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A B S T R A C T

This study is the first to systematically and quantitatively explore the factors that determine, the length of
charging sessions at public charging stations for electric vehicles in urban areas, with, particular emphasis placed
on the combined parking- and charging-related determinants of connection, times. We use a unique and large
data set – containing information concerning 2.6 million charging, sessions of 64,000 (i.e., 60% of) Dutch EV-
users – in which both private users and taxi and car sharing, vehicles are included; thus representing a large
variation in charging duration behaviour. Using, multinomial logistic regression techniques, we identify key
factors explaining heterogeneity in charging, duration behaviour across charging stations. We show how these
explanatory variables can be used to, predict EV-charging behaviour in urban areas and we derive preliminary
implications for policy-makers, and planners who aim to optimize types and size of charging infrastructure.

1. Introduction

Electric Vehicles (EVs) show great promise to reduce locally harmful
emissions such as NOx SOx and PM (Razeghi et al., 2016) and green-
house gasses such as CO2 (Rangaraju et al., 2015), triggering wide-
spread positive attention among policy makers and researchers alike.
However, three important barriers currently hamper widespread
adoption, being high upfront purchase costs, limited driving range and
a lack of public charging infrastructure (Coffman et al., 2016; Egbue
and Long, 2015; Liao et al., 2015; Rezvani et al., 2015). Falling battery
prices (Nykvist and Nilsson, 2015) and plans for new, more affordable
long range EV models suggest that the barriers of price and range can be
overcome.

However, private sector investments in the roll-out of a charging
infrastructure have been lagging behind these vehicle developments
due to the well-known chicken-and-egg problem (e.g. Struben and
Sterman, 2008). To stimulate the adoption of EVs and overcome the
chicken-and-egg problem, governments at various levels are keen to
help with funding charging infrastructure. Yet, in developing such
charging infrastructure, policy makers face the challenge of efficiently
using tax payers’ money. this challenge is exacerbated by rapid tech-
nological developments such as fast charging stations (up to 350 kW)
and (static and dynamic) wireless charging which further complicate
decision-making. This is because such developments increase the risk of

investments into potentially soon-to-be-obsolete technology rendering
them worthless. In addition, new behavioural patterns, such as chan-
ging charging frequencies depending on battery size, that differ from
current refueling behaviour are not yet well understood, making it
difficult to predict demand (and to optimize charging infrastructure). In
the end, however, postponing the decision on how and when to roll-out
which charging opportunities could increase the barrier for candidate
EV drivers and thereby hamper the transition to a more sustainable
transport system.

As alluded to above, efficient planning of charging infrastructure for
electric vehicles (EVs) involves accurate modelling of charging demand.
In predicting EV charging demand, understanding variations in the
starting time and location of charging sessions is recognized to be of key
importance; as such it comes as no surprise that several recent studies
have been devoted to modelling demand variations (across space and
time) in EV charging. While earlier work was based on the tradition of
optimal planning (He et al., 2015; Nie and Ghamami, 2013), more re-
cent studies have moved towards a more behaviourally oriented per-
spective (Morrissey et al., 2016; Neaimeh et al., 2017; Sun et al., 2016).

An important aspect of demand for charging stations is missing in
these studies. By nature, electric vehicle charging stations are not ac-
cessible to other users when used. When planning to meet demand it is
therefore necessary to know for how long the charging station will be
occupied by a given user at a given time. Yet variations in the duration
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of charging sessions in the public domain are not well understood. What
makes predicting the duration of these sessions particularly difficult, is
that it results from an interplay between refueling and parking beha-
viour; also when fully charged, vehicle owners may wish to occupy the
charging station for parking reasons (Faria et al., 2014; Gerzon, 2016;
Wolbertus and van den Hoed, 2017), and this effect may be exacerbated
by local policies which provide EV-owners with parking/charging lo-
cations for free (Wolbertus et al., 2018). New refueling behaviours also
comes with establishing new social norms, which can vary in different
circumstances (Caperello et al., 2013). Understanding the factors that
drive these behaviours is important for efficient charging infrastructure
planning as it allows policy makers to optimize planning itself or to
create policy measures such as pricing strategies to steer behaviour into
the desired direction.

This study is the first to systematically and empirically explore the
factors that determine the length of charging sessions at public charging
stations for EVs in urban areas. We use an unique and large data set –
containing relevant information concerning 2.6 million charging ses-
sions of 84,000 (i.e., 70% of) Dutch EV-users – in which both private
users, taxi and car sharing vehicles are included; thus representing a
large variation in charging duration behaviour. By estimating a statis-
tical model, we identify key factors that explain heterogeneity in
charging duration behaviour. We show how these explanatory variables
can be used to predict EV-charging behaviour in urban areas and we
derive preliminary planning and policy implications regarding the op-
timal design of charging infrastructure (-related policies).

2. Literature review

Most currently available charging infrastructure planning studies
work under the assumption that EV charging at public charging station
occurs when the battery level of the car can no longer meet the travel
needs of the driver and that the charging there is only done to create
enough range to complete the (next) trip, leading to connection times to
charging stations that are equal to charging times (Brady and
O’Mahony, 2016; Brooker and Qin, 2015; Dong et al., 2014). Such as-
sumptions may hold for fast charging stations (Motoaki and Shirk,
2017; Neaimeh et al., 2017; Sun et al., 2016), however, for slower level
2 charging infrastructure in the city, charging duration is known to be a
complex interplay between parking and refueling behaviour by a
variety of drivers, such as taxis (Asamer et al., 2016; Tu et al., 2015;
Zou et al., 2016) and car sharing vehicles (Van der Poel et al., 2017),
each with different recharging demands. As different types of drivers
make use of the same infrastructure, understanding the interplay be-
tween these factors is of key importance.

