

Delft University of Technology

Cluster-based flow control in hybrid software-defined wireless sensor networks

Liu, Qingzhi; Cheng, Long; Alves, R.C.A.; Alves, Renan; Ozcelebi, Tanir; Kuipers, Fernando; Xu, Guixian ;
Lukkien, Johan; Chen, Shanzhi
DOI
10.1016/j.comnet.2020.107788
Publication date
2021
Document Version
Final published version
Published in
Computer Networks

Citation (APA)
Liu, Q., Cheng, L., Alves, R. C. A., Alves, R., Ozcelebi, T., Kuipers, F., Xu, G., Lukkien, J., & Chen, S.
(2021). Cluster-based flow control in hybrid software-defined wireless sensor networks. Computer
Networks, 187, Article 107788. https://doi.org/10.1016/j.comnet.2020.107788

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.comnet.2020.107788
https://doi.org/10.1016/j.comnet.2020.107788

Computer Networks 187 (2021) 107788

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Cluster-based flow control in hybrid software-defined wireless sensor
networks✩

Qingzhi Liu a,∗, Long Cheng b, Renan Alves c, Tanir Ozcelebi d, Fernando Kuipers e, Guixian Xu f,
Johan Lukkien d, Shanzhi Chen g

a Information Technology group, Wageningen University & Research, The Netherlands
b School of Control and Computer Engineering, North China Electric Power University, China
c Universidade de São Paulo, Brazil
d Interconnected Resource-aware Intelligent Systems (IRIS) group, Eindhoven University of Technology, The Netherlands
e Embedded and Networked Systems group, Delft University of Technology, The Netherlands
f Electrical Engineering Department, Tampere University, Finland
g State Key Laboratory of Wireless Mobile Communications, China Academy of Telecommunication Technology, China

A R T I C L E I N F O

Keywords:
Software-defined wireless sensor networks
Hybrid SDN
Flow control
Network cluster
Multi-hop communication

A B S T R A C T

Software-defined networking (SDN) is a cornerstone of next-generation networks and has already led to
numerous advantages for data-center networks and wide-area networks. However, SDN is not widely adopted
in constrained networks, such as Wireless Sensor Networks (WSN), due to excessive control overhead, lossy
medium, and in-band control channels. Therefore, a key challenge to enable Software-Defined Wireless Sensor
Networks (SD-WSN) is to reduce the number of control messages required to configure the data plane. In
this paper, we propose a cluster-based flow control approach in hybrid SDNs. Our approach is hybrid in the
sense that it takes advantage of distributed legacy routing and centralized SDN routing. In addition, it makes
a trade-off between the granularity of flow control and the communication overhead induced by the SDN
controller. The approach partitions a network into clusters with minimum number of border nodes. Instead of
handling the individual flows of each node, the SDN controller only manages incoming and outgoing traffic
flows of clusters through border nodes, while the flows inside each cluster are controlled by a distributed legacy
WSN routing algorithm. Our proof-of-concept implementations in both software and hardware show that our
approach is efficient with respect to reducing the number of nodes that must be managed and the number
of control messages. In comparison to benchmark solutions with and without clustering, our solution reduces
communication costs for flow configuration in an SD-WSN at least by 27% and at most by 88% respectively,
without degrading packet delay nor delivery rate.
1. Introduction

Software-Defined Networking (SDN), in comparison to traditional
networking, provides improved flexibility and reduced complexity
when it comes to flow management [2,3]. Given the advantages and
large-scale adoption of SDN within data-center networks and wide-area
networks, a logical question is whether the same advantages can be
expected when SDN is introduced within a wireless sensor network
(WSN) [4]. However, most SDN research is focusing on wired networks,

✩ An earlier 8-page version (Liu et al., 2019, [1]) of this paper was presented at the IEEE Wireless Communications and Networking Conference (WCNC), April
2019. Compared to the earlier version, we have (1) restructured and rewritten the entire paper; (2) redefined our proposed system model; (3) provided examples
plus a mathematical proof w.r.t. the performance of our clustering algorithm; (4) performed five additional novel experiments that demonstrate the efficacy of
our solution; (5) extended the related work section; and (6) added a section about future work.
∗ Corresponding author.

and only a few initiatives have attempted to extend the benefits of SDN
to the wireless domain [5,6].

A WSN typically consists of resource-constrained sensor nodes for
monitoring the physical conditions of the environment, while the SDN
paradigm provides a simple and flexible control approach to commu-
nication networks [7]. The confluence of these techniques is called
Software-Defined Wireless Sensor Networks (SD-WSNs) [8–10]. Fig. 1
illustrates a generic architecture of a SD-WSN. In that architecture, the
vailable online 5 January 2021
389-1286/© 2021 The Authors. Published by Elsevier B.V. This is an open access a

E-mail address: qingzhi.liu@wur.nl (Q. Liu).

https://doi.org/10.1016/j.comnet.2020.107788
Received 9 July 2020; Received in revised form 1 December 2020; Accepted 29 De
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

cember 2020

http://www.elsevier.com/locate/comnet
http://www.elsevier.com/locate/comnet
mailto:qingzhi.liu@wur.nl
https://doi.org/10.1016/j.comnet.2020.107788
https://doi.org/10.1016/j.comnet.2020.107788
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2020.107788&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Computer Networks 187 (2021) 107788Q. Liu et al.
Fig. 1. Architecture of a Software-Defined Wireless Sensor Network (SD-WSN).

sensor nodes only perform packet forwarding, while all the control-
plane operations, such as flow routing [11], Quality-of-Service (QoS)
control [12], and load balancing [13], are performed by a logically
centralized controller. Compared to the distributed control of a WSN,
an SDN controller is able to manage and optimize WSN performance,
such as energy consumption and communication flow, based on a
global view of the entire network.

To implement an SD-WSN, the SDN architecture for wired networks
must be mapped to WSN, which involves several difficulties:

• To achieve fine-grained flow control granularity, most existing
SDN architectures require frequent message exchange between
the data plane and the control plane [14]. Although this over-
head is often acceptable in wired networks, the case for WSN is
different. In a WSN, the control and data flows share the same
wireless channel. Given that most wireless channels have limited
bandwidth (in comparison to wired networks), the SDN control
flows may significantly interfere with the data flows. For example,
a burst of control packets requesting new flow table entries could
stress the available wireless bandwidth.

• Nodes in an SD-WSN cannot completely decouple the data plane
and control plane. In a typical SD-WSN architecture, the nodes
and SDN controllers do not have wired connections. They trans-
mit data via multi-hop wireless communication. Therefore, the
nodes have to maintain a distributed local routing table for find-
ing the SDN controller and receiving routing commands.

The observations above imply that the SDN architecture in wired
networks cannot directly be applied to a WSN. Instead, to take advan-
tage of the concept of SDN within a WSN, we need to balance the
benefits and the communication overhead of SDN. Compared with a
pure SDN paradigm, a hybrid SDN contains a mix of centralized SDN
control and legacy network control, and thus shows the benefits of
both paradigms [15–17]. Therefore, we aim to leverage hybrid SDN
solutions to solve the above difficulties.

In this paper, we propose a cluster-based flow control approach
called CluFlow. CluFlow is a hybrid SDN solution. It takes advantage
of distributed legacy WSN routing and centralized SDN routing. Mean-
while, it makes a trade-off between the granularity of flow control
and the communication overhead induced by the SDN controller. The
properties of CluFlow are twofold. Firstly, CluFlow adopts network
clustering to control traffic flows on the cluster level instead of at
the level of individual nodes, which decreases the number of nodes
and messages that are involved in flow control within an SD-WSN.
Secondly, CluFlow makes SDN control work in parallel with distributed
routing. The nodes inside the clusters use only distributed local routing
and do not need to request flow table entries from the SDN controller.
The communication delay caused by requesting flow table entries there-
fore decreases. Compared with existing SD-WSN solutions [18], the
novelty of CluFlow is in two aspects. Firstly, we propose a solution for
2

SD-WSN that combines centralized SDN-based routing among clusters
and distributed legacy routing inside clusters. Secondly, to the best of
our knowledge, this is the first work that partitions a network into
clusters with minimum cluster border nodes.

In this paper, we realize the proposed design and provide the
following main contributions:

• We take a graph-theoretic approach for clustering the network
with the goal of minimizing the number of border nodes. The SDN
controller manages communication by monitoring and controlling
the border nodes of clusters.

• We propose a priority scheme to coordinate legacy WSN routing
and SDN control, where cluster-level routing performed by the
SDN controller has a higher priority than legacy routing. This
hierarchical routing decreases the communication overhead of
SDN control in WSNs.

• We implement an SD-WSN in simulation and real deployments,
in which SDN control operates together with legacy distributed
routing protocols.

This paper is organized as follows. The system model is presented
in Section 2. Our solution of cluster-based flow control for hybrid
SD-WSNs is addressed in Section 3. The simulation and hardware ex-
periments are presented in Section 4 and the related work is discussed
in Section 5. The future research directions are discussed in Section 6.
Finally, we conclude this article in Section 7.

2. System model

We represent the network as an undirected graph 𝐺 = (𝑉 ,𝐸), in
which 𝑉 = {𝑣1,… 𝑣𝑖,… 𝑣𝑛} represents the set of 𝑛 = |𝑉 | nodes and
𝐸 = {𝑒1,… 𝑒𝑗 ,… 𝑒𝑚} represents the set of 𝑚 = |𝐸| edges. The nodes
in the network transmit data via multi-hop communication. The nodes
that share an edge are called neighbors. Suppose the set of nodes 𝑉
is partitioned into clusters 𝐶 = {𝑐1,… 𝑐𝑘,… 𝑐𝑢} with 𝑢 = |𝐶|, we make
the following system assumptions with respect to our cluster-based flow
control solution:

• We assume that there is one central SDN controller that is re-
sponsible for partitioning the network (in practice this could be
multiple logically centralized controllers). Each node in the WSN
reports its neighbor connectivity to the SDN controller. The SDN
controller builds the WSN topology and partitions the network.

