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Summary

The development of a high-fidelity fluid-structure interaction tool for the simulation of
aircraft flight dynamics in the subsonic flow regime is presented. The tool combines a
high-fidelity large-eddy simulation code with an immersed boundary method, a multi-
body solver and a loose coupling scheme between fluid and solid. The development of the
code is motivated by the need to accurately and efficiently simulate aircraft flight dynam-
ics at off-design conditions, such as in separated flow states. The accurate simulations are
necessary for the continuous optimization of current aircraft designs and the development
of novel aircraft concepts.
The developments presented in this thesis focus on three fields of the fluid-structure inter-
action problem. The modeling of solid geometries in the fluid solver through an immersed
boundary method, the coupling of the fluid and solid domain through a loose coupling
scheme, and the development of a multi-body solver for the simulation of aircrafts and
their components.
An extensive literature review is presented on these three fields of the fluid-structure in-
teraction problem. The literature review is conducted to select appropriate methods for
the final solver. Based on this review, a ghost-cell approach is selected for the immersed
boundary method of the solver. A loosely coupled serial staggered procedure is selected to
couple the fluid and solid domains in the solver. The floating frame of reference approach
is selected for the derivation of the multi-body solver and a Newmark time integration
method is selected for the integration of the equations of motion.
The mathematical formulation of the selected methods is presented. Novel approaches
are derived for the immersed boundary method and multi-body solver. A hybrid-cell
treatment is derived to reduce spurious numerical oscillations in flow fields with mov-
ing geometries. Further, the integration of wall-modeling approaches into the ghost-cell
immersed boundary method is presented. A controller approach based on the time integ-
ration scheme of the multi-body solver is derived. The controller allows user-prescribed
dynamic positions and orientations of constraints and bodies.
The developed fluid-structure interaction solver has been rigorously verified and valid-
ated for multiple test cases. Simulations of an oscillating cylinder and moving airfoil
are presented for the verification of the hybrid-cell treatment. Results with hybrid-cell
treatment enabled and disabled demonstrate the effectiveness of the developed approach
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in the suppression of spurious oscillations in the flow field. Simulations of a single and
double pendulum are presented to verify the implementation of the multi-body equations
of motion and constraints. The validation of the developed solver is performed with ref-
erence numerical and experimental results. Results of the laminar flow around an inline-
oscillating cylinder are in excellent agreement with available numerical and experimental
reference results. Simulations of the dynamic stall problem of helicopter blade sections
are presented. The results show that the solver accurately predicts the flow features of the
dynamic stall problem. Discrepancies between the present code and the available numer-
ical and experimental results are attributed to an insufficient modeling and resolution of
the near-wall flow field. Last but not least, flutter of a two degree of freedom NACA0012
airfoil is simulated. The developed solver accurately predicts the presence of stable, limit
cycle and flutter regions. Discrepancies were found in the response frequencies between
the results of the present code and available numerical and experimental results. The
discrepancies are caused by insufficient resolution of the near-wall flow field.
The verification and validation simulations proof the effectiveness of the derived methods
and the correct implementation. The validation results further show that the solver accur-
ately and efficiently predicts the flow field of complex flows and fluid-structure interaction
problems.
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analysis of Örley et al. (2015) (Blue lines) and numerical results of present
solver (black lines): ( , , ) slice at x′ = 0.0, ( , , ) slice at x′ =
−0.6, ( , , ) slice at x′ = 0.6, ( , , ) slice at x′ = 1.2. . . . . . . 87

8.1 Illustration of the flow structures and correlated airfoil forces and moments
taken from Carr (1988). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8.2 Scatter plot of CL versus non-dimensional near-wall mesh resolution of
NACA0012 at 12.5◦; XFoil result added as reference: ( ) numerical results
of present solver, ( ) XFoil result. . . . . . . . . . . . . . . . . . . . . . 97

8.3 Averaged y+ versus x/c of NACA0012 airfoil at angle of attack 12.5◦:
( ) present results with near-wall mesh resolution ∆/c = 1.95 · 10−3,
( ) present results with near-wall mesh resolution ∆/c = 0.65 · 10−3. . . 98

8.4 Averaged pressure coefficient Cp versus x/c of NACA0012 airfoil at angle of
attack 12.5◦: ( ) present results with near-wall mesh resolution ∆/c =
1.95 · 10−3, ( ) present results with near-wall mesh resolution ∆/c =
0.65 · 10−3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8.5 Temporally averaged pressure coefficient Cf versus x/c of NACA0012 air-
foil at angle of attack 12.5◦: ( ) present results with near-wall mesh
resolution ∆/c = 1.95 · 10−3, ( ) present results with near-wall mesh
resolution ∆/c = 0.65 · 10−3. . . . . . . . . . . . . . . . . . . . . . . . . . 99

8.6 Normalized instantaneous velocity magnitude field around NACA0012 air-
foil at angle of attack 12.5◦ with near wall mesh resolution ∆/c = 0.65 ·10−3.100

8.7 Normalized instantaneous velocity magnitude field around NACA0012 air-
foil at angle of attack 12.5◦ with near wall mesh resolution ∆/c = 1.95 ·10−3.100

8.8 Lift coefficient CL polar of NACA0012 airfoil at Re = 980395 and Ma =
0.072: ( ) XFoil numerical results, ( ) present results. . . . . . . . . . . 101

8.9 Drag coefficient CD polar of NACA0012 airfoil at Re = 980395 and Ma =
0.072: ( ) XFoil numerical results, ( ) present results. . . . . . . . . . . 102



xiv List of Figures

8.10 Moment coefficient CM polar of NACA0012 airfoil at Re = 980395 and
Ma = 0.072: ( ) XFoil numerical results, ( ) present results. . . . . . . 103

8.11 Temporally and spatially averaged pressure coefficient Cp versus x/c of
NACA0012 airfoil at angle of attack 5.0◦: ( ) present result, ( ) XFoil
numerical result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8.12 Temporally and spatially averaged pressure coefficient Cp versus x/c of
NACA0012 airfoil at angle of attack 12.5◦: ( ) present result, ( )
XFoil numerical result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8.13 Temporally and spatially averaged skin friction coefficient Cf versus x/c
of NACA0012 airfoil at angle of attack 5.0◦: ( ) present result, ( )
XFoil numerical result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.14 Temporally and spatially averaged skin friction coefficient Cf versus x/c
of NACA0012 airfoil at angle of attack 12.5◦: ( ) present result, ( )
XFoil numerical result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8.15 Plot of the lift coefficient CL versus airfoil pitch-up angle α based on: ( ) ex-
perimental results of Mcalister, Pucci, Mccroskey, and Carr (1982a), ( )
numerical results of Ribeiro, Casalino, and Fares (2016) and ( ) present
results. If available solid lines and markers indicate pitch-up movement,
dashed lines and hollow markers indicate pitch-down movement. . . . . . 110

8.16 Plot of the moment coefficient CM versus airfoil pitch-up angle α based on:
( ) experimental results of Mcalister et al. (1982a), ( ) numerical results
of Ribeiro et al. (2016) and ( ) present results. If available solid lines
and markers indicate pitch-up movement, dashed lines and hollow markers
indicate pitch-down movement. . . . . . . . . . . . . . . . . . . . . . . . . 112

8.17 Plot of the drag coefficient CD versus airfoil pitch-up angle α based on: ( )
experimental results of Mcalister et al. (1982a), ( ) numerical results
of Ribeiro et al. (2016) and ( ) present results. If available solid lines
and markers indicate pitch-up movement, dashed lines and hollow markers
indicate pitch-down movement. . . . . . . . . . . . . . . . . . . . . . . . . 112

8.18 Slice of normalized velocity magnitude field |U| /U∞ around NACA0012
airfoil at 10.0◦ angle of attack during the pitch-up movement for the illus-
tration of the flow structures corresponding to phase 1 of the dynamic stall
problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.19 Slice of normalized velocity magnitude field |U| /U∞ around NACA0012
airfoil at 23.7◦ angle of attack during the pitch-up movement for the illus-
tration of the flow structures corresponding to phase 2 of the dynamic stall
problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.20 Slice of normalized velocity magnitude field |U| /U∞ around NACA0012
airfoil at 25.0◦ angle of attack during the pitch-up movement for the illus-
tration of the flow structures corresponding to phase 3 of the dynamic stall
problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.21 Slice of normalized velocity magnitude field |U| /U∞ around NACA0012
airfoil at 20.0◦ angle of attack during the pitch-down movement for the
illustration of the flow structures corresponding to phase 4 of the dynamic
stall problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.22 Slice of normalized velocity magnitude field |U| /U∞ around NACA0012
airfoil at 15.0◦ angle of attack during the pitch-up movement for the illus-
tration of the flow structures corresponding to phase 5 of the dynamic stall
problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

9.1 Schematic representation of the investigated FSI case with all relevant para-
meters, taken from Wood, Breuer, and De Nayer (2020). . . . . . . . . . 120



List of Figures xv

9.2 Time and frequency response of the spring-mounted airfoil in still air, pitch
degree of freedom locked. . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

9.3 Time and frequency response of the spring-mounted airfoil in still air, heave
degree of freedom locked. . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

9.4 Time and frequency response of the spring-mounted airfoil in still air, both
degrees of freedom unlocked. . . . . . . . . . . . . . . . . . . . . . . . . . 126

9.5 Time and frequency response of the spring-mounted airfoil at Reynolds
number Re = 9660. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

9.6 Time and frequency response of the spring-mounted airfoil at Reynolds
number Re = 16500. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

9.7 Time and frequency response of the spring-mounted airfoil at Reynolds
number Re = 23900. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

9.8 Time and frequency response of the spring-mounted airfoil at Reynolds
number Re = 30600. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

9.9 Time and frequency response of the spring-mounted airfoil at Reynolds
number Re = 36000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

9.10 Slices of the velocity magnitude field over one oscillation period of the airfoil.131

9.11 Probing point displacement h caused by the heave ( ) and pitch ( )
motion over one oscillation period. . . . . . . . . . . . . . . . . . . . . . . 132



xvi List of Figures



List of Tables

7.1 Experiments of the in-line oscillating cylinder conducted by Dütsch et al.
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Chapter 1

Introduction

The global Corona pandemic has caused a significant decrease in global air travel. At the
same time however, it has not stopped the development of new aircraft concepts for short
and long haul flights and it has not stopped the emerging urban air mobility sector. Both
targeted towards providing more environmental friendly and more economically benefi-
cial solutions for transportation via a continuous improvement of existing aircrafts and
by establishing new modes of transportation via novel aircraft concepts.
The development of these aircrafts is enabled through electrification, advances in materials
and advances in aircraft integration. Besides these fields, advances in the computational
methods play an equally important role in the development of future aircrafts. As they
enable the design of more efficient aircraft components by providing more accurate and de-
tailed analysis and by providing predictions for coupled phenomena such as aero-elasticity
and aero-servo-elasticity.
While the development of such tools is not new, the literature review in the present thesis
shows that existing tools are either of varying fidelity, targeted towards different applic-
ations and are often designed for high modularity and flexibility rather than for optimal
performance. The need for a high-fidelity scale-resolving fluid dynamic solver coupled
with a multi-body solver which is targeted specifically to the aero-servo-elasticity ana-
lysis of aircraft was derived from this conclusion. For that reason, the development of
the coupling between the computational fluid dynamic solver and the multi-body solver
extended to the modeling of the geomtries in the flow field and solution of the multi-body
equations form the topic of this thesis project.
The aforementioned need and current state of computational tools is extensively studied
in the literature review part. A discussion is held on the currently available computational
tools and it is presented how the coupling of high-fidelity scale-resolving computational
fluid dynamics solvers with multi-body solvers and flight dynamics tools aids the design
of future aircrafts. Subsequently, the envisioned high-fidelity aero-servo-elasticity tool
is broken down in its individual components. The breakdown indicates three subjects:
(1) The modeling of the fluid domain, which focuses on the numerical modeling of the
solid/elastic boundaries of the aircraft components. (2) The modeling of the solid do-
main, either as rigid body or elastic body, the solution of the constraint rigid and elastic
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body system and reduced order modeling techniques for improved efficiency. (3) Coupling
schemes for the fluid and solid domains, which include the coupling of the spatial solution
in either domain and the time integration of the coupled system.
Following the literature study, the development of the components of the computational
tool is presented. The development of the tool concentrates on sub-parts of the presented
three fields. A hybrid ghost-cell immersed boundary method is developed for the simula-
tion of moving geometries in the flow field. The developed immersed boundary method
enables the simulation of low and high Reynolds number wall-bounded flow with a wall-
modeling approach.
On the structural side, the development of a multi-body solver for rigid bodies is presen-
ted. The developed solver enables the simulation of aircrafts, split into individual com-
ponents, such as fuselage, wings and control surfaces. Spring and damper constraints are
implemented to investigate aero-elastic phenomena such as flutter. A control strategy on
acceleration level is developed to enable the user to control the position of geometries
and constraints via user-prescribed paths. A loose coupling approach is implemented to
couple the fluid solver with the multi-body solver. The development of the full elastic
multi-body solver and implementation of reduced order models is beyond the scope of
this thesis.
The developed tools and methods are validated with data from experimental and nu-
merical simulations. The validation of the tool includes low and high Reynolds number
flow problems around geometries with user-prescribed paths for the validation of the hy-
brid ghost-cell immersed boundary method. Simulations of high Reynolds number flow
around static geometries are performed for the validation of the wall-modeling approach,
and simulations of a sprung mounted airfoil are performed to validate the multi-body
solver and coupling of the multi-body solver with the fluid dynamic solver.
The results of the literature study are presented in chapter 2. The development of the
immersed boundary method is described in chapter 3. The chapter explains the imple-
mentation of no-slip wall boundary conditions and wall-modeled boundary conditions. A
hybrid-cell treatment is introduced in order to reduce spurious oscillations in simulations
of moving geometries. Chapter 4 shows the derivation of the multi-body equations of
motion. The chapter covers further the derivation of the geometrical, spring and damper
constraints, the time integration and solution procedure for the multi-body system, and
the control strategy of the rigid bodies and constraints. The verification tests of the im-
mersed boundary method and multi-body solver are conducted separately. The results
of the immersed boundary verification tests are presented in chapter 5 and the results
of the multi-body solver verification tests are presented in chapter 6. The validation of
the developed tool is started with a low Reynolds number flow case in form of an in-line
oscillating cylinder, in chapter 7. The validation of the solver is extended to high Reyn-
olds number flow with simulations of flow around a NACA0012 airfoil at static angles
of attack and with simulations of a dynamic stall problem with the identical NACA0012
airfoil. The results of the static and dynamic simulations are presented in chapter 8. The
validation of the developed solver is finished with a study on flutter of a sprung mounted
NACA0012 airfoil. The case is selected for the validation of the multi-body solver and the
implemented loose coupling scheme. The results of the validation case are presented in
chapter 9. A final discussion of the developed solver and obtained results of the validation
cases is presented in chapter 10. Recommendations are given on further validation cases
and possible enhancements of the developed solver.



Chapter 2

Literature study

2.1 Background

New aircraft concepts emerged in recent years which aim at improving the environmental
impact of aviation, increasing the economic benefit and providing solutions for new modes
of transportation. Examples of such concepts are the Flying-V (TU-Delft, n.d.), the con-
cepts of the ZEROe program of Airbus (Airbus, n.d.) and the emerging urban air mobil-
ity (UAM) sector, with companies such as Lilium GmbH (Lilium, n.d.), Joby Aviation
(Joby-Aviation, n.d.) and EHang (EHang, n.d.). Without understating the importance
of advances in electrification, aircraft integration as well as new materials as enabler of
these new concepts, the use of higher fidelity methods and the combination of computa-
tional tools in a multi-disciplinary framework is and will continue to be an enabler of new
aerospace solutions (Slotnick et al., 2014). The importance of the former is illustrated
in this chapter by showing how advancements in the current aerodynamic tools enable
or at minimum accelerate the development of next generation aircrafts. After discussing
the necessary advancements of current aerodynamic tools, we take a multidisciplinary
look by including the structural degrees of freedom in the analysis and later the flight
dynamic degrees of freedom. The former topic is part of the computational aero-elasticity
(CAE) study (D. Schuster, Liu, & Huttsell, 2003) while the latter topic is part of the
aero-servo-elasticity (ASE) field (Tewari, 2015).

2.1.1 A note on computational fluid dynamics

The aerodynamic analysis has advanced massively with the availability of increased com-
putational power in the 1970 to 1990 from the use of panel methods, solving the potential
flow equations, further to the solution of the inviscid Euler equations with and without
boundary-layer formulations, to the solution of the Reynolds averaged Navier Stokes
(RANS) equations (Slotnick et al., 2014). The use of scale-resolving techniques, such as
large-eddy simulations (LES), wall-modeled LES and hybrid RANS-LES has increased
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significantly since the year 2000, but is at the time of writing not seen as the preferred
choice for engineers during the design and validation of the aforementioned aircraft con-
cepts. Results of LES with aircraft applications are currently mainly used for aeroacoustic
analysis purposes (Khorrami & Fares, 2019) and for the design of individual components,
such as aeroengine combustors (James, Anand, & Sekar, 2008). Currently, the use of
LES for design purposes is constrained by the computational cost which results in slow
turn-around times.
The validity of RANS simulation results is limited to attached flows. RANS solutions for
detached flows are highly dependent on the implemented turbulence model and underly-
ing flow case (Bardina, Huang, & Coakley, 1997). Therefore, the use of RANS simula-
tion results for the analysis and design validation at off-design conditions is not feasible
without the support of wind-tunnel and or flight-test measurements (Malik & Bushnell,
2012). At the same time, some newer emerging aircraft concepts rely on the expansion of
the flight envelope into regions with significant flow detachment. Such concepts include
the transition flight concepts of the UAM sector. While, these types of concepts have
been designed with the currently available and older methods, such as the MV/CV-22
Osprey or AW-609, some significant drawbacks and program risks arise from their use:
(1) The performance of the designed aircraft is sub-optimal due to uncertainties of the
computational methods, (2) program delays may arise when discrepancies between wind-
tunnel/flight-test data and computational methods trigger redesigns and (3) the testing
and validation of flight control laws relies on wind-tunnel data or flight-test data as the
CFD generated aerodynamic databases might be insufficient, which causes an increased
development time (D. M. Schuster, 2011).
The development of future CFD software should be aimed at making scale-resolving tech-
niques further available. Initially, for the use as a validation tool prior to wind-tunnel and
flight testing to reduce development time and risk, and, once the computational cost is
deemed acceptable, integrated in the design process to improve the performance of future
aircrafts.
So far, the advancements in aerodynamic methods and their use in the design process
were achieved via advancements in the available computational power. Further increases
in the computational power will play an important role in making the use of scale-resolving
techniques feasible for the validation and design of future aircrafts. At the same time,
advancements in the numerics and solver algorithms will equally play an important role
(Slotnick et al., 2014). The lattice boltzmann method (LBM) is a prime example. The
method gained popularity in recent years due to its formulation which is highly suitable
for massively parallelized high performance computing (HPC) hardware such as graphic
processing units (GPU), which have outperformed advancements of central processing
units (CPU) (Obrecht, Kuznik, Tourancheau, & Roux, 2013).

2.1.2 A note on aero-structural analysis

It has been shown how advances in the aerodynamic tools aid the design of future air-
crafts. The discussion is extended in the following paragraph with a look at coupled
aero-structural analysis. The coupled analysis of the two disciplines predicts the struc-
tural response due to aerodynamic forces and at the same time predicts the changes in
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the aerodynamic characteristics of the investigated geometry due to the structural de-
formations. The interested reader is referred to the book of (Wright & Cooper, 2014)
for an introduction to the topic. The discussion is started on the fundamental level by
illustrating how the use of coupled aero-structural methods aids the design of aircrafts
without specifying the need for high-fidelity methods. Afterwards, the benefits of moving
to higher fidelity tools for aero-structural analysis are shown.
The benefits of coupled aero-structural analysis are grouped into three areas: (1) In-
creased accuracy of aerodynamic performance predictions, (2) capability of predicting
coupled phenomena and (3) improved efficiency of structural designs via more accurate
and complete load cases.
The external shape of wings and other lifting and non-lifting surfaces of aircrafts can
vary significantly due to the deformation of the structure under load in both design and
off-design conditions. This introduces uncertainties in the results as the aerodynamic
characteristics vary between the deformed and un-deformed shape. The coupled analysis
can alleviate or fully remove these uncertainties because the aerodynamic analysis is per-
formed on the deformed shape. The variation in the aerodynamic characteristics between
deformed and un-deformed surfaces and the importance of an aero-structural analysis for
the quantification of the aircraft aerodynamic characteristics will increase further with
the trend towards higher aspect ratio and as a result more flexible wing designs (Kenway
& Martins, 2014). The aerodynamic knowledge gathered from the coupled analysis is
firstly used for more certainty in the validation of the aircraft performance and secondly
used within the design process to obtain optimal aircraft designs.
Dynamic phenomena, that arise from the coupling between the aerodynamic forces and
the structural response, can only be predicted and designed for with an assessment of
the coupled aero-structural system. The considered phenomena are commonly considered
within the field of aero-elasticity. The most common phenomena are divergence, control
inversion and flutter (D. Schuster et al., 2003). The importance of the field was best
demonstrated during the Tacoma Narrows bridge catastrophe in (1940) (Green & Unruh,
2006) when the coupling between aerodynamics and the structure resulted in the collapse
of the bridge. The importance of the field will further increase in the future with the trend
towards higher aspect ratio and more flexible wings (Palacios, Cesnik, & Reichenbach,
2007).
Related to the first two aspects of the aero-structural analysis, more efficient structural
designs are achieved via the combined analysis. This is achieved through more accur-
ate load predictions via the aerodynamic analysis of the deformed rather than the un-
deformed shape and a more complete set of load conditions via the prediction of both
steady and unsteady load cases. The weight savings that are achieved through the ef-
ficient structural design are either turned into increased payload, reduced fuel burn or
more range which contributes to the overall goals of the industry, which were introduced
at the beginning of the chapter.
The discussion has presented the use and need of aero-structural analysis in the design of
aircrafts. The analysis is further extended by investigating how the use of higher fidelity
aerodynamic solvers aids the aero-structural analysis.
Initial improvements in the accuracy of aero-structural analysis are achieved via the move
from linear aerodynamic methods (Crawley et al., 1995) to nonlinear aerodynamic meth-
ods such as unsteady RANS solvers (Baxevanou, Chaviaropoulos, Voutsinas, & Vlachos,
2008). Linear solvers have been successfully used for load predictions and aero-elasticity
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analysis of aircraft (Yi & Changchuan, 2018). However, the methods tend to overpredict
structural loads of high load factor maneuvers, are not applicable to stalled conditions
and are not applicable for the analysis at high Mach numbers. Solutions to these con-
ditions are achieved with the use of Euler solvers (B. Zhang, Ding, Cheng, & Zhang,
2016) and RANS based solvers (Baxevanou et al., 2008). Further improvements to the
aero-structural analysis are achieved with the use of scale-resolving techniques. The ad-
vantages of scale-resolving techniques for the anlaysis of off-design conditions such as
separated flow conditions has been already discussed on the aerodynamic side (P. Zhang
& Huang, 2011). The increased accuracy of the aerodynamic solution leads to more accur-
ate load predictions. Furthermore, buffeting load cases may be added to the load database
which are either not predictable with linear methods or are not accurately predictable
with RANS solvers (Morton, Cummings, & Kholodar, 2007; Katzenmeier, Vidy, Benassi,
& Breitsamter, 2019).

2.1.3 A note on aero-servo-elasticity analysis

The rational behind high-fidelity aerodynamic simulations and the coupling of these sim-
ulations with structural solvers has been introduced up to this point. The discussion is
further expanded with the coupling of the discussed aero-structural analysis with control
laws and flight dynamics degrees of freedom, leading to the full analysis of the aero-servo-
elastic aircraft system. It is important to note at this point, that while the integration of
the control laws is crucial for the full aero-elasticity analysis, the focus of this chapter and
the research objective is on the flight dynamics degrees of freedom. The reader is pointed
to (Tewari, 2015) on the topic of modeling and analysis of aero-servo-elastic systems.
Three scenarios are considered within this topic: (1) The coupling of aero-structural ana-
lysis with control laws, (2) the coupling of high-fidelity aerodynamic solvers with flight
dynamics degrees of freedom and flight control laws and (3) the combined analysis of the
flight dynamics of an elastic aircraft with coupled flight control laws.
The introduction of the aircraft control laws in the aero-structural analysis has been used
for active flutter suppression (Theis J. J, 2020) as well as gust load alleviation (H. Liu &
Wang, 2019), which are used to expand the aircraft flight envelope, increase the aircraft
component lifespan and increase passenger comfort. The former analysis is up to a certain
extend achievable without introducing the flight dynamics degrees of freedom.
Simulations of the aircraft characteristics for pilot training and testing/design of the flight
control laws is primarily performed based on simple but fast aerodynamic models or aero-
dynamic databases and surrogate models based on CFD data and experimental data
(M. Kim et al., 2019). The limits of the low fidelity models have already been discussed.
The use of aerodynamic databases is more suited for the analysis and design of flight con-
trol laws as they are quick and can map non-linear behavior. But a full coverage of the
complete flight envelope, including control derivatives, dynamic derivatives and additional
time history effects (such as hysteresis) is very expensive and up to impossible. Therefore,
aerodynamic databases can not replace experimental flight testing. Consequently, the use
of the proposed high-fidelity method with coupled flight/rigid body dynamics and control
laws is very attractive, because flight dynamic characteristics and control laws can be
assessed in regions of the flight envelope which are either computational expensive or to
complex too accurately model.
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However, with the trend towards higher aspect ratio and more flexible wings the wing
frequencies approach the flight dynamics frequencies which results in a strong coupling
between the flight dynamic degrees of freedom and elastic degrees of freedom (Yi &
Changchuan, 2018). At this point the solution of the flight dynamics equations alone
do not provide an accurate description of the aircraft characteristics and the elastic de-
grees of freedom must be included. The resulting aircraft system can be described by
the theory of elastic multi-body dynamics (Shabana, 2020). (Yi & Changchuan, 2018;
Dussart, Portapas, Pontillo, & Lone, 2018) present aero-servo-elastic frameworks which
apply these theories, but in combination with low fidelity aerodynamic solvers.

2.1.4 Research objective

This chapter has introduced the benefits and need of high-fidelity simulations for the
validation and design of future aircraft concepts. It was further shown how the coupling
of high-fidelity simulations with the structural field and aero-servo-elasticity field can aid
the design of aircrafts. The analysis was ended with the introduction of coupling elastic
multi-body dynamics with computational fluid dynamics. This framework would allow
the flight dynamics and structural analysis of elastic aircrafts in combination with highly
accurate scale-resolving fluid dynamic simulations. The research objective is the de-
velopment and validation of a multi-body solver tailored to the analysis of aircraft and
the integration and coupling of the solver into a currently developed GPU based scale-
resolving CFD solver.
The development of such tools is not new. (Yi & Changchuan, 2018; Dussart et al., 2018)
present an aero-servo-elasticity framework for the flight dynamics and control analysis
of highly flexible aircraft, (Y. Li et al., 2017) developed an aero-servo-elastic simula-
tion framework for windturbines based on coupled fluid and mutli-body dynamics and
(Yang, Bashir, Michailides, Li, & Wang, 2020) extended the aero-servo-elastic analysis
of windturbines to offshore windturbines by including hydrodynamic effects in the ana-
lysis. Furthermore, the application of a variational aero-elastic framework for flexible
multi-body dynamics was presented by (G. Li, Law, & Jaiman, 2019a, 2019b) for the
simulation of flying animals. A delayed detached eddy simulation treatment was used
for the prediction of the turbulent flow. Commercial and proprietary codes have been
developed for the coupled analysis. ASTEP (Roughen, Baker, Seber, & Taylor, 2006)
advertise with the capabilities of performing aerothermodynamic, servo, thermal, elastic,
propulsive coupled analysis with aerodynamic solvers ranging from Euler simulations to
Navier-Stokes simulations. Another commercial code SIMPACK 1 (Krüger, 2007) has
been developed for simulations of multi-body systems. The solver can be coupled with
low to high-fidelity aerodynamic tools.
All these methods are not optimal for the specific usecase of the developed aero-servo-
elastic framework for different reasons. The presented methods are partially based on
lower fidelity aerodynamic methods (Yi & Changchuan, 2018; Dussart et al., 2018), de-
signed for high modularity and functionality (Dussart et al., 2018; Krüger, 2007) rather
than low computational cost and tailored to specific applications (G. Li et al., 2019a,
2019b) and (Y. Li et al., 2017; Yang et al., 2020). A fast solution of the governing equa-

1https://www.3ds.com/de/produkte-und-services/simulia/produkte/simpack/
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tions and efficient integration of the multi-body dynamics solver into the aerodynamic
solver is crucial for the feasibility of performing high-fidelity simulations of complete
maneuvers. This is only possible with a tight integration of the aerodynamic and multi-
body solvers and by tailoring the numerical scheme to the specific problem of simulating
the flight dynamics of an elastic aircraft. The research is aiming to answer the following
research question:

What is an efficient implementation of a multi-body dynamics
solver inside a GPU-based high-fidelity scale-resolving CFD solver ?

The answer to this question is split into two parts. A literature review is conducted first
to research existing methods for the solution of coupled multi-body dynamics/fluid dy-
namics problems and guide the selection of methods for the developed framework. The
results of the literature study are presented in the remainder of this chapter. The formu-
lation and specifics of the implementation of the developed tool together with validation
results are presented in the following chapters. The research field is split into three smaller
fields of fluid/solid coupling methods, fluid domain modeling and solid domain modeling.
The breakdown of the solvers is graphically illustrated in figure 2.1. The results of the
literature review about the fluid/solid coupling methods are presented in section 2.2. The
review starts with an introduction to monolithic and partitioned coupling approaches. Af-
terwards, a more elaborate discussion is held about coupling/interpolation of the interface
solution and the temporal coupling approaches of partitioned methods. The literature re-
view of the fluid domain is presented in section 2.3. Two topics are covered, a high level
discussion of the fluid domain discretization and modeling of the turbulent flow field and
a more elaborate discussion on the topic of immersed boundary methods. The results of
the literature review on the modeling of the solid domain are presented in section 2.4. The
review is started with a discussion of the rigid body (RB) equations of motion and the
modeling and solution of constraint rigid body systems. Afterwards, the elastic degrees of
freedom are introduced and different approaches for the kinematic description of elastic
bodies are reviewed. The application of reduced order modeling (ROM) techniques is
envisioned to reduce the number of elastic degrees of freedom. A review of these methods
is shown in section 2.4.3. The discussion of the solid domain is finished with a review of
time integration methods for the governing equations of both rigid and elastic multi-body
systems. The final goal of the developed framework is the aero-servo-elastic analysis of
the elastic aircraft. However the implementation of the control laws and modeling of
aircraft sensors is not part of the research project.

2.2 Coupling approach

The review of the computational fluid-structure interaction methods is started with a
discussion of possible fluid/solid coupling approaches. The coupling approach is selected
first because it has large effects on the selection of the numerical methods for the fluid and
solid domains, the transfer of the solution between the domains and the time integration
of the resulting system.
Today’s approaches are commonly grouped into two categories. Category 1 contains meth-
ods based on monolithic coupling approaches (Blom, 1998; J. Liu, Jaiman, & Gurugubelli,
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Figure 2.1: Graphical representation of the solver break down.
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2014), category 2 collects coupling methods based on a staggered or partitioned approach
(Felippa, Park, & Deruntz, 1977; Farhat, Lesoinne, & Maman, 1995; Farhat & Lesoinne,
2000).

Figure 2.2: Graphical representation of a monolithic and partitioned approach (Zuijlen,
2006, p. 2).

The monolithic approach assembles the governing equations of the fluid and solid domains
into a single block (He & Zhang, 2017) and integrates the single block in time with a
selected time integration scheme. The fully coupled approach results in superior stability
properties and excellent conservation of energy. The method is therefore suitable for
a wide range of fluid-structure problems including problems with low solid-fluid mass
ratios (Turek et al., 2010). The development and application of a monolithic algorithm
is presented in Blom (1998), together with a comparison of the monolithic and staggered
algorithms via the piston problem.
The improved stability and energy conserving properties of the monolithic approach come
at the cost of removing the modularity of the fluid and structural solvers due to the
entanglement of the governing equations and combined time integration. As a result,
significant recasting efforts of existing codes are required for the coupling of the fluid and
solid domains (He & Zhang, 2017). The monolithic approach is depicted in figure 2.2 (a).
In the partitioned approach, the fluid and solid domains are solved separately. The
approach dates back to the early work of Felippa et al. (1977) in the 1970s. A coupling
algorithm is introduced to (1) interpolate and transfer the motion and forces between
the separated domains and (2) advance the solution in the domains in a coupled fashion
(Zuijlen, 2006). The approach is depicted in figure 2.2 (b). The method is further divided
into explicit and implicit coupling algorithms. Farhat and Lesoinne (2000) show the
development of an explicit staggered algorithm and its application to the AGARD 445.6
flutter problem. Farhat et al. (1995) describe the implementation of implicit and explicit
partitioned schemes and apply them to the instability analysis of flat panels submerged
in supersonic flow. The explicit method solves the coupling problems in a sub-iteration
free fashion which results in a lag of the structural problem behind the fluid solution and
the violation of the equilibrium condition at the interface (He & Zhang, 2017). This may
lead to spurious solution errors or divergence of the numerical solution. The stability
issues of the method come apparent once the density of the solid domain approaches the
density of the fluid domain (Van Brummelen, 2009; Causin, Gerbeau, & Nobile, 2005).
The implementation of the implicit staggered algorithm alleviates the problems of the
explicit method and results in a strongly coupled system but it does require additional
sub-iterations leading to increased computational cost. The following two sections provide
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a more detailed discussion about the spatial coupling schemes and the temporal coupling
schemes of the partitioned approach.

