet
of integration. The poles are formed by zeroes of the po-
roelastic Stoneley dispersion equation, i.e., the pseudo-
Stoneley (pSt) and the pseudo-Rayleigh (pR) poles.

We find that the residues of these poles do not necessar-
ily contain all pertinent physical properties of the corre-
sponding pseudo interface waves. Part of them can be cap-
tured by the loop integrals along the branch cuts. Therefore,
it can be erroneous to use only the location of a zero of the
Stoneley dispersion equation on the principal Riemann sheet,
to predict the entire waveform, the propagation velocity, and
attenuation of the corresponding pseudo interface wave.

According to the generally accepted explanation about
the origin of a pseudo interface wave, it originates from a
pole that lies on a nonprincipal Riemann sheet. The influence
of the pole is only indirect in the sense that it causes a local
maximum in the integrand of the Green’s function when its
location is close to the real axis. We find, however, that this
conventional explanation is not necessarily confirmed in the

context of Biot’s theory for poroelasticity. The poles can
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show up on the principal Riemann sheet. For the pSt-pole,
we even show that its presence on the principal Riemann
sheet is not only determined by the contrast in the material
properties, but also by frequency.

Finally, we find that two additional zeroes of the po-
roelastic Stoneley dispersion equation do have physical sig-
nificance due to their residue contributions to the fast com-
pressional wavefront and to the head waves that are radiated
by this wavefront. In the literature the additional poles are,
however, referred to as nonphysical because they are not
related to pseudo interface waves. The poles are comparable

with the P̄-poles known in nonporous elastic solids, Refs. 38
and 4. Depending on the specific material parameters and
frequency, they can be present on the principal Riemann
sheet or on another one.
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APPENDIX A: TRANSFORM-DOMAIN RESPONSE

In this Appendix, we derive the �p ,x3 ,��-domain solu-
tion to Eqs. �5�, �6�, and �9�–�14�. Many of the involved
symbols are explained in Table III.

The general solution to the acoustic wave equation �Eq.
�9�� in the �p ,x3 ,��-domain can be readily found by apply-
ing the Fourier transform �Eqs. �15� and �16�� and solving

TABLE III. Symbols used in Appendix A The various indices are defined as
j= �P1 , P2 ,F ,S�, k= �P1 , P2�, and �= �P1 , P2 ,S�. Behind a number of defini-
tions, references are displayed where the specific expressions originate from.

�̂11 = �11− ib̂ /� Ref. 23

�̂22 = �22− ib̂ /� Ref. 23

�̂12 = �12+ ib̂ /� Ref. 23
d0 = �̂11�̂22− �̂12

2 Ref. 23
d1 = −�R�̂11+ P�̂22−2Q�̂12� Ref. 23
d2 = PR−Q2 Ref. 23
sk

2 = �−d1� �d1
2−4d0d2�1/2� / �2d2� , Im�sk��0 Ref. 23

sS
2 = d0 / �G�̂22� , Im�sS��0 Ref. 23

sF
2 = �F /KF

p = �p1
2+ p2

2�1/2
0
qj = �sj

2− p2�1/2 , Im�qj��0

�̂k = −��̂11− Psk
2� / ��̂12−Qsk

2� Ref. 23

�̂S = −�̂12 / �̂22 Ref. 23
A� = A− �1−��Q /� Ref. 12
Q� = Q− �1−��R /� Ref. 12

Hk = Q+R�̂k Ref. 12

Kk = A�+Q��̂k+2G Ref. 12

�� = 1−�+��̂� Ref. 12
�1 = sP2

2 HP2−sP1
2 HP1

�2 = qP1sP2
2 HP2−qP2sP1

2 HP1

�3 = −4p4��̂22
−1�qP1sP1

2 HP1−qP2sP2
2 HP2�+4p2qSqP1qP2��̂22

−1�1

+2p2sS
2�qP1��P1+�d2

−1HP1KP2�−qP2��P2+�d2
−1HP2KP1��

−sS
2G−1�qP1�P1sP2

2 KP2−qP2�P2sP1
2 KP1�
the obtained ordinary differential equation. The result is
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p̃F = i��FÃF exp�+ i�qFx3�, x3 � 0, �A1�

where ÃF is the complex plain-wave amplitude of the fluid
�F� wave and qF= �sF

2 − p2�1/2 is the vertical slowness. It con-
tains the wave slowness sF and the magnitude of the hori-
zontal slowness p that are defined in Table III.