• Our solution targets a static network topology. Once the topology
of the WSN changes, the nodes would report the new connectivity
to the controller, and the controller would re-partition the new
topology into clusters.

Cluster Head Nodes: To set the number and position of clusters,
we specify cluster head nodes {ℎ1,…ℎ𝑘,…ℎ𝑢}, in which 𝑢 is the total
number of clusters. Each head node must reside in a cluster. We require
that {ℎ1,…ℎ𝑘,…ℎ𝑢} are disconnected, which means there are no edges
connecting any pair of cluster head nodes.

Cluster Border Nodes: If node 𝑣𝑖 belongs to cluster 𝑐𝑘 and one of its
neighbor nodes belongs to another cluster, then we call 𝑣𝑖 as a border
node of cluster 𝑐𝑘. We refer to all the border nodes of cluster 𝑐𝑘 as node
set 𝑏𝑘.

3. Flow control in hybrid SD-WSNs

In this section, we present the design of CluFlow, including the
solution overview, an algorithm for minimizing the number of border

nodes, and a protocol for cluster-based SDN control.

Computer Networks 187 (2021) 107788Q. Liu et al.
Fig. 2. Cluster-based flow control in a hybrid SD-WSN.

3.1. Solution overview

In the design of CluFlow, centralized SDN control and decentralized
legacy routing control coexist in the WSN. On the one hand, each
WSN node operates legacy routing protocols. On the other hand, an
SDN controller partitions the network to clusters and controls the
communication flow among clusters. Specifically, the SDN controller
sets routing rules at the cluster border nodes, which is called cluster-
level routing, e.g. forward data flow from cluster 𝑐𝑖 to cluster 𝑐𝑗 . In this
condition, both legacy routing protocols and SDN routing control are
performed in the border nodes.

To coordinate the hybrid routing control, we require the cluster-
level routing rules to have higher priority than the local routing rules
in the border nodes. For example, suppose 𝑣𝑖 and 𝑣𝑗 are two cluster
border nodes, and have a linked edge. 𝑣𝑖 ∈ 𝑐𝑖 and 𝑣𝑗 ∈ 𝑐𝑗 .

• If the cluster-level routing rule allows forwarding packets from
𝑐𝑖 to 𝑐𝑗 , and the local routing of 𝑣𝑖 is ‘‘forwarding packets to
𝑣𝑗 ’’, then it means the local routing rule fulfills the cluster-level
routing rule. Thus 𝑣𝑖 is allowed to execute local routing.

• If the cluster-level routing rule prohibits forwarding packets from
𝑐𝑖 to 𝑐𝑗 , then it means the local routing rule conflicts with the
cluster-level routing rule. Thus node 𝑣𝑖 removes the route to 𝑣𝑗
from its local routing table.

An example of cluster-level flow control is shown in Fig. 2. Suppose
the distributed routing from 𝑣1 to the SDN controller is 𝑣1 → 𝑣2 → 𝑣3 →
𝑣4 → 𝑣5, as shown in Fig. 2(a). To use the cluster-level flow control,
the network is partitioned into four clusters 𝑐1, 𝑐2, 𝑐3, 𝑐4 as shown in
Fig. 2(b). The SDN controller sets the cluster-level routing rules in the
border nodes of each cluster. The cluster-level routing rules are: (i)
traffic flows between 𝑐1 and 𝑐2, 𝑐1 and 𝑐3, 𝑐2 and 𝑐4 are allowed; (ii)
traffic flow between 𝑐3 and 𝑐4 is prohibited. So the routing from 𝑣1 to 𝑣2
does not fulfill the cluster-level routing, hence it is blocked. Thereafter,
the border nodes of 𝑐4 and 𝑐3 rebuild their local routing tables. Finally,
the route from 𝑣1 to the SDN controller becomes 𝑣1 → 𝑣6 → 𝑣7 → 𝑣8 →
𝑣9 → 𝑣5.

Based on the analysis above, we found that it is feasible to control
the cluster-level data flow by cluster border nodes. This hybrid SD-WSN
control brings benefits to the following perspectives.

• Easy deployment: Only a limited number of WSN devices, i.e. clus-
ter border nodes, need to install SDN control software, which
largely reduces the deployment time and cost.

• Fault tolerance: The operation of legacy routing protocols and
the cluster-level control are decoupled. If the SDN control flow
is congested or the controller has a failure, the WSN devices can
still use distributed legacy routing protocols to control data flow.
3

Fig. 3. Use cluster border nodes for controlling the flow of clusters. The network
topology of Fig. (a), (b), and (c) are identical. The network is partitioned to clusters
𝑐1, 𝑐2, 𝑐3, and 𝑐4.

• High scalability: The communication overhead caused by the SDN
controller is scalable, which can be tuned by controlling the size
of clusters.

However, the existing network clustering solutions cannot optimally
partition the network and control the cluster border nodes for two
reasons.

• Firstly, monitoring and controlling the cluster border nodes of all
the clusters would cause replicated operations. For example, the
network in Fig. 3(a) is partitioned into four clusters 𝑐1, 𝑐2, 𝑐3 and
𝑐4. In these clusters, the incoming flow to 𝑐1 equals the sum of the
outgoing flow from 𝑐2 to 𝑐1 and from 𝑐3 to 𝑐1. Therefore, there is
no need to monitor all the cluster border nodes of 𝑐1. Instead,
we only need to monitor the cluster border nodes of 𝑐2 and 𝑐3 as
shown in Fig. 3(b).

• Secondly, fewer border nodes means less control flow with the
SDN controller. For example, the number of cluster border nodes
in Fig. 3(c) is smaller than Fig. 3(b). Although there are various
methods for partitioning a network into clusters, to the best of
our knowledge, there is no one suitable for our SD-WSN solution.

To cope with these problems, we present our approach to partition
the network to clusters with a minimum number of cluster border nodes
in the next section.

3.2. Minimize cluster border nodes

3.2.1. Problem definition
We formally define the problem of clustering with a minimum

number of cluster border nodes as follows. Name the set of network
nodes excluding the cluster head nodes in 𝐺 = (𝑉 ,𝐸) as 𝛩. Define 𝑅
as a set of nodes in 𝛩. We require that the network 𝐺 is partitioned

Computer Networks 187 (2021) 107788Q. Liu et al.
Fig. 4. Partition a network into two clusters.

into clusters after removing all the nodes in 𝑅, such that each cluster
contains a cluster head node and any two clusters do not share a single
edge. The aim is to select 𝑅 in 𝛩 with minimum |𝑅|. The problem is
expressed as

𝐎𝐛𝐣𝐞𝐜𝐭𝐢𝐯𝐞 ∶ 𝑀𝑖𝑛 |𝑅|

𝐒𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨 ∶ (ℎ𝑘 ⊂ 𝑐𝑘) ∧ (𝑅 ⊂ 𝛩)
(1)

The problem above is a variant of the 𝑘-way node separators (NS)
problem, which is known to be NP-hard for general graphs [19] and for
which heuristic algorithms, e.g. [20], have been proposed. However, 𝑘-
way NS algorithms cannot directly be used for our variant. Because, to
manage the flow of a SD-WSN, besides requiring to minimize the num-
ber of separator/border nodes, the solution must have the following
properties:

• The computational complexity must be small to enable the SDN
controller to quickly find cluster border nodes after any network
changes.

• The sizes of the partitioned clusters do not need to be balanced.
We only require that each cluster head node resides in a cluster.

3.2.2. Algorithm
We propose a light-weight 𝑘-way node separators solution for par-

titioning the network into clusters.

Step I - Partition Network to Clusters. We first introduce a method to
partition a network into two clusters. After that, we extend this method
to multiple clusters.

Two Clusters: Suppose a network is required to be partitioned into
two clusters 𝑐𝑠 and 𝑐𝑡. The cluster head nodes ℎ𝑠 and ℎ𝑡 are required to
be clustered inside 𝑐𝑠 and 𝑐𝑡, respectively. As shown in Fig. 4(a), ℎ𝑠 ⊂ 𝑐𝑠,
ℎ𝑡 ⊂ 𝑐𝑡, and ℎ𝑠 ∪ ℎ𝑡 ∪ 𝛩 = 𝑉 . We solve the problem as follows:

(i) We split each node 𝑣𝑔 of 𝛩 into two nodes 𝑣𝑠𝑔 and 𝑣𝑡𝑔 and connect
them by an edge 𝑒𝑔 . Suppose 𝑣𝑔 has a neighbor node 𝑣𝑓 in 𝛩. If
the hop distance from 𝑣𝑔 to ℎ𝑠 is smaller than from 𝑣𝑓 to ℎ𝑠, then
𝑣𝑔 is the previous hop of 𝑣𝑓 and we connect 𝑣𝑡𝑔 to 𝑣𝑠𝑓 . Otherwise,
we connect 𝑣𝑡 to 𝑣𝑠 . If the hop distance from 𝑣 equals that
4

𝑓 𝑔 𝑔
Fig. 5. An example of redundant cluster border nodes.

from 𝑣𝑓 , we connect 𝑣𝑠𝑓 to 𝑣𝑠𝑔 . If 𝑣𝑔 has a connection with ℎ𝑠, we
connect ℎ𝑠 and 𝑣𝑠𝑔 . If 𝑣𝑔 has a connection with ℎ𝑡, we connect ℎ𝑡
and 𝑣𝑡𝑔 . An example to split nodes is shown in Fig. 4(b).

(ii) Denote the edges except 𝑒𝑔 as 𝑒𝑏 in the new topology. We set
the edge weight of 𝑒𝑔 to 𝑤𝑔 , and the edge weight of 𝑒𝑏 to
𝑤𝑏. The value of 𝑤𝑔 is set to 1. The value of 𝑤𝑏 is set to a
constant value that is larger than the total number of edges 𝑒𝑔 .
After that, we use the Boykov–Kolmogorov Max-Flow-Min-Cut
(MFMC) algorithm [21] to cut the edges of the new topology
from ℎ𝑠 to ℎ𝑡 as shown in Fig. 4(c).