2.2.1 Spatial coupling

In either approach, monolithic and partitioned, an interface problem may arise for the
transfer of the solution between the solid and fluid either across conformal or non-
conformal meshes. The equations that arise from the interface problem either take an
interpolation and data transfer role within partitioned approaches, or act as additional
constraint equations in the monolithic approaches for the augmentation of the system
matrix.
As discussed, with the use of the partitioned approach existing solvers and meshes can
be used for the specific domain needs. But the use of the partitioned domains introduces
a new problem of transferring the load and motion information between two or more
domains.
This problem is mathematically expressed via a set of two algebraic equations that must
be satisfied at the interface, given by

xf = xs

σf · ni = σs · ni,
(2.1)

where x denotes the position of the interface surfaces on fluid and solid side, σ denotes
the stress tensor on both sides of the interface and n denotes the normal vector of the
fluid and solid interface boundaries. Equality 1 equates the displacement field of the fluid
and solid domains at the interface. Equality 2 equates the tractions on the solid and fluid
domain wetted surfaces at the interface.
A comprehensive review and comparison of existing solutions for the interface problem
can be found in Boer, Zuijlen, and Bijl (2007). Perhaps the simplest approach for the in-
terpolation of data between two meshes is the nearest neighbor (NN) approach (Thévenaz,
Blu, & Unser, 2000). With this approach the load on the structural nodes is equal to the
load on the nearest fluid node and the motion of the fluid nodes is equal to the nearest
structural node. The approach globally conserves forces but is only first order accurate
(Boer et al., 2007).
An improved and higher order method is achieved with the use of projection (Cebral
& Lohner, 1997; Farhat, Lesoinne, & Le Tallec, 1998). The projection method projects
the fluid side stresses onto the wetted surfaces of the structural mesh and integrates the
projected values with the shape function of the elements. Equally the displacement of the
fluid nodes is derived by projecting them onto the wetted surface of the structural mesh.
However, as shown by Farhat et al. (1998), the original formulation of the method is not
conservative. At the same time, Cebral and Lohner (1997); Farhat et al. (1998) have
presented implementations of the projection which are conservative but not consistent.
The conservative projection method of Farhat et al. (1998) is used for the prediction of
the flutter speed index polar of the AGARD Wing 445.6 in Farhat and Lesoinne (2000).
A third method for the solution of the coupling problem was developed based on radial
basis function interpolation (Beckert & Wendland, 2001; Rendall & Allen, 2009). The
method is especially attractive for problems involving largely non-matching interfaces
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such as the coupling of aerodynamic surfaces to structural beam models (Rendall & Al-
len, 2008; G. Li et al., 2019b). A limiting factor of the method is its computational cost.
The method requires the inversion and storage of a full matrix with size NA×NS , where
NA denotes the number of surface nodes of the fluid mesh and NS denotes the number of
wetted structural nodes. The computational cost of the method was significantly reduced
recently by introducing local interpolation problems, where aerodynamic points only de-
pend on their Nsp nearest structural points (Rendall & Allen, 2009; Murray, Thornber,
Flaig, & Vio, 2019). The local support of the aerodynamic nodes may lead to non-smooth
surfaces. Therefore Rendall and Allen (2009) introduced an additional smoothing func-
tion based on the nearest aerodynamic points. G. Li et al. (2019a) applies the radial
basis function interpolation for the interpolation and transfer of the aerodynamic forces
and structural displacements within their aero-elastic framework for flexible multi-body
dynamics.
The methods that have been presented up to this point are commonly known as direct
coupling methods. A different solution to the spatial coupling problem was derived from
the structural analyses field were partitioned structural domains are coupled via the intro-
duction of Lagrange multipliers (Barlow, 1982). The mortar method (Bernardi, Maday,
& Patera, 1993, n.d.) is based on this idea. Within this method, Lagrange multipliers are
used for the coupling of the interface displacement fields via a weigthed residual equation.
The method is mathematically superior to the projection method as it does not lead to a
decrease of the discretization order across the interface (Farhat et al., 1998), but the com-
putational cost of the original method is comparable to the cost of the structural problem
(Farhat et al., 1998) and not attractive for fluid-structure interaction problems. Further
work was conducted on the Mortar method to improve its scale-ability and applicability
to fluid-structure interaction problems. Wohlmuth (2000) presents a Mortar method with
shape functions that are only supported by few local elements. The method leads to a
diagonal matrix which is computational more attractive than the linear matrix of the
original Mortar method (Bernardi et al., 1993, n.d.). Traditional methods are based on a
two field approach where the interface mesh is equal to the surface mesh of one of the do-
mains, denoted as master. The Lagrange multipliers are introduced to couple the master
and conformal interface to the slave surface. These methods suffer from a master-slave
bias (Zhou, Zhang, Chen, Peng, & Fang, 2020). Three field approaches instead introduce
an additional interface field which is independently meshed from either domain. The do-
mains are coupled to the interface field via Lagrange multipliers whereby the master-slave
bias is eliminated. Such an approach is discussed in Park, Felippa, and Ohayon (2001)
and Gerstenberger and Wall (2008).

2.2.2 Temporal coupling

With the staggered approach the integration of the fluid and structure domains is de-
coupled, which enables the use of different integration schemes and time steps. An overall
coupled solution is achieved by communicating the motion and forces at the interface
between the domains. The coupling approach dictates the direction and point in time of
the communication between the coupled domains.
The elementary explicit coupling approach for the solution of fluid interaction problems
is the conventional serial staggered (CSS) approach (Farhat & Lesoinne, 2000). The ap-
proach is shown in figure 2.3 with additional subcycling on the fluid side. The illustration
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shows the states of the structural field U , the aerodynamic field W and the mesh state x.

Figure 2.3: Illustration of the conventional serial staggered procedure with subcycling.
(Farhat & Lesoinne, 2000, p. 503).

Figure 2.3 shows two important characteristics of the CSS approach: (1) The explicit and
serial characteristics of the approach are illustrated by showing how first the fluid solution
is advanced in time and later the structural solution, and (2) it illustrates the time lag of
the communicated input of the fluid solution which receives the structural deformation x
of the previous time step. The time lag of the communicated interface solution results in
a first order accuracy of the coupled system in time (Farhat et al., 1995), independent of
the time discretization of the partitioned domains. Furthermore, the CSS suffers from nu-
merical instabilities due to the artificial added-mass effect (Van Brummelen, 2009; Causin
et al., 2005).
Different approaches have been presented in literature to solve the drawbacks of the con-
vential staggered scheme.
A possible solution to these issues is the implementation of an implicit staggering ap-
proach. The implicit staggering approach removes the time lag between the structural
displacement and flow solution. An implicit problem arises due to the removal of the time
lag because the fluid equations must be solved on a yet unknown deformed mesh. The
implicit problem can be solved with the use of block-Jacobi and block-Gauss-Seidel pro-
cesses (Le Tallec & Mouro, 2001) and also using more sophisticated block-Newton meth-
ods (Matthies & Steindorf, 2003). The implicit methods are attractive as they maintain
modularity of the coupled solvers, achieve the temporal accuracy of the coupled solvers
and achieve the same results as monolithic solvers (Matthies & Steindorf, 2003). The
implicit method is not attractive from a computational view point due to the increased
computational cost for each time step.
An explicit improved serial staggered (ISS) coupling approach was proposed by Farhat
and Lesoinne (2000) by shifting the structural solution by half a time step. The analysis
of the resulting coupling approach showed improved robustness and accuracy. Farhat,
Zee, and Geuzaine (2006) later proved that the ISS coupling approach is second order
accurate in time. A novel coupling method for solvers with second and higher order tem-
poral accuracy was proposed by Zuijlen (2006). The proposed mixed implicit/explicit
(IMEX) scheme can couple systems of any order (Zuijlen, 2006) and is highly suitable for
the coupling of high order codes. An explicit scheme is used for the integration of the
coupling term which results in a conditionally stable scheme even if implicit uncondition-
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ally stable schemes are used in the individual partitions.
While the two presented approaches maintain a second order or higher temporal accur-
acy, they may suffer from numerical instabilities due to the added-mass effect. The added
mass arises from the effect of the fluid on the structure, which can be represented as an
additional structural mass in the higher frequencies (Van Brummelen, 2009). The effect
increases with decreasing mass ratios between the structural and fluid domains. Causin
et al. (2005) further showed that the added-mass effect not only leads to instabilities of
explicit methods but also results in poor convergence properties of the presented implicit
schemes for strongly coupled systems. Significant differences were also found between the
added-mass effect in incompressible and compressible flow. It was proven that for com-
pressible flows staggered approaches are stable for an sufficiently small time step, while
for incompressible flows the stability of the solution may not be guaranteed independent
of the selected time step (Van Brummelen, 2009).
This led to the development of the added-mass partitioned (AMP) coupling approach. For
the simulation of lightweight or zero-weight rigid bodies in compressible flow (J. Banks,
Henshaw, & Sjögreen, 2013) and also for the simulation of linear elastic bodies (J. W. Banks,
Henshaw, & Schwendeman, 2012) and non-linear solids (J. W. Banks, Henshaw, Kapila,
& Schwendeman, 2016). The stabilty of the above methods is achieved by introducing a
fluid-solid Riemann problem into the treatment of the interface.
The approach was further used to stabilize staggered fluid-structure simulation for incom-
pressible flow as presented by J. W. Banks, Henshaw, and Schwendeman (2014); Serino,
Banks, Henshaw, and Schwendeman (2019) and the references within.

2.2.3 Discussion

Spatial and temporal coupling schemes for fluid and solid domains have been presen-
ted. The coupling schemes were primarily split into partitioned and monolithic coupling
approaches. The literature research has shown that monolithic approaches have super-
ior stability and accuracy characteristics over partitioned approaches by assembling the
equations of either domain into a single block and integrating the resulting system. The
superior characteristics of the monolithic approach come at the cost of less modularity
and reduced flexibility in the development of the individual solvers.
The partitioned approach separates the computation of the individual domains. Coup-
ling between the domains is introduced in the domain specific boundary conditions which
are derived from the interface conditions. It was further presented that the partitioned
approach is separated into explicit and implicit methods. Implicit methods have charac-
teristics similar to the monolithic approach in terms of stability and accuracy but come
at an increased computational cost. Explicit methods are computationally inexpensive
but may become unstable for low solid fluid mass ratios.
A partitioned approach is selected for the coupling scheme of the GPU-based CFD solver
and multi-body solver. The numerics of the flow solver have been developed prior to this
thesis without consideration of the multi-body solver and optimised for GPU based HPC
hardware. The integration of the numerics of the monolithic approach into the current
fluid solver would significantly reduce the efficiency of the flow solution. Moreover, the
time integration of the fluid and solid domain can not be separated in the monolithic
approach. The time scales of the fluid flow are significantly smaller than the time scales
of interest in the solid domain. With the partitioned approach the time integration of the
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solid region is decoupled from the fluid domain and significantly higher time steps may
be taken during the integration of the equations. Finally, the coupled solvers are used for
the simulation of air and solid domains only. Solid-fluid mass ratios for most aerospace
vehicles are significantly above one. Therefore, stability issues are not expected with the
explicit partitioned approach.
A radial basis function (RBF) approach is used for the spatial coupling of the fluid and
solid domains. Mortar based methods are not selected due to the increased computational
cost that arises from the introduction of additional degrees of freedom at the interface.
Projection based methods are conservative or consistent but do not offer the flexibility
of RBF methods because a projection result may not be found if the fluid and structure
surfaces meshes are significantly misaligned. As is the case with simple structural beam
models.
Two schemes are considered for the temporal coupling of the fluid and solid domains.
Initially the conventional serial staggered approach is implemented with additional sub-
cycling on the fluid side. The approach is only first order accurate in time but was shown
to be sufficiently accurate for the simulation of the Agard 445.6 wing (Farhat & Lesoinne,
2000).

2.3 Fluid solver

2.3.1 Fluid domain modeling and discretization

A wide range of aerodynamic methods have been used for fluid-structure and aero-servo-
elasticity problems, ranging from low fidelity potential flow methods to high-fidelity scale-
resolving methods.
Yi and Changchuan (2018) present the use of a doublet lattice method for the prediction
of the aerodynamic forces in their aero-servo-elasticity framework.
B. Zhang et al. (2016) developed a method based on the Euler equations for the solution
of transonic flutter problems and applied the method to the Agard 445.6 wing.
Yang et al. (2020) discuss the development and application of an aero-hydro-servo-elastic
coupling framework for the analysis of offshore wind turbines. The framework employs
the blade element momentum theory with a generalized wake model for the prediction of
the aerodynamic forces.
G. Li et al. (2019b) use a hybrid RANS/LES model based on the delayed detached eddy
DDES treatment for the solution of the flow around a flapping bat wing which is modeled
via a flexible multi-body system and Roughen et al. (2006) describe the availability of
different flow solvers ranging from RANS to LES in the proprietary ASTEP software tool
for the aerothermodynamic, servo, thermal, elastic, propulsive coupled analysis.
As discussed in the introduction, a scale-resolving approach is selected for the developed
aero-servo-elasticity framework, inline with the CFD 2030 goals (Slotnick et al., 2014).
A review of the fluid model, turbulence closure and spatial/temporal discretization of
the governing equations is outside the scope of this review. Instead, the already selected
models and methods are presented. The governing equations are discretized on an adapt-
ive Cartesian mesh using the finite volume method. The mesh is generated and updated
with a forest of octree adaptive mesh refinement library (Burstedde, Wilcox, & Ghattas,
2011). The selected mesh is ideal for GPU based numerical solvers. Very low memory
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requirements for the mesh allow the solution of large problems on GPU which are com-
monly bound by memory limitation. Reduced memory requests and efficient caching of
the partially structured data during the computation reduce overall computational cost.
The spatial discretization and explicit time integration scheme are proprietary and are
not discussed further. A wall-modeled LES approach is selected for the modeling of the
subgrid terms and modeling of the near-wall flow field. The presence of geometries in the
flow field is modeled via the immersed boundary method. An elaborate discussion of this
method is presented in the following paragraphs.

2.3.2 Immersed boundary method

Arbitrary Lagrangian Eulerian (ALE) (Hirt, Amsden, & Cook, 1974) methods are com-
monly used for fluid-structure interaction problems. These methods use body fitted
meshes for the discretization of the flow field. During the simulation the body fitted
meshes are deformed to fit the deformed shape of the structural domain. ALE methods
are not suitable for the developed solver due to the non-body conforming Cartesian mesh,
which is used for the discretization of the governing equations. Further, ALE methods
are not applicable to problems with large deformations (Sahin & Mohseni, 2009) without
expensive remeshing efforts. Consequently, these methods are not suitable for the solution
of rigid body motion which is an intended use of the developed solver.
Instead, an immersed boundary method is implemented to model the presence of the
geometry in the flow. A method later referenced as immersed boundary method was
initially introduced by Peskin (1973) for the simulation of flow patterns around heart
valves. Comprehensive reviews of immersed boundary methods can be found in Mittal
and Iaccarino (2005); Sotiropoulos and Yang (2014); W. Kim and Choi (2019).
The method is divided into continuous forcing approaches and discrete forcing approaches.
The continuous forcing approach (Peskin, 1973) adds a forcing term to the continuous
formulation of the Navier Stokes equations. It is therefore independent of the discret-
ization. The method was initially implemented for the simulation of elastic boundaries
(Peskin, 1973, 1982).
Conceptually, the method works in the following way. The elastic boundary is discretized
by a set of Lagrange markers, which move with the flow. A force is computed based on
the elastic properties and relative displacement of Lagrange markers. The force is applied
to the fluid field via a distribution function (Beyer, 1992; Lai & Peskin, 2000; Saiki &
Biringen, 1996).
The method has been applied to the solution of flows around rigid bodies by introducing
a spring forcing term which is based on the displacement of the Lagrange markers with
respect to their equilibrium position (Beyer, 1992; Lai & Peskin, 2000). However, for
an accurate respresentation of the boundary high spring constants are necessary which
lead to very stiff systems of equations which introduce stability issues (Lai & Peskin,
2000). Improvements were achieved by introducing damping terms to the Lagrange force
(Goldstein, Handler, & Sirovich, 1993). However, also here high spring stiffnesses and
damping constants are required for an accurate representation of the boundary.
The inability of the method to accurately represent rigid bodies and the stability concern
together with the need to manually specify the stiffness of the boundary renders it not
suitable for the simulation of flow around aircraft components.
Instead, a discrete forcing approach is considered for the immersed boundary method
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which derives the forcing term from the discretized form of the Navier Stokes equations.
The discrete forcing approach is split into indirect methods and direct methods which are
further explained in the next paragraphs.

Indirect methods

The continuous Navier Stokes equations can not be integrated analytically, which prevents
the derivation of a forcing term which satisfies the boundary condition of the immersed
boundary (Mittal & Iaccarino, 2005). However, as shown by Mohd-Yusof (1997), a forcing
term can be derived from the discretized Navier Stokes equations for each time step by
computing a priori velocity field. That is a velocity field that does not account for the
presence of the immersed boundary.
Following his initial publication, Mohd-Yusof, Orlandi, and Haworth (1998) applied an
indirect forcing approach in LES of internal flow in piston engines. Identical to the con-
tinuous forcing approach introduced by Peskin (1973), an interpolation function is used
for the interpolation of the flow variables on the surface and the spreading of the surface
forces onto the fluid. Different forms of a discrete delta function used by Peskin (1973) are
commonly used for the interpolation of the velocity on the surface and the distribution
of the forces onto the fluid.
Mohd-Yusof et al. (1998) linearly interpolate the force between the boundary and the
inner flow field in line with the central discretization scheme. A more conventional ap-
proach is the use of a discrete form of the Dirac’s delta function. Roma, Peskin, and
Berger (1999) proposed a 3 point version of the discrete Dirac’s delta function. Uhlmann
(2005); Kempe and Fröhlich (2012) use the discrete form of the Dirac’s delta function
proposed by Roma et al. (1999) for the modeling and simulation of flow around finite
particles.
The indirect forcing approach has two significant advantages over the direct forcing
approaches. (1) Volume geometry information such as expensive levelset information
(Katopodes & Katopodes, 2019) is not required by the method and (2) the method
is easily extended to moving geometries without spurious oscillations at the immersed
boundaries (Luo et al., 2012). However, the method is less applicable to high Reynolds
number flow due to the spreading of the body forces across the grid nodes in the vicinity
of the boundary which removes the sharpness of the boundary (Mittal & Iaccarino, 2005)
and the explicit nature of the method leads to slip velocities at the immersed boundary.
Recent studies have presented ways to increase the sharpness and accuracy of the method.
Vanella and Balaras (2009) presented a novel interpolation for the velocities and forces
based on moving least squares and Shi, Yang, Jin, He, and Wang (2019) present the use
of the indirect forcing method for wall-modelled high Reynolds number LES.
The numerical errors due to the slip velocity at the immersed boundary have been re-
moved by introducing multi-step methods (Kempe & Fröhlich, 2012) or by introducing
an implicit problem for the magnitude and distribution of the forcing terms (Pinelli,
Naqavi, Piomelli, & Favier, 2010). More recently Gsell and Favier (2021) proposed a
priori correction term for the correction of the slip velocity.
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Direct methods

The indirect forcing method was presented previously. As discussed, this method is not
well suited for the simulation of sharp interfaces due to the diffusive nature of spreading a
forcing term over multiple cells in the vicinity of the boundary. The method is therefore
generally said to be applicable only to low or moderate Reynolds number flows. Direct
methods have been developed for the simulation of sharp interfaces and for the solution
of high Reynolds number flows. The most common method is the ghost-cell method
(Fedkiw, Aslam, Merriman, & Osher, 1999; Tseng & Ferziger, 2003; Ghias, Mittal, &
Lund, 2004) which applies corrections directly to the flow variables in the cells and the
cut-cell method (Clarke, Salas, & Hassan, 1986) which adapts the finite volumes in the
vicinity of the boundary.

Ghost-cell method

Ghost-cell methods are fundamentally derived from the domain boundary conditions of
finite difference and finite volume methods, where values in stencil nodes outside the
numerical domain are set based on the imposed boundary condition and fluid side solution.
Ghost-cell methods apply this principle to immersed boundaries which are not necessarily
grid aligned. Ghost cells are generally defined as solid cells with at least one fluid side
neighbor (Mittal & Iaccarino, 2005). Additional layers of ghost cells may be introduced on
the solid side of the immersed boundary for higher order stencils. The flow quantities in
the ghost cells are derived by introducing two additional points. The boundary intercept
which defines the normal and boundary value associated with the ghost cell and the image
point, which is used to interpolate the fluid side solution associated with the ghost cell.
The three points/cells ghost cell, boundary intercept and image point are illustrated in
figure 2.4.

Figure 2.4: Schematic diagram of Catesian-grid-based computational domain with immersed
boundary, [Nomenclature: G, ghost node; O, boundary point; I, image point;
ΩD, domain of dependence; Ω1, fluid domain; Ω2, solid domain; IB, immersed
boundary], taken and modified from Mo et al. (2018, p. 3).

Various interpolation schemes have been introduced for the interpolation of the fluid
solution at the image points. Linear and bilinear interpolation schemes have been applied
by Majumdar, Iaccarino, and Durbin (2002); Ghias et al. (2004). The interpolation can be
extended to a trilinear interpolation for three-dimensional flows as shown by Majumdar et
al. (2002). The linear interpolation schemes work well when the image point sits within the
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viscous sublayer of the boundary layer, but leads to wrong predictions for higher Reynolds
numbers (Mittal & Iaccarino, 2005). Directional interpolation schemes were proposed to
obtain more accurate solution of higher Reynolds number flows. Furthermore, Tseng and
Ferziger (2003) present the use of polynomials for the reconstruction of the ghost cell
values and estimation of the forcing term. Kapahi, Sambasivan, and Udaykumar (2013)
propose the use of least squares for the interpolation of the image point values. The use
of inverse distance methods was first introduced by Tseng and Ferziger (2003) and further
developed by Gao, Tseng, and Lu (2007) and Mo et al. (2018). The presented interpolation
methods can be used for higher order methods with the introduction of additional ghost
cell layers. However, to maintain high numerical accuracy, a high order reconstruction of
the ghost cell values is required in combination with the high order numerics of the flow
field (Baeza, Mulet, & Zoŕıo, 2016). The ghost-cell methods deliver accurate results for
low and high Reynolds number flows with a sharp representation of the boundary. The
method may lead to spurious oscillations in the flow field once geometries start moving.
This is caused by a switch in the states of the cells in the numerical domain from ghost
cell to fluid cell and vise-versa (Luo et al., 2012). Luo et al. (2012) propose a blending
approach where cells in the first fluid layer of the wall are smoothly transitioned into the
ghost cell values. Lee and You (2013) propose a novel approach for the interpolation of
multiple layers of fresh fluid cells, cells that switched from solid state to fluid state.
The ghost-cell method is applicable to low and high Reynolds number flow with a sharp
representation of the boundary. Compared to the indirect forcing method the ghost-
cell method requires additional computational resources for the calculation of geometry
information such as the levelset function in the vincinity of the boundary. The levelset
function is used to compute the boundary intercepts of the ghost cells and to subsequently
locate the image point.

Cut cell method

The presented IB methods do not satisfy the underlying conservation of mass and mo-
mentum close to the surface. A finite volume approach at the IB should be selected to
satisfy the conservation laws within the flow field and at the immersed boundary (Mittal &
Iaccarino, 2005). This forms the main motivation for the cut-cell methodology. Clarke et
al. (1986) introduced the method for the simulation of inviscid flow around multi-element
airfoils. The method was further applied to viscous flows by H. Udaykumar, Shyy, and
Rao (1996); H. S. Udaykumar, Mittal, Rampunggoon, and Khanna (2001) as discussed
in Mittal and Iaccarino (2005). The cut-cell method truncates the cells that are cut by

Figure 2.5: Two-dimensional sketch of a cut-cell, taken from Örley et al. (2015, p. 5).

the immersed boundary. The cutting of the finite volume cells results in new trapezoidal
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cells in the two-dimensional case as shown in figure 2.5.
The problem that arises from these new cells is the reconstruction of the fluxes at the
irregular cell faces. A common approach is the use of interpolation functions to approx-
imate the flux at the face based on the cell values of the solution (Ye, Mittal, Udaykumar,
& Shyy, 1999). Mittal, Seshadri, and Udaykumar (2004) shows the application of this
cut-cell method to free falling objects.
However, while the truncation of the volumes leads to sharp interfaces and conservative
properties which are ideal for LES, the method may generate very small cells which lead
to stability issues in explicit and poor convergence performance in implicit methods. Dif-
ferent approaches have been implemented to alleviate the problem of the small cut-cells.
Ye et al. (1999) and Bayyuk, Powell, and Leer (1993) employ a cell merging technique
where small cells are merged with larger neighboring cells at the cost of additional com-
plexity due to the need to change the stencil of all neighboring cells. Another approach
referred to as flux redistribution was introduced by Pember, Bell, Colella, Curtchfield,
and Welcome (1995); Colella, Graves, Keen, and Modiano (2006).
The application of the method to multi-dimensional compressible flow has been presented
by Lauer, Hu, Hickel, and Adams (2012) for the simulation of bubble dynamics and by
Pasquariello et al. (2016) for the solution of fluid-structure interaction problems between
compressible flow and deformable bodies. The volume preserving properties of the cut-cell
method comes at the cost of significant geometrical computation. Both the cut surface
areas of the geometry and the cut cell faces must be computed as well as the cut volumes.
This leads to significant additional computational costs for both stationary and moving
geometries.

2.3.3 Discussion

The review of the fluid solver has been started with an overview of various flow solvers
that have been used for fluid-structure interaction simulations. It was stated that the
selection of spatial and temporal discretization methods and the modeling techniques for
the turbulent flow are outside the scope of this project. Instead, a top level description
of the selected models was given.
The selection of an adaptive Cartesian mesh for the discretization of the fluid equations
ruled out the use of the conventional ALE methods and introduced the need for an im-
mersed boundary approach to model the presence of the moving and flexible aircraft
components in the flow field. The review of immersed boundary approaches formed the
main focus of this section. Based on the knowledge gathered from the literature review
a selection of an appropriate immersed boundary approach was made. The result of the
selection is discussed in the section.
The review of the immersed boundary methods was started at the origin of the method
with a discussion of the continuous forcing approach introduced by Peskin (1973). The
review of the method showed that it is suitable for the simulation of flexible bodies in the
flow field such as heart valves. The method is not well suited for the simulation of rigid
bodies. Multiple attempts have been made to apply the method to simulations of rigid
bodies, however these often resulted in stiff problems with low stability and time step
limits. Moreover, these approaches generally relied on user-defined spring and damping
coefficients. The inability to efficiently model rigid bodies combined with the need for user
specified boundary coefficients already rule out the method for the aero-servo-elasticity
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framework.
Subsequently, the discrete forcing approach was introduced. The methods of the discrete
forcing approach were classified either as indirect or direct methods. The direct methods
were further split into the ghost-cell method and cut-cell method.
The review showed that the indirect methods are conceptually derived from the continuous
forcing approach but the forcing term is derived from the discretized form of the Navier
Stokes equations, which eliminates the need of user specified parameters and enables the
simulation of rigid bodies. Similar to the continuous approach a distribution kernel is
used to spread the boundary force over the flow field in the vicinity of the boundary.
Advantages of the indirect forcing approach were pointed out to be smooth flow solution
for stationary as well as moving geometries and generally low computational cost as only
little geometry information is required for the method. However, the method is generally
said to not be applicable for high Reynolds number flow due to the diffusive nature of
spreading the boundary force in the vicinity of the boundary and a true no slip boundary
either requires the use of more expensive multi-step methods or the solution of an implicit
problem.
A sharp interface is achievable with direct forcing methods such as ghost-cell or cut-cell
methods. Ghost-cell methods set the numerical solution in cells which are located outside
of the fluid domain but within the numerical stencil. These are usually defined by cells
with at least one fluid cell neighbor but multiple ghost cell layers may be required for
high order spatial schemes. The numerical solution of the ghost cell is set based on the
boundary intercept and fluid flow solution at the image point which may not coincide with
the numerical grid. Interpolation methods were introduced for the interpolation of the
flow solution at the image point. The review showed that proposed interpolation schemes
range from simple and computationally inexpensive inverse distance weighting methods
to computationally more expensive tri-linear interpolation methods and regression meth-
ods. The ghost-cell method is applicable to high Reynolds number flows and does suffer
from numerical inaccuracy due to residual slip velocities such as the indirect methods.
However, the method may cause spurious oscillation in the flow field when applied to
moving geometries. Further, the method does require additional geometric information
which results in additional computational cost.
Numerically superior to the above two methods is the cut-cell method which achieves
sharp interfaces and further conserves mass and momentum. The cut-cell method trun-
cates cells by cutting them with the immersed boundary. Interpolation techniques must
be employed to compute the correct fluxes of the truncated cells. Further, cell merging
techniques must be used to eliminate stability issues arising from small cells. The calcula-
tion of the correct face fluxes of the truncated cells and additional cell merging or similar
techniques increase the computational overhead of the method.
The ghost-cell method is selected for the immersed boundary method inside the code for
the simulation of stationary or moving geometries. The method is computationally more
expensive than the indirect method, but the literature review showed that the indirect for-
cing approach is not well suited for the simulation of high Reynolds number wall-bounded
flows. Therefore the use of the ghost-cell based approach is deemed more suitable for the
aero-servo-elasticity framework used for the simulation of aircraft flight dynamics. The
numerically superior cut-cell method is not considered due to its high computational cost.
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2.4 Motion solver

The motion solver of the aero-servo-elasticity framework covers three types of problems:
(1) The solution of the rigid body equations of motion for the aircraft in order to pre-
dict the trajectory and movement (translation and rotation) of the aircraft and control
surfaces, (2) the solution of the elastic deformation problem of aircraft components in
the inertial frame due to aerodynamic, thrust and other forces and (3) the solution of
the combined problem of elastic deformation and large translational and rotational move-
ment. The solution to the third problem is subject of the flexible mutli-body dynamics
field of study Shabana (1997). A review of methods for the solution of the mentioned
problems is given in this section. The review starts with a discussion of the rigid body
equation of motions and the solution to the motion problem of constrained bodies. Af-
terwards, the discussion is extended to the motion of elastic bodies with special attention
to the modeling of elastic bodies that undergo large translational and rotational motion.
The chapter is concluded with a discussion of reduced order model techniques for the
reduction of the governing equation to computational acceptable levels and a discussion
of time integration methods for the constructed system of equations.

2.4.1 Rigid body motion

The motion of a rigid body is governed by Newton’s second law of motion. The governing
equations relate the translational and rotational acceleration of the body to the inertia
properties and applied external forces. The governing equations of a single body (Shabana,
2020, p. 133), under the assumption that the center of rotation is aligned with the centroid
of the body is written as [

mRR 0
0 mθθ

] ¨[x
θ

]
= Qe + Qv, (2.2)

where mRR denotes the inertia matrix of the translational degrees of freedom given by
the product of the body mass and a square identity matrix, with size equal to the num-
ber of translational degrees of freedom, mθθ is the inertia matrix derived from the mass
moment of intertia of the body and rotational degrees of freedom. Vector x denotes the
translational degrees of freedom and vector θ contains the rotational degrees of freedom of
the body which are defined via Euler parameters, Rodriguez parameters or Euler angles
(Shabana, 2020, p. 55). Vector Qe is the combined vector of external forces and moments
with contributions from the aerodynamic, thrust and gravitational forces and moments.
Vector Qv is denoted as quadratic velocity vector defined by the non-linear terms of the
equations of motion.
The governing equations form an initial value problem, which is solved by integrating
the governing equations in time twice. An extensive review of the numerical integration
methods is presented in section 2.4.4.
While simple, the presented equations for the motion of a single body enables a wide
range of studies. Mittal et al. (2004) studied the phenomenon of flutter and tumble of
objects in free fall, where the motion of the objects is governed by the presented rigid
body equations of motion and the presence of the objects in the flow field is modeled via
a cut-cell immersed boundary approach (Mittal & Iaccarino, 2005). The oscillations and
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flow field around a sprung mounted cylinder is another well studied case. Jauvtis and
Williamson (2003, 2004) performed experimental studies on the motion of a sprung cyl-
inder with two degrees of freedom. Kang, Zhang, Ma, and Ni (2018); Sarkar and Schlüter
(2013); J. Zhang and Dalton (1996) present numerical results of the flow field and motion
of sprung cylinder with one and two degrees of freedom. Alonso and Jameson (1994)
performed aero-elastic airfoil simulations of the NACA64A010 profile to investigate the
transient response and flutter boundaries at transonic speeds. Baxevanou et al. (2008)
present an aero-elastic numerical model for the study of flutter characteristics of a wind
turbine profile in stalled conditions.
As shown, the solution of the rigid body equations of motion for a single body already
enables a large range of studies. For an accurate simulation of the full aircraft system the
equation of motion (2.2) must be evaluated for each component and constraint equations
must be implemented to link the motion of the individual bodies.
Two approaches are feasible. Under the assumption that the control surfaces do not
contribute significantly to the aircraft mass and inertia and under the assumption that
only the flight dynamics are of interest, a mass-less approach may be taken. With this
approach the equations of motion are only solved for the aircraft body. The effect of
the control surfaces are modeled via aerodynamic reaction forces and moments. This
approach is very common in the study of flight dynamics (Stengel, 2004, p. 147).
The mass-less approach may not be taken if the dynamics of the control surfaces or the
coupled dynamics of control surface and aircraft are of interest (Tewari, 2015, p. 7) and
if the control surfaces contribute significantly to the mass and inertia of the aircraft, as
given by some novel aircraft concepts (Lilium, n.d.).
In those cases the equations of motion must be solved for the aircraft and control sur-
face plus constraint equations must be implemented to link the motion of the aircraft
components. The resulting multi-body system takes the form of a tree like structure
(F. Amirouche, 2006, p. 107) with the fuselage as the root and flaps, control surfaces and
spoilers as branches of the tree system. An additional layer of branches may be build
from additional trim surfaces attached to the control surfaces.
The introduction of the constraints introduces additional equations which must be solved
in conjunction with the equations of motion. The constraint equations are either in the
form of holonomic constraints or nonholonomic constraints. Holonomic constraints con-
strain the position and orientation of rigid bodies. These constraints are further divided
into constraints that explicitly depend on time, rheonomic, and those which do not depend
on time, scleronomic constraints (F. Amirouche, 2006, p. 320). The constraint equation
of holonomic constraints can be written in the form of

φi(x1, x2, ..., xn, t) = 0 (i = 1, 2, ...,m) (2.3)

Examples of holonomic constraints include any type of relative position constraint such
as joints, hinges and fixation constraints between two bodies. Nonholonomic can not be
written in the form of equation (2.3). The contact constraint of the aircraft landing gear
with the ground forms a nonholonomic constraint as it can not be brought into the form
of equation (2.3). Other examples of nonholonomic constraints are presented in Swaczyna
(2011).
The governing equations of the resulting constraint multi-body system are commonly writ-
ten in the Lagrange multiplier form, where the presence of the constraints is introduced
via Lagrange multipliers which represent unknown constraint forces (Gavrea, Negrut, &
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Potra, 2005).
Two solution approaches are commonly used for the solution of the constraint equations.
Approach one, the augmented method, combines the Lagrange multiplier form with the
constraint equations into a single block. The resulting index 3 differential-algebraic equa-
tion (DAE) is integrated via methods proposed in Ascher and Petzold (1998); Gavrea et
al. (2005); Wang and Li (2015).
A second approach, the coordinate reduction method, introduces a transformation mat-
rix. The transformation matrix is designed such that when multiplied with the Lagrange
multiplier form of the governing equations, the unknown Lagrange multipliers are re-
moved and the number of equations of motion are reduced by the number of constraint
equations. Different approaches have been proposed in literature for the derivation of the
transformation matrix. F. M. L. Amirouche and Jia (1988) proposed the Pseudo Upper
Triangular Decomposition (PUTD) approach for the computation of the transformation.
An alternative approach for the computation of the transformation matrix was introduced
by Steeves and Walton (1969) with the use of the zero-Eigenvalue Theorem.
Many libraries and software packages have been developed for the solution of the de-
scribed multi-body dynamics problem. Besides many proprietary and commercial tools,
two open-source tools are worth mentioning, namely HOTINT 2 and MBDyn 3. The coup-
ling of multi-body dynamics with aerodynamics has been done in past, but commonly in
combination with the elastic degrees of freedom, which are discussed in the following sec-
tion. A constraint multi-body approach without elastic degrees of freedom was taken by
Vierendeels, Dumont, and Verdonck (2008) for the fluid-structure simulations of an heart
valve leaflet.