The general solution to the Biot equations �Eqs. �5� and
�6�� can be derived by applying Helmholtz decomposition in
the �x ,��-domain to these equations, according to12,23

û = ��̂P1 + ��̂P2 + � � �̂, �A2�

Û = �̂P1 � �̂P1 + �̂P2 � �̂P2 + �̂S � � �̂, �A3�

where �̂P1 and �̂P2 denote the scalar potentials for the fast

�P1� and slow �P2� compressional waves, respectively, and �̂

denotes the shear-wave �S� vector potential. �̂P1, �̂P2, and �̂S

are the well-known fluid-solid �frame� amplitude ratios23 for
the separate body wavemodes �Table III�.

Applying the Helmholtz decomposition, the governing
equations are decoupled and once the spatial Fourier trans-
form �Eq. �16�� is applied, the decoupled equations turn into

ordinary differential equations for �̃P1 and �̃P2, and �̃ that
can be solved separately. The general solution for the dis-
placements is obtained by adding the separate contributions
according to Eqs. �A2� and �A3�. When the shear-wave term
is split into a vertically polarized �SV� and a horizontally
polarized �SH� part, the result for the wave vector w̃
= �ũ1 , ũ2 , ũ3 ,−�p̃f�T can be written as

w̃ = �
p1 p1 qS

p1

p
sS

2 p2

p2

p2 p2 qS
p2

p
− sS

2 p1

p2

qP1 qP2 − p 0

− i�sP1
2 HP1 − i�sP2

2 HP2 0 0

�
��

ÃP1 exp�− i�qP1x3�

ÃP2 exp�− i�qP2x3�

ÃSV exp�− i�qSx3�

ÃSH exp�− i�qSx3�
�, x3 � 0. �A4�

Next to the solid displacements ũ, the wave vector w̃ con-
tains the fluid pressure p̃f rather then the fluid displacements

Ũ because the four components of w̃ describe the wave field
totally: there are only four independent variables, see Ref.

40. In Eq. �A4�, ÃP1, ÃP2, ÃSV, and ÃSH denote the complex
plain-wave amplitudes of the corresponding body wave-
modes. In Table III, the vertical slownesses qP1, qP2, and qS

are defined �together with qF�, as well as the fluid compress-
ibility terms HP1 and HP2.

The body-wave slownesses have Im�sj��0 and Som-
merfeld’s radiation condition requires that Im�qj��0 for all

body modes, j= �P1 , P2 ,F ,S�.

J. Acoust. Soc. Am., Vol. 127, No. 4, April 2010 van D

 30 Jul 2010 to 131.180.130.114. Redistribution subject to ASA licens
The complex plane-wave amplitudes are determined by
the boundary conditions at the interface x3=0. Applying the
transforms �Eqs. �15� and �16�� to the boundary conditions
�Eqs. �10�–�14�� and substituting the wave fields �Eqs. �A1�
and �A4��, the following set of equations is obtained

�
2Gp2 − sP1

2 KP1 2Gp2 − sP2
2 KP2 0 2GpqS 0

sP1
2 HP1 sP2

2 HP2 − ��F 0 0

qP1�P1 qP2�P2 qF − p�S 0

2pqP1 2pqP2 0 sS
2 − 2p2 +

p2

p1p
qSsS

2

2pqP1 2pqP2 0 sS
2 − 2p2 −

p1

p2p
qSsS

2
�

��
ÃP1

ÃP2

ÃF

ÃSV

ÃSH

� = �
F̂

i�

0

0

0

0

� , �A5�

which is similar to that in Ref. 12, but extended to three
dimensions. The constrained moduli KP1 and KP2 are defined
in Table III. The solution is calculated analytically using
MAPLE