(iii) The cut edges of MFMC represent the split nodes, which form the
node set 𝑅 to partition the network into two clusters, as shown
in Fig. 4(d). The other nodes are separated into two sets 𝑆 and
𝑇 . To form clusters 𝑐𝑠 and 𝑐𝑡, the border nodes 𝑅 combine with
either 𝑆 or 𝑇 . If 𝑅 combines with 𝑆, then 𝑐𝑠 = 𝑆 ∪𝑅 and 𝑐𝑡 = 𝑇 .
If 𝑅 combines with 𝑇 , then 𝑐𝑠 = 𝑆 and 𝑐𝑡 = 𝑇 ∪ 𝑅. The border
nodes 𝑅 are used to monitor and control the flow between the
two clusters 𝑐𝑠 and 𝑐𝑡.

Multiple Clusters: Assume we have cluster head nodes
{

ℎ1,… ,
ℎ𝑖, ℎ𝑗 ,…ℎ𝑞

}

with 𝑖, 𝑗 ∈ [1, 𝑞]. Based on the method for partitioning two
clusters, we partition the network into multiple clusters as follows:

(i) Partition clusters between ℎ𝑖 and the other cluster head node
{

ℎ𝑗 |𝑗 ∈ [1, 𝑞], 𝑗 ≠ 𝑖
}

by the method for partitioning two clusters.
Name 𝑐𝑗𝑖 and 𝑐𝑖𝑗 as the partitioned clusters containing ℎ𝑖 and ℎ𝑗 ,
respectively. The border nodes between 𝑐𝑗𝑖 and 𝑐𝑖𝑗 is 𝑅𝑗

𝑖 .
(ii) Calculate the intersection set of

{

(𝑐𝑗𝑖 ∪ 𝑅𝑗
𝑖)|𝑗 ∈ [1, 𝑞], 𝑗 ≠ 𝑖

}

as
𝜑𝑖 =

⋂

𝑗∈[1,𝑞],𝑗≠𝑖 (𝑐
𝑗
𝑖 ∪ 𝑅𝑗

𝑖). We use 𝜑𝑖 as cluster 𝑐𝑖.
(iii) Remove 𝜑i from the network 𝐺. Repeat (i) to (iii) for each cluster

head node until all clusters are partitioned.

Step II - Optimize Border Nodes. The intersection set 𝜑𝑖 in Step I is
non-optimized. Therefore, we optimize the border nodes of 𝜑𝑖 in this
step.

For example, as shown in Fig. 5(a), we cluster the network into
𝑐1, 𝑐2 and 𝑐3 via Step I. Assume the cluster border nodes between
𝑐1 and 𝑐2 are {𝑣3, 𝑣5, 𝑣8, 𝑣9}, and the cluster border nodes between 𝑐1
and 𝑐3 are {𝑣2, 𝑣3, 𝑣4, 𝑣6, 𝑣7}. The intersection set between 𝑐21 and 𝑐31
becomes cluster 𝑐1 with border nodes {𝑣2, 𝑣3, 𝑣4, 𝑣5}. Although we select
the minimum number of border nodes for 𝑐21 and 𝑐31 , respectively, the
intersection area between 𝑐21 and 𝑐31 is not optimized. As shown in
Fig. 5(b), 𝑣1 can replace {𝑣2, 𝑣3} and the border nodes of 𝑐1 become
{𝑣1, 𝑣4, 𝑣5}, which further decreases the number of border nodes in 𝑐1.

Proposition 1. Suppose 𝑏𝑖 is the set of border nodes in cluster 𝑐𝑖. Name
𝛿𝑖 as the subset of 𝑐𝑖 − 𝑏𝑖, in which each node has at least a neighbor in 𝑏𝑖.
The minimum vertex cover (MVC) of 𝑏𝑖 ∪ 𝛿𝑖 is an alternative to the border
nodes 𝑏 for controlling the incoming and outgoing flow of cluster 𝑐 .
𝑖 𝑖

Computer Networks 187 (2021) 107788Q. Liu et al.
Fig. 6. An example of an alternative to the border nodes for controlling the incoming
and outgoing flow of a cluster.

Proof. Name the set of edges in 𝑏𝑖 ∪ 𝛿𝑖 as 𝑍𝑒
𝑖 . Name the set of edges

with one endpoint in 𝑏𝑖 and another endpoint in 𝛿𝑖 as 𝐾𝑒
𝑖 . Based on the

property of MVC, each edge in 𝑍𝑒
𝑖 has at least one endpoint in the MVC

nodes of 𝑏𝑖 ∪𝛿𝑖. Thus monitoring the flows of the MVC nodes belonging
to 𝑏𝑖∪𝛿𝑖 can capture all the flows in 𝑍𝑒

𝑖 . 𝐾𝑒
𝑖 is a subset of 𝑍𝑒

𝑖 . Therefore,
monitoring the flows of the MVC nodes belonging to 𝑏𝑖 ∪ 𝛿𝑖 can capture
all the flows in 𝐾𝑒

𝑖 . Assume the data source and sink nodes of cluster
𝑐𝑖 are not in 𝑏𝑖. In this condition, all the flows of 𝑐𝑖 passes the edges
in 𝐾𝑒

𝑖 . Therefore, monitoring the flows of the MVC nodes belonging to
𝑏𝑖∪𝛿𝑖 can capture all the flows of cluster 𝑐𝑖. This means the MVC nodes
of 𝑏𝑖 ∪ 𝛿𝑖 can be used as an alternative set of border nodes to 𝑏𝑖. □

An example of the proposition is shown in Fig. 6. Suppose a network
is partitioned to clusters 𝑐1 and 𝑐2, and node set 𝑏2 = {𝑣1, 𝑣2, 𝑣3, 𝑣4}
are the border nodes of 𝑐2 as shown in Fig. 6(a). In 𝑐2, the neighbor
nodes of 𝑏2 are 𝛿2 = {𝑣5, 𝑣6, 𝑣7}, and the edges connected to 𝑏2
are {𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5}. In this condition, we could manage the incom-
ing and outgoing flows of 𝑐2 by controlling the flows on the edges
{𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5} of 𝑏2. At the same time, the MVC nodes of 𝑏2 ∪ 𝛿2
are {𝑣1, 𝑣6, 𝑣7}. We could also manage the incoming and outgoing
flows of 𝑐2 by controlling the flows on the edges {𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5} of
{𝑣1, 𝑣6, 𝑣7} as shown in Fig. 6(b). Therefore, the node set {𝑣1, 𝑣6, 𝑣7} is
an alternative to 𝑏2 for controlling the incoming and outgoing flow of
cluster 𝑐2.

Based on the analysis above, for optimizing the border nodes of
a cluster, we calculate MVC on 𝑏𝑖 ∪ 𝛿𝑖 as 𝜆𝑖. Then, we use 𝜆𝑖 as an
alternative to the cluster border nodes 𝑏𝑖 selected by Step I. Because
𝜆𝑖 is not necessarily smaller than 𝑏𝑖, we finally select the smaller set
between 𝑏𝑖 and 𝜆𝑖 as the border nodes of cluster 𝑐𝑖.

3.3. Cluster-based flow control

In this section, we analyze the computational complexity of our
clustering solution, and present an SDN control protocol based on the
cluster-level control.

3.3.1. Computational complexity

The solution for partitioning networks with a minimum number of
border nodes is shown in Alg. 1.

In Step I, we utilize a Max-Flow-Min-Cut (MFMC) method to parti-
tion a network into two clusters. In our implementation, we chose the
Boykov–Kolmogorov MFMC algorithm with a worst-case complexity
of 𝑂(𝑚𝑛2|𝐶𝑜𝑠𝑡|), in which |𝐶𝑜𝑠𝑡| is the sum of the costs of boundary
edges [21]. Then we extend this method from partitioning two clusters
5

Algorithm 1: Clustering with Minimum Border Nodes
1 for Each ℎ𝑖 in 𝐺 do
2 for Each ℎ𝑗 (𝑗 ≠ 𝑖) in 𝐺 do
3 for Each node 𝑣𝑔 in 𝛩 do
4 Split into two nodes 𝑣𝑠𝑔 and 𝑣𝑡𝑔 .

5 Connect 𝑣𝑠𝑔 to previous hop.
6 Connect 𝑣𝑡𝑔 to next hop.
7 Set edge weight of 𝑒𝑔 to 𝑤𝑔 and others to 𝑤𝑏.
8 Make MFMC from ℎ𝑠 to ℎ𝑡.
9 Calculate 𝜑𝑖 as cluster 𝑐𝑖.
10 Use 𝜑𝑖 as 𝑐𝑖 and remove 𝜑𝑖 from 𝐺.
11 for Each 𝑐𝑖 do
12 Calculate MVC on 𝑏𝑖 ∪ 𝛿𝑖 as 𝜆𝑖.
13 Select Min

{

|

|

𝑏𝑖||, ||𝜆𝑖||
}

as the border nodes of 𝑐𝑖.

Fig. 7. Sequential diagram of CluFlow in SD-WSN.

to multiple clusters. Its complexity becomes 𝑂(𝑚𝑛2|𝐶𝑜𝑠𝑡||𝐶|

2), in which
|𝐶| is the number of clusters.

In Step II, we optimize border nodes based on a solution to the Min-
imum Vertex Cover (MVC) problem [22]. Although the MVC problem
is NP-complete, its calculation is only performed on a small number of
cluster border nodes.

3.3.2. Communication protocol
The main protocol of cluster-based flow control in SD-WSN is shown

in Fig. 7. The protocol has three phases. In the first phase, each
network node sends neighbor connectivity information local-links
to the controller. The controller builds the topology of the network
based on the received neighbor connectivity information and partitions
the network into clusters using the algorithm in Section 3.2. Then
the controller sends a set-border command to the selected clus-
ter border nodes. The network nodes that receive the set-border

Computer Networks 187 (2021) 107788Q. Liu et al.
Fig. 8. An example of SD-WSN flow table that could be used for CluFlow.