2.4.2 Elastic multi-body systems

Up to this point the discussion focused on the study of rigid body motion with and
without constraints. The modeling of flexible bodies such as high aspect ratio wings as
rigid bodies results in inaccurate results as the deflection and twisting of the wing result
in significant changes in the aerodynamic characteristics (Kenway & Martins, 2014). Fur-
thermore, the natural frequencies of highly flexible wings approach the flight dynamics
frequencies of the aircraft which results in strong interactions between the flight dynamics
and structural degrees of freedom (Yi & Changchuan, 2018). These aspects show the need
to model the aircraft components as linked flexible bodies.
The deformation of structures is governed by a set of linear or nonlinear differential
equations which relate the deformation of the structure to external and internal forces,
material properties and mass properties. The finite element method (FEM) is commonly
used for the spatial discretization of these equations in space. Time integration is per-
formed with the methods presented in section 2.4.4. Other methods have been used for
the discretization of solids such as mode based methods (Sharifnia & Akbarzadeh, 2017),
finite segment methods (Adamiec-Wójcik & Wojciech, 2018) or mesh-less methods (Xie,
Jian, & Wen, 2017). A full discussion of these methods is outside the scope of this review.
Furthermore, the following paragraphs were written based on the assumption that a FEM
is used for the discretization of the solid domains.

2https://hotint.lcm.at/
3https://www.mbdyn.org/
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An introduction to the FEM for linear and also non-linear solids and structures is given
in Nikishkov (2004); Krenk (2009); Neto, Amaro, Roseiro, Cirne, and Leal (2015). A
full review of the modeling approaches of geometrical and material linear or non-linear
behavior and the finite element (FE) discretization approach is out of the scope of this
review. Instead, the review concentrates on the specifics of FEM formulations of elastic
multi-body systems EMBS, which were defined by Shabana (1997)

Flexible multi-body dynamics is the subject concerned with the computer
modeling and analysis of constrained deformable bodies that undergo large
displacements, including large rotations.

Extensive reviews of modeling approaches for flexible multi-body systems have been
presented by Shabana (1997) and more recent by Rong, Rui, Tao, and Wang (2019).
Rong et al. (2019) identifies the two core problems of EMBS as the description of the
flexible kinematics and the subsequent derivation of the governing equations of motion.
Different approaches have been proposed for the description of the kinematics of the elastic
bodies. The most commonly used approach is the floating frame of reference (FFR) ap-
proach (Shabana, 1997). The approach was initially introduced within the aerospace
sector with contributions from Likins (1967); Frisch and Center. (1975). Two sets of co-
ordinates are introduced (Shabana, 1997). One set describes the orientation and position
of the body reference frame, the second set describes the deformation of the body within
the body reference frame. This is illustrated in figure 2.6 for a two-dimensional beam. The

Figure 2.6: Illustration of the floating reference frame, taken from (Shabana, 2020, p. 184).

position of the reference frame may be selected arbitrarily. However, reference conditions
must be defined between the reference frame and the deformation degrees of freedom to
eliminate the rigid body motion modes (Rong et al., 2019). Generally, reference frames
that satisfy the mean axis conditions show preferable characteristics (Agrawal & Shabana,
1985), as they lead to a weak coupling between the reference motion and elastic deform-
ation (Shabana, 1997).
The derivation of the governing equations of motion based on this and the later approaches
is discussed at the end of this section. The equations of motion based on the FFR ap-
proach are characterized by a highly non-linear mass matrix due to the coupling between
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the reference motion and elastic deformation (Shabana, 1997). At the same time the stiff-
ness matrix is identical to the stiffness matrix of the pure structural dynamics problem
due to the definition of the degrees of freedom within the floating reference frame.
Existing finite element codes may be used for the construction of the mass matrix com-
ponents and stiffness matrix. Furthermore, the FFR formulation is well suited for the
use of model order reduction techniques applied to the deformation degrees of freedom
(Nowakowski, Fehr, Fischer, & Eberhard, 2012). The full elimination/reduction of the
elastic degrees of freedom reduces the system matrix to the rigid body equations of motion
presented in section 2.4.1.
The floating reference frame formulation as discussed in Shabana (2020, p. 179) may
only be used for isoparametric elements as the shape functions and nodal coordinates
of these elements can describe rigid body motion (Shabana, 2020, p. 294). The often
used non-isoparametric beam, plate and shell elements can not describe rigid body mo-
tion, due to the use of infinitesimal small rotations as nodal coordinates (Shabana, 1997).
Subsequently, these elements produce non-zero strain under arbitrary rigid body displace-
ments (Shabana, 1997).
The incremental finite element approach was introduced to use non-isoparametric ele-
ments in bodies that undergo large rotations (Shabana, 1997). Additional element co-
ordinate systems are introduced to separate the rigid-body and strain-producing deforma-
tion components (Campanelli, Berzeri, & Shabana, 1999). A convected coordinate system
approach was used initially for the definition of the element coordinate system (Belytschko
& Hsieh, 1973; Argyris et al., 1979). A co-rotational approach was introduced by (Rankin
& Brogan, 1986). The approach allows the use of existing finite elements in the large ro-
tation analysis. In either approach the element shape function is used to describe the
small rotation of the body, which leads to a linearization of the rotation in the equations
of motion. As a consequence the incremental finite element method is unable to model
exact rigid body motion (Campanelli et al., 1999). Shabana (1996b) solved this issue by
introducing an additional intermediate element coordinate system.
A different approach, based on an absolute nodal coordinate formulation (ANCF), was
proposed by Shabana (1996a). The approach differs significantly from the FFR approach.
The element nodal coordinates are defined in the inertial frame instead of the local element
frame and the rigid body modes are incorporated into the shape function (Shabana, 2020,
p. 298). Furthermore, the inifinitesimal small rotation nodal coordinates are replaced by
absolute slopes and position nodal cooradinate. This combined with the consistent mass
approach (Shabana, 2020, p. 296) allows the method to exactly model rigid body mo-
tion. Different from the FFR formulation, the ANCF results in a linear mass matrix and
highly non-linear stiffness matrix. Yet as shown by Shabana and Schwertassek (1998)
both methods lead to identical dynamic relationships. They further show an approach for
the derivation of the non-linear mass matrix of the FFR approach from the linear mass
matrix of the ANCF approach.
The derivation of the equations of motion of the flexible multi-body system follows sim-
ilar methodologies used for the derivation of the rigid body equations of motion shown
in section 2.4.1. The use of Hamilton’s principle (J. Kim, 2012) and Lagrange’s equation
(Shabana, 2020, p. 211) are the most common methods for the derivation of the equa-
tions of motion from the selected description of the kinematics. The kinematic constraints
between bodies appear in the form of Lagrange multiplier which represent the reaction
loads of the constraints. The augmented matrix approach may be used for the solution
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of constraint motion of the multi-body system which results in a non-linear index 3 DAE
(Gavrea et al., 2005) or the coordinate reduction approach as discussed in section 2.4.1.
Other methods have been proposed in literature based on Kane’s method (Kane, Likins,
& Levinson, 1983), those methods are not further discussed in this review.
Elastic multi-body systems have been coupled with aerodynamic solvers for various pur-
poses. Y. Li et al. (2017) present coupled computational fluid dynamics/multi-body
dynamics method for aero-servo-elastic simulations of wind turbines. Additional driv-
etrain dynamics are included in the framework. An augmented matrix method is used to
handle the constraints between the wind-turbine components. Yang et al. (2020) present
a framework for aero-hydro-servo-elasticity simulations of offshore windturbines. The use
of a co-rotational finite element method in combination with an aero-elastic framework
for the simulation of bat-like wings was presented by G. Li et al. (2019a). The use of
the floating frame of reference formulation for the aero-servo-elasticity analysis of flexible
aircraft has been presented by Yi and Changchuan (2018).

2.4.3 Reduced order model

The discretization of the elastic bodies with the FEM leads to many additional elastic
degrees of freedom in addition to the rigid body degrees of freedom. This may bring
the computational cost of the motion solver within the aero-servo-elasticity framework to
unacceptable levels. Model order reduction (ROM) techniques are one method to reduce
the number of unknowns and reduce the computational cost to acceptable levels. These
techniques are widely used in the aero-elasticity analysis (Dowell & Hall, 2001; Debra-
bandere, Tartinville, Hirsch, & Coussement, 2012), but have also been used to reduce
the cost of EMBS simulations as shown by Fehr and Eberhard (2010, 2011); Fischer and
Eberhard (2014).
Two model reduction techniques are common in combination with structural dynamics
simulations: The mode superposition methods and variants thereof (Geradin, Rixen, &
Gaeradin, 2015) and the component mode synthesis techniques (Craig & Bampton, 1968).
All mode superposition methods describe the displacement of the solid and structure with
a finite number of free vibration modes (Besselink et al., 2013). The mode displacement
method represents the most basic method of the superposition methods. The displace-
ment field is described via the vibration modes corresponding to the lowest (Rayleigh,
1945) or lowest N eigenfrequencies of the solid or structure, as those modes typically
contain the highest amount of energy. The vibration modes belonging to the higher fre-
quencies are truncated.
The simple truncation of the higher frequencies leads to an incorrect response of the lower
frequencies as the effect of the truncated frequencies onto the lower frequencies is removed
(Besselink et al., 2013). The mode acceleration method as proposed by Williams (1945)
is an improved version of the mode displacement method which takes the static effect
of the truncated modes on the lower frequencies into account (Soriano & Filho, 1988).
This correction factor takes the form of a static correction displacement vector which is
added to the predicted displacement field. The mode acceleration method improves the
prediction of the low frequency mode response but does not improve prediction in the
higher frequency range as only the static effect of the truncated modes is considered.
The modal truncation augmentation method was subsequently introduced by Dickens
and Pool (1992) to capture parts of the dynamic effect of the truncated frequencies. The
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method augments the modal expansion of the displacement field with the static correction
field of the mode acceleration method. An orthogonal set is derived with a mathemat-
ically consistent Rayleigh-Ritz approximation (Dickens, Nakagawa, & Wittbrodt, 1997).
Dickens et al. (1997) show that the mode augmentation method significantly improves
the prediction of higher frequencies by estimating the average dynamic response of the
truncated modes.
The presented mode superposition methods consider the complete finite element structure
(Besselink et al., 2013). A partitioned based approach was proposed in literature with the
component mode synthesis method. Within this approach the finite element structural
domain is divided into N connected finite element substructures (J.-G. Kim & Lee, 2015).
The degrees of freedom of each substructure are reduced with the modal superposition
approaches discussed above. The general method of component mode synthesis was pro-
posed by Hurty (1965) and Guyan (1965). Craig and Bampton (1968) derived from this
idea the well known Craig-Bampton method. The method divides the degrees of free-
dom of the substructures into interface and non-interface degrees of freedom. The modal
reduction of the substructures is performed on the non-interface degrees of freedom. In
that way the exact interface conditions between the substructures are maintained. The
method is also referred to as fixed-interface reduction method (Besselink et al., 2013).
The approach was further advanced with the work of MacNeal (1971) and Rubin (1975)
who released the fixed interface degrees of freedom of the Craig-Bampton method. This
approach is also referred to as free-interface method (Besselink et al., 2013). An extens-
ive review of the component mode synthesis technique is presented in Klerk, Rixen, and
Voormeeren (2008).
In all presented methods the solution of either the complete structure or set of substruc-
tures is expressed via modes. The calculation of these modes defined via a shape function
and associated frequency (Arnold, Citerley, Chargin, & Galant, 1985) has not been dis-
cussed up to this point. Perhaps the most well known approach for the calculation of
the modes is the use of the dynamic system eigenvectors. Numerical techniques have
been developed for the calculation of the eigenvector and eigenvalues, such as the Arnoldi
method (Arnoldi, 1951). Ritz presented a more accurate and superior definition of the
frequencies and modes denoted as Ritz vectors (Arnold et al., 1985). Wilson, Yuan, and
Dickens (1982) were the first to report the application of the Ritz vectors to the dynamic
analysis of large structures.
The use of model order reduction techniques within the simulation of elastic multi-body
systems is discussed extensively in Fischer and Eberhard (2014) and in Nowakowski et al.
(2012) for the elastic multi-body system which used the floating reference formulation.

2.4.4 Time integration

The constrained rigid body equations of motion and discretized equations of the elastic
mutlibody system result in a set of second order differential algebraic equations or or-
dinary differential equations. These equations must be integrated in time to obtain the
temporal response of the system.
Various approaches have been developed and presented in literature for the integration
of these equations. These approaches are grouped into implicit, explicit and mixed im-
plicit/explicit (IMEX) approaches and may be further divided into direct and indirect
time integration schemes. They also differ by their integration order and the numerical
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damping, which can either be controlled or not.
Without going into detail on the various schemes a high level decision is made on the over-
all scheme of the aero-servo-elasticity framework. Explicit schemes are suitable for simu-
lations concerned with the propagation of high frequency waves such as shocks (Dokainish
& Subbaraj, 1989). The methods are further characterized by low stability margins which
permit only small time steps resulting in increased computational time (Dokainish & Sub-
baraj, 1989). Implicit methods on the other side are often numerically stable and permit
large time steps (Subbaraj & Dokainish, 1989) but require the solution of a matrix sys-
tem. The aero-servo-elasticity framework is not concerned with the response of the high
frequencies of the structure and further large time steps are preferred to reduce the overall
computational cost of the structural problems. Therefore, the review focuses on implicit
time integration methods only. Furthermore, direct methods (Wilson, 1968; Newmark,
1959) integrate the DAE or second order ordinary differential equations directly, while
indirect methods convert the second order ordinary differential equations into a set of first
order ordinary differential equations and integrate the resulting sytem in time. Indirect
methods significantly increase the size of the system due to the addition of the first time
derivative of the degrees of freedom as unknowns. A direct integration method is therefore
selected for the aero-servo-elasticity framework. What follows is a review of the common
direct integration schemes. A broader review of time integration methods may be found
in Subbaraj and Dokainish (1989); Dokainish and Subbaraj (1989) and more recent in
Rong et al. (2019) for elastic multi-body systems.
The most widely used methods, according to Subbaraj and Dokainish (1989) are the
Newmark, Houbolt and Wilson-θ method. These direct methods make an assumption
on the variation of the acceleration over the integration interval and with that derive
expressions for the velocity and position. These expressions are used in combination
with the governing equations of motion to derive an implicit expression for the accel-
eration. The Newmark method (Newmark Nathan, 1959) employs a linear acceleration
assumption. An additional parameter is included for the control of the dissipation and
related stability. Two parameters control the numerical dissipation and stability of the
method. However, only one combination of the two parameters leads to second order
accuracy. Increased dissipation and stability leads to reduction of the integration order
of the method. The Wilson-θ method (Wilson, 1968) was later introduced as a second
order method with increased numerical dissipation and improved stability characterist-
ics. This method assumes a linear acceleration over the time integral. The method is
characterized by a integration step that is larger than the time step. The solution at the
selected time step is computed from the solution at the integration step. Hilber, Hughes,
and Taylor (1977) proposed a Newmark method referred to as α-method. The method
is second order accurate and does give control over numerical damping characteristics
with a decrease of the integration order. The methods were initially developed for linear
structural dynamics problem and not for the integration of elastic multi-body systems.
Gavrea et al. (2005) presents the application of the Newmark integration method to the
integration of a multi-body system. Later Wang and Li (2015) presents the application
of the α-method to the integration of a flexible multi-body system.
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2.4.5 Discussion

The chapter introduced the modeling and solution aspects of the solid domain. These
ranged from the introduction of unconstrained and constrained rigid body equations of
motion and their extension to elastic multi-body systems, further to reduction modeling
techniques and closed with a discussion of the time integration methods for solid domains.
The review was started with a discussion of the rigid body equations of motion and the
introduction of constraints for the simulation of systems of constrained rigid bodies. Two
common methods were introduced. Approach 1, the augmented method combines the
equations of motion and constraint equations into a single system and integrates the res-
ulting system of equations in time. Approach 2, reduces the number of degrees of freedom
based on the given constraints. The reduced set of degrees of freedom should result in
a lower computational cost. However, the derivation of the reduced system introduces
additional complexity and might not be well suited for the GPU based HPC hardware. In
the author’s opinion the augmented system approach is more suited for the used hardware
and this approach was selected for the framework.
The review of the solid domain methods was continued with an introduction to elastic
multi-body systems and their solution. The review showed that the floating frame of
reference formulation can be used as a natural extension to the rigid body framework,
where additional elastic degrees of freedom are introduced to the already existing rigid
body degrees of freedom. The finite elements of existing FEM codes may be used for the
discretization of the body. However, non-isoparametric elements such as shell and beam
elements can not be used with the FFR approach. Approaches such as the incremental
finite element approach and absolute nodal coordinate formulation were therefore intro-
duced. The resulting stiffness and mass matrices of these approaches vary significantly
from the FFR approach and they can not be seen as a natural extension of the rigid
body equations of motion. The FFR approach is selected for the aero-servo elasticity
framework. The approach is selected due to its compatibility with the developed rigid
body solver, its ability to use elements of existing finite element solvers, and the straight
forward implementation of ROM techniques.
Two reduced order modeling approaches were discussed, the common mode displacement
technique and partitioned based mode synthesis approach. The implementation of the
reduced order modeling approach is beyond the scope of the thesis project. However, a
mode displacement technique is envisioned for the aero-servo-elasticity framework in the
future. The method is less flexible than the mode synthesis approach because it considers
the complete finite element structure, while the mode synthesis approach can be tailored
to specific geometric features. However, in the author’s opinion the mode displacement
method is sufficient for the initial implementation of the aero-servo-elasticity and it has
been used in many other aero-structural analysis tools. Additional treatments of the
truncated frequencies are not considered for the initial implementation but may be added
to the solver if required.
The review of the time integration schemes has shown that implicit direct schemes should
be favored for the developed framework. The discussion of the other schemes is not
repeated in this section. Three direct implicit schemes were presented, the Newmark
method, Wilson-θ and α-method. The Newmark method is selected for the initial imple-
mentation of the aero-servo elasticity framework, as it is second order accurate with low
numerical dissipation. Additionally, if required the damping can be introduced into the



2.5 Conclusion 31

system at the cost of a reduced integration order. The method may be extended later to
the α-method if damping is required and the reduced order of accuracy is not sufficient
for accurate results. The Wilson-θ method is not considered as it is known to have a high
dissipation.

2.5 Conclusion

A literature review on the three fundamental aspects of a fluid-structure interaction tool
for the coupled analysis of multi-body systems with fluid flow has been presented. After
discussing the need for high-fidelity coupled simulations for the design and analysis of fu-
ture and novel aircraft concepts, the review focused on the selection of suitable methods
for the framework. The selection of the methods was performed based on two criteria.
Their applicability to the simulation of the physics of the fluid and solid domains and
their computational cost.
Based on the review a partitioned approach is selected for the coupling of the fluid and
solid domains. The approach has been successfully used in literature for the simulation
of fluid-structure interaction problems with high solid fluid mass ratios. It is therefore
suitable for the simulation of the aircraft components in the flow field. The decoupling
of the time integration and spatial discretization of the domains allows the individual op-
timization of either solver. Further the time integration of the domains may be separated
and tailored to the time scales of interest of either domain.
The ghost-cell approach has been selected for the immersed boundary method which is
used for the simulation of stationary and moving geometries in the flow field. While the
indirect method is computationally less expensive, it has not been selected due to its
inability to accurately model sharp interfaces. The cut-cell immersed boundary approach
has not been selected due to the significant computational cost of the method.
The floating frame of reference approach has been selected for the kinematic descrip-
tion of the aircraft components. The approach is selected as it is applicable to both the
kinematic description of rigid and elastic bodies. The resulting system of equations is
integrated with the Newmark time integration scheme. The review has shown that the
integration scheme is most applicable to the time scales expected in the solid domain and
further has been successfully used for the simulation of elastic multi-body systems. The
implementation of the elastic degrees and reduced order modeling is outside the scope of
this thesis. However, the mode superposition is proposed for the reduced order modeling
approach of future developments. The selection of the presented methods should form an
efficient framework for the aero-servo-elastic analysis of aircrafts. The suitability of the
methods for the accurate analysis is assessed with validation cases in the final parts of
this thesis.
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Chapter 3

Immersed boundary method

A ghost-cell based immersed boundary condition is implemented in the present solver. It
is derived from the domain boundary conditions of finite difference methods where values
in the stencil nodes outside the fluid domain are set based on the imposed boundary
conditions. This allows the use of the interior numerical stencil at the domain boundaries
without adaptation. The results of the literature review on the topic of immersed bound-
ary conditions and ghost-cell immersed boundaries was presented in section 2.3. Various
ghost-cell based immersed boundary conditions have been proposed in literature. The
research on ghost-cell immersed boundaries is primarily focused on the interpolation of
the flow solution at the image point. But topics such as mass conservation and spurious
oscillations in the flow field for moving immersed boundaries were brought up in the re-
viewed literature.
The presented ghost-cell methods were primarily used for no-slip boundary conditions
on solid walls. That is, Dirichlet boundary conditions for the velocity or momentum
terms and Neumann boundary conditions for internal energy. No-slip boundary condi-
tions may be used for low and mid Reynolds number flows when the numerical mesh
resolves the boundary layer down to the viscous sublayer. The method may be applied to
high Reynolds number flows but comes at significant numerical costs as the grid require-
ments for wall-resolved LES are proportional to Re1.8 (Chapman, 1979). A wall-modeled
LES (WMLES) framework is therefore targeted during the development of the present
code. A wall-stress based wall modeling technique is selected for this purpose. The de-
tails of the selection of an appropriate wall-modeling approach is outside the scope of this
thesis. But the development of a ghost-cell method for wall-modeled LES is presented in
this chapter. A second topic of the development which was raised in literature as well,
is the appearance of spurious oscillations at the immersed boundary for moving geomet-
ries. Similar oscillations were found during the development of the immersed boundary
method for the fluid model and numerics of the present solver. An approach to limit the
oscillations at the boundary of moving geometries for the developed immersed boundary
method is presented in this chapter. The topics may be summarized as the development of
a ghost-cell based immersed boundary method for wall-modeled LES of moving geomet-
ries. The discussion of the ghost-cell immersed boundary is started with the derivation
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of the ghost-cell value. This is followed by a discussion on the image or probing point
placement in the flow field and the presentation of the interpolation scheme. Afterwards,
the implementation of the ghost-cell immersed boundary for no-slip and wall-modeled
solid boundaries is presented. The documentation of the immersed boundary method is
concluded with the reduction of the spurious oscillations for moving geometries.

3.1 Ghost-cell method

The key idea of the presented ghost-cell method does not differ from the various ghost-cell
methods presented in literature. The nomenclature of the ghost cells, boundary intercept
points and image points is illustrated in figure 3.1. To reiterate, ghost cells are defined as
cells or points that are outside the fluid domain but are inside the numerical stencil of the
interior discretization scheme. For each ghost cell xGP , a boundary intercept point xBI
and one or multiple image or probing points xIP are defined. The boundary intercept
point is defined as the point on the surface of the geometry which is closest to the ghost
cell. The point is defined as

xBI = xGP + ∆GPn. (3.1)

n defines the normal vector of the surface of the immersd boundary at the boundary
intercept and ∆GP is the distance between the ghost cell and boundary intercept. The
image point is defined as a function of the boundary intercept

xIP = xBI + ∆IPn, (3.2)

with ∆IP being equal to the distance between the boundary intercept and image point.
For later reference either distance ∆GP and ∆IP are of order O(∆), with ∆ being equal
to the cell edge length of the numerical grid.

Figure 3.1: Schematic diagram of Catesian-grid-based computational domain with immersed
boundary; Nomenclature: GP, ghost cell; BI, boundary intercept; IP, image
point; Ωs, solid domain; Ωf , fluid domain.

Any field Ψ may be expanded around the boundary intercept to reconstruct the image
point and ghost cell solution. The spatial coordinate η is introduced for this purpose to
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define a position along the normal vector of the surface. η = 0 defines the position of the
boundary intercept, η = ∆IP the position of the image point and η = −∆GP the position
of the ghost cell. The expansion of the solution towards the ghost cell yields

ΨGP = Ψ(−∆GP ) = ΨBI −
dΨ

dη

∣∣∣∣
BI

∆GP +
1

2

d2Ψ

dη2

∣∣∣∣
BI

∆2
GP −O(∆3

GP ). (3.3)

Equally, the solution at the image point is reconstructed by

ΨIP = Ψ(∆IP ) = ΨBI +
dΨ

dη

∣∣∣∣
BI

∆IP +
1

2

d2Ψ

dη2

∣∣∣∣
BI

∆2
IP +O(∆3

IP ). (3.4)

The reconstruction of the ghost cell and image point solution is used to define equations for
the ghost-cell solution based on the boundary condition applied at the boundary intercept
BI. Two boundary conditions are considered here, a Dirichlet boundary condition defined
by

ΨO = f (3.5)

and a Neumann boundary condition defined by

∂Ψ

∂n

∣∣∣∣
O

= g. (3.6)

Given the Dirichlet boundary condition on the immersed boundary, the ghost-cell solution
is given by

ΨGP = (2f −ΨIP ) +
dΨ

dη

∣∣∣∣
BI

(−∆GP + ∆IP )

+
1

2

d2Ψ

dη2

∣∣∣∣
BI

(
∆2
GP + ∆2

IP

)
+O

(
−∆3

GP + ∆3
IP

)
.

(3.7)

Given the Neumann boundary condition on the immersed boundary, the ghost-cell solu-
tion is given by

ΨGP = ΨIP − g (∆GP + α∆)

+
1

2

d2Ψ

dη2

∣∣∣∣
BI

(
∆2
GP − α2∆2

)
−O

(
∆3
GP + α3∆3

)
.

(3.8)

The derivation of the ghost cell values for Dirichlet and Neumann boundary condition
above was performed indepedent of the interpolation scheme for the image point and
independent of the image point placement. These two topics are discussed in the following
section.

3.2 Image/probing point placement

The placement of the image/probing points follows two common approaches. As discussed
in Mittal et al. (2008) the image point may be defined as the mirror point of the ghost-cell
around the boundary intercept. This leads to ∆IP = ∆GP . Replacing the image point
distance ∆IP with the ghost cell distance ∆GP in the equations (3.7) and (3.8) yields

ΨGP = 2f −ΨIP +
d2Ψ

dη2

∣∣∣∣
BI

∆2
GP , (3.9)
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ΨGP = 2f −ΨIP +O
(
∆2
)
, (3.10)

for the Dirichlet boundary condition and similarly for the Neumann boundary condition

ΨGP = ΨIP − 2g∆GP +O
(
∆3
)
. (3.11)

The Dirichlet and Neumann boundary conditions are thus second order and third order
accurate when the mirror point is used as image point for the ghost cell. A second
approach used in literature is the placement of the image point or probing point at a
constant wall distance defined as ∆IP = α∆. The image point distance is again in the
order of O(∆). The ghost cell value for a Dirichlet boundary condition with constant
image point distance is given by

ΨGP = (2f −ΨIP ) +
dΨ

dη

∣∣∣∣
BI

(−∆GP + α∆)

+
1

2

d2Ψ

dη2

∣∣∣∣
BI

(
∆2
GP + (α∆)2

)
+O

(
−∆3

GP + (α∆)3
)
.

(3.12)

The gradient of the solution at the boundary intercept is approximated by the fluid side
gradient

dΨ

dη

∣∣∣∣
BI

=
ΨIP − f
α∆

−O(α∆). (3.13)

Substituting the estimation of the gradient into equation (3.12) yields

ΨGP = (2f −ΨIP ) +

(
ΨIP − f
α∆

−O(α∆)

)
(−∆GP + α∆)

+
1

2

d2Ψ

dη2

∣∣∣∣
BI

(
∆2
GP + (α∆)2

)
+O

(
−∆3

GP + (α∆)3
)
,

(3.14)

ΨGP = f − ΨIP − f
α∆

∆GP +O(−α∆GP∆ + α2∆2)

+
1

2

d2Ψ

dη2

∣∣∣∣
BI

(
∆2
GP + (α∆)2

)
,

(3.15)

ΨGP = f − ∆GP

α∆
(ΨIP − f) +O(∆2). (3.16)

For Neumann boundary conditions the analysis yields

ΨGP = ΨIP − g (∆GP + α∆) +O
(
∆2
)
. (3.17)

The analysis shows that the constant image point distance leads to a second order ac-
curacy for both Dirichlet and Neumann boundary conditions. The constant image point
method is selected for the immersed boundary method in the present code as the second
order accuracy for both Dirichlet and Neumann boundary conditions is deemed sufficient.
Further, the constant image point simplifies the interpolation of the flow solution as the
boundary intercept solution may be excluded in the interpolation.



3.3 Image/probing point interpolation 37

3.3 Image/probing point interpolation

Various image point interpolation techniques were tested during the development of the
immersed boundary method. The tested approaches were part of the families of tri-
linear interpolation approaches, inverse distance interpolation approaches and moving
least squares approaches. A detailed discussion of each approach is outside the scope of
this thesis. At the end, the moving least squares approach was selected as it is a fluid
side only interpolation method, as the method may be extended to higher orders easily
and cells can be easily excluded or included in the interpolation. The following section
presents the derivation of the moving least squares method which is implemented in the
present solver. The approach follows largely the derivation of Vanella and Balaras (2009)
The solution at any point in the flow field may be approximated by the following weighted
sum

Ψ(x) =
∑
j

pj(x)αj(x) = pT (x)α(x). (3.18)

where p(x) defines a vector of basis functions and α(x) their corresponding weights. A
linear polynomial is chosen for the basis function of the interpolation

f(x) = α0 + α1x+ α2y + α3z. (3.19)

The basis function vector pT (x) is thus defined as

p(x) =
[
1 x y z

]T
(3.20)

With the approximation of the flow solution Ψ(x), the following L2-norm between the
approximation and the discrete flow solution Ψk is defined

J =
∑
k=0

w(x− xk)
(
pT (xk)α(x)−Ψk

)2
. (3.21)

Superscript k denotes the discrete locations xk and values ψk of the numerical solution
in the support domain of the interpolation. w(x − xk) defines the weight assigned to
the k’th location in the support domain. The solution of the basis function weights α(x)
is the minimizer of the L2-norm. An equation for the minimizer is obtained by taking
the derivative of the L2-norm with respect to the basis function weights and setting the
resulting equation equal to zero

0 =
∂J

∂α
= 2

∑
k=0

w(x− xk)p(xk)
(
pT (xk)α(x)−Ψk

)
, (3.22)

0 =
∑
k=0

w(x− xk)p(xk)pT (xk)α(x)−
∑
k=0

w(x− xk)p(xk)Ψk. (3.23)

The equation may be simplified by introducing the matrices A and B which are defined
by

A =
∑
k=0

w(x− xk)p(xk)pT (xk) (3.24)

and
B =

[
w(x− x0)p(x0) w(x− x1)p(x1) ... w(x− xk)p(xk)

]
. (3.25)
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The system of equations then reads

0 = Aα(x)−BΨ, (3.26)

which may be solved for the unknown basis function weights α(x)

α(x) = A−1BΨ. (3.27)

Using equation (3.18) the interpolation of the point x may be expressed as a weighted
sum of the discrete solution Ψk or Ψ in the support domain. The solution of the basis
function weights α(x) is subsituted into equation (3.18)

Ψ(x) = pT (x)A−1BΨ. (3.28)

The weights assigned to the discrete solutions in the support domain may then be defined
as

φT = pT (x)A−1B (3.29)

and the interpolation of the solution at locati on x may be expressed as

Ψ(x) = φTΨ. (3.30)

The weighting function of the L2-norm is used to define the support radius of the inter-
polation and ensure that the interpolation function is continuous. The interpolation is
performed on the numerical solution which is solved on the isotropic Cartesian mesh. A
cubic support domain is therefore preferable over a spherical support domain. The sup-
port domain is defined by a cube with edge half length h = 1.5∆ and edge length H = 2h,
centered around the interpolation location x. The support domain of the interpolation
thus contains 3× 3× 3 = 27 nodes of the discretized solution. The overlay of the support
domain on the cartesian mesh is illustrated in figure 3.2. Figure 3.2 further illustrates
that nodes in the support domain may be part of the solid domain rather than the fluid
domain. A weight of w = 0 is assigned to any node outside the fluid domain.