©:

ÃP1 =
− F̂

i�G�1�St
���FqP2�sS

2�P2 − 2p2��̂22
−1sP2

2 HP2�

+ qF�sS
2 − 2p2�sP2

2 HP2� ,

ÃP2 =
F̂

i�G�1�St
���FqP1�sS

2�P1 − 2p2��̂22
−1sP1

2 HP1�

+ qF�sS
2 − 2p2�sP1

2 HP1� ,

ÃF =
F̂

i�G�1�St
��qP1�P1sP2

2 HP2 − qP2�P2sP1
2 HP1�

� �sS
2 − 2p2� + 2p2�2�S� ,

ÃSV =
2pF̂

i�G�1�St
��2�F�̂22

−1qP1qP2�1 + qF�2� , �A6�

and ÃSH=0. Here, the “poroelastic Stoneley-wave denomina-
tor” �see Sec. III� is defined as

�St = qF�R + ��F�3/�1, �A7�

which is associated with interface waves along the fluid/
poroelastic-medium interface. It is very similar to the
“Scholte-wave denominator” for a fluid/elastic-solid
interface,27 and equivalent to the one as given by Denneman
et al.41 It contains the “poroelastic Rayleigh-wave denomi-
nator” that is associated with interface waves along a
vacuum/poroelastic-medium interface

�R = �sS
2 − 2p2�2 + 4p2qS�2/�1, �A8�

which is very similar to the one for a vacuum/elastic-solid
4,31
interface.
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Now the plain-wave amplitudes are known, the
�p ,x3 ,��-domain solution to Eqs. �5�, �6�, and �9�–�14� is
determined and given by Eqs. �A1� and �A4�.

APPENDIX B: INVERSE FOURIER INTEGRAL

In this Appendix, we show how Eq. �19� can be written
in terms of a single integral according to Eq. �20�, following
Ref. 4. Transforming Eq. �19� to cylindrical coordinates ac-
cording to p1= p cos �, p2= p sin �, and x1=r cos �, x2

=r sin �, where r= �x1
2+x2

2�1/2, it can be written as

ĝ+ =
�2

�2��2�
0

	 �
0

2� ñ+�p,�,x3,��
�St

�exp�− i�pr cos�� − ���pd�dp . �B1�

The �-dependence of ñ+ can be replaced by �horizontal�
partial-derivative operators ��, �= �1,2�, since the factors p�

that appear in ñ+ �see Eqs. �A4� and �17�� correspond to
horizontal derivatives �−i�p�↔��� in the �x ,��-domain.
Therefore, ñ+�p ,� ,x3 ,�� is defined such that it contains the
appropriate derivative operators according to

ĝ+ =
�2

�2��2�
0

	 ñ+�p,��,x3,��
�St

��
0

2�

exp�− i�pr cos�� − ���d�pdp

=
�2

2�
�

0

	 ñ+�p,��,x3,��
�St

J0��pr�pdp , �B2�

where we used the integral representation of the zeroth-order
Bessel function J0�¯ �, see Ref. 42. The Bessel function is
replaced by the sum of two zeroth-order Hankel functions of
the first and second kinds,42 i.e., J0�z�= 1

2 �H0
�1��z�+H0

�2��z��.
Using the equality H0

�1��z�=−H0
�2��−z� and the evenness of the

�p ,x3 ,��-domain Green’s functions in p, Eq. �B2� can be
written as

ĝ+ =
�2

4�
�

−	

	 ñ+�p,��,x3,��
�St

H0
�2���pr�pdp , �B3�

where the horizontal derivatives are applied to the Hankel
function before the integration is performed, according to

��H0
�2���pr� = − �p

x�

r
H1

�2���pr� . �B4�
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