Fig. 9. An example of CluFlow protocol execution. The network is partitioned into
four clusters with various colors. The gray nodes represent cluster border nodes.

command set themselves as cluster border nodes. In the second phase,
the cluster border nodes send local flow information flow-report to
the controller. The controller calculates the flow among clusters based
on the aggregated flow information. In the third phase, the controller
checks whether it needs to update the cluster-level route based on
the flow among clusters, and sends cluster-level-routes to the
cluster border nodes as needed.

CluFlow can be deployed as a network management service, which
is connected to the SDN northbound APIs [23]. In such a system,
CluFlow requests network information, including neighbor connectivity
and data flow of each node, from the SDN controller. At the same
time, the SDN controller interacts with the forwarding plane of WSN
nodes through southbound APIs of communication protocols. In this
way, the SDN controller adds and adjusts routing entries in the internal
flow-table of cluster border nodes. To control cluster-level flow, SDN
controllers configure the action of cluster border nodes mainly through
two actions, i.e., forwarding packets to a destination or dropping
packets of a source.

CluFlow is able to work with the standard OpenFlow protocol [14],
but it is not tied to any specific southbound protocol. An example of
OpenFlow-based flow table that could be used for CluFlow is shown in
Fig. 8. For example, the flow table entry could match the IP address of
the source node, the IP address of the destination node, and the ports
of the service. The detailed design about how to translate the routing
policies of CluFlow to flow table entries is implementation-specific, and
will be part of our future work.

Fig. 9 illustrates two examples of how SDN controls the flow among
clusters. In the initialization stage, an SDN controller first gathers topo-
logical information of the WSN to build a local network representation.
After that, the SDN controller calculates the network clustering and
sends control messages to the borders nodes.

• Without Blockage on Border Nodes: Suppose node 𝑣1 requests to
transmit packets to the data sink as shown in Fig. 9(a). In the
first place, node 𝑣 uses local routing to calculate the next hop,
6

1

Fig. 10. Build a cluster-level network based on a partitioned network.

which is node 𝑣2. It should be noted that 𝑣1 does not receive flow
configurations from the SDN controller, because it is not a border
node. At the same time, the SDN controller configures the border
node 𝑣2 to allow traffic flow from 𝑐4 to 𝑐2. In this way, node 𝑣2
forwards the packet from 𝑣1 to 𝑣3. The remainder of the route
from 𝑣1 to the sink node is configured in the same way.

• With Blockage on Border Nodes: Suppose the SDN controller is
requested to re-configure the route from 𝑣1 to the sink node.
Fig. 9(b) shows the new SDN policy. To block traffic from 𝑐4 to
𝑐2, the SDN controller instructs node 𝑣2 to drop packets from 𝑐4 to
𝑐2. Once node 𝑣1 discovers the blockage on 𝑣2, it removes node
𝑣2 from its neighbor node table. After that, 𝑣1 uses distributed
routing in 𝑐4, and builds another route to 𝑣8. At the same time, the
SDN controller configures the border node 𝑣8 to allow traffic flow
from 𝑐4 to 𝑐3. In the same way, the SDN controller re-configures
the remainder of the route from 𝑣1 to the sink node.

4. Experimental setup and results

In this section, we test and evaluate CluFlow in simulation and a real
deployed WSN. Firstly, we examine the validity of Alg. 1 (Section 4.2).
Secondly, we test the practicality of protocol shown in Fig. 8 (Sec-
tion 4.3). Thirdly, we compare the number of border nodes between
CluFlow and the benchmark approaches (Section 4.4 and Section 4.5).
After that, we examine how the search space of clustering affects the
number of cluster border nodes (Section 4.6). Then, we measure the
communication load of CluFlow using real communication protocol
stacks in an SD-WSN simulator (Section 4.7). Finally, we evaluate the
number of border nodes and communication cost in a real deployed
WSN (Section 4.8).

4.1. Benchmark approaches

We compare the performance of CluFlow with the following four
benchmark solutions.

Minimum Vertex Cover Nodes (MVC): This benchmark solution
monitors and calculates the communication flow belonging to the
minimum vertex cover (MVC) nodes in the network. Then we calculate
the flows on the edges based on the incoming and outgoing flows on
the MVC nodes.

Cluster Border Nodes of Voronoi Clustering (CB): Based on clus-
ter head nodes, we partition the network into Voronoi clusters [24].
We monitor the traffic flow of every cluster border node of all the
clusters. The incoming and outgoing flows of the clusters is the sum of
the incoming and outgoing flows of cluster border nodes, respectively.

Cluster Border Nodes of Minimum Vertex Cover Voronoi Clus-
tering (MVC-CB): We first partition the network into Voronoi clusters
using the solution CB. After that, we change the network into a cluster-
level topology as shown in Fig. 10. Specifically, we use a cluster-level

Computer Networks 187 (2021) 107788Q. Liu et al.
Fig. 11. Validity test of cluster border nodes. Every incoming flow of the cluster passes
the cluster border nodes, so that the sum of the incoming flows in all the cluster border
nodes equals the incoming flows of the sink node.

node to represent a cluster. If there exist edges between two clusters
as in Fig. 10.(a), we connect the corresponding cluster-level nodes as
in Fig. 10.(b). Then, we select the MVC clusters in the cluster-level
topology. The border nodes of MVC clusters are used to monitor and
control the communication flow. Finally, we use the flows of MVC
clusters to calculate the flows of the other clusters.

Balanced Graph Partition (METIS): This benchmark solution
adopts the widely used METIS algorithm [25] of balanced network
partitioning. For balanced partitioning problem [26], the objective is
to partition 𝑉 of 𝐺 into 𝑘, (𝑘 > 1) subsets, such that (i) the subsets have
equal size and are disjoint; (ii) the number of edges with endpoints in
two subsets is minimized. METIS only sets the number of clusters, while
does not set the cluster head nodes. We set the key parameters of METIS
as follows. The scheme for partitioning is multilevel 𝑘-way partitioning.
The scheme for computing the initial partitioning is to grow a bisection
using a greedy strategy. Each partitioning subset is contiguous.

4.2. Validity test of cluster border nodes

The purpose of this experiment is to validate that the cluster border
nodes selected by Alg. 1 (Section 3.2) can correctly capture all the
incoming and outgoing flows of clusters. In the experiment, the head
nodes are specified as the sink nodes of each cluster. Each network
node sends packets to all the head nodes. We measure: (i) the total
number of incoming packets received by the head node (named as 𝐼𝑖
in cluster 𝑐𝑖); (ii) the total number of incoming packets received by all
the border nodes of each cluster (named as 𝑂𝑖 in cluster 𝑐𝑖). Then we
compare these two values. If 𝐼𝑖 equals 𝑂𝑖, it means the cluster border
nodes capture all the incoming flow of a cluster. So that, cluster border
nodes selected by Alg. 1 (Section 3.2) can correctly capture all the flows
of clusters. The diagram of the experimental design is shown in Fig. 11.

We implement the experiment in Matlab. The deployment area is
100 m×100 m, and the nodes are randomly deployed. The number
of nodes in the experiments is set to 60, 80, 100, 120, and 140,
respectively. The transmission range of each node is identical within a
single experiment. For different experiments, we reset the transmission
range, which always has an average of 6 nodes within the transmission
range. We assume a perfect wireless channel without packet loss. We
randomly select cluster head nodes in the network. The number of these
head nodes equals to the number of required clusters. These head nodes
are at least 5 hops away from each other. The network is partitioned
into 6 and 9 clusters separately using Alg. 1. The transmission speed of
each node is randomly set in the initialization and constant during the
testing. The routes from each node to the head nodes are built via the
shortest path routing. For every set of testing parameters, including the
number of nodes and clusters, we make 50 rounds of testing.

The experimental results illustrate that 𝐼𝑖 and 𝑂𝑖 are equal in every
cluster for each round of the test. This experiment demonstrates that
the cluster border nodes selected by Alg. 1 can capture all the incoming
and outgoing flows of clusters, which can be used to correctly calculate
the flows among clusters.
7

Fig. 12. Case study of cluster-based flow control by CluFlow. The SDN controller
balances the cluster-level flows (from 𝑐2 to 𝑐1 and from 𝑐3 to 𝑐1) by re-configuring
the cluster-level routes (from 𝑐3 to 𝑐2 and from 𝑐4 to 𝑐2).

4.3. Practicality test of cluster-based flow control

We show the practicality of the protocol shown in Fig. 8 (Sec-
tion 3.3) by controlling the cluster-level traffic flow in a case study.
We implemented the experiment in Matlab. The deployment area is
100 m×100 m, and the nodes are randomly deployed. The network
consists of 200 nodes and is partitioned into 4 clusters. There are
6 nodes on average within the transmission range of each node. We
assume a perfect wireless channel without packet loss. The head node
of 𝑐1 is set as the sink node. Every node of the network sends packets
to the sink via the shortest path routing. The cluster-level topology
and flow without CluFlow control are shown in Fig. 12(a). The time
interval between the present and the next sending time of every node
is uniformly distributed in [1, 8] seconds. The nodes in 𝑐1 and 𝑐3 send
packets of 10 bytes in the whole experiment. The nodes in 𝑐2 and 𝑐4
send packets of 10 bytes before 400 s, and packets of 50 bytes after
400 s. The SDN controller sets cluster-level routing rules to block the
flows between 𝑐2 and 𝑐3, 𝑐2 and 𝑐4 after 600 s, as shown in Fig. 12(b).