Cubic splines are used as weighting function in the interpolation, as proposed by Vanella
and Balaras (2009). A weight is computed for each spatial direction i in the support
domain, given by

wi(ri) =


2/3− 4r2

i + 4r3
i for ri ≤ 0.5

4/3− 4ri + 4r2 − 4/3r3
i for 0.5 < ri ≤ 1.0

0 for ri > 1

(3.31)

with ri = 1
h

∣∣xki − xi
∣∣. The weight associated with the discrete solution Ψk is given by the

root of the product

w(x− xk) = 3
√
wx · wy · wz. (3.32)

The weighting function for the two-dimensional case is illustrated in figure 3.3.
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Figure 3.2: Schematic diagram of Catesian-grid-based computational domain with immersed
boundary and interpolation support domain; Nomenclature: GP, ghost cell; BI,
boundary intercept; IP, image point.
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Figure 3.3: Contour-line plot of the weighting function in two dimensions.



40 Immersed boundary method

3.4 Surface interpolation

The calculation of ghost cell values for Dirichlet and Neumann boundary conditions re-
quire information of the imposed Dirichlet boundary condition value f or gradient g at
the boundary intercept. The boundary condition values are stored on the vertices of the
triangulated surface mesh. An interpolation scheme is used to interpolate the solution on
the vertices Ψi of the triangulated surface at the boundary intercept xBI.
A finite element approach with linear shape functions is used for the interpolation. The
interpolation is expressed as a sum over the vertices of the triangle

Ψ =
∑

wiΨi. (3.33)

With the boundary intercept location given in the local triangle coordinates η, ν. The
weights associated to the nodes of the triangle are given by

w0 = 1− η − ν,
w1 = η,

w2 = ν.

(3.34)

The triangle coordinate system [e0, e1,n] and boundary intercept coordinates η, ν are
illustrated in figure 3.4. The coordinate axis e0 and e1 are defined with the vertices of
the triangle

e0 = v1 − v0,

e1 = v2 − v0.
(3.35)

The normal vector which defines the hypothetical e2 axis is defined by the cross-product
of the two other axis vectors

n = e2 = e1 × e0. (3.36)

The boundary intercept coordinate may be expressed in terms of the triangle coordinate
system, which yields

xBI = x0 + e0η + e1ν + nξ, (3.37)

where x0 denotes the origin of the triangle system which is equal to vertex 0, x0 = v0.
The third term in the equation is removed as the solution of η and ν are independent of ξ
since the vectors e0 and e1 are orthogonal to the normal axis. We may write the equation
therefore in matrix form given by

xBI − x0 =
[
e0 e1

] [ξ
ν

]
= A

[
ξ
ν

]
. (3.38)

A least squares solution approach is used for the solution of the image point coordinates
in the triangle reference frame[

ξ
ν

]
= (ATA)−1AT (xBI − x0). (3.39)

The least squares approach is selected to reduce the matrix inverse from a 3 × 3 matrix
to a 2× 2 matrix.
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Figure 3.4: Schematic drawing of the coordinate system of a single triangle of the geometry
surface mesh.

3.5 Wall boundary conditions

Two wall boundary conditions, a no-slip wall boundary condition and a wall-modeled wall
boundary condition, are implemented in the ghost-cell immersed boundary framework. A
slip wall boundary condition is also available within the wall-modeled framework when a
zero-stress wall-model is selected.
For no-slip wall boundary conditions the image point is placed at a constant distance of

∆IP = α∆, with α = 0.5. (3.40)

With the placement of the image point at ∆IP = 0.5, the immersed boundary condition
converges to the domain boundary condition when the immersed boundary is face aligned.
Dirichlet boundary conditions are applied on the momentum terms, given by

ρui|GP = ρui|BI −
2∆GP

∆
(ρui|IP − ρui|BI) (3.41)

The solution of the momentum terms at the image point ρui|IP is obtained with the
presented moving least squares interpolation. The boundary intercept solution is split
into the velocity and density term. The velocity term is interpolated on the triangulated
surface mesh using triangular shape functions. The pressure and density is interpolated
from the fluid solution using the zero gradient Neumann boundary conditions:

ρ|BI = ρ|IP . (3.42)

A zero gradient Neumann boundary condition ∂Ψ
∂n

∣∣
O

= 0 is applied as

ρ|GP = ρ|IP . (3.43)

The no-slip boundary can not be used in the wall-model framework as the grid is to coarse
too resolve the inner layer of the turbulent boundary layer and therefore insufficient to
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resolve the velocity profile. The numerical errors of the no-slip boundary condition on
the coarse grid would violate the shear stress balance and thereby results in large errors
in the flow-field solution. A detailed discussion on this topic is held in Tamaki and Kawai
(2021). The conclusion of the discussion is two fold. The Dirichlet boundary condition
of the convective terms should be replaced by a partial-slip boundary condition and the
shear stress approximated by a suitable wall-model and applied either via an additional
shear stress term or via the eddy viscosity in the near-wall cells.
For the partial slip boundary condition a similar approach to the one proposed in Noordt,
Ganju, and Brehm (2021) is used. The Dirichlet boundary condition of the convective
terms is replaced by a Neumann boundary condition for the wall tangential terms and a
no penetration Dirichlet boundary condition for the wall-normal term. A probing point is
introduced for the input to the wall-model. The image point and probing point location
is illustrated in figure 3.5. The partial slip velocity results in an incorrect resolved shear
stress. A wall-model is therefore employed to estimate the shear stress based on the near-
wall flow solution. The wall shear stress may be applied to the numerical solution through
a modified turbulent viscosity in the near-wall cells, or by adding a shear stress term to
the equations. The turbulent viscosity treatment is known to lead to log-law mismatches
(Tamaki & Kawai, 2021). Thus the shear stress source term approach is selected.

Figure 3.5: Schematic diagram of Catesian-grid-based computational domain with immersed
boundary; Nomenclature: GP, ghost cell; BI, boundary intercept; IP, image
point.

3.6 Hybrid ghost-cell method

As shown by Luo et al. (2012), the use of ghost-cell type immersed boundary techniques
for the solution of moving geometries can lead to spurious oscillations as the numerical
solution in the ghost cell might experience an instantaneous change. A so called hybrid-
cell treatment has been subsequently implemented into the ghost-cell immersed boundary
method based on the idea of Luo et al. (2012). The ghost-cell method with hybrid-cell
treatment will be referred to as hybrid ghost-cell method. The hybrid-cell treatment
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blends an interpolated solution in cells, marked as hybrid cells, with the numerical solution
of the time integrated equations. Hybrid cells are defined as all fluid cells with solid cells
or equivalently ghost cell neighbors. These cells may become a ghost cell in the following
time step and can suffer from a discontinuous solution in time. A solution to this problem
is a blending between the numerical solution and an interpolated solution. The ghost
cell value converges to the the boundary condition when the ghost cell approaches the
boundary,

ΨGP = lim
∆GP→0

(
f − ∆GP

α∆
(ΨIP − f)

)
= f. (3.44)

Equally, the flow solution is expected to approach the ghost cell value and the Dirichlet
boundary condition when the fluid cell approaches the wall. For under-resolved flow cases
the numerical solution might violate this condition which leads to a temporal discontinuity
in the cell value once the fluid cell crosses the immersed boundary and switches to a ghost
cell. This discontinuity leads to spurious oscillations or waves in the flow field.
The ghost cell value of the Dirichlet boundary condition is linear and further valid for
cells inside the solid as well as in the fluid. We may therefore compute a ghost cell value
for any hybrid-cell in the flow field. The interpolated solution in the hybrid cell is defined
by

ΨHB = f − ∆HB

α∆
(ΨIP − f) . (3.45)

The interpolation at the image point might include hybrid cells, which leads to an implicit
problem for the solution of the hybrid cell values. To prevent the implicit problem, the
interpolation of the image point value for the hybrid cells is performed on the flow solution
of the previous time step ti−1.
With the definition of the interpolated hybrid cell value, which is defined in the following
as ΨHB

interpolated, we can now define the blending between the interpolated solution and

the time integrated solution of the image point denoted in the following by ΨHB∗
t+1 . The

blending is designed in such a way that the solution of hybrid cells approaches the fully
interpolated and correct boundary intercept solution when the hybrid cells approach the
immersed boundary and that the solution is fully given by the numerically advanced
solution when the hybrid cells are at the limit of becoming a regular fluid cell. The
blending between the two solutions is given by

ΨHB
t+1 = (1− α)ΨHB∗

t+1 + αΨHB
interpolated (3.46)

The blending function is defined by a three-point version of the discrete Dirac’s delta
function given by

α(ri) =


2/3− 4r2 + 4r3 for r ≤ 0.5

4/3− 4r + 4r2 − 4/3r3 for 0.5 < r ≤ 1.0

0 for r > 1

. (3.47)

The coordinate r of the Dirac’s delta function is defined via the signed distance function
of the hybrid cell. The equation for the coordinate r is given by

r =
2√
2

|∆HB|
∆

, (3.48)
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where ∆ defines the size of the hybrid cell. The normalization length
√

2
2 ∆ is derived

based on a two dimensional assessment of the location of regular fluid cells. Only one cell
layer is currently marked as hybrid cells. Under this condition the lowest sdf of a fluid

cell is
√

2
2 ∆. The normalization length ensures that any fluid cell that transitions to a

hybrid cell has an initial blending weight of α = 0.
Neumann type boundary conditions do not cause spurious oscillations in the flow field
because, based on the definition of the ghost cell value, the image point and ghost cell
values will always be identical which prevents the temporal discontinuity. Therefore, the
hybrid cell approach is only applied to the Dirichlet type boundary conditions.



Chapter 4

Multi-body solver

A rigid body solver is integrated in the present code for the simulation of aircraft flight
dynamics. With the implemented rigid body solver the aircraft and its components are
modeled as multi-body systems. Absolute and relative constraint formulations are avail-
able to constrain bodies to the inertial reference frame and to specify constraints between
bodies. The derivation of the equations of motion and constraint implementations are
presented in this chapter. Moreover, the time integration of the equations of motion is
addressed, and a control strategy of bodies and constraints based on the time integra-
tion scheme is presented. The chapter is started with the definition of the rigid body
position and orientation which form the state vector of every rigid body in the system.
The introduction to the position and orientation definition is given in section 4.1. The
derivation of the equations of motion of a single rigid body is presented in section 4.2.
The chapter is continued with the derivation of the absolute and relative constraints in
section 4.4. Combined, these sections form the complete definition of the multi body
system. The time integration of the constraint equations of motion is presented in section
4.5. The discretized equations of motion form a system of non-linear equations. The
solution procedure for the non-linear equations is presented in section 4.6. The chapter is
closed with the derivation of the control strategy which is used to constrain rigid bodies
and constraints to prescribed paths defining the position and orientation.

4.1 Floating frame of reference for rigid bodies

The chapter starts with the derivation of the equations of motion. The derivation of
the equations of motion of a single rigid body requires the definition of the body state
that is the definition of the body position and orientation in space. The floating frame of
reference approach has been used for this purpose as this approach can easily be extended
to elastic bodies. A review of different approaches has been presented in section 2.4. The
derivation shown in this and later sections follows largely the work of Shabana (2020).
The input and output of the present code uses the Euler angle convention commonly used
in flight dynamics. The definition of the Euler angles used in the present code is shown

45
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Figure 4.1: Definition of the Euler orientation angles, taken from (Sempere, 2009).

in figure 4.1. In case of an aircraft, the angles are referred to as roll φ, pitch θ and yaw
angle ψ. Following the floating frame of reference formulation the position of any material
point of the aircraft or any type of rigid body in the inertial reference frame riP is defined
by

riP = R + A(uis − uio), (4.1)

as shown in figure 4.2. R denotes the position of the aircraft reference frame origin within
the inertial coordinate system. uio denotes the origin coordinate of the body defined in
the body coordinate system. The origin defines the rotation and position reference point.
The orientation coordinate is used in cases where the origin of the geometry file does not
correspond to the rotation reference. uis denotes any material point within the rigid body
defined in the body coordinate system. A defines the transformation matrix which is
derived from the presented Euler angles. For the defined Euler angles, the transfomation
matrix A is given by

A =

cos θ cosψ sinφ sin θ cosψ − cosφ sinψ cosφ sin θ cosψ + sinφ sinψ
cos θ sinψ sinφ sin θ sinψ + cosφ cosψ cosφ sin θ sinψ − sinφ cosψ
− sin θ sinφ cos θ cosφ cos θ

 . (4.2)

The floating frame of reference approach is illustrated in figure 4.2 for a two-dimensional
elastic body. The body coordinate system in figure 4.2 is denoted with the superscript i.
The velocity of the material point is given by the time derivative of Eq. (4.1).

ṙiP = Ṙ + Ȧ(uis − uio). (4.3)

The second term is rewritten to

ṙiP = Ṙ +
∂A

∂φ
(uis − uio)φ̇+

∂A

∂θ
(uis − uio)θ̇ +

∂A

∂ψ
(uis − uio)ψ̇, (4.4)

ṙiP = Ṙ + Aφ(uis − uio)φ̇+ Aθ(u
i
s − uio)θ̇ + Aψ(uis − uio)ψ̇, (4.5)
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Figure 4.2: Illustration of the floating reference frame, taken from (Shabana, 2020, p. 184).

The derivatives of the matrices are given by

Aφ =

0 cosφ sin θ cosψ + sinφ sinψ − sinφ sin θ cosψ + cosφ sinψ
0 cosφ sin θ sinψ − sinφ cosψ − sinφ sin θ sinψ − cosφ cosψ
0 cosφ cos θ − sinφ cos θ

 , (4.6)

Aθ =

− sin θ cosψ sinφ cos θcosψ cosφ cos θ cosψ
− sin θ sinψ sinφ cos θ sinψ cosφ cos θ sinψ
− cos θ − sinφ sin θ − cosφ sin θ

 , (4.7)

Aψ =

− cos θ sinψ − sinφ sin θ sinψ − cosφ cosψ − cosφ sin θ sinψ + sinφ cosψ
cos θ cosψ sinφ sin θ cosψ − cosφ sinψ cosφ sin θ cosψ + sinφ sinψ

0 0 0

 .
(4.8)

4.1.1 Euler parameters

The use of Euler angles in the rigid body solver leads to a singularity in the equations of
motion if the pitch angle θ is equal to θ ± π

2 . This lead to the introduction of the Euler
parameters for the solution of the rigid body equations and for the calculation of body
material points.

θ =
[
θ0 θ1 θ2 θ3

]T
(4.9)

The transformation matrix A is defined in terms of Euler parameters as

A =


2
[
(θ0)2 + (θ1)2

]
− 1 2 (θ1θ2 − θ0θ3) 2 (θ1θ3 + θ0θ2)

2 (θ1θ2 + θ0θ3) 2
[
(θ0)2 + (θ2)2

]
− 1 2 (θ2θ3 − θ0θ1)

2 (θ1θ3 − θ0θ2) 2 (θ2θ3 + θ0θ1) 2
[
(θ0)2 + (θ3)2

]
− 1

 . (4.10)
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The transformation matrix A may be defined as a product of two transformation matrices
E and Ē (Shabana, 2020). The matrices 2E = G and 2Ē = Ḡ are defined by

E =
G

2
=

−θ1 θ0 −θ3 θ2

−θ2 θ3 θ0 −θ1

−θ3 −θ2 θ1 θ0

 (4.11)

and

Ē =
Ḡ

2
=

−θ1 θ0 θ3 −θ2

−θ2 −θ3 θ0 θ1

−θ3 θ2 −θ1 θ0

 , (4.12)

The product of the matrices may be written as

A = EĒT . (4.13)

As defined later in this chapter material point velocities of the body may be defined by

ṙP = Ṙ−A˜̄uḠθ̇. (4.14)

The use of the Euler parameters introduces an additional unknown in the equations of
motion. At the same time the number of equations describing the motion of one rigid body
does not change. The system is therefore under-determined. An additional constraint
equation must be satisfied with the use of the Euler parameters. The constraint equation
of the Euler parameters reads

θTθ = 1. (4.15)

4.1.2 Transformation between Euler angles and Euler parameters

As discussed in the previous sections the Euler angles are used for the input and output of
the present code as they follow the common aircraft flight dynamics definition. Internally,
the Euler parameters are used to describe the orientation of the rigid bodies to prevent
singularities in the equations of motion. The transformation of the Euler angles into Euler
parameters is performed internally during the initialization of the simulation. The Euler
parameters may be expressed as a function of the Euler angles of the body

θi = θi(φ, θ, ψ), (4.16)

with
θ0 = cosφ/2 cos θ/2 cosψ/2 + sinφ/2 sin θ/2 sinψ/2,

θ1 = sinφ/2 cos θ/2 cosψ/2− cosφ/2 sin θ/2 sinψ/2,

θ2 = cosφ/2 sin θ/2 cosψ/2 + sinφ/2 cos θ/2 sinψ/2,

θ3 = cosφ/2 cos θ/2 sinψ/2− sinφ/2 sin θ/2 cosψ/2.

(4.17)

Given the function θi(φ, θ, ψ) the first and second time derivatives of the Euler parameters
may be written as

θ̇i =
∂θi
∂φ

φ̇+
∂θi
∂θ

θ̇ +
∂θi
∂ψ

ψ̇ (4.18)

and

θ̈i =
d

dt

(
∂θi
∂φ

φ̇

)
+
d

dt

(
∂θi
∂θ

θ̇

)
+
d

dt

(
∂θi
∂ψ

ψ̇

)
, (4.19)
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θ̈i =
d

dt

(
∂θi
∂φ

)
φ̇+

∂θi
∂φ

φ̈+
d

dt

(
∂θi
∂θ

)
θ̇ +

∂θi
∂θ

θ̈ +
d

dt

(
∂θi
∂ψ

)
ψ̇ +

∂θi
∂ψ

ψ̈. (4.20)

The time derivative terms may be written as

d

dt

(
∂θi
∂φ

)
=

∂2θi
∂φ∂φ

φ̇+
∂2θi
∂θ∂φ

θ̇ +
∂2θi
∂ψ∂φ

ψ̇, (4.21)

d

dt

(
∂θi
∂θ

)
=

∂2θi
∂φ∂θ

φ̇+
∂2θi
∂θ∂θ

θ̇ +
∂2θi
∂ψ∂θ

ψ̇, (4.22)

and
d

dt

(
∂θi
∂ψ

)
=

∂2θi
∂φ∂ψ

φ̇+
∂2θi
∂θ∂ψ

θ̇ +
∂2θi
∂ψ∂ψ

ψ̇. (4.23)

The partial derivatives of the Euler parameters are presented in appendix A

4.2 Equations of motion of rigid bodies

The equations of motion of rigid bodies are derived from the definition of the material
points of the rigid body in the floating frame of reference formulation. (̃) and (̄) symbols
are used in the derivation. The (̃) symbol defines skew symmetric matrices which are used
to rewrite cross products between two vectors as matrices and the (̄) symbol is used to
define variables in the local body reference frame and to define matrices which transform
vectors into the local body axis system. We recall the equation for the material point rP
in the floating frame of reference

rP = R + Aū with ū = us − uo. (4.24)

The orientation matrix was defined in the preceding chapter by equation (4.2). The
velocity of the material point is defined by the time derivative of the position equation

ṙP = Ṙ + Ȧū. (4.25)

A slightly different approach is taken for the expansion of the time derivative of the
orientation matrix. As discussed in Shabana (2020) the dot product of the orientation
matrix and material coordinate in the body frame of reference u may be expressed by

Ȧū = A(ω̄ × ū). (4.26)

The evaluation of the cross product on the right hand side yields the following expression

ω̄ × ū = −˜̄uω̄. (4.27)

ũ is defined by the skew symmetric matrix

˜̄u =

 0 −x̄3 x̄2

x̄3 0 −x̄1

−x̄2 x̄1 0

 . (4.28)
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With the above definitions the velocity of the material point may be defined by

ṙP = Ṙ−A˜̄uω̄. (4.29)

The angular velocity of the body may be defined via the time derivatives of the orientation
angles

ω̄ = Ḡθ̇. (4.30)

The transformation matrix Ḡ is shown in the preceding chapter. This leads to the final
definition of the material point velocity ṙP

ṙP = Ṙ−A˜̄uḠθ̇, (4.31)

which can be written in a partitioned form as

ṙP =
[
I −A˜̄uḠ

] [Ṙ
θ̇

]
. (4.32)

Kinetic Energy

The mass matrix of the rigid body is derived from the definition of the kinetic energy
T = 1

2

∫
V ρṙP ṙPdV . Substituting the definition of the material point velocity into the

definition of the kinetic energy yields

T =
1

2

∫
V
ρ
[
ṘT θ̇

T
] [ I −A˜̄uḠ

symmetric ḠT ˜̄u
T ˜̄uḠ

] [
Ṙ

θ̇

]
dV. (4.33)

The definition of the kinetic energy may be rewritten in the form of

T =
1

2

[
ṘT θ̇

T
]{∫

V ρ

[
I −A˜̄uḠ

symmetric ḠT ˜̄u
T ˜̄uḠ

]
dV

}[
Ṙ

θ̇

]
. (4.34)

The equation may further be reduced to

T =
1

2
q̇TMq̇, (4.35)

with
q =

[
R θ

]T
(4.36)

and

M =

∫
V
ρ

[
I −A˜̄uḠ

symmetric ḠT ˜̄u
T ˜̄uḠ

]
dV. (4.37)

The mass matrix is further simplified to

M =

[
mRR mRθ

symmetric mθθ

]
, (4.38)

with

mRR =

∫
V
ρIdV = mI, (4.39)
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mRθ = −
∫
V
ρA˜̄uḠdV (4.40)

and

mθθ =

∫
V
ρḠT ˜̄u

T ˜̄uḠdV = ḠT ĪθθḠ. (4.41)

Two variables were introduced. (1) The mass of the body m and (2) the mass moment
of inertia matrix Iθθ. The mass moment of inertia matrix Iθθ may be written as

Iθθ =

∫
V
ρ˜̄u

T ˜̄udV =

 Ixx Ixy Ixz
Iyy Iyz

sym. Izz

 . (4.42)

Potential Energy

The potential energy of the rigid body is defined by all external forces and moments
times their respective translational and rotational displacements.

We = Qeq, (4.43)

which are further divided into

We =
[
(QR)Te (Qθ)

T
e

] [R
θ

]
. (4.44)

Vector (QR)e holds all external forces which are applied to the rigid body. Vector (Qθ)e
holds all external moments which are applied to the rigid body. Both vectors are defined
in the inertial reference frame.

Lagrange’s equation

Lagrange’s equation is used to derive the equations of motion. Lagrange’s equation is
defined by

d

dt

∂L

∂q̇
− ∂L

∂q
= 0, (4.45)

where L is the energy of the system defined by the sum of the kinetic and potential
energy. Crucial to the derivation of the equations of motion is that the center of rotation
is aligned with the center of gravity of the rigid body. Substituting the derived definition
of the kinetic and potential energy into Lagrange’s equation yields

d

dt

∂

∂q̇
(T +We)−

∂

∂q
(T +We) = 0. (4.46)

The evaluation of the potential energy part yields

d

dt

∂T

∂q̇
− ∂T

∂q
= Qe. (4.47)

The evaluation of the kinetic energy yields

d

dt

∂

∂q̇

(
1

2
q̇TMq̇

)
− ∂

∂q

(
1

2
q̇TMq̇

)
= Qe, (4.48)
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d

dt
(Mq̇)− ∂

∂q

(
1

2
q̇TMq̇

)
= Qe, (4.49)

Mq̈ + Ṁq̇− ∂

∂q

(
1

2
q̇TMq̇

)
= Qe, (4.50)

Mq̈ = Qe − Ṁq̇ +
∂

∂q

(
1

2
q̇TMq̇

)
. (4.51)

The non-linear velocity terms on the right hand side are combined in the quadratic velocity
vector Qv. The equation then reads

Mq̈ = Qe + Qv with Qv = −Ṁq̇ +
∂

∂q

(
1

2
q̇TMq̇

)
. (4.52)

The expansion of term 1 of the quadratic velocity term reads

Ṁq̇ =

[
ṁRRṘ

ṁθθθ̇

]
=

[
0

ṁθθθ̇

]
=

[
0

d
dt(Ḡ

T ĪθθḠ)θ̇

]
=

[
0

˙̄G
T
ĪθθḠθ̇ + ḠT Īθθ

˙̄Gθ̇

]
. (4.53)

The expansion of the second term of the quadratic velocity vector is given by

∂

∂q

(
1

2
q̇TMq̇

)
=

[
0

1
2
∂
∂θ (θ̇

T
mθθθ̇)

]
(4.54)

The equations are significantly simplified with the use of identities of the Euler parameters.
The first term is simplified to

˙̄G
T
ĪθθḠθ̇ + ḠT Īθθ

˙̄Gθ̇ = ˙̄G
T
ĪθθḠθ̇, (4.55)

using the Euler parameter identity ˙̄Gθ̇ = 0. The second term may be simplified to

1

2

∂

∂θ
(θ̇
T
mθθθ̇) = − ˙̄G

T
ĪθθḠθ̇, (4.56)

using equation (4.41) and the Euler parameter identity ˙̄Gθ = Ḡθ̇. The equations of
motion of a single rigid body are given in terms of Euler parameters as[

mRR 0
0 mθθ

] [
R̈

θ̈

]
= Qe −

[
0

2 ˙̄G
T
ĪθθḠθ̇

]
. (4.57)

4.3 Constraint equation for Euler parameters

The equations of motion in terms of Euler parameters must be satisfied in combination
with the constraint equation

θTθ = 1. (4.58)

In acceleration terms the equation might be expressed via

θT θ̈ = −θ̇T θ̇. (4.59)
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The constraint equation of the Euler parameters is integrated into the inertia matrix of
the rigid body by introducing an additional Lagrange multiplier unknown:[

mθθ θ

θT 0

] [
θ̈
λ

]
=

[
Qe − 2 ˙̄G

T
ĪθθḠθ̇

−θ̇T θ̇

]
. (4.60)

The solution of the augmented system is consistent but the numerical discretization error
of the time integration schemes lead to the violation of the constraint equation θTθ = 1.
Normalization of the Euler parameters after each integration step removes the constraint
violation in terms of the Euler position parameters but does not prevent the violation
of the constraint equation in terms of the Euler velocity parameters θ̇. Long running
simulations have shown that the normalization of the Euler parameters without treatment
of the Euler velocity can lead to instability and divergence of the solution. A revised Euler
parameter constraint implementation was derived based on the path following algorithm
presented in section 4.7. We start by rewriting the constraint equation with an unknown
right hand side value c

θTθ = c. (4.61)

The time derivative of the constraint equation then becomes

θ̇
T
θ =

1

2
ċ (4.62)

and

θT θ̈ + θ̇
T
θ̇ =

1

2
c̈. (4.63)

The equation may be used to compute the current state of the constraint in terms of
the position, velocity and acceleration terms, subscript (.)n. The current state of the
constraint equation and the target values of the constraint c = 1 and ċ = 0 may be
used in combination with the controller strategy, discussed in section 4.7, to define the
acceleration state of the constraint at the new time step c̈n+1. Applying the path-following
equation to the constraint state results in[

1
0

]
−
[
1 2c0 c1 + c0 · d0

0 1 d0

]cnċn
c̈n

 =

[
c2 + c0 · d1 + c1 c2

d0 + d1 d1

] [
c̈n+1

c̈n+2

]
. (4.64)

The augmented equation in the non discretized form reads[
mθθ θ

θT 0

] [
θ̈
λ

]
=

[
Qe − 2 ˙̄G

T
ĪθθḠθ̇

−θ̇T θ̇ + 0.5c̈

]
. (4.65)

4.4 Constraints

The rigid body equations of motion may be solved in combination with holonomic fixation
constraints with respect to the inertial frame or between two rigid bodies. Holonomic
constraints, (F. Amirouche, 2006, p. 319), are constraints which can be written in the
form of

f(q0, q1, q2, ..., qn, t) = 0. (4.66)
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The augmented method is used for the solution of the constraint equations of motion.
The method augments the mass matrix with constraint equations and introduces the
constraint forces via Lagrange multipliers λ, similar to the implementation of the Euler
parameter constraint. As discussed before the constraint equation must be written in the
acceleration form, which is obtained by differentiating the constraint equation in time.
The differentiation of the constraint equation is discussed in the individual constraint
sections 4.4.1 and 4.4.2. In general the constraint equation can be written in the form of

Cqq̈ = qc(q, q̇). (4.67)

The system of equations defines constraint equations of the individual position and rota-
tion degrees of freedom as a function of the acceleration state and a vector consisting of
position and velocity terms. The augmented system matrix is derived from a simplified
form of the equations of motion [

m
] [

q̈
]

=
[
Q
]
, (4.68)

which reads in the augmented form[
m CT

q

Cq 0

] [
q̈
λ

]
=

[
Q
qc

]
. (4.69)

In the above form the constraint equation constrains all translation and rotation degrees
of freedom, yielding 6 equations per constraint. However, specific constraints such as
hinge constraints do not require a constraint equation for each degree of freedom. These
constraint equations may be removed from the system or replaced by other equations.
The current implementation introduces a fixation matrix Cqs to deal with fixed and free
degrees of freedom in constraints. Instead of removing unused constraint equations, the
equation is modified by constraining the specific Lagrange multiplier to zero. The system
then reads [

m CT
q

Cq Cqs

] [
q̈
λ

]
=

[
Q
qc

]
. (4.70)

4.4.1 Inertial constraints

The degrees of freedom of the rigid bodies may be decreased by enforcing inertial con-
straints. The constraint prescribes the position and orientation of any point, defined in
the body reference frame, in the inertial frame. The constraint equation for the transla-
tional degrees of freedom is derived from the definition of the material point velocity by
differentiating the equation in time once. The resulting equation yields the definition of
the material point acceleration in the inertial reference frame.

r̈p =
d

dt

(
Ṙ−A˜̄uḠθ̇

)
= R̈−A˜̄uḠθ̈ − Ȧ˜̄uḠθ̇ −A˜̄u ˙̄Gθ̇ (4.71)

The definition of the material point acceleration may be applied to any point ū in the body
reference frame, which is constraint to the inertial frame of reference. The acceleration
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of the point may be prescribed in the inertial frame. The constraint equation for the
translational degrees of freedom readsr̈presx

r̈presy

r̈presz

 = R̈−A˜̄uḠθ̈ − Ȧ˜̄uḠθ̇ −A˜̄u ˙̄Gθ̇. (4.72)

The equation may be simplified using identities of the Euler parameters ˙̄Gθ̇ = 0 and
Ȧ = A˜̄ω r̈presx

r̈presy

r̈presz

+ A˜̄ω˜̄uḠθ̇ = R̈−A˜̄uḠθ̈. (4.73)

In a similar fashion the constraint equation of the rotational degrees of freedom is derived.
The angular velocity of the body in the inertial reference frame is defined by

ω = Gθ̇. (4.74)

The derivative of the equation yields the angular acceleration around the inertial axis
system

ω̇ = α =
d

dt

(
Gθ̇
)
, (4.75)

α = Gθ̈ + Ġθ̇, (4.76)

using Ġθ̇ = 0 αpresx

αpresy

αpresz

 = Gθ̈ (4.77)

The final form of the fixation constraint equation is given by the combination of the
translational and rotational constraints[

I A˜̄uḠ
0 G

] [
R̈

θ̈

]
= −

[
A˜̄ω˜̄uḠθ̇

0

]
+

[
r̈pres

αpres

]
. (4.78)

Springs
Any rigid body in the simulation may be constrained to the inertial frame via a set of
springs, three translational and three torsional. The translational and torsional springs
are aligned with the x,y,z axis of the inertial frame independent of the position and
displacement of the body. The forces of the springs and later defined dampers are intro-
duced as force vector on the right hand side of the equations of motion. The force of the
translational springs may be expressed by

Fr = −
(
Kr

(
r′ − r0

))
. (4.79)

Matrix Kr holds the spring stiffnesses of the three translational springs

Kr = KT
r =

kx 0 0
0 ky 0
0 0 kz

 . (4.80)
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Vectors r′ and r0 define the current and rest position of the spring anchor point in the
inertial frame. The position vector of the elastic anchor point r is defined with the floating
frame of reference approach which was introduced during the derivation of the equations
of motion. The definition of the elastic anchor point is given by

r′ = R + Aūe, (4.81)

where ūe is the position of the elastic anchor point in the body reference frame. Substi-
tuting the definition of r′ into the spring force equation yields

Fr = − (Kr (R + Aūe − r0)) (4.82)

The moment of the force Fr may be defined via the cross product of the moment arm and
the force. The moments are given by the distance of the elastic anchor point and center
of gravity which is defined by the vector ūe.