The real-time traffic flows from 𝑐2 to 𝑐1 and from 𝑐3 to 𝑐1 are
shown in Fig. 12(c). In the experimental results, the flows from 𝑐2 to
𝑐1 and from 𝑐3 to 𝑐1 are quite unbalanced between 400 s to 600 s.
The main reason is that the traffic generated by the nodes inside 𝑐2
and 𝑐4 increases significantly after 400 s and they all pass through
𝑐2. After 600 s, the flows from 𝑐2 to 𝑐1 and from 𝑐3 to 𝑐1 are better
balanced. The main reason is that the controller resets the cluster-
level routing rules, in which the traffic generated by the nodes inside
𝑐4 are prohibited to pass through 𝑐2. So, the traffic generated by the
nodes inside 𝑐4 must pass through 𝑐3. Compared with using only local
distributed routing, cluster-level SDN control makes the flow from 𝑐2
to 𝑐1 and flow from 𝑐3 to 𝑐1 more balanced. This case study shows the
practicality of cluster-based flow control.

Computer Networks 187 (2021) 107788Q. Liu et al.
Fig. 13. The number of border nodes using CluFlow and the benchmark approaches
MVC, CB, and MVC-CB with 6 clusters and 9 clusters.

4.4. Number of border nodes in unbalanced clustering

We compare the number of cluster border nodes created by Clu-
Flow to the unbalanced clustering solutions MVC, CB, and MVC-CB. A
smaller number of cluster border nodes means fewer communication
costs between nodes and the SDN controller.

In the experiment, the number of nodes in the network is set to 60,
80, 100, 120, and 140, respectively. The network is partitioned into
6 and 9 clusters, respectively. The other settings of the network are
the same as in Section 4.3. For each set of parameters, we make 10
rounds of testing. The experimental results are illustrated in Fig. 13.
The results show that the number of border nodes created by CluFlow
is much smaller than the benchmark approaches. As the total number
of network nodes increases, the percentage of improvement increases,
because the state space for partitioning clusters is larger in larger
networks. In the testing with 140 nodes and 6 heads, CluFlow has 83%,
65%, 34% fewer border nodes than MVC, CB and MVC-CB, respectively.

Compared with MVC and CB, the number of border nodes selected
by MVC-CB is smaller. The main reason is that MVC-CB inherits some
properties of CluFlow, including (i) abstracting the network to cluster-
level topology and (ii) controlling the border nodes of MVC clusters.
But MVC-CB only uses Voronoi cluster partition. So CluFlow, using
cluster partition Alg. 1, has fewer cluster border nodes than MVC-CB.
Meanwhile, as the number of clusters increases from 6 to 9, the number
of cluster border nodes increases in both CluFlow and benchmark
solutions. This means the cost for flow control of cluster border nodes
8

increases as the number of clusters becomes larger.
Fig. 14. The number of border nodes using CluFlow and the balanced cluster
partitioning approach METIS with 6 clusters and 9 clusters.

Fig. 15. The number of cluster border nodes using CluFlow with different sizes of 𝛩.

4.5. Number of border nodes in balanced clustering

We compare CluFlow with balanced clustering solution METIS. To
increase the state space for clustering, we increase the number of net-
work nodes (compared with the experiments in unbalanced clustering)
to 100, 150, 200, 250, and 300. The values of other experimental
parameters are the same as the experiments in unbalanced clustering.

The experimental results are shown in Fig. 14. The number of border
nodes produced by METIS is much higher than CluFlow. In the testing
of 300 nodes, CluFlow has 71% and 68% fewer border nodes than
METIS with 6 and 9 clusters, respectively. The main reason is that
METIS needs to balance the cluster size while minimizing the number of

cut edges, which produces more cluster border nodes. Compared with

Computer Networks 187 (2021) 107788Q. Liu et al.
Fig. 16. The number of flow configuration packets with 6 clusters and 9 clusters in
an SD-WSN. ‘‘All Nodes’’ represents traditional SD-WSN without clustering, in which
all the network nodes communicate with the SDN controller.

METIS, CluFlow aims to minimize the number of border nodes without
requirement on balanced partitioning.

4.6. Search space of cluster border nodes

In this experiment, we observe how the search space of clustering
affects the number of cluster border nodes. 𝛩 is the search space of
cluster border nodes. We set 𝛩 as follows. Firstly, we randomly select
cluster head nodes in the network. These cluster head nodes are at least
8 hops away from each other. Secondly, we make Voronoi clusters in
the network based on the cluster head nodes. Name the border nodes
of all the Voronoi clusters as 𝛩𝑏. Name the nodes that reside outside
𝛩𝑏 and have 1 hop distance to any node in 𝛩𝑏 as 𝛩𝑏1. Name the nodes
that reside outside 𝛩𝑏 and have 2 hop distance to any node in 𝛩𝑏 as
𝛩𝑏2. Finally, we create 𝛩 in the following three scenarios.

• Scenario 1: 𝛩 includes 𝛩𝑏 and 𝛩𝑏1.
• Scenario 2: 𝛩 includes 𝛩𝑏, 𝛩𝑏1, and 𝛩𝑏2.
• Scenario 3: 𝛩 includes all the nodes except the cluster head nodes.

In the three scenarios, the size of 𝛩 in scenario 1 is the smallest, and
the size of 𝛩 in scenario 3 is the largest. We set the number of nodes in
different experiments to 100, 120, 140, 160, and 180, and the number
of clusters to 4. The other settings are the same as in Section 4.3. For
each setup, we perform 10 rounds of testing. The testing results are
shown in Fig. 15. As the size of 𝛩 increases, the number of border
nodes decreases. The main reason is that larger 𝛩 provides a bigger
search space to partition clusters, so that the possibility to find fewer
9

border nodes increases.
Fig. 17. Data delivery rate with 6 clusters and 9 clusters in an SD-WSN. ‘‘All Nodes’’
represents traditional SD-WSN without clustering, in which all the network nodes
communicate with the SDN controller.

4.7. Communication cost

To back up our claim that a smaller number of border nodes leads
to less control traffic, we perform experiments to assess the number
of flow configuration messages in an SD-WSN simulated scenario. We
use the Cooja simulator [27] with sky motes. We use IT-SDN [28] as
the southbound protocol, since it is tailored to WSNs. The version of
IT-SDN is 0.4.1, which is configured to use source-routed control pack-
ets. A simple custom neighbor discovery protocol is employed, which
gathers neighborhood information at the beginning of the simulation by
periodic beacons. We set the number of nodes in different experiments
to 60, 80, 100, 120, and 140, and the number of clusters is 6 and 9.
The other settings are the same as in Section 4.3.

We select a sink node in the network and the controller is located
at the sink node. The SDN controller interacts only with the cluster
border nodes, while the other nodes route packets according to a
distributed routing algorithm. Since our goal is to study the behavior
of SDN control messages in the face of different clustering algorithms,
the nodes are configured with static routing tables instead of dynamic
distributed local routing. Every node in the network transmits one 10-
byte data packet to the data sink per minute. Fig. 16 displays the
average number of flow configuration messages for each clustering
solution and for a traditional SD-WSN without clustering.

Our approach CluFlow yields the least amount of control messages.
In comparison to not using clustering, the reduction ranges from 78%
to 88%. MVC-CB is the closest to CluFlow, however it produces on
average 75% and 27% more control messages, for 6 and 9 clusters,

respectively. We observe that the number of control messages increases

Computer Networks 187 (2021) 107788Q. Liu et al.
Fig. 18. Packet delay with 6 clusters and 9 clusters in an SD-WSN. ‘‘All Nodes’’
represents traditional SD-WSN without clustering, in which all the network nodes
communicate with the SDN controller.

as the number of clusters becomes larger. This is mainly because the
amount of border nodes tends to increase with the number of clusters.

The goal of cluster-level routing is to reduce the control overhead.
While the experiments above show CluFlow mitigates the control cost
of SD-WSN in comparison to other clustering algorithms, it is crucial to
investigate whether this gain comes at the expense of degrading other
metrics or not. To this end, we measure two important communication
metrics, which are the data delivery rate as shown in Fig. 17 and packet
delay as shown in Fig. 18.

The experimental results show that all the tested clustering ap-
proaches have achieved over 98.5% delivery rate, and there is no
statistical difference among them. In addition, CluFlow presents the
highest delivery rate in half of the scenarios. Regarding the packet
delay, the time difference between the highest value and the lowest
value in each testing point is always less than 5 ms. This means
none of the solutions presents significantly lower or higher delay than
the others. The small variations observed are likely to arise from the
underlying simulation randomness.

Based on the above experimental results, we conclude that, in
comparison to the benchmark solutions, CluFlow significantly mitigates
the communication cost of SD-WSN, while it does not degrade the other
important communication metrics.

4.8. Performance in a real indoor WSN

We set up a real indoor WSN in a university building to test CluFlow.
We measure the number of border nodes and the communication cost.
10
Fig. 19. The deployment of a WSN in a building. Orange circles ∙ represent the
positions of the deployed nodes. The node with green diamond background ⧫ is the
SDN controller. The nodes with blue square background ■ are the heads of clusters.

Fig. 20. Performance of SD-WSN in a Real Indoor WSN.

The deployed nodes are CC2650STK SensorTag motes [29], using Con-
tiki 3.0 OS [30], IEEE 802.15.4 MAC standard [31]. We use CSMA/CA
collision avoidance, Contiki-Mac radio duty cycle, and RPL [32] routing
protocol. The Tx power of each node is set to 0dBm, and Rx sensitivity
is -100dBm. 32 nodes are deployed in an area of 65m×38m as shown
in Fig. 19. The sink node is attached to a SensorTag Debugger DevPack,
which links to a computer by a USB cable. The SDN controller runs on
a computer, and communicates with the WSN through the sink node.

In the experiment, each mote reports the connectivity of neighbor
nodes to the SDN controller every 30 s. The controller builds the topol-
ogy of the network. The network is partitioned into 3 clusters based on
3 header nodes. The selected border nodes send monitoring data and
routing requests to the controller every 3 s. Once the controller receives
a request, it sends a reply back. The controller uses the monitoring data

Computer Networks 187 (2021) 107788Q. Liu et al.
of all the border nodes to calculate the traffic flow among clusters. We
do not instantiate cluster-level routing in this test. The border nodes
do not change local routing rules after receiving the reply messages
from the SDN controller. The load size of each packet is 64 bytes.
The experiment lasts for 600 s using CluFlow and each benchmark
approach.

We count the number of cluster border nodes and the commu-
nication cost, i.e., the number of sent and forwarded IP packets in
the border nodes. The results are shown in Fig. 20. Compared with
the benchmark approaches, CluFlow utilizes the smallest number of
border nodes and communication costs. Compared with the results in
Section 4.4 and Section 4.7, the improvement of CluFlow to MVC,
CB and MVC-CB is smaller. The main reason is that the total number
of nodes is smaller in the real network deployment. Therefore the
difference in clustering using different solutions is smaller.

5. Related work

Most existing WSN structures utilize distributed control solutions.
They face the same difficulties as traditional wired networks, such as
lack of a high-level abstraction and ossified protocol stack. Dynamically
changing control policy in a WSN becomes increasingly difficult as the
size of the WSN increases [8]. For example, as the communication
flow pattern or environment changes, if a WSN needs to achieve
better performance, the control plane of each sensor node must be
(re)programmed. In a large-scale WSN, this task is difficult to handle.
Therefore, a WSN needs a high-level centralized SDN control.

There are already various types of research on SDN in wired net-
works. These solutions provide improved flexibility and reduced com-
plexity for flow control. For example, in [33], a hybrid mechanism is
presented to control distributed routing by centralized management.
The SDN controller injects routing guidance, e.g. fake nodes, to net-
works. In [34], the wired SDN is partitioned into clusters. Only border
switches are connected and controlled by the SDN controller. SDN
switches forward all the received messages to the SDN controller. After
receiving messages, the SDN controller changes the routing information
and sends it back to SDN switches.

Hybrid SDN is a networking paradigm where both centralized SDN
control and distributed networking paradigms coexist [1,15–17]. Al-
though using SDN technologies on top of legacy networking devices
poses several challenges [35], hybrid SDN is gradually adopted by
industry and academia. For example, the research in [36] presents a
service-based hybrid SDN model in a wireless mesh backhaul for the
coexistence of network services SDN controller and distributed network
services. [37] proposes an incremental deployment strategy and a
throughput-maximization routing for deploying a hybrid SDN. [38]
addresses the efficient deployment problem of hybrid SDN devices
through the maximum coverage problem.

In the research of hybrid SDN, some works focus on managing SDN
control by network clustering. In [39], an SDN enabled 5G vehicular
ad-hoc network is proposed. Due to the mobility features of vehicles,
the solution utilizes vehicle clustering for reducing the overhead of
cellular networks and providing better communication quality. The aim
of this work is to manage the network of mobile vehicles, but the
control for SD-WSN is not researched. [40] proposes an active network
management QoS scheme for managing data flow in SD-WSN. In its
implementation, a WSN is partitioned into clusters, and multiple base
stations are used as cluster heads. However, this solution uses SDN
controllers to manage all the cluster member nodes of clusters. Al-
though this solution is easy to be implemented, the communication cost
of managing WSN nodes is much higher than CluFlow. The research
in [41] proposes an SDN-based clustering mechanism, which considers
power, trust, secure centrality, mobility, priority, and heterogeneity
in Internet of Things. Compared with CluFlow, this paper aims to
provide secure clustering by adaptive cluster head selection instead
11

of decreasing the communication cost on SDN control. Meanwhile,
the paper assumes that the cluster heads are the main communication
bridges, and the SDN controller does not manage the routing of multi-
hop communication as in CluFlow. The research in [42] provides a
two-level hybrid SDN control mechanism for Internet of Things. In
the mechanism, a routing protocol based on multi-hop clustering is
used on the first level, and an SDN for managing the global network
is leveraged on the second level. Compared to the SD-WSN structure
of CluFlow, this paper assumes a hierarchical network structure, in
which the communication among clusters is through SDN switches. In
addition, the aim of this paper is to meet QoS requirements, while
CluFlow aims to reduce the communication cost of SDN control.

SD-WSN is one of the most important research directions in hy-
brid SDN. TinySDN is an early effort in developing an SD-WSN [43].
Its experiments use a 7-node network, focusing on the delay metric.
CORAL-SDN aims at exploring the impact of discovery algorithms
on SD-WSN performance [44]. The authors assessed metrics related
to topology discovery on a variety of 25-node topologies. Control
overhead, however, is not measured. [45] proposes 𝜇SDN, an IPv6-
compatible SD-WSN stack. Their experiments show that approximately
15% of the traffic in a 30-node network is composed of SDN control
packets. [28] uses IT-SDN to perform an SD-WSN scalability study.
Its experiments are based on networks with up to 289 nodes under
varying networking conditions. The results indicate that control traffic
grows linearly with the network size, suggesting the need for control
traffic reduction mechanisms. [46] proposes a mechanism for on-line
metric assessment on SD-WSN systems. However, the mechanism fur-
ther increases the control overhead in larger networks. The research
in [47] provides a solution to utilize OpenFlow in wireless networks.
It uses the OpenFlow centralized controller for routing data traffic.
SDN-WISE [48] designs and implements a complete SDN system in a
real multi-hop wireless network. Its SDN components consist of SDN
controller, topology manager, protocol stacks, and wireless motes. It
provides a stateful solution and reduces the amount of communication
between nodes and SDN controllers. The research in [49] creates an
SDN framework for IoT systems based on SDN-WISE and Open Network
Operating System (ONOS) [50]. To connect IoT and SDN, it extends
the functionality of ONOS as the controller in a WSN, while the
communication protocol relies on SDN-WISE. Generally, all the above
wireless SDN structures do not completely decouple the control plane
and data plane. The SDN controller must rely on distributed routing
to setup control flow in the nodes that are several hops away. To
update flow table entries, the nodes and the SDN controller have to
periodically exchange request and reply messages over multiple hops.
This process increases communication delay and control overhead in
wireless networks.

Besides researching SD-WSN architectures, some works focus on
increasing the performance of WSNs using an SDN structure, such
as energy efficiency, task scheduling, and routing. SDN-ECCKN [51]
proposes an SDN-based energy management system for WSN. The
system reduces the total transmission time to increase the network
lifetime. [52] minimizes energy consumption on sensors with guaran-
teed quality-of-sensing in a multi-task SD-WSN. It utilizes a centralized
SDN to formulate the minimum-energy sensor activation by jointly
considering sensor activation and task mapping. The work in [53]
presents an energy-efficient routing algorithm based on the SD-WSN
framework. To minimize the transmission distance and the energy
consumption of sensor nodes, the algorithm partitions the WSN into
clusters and dynamically assigns tasks to the intra-cluster nodes by a
cluster control node.

6. Limitations and future research directions

In this work, we open up a new solution for communication flow
control in hybrid SD-WSNs, which leverages the benefits of network
clustering and legacy distributed routing in WSN. At the same time, we
are aware of some key points of improvement as follows.

Computer Networks 187 (2021) 107788Q. Liu et al.

7

S
u
t
s
g
t
a
l
c
n
c

C

d
t
t
p
t
W

• It is unclear how to take advantage of our solution to dynamic
WSNs. In a dynamic WSN, the network topology changes fre-
quently. Therefore, if CluFlow is directly used in a dynamic WSN,
the SDN controller has to calculate new clusters frequently, which
will increase the communication cost.

• It is important that cluster-level routing rules and distributed
routing rules coordinate correctly. For example, cluster-level rout-
ing rules and distributed routing rules must avoid livelock rout-
ing [54]. The detailed design of cluster-level routing rules, and
the coordination of cluster-level routing and distributed legacy
routing will be part of our future work.

• In this paper, we propose an effective network clustering solution.
The clustering algorithm is generic to any kind of networks, and
not specific to WSNs. Meanwhile, clustering is a widely used
method in communication networks. So it is valuable to evaluate
whether our solution is effective in the other wired and wireless
networks.

. Conclusion

In this work, we have presented CluFlow, a cluster-based hybrid
D-WSN architecture. The key idea is to manage communication flows
sing central SDN control on the cluster border nodes. Consequently,
he control overhead required for programming the network can be
ignificantly reduced. To this end, we have provided a clustering al-
orithm tailored for minimizing the number of cluster border nodes. In
his way, CluFlow can effectively take advantage of distributed control
t node-level and centralized control at cluster-level. Based on simu-
ations and testbed experiments, we have demonstrated that CluFlow
an significantly decrease the number of border nodes and the commu-
ication load for controlling/monitoring cluster-level communication
ompared to benchmark solutions.

RediT authorship contribution statement

Qingzhi Liu: Conceived and designed the analysis, Collected the
ata, Contributed data or analysis tools, Performed the analysis, Wrote
he paper. Long Cheng: Conceived and designed the analysis, Con-
ributed data or analysis tools, Performed the analysis, Wrote the
aper. Renan Alves: Conceived and designed the analysis, Collected
he data, Contributed data or analysis tools, Performed the analysis,

rote the paper. Tanir Ozcelebi: Conceived and designed the analysis,
Performed the analysis, Wrote the paper. Fernando Kuipers: Con-
ceived and designed the analysis, Performed the analysis, Wrote the
paper. Guixian Xu: Conceived and designed the analysis, Performed
the analysis, Wrote the paper. Johan Lukkien: Conceived and designed
the analysis, Performed the analysis, Wrote the paper. Shanzhi Chen:
Conceived and designed the analysis, Wrote the paper.

Acknowledgments

Renan C. A. Alves was supported by grants #2016/21088-1 and
#2018/11295-5, São Paulo Research Foundation (FAPESP), Brazil.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.
12
References

[1] Q. Liu, T. Ozcelebi, L. Cheng, F. Kuipers, J. Lukkien, Cluflow: Cluster-based
flow management in software-defined wireless sensor networks, in: 2019 IEEE
Wireless Communications and Networking Conference (WCNC), IEEE, 2019, pp.
1–8.

[2] H. Kim, N. Feamster, Improving network management with software defined
networking, IEEE Commun. Mag. 51 (2) (2013) 114–119.