Mr = Aūe × Fr (4.83)

The moment is defined within the x,y,z frame and must be transferred into Euler paramet-
ers with the transformation matrix G . Given the spring force and moment the external
spring force vector Qr

s is defined by

Qr
s = −

[
Kr (R + Aūe)

GT (Aūe ×Kr (R + Aūe))

]
+

[
Krr0

GT (Aūe ×Krr0)

]
. (4.84)

The moment of an external torsional spring is defined by the Euler angles of the body

Mr = −Kθ

(
θ′ − θ0

)
, (4.85)

with

Kθ =

kφ 0 0
0 kθ 0
0 0 kψ

 (4.86)

The moment of the torsional springs are defined around the x,y,z axis of the inertial
reference frame. In matrix form the external torsional spring vector is given by

Qθ
s = −

[
0

GTKθ (θ − θ0)

]
. (4.87)

Damper
The forces and moments of the translational and torsional dampers are derived from
Rayleigh’s dissipation function (Minguzzi, 2015) and are given by

Qr
c = −

[
Crṙ

GT (Aūe × (Crṙ))

]
= −

 Cr

(
Ṙ + A˜̄ueGθ̇

)
GT

(
Aūe ×Cr

(
Ṙ + A˜̄ueGθ̇

)) (4.88)

Qθ
c = −

[
0

GTCθGθ̇

]
(4.89)
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4.4.2 Relative constraints

The multi-body model of the aircraft follows a tree-structure (F. Amirouche, 2006, p. 107).
In combination with the tree-structure a master slave approach is used for relative con-
straints between bodies. Identical to the inertial constraints the constraint equation op-
erates on the acceleration level. For relative constraints the translational and rotational
accelerations are matched. The master-slave approach is used to define the owner of the
axis system of the constraint origin.
At the time of writing prismatic and slider constraints were not required. Therefore,
relative constraints constrain all translational degrees of the freedom which makes the
definition of the coordinate system for the translational coordinates obsolete. The accel-
eration of a material point in the rigid body has been defined before. With the definition
of the material point one can define the relative acceleration of two rigid bodies at the
constraint anchor point

∆r̈pres = r̈slave − r̈master. (4.90)

Reduced for better readability

∆r̈p = r̈s − r̈m (4.91)

with

r̈s/m = R̈−A˜̄uḠθ̈ −A˜̄ω˜̄uḠθ̇. (4.92)

r̈s/m = R̈−A˜̄uḠθ̈ + Qs/m
r with Qs/m

r = −A˜̄ω˜̄uḠθ̇. (4.93)

The constraint of the rotational degrees of freedom introduces a coordinate system, which
resides in the reference frame of one of the rigid bodies. The coordinate system is used
to constrain individual rotational degrees of freedom between the bodies and model fix,
hinge, and joint constraints. A unit normal vector in the coordinate system ¯̄v may be
transformed to the body and inertial reference frame via

v̄ = Ā¯̄v (4.94)

and

v = Av̄ = AĀ¯̄v, (4.95)

which is nothing else but two successive rotations. The new matrix Ā desribes the ori-
entation of the coordinate system in the rigid body reference frame.
The angular velocity of the body in the inertial reference frame is given by

ω = Aω̄ = AḠθ̇ = Gθ̇ (4.96)

With this the angular velocity of the master and slave bodies may be defined

ωm = Amω̄m,

ωs = Asω̄s.
(4.97)

The relative angular velocity of the bodies is given by

∆ωp = ωs − ωm (4.98)
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The two angular velocities may be equated around any axis v in the inertial reference
frame. Further the axis may be defined with the unit vector of the constraint coordinate
system of the master body

AmĀm¯̄vm ·Amω̄m + ∆ωp = AmĀm¯̄vm ·Asω̄s, (4.99)

AmĀm¯̄vm ·AmḠmθ̇
m

+ ∆ωp = AmĀm¯̄vm ·AsḠsθ̇
s
, (4.100)

(
Ām

)T
(Am)T Gsθ̇

s
=
(
Ām

)T
Ḡmθ̇

m
+ ∆ωp. (4.101)

The constraint equation is again derived by taking the derivative in time(
Ām

)T
(Am)T Gsθ̈

s
+
d

dt

((
Ām

)T
(Am)T Gs

)
θ̇
s

=
(
Ām

)T
Ḡmθ̈

m
+
(
Ām

)T ˙̄G
m
θ̇
m

+ ∆αp,

(4.102)

(
Ām

)T
(Am)T Gsθ̈

s
+ Qs

θ

=
(
Ām

)T
Ḡmθ̈

m
+ Qm

θ + ∆αp with

Qs
θ =

(
Ām

)T (
Ȧm

)T
Gsθ̇

s
=
(
Ām

)T ( ˜̄ωm)T (Am)T Gsθ̇
s

Qm
θ = 0.

(4.103)

Combining the constraint equation of the translational and rotational degrees of freedom
between the master and slave body results in the final definition of the relative constraint
equation

[
I −As˜̄u

s
Ḡs −I +Am˜̄u

m
Ḡm

0
(
Ām

)T
(Am)T Gs 0 −

(
Ām

)T
Ḡm

]
R̈s

θ̈
s

R̈m

θ̈
m

 =

[
Qm
r −Qs

r

0−Qs
θ

]
+

[
∆r̈pres

∆αpres

]
. (4.104)

4.4.3 Constraint controller

The inertial and relative constraints may be controlled via target translational and rota-
tional accelerations as presented in the preceding sections. The accelerations are derived
from user-prescribed position and orientation paths. This feature is used to prescribe
dynamic control deflections in aircraft flight dynamics simulations. The derivation of the
acceleration based on the prescribed paths is discussed in section 4.7. It assumes that the
state of the acceleration, position and orientation is known at the current time step. This
holds true for rigid bodies as the state is defined by the degrees of freedom of the rigid
body. However, this assumption is not valid for relative constraints and must be derived
from the states of the constraint bodies. The derivation of the constraint state of relative
constraints is presented in this section. The relative position of the constraint coordinate
systems is easily defined via the material point definition

∆r = Rs + Asūs −Rm −Amūm, (4.105)
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∆ṙ = Ṙs −As˜̄u
s
Ḡsθ̇

s − Ṙm + Am˜̄u
m

Ḡmθ̇
m

(4.106)

and

∆r̈ =
(
R̈s −As˜̄u

s
Ḡsθ̈

s −As ˜̄ω
s˜̄u

s
Ḡsθ̇

s
)
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R̈m −Am˜̄u

m
Ḡmθ̈

m −Am ˜̄ω
m˜̄u

m
Ḡmθ̇

m
)

(4.107)
The orientation of the constraint coordinate systems may be expressed via the Euler
identity

θcs = Hcm∆θ, (4.108)

as written in Shabana (2020), with

Hcm =


θcm0 −θcm1 −θcm2 −θcm3
θcm1 θcm0 −θcm3 θcm2
θcm2 θcm3 θcm0 −θcm1
θcm3 −θcm2 θcm1 θcm0

 . (4.109)

Equally the orientation of the constraint coordinate systems in the inertial reference
system may be defined by

θcs/cm = Hs/mθ̄
cs/cm , (4.110)

where Hs/m is the above transformation matrix based on the master or slave body.
The relative velocity of the constraint coordinate systems is given by the time derivative
of equation (4.108)

θ̇
cs

= Ḣcm∆θ + Hcm∆θ̇, (4.111)

and

θ̇
cs/cm

= Ḣs/mθ̄
cs/cm . (4.112)

The acceleration state of the constraint is equally found by taking the temporal derivative
again.

θ̈
cs

= Ḧcm∆θ + 2Ḣcm∆θ̇ + Hcm∆θ̈ (4.113)

θ̈
cs/cm

= Ḧs/mθ̄
cs/cm . (4.114)

Given the transformation matrix identity HTH = I the relative position, velocity and
acceleration state of the constraint coordinate system may be defined as

∆θ = (Hcm)T θcs , (4.115)

∆θ̇ = (Hcm)T
(
θ̇
cs − Ḣcm∆θ

)
, (4.116)

and

∆θ̈ = (Hcm)T
(
θ̈
cs − Ḧcm∆θ − 2Ḣcm∆θ̇

)
. (4.117)
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4.5 Newmark time integration

The translational and rotational coordinates of all bodies are a result of the integration
of the accelerations in time. The accelerations are numerically integrated with the New-
mark method, (Gavrea et al., 2005), which assumes a linear acceleration in the interval
[tn, tn+1] = [t, t+ ∆t] which is given by

q̈(h) =
∆t− h

∆t
q̈n +

h

∆t
q̈n+1. (4.118)

Vector q is defined by the translational and rotational degrees of freedom

q =

[
R
θ

]
. (4.119)

The position and velocity within the integration interval are given by the Newmark equa-
tions which assume a linear acceleration in the interval [tn, tn + h]

q(h) = qn + hq̇n +
h2

2
[(1− 2β)q̈n + 2βq̈(h)], (4.120)

and
q̇(h) = q̇n + h[(1− γ)q̈n + γq̈(h)], (4.121)

with h ∈ [0,∆t]. The equations show that the position and velocity of the bodies in
the interval [t, t + ∆t] are a function of the position, velocity and acceleration at t and
the acceleration at t + ∆t only. The coefficients of the scheme must satisfy the stability
criteria

γ ≥ 0.5, β ≥ (γ + 0.5)2

4
(4.122)

As discussed in Gavrea et al. (2005), the coefficient set γ = 0.5 and β = 0.25 results in a
second-order scheme with low dissipation. Coefficients γ = 0.75 and β = 0.390625 result
in a first-order accurate scheme. The low dissipation second order accurate coefficients
γ = 0.5 and β = 0.25 are implemented in the present code.

4.6 Solution algorithm

An iterative scheme is used to solve the implicit non-linear system of equations for the
unknown acceleration q̈t+1 and the Lagrange multipliers λ. The iterative scheme combines
the equations of motion with the Newmark integration method to obtain the acceleration,
velocity and position of the rigid body at time t + 1. Assuming that the changes in the
degrees of freedom over the time step ∆t are small, the acceleration of the body at time
step t+ 1 may be approximated via[

Mi
(
CT
q

)i
Ci
q 0

] [
q̈t+1

λ

]
=

[
Qt+1
e + Qi

v

Qc

]
, (4.123)

where index i denotes a solution between the solution at time t and t+ 1. The resulting
linear system is easily solved for the acceleration of the rigid body at time t + 1. The
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result is used in combination with the Newmark integration scheme to obtain the position
of the body at time t+ 1 via

qt+1 = qt + ∆tq̇t +
∆t2

2

[
(1− 2β) q̈t + 2βq̈t+1

]
, (4.124)

and

q̇t+1 = q̇t + ∆t
[
(1− γ) q̈t + γq̈t+1

]
. (4.125)

The solution of the position and velocity are used to redefine the intermediate solution
via the relaxation scheme

qi+1 = (1− τ)qi + τqt+1,

q̇i+1 = (1− τ)q̇i + τ q̇t+1.
(4.126)

The solution procedure may be summarized in the following steps:

1. Set the initial linearized solution qi to the current solution qt.

2. Solve the linearized equations of motion to obtain the acceleration at t+ 1.

3. Compute the position and velocity of the rigid body at time t+1 using the Newmark
integration method.

4. Update the linearized solution using the relaxation scheme.

5. Redo steps (1)-(4) until the solution converges. Convergence is determined by the
residual of the acceleration at time t+ 1.

4.7 Prescribed path implementation

Prescribed paths are given as a set of translational and rotational coordinates versus
time instances. The definition results in a linearization of the body motion and con-
sequently into non-continuous body velocities and accelerations. An inverse problem has
been implemented into the present solver which derives an acceleration profile based on
the prescribed path which results in a continuous acceleration profile and smooth velocity
and position profiles. The solution of the inverse problem is presented in this section.
The interpolation of the path profile is based on the following concept. Given a current
position, velocity and acceleration qn, q̇n, q̈n find the acceleration of the body at t + ∆t
and t+ 2∆t with a given target position and velocity at t+ 2∆t. The target position and
velocity are derived from the prescribed path.
The derivation of the solution is started from the definition of the position and velocity
at t+ 2∆t

qn+2 = qn+1 + ∆tq̇n+1 +
∆t2

2
[(1− 2β)q̈n+1 + 2βq̈n+2] (4.127)

and

q̇n+2 = q̇n+1 + ∆t[(1− γ)q̈n+1 + γq̈n+2]. (4.128)
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Position and velocity terms at t+ ∆t are replaced with Eq. (4.120) and Eq. (4.121). The
resulting equations yield the position and velocity at t+ 2∆t as a function of the current
position and the accelerations at t+ ∆t and t+ 2∆t

qn+2 = qn + ∆tq̇n +
∆t2

2
[(1− 2β)q̈n + 2βq̈n+1]

+ ∆t(q̇n + ∆t[(1− γ)q̈n + γq̈n+1]) +
∆t2

2
[(1− 2β)q̈n+1 + 2βq̈n+2]

(4.129)
and

q̇n+2 = q̇n + ∆t[(1− γ)q̈n + γq̈n+1] + ∆t[(1− γ)q̈n+1 + γq̈n+2]. (4.130)

The following constants are defined to simplify the equations

c0 = ∆t,

c1 = 0.5∆t2(1− 2β),

c2 = ∆t2β

(4.131)

and
d0 = ∆t(1− γ),

d1 = ∆tγ.
(4.132)

Substitution of the defined constants into the equations results in

qn+2 = qn + 2c0q̇n + (c1 + c0 · d0)q̈n + (c2 + c0 · d1 + c1)q̈n+1 + c2q̈n+2, (4.133)

and
q̇n+2 = q̇n + d0q̈n + (d0 + d1)q̈n+1 + d1q̈n+2. (4.134)

The equations are combined into a system of equations

[
qn+2

q̇n+2

]
−
[
1 2c0 c1 + c0 · d0

0 1 d0

]qn
q̇n
q̈n

 =

[
c2 + c0 · d1 + c1 c2

d0 + d1 d1

] [
q̈n+1

q̈n+2

]
. (4.135)

Known values are gathered on the left hand side of the equation and the unknown ac-
clerations are gathered on the right hand side. The position and velocity at t + 2∆t are
defined by the prescribed path.The position qn+2 is linearly interpolated in the path data.
The velocity at t + 2∆t follows a linear approximation based on the positions at t + ∆t
and t+ 2∆t as defined by

q̇n+2 =
1

∆t
(qn+2 − qn+1) (4.136)

The acceleration solution of the system of equations is used in combination with the
Newmark time integration described in the previous section to define the position and
velocity of the body in the interval [t, t+ ∆t].



Chapter 5

Verification of the hybrid ghost-cell
method

Two verification tests were conducted for the hybrid ghost-cell method to assess the effect
of the hybrid-cell treatment discussed in section 3.6 on the numerical solution of moving
geometries. The tests consist of a low Reynolds moving cylinder and a high Reynolds
NACA0012 airfoil with pitch-up motion. The assessment of the hybrid-cell treatment
was performed on integral forces and qualitative flow field assessments. An assessment of
the hybrid ghost-cell method with static geometries was performed prior to the presented
results to ensure that the treatment is not detrimental to the numerical results of the
solver. The assessment of the static geometries was done for low and high Reynolds
number flows. The results of the static geometries are not presented in this thesis.

5.1 Transverse oscillating cylinder

A verification test for the hybrid ghost-cell method was presented in Luo et al. (2012) who
discussed hybrid-cell treatment for a ghost-cell method framework in an incompressible
flow solver. The test features a circular cylinder which is oscillating either in-line with the
flow direction or transverse to the flow direction. The effect of the hybrid-cell treatment is
illustrated with the drag coefficient of the cylinder. The transverse version of the test case
was used for the verification of the presented hybrid ghost-cell method. The simulation
setup and results are discussed in the following section.

5.1.1 Simulation setup

The numerical domain of the simulation is illustrated in figure 5.1. The cylinder, with
diameter d, is located in a square domain with dimensions 4d× 4d. Note, the test case is
only used to assess the differences in the cylinder drag force with and without hybrid-cell
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treatment. A small domain is therefore used for the test case to reduce the computational
cost of the simulation. The motion of the cylinder is given by

u = ucsin (2πft) . (5.1)

The Reynolds number defined with the inflow velocity U and cylinder diameter d is equal
to Re = Ud

ν = 100. The amplitude of the cylinder velocity uc is given by

uc/U = 0.1π. (5.2)

The frequency of the cylinder motion satisfies the equality

fd

U
= 0.2. (5.3)

Integrating equation (5.1) and using relations (5.2) and (5.3) yields the position of the
cylinder in terms of the free stream velocity U and diameter d.

y =
1

4
d · cos

(
2

5

πU

d
t

)
. (5.4)

A parabolic inlet velocity profile with no-slip top and bottom wall boundary conditions
and a zero gradient Neumann outflow boundary condition are used in Luo et al. (2012).
Instead, a uniform inflow boundary condition and slip top and bottom wall boundary
conditions are used in the presented case combined with the used zero gradient Neumann
boundary condition at the outflow. A comparison between the numerical results of Luo
et al. (2012) is therefore not possible. However, the simplified setup of the presented
simulation should be sufficient to test the hybrid-cell treatment. The flow field is initialized
with the free stream velocity U . A uniform mesh is used for the discretization of the
domain with a cell density of 32 cells per diameter d. The cylinder drag force D is
used to assess the effect of the hybrid-cell treatment. The drag force is presented in the
non-dimensional form

CD =
2D

ρU2d
. (5.5)

The time axis is non-dimensionalised with

t′ = t
U

d
. (5.6)

5.1.2 Results

The drag force of the transverse oscillating cylinder is shown in figure 5.2 and 5.3. Figure
5.2 shows the cylinder drag coefficient without hybrid-cell treatment, and figure 5.3 shows
the cylinder drag coefficient with hybrid-cell treatment. Either plot shows an initial
transient, where the drag coefficient oscillates with high amplitudes. These oscillations
are induced by the initialization of the flow field and are not effected by the hybrid-
cell treatment. The high oscillations disappear at approximately t′ = 5 for both methods.
After the initial transient the drag force oscillates with double the frequency of the cylinder
motion f ′ = 1

t′period
= 0.4. Oscillations of higher frequencies are visible in either result, but

the hybrid-cell treatment significantly reduces the amplitudes of these high frequencies.



5.1 Transverse oscillating cylinder 65

Figure 5.1: Schematic of an in-line oscillating cylinder in a channel, taken from (Luo et al.,
2012).
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Figure 5.2: Numerical solution of
the drag coefficient CD
of the transverse oscil-
lating cylinder with no
hybrid-treatment enabled.
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Figure 5.3: Numerical solution of the
drag coefficient CD of the
transverse oscillating cylin-
der with hybrid-treatment
enabled.

A Fast-Fourier transform is performed over one period of the cylinder oscillation in the
interval t′ = [5.0, 10.0]. The results of the Fourier transform of the two numerical res-
ults is shown in figure 5.4. The ghost-cell method and hybrid ghost-cell method predict
identical force amplitudes for the frequencies associated with the motion of the cylinder
f ′ = 0.4. The result indicates that the hybrid-cell treatment does not effect the solution
of the low frequency scales in the laminar flow field. Differences are found at higher fre-
quencies f ′ > 10, where the the hybrid-cell treatment suppresses the oscillations. The
higher frequencies are associated with spurious numerical oscillations as these time scales
corresponding to these frequencies should not be present in the laminar flow around the

moving cylinder. An assessment of the Kolmogorov time scale tv =
(
ν
ε

) 1
2 with ε ∼ U3

d
alone indicates the highest frequencies corresponding to the smallest hydrodynamic scales
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in the flow field should not exceed f ′v > 10. This further underlines that the spurious
oscillations found at frequencies above f ′ > 10 are associated with numerical effects and
not physical flow features.
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Figure 5.4: Fast-Fourier transform of the transverse oscillating cylinder over one period;
( ) numerical results with not hybrid-cell treatment, ( ) numerical results
with hybrid-cell treatment.

5.2 Flow around NACA0012 airfoil with pitch up motion

The initial need for the hybrid ghost cell method was found in the simulation of the
NACA0012 dynamic stall case. Spurious oscillations are common in in-compressible solv-
ers with immersed boundary methods as discussed in Luo et al. (2012). They are less often
reported in compressible solvers. The numerical results of the NACA0012 dynamic stall
validation simulations are presented in chapter 8. In this section the numerical results of
a simplified test case are presented. The test case was used to illustrate the force and flow
field differences between the ghost-cell method with and without hybrid-cell treatment.

5.2.1 Simulation setup

The setup of the simulation was set based on the simulations of the NACA0012 dynamic
stall case, 8. Some simplifications were implemented to reduce the computational cost of
the simulation and to isolate the hybrid-cell treatment from other numerical methods in
the present solver. The domain size was reduced from a width of b = 3c to b = c and the
near-wall mesh resolution was decreased to ∆/c = 0.98 ·10−3 by reducing the octree mesh
refinement level by one. Inflow conditions were not changed for the test case. A no-slip
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wall is used instead of the wall-modeled boundary condition to reduce the complexity of
the numerics and focus the investigation on the hybrid-cell treatment. The NACA0012
airfoil in dynamic stall case, presented in chapter 8, follows a sinusoidal motion. The
motion is simplified in the numerical verification test and plotted in figure 5.5. The time
is given as the non-dimensional unit t′ = tUL . The motion is split into two parts, the
airfoil remains at a constant pitch up angle of 5◦ for the first 8 time units. Afterwards,
the pitch up angle is increased at a constant rate of 1◦ per time unit for the final 8 time
units.
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Figure 5.5: Prescribed pitch angle of the NACA0012 for the hybrid ghost-cell verification
test.

5.2.2 Results

The effect of the hybrid ghost-cell method on the numerical solution of the flow field
around the NACA0012 airfoil is again shown with a plot of the integral forces. In addi-
tion to the integral forces, plots of the flow field are shown around the NACA0012 airfoil
to present the spurious oscillations that were found in the flow field prior to the imple-
mentation of the hybrid ghost-cell method.
The integral lift coefficient CL of the airfoil is shown in figure 5.6 and 5.7. Figure 5.6 shows
the lift coefficient of the NACA0012 airfoil versus time with no hybrid-cell treatment and
figure 5.7 with hybrid-cell treatment enabled. Both plots show an initial transient in the
lift coefficient characterized by oscillations with large amplitudes. The initial transient is
again caused by the initialization of the flow field. The transient disappears at around
t′ = 6. The results show that the hybrid-cell treatment leads to a higher decay of the
initial transient indicating an increased dissipation at the immersed boundary. The solu-
tion of the lift coefficient converges to a quasi static value before the pitch up motion is
initiated at t′ = 8.0. The lift coefficient during the pitch-up motion t′ > 8.0 is character-
ized by a sudden jump in the lift coefficient ∆CL = 0.1 around t′ = 8.0 caused by the
sudden increase in the rotational velocity of the NACA0012 airfoil around the quarter
chord axis. The initial jump in the lift coefficient is followed by a quasi linear increase
in the lift coefficient until the end of the simulation at t′ = 16.0. Oscillations are found
around the linear trend with both immersed boundaries. These oscillations are associated
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with spurious oscillations and turbulent fluctuations in the boundary layer of the airfoil.
The simulations again show that the ghost-cell method without hybrid-cell treatment has
significantly higher oscillations in the lift coefficient once the geometry moves. From the
lift coefficient alone it is not possible to assess whether the differences in the oscillations
are caused by differences in the turbulent boundary layer flow alone or differences in the
spurious oscillations.
A qualitative assessment of the flow field was performed to assess whether the oscillations
are associated with flow features in the density/pressure and velocity field. Slices of the
velocity magnitude solution field at t′ = 4 and t′ = 12 are shown in figures 5.8, 5.10,
5.9 and 5.11. Figures 5.8 and 5.10 show the velocity field obtained with the ghost-cell
method without hybrid-cell treatment at time t′ = 4 and t′ = 12, respectively. Figures
5.9 and 5.11 show the velocity field solution of the ghost-cell method with hybrid-cell
treatment at time t′ = 4 and t′ = 12. Due to the chaotic characteristics of turbulent
flow, the velocity show differences in the near-wall solution. However, the flow fields of
the ghost-cell methods with and without hybrid-cell treatment do not show significant
differences in the boundary layer thickness and turbulent scales. The author would like
to emphasize that this is purely based on a qualitative assessment of the flow field.
Slices of the density solution field at t′ = 4 and t′ = 12 are shown in figures 5.12, 5.14,
5.13 and 5.15. Figures 5.12 and 5.14 show the velocity field solution of the ghost-cell
method without hybrid-cell treatment at time t′ = 4 and t′ = 12 respectively. Figures
5.13 and 5.15 show the velocity field solution of the ghost-cell method with hybrid-cell
treatment at time t′ = 4 and t′ = 12. The assessment of the density field at t′ = 4 does
not show significant differences in the solution. No spurious oscillations are found in the
density field for either method in-line with expectations as the geometry is not moving
at this point in time. Further the result indicates that the hybrid-cell treatment does not
effect the numerical solution much on a qualitative level. The density solution at t′ = 12
shows large oscillations in the flow field in the solution without hybrid-cell treatment. The
oscillations are in the form of acoustic waves which originate primarily on the pressure
side of the airfoil and travel into the far-field. The solution of the ghost-cell method with
hybrid-cell treatment does not show any such oscillation in the flow field. The qualit-
ative assessment of the density field thus indicates that a part of the oscillations in the
lift coefficient of the airfoil is caused by spurious oscillations which are damped by the
hybrid-cell treatment.
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Figure 5.6: Numerical results of the NACA0012 lift coefficient CL without hybrid-cell treat-
ment.
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Figure 5.7: Numerical results of the NACA0012 lift coefficient CL with hybrid-cell treat-
ment.
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Figure 5.8: Ghost-cell method result of the instantaneous velocity magnitude field around
the NACA0012 airfoil at t′ = 4.

Figure 5.9: Hybrid ghost-cell method result of the instantaneous velocity magnitude field
around the NACA0012 airfoil at t′ = 4.

Figure 5.10: Ghost-cell method result of the instantaneous velocity magnitude field around
the NACA0012 airfoil at t′ = 12.

Figure 5.11: Hybrid ghost-cell method result of the instantaneous velocity magnitude field
around the NACA0012 airfoil at t′ = 12.
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Figure 5.12: Ghost-cell method result of the instantaneous density field ρ around the
NACA0012 airfoil at t′ = 4.

Figure 5.13: Hybrid ghost-cell method result of the instantaneous density field ρ around the
NACA0012 airfoil at t′ = 4.

Figure 5.14: Ghost-cell method result of the instantaneous density field ρ around the
NACA0012 airfoil at t′ = 12.

Figure 5.15: Hybrid ghost-cell method result of the instantaneous density field ρ around the
NACA0012 airfoil at t′ = 12.
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5.3 Conclusion

Simulations of a transversely oscillating cylinder and a NACA0012 airfoil undergoing
pitch up motion were presented in this chapter. The results of the transverse oscillating
cylinder showed high oscillations in the flow field for the ghost-cell method without hybrid-
cell treatment. The oscillations were associated with spurious numerical oscillations as
the frequency associated with theses oscillations in the drag coefficient was above the
maximum frequencies associated with the Kolmogorov time scale. The results of the
flow case with the hybrid-cell treatment showed that the hybrid-cell treatment did not
negatively effect the solution of the low frequencies in the transient drag coefficient of
the cylinder but did significantly suppress the spurious high frequencies in the results.
It is therefore concluded that the hybrid-cell treatment is a suitable method for the
suppression of spurious oscillation in the present solver for moving geometries at low
Reynolds numbers.
The results of the NACA0012 airfoil did show that the numerical solution of the flow field
does not contain spurious oscillations when the airfoil is not moving. Oscillations were
found in the pitch up motion which were associated with both turbulent fluctuations
and spurious numerical oscillations. Again the ghost-cell method without hybrid-cell
treatment had significantly higher amplitudes in the oscillations of the lift coefficient
than the ghost-cell method with hybrid-cell treatment. A qualitative assessment was
performed on the velocity magnitude and density field to associate the oscillations in the
lift coefficient to flow features in the two fields. The assessment showed no significant
differences in the boundary layer height and turbulent scales in the velocity field of the
ghost-cell method and hybrid ghost-cell method. However, large differences were found in
the solution of the density. While the solution was similar when the airfoil was not moving,
large spurious oscillations in the form of acoustic waves were found in the density field
once the airfoil started moving. It was concluded that these waves cause the significant
increase in the amplitude of the lift coefficient oscillations with the ghost-cell method
without hybrid-cell treatment. Based on the findings, it can be concluded that the hybrid
ghost-cell method successfully suppresses spurious oscillation in high Reynolds number
flow.
In conclusion the hybrid ghost-cell method developed in this thesis is suitable for the
suppression of spurious oscillations for moving geometries in both low and high Reynolds
number flows.



Chapter 6

Verification of the multi-body solver

Verification tests are performed with the developed rigid body solver. Multiple aspects of
the rigid body solver are investigated with the verification tests. Simulations of a single
pendulum are performed to analyze the order of accuracy of the Newmark time integration
scheme and to compare the numerical results with the analytical solution of the single
pendulum. Simulations of a double pendulum are performed to verify the implementation
of the relative and absolute constraints and to investigate the conservation error in the
system energy. The results of the single pendulum are shown in section 6.1. The results
of the double pendulum are presented in section 6.2.

6.1 Single pendulum

Simulations of a single pendulum are performed. The results of the simulations are used
to analyze the order of convergence of the Newmark time integration method, which
is implemented in the present rigid body solver. The results are further compared to
analytical results of a single pendulum. The single pendulum is illustrated in figure 6.1.
The pendulum considered in the present simulations has a link length of l = 1m and a
mass of m = 1kg. The mass of the pendulum link is modeled as a point mass located at
the end of the link. The angle of the pendulum link with respect to the inertial frame
is defined by the angle θ1. The pendulum is subjected to a gravitational acceleration of
g = π2m/s2. The analytical solution of the pendulum is derived in section 6.1.1. The
numerical results of the single pendulum obtained with the present code are presented in
section 6.1.1.

6.1.1 Analytical analysis

The motion of the pendulum, shown in figure 6.1, is described by the following equation
of motion around the hinge point of the pendulum

l2mθ̈1 = −mglsin(θ1). (6.1)
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Figure 6.1: Illustration of a single pendulum, taken and modified from (Maiti et al., 2016).

The left hand side term describes the time derivative of the angular momentum of the
pendulum, with l2m equal to the angular mass moment of inertia of the pendulum around
the hinge point of the pendulum. The right hand side term describes the restoring moment
of the pendulum caused by the angular displacement and gravity. The equation of motion
is simplified by assuming that the angle of the single pendulum remains small. Given this
assumption, the sin(θ1) term is approximated by sin(θ1) ≈ θ1. The equation of motion is
written as

θ̈1 +
g

l
θ1 = 0. (6.2)

The solution of the linear second order ordinary differential equation is given by

θ1(t) = θ10 cosωt with ω =

√
g

l
. (6.3)

θ10 is the initial angular displacement of the pendulum and ω is the natural frequency of
the pendulum. Given the properties of the pendulum and the gravitational acceleration

g, the natural frequency of the pendulum is equal to ω =
√

g
l = π. The oscillation period

of the pendulum T is equal to

T = 2π
√
l/g = 2s. (6.4)

Numerical analysis

Next, the numerical solution of the single pendulum is presented. The simulations are
performed with an initial pendulum displacement of θ10 = 1.0◦. Given the small initial
displacement, the result should compare well to the derived analytical result. The link
is modeled as a single rigid body with mass m and inertia terms I. The inertia terms
Ixx, Iyy, Izz are set equal to 10−6kgm2 in order to model the pendulum link as a point
mass. The equations of motion of the single rigid body were presented in section 4.2. A
coordinate system is added to the local reference frame of the rigid body at distance l
from the center of gravity. The coordinate system is constrained with a fixation constraint
to the inertial frame. The fixation constraint fixes all degrees of freedom except for the
rotational degree of freedom around the out of plane axis of the pendulum. The constraint
implementation of rigid bodies and the inertial frame of reference, used in the numerical
simulations, is shown in section 4.4.1. Initial simulations were performed to assess the
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order of convergence of the Nemark time integration scheme, 4.5. These simulations were
performed over one oscillation period T . The numerical error is defined by

εθ =
√

(θ1(t = T )− θ10)2). (6.5)

Simulations were performed with time step sizes in the range of ∆t = [0.00125s, 0.32s].
The convergence plot is shown in figure 6.2. The numerical error is plotted against the
number of solid time steps over one oscillation period Nt = T/∆t. First and second order
convergence lines are added as reference to the plot. The convergence plot shows that
the present code follows approximately the second order convergence trend line. This is
in line with the Newmark time integration error for the Newmark coefficient β = 0.25
γ = 0.5 and verifies the correct implementation of the method.
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Figure 6.2: L2-norm error plot of the pendulum position after one time period; ( ) solu-
tion of present code, ( ) first order convergence reference, ( ) second
order convergence reference.

The pendulum displacement angle is plotted against time in figure 6.3. The trajectory
of the pendulum is plotted over one oscillation period T . The analytical solution of the
single pendulum is added as reference. The numerical simulation was performed with the
lowest considered time step of ∆t = 0.00125s. The plot shows an exact match between
the numerical analytical solutions, verifying that the present solver correctly predicts the
motion of a single pendulum.
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Figure 6.3: Plot of the pendulum angle θ1 against time t; ( ) solution of present code,
( ) analytical solution.

6.2 Double pendulum

Simulations of a double pendulum were performed to verify the inertial and relative
constraints. The double pendulum of the numerical simulation is shown in figure 6.4.
The double pendulum consists out of two links. An equal length and mass is assigned
to both links of the pendulum of m = 1kg and l = 1m. A second degree of freedom is
introduced into the system compared to the single pendulum considered in the previous
section. The additional degree of freedom describes the angular displacement of the
second link in the inertial frame of reference and is denoted as θ2. Both links are modeled
as point masses as done for the single pendulum simulations. The relative constraint
implementation presented in section 4.4.2 is used to model the constrained between the
two links of the pendulum.
The double pendulum is a primary example for chaotic systems (Maiti et al., 2016).
The equations are non-integrable as infinitesimal changes to the initial conditions lead
to significant differences in the dynamic response of the system. Therefore, convergence
studies are only performed on the system energy and constraints. As regardless of the
dynamic response of the system the energy should be conserved and the constraints should
be satisfied. The simulations were performed over a total time of t = 10s. Results obtained
during the simulations include plots of the two degrees of freedom and plots of the system
energy. The initial condition of the system is defined by

θ10 = θ20 = 18.0◦. (6.6)

The presentation of the results is started with the convergence studies on the system
energy and constraint violation. These studies are of interest as neither the constraints
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Figure 6.4: Illustration of a double pendulum, taken from and modified from (Maiti et al.,
2016).

nor the system energy are conserved. The convergence analysis of the system shows the
correlation between the numerical error in the system energy and constraints and the
selected numerical time step. The system is simulated for a time period of T = 10s. The
error in the system energy is defined by

εE =
√

(E0 − E(t = T ))2. (6.7)

The constraint violation error is defined by the distance of the constraint coordinate
systems ∆xi, where i indexes the three coordinate system axis 0, 1 and 2. The error term
is given by

εc =
√

∆x2
0 + ∆x2

1 + ∆x2
2. (6.8)

The time step of the Newmark time integration was swept over a range of ∆t = [6.25 ·
10−4s, 3.2 · 10−1s]. The errors are plotted against the number of time integration steps
Nt = T/∆t. The convergence plot of the system energy is plotted in figure 6.5. Trend
lines of first order convergence and second order convergence characteristics are added as
reference. The plot of the energy error indicates that the error converges with first order
accuracy. This is expected as the energy term includes position and velocity terms. The
integration of the velocity is only first order accurate with the selected Newmark time
integration scheme. The error terms of the two hinge constraints is plotted in figure 6.6.
The constraint of link 1 to the inertial reference frame is denoted as link 1 constraint.
The relative constraint between link 1 and link 2 is denoted as link 2 constraint. The plot
shows that the error of the constraint terms converges with first order accuracy.
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Figure 6.5: L2-norm error plot of the pendulum energy after a time period of t = 10; ( )
solution of present code, ( ) first order convergence reference, ( ) second
order convergence reference.
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Figure 6.6: L2-norm error plot double pendulum constraints after a time period of t = 10;
( ) link 1 constraint, ( ) link 2 constraint, ( ) first order convergence
reference, ( ) second order convergence reference.
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The final simulation is performed with the smallest time step of ∆t = 6.25 · 10−4. The
simulation is performed over the time period T . The energy of the system is plotted
versus time in figure 6.8. The plot clearly illustrates how the system energy is constant
over time, while the energy of the two links is variable over the time period. Changes in
the energy of the links is only achieved by transferring the kinetic and potential energy
from one link to the other link. The simulation results further show that the energy of
the second link is overall higher than the energy of the first link. This might only be true
for the selected initial condition. The potential energy of link 2 is twice as high as the
energy of link 1 in the initial conditions of the system. The angles of link 1 and link 2
over the time period T are plotted against each other in figure 6.7. The plot shows the
quasi periodic but chaotic behavior of the pendulum motion.

−0.4 −0.2 0.0 0.2 0.4

−0.40

−0.20

0.00

0.20

0.40

θ1 [rad]

θ 2
[r
a
d
]

Figure 6.7: Plot of system degrees of freedom θ1 and θ2 over a time period of T = 10s.
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Figure 6.8: Plot of the system and links energy against time t/T ; ( ) link 1, ( ) link
2, ( ) total.

6.3 Discussion and Conclusion

Simulations of a single and double pendulum were performed to verify the components
of the developed rigid body solver. The setup of the simulations included the use of
the rigid body equations of motion and the modeling of bodies as point masses. The
simulations further verified the implemtation of constraints between rigid bodies and the
inertial frame as well as relative constraints between rigid bodies. The simulations of
the single pendulum were further compared to a derived analytical solution of a pendu-
lum with small amplitudes. The analysis of the single pendulum showed a second order
convergence of the pendulum position degree of freedom which is in line with the expec-
ted time integration error expected from the Newmark integration scheme. The analysis
further showed a perfect match between the analytical solution of the single pendulum
and the numerical solution of the present code. The single pendulum verified the correct
implementation of the time integration scheme and constraint implementation between
rigid bodies and the inertial reference frame. Subsequently simulations of a double pen-
dulum were performed. The addition of the second link leads to an additional degree
of freedom. It further results in a chaotic non-integratable system. A convergence error
analysis was performed on the system energy and constraint violation. Both showed first
order convergence characteristics. Plots of the system energy and two degrees of freedom
of the simulated time period were shown. The system energy plot showed how the system
energy is correctly conserved while the energy is transferred between the two links during
the motion. The plot of the two degrees of freedom showed the expected quasi-periodic
but chaotic motion of the two pendulum links. The simulations and tests performed in
this chapter verified the implementation of the rigid body solver components. The verified
rigid body solver has been used for flutter simulations of a NACA0012 airfoil. The results
of these simulations are presented in chapter 9.



Chapter 7

Laminar flow around an in-line
oscillating cylinder

Örley et al. (2015) show numerical results of an in-line oscillating cylinder in both still and
moving air at low Reynolds numbers. The test case was used to validate the developed
cut-element based immersed boundary method. The numerical results are compared to
the experimental results of Dütsch et al. (1998). The identical case was simulated with
the present solver and hybrid ghost-cell immersed boundary. The results of the validation
study are presented in this chapter. Sections 7.1 and 7.2 give a short introduction to the
conducted experiment and flow problem at hand. Section 7.3 presents the setup of the
simulation. The results of the simulation and discussion are presented in sections 7.4 and
7.5.

7.1 Experiment

The experiment of Dütsch et al. (1998) was performed to investigate the forces and flow
field around an in-line oscillating cylinder in low Reynolds number flow at low Keulegan-
Carpenter (KC) numbers. These studies are used to support the fundamental understand-
ing of fluid structure interaction. The experiment was conducted in a water tank. LDA
measurements were performed to obtain the velocity at selected locations. Differences in
the Reynolds and Keulegan-Carpenter numbers were achieved by varying the speed of
the motor drive, the amplitude of the oscillation and the diameter of the cylinder. Vari-
ations of the Reynolds and Keulegan-Carpenter number are of particular interest for this
case as the vortex dynamics drastically change with these parameters. This is discussed
in more detail in section 7.2. Three combinations of Reynolds and Keulegan-Carpenter
numbers were investigated in the experiment. The combinations are summarized in table
7.1 together with their corresponding Stokes parameter β = Re/KC. The key numbers
of the experiment, (Dütsch et al., 1998), are defined by

Re =
Umaxd

ν
and KC =

Umax
fd

. (7.1)
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Umax defines the maximum velocity of the oscillating cylinder. The position of the cylinder
is defined by

x(t) = −A sin (2πft) , (7.2)

with the velocity defined by the derivative of the position function

u(t) = −2πfA cos (2πft) . (7.3)

The equation yields a maximum velocity of

Umax = 2πfA (7.4)

and similar a Reynolds and Keulegan-Carpenter number of

Re =
2πfAd

ν
and KC =

2πA

d
. (7.5)

Test case I is selected for the simulation. This enables the comparison of the results to

Case Re KC β

I 100 5 20
II 200 10 20
III 210 6 35

Table 7.1: Experiments of the in-line oscillating cylinder conducted by Dütsch et al. (1998).

both the experimental results of Dütsch et al. (1998) and the numerical results of Örley
et al. (2015). Section 7.4 present measurements of the force acting on the cylinder as well
as flow field measurements of the velocity at different positions. Uncertainty estimates of
the measurements in the experiments were not given.

7.2 Flow problem

The oscillating cylinder sheds vortices which are convected away from the cylinder into
the far field of the domain. The dynamics of these vortices is highly dependent on the
Reynolds and Keulegan-Carpenter number of the specific case. As discussed in Tatsuno
and Bearman (1990) different region may be defined on a Reynolds Keulegan-Carpenter
plot which define the characteristics of the vortex dynamics. The various regions identified
by Tatsuno and Bearman (1990) are shown in figure 7.1. The experiments of Dütsch et
al. (1998) focused on regions A, F and E. The simulations and tests performed in region
E were primarily conducted to compare results to previous studies as discussed by Dütsch
et al. (1998). RegionA, which is also subject of the presented numerical simulation, is
characterized by a stable, symmetric and periodic vortex shedding as discussed in Dütsch
et al. (1998). The vortex dynamic lead to fixed stagnation points on both sides of the
cylinder. With increasing Reynolds and Keulegan-Carpenter number the vortex dynamics
become more unstable. The flow field in region F was characterized by vortex shedding
which was symmetric in the beginning but moved to non-symmetric vortex shedding with
time as the shed vortices on one side of the cylinder became larger than on the other side.
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The asymmetric size in the vortices led to a movement of the stagnation point and an
inclination of the mean vortex shedding direction. This is discussed in detail in Dütsch
et al. (1998). The reader is further directed to the work of Tatsuno and Bearman (1990)
for a discussion of all regions in figure 7.1.

Figure 7.1: Flow regimes of the in-line oscillating cylinder as defined by Tatsuno and Bear-
man (1990).

7.3 Simulation setup

The setup of the numerical simulation followed the simulation of Örley et al. (2015).
A square domain with size 38.4d × 38.4d is used for the discretization of the flow field.
Riemann boundary conditions are used at the domain boundaries to prevent reflections
of waves traveling from the cylinder into the far-field. The octree based Cartesian mesh
is used for the discretization of the flow field with 3 levels of refinement at the cylinder.
The refinement level combined with the number of cells per block and the block size led
to a mesh density of 80 cells per cylinder diameter d. This mesh density corresponds
to the finest mesh used in the numerical simulations of Örley et al. (2015). To prevent
compressibility effects in the results of the flow-field the setup was set such that the
maximum velocity of the cylinder corresponds to a Mach number of M = 0.2. The
simulation was run for 8 cylinder periods before gathering force and flow field data to
prevent the pollution of the numerical results from transients of the initial conditions of
the flow field.

7.4 Results

The results presented in Dütsch et al. (1998); Örley et al. (2015), consist of numerical
and experimental results of the drag coefficient of the cylinder, numerical results of the
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pressure and vorticity field and plots of horizontal and vertical velocity across different
slices in the flow field at phase angle 180◦. All presented results in this section are given
as non-dimensional units. The drag coefficient on the cylinder is defined by

Cd =
2D

ρUmaxd
. (7.6)

The time variable is given in the non-dimensional form of

t′ = t · f. (7.7)

Velocities are given as a fraction of the maximum velocity of the cylinder

u′ = u/umax and v′ = v/umax. (7.8)

Positions are given in terms of the cylinder diameter

x′ = x/d and y′ = y/d. (7.9)

The integral force acting on the cylinder over one period of the cylinder oscillation is
presented against the experimental results of Dütsch et al. (1998) in figure 7.2. The result
of the cylinder drag coefficient shows good agreement on the phase angle between the
cylinder force and cylinder oscillation. A slight under-prediction is found in the cylinder
force amplitude. But, overall the results of the drag coefficient and their agreement with
the results of Dütsch et al. (1998) are satisfactory.
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Figure 7.2: Plot of the aerodynamic forces on the cylinder surface along the x axis: ( )
present code, ( ) experimental results of Dütsch et al. (1998).

Iso-line plots of the vorticity and density field similar to the ones presented in Dütsch
et al. (1998); Örley et al. (2015) are shown in figure 7.3. A good agreement is found
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Figure 7.3: Density (left) and vorticity contours (right) of the flow field around the in-line
oscillating cylinder at Re = 100 and KC = 5 at four different phase-angles (top
to bottom): 0◦, 96◦, 192◦, 288◦.
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between the flow fields presented in the reference and the result shown in figure 7.3.
The symmetry of the shed vortices is confirmed by the plot of the vorticity field. The
symmetry of the flow field plots also confirms the stationary stagnation points on both
sides of the cylinder. Discontinuities in the contour plots are caused by the interpolation
of the solution at block boundaries in the post processing phase. They do not indicate
discontinuities in the flow field.
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Figure 7.4: Plot of u′ velocity field slices at different x′ positions at phase angle 180.0◦ based
on experiments of Dütsch et al. (1998) (Scattered values), numerical analysis
of Örley et al. (2015) (Blue lines) and numerical results of the present solver
(black lines): ( , , ) slice at x′ = 0.0, ( , , ) slice at x′ = −0.6,
( , , ) slice at x′ = 0.6, ( , , ) slice at x′ = 1.2.

Measurements of the horizontal u′ and vertical v′ velocity components were obtained at
different location in the flow field at a phase angle of 180◦. The location were defined
by vertical slices at four different horizontal locations, x′ = −0.6, 0.0, 0.6 and 1.2. The
u′ velocity component measurements are shown in figure 7.4. The measurements of the
v′ component of the velocity field are shown in figure 7.5. A good agreement is found
between the numerical results of Örley et al. (2015) and the numerical results obtained
with the present hybrid ghost-cell method. A slight under-prediction is found in the
magnitude of the u′ and v′ component predicted by the present hybrid ghost-cell method.
A large discrepancy is found in the x′ = 0.0 slice between y′ = −0.5 and y′ = 0.5.
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This discrepancy is caused by a different handling of the solid cell velocities.A velocity
of u′, v′ = 0.0 is assigned in cells outside of the fluid domain. The results of Örley et al.
(2015) assigned the cylinder velocity to those cells. Larger discrepancies are found between
the numerical results and experimental results of Dütsch et al. (1998). The magnitude of
the measured u′ and v′ components tends to be lower in the experimental measurements
of Dütsch et al. (1998) than found in the numerical results. The large discrepancies are
especially visible in the u′ component of the velocity field at slice x′ = −0.6 and x′ = 0.0.
Given the good agreement between the numerical results of Örley et al. (2015) and the
present hybrid ghost-cell method and the good prediction of the vortex dynamics, the
discrepancies between the experimental results and numerical results are attributed to
measurement and setup uncertaintities in the experiment rather than the inability of the
two numerical codes to accurately predict the physics of the flow field.
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Figure 7.5: Plot of v′ velocity field slices at different x′ positions at phase angle 180.0◦

based on experiments of Dütsch et al. (1998) (Scattered values), numerical
analysis of Örley et al. (2015) (Blue lines) and numerical results of present solver
(black lines): ( , , ) slice at x′ = 0.0, ( , , ) slice at x′ = −0.6,
( , , ) slice at x′ = 0.6, ( , , ) slice at x′ = 1.2.
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7.5 Conclusion

Numerical results of the flow field around an in-line oscillating cylinder at low Reynolds
Re = 100 and Keulegan-Carpenter KC = 5 were presented. The test case was selected as
validation case for the developed hybrid ghost-cell method. The numerical results were
assessed with numerical and experimental results from Örley et al. (2015) and Dütsch et
al. (1998) respectively. The presented results showed that the developed hybrid ghost-cell
method accurately predicts the hydrodynamic forces acting on the cylinder, contour plots
of the density and vorticity field further confirmed that the vortex dynamics are correctly
predicted and slices of the velocity field showed a good agreement with the numerical
results of Örley et al. (2015). Discrepancies with respect to the experimental results of
Dütsch et al. (1998) were attributed to the unknown uncertainties of the experiment.
Discrepancies with respect to the numerical results of (Örley et al., 2015) may be attrib-
uted to differences in the numerical discretization scheme of the interior flow field as well
as immersed boundary treatment. In conclusion the developed hybrid ghost-cell method
accurately predicts the flow around moving geometries at low Reynolds numbers. Further
studies may be conducted to test the method a higher Reynolds and Keulegan-Carpenter
numbers. Based on the presented results the author expects a similar accuracy for those
cases.



Chapter 8

Dynamic stall of a NACA0012 airfoil

A series of experimental studies was performed in 1982 to investigate the dynamic stall
behavior of helicopter blade sections. The experimental study was motivated by the high
speed performance limits imposed by retreating blade stall (Mcalister et al., 1982a). The
setup and results of the experimental study are documented in Mcalister et al. (1982a);
Mcalister, Pucci, Mccroskey, and Carr (1982b). The experimental results of the study
have been subsequently used as reference for CFD simulations with varying turbulence
closure approaches such as unsteady RANS approaches, DDES approaches and large
eddy turbulence closure formulations, which are further discussed in section 8.3. The
availability of numerical results in addition to the experimental results of Mcalister et
al. (1982a, 1982b) creates a suitable test case for the validation of the hybrid ghost-cell
immersed boundary method in the present solver. Details of the experiment are presented
in section 8.1. The underlying physics of dynamic stall, which must be accurately resolved
or modeled to match the experimental data, are discussed in section 8.2. Afterwards, a
small summary of available numerical reference data is presented in section 8.3, followed
by the selected numerical setup in section 8.5. The results section of this chapter is split
into two parts. An initial analysis at static angles of attack was performed to validate the
hybrid ghost-cell immersed boundary method with wall-model. The simulation at static
angles of attack was further used to determine an appropriate near-wall mesh resolution.
These results are presented in section 8.6. The results of the dynamic stall simulation are
presented in the following section, section 8.7.

8.1 Experiment

The experiment was performed in the U.S. Army Aeromechanics Laboratory wind tunnel
with dimensions 2m by 3m (Mcalister et al., 1982a). The airfoil chord is c = 0.61m
resulting in an aspect ratio reported by Mcalister et al. (1982a) of A = 3.5. The objective
of the experiment was the characterization of different airfoil sections in dynamic stall
conditions. The wall interference effects were not part of the study but have been shown
to influence the results by Ribeiro et al. (2016). However, an exact modeling of the wind
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tunnel wall interference effect is difficult as wind tunnel wall boundary layer information
is not available. The numerical simulation is setup with the target to investigate the
airfoil characteristics noting that discrepancies between the experimental and numerical
results might be caused by the wind tunnel wall interference effects.
During the experiment a total of eight airfoil sections were tested. All airfoil sections
were oscillated sinusoidally around the quarter chord point. The motion of the airfoil is
expressed by

α = α0 + αampsin(ωt), with ω =
2U∞k

c
. (8.1)

where α0 denotes the mean angle of the oscillation, αamp denotes the amplitude of the
oscillation and k denotes the reduced frequency of the oscillation. A parameter sweep
was performed on all three parameters in combination with changing free stream Mach
number M , up to M = 0.3, and Reynolds number Re, up to Re = 4 · 106, and correlated
free steam velocity U∞. The experimental data selected for the numerical simulation was
selected based on previous numerical simulations (Haase, Braza, & Revell, 2009; Ribeiro
et al., 2016). These simulations were setup based on the NACA0012 airfoil with results
collected on tape 8115. The setup is summarized in table 8.1. With a reduced frequency

Parameter Symbol Unit Tape 8115

Reynolds number Re [−] 980395
Mach number M [−] 0.072
Rest pitch angle α0 [◦] 15.0
Pitch angle amplitutde αamp [◦] 10.0
Reduced frequency k [−] 0.0992

Table 8.1: Experimental parameters of tape 8115 as reported by Mcalister et al. (1982a).

of k = 0.0992 the aerodynamic flow field around the airfoil is considered unsteady as it
is above k > 0.05 (Leishman, 2006). The flow-field physics are further discussed in the
following section. Boundary layer tripping tapes were used for selected runs but were not
part of the selected run. The boundary layer transition point must therefore be predicted
by the numerical simulations. Airfoil forces and moments were derived from integrated
surface pressure measurements on the airfoil and phase averaged over at least 50 periods.
The reported measurements ranged from airfoil suction side pressure distributions and
derived lift, drag and moment coefficients (Mcalister et al., 1982b), to boundary layer
measurements via hot film and hot wire measurement techniques (Mcalister, Pucci, Mc-
croskey, & Carr, 1982c). The surface measurements were used to investigate the bound-
ary layer transition points, flow reversal, separation and reattachment. The results of the
presented numerical simulations concentrate on the force and moment results and on a
qualitative assessment of the flow field to verify the presence of the expected flow features.

8.2 Flow problem

As discussed in Carr (1988), the stall behavior of a dynamically stalling airfoil varies
significantly from the stall behavior of an airfoil immersed in a quasi steady flow field. The
differences in the stall behavior are caused by distinct flow features which are discussed in
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this section. These flow features significantly effect the aerodynamic forces and moments.
The flow field, forces and moments of a dynamically stalling airfoil are illustrated in
figure 8.1. The flow field of one oscillation period is divided into five phases. The start of
one oscillation period is defined as the beginning of the airfoil pitch-up motion. During
the initial pitch-up motion, denoted as phase 1, the airfoil flow field and forces follow
the quasi-static flow field and loading. The flow fields of the unsteady and steady case
start deviating at the stall point of the steady flow case. At this point the flow field
of the dynamically stalling airfoil features a growing separation zone near the leading
edge region, which results in an effectively higher camber and further lift increase. This
phenomena is shown in phase 2 of the oscillation period. The separation near the leading
edge grows into a strong leading edge vortex which results in a low pressure zone on the
top side of the airfoil and in an increased lift. The lift slope in this phase is significantly
higher than the lift slope in phase 1. The vortex and associated low pressure region
detaches from the leading edge and travels downstream causing a low pressure region
towards the trailing edge of the airfoil. The lower pressure introduces a high pitch-down
moment and a substantial increase in pressure drag, which are not present in the quasi
steady stall conditions. As indicated in figure 8.1 during the pitch-down motion, denoted
as phase 4, the airfoil stays detached which results in substantial hysteresis. The flow
field and forces converge again once the flow reattaches which is occurring in phase 5 of
the motion. In summary, the numerical simulation should show the following features in
the flow field, force and moment reports. A leading edge separation region and vortex
in combination with a substantial increase in the lift coefficient beyond the CLmax of the
airfoil. The flow field should further show that the leading edge vortex travels downstream
and causes a significant pitch-down moment and increase in pressure drag, and the flow
field should show a separated airfoil suction side during the pitch-down motion resulting
in substantial hysteresis.

Figure 8.1: Illustration of the flow structures and correlated airfoil forces and moments taken
from Carr (1988).
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8.3 Reference results

Numerical results of other flow solvers and turbulence closure models were studied to aid
the setup of the simulation and to aid the analysis of the results. The numerical reference
results substantially decrease the efforts in sizing the numerical domain, creating an ac-
ceptable mesh and setting the boundary conditions. The findings of the reference numer-
ical results may further be used when discussing the discrepancies between the numerical
and experimental results. Numerical results of the NACA0012 test case were presented
as part of the DESider project (Haase et al., 2009), as part of a feature demonstration
of the commercial code XFlow in (Chávez-Modena, Mart́ınez, Cabello, & Ferrer, 2020)
and in Ribeiro et al. (2016). Combined, these three resources present a wide selection of
numerics, mesh types, turbulence closure models and boundary conditions. During the
DESider project (Haase et al., 2009) the test case was used to investigate the performance
of Reynolds averaged Navier Stokes (RANS) turbulence closure models and detached eddy
simulation (DES) formulations. The simulations were performed with finite volume based
solvers on body fitted structured and unstructured meshes. Apart from the span-wise size
of the domain the windtunnel size was not considered in the sizing of the domain. Wind
tunnel wall boundary conditions were modeled as slip/symmetric and periodic boundary
conditions. Results based on Lattice Boltzmann formulations are presented in Ribeiro et
al. (2016); Chávez-Modena et al. (2020). Chávez-Modena et al. (2020) use the Lattice
Boltzmann numerics in combination with a wall-modeled large-eddy simulation turbu-
lence closure approach. The equations are solved on an Octree based lattice. The domain
size is derived from the experiment but scaled down to reduce the overall cost of the sim-
ulations. The wind tunnel walls are modeled as slip walls. Ribeiro et al. (2016) present
lattice Boltzmann results in combination with a very-large-eddy simulation (VLES) tur-
bulence modeling approach. The setup of the simulation closely follows the dimensions
of the windtunnel experiment and Ribeiro et al. (2016) extensively discuss the influence
of the span-wise wind tunnel wall boundary conditions on the results.
The analysis of the numerical results in (Haase et al., 2009) focus on the advantages of
DES approaches over URANS approaches. The analysis concluded that DES approaches
generally improve the accuracy of the numerical solution during the detached flow state in
the pitch-down motion and also improve the force and moment prediction around CLmax .
However, they also conclude that the a final decision on whether DES approaches are
superior to URANS approaches is difficult due to the significantly increased computa-
tional cost and uncertainties in the experimental results. Ribeiro et al. (2016) extensively
analyzed the differences between a free-slip and no-slip wall boundary condition at the
wind tunnel walls. They conclude that the boundary condition at the wind-tunnel wall
strongly impacts the numerical results most notable in the stalled pitch-down region.
They further conclude that the no-slip boundary condition more accurately predicts the
flow field and measured forces in the experiment. The improved results were associated
with large coherent structures in the flow field which are present with no-slip wall bound-
ary conditions (Ribeiro et al., 2016).
The numerical results of Ribeiro et al. (2016) are shown later in the results section in
combination with the experimental results of Mcalister et al. (1982a) and the results of
the developed solver.
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8.4 Definition of quantities

The results of the static and dynamic simulations are presented in the form of coefficients
describing the forces and moment acting on the airfoil and quantifying the airfoil surface
solution. The airfoil forces are given in the form of the lift and drag coefficients CL and
CD as defined by

CL =
2L

ρ∞U2
∞bc

, (8.2)

and

CD =
2D

ρ∞U2
∞bc

. (8.3)

The moment coefficient is given by

CM =
2M

ρ∞U2
∞bc

2
. (8.4)

The moment coefficient of the presented results is defined as pitch-up positive. Skin
friction and pressure coefficients are presented on the surface of the airfoil. The coefficients
are defined as

Cp = 2
p− p∞
ρU2
∞

, (8.5)

and

Cf = 2
|τw|
ρU2
∞
. (8.6)

Time, space and velocity quantities are given in non-dimensional form. All position and
length measures are given in multiplies of the airfoil chord length c. Time is given in
terms of airfoil flow over times defined by

τ =
tU∞
c

(8.7)

8.5 Simulation setup

The simulations with the commercial code Powerflow1, as presented in Ribeiro et al.
(2016), are used as baseline for the setup of the numerical domain. The simulation
of Ribeiro et al. (2016) follow the dimensions of the windtunnel in the experiment of
Mcalister et al. (1982a). The dimensions of the numerical domain are shown in table
8.2. An additional domain used in the commercial code XFlow2, as presented in Chávez-
Modena et al. (2020), is added as another reference in table 8.2. The numerical domain
in the simulation of the present solver is identical to the dimension in all but just one
dimension. The width of the numerical domain is reduced for a more efficient octree mesh
blocking in the far-field of the domain.
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Parameter Symbol Unit Present Powerflow XFlow

Inlet length linlet [c] 20 20 12
Outlet length loutlet [c] 50 50 20
Domain width w [c] 3 3.5 2.5
Domain height h [c] 5 5 5

Table 8.2: Numerical domain size used in the present dynamic stall simulation combined
with domain sizes used in literature.

Domain boundary conditions are set in the following way. Slip boundary conditions are
used for the windtunnel top, bottom and side walls. A Riemann boundary condition is
used at the inlet of the windtunnel to prescribe the velocity in the domain and to damp
waves inside the domain which originate from the initial condition of the flow field. A
static pressure boundary condition is used at the outlet of the domain to prescribe the
pressure in the flow field.
The hybrid ghost-cell immersed boundary method is used to model the NACA0012 geo-
metry. As the mesh density is insufficient to resolve the boundary layer down to the
viscous sublayer, the wall-modeled version of the hybrid ghost-cell method is used for all
presented simulations. Equally a large-eddy simulation closure model is used to model
the unresolved turbulent scales in the flow field. The Vreman (Vreman, 2004) turbulence
closure model is selected for this purpose.
The mesh settings and estimations of the simulation length are shown in table 8.3. Res-
ults of a mesh convergence study performed on a selected static angle of attack is shown
in the subsequent sections.

Parameter Symbol Value

Mesh spacing ∆x/c 0.97 · 10−3

Apprx. Wall spacing y+ 42
Apprx. Time step ∆tU∞/c 2.0 · 10−5

Simulation time TU∞/c 42.0
Est. number of iterations NT 2.1 · 106

Est. mesh cell count N 890 · 106

Table 8.3: Space and time discretization used in the dynamic stall simulations of the
NACA0012 airfoil.

8.6 Static analysis

Simulations of flow around the NACA0012 profile at static angles of attack were performed
as preparation for the simulation of the dynamic problem. The static simulations of the
NACA0012 airfoil were performed for two purposes. A mesh study was performed on
a selected static angle of attack to select an appropriate mesh for the dynamic stall
simulations, and lift, drag and moment polars were generated in order to compare the

1https://www.3ds.com/de/produkte-und-services/simulia/produkte/powerflow/
2https://www.3ds.com/de/produkte-und-services/simulia/produkte/xflow/
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results of the present numerical code with predictions of a fully coupled viscous inviscid
panel code XFoil.3

The simulations were performed with a far-field domain. The width of the domain was
reduced to 0.5c with imposed periodic boundary conditions in the span-wise direction.
The rectangular domain extends 25 chord lengths in all directions. The dimensions are
summarized in table 8.4. Reynolds and Mach numbers are set identical to the selected
wind tunnel experiment shown in table 8.1.
The presented results cover a mesh convergence study, the lift, drag and moment polars of

Parameter Symbol Unit Present

Inlet length linlet [c] 25.0
Outlet length loutlet [c] 25.0
Domain width w [c] 0.5
Domain height h [c] 50.0

Table 8.4: Domain dimension of the far-field domain for the NACA0012 static analysis.

the airfoil and pressure and skin friction coefficient plots at selected angles of attack. The
mesh convergence study is performed at an angle of attack of 12.5◦. The following polar
results are performed on the finest available mesh. The mesh settings of the mesh used
for the static analysis of the NACA0012 airfoil are summarized in table 8.5. The pressure
and skin friction coefficients are presented for angles of attack 5.0◦ and 12.5◦. Surface
results are presented as averaged quantities. The values were averaged over tU∞

c = 5 flow
over periods and further spatially averaged along the airfoil span. The presentation of
the results is concluded with a discussion on the differences in the modeling approaches
between XFoil and the present solver and their potential effects on the accuracy of the
results.

Parameter Symbol Value

Mesh spacing ∆x/c 0.65 · 10−3

Est. Wall spacing y+ 30
Est. Time step ∆tU∞/c 1.3 · 10−5

Simulation time TU∞/c 25.0
Est. number of iterations NT 1.9 · 106

Est. mesh cell count N 432 · 106

Table 8.5: Space and time discretization used in the static simulations of the NACA0012
airfoil.

8.6.1 XFoil reference

The reference results for the static simulations were performed with the coupled inviscid
viscous panel code XFoil. The solver predicts the potential flow field around the airfoil
using a linear vortex strength panel method. Near-wall viscous effects are predicted based
on the solution of the integral boundary layer equations for both laminar and turbulent
regions. The viscous boundary layer solution and potential flow field are two way coupled.

3https://web.mit.edu/drela/Public/web/xfoil/
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The velocity and pressure of the potential flow solution is used as edge boundary condition
for the boundary layer equations. The displacement effect of the viscous boundary layer
is used to formulate a transpiration boundary condition on the surface of the airfoil for
the potential flow solution.
Both laminar and turbulent regions of the boundary layer are predicted. The laminar-
turbulent transition location on the suction and pressure side of the airfoils is predicted
using the eN method (Van Ingen, 2008). The coefficient of the viscous boundary layer
equations are set to the default coefficients in the 6.99 version of the XFoil software. The
exponent of the laminar turbulent transition model is set to N = 9 which corresponds
to a 0.07% free stream turbulence intensity. Fixed laminar turbulent transition locations
were not imposed in the simulation.
The XFoil code is known to give accurate airfoil lift, drag and moment results at low and
medium Reynolds numbers (Drela, 1989) up to the stall point. The following analysis and
comparison between the LES results of the NACA0012 airfoil and XFoil results assume
that the XFoil results are accurate in the attached region and not accurate in the detached
region of the airfoil polar.

8.6.2 Mesh convergence study

A mesh convergence study was performed at the static angle of attack 12.5◦. The study
was conducted to determine a suitable wall refinement level for the static and dynamic
simulations of the NACA0012 airfoil. The mesh convergence study is conducted on the
near-wall mesh resolution. Refinements of the wake are not investigated explicitly. A
refinement of the near-wall region is achieved by increasing the number of cells per block
and through an increased refinement level of the octree based mesh. Four near-wall
mesh resolutions were investigated ranging from a coarse mesh with cell spacing ∆/c =
1.95 · 10−3 to a fine mesh with ∆/c = 0.65 · 10−3. The investigated near-wall mesh
resolutions and associated octree refinement levels Nref and per block cells Ncells are
given in table 8.6. The wall y+ prediction of selected meshes is presented in a later part
of this section.

∆/c Nref Ncells

0.65 · 10−3 5 243

0.98 · 10−3 5 163

1.30 · 10−3 4 243

1.95 · 10−3 4 163

Table 8.6: Summary of investigated mesh sizes.

The mesh convergence of the numerical solution is judged with an assessment of the tem-
porally averaged lift coefficient of the NACA0012 airfoil profile at 12.5◦. The results of
the mesh convergence study are shown in figure 8.2. The results of the XFoil numerical
analysis at 12.5◦ is added to the plot as qualitative reference. The results of the ana-
lysis do not show an asymptotic convergence of the CL which indicates that additional
wall-resolution is required. An investigation of the surface solution and flow field was
performed to investigate the causes of the CL difference between the various near-wall
mesh resolutions.
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Figure 8.2: Scatter plot of CL versus non-dimensional near-wall mesh resolution of
NACA0012 at 12.5◦; XFoil result added as reference: ( ) numerical results
of present solver, ( ) XFoil result.

The fine ∆/c = 0.65 · 10−3 and coarse ∆/c = 1.95 · 10−3 mesh are used to investigate the
dependency of the flow solution and near-wall mesh resolution. The following plots and
discussion will cover the wall y+, the pressure coefficient CP and skin friction coefficient
Cf on the airfoil surface and contour plots of the instantaneous velocity magnitude field.
The wall y+ distribution of the coarse and fine mesh are plotted in figure 8.3. The y+

value definition used in the analysis is based on the cell edge length y+ = uτ∆
ν . The

two meshes have an average wall y+ of approximately y+
avg = 31 and y+

avg = 100. A wall
y+ peak is found at the leading edge of both meshes x/c < 0.05 where the flow field
outside the boundary layers is substantially higher than the free stream velocity due to
the circulation of the airfoil profile and the boundary layer height is small due to the low
chord-wise Reynolds number Rex. Downstream of the leading edge the wall y+ value
decreases towards the trailing edge of the airfoil profile. The decrease is not monotonic
as it is disrupted by the laminar turbulent transition point.