[3] B.A.A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, T. Turletti, A survey
of software-defined networking: Past, present, and future of programmable
networks, IEEE Commun. Surv. Tutor. 16 (3) (2014) 1617–1634.

[4] K.M. Modieginyane, B.B. Letswamotse, R. Malekian, A.M. Abu-Mahfouz, Software
defined wireless sensor networks application opportunities for efficient network
management: A survey, Comput. Electr. Eng. 66 (2018) 274–287.

[5] I.T. Haque, N. Abu-Ghazaleh, Wireless software defined networking: A survey
and taxonomy, IEEE Commun. Surv. Tutor. 18 (4) (2016) 2713–2737.

[6] K. Sood, S. Yu, Y. Xiang, Software-defined wireless networking opportunities and
challenges for internet-of-things: A review, IEEE Internet Things J. 3 (4) (2016)
453–463.

[7] F. Hu, Q. Hao, K. Bao, A survey on software-defined network and openflow:
From concept to implementation, IEEE Commun. Surv. Tutor. 16 (4) (2014)
2181–2206.

[8] T. Luo, H.-P. Tan, T.Q. Quek, Sensor OpenFlow: Enabling software-defined
wireless sensor networks, IEEE Commun. Lett. 16 (11) (2012) 1896–1899.

[9] H. Mostafaei, M. Menth, Software-defined wireless sensor networks: A survey, J.
Netw. Comput. Appl. 119 (2018) 42–56.

[10] H.I. Kobo, A.M. Abu-Mahfouz, G.P. Hancke, A survey on software-defined
wireless sensor networks: Challenges and design requirements, IEEE Access 5
(2017) 1872–1899.

[11] D. Sajjadi, Z. Zheng, R. Ruby, J. Pan, Randomized single-path flow routing on
SDN-aware Wi-Fi mesh networks, in: International Conference on Mobile Ad Hoc
and Sensor Systems (MASS), IEEE, 2018, pp. 184–192.

[12] M. Rezaee, M.H.Y. Moghaddam, SDN-based quality of service networking for
wide area measurement system, IEEE Trans. Ind. Inf. (2019).

[13] A.A. Abdelltif, E. Ahmed, A.T. Fong, A. Gani, M. Imran, SDN-based load
balancing service for cloud servers, IEEE Commun. Mag. 56 (8) (2018) 106–111.

[14] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, J. Turner, OpenFlow: enabling innovation in campus networks, ACM
SIGCOMM 38 (2) (2008) 69–74.

[15] Y. Sinha, K. Haribabu, et al., A survey: Hybrid sdn, J. Netw. Comput. Appl. 100
(2017) 35–55.

[16] R. Amin, M. Reisslein, N. Shah, Hybrid SDN networks: A survey of existing
approaches, IEEE Commun. Surv. Tutor. 20 (4) (2018) 3259–3306.

[17] X. Huang, S. Cheng, K. Cao, P. Cong, T. Wei, S. Hu, A survey of deployment
solutions and optimization strategies for hybrid SDN networks, IEEE Commun.
Surv. Tutor. 21 (2) (2018) 1483–1507.

[18] B.B. Letswamotse, R. Malekian, C.-Y. Chen, K.M. Modieginyane, Software defined
wireless sensor networks (SDWSN): a review on efficient resources, applications
and technologies, J. Internet Technol. 19 (5) (2018) 1303–1313.

[19] M.R. Garey, D.S. Johnson, Computers and Intractability; A Guide to the Theory
of NP-Completeness, W. H. Freeman & Co., 1990.

[20] P. Sanders, C. Schulz, D. Strash, R. Williger, Distributed evolutionary k-way
node separators, in: Proceedings of the Genetic and Evolutionary Computation
Conference, ACM, 2017, pp. 345–352.

[21] Y. Boykov, V. Kolmogorov, An experimental comparison of min-cut/max-flow
algorithms for energy minimization in vision, IEEE Trans. Pattern Anal. Mach.
Intell. 26 (9) (2004) 1124–1137.

[22] G. Karakostas, A better approximation ratio for the vertex cover problem, in:
International Colloquium on Automata, Languages, and Programming, Springer,
2005, pp. 1043–1050.

[23] W. Zhou, L. Li, M. Luo, W. Chou, REST API Design patterns for SDN north-
bound API, in: 2014 28th International Conference on Advanced Information
Networking and Applications Workshops, IEEE, 2014, pp. 358–365.

[24] F. Aurenhammer, Voronoi diagrams—a survey of a fundamental geometric data
structure, ACM Comput. Surv. 23 (3) (1991) 345–405.

[25] G. Karypis, V. Kumar, A fast and high quality multilevel scheme for partitioning
irregular graphs, SIAM J. Sci. Comput. 20 (1) (1998) 359–392.

[26] K. Andreev, H. Racke, Balanced graph partitioning, Theory Comput. Syst. 39 (6)
(2006) 929–939.

[27] F. Österlind, A. Dunkels, J. Eriksson, N. Finne, T. Voigt, Cross-level sensor
network simulation with cooja, in: IEEE International Workshop on Practical
Issues in Building Sensor Network Applications (SenseApp), 2006.

[28] R.C. Alves, D.A. Oliveira, G.A.N. Segura, C.B. Margi, The cost of software-defining
things: A scalability study of software-defined sensor networks, IEEE Access 7

(2019) 115093–115108.

http://refhub.elsevier.com/S1389-1286(20)31361-X/sb1
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb1
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb1
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb1
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb1
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb1
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb1
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb2
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb2
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb2
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb3
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb3
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb3
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb3
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb3
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb4
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb4
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb4
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb4
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb4
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb5
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb5
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb5
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb6
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb6
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb6
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb6
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb6
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb7
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb7
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb7
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb7
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb7
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb8
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb8
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb8
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb9
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb9
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb9
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb10
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb10
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb10
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb10
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb10
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb11
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb11
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb11
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb11
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb11
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb12
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb12
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb12
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb13
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb13
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb13
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb14
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb14
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb14
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb14
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb14
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb15
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb15
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb15
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb16
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb16
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb16
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb17
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb17
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb17
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb17
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb17
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb18
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb18
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb18
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb18
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb18
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb19
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb19
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb19
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb20
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb20
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb20
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb20
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb20
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb21
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb21
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb21
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb21
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb21
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb22
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb22
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb22
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb22
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb22
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb23
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb23
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb23
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb23
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb23
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb24
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb24
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb24
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb25
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb25
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb25
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb26
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb26
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb26
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb28
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb28
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb28
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb28
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb28

Computer Networks 187 (2021) 107788Q. Liu et al.
[29] Texas Instruments, Multi-Standard CC2650 SensorTag Design Guide, 2019, URL:
https://www.ti.com/lit/ug/tidu862/tidu862.pdf.

[30] Contiki OS, 2018, URL: http://www.contiki-os.org/.
[31] E. Callaway, P. Gorday, L. Hester, J.A. Gutierrez, M. Naeve, B. Heile, V.

Bahl, Home networking with IEEE 802.15.4: a developing standard for low-rate
wireless personal area networks, IEEE Commun. Mag. 40 (8) (2002) 70–77.

[32] T. Winter, P. Thubert, A. Brandt, T. Clausen, J. Hui, R. Kelsey, P. Levis, K.
Pister, R. Struik, J.P. Vasseur, RPL: IPv6 Routing Protocol for Low Power and
Lossy Networks, ROLL Working Group, 2011.

[33] S. Vissicchio, O. Tilmans, L. Vanbever, J. Rexford, Central control over
distributed routing, ACM SIGCOMM 45 (4) (2015) 43–56.

[34] M. Caria, A. Jukan, M. Hoffmann, SDN partitioning: A centralized control plane
for distributed routing protocols, IEEE Trans. Netw. Serv. Manag. 13 (3) (2016)
381–393.

[35] S. Vissicchio, L. Vanbever, O. Bonaventure, Opportunities and research challenges
of hybrid software defined networks, ACM SIGCOMM Comput. Commun. Rev.
44 (2) (2014) 70–75.

[36] J. Nunez-Martinez, J. Baranda, J. Mangues-Bafalluy, A service-based model for
the hybrid software defined wireless mesh backhaul of small cells, in: 2015 11th
International Conference on Network and Service Management (CNSM), IEEE,
2015, pp. 390–393.

[37] H. Xu, X.-Y. Li, L. Huang, H. Deng, H. Huang, H. Wang, Incremental deployment
and throughput maximization routing for a hybrid SDN, IEEE/ACM Trans. Netw.
25 (3) (2017) 1861–1875.

[38] B. Kar, E.H.-K. Wu, Y.-D. Lin, The budgeted maximum coverage problem in
partially deployed software defined networks, IEEE Trans. Netw. Serv. Manag.
13 (3) (2016) 394–406.

[39] X. Duan, Y. Liu, X. Wang, SDN enabled 5G-VANET: Adaptive vehicle clustering
and beamformed transmission for aggregated traffic, IEEE Commun. Mag. 55 (7)
(2017) 120–127.

[40] B.B. Letswamotse, R. Malekian, C.-Y. Chen, K.M. Modieginyane, Software defined
wireless sensor networks and efficient congestion control, IET Netw. 7 (6) (2018)
460–464.

[41] K. Kalkan, SUTSEC: SDN utilized trust based secure clustering in IoT, Comput.
Netw. (2020) 107328.

[42] A. Ouhab, T. Abreu, H. Slimani, A. Mellouk, Energy-efficient clustering and
routing algorithm for large-scale SDN-based IoT monitoring, in: ICC 2020-2020
IEEE International Conference on Communications (ICC), IEEE, 2020, pp. 1–6.

[43] B.T. De Oliveira, L.B. Gabriel, C.B. Margi, TinySDN: Enabling multiple controllers
for software-defined wireless sensor networks, IEEE Lat. Am. Trans. 13 (11)
(2015) 3690–3696.