The pressure coefficient Cp of the coarse and fine mesh is shown in figure 8.4. The results
indicate good agreement between the meshes on the pressure side of the airfoil. On the
suction side of the airfoil the results show an underprediction of the suction peak around
the leading edge on the coarse mesh. It further shows differences in the laminar turbulent
transition location. The laminar turbulent transition location is indicated by a plateau in
the pressure coefficient. The Cp distribution indicates that the laminar turbulent trans-
ition location is located at around x/c = 0.1 on the fine mesh and at approximately
x/c = 0.4 on the coarse mesh on the suction side of the airfoil.
The skin friction coefficient Cf distribution is shown in figure 8.5. The skin friction distri-
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Figure 8.3: Averaged y+ versus x/c of NACA0012 airfoil at angle of attack 12.5◦: ( )
present results with near-wall mesh resolution ∆/c = 1.95 ·10−3, ( ) present
results with near-wall mesh resolution ∆/c = 0.65 · 10−3.

bution on the airfoil surface indicates an underprediction of the skin friction around the
leading edge x/c < 0.05 on the coarse mesh. It confirms the laminar turbulent transition
location differences found in the Cp distribution with an increase in the skin friction coef-
ficient at x/c = 0.1 on the fine mesh and x/c = 0.4 on the coarse mesh. The skin friction
distribution further shows a mismatch in the skin friction coefficient on the pressure side
of the airfoil. The coarse mesh overpredicts the skin friction on the pressure side of the
airfoil. Neither the Cp distribution nor the skin friction distribution indicates a laminar
turbulent transition on the pressure side of the airfoil.

The instantaneous velocity field on the coarse and fine mesh is sown in figures 8.6 and 8.7
respectively. The contour plots of the instantaneous velocity magnitude field support the
findings of the Cp and Cf distribution. No laminar turbulent transition location is visible
on the pressure side of the airfoil. An earlier laminar turbulent transition location is
found on the suction side of the airfoil. Further an overall larger boundary layer thickness
is found on the suction side around the trailing edge on the coarse mesh. The coarse
mesh also illustrates a significantly larger increase in the boundary layer thickness at the
laminar turbulent transition location.

8.6.3 Results

The static results are presented in form of the lift, drag and moment polar and surface
solution at selected angles of attack. XFoil results were generated for angles of attack
0.0◦ up to 20.0◦. Due to the limits of the XFoil modeling techniques predictions of the
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Figure 8.4: Averaged pressure coefficient Cp versus x/c of NACA0012 airfoil at angle of
attack 12.5◦: ( ) present results with near-wall mesh resolution ∆/c = 1.95 ·
10−3, ( ) present results with near-wall mesh resolution ∆/c = 0.65 · 10−3.
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Figure 8.5: Temporally averaged pressure coefficient Cf versus x/c of NACA0012 airfoil
at angle of attack 12.5◦: ( ) present results with near-wall mesh resolution
∆/c = 1.95 · 10−3, ( ) present results with near-wall mesh resolution ∆/c =
0.65 · 10−3.
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Figure 8.6: Normalized instantaneous velocity magnitude field around NACA0012 airfoil at
angle of attack 12.5◦ with near wall mesh resolution ∆/c = 0.65 · 10−3.

Figure 8.7: Normalized instantaneous velocity magnitude field around NACA0012 airfoil at
angle of attack 12.5◦ with near wall mesh resolution ∆/c = 1.95 · 10−3.

post-stall point should not be regarded accurate. Results were gathered for angles of
attack 5.0◦, 7.5◦, 12.5◦, 17.5◦ and 22.5◦. The surface solution of the XFoil simulations
and simulations with the present solver are shown for angles of attack 5.0◦ and 12.5◦.
As discussed in the previous chapter, the static results of the NACA0012 airfoil were
performed on the fine mesh with near-wall resolution ∆/c = 0.65 · 10−3.

Polar results

The presented polars show the three airfoil coefficients of interest, lift, drag and pitching
moment. The pitching moment is measured around the quarter chord of the airfoil. The
lift polar prediction of the present code and XFoil reference results are shown in figure 8.8,
the drag polar is shown in 8.9 and the moment polar is shown in figure 8.10. The discussion
is started with the lift polar predictions of both tools. The XFoil lift polar prediction shows
a monotone nearly linear increase of the lift coefficient up to to an angle of α = 12◦. The
lift coefficient deviates in between angles α = 5◦ and α = 9.0◦. The deviation of the lift
coefficient from the linear slope is known to be caused by a laminar separation bubble
on the suction side of the airfoil. The laminar separation bubble increases the effective
airfoil camber and results in an increased lift coefficient. The results of the present solver
in this range of the angles of attack do not indicate a laminar separation bubble. Angles
5.0◦, 7.5◦ and 12.5◦ follow are clear linear trend. The prediction of the present solver are
subsequently lower in the range α = 5.0◦ to 12.5◦. Beyond α = 12.5◦ the XFoil results
predict a decrease in the lift slope dCl

dα . The maximum lift coefficient of Clmax = 1.35 is
predicted by XFoil at α = 15.0◦. Beyond α = 16.0◦ the airfoil enters the post stall region,
based on the XFoil results. The numerical results of the present solver indicate a decrease
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Figure 8.8: Lift coefficient CL polar of NACA0012 airfoil at Re = 980395 and Ma = 0.072:
( ) XFoil numerical results, ( ) present results.

in the lift slope beyond 12.5◦. The maximum lift coefficient is predicted at higher angles
of 17.5◦. A maximum lift coefficient of Clmax = 1.52 is predicted by the present method.
The results of the present solver indicate a decrease of the lift coefficient beyond an angle
of attack of 17.5◦. It must be stated that the prediction of the maximum angle of attack
and maximum lift coefficient of the present solver contain significant uncertainties due to
the sparse sampling of the lift polar at high angles of attack.
The discussion of the polar results is continued with the drag polar predictions. The drag

polar predictions are shown in figure 8.9. The XFoil predictions show a slow increase in
the drag coefficient in the angle of attack range α = [0.0◦, 15.0◦]. A significant increase is
found beyond the stall angle of the airfoil α = 15◦. From this point the drag of the airfoil
increases from CD = 0.03 up to a drag coefficient of CD = 0.16 at an angle of attack
of α = 20.0◦. The present code predicts significantly higher drag coefficients at the low
angles of attack, α = 5.0◦, α = 7.5◦ and 12.5◦. The drag prediction of the present code is
approximately two times higher than the drag coefficient prediction of the XFoil solver.
The flow field at the low angles of attack is attached. Therefore, the drag prediction
discrepancies must be caused by discrepancies in skin friction rather than discrepancies
in the pressure drag. The drag prediction of the present code crosses the drag polar of the
XFoil code at approximately α = 17.0◦. Beyond this angle of attack the drag coefficient
prediction of the present code are below the predictions of the XFoil code. However, this
statement is based on a linear extrapolation of the XFoil drag polar up to an angle of
attack of 22.5◦. The low drag coefficient prediction at high angles of attack combined
with the high lift coefficient indicate that the present code predicts smaller regions of
separated flow at high angles of attack when compared to the XFoil results.
The discussion of the polar results is closed with the presentation of the pitching moment
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Figure 8.9: Drag coefficient CD polar of NACA0012 airfoil at Re = 980395 and Ma =
0.072: ( ) XFoil numerical results, ( ) present results.

polar. The pitching moment polar is shown in figure 8.10. The pitching moment coefficient
was measured around the quarter chord of the airfoil. Two significant non-linearities are
found in the XFoil predictions of the pitching moment coefficient. Assuming that the
airfoil pitching moment increases linearly in the angle of attack range α = [0.0◦, 15.0◦],
a non-linearity is found in the angle of attack range α = [4.0◦, 12.5◦] and beyond the
angle of attack associated with the maximum lift coefficient prediction α = 15.0◦. The
initial non-linearity shows a significant decrease of the pitching moment coefficient with
respect to the fictitious linear polar. The non-linearity is caused by the laminar separation
bubble. The effective camber increase, which was introduced in the discussion of the lift
coefficient polar, results in an increase in the lift coefficient but also in a significant
pitch-down moment. The pitch-down moment prediction beyond CLmax are caused by
the flow separation region on the suction side of the airfoil. The separation of the flow
from the surface prevents the recovery of the pressure at the trailing edge. This results
in a low pressure region at the trailing edge of the airfoil suction side. The low pressure
region results in a significant increase in the pressure drag coefficient and in a pitch-down
moment.
The present code predicts a quasi zero moment coefficient up to an angle of attack of
5.0◦. Beyond 5.0◦, the pitch-up moment coefficient increases up to the maximum angle of
attack of 17.5◦. A decrease in the pitch-up moment is found from the angle of attack 17.5◦

to the angle of attak of 22.5◦ indicating a small pitch break. The pitching moment results
indicate that the present code predicts either a very small or no laminar separation bubble.
Further the prediction of the pitch-down moment beyond the maximum lift coefficient is
also significantly lower than the prediction obtained with the XFoil code.
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Figure 8.10: Moment coefficient CM polar of NACA0012 airfoil at Re = 980395 and Ma =
0.072: ( ) XFoil numerical results, ( ) present results.

Surface solution

Predictions of the pressure coefficient and skin friction coefficient distributions were ex-
tracted from the simulation with XFoil and the present code to support the findings in the
lift, drag and moment polars. The surface solutions were obtained for the selected angles
of attack α = 5.0◦ and α = 12.5◦. The discussion of the surface solution is started with
the pressure coefficient predictions. The pressure coefficient predictions at α = 5.0◦ are
shown in figure 8.11. The pressure coefficient predictions at α = 12.5◦ are shown in figure
8.12. The pressure coefficient predictions at α = 5.0◦ indicate a good agreement between
the prediction of the XFoil tool and present code. A slightly lower suction pressure peak
combined with a lower pressure on the pressure side is found in the prediction of the
present code. These indicate a lower circulation around the airfoil and subsequently a
lower lift prediction. A lower lift prediction was found in the lift coefficient polar results.
Two kinks are found in the pressure coefficient distribution predictions of the present
code. The pressure coefficient plateaus at x/c = 0.2 on the suction side and shows a kink
in the pressure distribution at x/c = 0.47 on the pressure side. Either kink is associated
with the laminar turbulent transition location of the boundary layer. A small plateau or
rather kink is found in the pressure coefficient prediction of the XFoil code on the suction
side at x/c = 0.15.
Slightly larger discrepancies are found in the pressure coefficient predictions at α = 12.5◦.
The present code predicts a significantly lower suction pressure peak of Cpmin = −6.75.
This prediction is ∆Cp = 1.15 higher than the prediction of the XFoil code. A sig-
nificant pressure coefficient plateau is found in the prediction of the present solver at
x/c = [0.08, 0.16]. The plateau indicates the laminar to turbulent transition location.
The pressure coefficient plateau is found at x/c = 0.025 in the XFoil predictions. This
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indicates that the boundary layer transition location is predicted earlier by the XFoil code
at angle of attack 5.0◦ and 12.5◦. The pressure coefficient with the reduced peak suc-
tion pressure and lower pressure side pressure coefficient confirms the lower lift coefficient
found in the lift polar assessment.
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Figure 8.11: Temporally and spatially averaged pressure coefficient Cp versus x/c of
NACA0012 airfoil at angle of attack 5.0◦: ( ) present result, ( ) XFoil
numerical result.
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Figure 8.12: Temporally and spatially averaged pressure coefficient Cp versus x/c of
NACA0012 airfoil at angle of attack 12.5◦: ( ) present result, ( ) XFoil
numerical result.

The presentation of the surface solution is continued with the skin friction predictions
at angles of attack 5.0◦ and 12.5◦. The skin friction coefficient predictions of the XFoil
and the present code at an angle of attack of 5.0◦ are shown in figure 8.11. The XFoil
predictions show a significantly higher skin friction coefficient on the suction side of the
airfoil at the leading edge x/c = 0.0. The skin friction coefficient prediction is ∆Cf = 0.01
higher than the predictions obtained with the present code. This is likely caused by an in-
sufficiently refined mesh at the leading edge of the airfoil. The XFoil prediction indicates
a sharp drop in the skin friction coefficient from it’s peak at the leading edge to x/c = 0.1.
The sharp drop in the skin friction coefficient is followed by a sharp increase in the skin
friction coefficient at x/c = 0.18. This point indicates the laminar turbulent transition
point of the suction side boundary layer. A monotone decrease of the skin friction coeffi-
cient is found in the XFoil predictions beyond x/c = 0.2 on the suction side. The pressure
side prediction of XFoil show the initial increase in the skin friction coefficient in between
the stagnation point at x/c = 0.0 and x/c = 0.025 followed by a monotone decrease to-
wards the trailing edge. The predictions of the present solver show a quasi linear decrease
of the skin friction coefficient on the suction side between the peak skin friction coefficient
at x/c = 0.01 and x/c = 0.21. In the region x/c = [0.21, 0.4] the skin friction coefficient
increases on the suction side of the airfoil indicating the laminar to turbulent transition
location. A monotone decrease is found in the skin friction coefficient prediction of the
present code beyond x/c = 0.4. The predictions of the present solver show an increase in
the skin friction coefficient on the pressure side from the stagnation point at x/c = 0.01
up to x/c = 0.15. The skin friction coefficient decreases until x/c = 0.5 on the pressure
side, after which an increase is found in the range x/c = [0.5, 0.7] followed by a further
decrease until the trailing edge of the airfoil. The results show that the present code pre-
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dicts that the laminar turbulent transition region is stretched over a significant portion
of the airfoil. To be precise a transition region was found in the range x/c = [0.21, 0.4]
on the suction side and x/c = [0.5, 0.7] on the pressure side. The present code predicts a
laminar turbulent transition location on the pressure side which is not present in the XFoil
predictions. The results further show that the predictions of the skin friction coefficient
in the laminar regions of the boundary layer are significantly higher than the skin friction
predictions obtained with the XFoil code. These findings lead to a significantly higher
skin friction prediction on the pressure side of the airfoil and a significantly higher skin
friction prediction in the laminar region of the suction side in the range x/c = [0.02, 0.2].
A good agreement between the XFoil predictions and the present code is only found in the
turbulent boundary layer region on the suction side of the airfoil downstream of x/c = 0.4.
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Figure 8.13: Temporally and spatially averaged skin friction coefficient Cf versus x/c of
NACA0012 airfoil at angle of attack 5.0◦: ( ) present result, ( ) XFoil
numerical result.

The results of the skin friction coefficient at angle of attack 12.5◦ are shown in figure
8.14. The conclusion drawn on the skin friction results at angle of attack 5.0◦ can largely
be applied to the higher angle of attack as well. A significant underprediction is found
in the peak skin friction coefficient at the leading edge of the airfoil. Again indicating
an insufficiently refined numerical mesh in that area. Discrepancies in the prediction of
the suction side laminar turbulent transition point were found in the assessment of the
pressure coefficient. The skin friction coefficient preditions confirm this assessment. A
laminar turbulent transition point is found at x/c = 0.05 in the XFoil results and in the
range x/c = [0.1, 0.22] in the predictions of the present code. The skin friction coefficient
predictions of the present code in the laminar region are significantly higher than the
predictions of the XFoil code. The skin friction prediction of the present code and XFoil
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code on the suction side downstream of x/c = 0.25 agree well. A significantly higher skin
friction prediction is found on the pressure side of the airfoil in the predictions of the
present code. Neither code predicts a laminar turbulent transition region on the pressure
side of the airfoil.
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Figure 8.14: Temporally and spatially averaged skin friction coefficient Cf versus x/c of
NACA0012 airfoil at angle of attack 12.5◦: ( ) present result, ( ) XFoil
numerical result.

Discussion

Results of the flow field and forces of the NACA0012 airfoil at static angles of attack were
shown. The results were computed with the XFoil tool and the present solver. Significant
differences were found in the drag coefficient and stall predictions. All discrepancies are
attributed to the prediction and modeling of the near-wall flow field. The differences
in the modeling approach for the boundary layer flow field leads to differences in the
shear-stress and displacement thicknesses but also differences in the flow features such as
laminar turbulent transition. Experimental results are not available for the specific flow
case of the NACA0012 airfoil at the selected Reynolds and Mach number. Therefore, it
is not possible to conclude which prediction is more accurate. But, some drawbacks of
the present flow solver for the simulation of flow around airfoils can be highlighted based
on the results. The use of the equilibrium wall model without consideration of laminar
and turbulent regions lead to wrong predictions of the shear-stress. The miss-predictions
of the shear-stress is apparent in the laminar regions of the boundary layer on the suc-
tion and pressure side where signifcant skin friction over-predictions were found. Due to
the use of the octree-based cartesian mesh a resolution of the boundary layer especially
around the leading edge of the NACA0012 is not viable, as the computational cost would
significantly increase. As the boundary layer in this region is below the mesh resolution,
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an underprediction of the shear-stress is likely. The under-prediction of the skin friction
coefficient was confirmed with the XFoil results at angles of attack 5.0◦ and 12.5◦. The
insufficient mesh resolution around the leading edge of the airfoil combined with the poor
skin friction prediction in this area leads to discrepancies and likely errors in the laminar
turbulent transition location prediction of the present code. A good prediction of the
boundary layer characteristics is crucial for an accurate prediction of stall as the predic-
tion of the wall model determines the amount of energy that is taken from the near-wall
flow field and subsequently determine the exact separation location. Therefore the large
discrepancies found in the stall predictions of XFoil and the present code should be at-
tributed to differences in the boundary-layer predictions.
Results of a mesh convergence study were presented. The mesh convergence study did
not show an asymptotic behavior of the integral lift coefficient indicating that a further
mesh refinement is required to obtain a grid-converged solution in the statistical sense.
The investigation of the surface solution and flow field showed that the laminar turbulent
transition points were effected by the grid resolution. One can therefore argue that the
near wall solution of the flow field is insufficiently refined.
A near-wall mesh resolution of ∆/c = 0.98 · 10−3 is selected for the dynamic stall sim-
ulations. Errors are expected in the results of the dynamic stall simulation due to the
insufficient mesh resolution. However, the mesh resolution is sufficient for an initial as-
sessment of the moving immersed boundary framework for high Reynolds number flow.

8.7 Dynamic analysis

The chapter is closed with the presentation of the dynamic stall simulation results of
the NACA0012 airfoil. The flow problem, simulation setup and reference results have
been extensively studied in the previous sections. This section presents the results of the
dynamic stall simulation and compares the results to the experimental study of Mcalister
et al. (1982a) and the numerical simulations of Ribeiro et al. (2016). The section discusses
the lift, drag and moment measurements over one oscillation period. Contour plots of the
flow field are presented at selected time steps to assess the presence of the flow features
discussed in section 8.2. The simulations were performed with two phases. In phase 1 the
airfoil was kept at a static angle of attack of 5.0◦, which corresponds to the minimum angle
of attack of the oscillation, and in phase 2 the airfoil undergoes the prescribed sinusoidal
oscillation. The initial phase was used to remove the initial part of the transient solution
from the results. The initial phase was performed over approximately 11 flow over times.
The integral lift, drag and moment coefficients were gathered over one period.

8.7.1 Integral forces and moments

The analysis of the dynamic stall results is started with plots of the integral lift, drag
and moment coefficients of the airfoil. The integral coefficients are plotted against the
pitch angle of the airfoil profile. The pitch-up motion is indicated by solid lines and filled
circles. The pitch-down phase is indicated by dashed lines and hollow circles. The plot
of the lift coefficient is shown in figure 8.15, the plot of the drag coefficient is shown in
figure 8.16 and the moment coefficient is shown in figure 8.17.
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The discussion of integral coefficient is started with the airfoil lift coefficient, shown in
figure 8.15. The numerical and experimental results show that all methods agree well on
the initial pitch-up motion in the angle of attack range α = [5.0◦, 20.0◦]. All methods
follow a quasi linear trajectory and exceed the expected maximum lift coefficient angle of
attack of approximately α = 15.0◦. The numerical results of the present code and Ribeiro
et al. (2016) show a slight overprediction in the CL compared to the experimental results.
The numerical results deviate at an angle of attack of α = 20.0◦. The numerical results of
Ribeiro et al. (2016) follow the experimental results more closely. The experimental results
and numerical results show the distinct lift increase caused by the leading edge vortex. A
maximum lift coefficient of CL = 2.15 is found in the experimental and reference numerical
results. The numerical results of the present code show an initial flattening of the lift slope
and a distinct increase in the lift coefficient only at α = 24.8◦. A similar maximum lift
coefficient is found in the results of the present code. The results indicate that the present
code predicts the separation of the leading edge vortex at significantly higher angles of
attack than the experimental and reference numerical results. Beyond the stall point all
methods predict a significant decrease in the lift coefficient. The experimental results
and numerical results of the present code predict a lift coefficient post stall α = 25.0◦

of around CL = 1.0. Slightly higher predictions are given by the numerical reference
results. All results show an increase in the lift coefficient after the initial stall break. The
experimental and numerical results show an increase of the lift to CL = 1.5. The present
numerical results predict an increase of the CL to 1.3. More importantly, however, is a
phase shift in the CL increase. The experimental and reference numerical results show
the CL increase during the pitch-down motion close to the maximum angle of attack
of α = 25.0◦. The numerical results of the present code show the increase in the lift
coefficient at a later point during the pitch-down motion at α = 23.0◦.
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Figure 8.15: Plot of the lift coefficient CL versus airfoil pitch-up angle α based on: ( )
experimental results of Mcalister et al. (1982a), ( ) numerical results of
Ribeiro et al. (2016) and ( ) present results. If available solid lines and
markers indicate pitch-up movement, dashed lines and hollow markers indicate
pitch-down movement.

The numerical and experimental results differ significantly in the post stall region α <
23.0◦. All results show deviations in the CL between the pitch-up and pitch-down motion
of the oscillation which indicates significant hysteresis in the airfoil flow field. The mag-
nitude of the lift coefficient differs significantly between the numerical and experimental
results. The numerical results of the present code predict a minimum lift coefficient of
CL = 0.8 in the post stall region. The reattachment of the flow field is found at approx-
imately α = 8.0◦ where the CL curves of the pitch-up and pitch-down motion converge.
The reference numerical results show a minimum lift coefficient of CL = 0.4 in the post
stall region. The reference numerical results follow the experimental results closely down
to an angle of α = 14.0◦. The prediction depart at this point. The CL prediction of the
reference numerical results flatten and return to the CL of the pitch-up motion. The CL
converges with the CL of the pitch-up motion at an angle of attack of α = 5.0◦. The
experimental results show a further decay in the CL within the post stall region. The CL
reaches a value of CL = 0.0 at α = 10.0◦. An increase is found in the CL below 10.0◦. The
CL converges with the CL of the pitch-up motion at an angle of attack of α = 5.0◦. The
discrepancies between the numerical results of the present code and the numerical results
of Ribeiro et al. (2016) have been in partly assessed in Ribeiro et al. (2016). Ribeiro et al.
(2016) investigated the effect of the windtunnel wall boundary condition on the numerical
results. They concluded that slip and no-slip wall boundary condition lead to substantial
differences in the post stall lift coefficient prediction. Therefore the differences in the
windtunnel wall boundary condition combined with the prediction of the stall flow field
are likely the cause of the large discrepancies in the numerical results. No explanation
can be given for the large discrepancies between the reference numerical results and the
experimental results in the pitch-down phase below α = 14.0◦. Non of the other reference
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numerical results have predicted lift coefficient as low as the ones found in the experi-
mental study.
The discussion is now directed to the moment coefficient results of the numerical and
experimental studies. The moment coefficient predictions are shown in figure 8.17. The
predictions and measurements show a good agreement in the initial pitch-up motion of
the airfoil up to an angle of attack of 18.0◦. The pitching moment predictions follow a
linear trend. The numerical results show slightly lower pitching moment predictions than
the experimental measurements. The predictions and measurements depart at α = 18.0◦.
All predictions show a drop in the moment coefficient beyond α = 18.0◦. However, the
location of the minimum moment coefficient prediction differ. The numerical results of
Ribeiro et al. (2016) predict the minimum moment coefficient at α = 23.5◦ with a value of
CM = −0.48. The experimental measurements show the minimum moment coefficient at
α = 24.0◦, with a value of CM = −0.4. The numerical results of the present code predict
the minimum moment coefficient at an angle of α = 25.0◦, with a value of CM = −0.45.
The results show that the strength of the leading edge vortex and the separation angle
of the leading edge vortex varies significantly between the numerical and experimental
simulations. The predictions and measurements align well with results of the lift coeffi-
cient. Lower discrepancies are found in the pitch-down part of the airfoil motion. The
numerical results converge at an angle of 12.0◦ and show no discrepancies in the angle
range α = [5.0◦, 12.0◦]. A significant pitch-up is found in the experimental results in the
pitch-down part of the oscillation at α = 10.0◦. The angle of the maximum moment
coefficient in the experiment is aligned with the angle of the minimum lift coefficient.
The findings in the results of the moment coefficient align well with the findings in the
lift coefficient plot. The pitch-down break of the airfoil is signifcantly delayed due to the
late separation of the leading edge vortex. The same mechanism led to a late prediction
of the maximum lift coefficient.
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Figure 8.16: Plot of the moment coefficient CM versus airfoil pitch-up angle α based on:
( ) experimental results of Mcalister et al. (1982a), ( ) numerical results
of Ribeiro et al. (2016) and ( ) present results. If available solid lines and
markers indicate pitch-up movement, dashed lines and hollow markers indicate
pitch-down movement.
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Figure 8.17: Plot of the drag coefficient CD versus airfoil pitch-up angle α based on: ( )
experimental results of Mcalister et al. (1982a), ( ) numerical results of
Ribeiro et al. (2016) and ( ) present results. If available solid lines and
markers indicate pitch-up movement, dashed lines and hollow markers indicate
pitch-down movement.

The discussion of the integral coefficients is finished with an assessment of the drag coef-
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ficient. The drag coefficient predictions and measurements are shown in figure 8.16. The
findings are very similar to the findings in the lift and moment coefficient plots. A good
agreement is found in the initial part of the pitch-up motion, α = [5.0◦, 18.0◦], between the
numerical and experimental results. Discrepancies in the prediction of the leading edge
vortex strength and separation angle leads to differences in the maximum drag coefficient
both in the magnitude and angle of attack. A maximum drag coefficient of CD = 0.95 is
found in the reference numerical results and experimental measurements. The maximum
drag coefficient is located at α = 23.0◦ in the reference numerical results and α = 24.0◦

in the experimental measurements. The results of the present code show a late maximum
drag coefficient with a value of CD = 0.9 at an angle of α = 25.0◦. The pitch-down motion
shows a good agreement between the reference numerical results and experimental results.
An under-prediction of the drag coefficient is found in the results of the present code. The
numerical results agree well in the later part of the pitch-down motion α < 14.0◦.
The integral lift, drag and moment coefficient of the airfoil have been shown over one
period of the airfoil oscillation. The results showed that the experimental and the numer-
ical results of the present code and Ribeiro et al. (2016) predict the key flow features. The
predictions and measurements showed the expected linear increase in the lift coefficient
up to to the maximum lift coefficient of the NACA0012 airfoil at static angles. The results
showed a further increase in the lift coefficient beyond the maximum lift coefficient of the
NACA0012 airfoil. The distinct lift increase was found close to the maximum angle of at-
tack in the pitch-up motion caused by the formation of the leading edge vortex. Further,
the drop in the lift coefficient was shown in all results and a substantial hysteresis region
was present in all numerical predictions and measurements. The pitch-down break of the
airfoil associated with the leading edge vortex separating from the leading edge was found
in all measurements and predictions and the significant pressure drag increase caused by
the vortex was found in the results.
The results showed significant differences in the prediction of the airfoil stall point. The
results of the present code showed a significant delay of the airfoil stall similar to the one
found in the static analysis. The mechanism which lead to the delayed stall estimation is
likely identical to the ones discussed in the static analysis. The delayed stall prediction
of the present code were identified in all three integral coefficients as they resulted in
a delayed prediction of the maximum lift coefficient a delayed prediction in the airfoil
pitch break and delayed prediction in the maximum drag coefficient. Substantial differ-
ences were also found in the post stall region of the airfoil oscillation. The CL prediction
between the numerical and experimental results differed significantly. The present code
predicted high lift coefficients in the post stall region. The differences in the numerical
results of the present code and numerical results of Ribeiro et al. (2016) were connected
to the differences in the windtunnel wall boundary conditions. The difference between
the experimental results and reference numerical results could not be attributed to any
concrete modeling errors.

8.7.2 Flow field

Slices of the velocity field are extracted from the numerical simulations. The contour
plots of the velocity are extracted at specific points in time to show the prediction of the
significant flow features. A discussion of the flow features in the dynamic stall problem is
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held in section 8.2. The presented plots follow one period of the airfoil oscillation. Figure
8.18 shows the flow field in phase 1 of the airfoil motion. The flow field is attached and the
lift, drag and moment coefficient follow the NACA0012 airfoil at static angles of attack.
The flow field at an angle of attack beyond the maximum angle of attack of the airfoil
is shown in figure 8.19. The flow field corresponds to phase 2 of the airfoil oscillation.
The flow field shows that the suction side is separated. The separation location is at the
leading edge of the airfoil. The flow field is shown at an angle of attack of α = 23.7◦.
The detachment of the leading edge vortex is shown in figure 8.20. The leading edge
vortex is highly distorted and mixed by the turbulence in the flow field. The flow field
was extracted at α = 25.0◦. The flow field corresponds to phase 3 of the dynamic stall
problem. The post stall flow field is shown in figures 8.21 and 8.22. Figure 8.21 shows the
flow field around the airfoil in the pitch-down part of the oscillation at α = 20.0◦. The
flow field corresponds to phase 4 of the dynamic stall flow problem. A large separation
is seen on the suction side of the airfoil. Large turbulence scales are seen in the wake
of the airfoil, likely part of the leading edge vortex. The reattachment of the boundary
layer on the airfoil surface is shown in 8.22. Figure 8.22 shows the flow field around the
NACA0012 airfoil at α = 15.0◦. Large parts of the boundary layer are attached on the
airfoil suction side. The turbulent scales in the wake of the airfoil remain large.
The plots of the flow field around the airfoil confirm that the present code is able to
predict the key flow features of the dynamic stall problem.

Figure 8.18: Slice of normalized velocity magnitude field |U| /U∞ around NACA0012 airfoil
at 10.0◦ angle of attack during the pitch-up movement for the illustration of
the flow structures corresponding to phase 1 of the dynamic stall problem.

8.8 Discussion and Conclusion

The experimental studies of Mcalister et al. (1982a) on dynamic stall of helicopter blade
sections have been used to define a validation case for the present code. The validation case
is used to validate the hybrid ghost-cell method for moving geometries at high Reynolds
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Figure 8.19: Slice of normalized velocity magnitude field |U| /U∞ around NACA0012 airfoil
at 23.7◦ angle of attack during the pitch-up movement for the illustration of
the flow structures corresponding to phase 2 of the dynamic stall problem.

Figure 8.20: Slice of normalized velocity magnitude field |U| /U∞ around NACA0012 airfoil
at 25.0◦ angle of attack during the pitch-up movement for the illustration of
the flow structures corresponding to phase 3 of the dynamic stall problem.
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Figure 8.21: Slice of normalized velocity magnitude field |U| /U∞ around NACA0012 airfoil
at 20.0◦ angle of attack during the pitch-down movement for the illustration
of the flow structures corresponding to phase 4 of the dynamic stall problem.

Figure 8.22: Slice of normalized velocity magnitude field |U| /U∞ around NACA0012 airfoil
at 15.0◦ angle of attack during the pitch-up movement for the illustration of
the flow structures corresponding to phase 5 of the dynamic stall problem.
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numbers. The validation case consists of a NACA0012 airfoil at Re = 1 · 106 and Ma =
0.072. The NACA0012 airfoil undergoes an oscillation motion which results in an unsteady
flow field and results in a dynamic stall problem. The case was extensively investigated
with numerical tools in literature. The numerical simulations in literature have been
used as reference for the setup of the numerical simulation with the present solver. The
numerical results of Ribeiro et al. (2016) have been used in combination with experimental
results in the discussion of the numerical results of the present code.
Simulations at static and dynamic angles of attack were performed. Data for the static
angles of attack was not given in either reference. Therefore, XFoil simulations have
been performed to verify the present code with results from other numerical codes. The
numerical results at static angles of attack showed good agreement in the attached flow
region of the airfoil polar, but significant differences in the maximum lift coefficient and
associated angle of attack. Further, analysis of the polars and surface solution indicated
significant deficits in the resolution and modeling of the near-wall flow solution. Deficits
in the mesh resolution were indicated by a significant underprediction of the skin friction
coefficient around the leading edge of the airfoil and the inability of the simulations
to accurately predict the laminar-turbulent separation bubble. Moreover, no asymptotic
behavior was found in the mesh convergence study, which further indicates that additional
mesh resolution is required in the near-wall flow field. Deficits in the near-wall modeling
were found in the shear-stress prediction. The present code does not make a distinction
between laminar and turbulent flow in the wall-modeling approach. This resulted in a
significant over-prediction of the skin friction coefficient and airfoil drag at low angles of
attack.
The simulation of the NACA0012 in dynamic stall conditions was subsequently performed.
The information of the mesh convergence study and the setup of the reference numerical
results of Ribeiro et al. (2016) have been used to appropriately size the numerical domain
and mesh. Results of the lift, drag and moment coefficient were shown over one period
of the airfoil oscillation. Additionally, plots of the velocity magnitude were shown at
selected times over one period of the airfoil oscillations. The flow field showed that the
present code is able to predict the presence of the 5 phases of the dyanmic stall cases. The
most important being the substantial increase in the lift coefficient due to a leading edge
vortex at the stall condition and a large hysteresis region in the post stall region. The
lift, drag and moment coefficient plots indicated significant discrepancies around the stall
region of the airfoil and in the lift coefficient in the post stall region. The lift, drag and
moment coefficients did show the important features that are expected from the dynamic
stall problem, which are the distinct increase in the lift coefficient caused by the leading
edge vortex. The substantial drop in the lift coefficient once the leading edge vortex
detaches from the airfoil combined with a significant increase in drag and a pitch-down
moment, and the signicant hysteresis in the lift coefficient in the post stall state of the
airfoil flow field. The results indicated that the present code mispredicts the exact point
of stall. This leads to a significant misprediction of the angle of attack of the maximum
lift coefficient in the dynamic stall condition. The maximum lift coefficient was found
at significant higher angles of attack then in the reference numerical and experimental
results. The misprediction of the stall point led to a phase shift in the flow features and
forces in the post stall region. Both the pitch break and significant increase in the airfoil
drag were found at significant higher angles of attack and further in the beginning of the
pitch-down part of the motion. The misprediction of the lift coefficient in the post-stall
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state was largely attributed to the difference in the modeling of the wind tunnel walls. It
was concluded that the insufficiently refined mesh in combination with the deficit in the
near-wall modeling approach, that caused the misprediction in the static stall condition,
have equally caused the misprediction in the dynamic stall case.



Chapter 9

Flutter of a sprung airfoil

Flutter is an aero-elastic phenomenon in which a structure oscillates/vibrates in an un-
contained manner due to the coupling of aerodynamic and elastic forces. The criticality
of studying aero-elastic phenomena such as flutter was illustrated in the Tacoma Nar-
rows bridge catastrophe in 1940 (Green & Unruh, 2006), where the coupling between the
structural response of the bridge and wind resulted in the collapse of the bridge. For
design purposes or for the fundamental study of flutter phenomena the aero-elastic prob-
lem may be simplified to a mass-spring model. Such models have been extensively studied
experimentally and numerically in literature. For the study of vortex induced vibrations
of spring-mounted cylinders and square cylinders have been studied. Khalak and Willi-
amson (1999) experimentally studied the motion of a sprung mounted cylinder with one
degree of freedom at low mass damping. Later Jauvtis and Williamson (2003) studied
the vortex-induced vibration of a cylinder with two degrees of freedom experimentally.
Similar problems were also studied numerically by Evangelinos, Lucor, and Karniadakis
(2000) who performed direct numerical simulations of the flow around a flexible cylinder
subject to vortex-induced vibrations and Guilmineau and Queutey (2002) analyzed the
vortex shedding of an oscillating circular cylinder numerically.
A more suitable problem for the developed code is the study of spring-mounted airfoils
and the computation of the flutter boundary of those. Schwarz et al. (2009) performed
high-fidelity numerical simulations of the flow around a spring-mounted airfoil in transonic
flow. Experiments and numerical simulations were performed at lower Mach number and
in the transitional Reynolds number regime by Poirel, Harris, and Benaissa (2006, 2008)
and Métivier, Dumas, and Poirel (2008); Métivier, Dumas, and Poitrel (2009) respect-
ively. A more recent study on a NACA0012 airfoil with two degrees of freedom in the
transitional Reynolds number regime was performed by Wood et al. (2020); De Nayer,
Breuer, and Wood (2020). Wood et al. (2020) studied the problem experimentally, while
De Nayer et al. (2020) provided numerical simulations to support the experimental results
of Wood et al. (2020). The experiment consists of a NACA0012 airfoil which undergoes
both pitch and heave motions. The airfoil is mounted with two springs, a torsional spring
for the pitch axis and a plate spring for the heave motion of the airfoil. The aero-elastic
problem with the relevant parameters is illustrated in figure 9.1.

119
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The well documented simulation setup and material properties in combination with the
supporting numerical simulations by De Nayer et al. (2020) provide a good validation
test case for the rigid body solver and the fluid-solid coupling scheme implemented in
the present solver. This chapter presents numerical results of the present solver for the
experiment of Wood et al. (2020).
Section 9.1 discusses the experimental setup of Wood et al. (2020) and the numerical sim-
ulation of De Nayer et al. (2020) in more detail, followed by a discussion on the aero-elastic
problem in section 9.2. A dimensional analysis was performed to derive a non-dimensional
setup for the simulation with acceptable computational cost. The results of this analysis
are presented in section 9.3. With the derived non-dimensional setup the simulation do-
main, boundary conditions and discretization was set. The setup of the simulation is
presented in section 9.4. The result section is split into two parts. Simulation in still air
were performed first to validate the rigid body solver. Finally the results of the still air
simulations are presented in section 9.5. The free-oscillation results of the NACA0012
airfoil under wind load are presented in section 9.6.

Figure 9.1: Schematic representation of the investigated FSI case with all relevant paramet-
ers, taken from Wood et al. (2020).

9.1 Experiment and numerical simulation

The experiment of Wood et al. (2020) was conducted to create a validation case for FSI
tools. Therefore, a lot of attention was paid on the documentation of the boundary
condition and characterization of the structural model. The test article consisted of a
wing with b = 600mm span and c = 100mm chord. Only 500mm of the wing span
was effectively submerged in the flow field given the 500mm width of the test section
(Wood et al., 2020). The symmetric NACA0012 airfoil is used to define the profile of
the planar wing. The test article is elastically mounted with two springs. A rotational
spring for the airfoil pitch and a plate spring for the heave motion. The spring stiffness
and damping are discussed in a later section of this chapter. The elastic axis is located
at xe = 0.417, as illustrated in figure 9.1. An additional movable weight was added to
the experimental setup. Using the weight, the center of gravity of the test article was
moved relative to the elastic center. Three positions were investigated and are denoted
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as case I,II and III. In case I the center of gravity is located at the elastic axis, in case II
upstream of the elastic axis and in case III downstream of the elastic axis. Only case I is
considered in the present numerical studies. The wind speed and corresponding Reynolds
number was changed during the experiment in the range from Re = 9.66 × 103 up to
Re = 8.77 × 104. Initial still air measurements were performed to determine the spring
stiffness and spring damping coefficients of the airfoil mount. Measurements consisted of
one-point and two-point measurements to obtain the time and frequency response of the
airfoil heave and pitch motion. Furthermore, hot-wire measurements were obtained in
the wake of the airfoil in both rigid and oscillating configurations to correlate frequencies
in the structural response to frequencies of flow features.
Subsequent to the experiment of Wood et al. (2020), numerical simulations were performed
by the same team of researchers. The numerical simulations are discussed in De Nayer et
al. (2020). The numerical simulations are performed with a body fitted mesh. An infinite
aspect ratio was assumed for the sizing of the domain simplifying the problem to quasi two-
dimensional. The Arbitrary Lagrangian-Eulerian formulation is used to account for the
deformation of the fluid domain due to the movement of the geometry. A loose coupling
FSI scheme is used, motivated by the high solid to fluid density ratio. The Smagorinsky
turbulence closure model (Smagorinsky, 1963) is used to model the unresolved scales in
the flow field. No slip boundary conditions are used on the wall without a wall-modeling
approach, enabled by the mesh resolution which is well below y+ = 5 for all considered
Reynolds numbers. The results of the numerical simulation included results for the still
air configuration to validate or potentially correct the spring stiffness and damping ratios
found in the experiment and included results for the one and two point measurements
to compare the time and frequency response of the pitch and heave motions to the ones
found in the experiment of Wood et al. (2020).

9.2 Aero-elastic problem

Four motion types were found in the numerical assessment and experiments by De Nayer
et al. (2020) and Wood et al. (2020). A damped stable motion at low Reynolds numbers,
limit cycle oscillations with small and high amplitudes with increasing Reynolds num-
ber and flutter at high Reynolds numbers. At low Reynolds numbers and low dynamic
pressures any perturbation in the airfoil pitch orientation and heave position is damped
and the airfoil positions converge to the rest position. Due to the low dynamic pressure
the aerodynamic forces acting on the surface of the airfoil are insufficient to destabilize
the motion. The frequencies of the airfoil pitch and heave oscillations are identical to
the frequencies found in the still air experiments and numerical simulation. Limit cycle
oscillations with small amplitudes were found at increasing Reynolds number in the ex-
periments of Wood et al. (2020) and numerical results of De Nayer et al. (2020). The
small-amplitude oscillations (SAO) were also found at the smallest Reynolds number in
the numerical results of De Nayer et al. (2020). It was concluded that the amplitude of
the limit cycle oscillations at low Reynolds numbers was too small to be detected during
the experiment of Wood et al. (2020). The SAO are caused by a small separation region
at the trailing edge of the airfoil. The separation region alternates between either side of
the airfoil.
An increase of the SAO is found with a further increase in the Reynolds number and
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dynamic pressure of the free-stream. The experimental and numerical results further
showed that the pitch and heave frequencies converge with increasing Reynolds number.
At a sufficiently high Reynolds number the airfoil experiences limit cycle oscillations with
significantly larger amplitudes denoted as large-amplitude oscillations (LAO). The oscil-
lations were characterized by a significant increase in the pitch and heave motion of the
airfoil. The flow field was characterized by flow separation at a chord-wise location of
approximately c = 2/3 which alternates between either side of the airfoil. The separation
region was characterized by distinct vortices which are shed from the airfoil surface. The
frequency response showed only one distinct frequency with the large-amplitude oscil-
lations. A further increase in the Reynolds number results in a flutter response of the
airfoil. In this region the amplitude of the airfoil pitch and heave diverge. During the
experiment the motion of the airfoil was manually stopped to not exceed the limits of the
mounting system, the numerical simulation diverged due to the significant deformation
of the numerical grid. As discussed in De Nayer et al. (2020) the frequencies of the pitch
and heave motion are identical in the flutter region of the airfoil.
The present case is of particular difficulty as the characteristics of the airfoil motion are
not only driven by the inertial forces of the flow field. An analysis of the flow field using
potential or inviscid method may provide results for the stable and flutter region of the
airfoil motion but is not able to predict the limit cycle oscillation of either magnitude.
The experiments of Wood et al. (2020) and De Nayer et al. (2020) showed that these
oscillations are driven by the viscous effects in the flow field, more particular by the flow
separation of the boundary layer. The results therefore suggest that a good resolution of
the near-wall flow field is necessary to accurately predict the motion characteristics of the
airfoil in the transitional flow field.

9.3 Dimensional analysis

The results of De Nayer et al. (2020) are given in the dimensional units of the experiments
of Wood et al. (2020). While not stated explicitly in the work of De Nayer et al. (2020),
the simulation were potentially also carried out with a dimensional setup. With the given
inflow boundary condition very low Mach numbers are present in the flow field. The
maximum inflow Mach number is M = 0.016. The simulation of the low Mach number
flow with an explicit time marching scheme combined with the large time scales of the
structural problem leads to an excessive number of time integration steps and excessive
numerical simulation time. This can be shown with the following relations. The time
step of the numerical simulation must satisfy the CFL condition for stability. The time
step size is proportional to

∆t ∼ ∆x

cair + |u|
, (9.1)

where ∆t is the time step of the explicit time integration, ∆x is the mesh spacing, cair
is the speed of sound and |u| is the local magnitude of the velocity. Based on equation
(9.1) a decrease of the speed of sound relative to the velocity of the flow speed increases
the time step. This is equivalent to increasing the Mach number of the flow field.
A non-dimensional setup is derived from the experimental setup based on Buckingham’s
Pi theorem. Sequentially, the Mach number in the non-dimensional setup is increased to
reduce the computational cost of the simulation to acceptable levels. The Mach number
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is kept below M = 0.3 to remain in the incompressible regime. Thus the increase of the
Mach number should have a minimum effect on the numerical results of the problem.
A list of all relevant parameters based on figure 9.1 is shown in table 9.1.

Variable Unit Description

t [T ] Time
U∞ [L/T ] Free-stream velocity
ρair [M/L3] Free-stream density
νair [L2/T ] Free-stream viscosity
c [L] Airfoil chord
b [L] Airfoil span
h [L] Airfoil heave position

ḣ [L/T ] Airfoil heave velocity
α [−] Airfoil pitch angle
α̇ [1/T ] Airfoil pitch rate
mw [M ] Airfoil/wing mass
Ieα [ML2] Airfoil/wing inertia around elastic axis
kh [M/T 2] Heave spring stiffness
bh [M/T ] Heave spring damping
kα [ML2/T 2] Torsional spring stiffness
bα [ML2/T ] Torsional spring damping
g [L/T 2] Gravity

Table 9.1: Tabulated list of all relevant parameters with units.

The free stream velocity U∞, the free stream density ρair and airfoil chord c are used as
independent variables. Using Buckingham’s Pi theorem 11 dimensionless parameters are
defined for the flow cases. The parameters are tabulated in table 9.2.

Variable Πi Definition

t Π0 U∞/c · t
νair Π1 U∞c/ν
b Π2 b/c
zs Π3 zs/c
ms Π4 ms/(ρairc

3)
Is Π5 Is/(ρairc

5)
kh Π6 kh/(U

2
∞ρairc)

bh Π7 bh/(U∞ρairc
2)

kα Π8 kα/(ρairc
3U2
∞)

bα Π9 bα/(ρairc
4U∞)

g Π10 g/(U2
∞/c)

Table 9.2: Tabulated list of dimensionless parameters of the FSI test case.
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9.4 Simulation setup

The numerical simulations of De Nayer et al. (2020) are used as a reference for the
numerical setup of the present simulation. A C-type domain with dimensions r for the
radius, w for the wake length and lc for the width of the domain has been used by De Nayer
et al. (2020). A rectangular domain is used in the present simulation as the C-type domain
used in the numerical simulation of De Nayer et al. (2020) is not achievable with the block
mesh type of the present code. The domain dimensions are listed in table 9.3. The height
of the domain was slightly increased from 7.2c to 8c for the present numerical simulation.
The wake length was increased from 5c to 8c and the inlet length was set to 8c resulting
in a square domain. The width of the domain is equal to the width chosen by De Nayer
et al. (2020). Riemann boundary conditions are used for the inlet, top and bottom of
the domain. A static pressure boundary condition is used at the outlet of the domain.
Periodic boundary conditions are imposed in the span-wise direction of the domain.
A uniform mesh is used in the region were the airfoil is moving with a mesh spacing of

Parameter Symbol Unit Present De Nayer et al. (2020)

Domain radius/height r [c] 8 7.2
Wake length w [c] 8 5
Width lc [c] 0.25 0.25

Table 9.3: Domain dimension for the NACA0012 2-DOF simulation.

∆x = 0.002c. The mesh spacing is equivalent to ∆x = 2mm in the numerical simulation
of De Nayer et al. (2020), which results in an approximate wall to first grid point spacing
of 1mm. While larger than the selected 0.65mm first grid point spacing in the reference
numerical results the mesh resolution is deemed sufficient for an initial set of simulations.
The unresolved turbulent scales are modeled with the Vreman model (Vreman, 2004).
The airfoil is modeled as a single rigid body with all six degrees of freedom. A fixation
constraint is used to fix all degrees of freedom apart from the heave and pitch motion
of the airfoil. The fixation constraint follows the formulation presented in section 4.4.1.
The spring damper system of the experiment is modeled using the methods described in
section 4.4.1.
The one-point measurements for the time and frequency analysis were performed based
on a probing point located at x/c = 0.283 downstream of the elastic axis as illustrated in
figure 9.1. The equations of motion of the NACA0012 were integrated with a time step
of ∆tU/c = 0.01, which is equivalent to Nt = 200 time steps over one oscillation period
of the airfoil.

9.5 Free-oscillations in still air

Simulations in still air or rather vacuum were carried out to validate the implementation
of the rigid body equations of motion and spring/damper constraints in the present solver.
The initial excitement of the system was achieved by applying rotational and translational
displacements to the system with respect to the rest position. The displacements were
sized in such a way that the displacement of the probing point is roughly equal in all
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three considered cases.
The system parameters used for the still air simulation are based on the experiments
performed by Wood et al. (2020). The position of the centre of gravity was taken from
the numerical simulation of De Nayer et al. (2020). The system parameters are listed in
table 9.4. All simulations were performed for t = 22s to obtain sufficient data for the
time and frequency analysis.

Parameter Symbol Unit Value

Distance between c.o.g. and e.a xEG/c [-] 0.006
Mass moment of inertia IEα [kg m2] 1.399× 10−4

Mass of dynamic system mw [kg] 0.33521
Bending stiffness kh [N/m] 698
Torsional stiffness kα [N/rad] 0.3832
Bending spring damping bh [Ns/m] 9.72× 10−2

Torsional spring damping bα [Nm/s] 3.70× 10−5

Table 9.4: System parameters for the still air simulations.

Three simulations were performed. Simulation I was performed to investigate the fre-
quency and damping ratio of the heave motion. This was done by fixing the pitch degree
of freedom. Simulation II was performed to investigate the frequency and damping ratio
of the pitch motion by fixing the heave degree of freedom and simulation III was per-
formed to investigate the response of the two-degree of freedom system by neither fixing
the heave motion nor the pitch motion. The responses of the one-degree of freedom sys-
tem is shown in figure 9.2 and 9.3. Both results show a single distinct frequency in the
frequency analysis indicating the eigenfrequency of the one-degree of freedom system.
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Figure 9.2: Time and frequency response of the spring-mounted airfoil in still air, pitch
degree of freedom locked.
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Figure 9.3: Time and frequency response of the spring-mounted airfoil in still air, heave
degree of freedom locked.

The results of the two-degree of freedom system are shown in figure 9.4. Two significant
frequencies are found in the frequency analysis of the motion. The frequencies correspond
to the heave and pitch motion of the airfoil.
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Figure 9.4: Time and frequency response of the spring-mounted airfoil in still air, both
degrees of freedom unlocked.

The numerical results of the system frequencies of the one-degree of freedom and two-
degree of freedom systems are summarized in table 9.5. The present results are compared
to the experimental results of Wood et al. (2020) and De Nayer et al. (2020). The
results show a close agreement between the numerical results of the present method and
the experimental results of Wood et al. (2020). The errors found in the frequencies do
not exceed those found between the experimental results of Wood et al. (2020) and the
numerical results of De Nayer et al. (2020).

The damping ratios of the one-degree of freedom system were determined based on the
method discussed in Wood et al. (2020). The results for the damping ratios are shown in
table 9.6. The results indicate that the damping ratios predicted by the present method
are lower than the damping ratios found in the experiment of Wood et al. (2020).

9.6 Free-oscillations under wind load

Simulations with wind load were performed at five Reynolds numbers ranging from
Re = 9660 to Re = 36000. The Reynolds number range includes the stable, limit cycle
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Parameter Symbol Unit Wood et al. (2020) De Nayer et al. (2020) Present

Translation eigenfrequency 1-DOF f1−DOFh [Hz] 7.26 7.25 7.27

Rotational eigenfrequency 1-DOF f1−DOFα [Hz] 8.33 8.33 8.32

Translation eigenfrequency 2-DOF f2−DOFh [Hz] 7.31 7.25 7.27

Rotaitonal eigenfrequency 2-DOF f2−DOFh [Hz] 8.38 8.33 8.36

Frequency difference 2-DOF ∆f2−DOF [Hz] 1.07 1.08 1.09

Frequency ratio 1-DOF f1−DOFh /f1−DOFα [−] 0.872 0.870 0.874

Frequency ratio 2-DOF f2−DOFh /f2−DOFα [−] 0.872 0.870 0.870

Table 9.5: Tabulated frequency results of the still air simulations.

Parameter Symbol Unit Wood et al. (2020) Present

Total translational damping D1−DOF,tot
h [−] 3.18× 10−3 2.993× 10−3

Total torsional damping D1−DOF,tot
α [−] 2.53× 10−3 2.406× 10−3

Table 9.6: Total damping ratios determined in the experiment of Wood et al. (2020) and
obtained in present numerical simulations.

oscillations and flutter regions of the airfoil motion response. This section presents the
numerical results of the present code in form of the time and frequency responses. The
results are further tabulated and compared to the numerical and experimental results of
Wood et al. (2020) and De Nayer et al. (2020). The time and frequency responses of the
five Reynolds numbers are shown in figures 9.5 to 9.9.
The response of the airfoil at Re = 9660 is shown in figure 9.5. The results show limit
cycle oscillations with small magnitudes in the time response plot of the motion. The fre-
quency results show two distinct frequencies associated with the pitch and heave motion
of the airfoil. Limit cycle oscillations were also found in the numerical results of De Nayer
et al. (2020). However, the magnitude was reported to be significantly below 1mm. The
experiments of Wood et al. (2020) did not report limit cycle oscillations. De Nayer et
al. (2020) concluded that limit cycle oscillations are present in the flow field, but the
magnitude is below the measurable amplitudes of the experiment. Therefore, the present
code correctly predicts small limit cycle oscillations, however the magnitude of the limit
cycle oscillations are overpredicted.
The response of the airfoil motion at Re = 16500 is shown in figure 9.6. The time response
shows a stable motion. The initial excitation of the airfoil decays towards zero. This is
inline with the findings reported in the numerical results of De Nayer et al. (2020) and
Wood et al. (2020). The frequency response shows that the frequencies of the heave and
pitch motion converge towards each other which is also inline with the reported reference
numerical and experimental results.
The response of the airfoil at Re = 23900 is shown in figure 9.7. The time response of
the airfoil shows small limit cycle oscillations with magnitudes of approximately 1mm. A
further convergence of the heave and pitch frequencies is seen in the frequency response.
The experimental and numerical reference results show a stable motion with limit cycle
oscillations with very small amplitudes h < 1mm. Further a strongly damped heave mo-
tion is reported in the experimental results of Wood et al. (2020). The strongly damped
heave motion is not seen in the results of the present code. The results again indicate an
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overprediction of the small limit cycle oscillations.
The response of the airfoil at Re = 30600 is shown in figure 9.8. The response shows
larger limit cycle oscillations with amplitudes of 2mm to 2.5mm. The motion is further
characterized by only one significant frequency, as shown in the frequency response plot.
The results of the present code are inline with the reported findings of Wood et al. (2020).
Both the existence of limit cycle oscillations with large amplitudes and the existence of a
single significant frequency are correctly predicted by the present code.
The response of the airfoil at Re = 36000 is shown in figure 9.9. The response shows
large limit cycle oscillations until t = 10s. Beyond t = 10s the oscillations of the airfoil
diverge inline with the motion of an airfoil post the flutter boundary. The motion is
again characterized by one distinct frequency. The result is inline with the findings of
the experiment of Wood et al. (2020) and the numerical results of De Nayer et al. (2020).
Both, reported flutter at a Reynolds number of Re = 36000.
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Figure 9.5: Time and frequency response of the spring-mounted airfoil at Reynolds number
Re = 9660.

0.0 2.0 4.0 6.0 8.0 10.0

−4.0

−2.0

0.0

2.0

4.0

t [s]

h
[m
m

]

6.0 8.0 10.0

10−2

10−1

f [Hz]

f
f
t
[−

]

Figure 9.6: Time and frequency response of the spring-mounted airfoil at Reynolds number
Re = 16500.
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Figure 9.7: Time and frequency response of the spring-mounted airfoil at Reynolds number
Re = 23900.
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Figure 9.8: Time and frequency response of the spring-mounted airfoil at Reynolds number
Re = 30600.
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Figure 9.9: Time and frequency response of the spring-mounted airfoil at Reynolds number
Re = 36000.

The relevant frequencies of the motion are shown in table 9.7 for all five Reynolds numbers.
The frequencies are compared to the measurements of Wood et al. (2020) and predictions
of De Nayer et al. (2020). Starting with the lowest Reynolds number Re = 9660, the
results show a slight under-prediction of the heave frequency and slight over-prediction of
the pitch frequency. At Re = 16500, the present code correctly predicts the convergence
of the frequencies associated with the heave and pitch motion. A slight under-prediction
is found in the frequency associated with the heave motion. The frequency associated
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with the pitch motion is inline with the reported measurements of Wood et al. (2020). At
Re = 23900, a close agreement is found in the frequency predictions of De Nayer et al.
(2020) and the present code. A slight under-prediction is seen in the frequency associated
with the pitch motion of the airfoil when compared to the experimental results of Wood
et al. (2020). The heave motion is heavily damped in the experimental results of Wood
et al. (2020) and no frequency was measured. At Reynolds numbers Re = 30600 and
Re = 36000 the airfoil motion is characterized by only one distinct frequency. The results
show an under-prediction of the present results and results of De Nayer et al. (2020).
Both methods under-predict the frequency of the motion compared to the experimental
results of Wood et al. (2020), while a larger under-prediction is found in the results of the
present code.

Re = 9660 Re = 16500 Re = 23900 Re = 30600 Re = 36000

Experimental (Wood et al., 2020) 7.31/8.33 7.35/8.24 −/8.06 −/7.93 −/7.79

Numerical (De Nayer et al., 2020) 7.30/7.93 −/7.77 −/7.63

Present 7.23/8.41 7.23/8.23 7.28/7.97 −/7.27 −/7.42

Table 9.7: Tabulated frequency results of the NACA0012 airfoil under wind load correspond-
ing to the heave (left) and pitch (right) degree of freedom.

9.7 Flow field and response at Reynolds 30600

The results at Re = 30600 are selected for a further analysis of the response of the airfoil
and flow field. The time response of the airfoil is splitted into the displacement of the
probing point caused by the heave and pitch motion of the airfoil. The analysis is used to
determine the phase shift between the pitch and heave motion. The response is plotted in
figure 9.11. A significant phase shift is found in the numerical results of the present code
with Φ = 220◦. The phase shift between the pitch and heave motion is significantly over-
predicted compared to the numerical results of De Nayer et al. (2020) and experimental
results of Wood et al. (2020). Wood et al. (2020) measured a phase shift of Φ = 130◦.
De Nayer et al. (2020) reported a phase shift prediction of Φ = 138◦.
The flow field around the NACA0012 airfoil over one period is shown in figure 9.10, where
t0 and T denote the start and length of the oscillation period. The flow field slice shows
the velocity magnitude field around the NACA0012 airfoil. The plots show the airfoil
undergoing large limit cycle oscillations as previously discussed. Flow separation is found
alternating between either side of the airfoil in combination with the turbulent vortex
shedding. The results are inline with the reported findings of De Nayer et al. (2020).
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Figure 9.10: Slices of the velocity magnitude field over one oscillation period of the airfoil.
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Figure 9.11: Probing point displacement h caused by the heave ( ) and pitch ( )
motion over one oscillation period.

9.8 Discussion

Simulations of a NACA0012 airfoil with two degrees of freedom were performed. The
NACA0012 airfoil was mounted in the inertial reference frame with a translational and
rotational spring damper system. The simulations were performed based on the numerical
and experimental results of Wood et al. (2020) and De Nayer et al. (2020). The results are
used to validate the implementation of the rigid body solver and loose fluid solid coupling
scheme. An initial set of still air simulations were performed to validate the correct setup
of the mass-spring system. The simulations showed a good agreement in the pitch and
heave frequencies for both single degree of freedom motions and two degree of freedom
motions. An under-prediction was found in the damping coefficients between the results
of the present code and the experimental reference results.
Subsequently simulations with wind load were performed. The simulations showed that
the present method captures the three motion patterns of the sprung NACA0012 airfoil,
which are a stable damped motion, limit cycle oscillations of small and large amplitudes
and flutter. Quantitative differences were found in the amplitude of the small limit cycle
oscillations at low Reynolds numbers. The amplitude of the small limit cycle oscilla-
tions were over-predicted by the present code. Two possible causes were identified, the
near-wall mesh resolution and the under-predicted damping ratio. The near-wall mesh
resolution might cause an under-prediction in the fluid damping, subsequent mesh conver-
gence studies are proposed to investigate this hypothesis. Further, the still air simulations
indicate an under-prediction of the spring damping coefficient. This may have caused an
insufficient damping of the small limit cycle oscillations. Subsequent studies on the damp-
ing coefficients are proposed.
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Under-predictions were also found in the frequencies associated with the large limit cycle
oscillations and flutter. The proposed studies on the mesh convergence and spring damp-
ing coefficient should also be applied to the higher Reynolds numbers.
The flow field around the NACA0012 over one oscillation period was plotted at a Reyn-
olds number of Re = 30600. The motion at this Reynolds number is characterized by
large limit cycle oscillations. The flow field showed an accurate prediction of the flow
separation inline with the prediction of the reference numerical results. The displacement
of the probing point associated with heave and pitch motion were plotted at Re = 30600
over one oscillation period to measure the phase shift between the two motions. A signi-
ficant over-prediction was found in the phase shift between the heave and pitch motion
compared to the numerical and experimental reference results.
In conclusion, the present code accurately predicts the different motion patterns of the
sprung NACA0012 airfoil, but large discrepancies were found in the quantitative assess-
ment of the airfoil.
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Chapter 10

Conclusion

The development and validation of an aero-servo-elasticity solver was presented. The
development and validation of this solver formed the main topic of the thesis project.
The research objective of the thesis project aimed to find an efficient implementation of a
multi-body dynamics solver inside a high-fidelity GPU-based computational fluid dynam-
ics solver. The development was performed under the constraint of achieving high-fidelity
with only minimal computational cost. The use of high-fidelity tools was shown to be be-
neficial and crucial for the development of future aircraft concepts. It was further shown
that the objective of high efficiency and high fidelity is not met by currently available
tools, which motivated the development of a new computational tool. A quantitative
assessment of the efficiency of the developed tool and a comparison of the efficiency to
other tools was not presented. A fair quantitative assessment is prevented due to different
numerics and fidelity of reference computational tools as well as differences in the com-
putational hardware. Instead, a careful selection of numerical methods was performed
during the literature review based on the requirements of finding methods with suitable
fidelity but low reported computational cost. The selected methods were combined into
the fluid-structure interaction tool and the accuracy of the tool was verified and valid-
ated with existing numerical and experimental data. The scope of the project covered
the development of a hybrid ghost-cell method for the simulation of moving boundaries
in both low and high Reynolds number flows, the development of a multi-body solver
for the simulation of aircrafts as tree-like multi-body systems and the implementation
of the fluid-structure coupling method for the simulation of fluid-structure interaction
problems.
The presented work was started with the mathematical formulation of the immersed
boundary method and multi-body solver. A hybrid ghost-cell immersed boundary method
was presented for the simulation of moving geometries in low and high Reynolds number
flow. A hybrid-cell treatment was developed for the suppression of spurious oscillations
in the flow field of moving geometries. Simulations of high Reynolds number flow was
achieved with the implementation of a wall-modeling approach in the hybrid ghost-cell
method. Verification and validation tests were performed in the subsequent chapters to
assess the predictions of the developed immersed boundary method. The verification
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tests proofed the effectiveness of the developed method in the suppression of spurious
pressure waves in both low and high Reynolds number flow. Two validation tests were
performed. The flow around an in-line oscillating cylinder at low Reynolds number flow
was simulated. The results showed an excellent agreement between the numerical and
experimental results of the cylinder forces and flow features. Small discrepancies were
found between the numerical results in the velocity field around the cylinder. Simulations
around an oscillating airfoil in high Reynolds number flow were performed and compared
to numerical and experimental reference results. The numerical results of the present code
showed that the developed methods predict the characteristic flow features of the dynamic
stall problem. Discrepancies were found in the integral forces of the airfoil between the
results of the present code and reference results. The discrepancies were attributed to an
insufficiently resolved near-wall region and simplistic near-wall modeling approach.
A broad introduction was given in the mathematical formulation of the multi-body solver.
The developed solver enables the simulation of tree-like multi-body systems. A control
strategy was presented based on the time integration scheme. The control strategy is
used to prescribe position and orientation states of rigid bodies and constraints dynam-
ically. Verification and validation cases were performed to assess the multi-body solver
and coupled multi-body and fluid solver. The verification of the solver was performed
with simulations of a single and double pendulum. The fluid-structure interaction tool
was validated with simulations of a NACA0012 airfoil with two degrees of freedom. The
simulations were performed with increasing inflow speed to capture all three regions of
the airfoil motion, stable, limit cycle oscillations and flutter. The results showed the
correct prediction of the three motion states. Discrepancies were found in the prediction
of the oscillation frequencies and in the amplitude of the small limit cycle oscillations.
Two causes were identified, the near-wall mesh resolution for the frequency discrepancies
at high Reynolds numbers and the under-prediction of the spring damping ratio for the
over-prediction of the small limit cycle oscillations.
The presented verification and validation cases for the immersed boundary, multi-body
and combined fluid-structure interaction tool demonstrated the correct implementation
of the selected methods. The presence of case specific flow features and motion patterns
were correctly predicted by the developed tool in the presented verification and validation
cases. Discrepancies were found on the quantitative level between the numerical results
of the present code and numerical and experimental reference results. In either case the
discrepancies were attributed to insufficient resolution in the near-wall region.
Based on the presented results further investigations are necessary in the 2-DOF NACA0012
flow case to understand the causes of the discrepancies. Further improvements in the near-
wall resolution and an improved modeling of the near-wall flow field should be the focus
on future work to improve the prediction of high Reynolds number flow fields around
moving geometries. Future research and development should focus on the extension of
the developed multi-body solver to elastic bodies and the implementation of the con-
trol laws to complete the aero-servo-elasticity framework. The presented work showed
that the selection of efficient methods is appropriate for the high-fidelity simulation of
fluid-structure interaction problems.
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Appendix A

Derivatives of Euler parameters

Euler angles are used in the definition of the intial condition and output files of the
present code. The present code computes the Euler parameters and time derivatives of
the Euler parmeters of the initial condition based on the user prescribed Euler angles.
The derivation of the Euler parameters and their time derivatives requires the partial
derivatives of the Euler parameters with respect to the Euler angles. The derivatives are
presented in this appendix. The partial derivatives of the Euler parameter θ0 are given
by

∂θ0

∂φ
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2
sinφ/2 cos θ/2 cosψ/2 +

1
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The partial derivatives of the Euler parameter θ1 are given by
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The partial derivatives of the Euler parameter θ2 are given by
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The partial derivatives of the Euler parameter θ3 are given by
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