[44] T. Theodorou, L. Mamatas, Software defined topology control strategies for the
internet of things, in: IEEE Conference on Network Function Virtualization and
Software Defined Networks (NFV-SDN), IEEE, 2017, pp. 236–241.

[45] M. Baddeley, R. Nejabati, G. Oikonomou, M. Sooriyabandara, D. Simeonidou,
Evolving SDN for low-power IoT networks, in: IEEE Conference on Network
Softwarization and Workshops (NetSoft), IEEE, 2018, pp. 71–79.

[46] T.C. Luz, G.A. Nunez, C.B. Margi, F.L. Verdi, In-network performance measure-
ments for software defined wireless sensor networks, in: International Conference
on Networking, Sensing and Control (ICNSC), IEEE, 2019, pp. 206–211.

[47] A. Detti, C. Pisa, S. Salsano, N. Blefari-Melazzi, Wireless mesh software defined
networks (wmSDN), in: WiMob, IEEE, 2013, pp. 89–95.

[48] L. Galluccio, S. Milardo, G. Morabito, S. Palazzo, SDN-WISE: Design, prototyping
and experimentation of a stateful SDN solution for WIreless SEnsor networks, in:
INFOCOM, IEEE, 2015, pp. 513–521.

[49] A.-C.G. Anadiotis, L. Galluccio, S. Milardo, G. Morabito, S. Palazzo, Towards a
software-defined Network Operating System for the IoT, in: World Forum on
Internet of Things (WF-IoT), IEEE, 2015, pp. 579–584.

[50] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz, B.
O’Connor, P. Radoslavov, W. Snow, et al., ONOS: towards an open, distributed
SDN OS, in: Proceedings of the Third Workshop on Hot Topics in Software
Defined Networking, ACM, 2014, pp. 1–6.

[51] Y. Wang, H. Chen, X. Wu, L. Shu, An energy-efficient SDN based sleep scheduling
algorithm for WSNs, J. Netw. Comput. Appl. 59 (2016) 39–45.

[52] D. Zeng, P. Li, S. Guo, T. Miyazaki, J. Hu, Y. Xiang, Energy minimization in
multi-task software-defined sensor networks, IEEE Trans. Comput. 64 (11) (2015)
3128–3139.

[53] W. Xiang, N. Wang, Y. Zhou, An energy-efficient routing algorithm for
software-defined wireless sensor networks, IEEE Sens. J. 16 (20) (2016)
7393–7400.

[54] L. Gravano, G.D. Pifarre, P.E. Berman, J.L.C. Sanz, Adaptive deadlock-and
livelock-free routing with all minimal paths in torus networks, IEEE Trans.
Parallel Distrib. Syst. 5 (12) (1994) 1233–1251.
13
Qingzhi Liu is a Lecturer at the Information Technology
Group, Wageningen University & Research, The Netherlands.
He received the B.S. degree in Telecommunication and
the M.Eng. degree in Software Engineering from Xidian
University, China in 2005 and 2008 respectively. He re-
ceived the M.Sc. (with cum laude) and the Ph.D. from
Delft University of Technology, The Netherlands in 2011
and 2016 respectively. He was a Postdoctoral Researcher
at Eindhoven University of Technology, The Netherlands
from 2016 to 2019. His research interests include Internet
of Things and Artificial Intelligence.

Long Cheng is a Professor in the School of Control and
Computer Engineering at North China Electric Power Uni-
versity in Beijing. He received the B.E. from Harbin Institute
of Technology, China in 2007, M.Sc from University of
Duisburg-Essen, Germany in 2010 and Ph.D from National
University of Ireland Maynooth in 2014. He was an Assistant
Professor at Dublin City University, and a Marie Curie
Fellow at University College Dublin. He also has worked
at organizations such as Huawei Technologies Germany,
IBM Research Dublin, TU Dresden and TU Eindhoven.
His research focuses on high-performance data analytics,
distributed systems, cloud computing, and process mining.

Renan C. A. Alves is a postdoctoral fellow at Universidade
de São Paulo, Brazil. He obtained his PhD degree (2020),
M.Sc degree (2014) and graduated in Electrical Engineering
with emphasis in Computer and Digital Systems (2011), all
at Universidade de São Paulo. His main research interests in-
clude network protocol modeling and performance analysis,
Wireless SensorNetworks protocols and applications.

Tanir Ozcelebi received the Ph.D. degree in Electrical
Engineering from Koc University, Istanbul in 2006. Since
2006, he joined the Interconnected Resource-aware Intel-
ligent Systems (IRIS) group at Eindhoven University of
Technology (TU/e), The Netherlands. He is currently an
associate professor at IRIS of TU/e. His main research inter-
ests are architectures and life-cycle management of resource
constrained for smart spaces and intelligent Internet of
Things (IoT), including the relevant data analytics aspects.

Fernando A. Kuipers is an associate professor and head
of the Lab on Internet Science at Delft University of Tech-
nology (TU Delft). In 2004, he obtained his Ph.D. degree
cum laude, the highest possible distinction at TU Delft.
His research focus is on network optimization, network
resilience, Quality of Service, and Quality of Experience and
addresses problems in Software-Dened Networking, Tactile
Internet, Internet-of-Things, and critical infrastructures. His
work on these subjects include distinguished papers at IEEE
INFOCOM 2003, Chinacom 2006, IFIP Networking 2008,
IEEE FMN 2008, IEEE ISM 2008, ITC 2009, IEEE JISIC
2014, NetGames 2015, and EuroGP 2017. Fernando Kuipers
is senior member of the IEEE, was a visiting scholar at
Technion - Israel Institute of Technology (in 2009) and
Columbia University in the City of New York (in 2016),
and is Vice-Chair of the IFIP Working Group 6.2 on Network
and Internetwork Architectures. He co-founded Do IoT and
PowerWeb and is part of the board of the TU Delft Safety
& Security institute.

https://www.ti.com/lit/ug/tidu862/tidu862.pdf
http://www.contiki-os.org/
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb31
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb31
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb31
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb31
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb31
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb32
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb32
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb32
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb32
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb32
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb33
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb33
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb33
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb34
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb34
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb34
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb34
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb34
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb35
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb35
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb35
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb35
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb35
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb36
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb36
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb36
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb36
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb36
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb36
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb36
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb37
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb37
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb37
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb37
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb37
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb38
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb38
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb38
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb38
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb38
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb39
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb39
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb39
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb39
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb39
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb40
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb40
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb40
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb40
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb40
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb41
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb41
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb41
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb42
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb42
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb42
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb42
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb42
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb43
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb43
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb43
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb43
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb43
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb44
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb44
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb44
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb44
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb44
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb45
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb45
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb45
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb45
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb45
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb46
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb46
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb46
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb46
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb46
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb47
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb47
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb47
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb48
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb48
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb48
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb48
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb48
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb49
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb49
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb49
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb49
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb49
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb50
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb50
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb50
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb50
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb50
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb50
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb50
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb51
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb51
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb51
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb52
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb52
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb52
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb52
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb52
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb53
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb53
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb53
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb53
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb53
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb54
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb54
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb54
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb54
http://refhub.elsevier.com/S1389-1286(20)31361-X/sb54

Computer Networks 187 (2021) 107788Q. Liu et al.
Guixian Xu received his Ph.D. degree in communications
and information systems from Beijing University of Posts
and Telecommunications (BUPT), China, in 2017. He was
a visiting Ph.D. student with the National Tsing Hua Uni-
versity, Hsinchu, Taiwan, from 2015 to 2016. He was a
postdoc with Aalborg University and Aarhus University,
Denmark, in 2018 and 2019, respectively. Since 2020, he is
a postdoc research fellow with Tampere University, Finland.
His research interests are in signal processing in 5G and
beyond, machine learning, and convex optimization.

Johan Lukkien is a Full Professor in Interconnected
Resource-aware Intelligent Systems (IRIS) group at the De-
partment of Mathematics and Computer Science, Eindhoven
University of Technology (TU/e). Since 2002 he has been
the Chair of the Interconnected Resource-aware Intelligent
Systems (IRIS) group. Contributions of the IRIS group are
in the area of component-based middleware for resource
constrained devices, distributed coordination, Quality of
Service in networked systems and schedulability analysis in
real-time systems. The key areas of his expertise include em-
bedded software, algorithms, resource constrained systems,
real-time systems and system architecture.
14
Shanzhi Chen received his Ph.D. degree from Beijing Uni-
versity of Posts and Telecommunications, China, in 1997. He
joined the Datang Telecom Technology and Industry Group
and the China Academy of Telecommunication Technology
(CATT) in 1994, and has been serving as the EVP of
Research and Development since 2008. He is currently the
Director of the State Key Laboratory of Wireless Mobile
Communications, CATT, where he conducted research and
standardization on 4G TD-LTE and 5G. He is an IEEE
fellow, have served as the area editor of IEEE Internet of
Things, an editor for IEEE Network, and a guest editor of
IEEE Wireless Communications, the IEEE Communications
Magazine, and IEEE Transactions on Vehicular Technology,
as well as a member of TPC Chairs of many international
conferences. His achievements have received multiple top
awards and honors by the China central government, espe-
cially the Grand Prize of the National Award for Scientific
and Technological Progress, China, in 2016 (the highest
Prize in China). His current research interests include 5G
mobile communications, network architectures, vehicular
communication networks, and Internet of Things.

	Cluster-based flow control in hybrid software-defined wireless sensor networks
	Introduction
	System model
	Flow control in hybrid SD-WSNs
	Solution overview
	Minimize cluster border nodes
	Problem definition
	Algorithm

	Cluster-based flow control
	Computational complexity
	Communication protocol

	Experimental setup and results
	Benchmark approaches
	Validity test of cluster border nodes
	Practicality test of cluster-based flow control
	Number of border nodes in unbalanced clustering
	Number of border nodes in balanced clustering
	Search space of cluster border nodes
	Communication cost
	Performance in a real indoor WSN

	Related work
	Limitations and future research directions
	Conclusion
	CRediT authorship contribution statement
	Acknowledgments
	Declaration of competing interest
	References