Some studies do recognize that EV drivers can recharge during
longer dwelling times. These studies then tend to assume that vehicles
will recharge each time they are parked for a longer time or they ignore
the fact that charging stations are rival goods (Paffumi et al., 2015;
Shahraki et al., 2015). In addition, these studies do not account for
other intentions to charge (e.g. using a charging station mainly for the
ease of parking), the effect of local parking policies such as free parking
for EVs (Wolbertus et al., 2018) and particular pricing structures.

It has been recently recognized that pricing strategies form a pos-
sible solution to influence connection times. The effects of such stra-
tegies have been studied by Gerzon (2016) using a stated choice survey.
He found that pricing by the hour caused a significant reduction in
connection times. Motoaki and Shirk (2017) find that a fixed fee at fast
charging stations increases the time connected to a charging station
compared to the free charging situation, as users tend to want to get
their money's worth. These results suggest that pricing strategies could
possibly serve as a policy tool to influence charging behaviour.

Studies that make use of real life data from EVs or charging stations
do mention variations in charging and connection times. These studies
mainly point at the start of the sessions as the most important factor
that determines the length of the charging session

(Sadeghianpourhamami et al., 2018). Morrissey et al. (2016) consider
charging session length; they compare fast and slow public chargers and
find that, not surprisingly, charging times are shorter at fast charging
stations. Robinson et al. (2013) took a closer look by identifying dif-
ferent types of charging behaviour based on activity type. They how-
ever only considered charging times –which barely differed across ac-
tivities in their data– and not connection times. Kim et al. (2017)
focused on factors that influence inter-charging event times; they
identified two different user type groups, regular and random, and
found significant differences between these groups.

In sum: while providing very valuable insights into charging beha-
viours, the current literature studies connection times to charging sta-
tions in a manner that does not reflect the full complexity and subtlety
of real charging behaviour in a city context. The wide variety in char-
ging durations is currently only acknowledged in descriptive studies but
a systematic and quantitative analysis of the factors that drive the
variation in durations is missing. This research contributes to the un-
derstanding of charging infrastructure planning by modelling (variation
in) the time connected to charging stations based on a large dataset of
charging sessions using public charging infrastructure. This dataset
provides an unique insight into charging behaviours not only because of
its sheer size but also because it encompasses the entire public charging
infrastructure within four cities, allowing for an analysis of different
(local) policies and EV-owner types which use and compete for the
same charging stations.

3. Methodology

Data were collected from public charging stations in the four major
Dutch cities (Amsterdam, Rotterdam, The Hague and Utrecht) between
2014 and 2016. The data were provided by the charging point opera-
tors in these areas. Note that charging stations in these areas were ac-
cessed by swiping a RFID-card and then connecting a charging cord to
the vehicle. Data were collected concerning the starting point (clock
time) of the charging session, its duration, the amount of kWh charged,
and the location; a unique anonymous RFID code related all relevant
sessions to the RFID-card. In total 2.692.446 Sessions were recorded in
this period. Sessions with a length shorter than 5min and longer than
300 h were excluded from the dataset. Additionally, sessions without
any charge were not taken into account during the analysis as such data
seemed unreliable. Many of these short sessions without any or little
charge were considered to be most likely due to an error while con-
necting the car to the charging station, requiring the user to swipe the
card multiple times. Also sessions with a charging speed over 50 kW
were removed, as the charging stations in the dataset were not capable
of offering these speeds. After this filtering process 2,531,841 (i.e., 94%
of the original data points) sessions were left for the analysis.

Timing data were transformed to separate time-of-day and day-of-
the-week variables. Information about charging station and user type
was made available by the charging station operators. Charging station
type categories were as follows: regular (2 outlets, 11 kW), charging
hub (at least 4 outlets clustered together) or fast charging station
(50 kW). A price variable was added to the model. Prices at all charging
stations were at a kWh basis and fixed at a city level due to tendering
processes in which the cities set fixed prices for a time period. The only
exception being charging point provider “EVNet”, which, at an earlier
time, placed charging stations at more strategic locations in the cities.
To prevent the price variables to represent the differences between ci-
ties, we also included a dummy variable for each of the cities. Here, the
city of Utrecht served as the reference category. User type categories
were as follows: regular, car sharing vehicle or taxi. For regular users
two different sub-categories were extracted, being frequent and non-
frequent, on the basis of the number of observed charging sessions (20
charging sessions turned out to provide a useful cut-off point). Data on
the time of day were transformed as follows: from 5 a.m. to 9 a.m. was
considered morning, from 10 a.m. until 3 p.m. afternoon, from 3 p.m.
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until 10 p.m. evening and from 10 p.m. until 5 a.m. night. This parti-
cular transformation was chosen based on the distribution of connec-
tion times as shown in Fig. 2.

Information about the area in which the charging station was lo-
cated was retrieved from The Netherlands Statistics (CBS Statline,
2016). Data about the built environment was gathered at the sub-sub-
district level, which contains several buildings. In addition, information
about the number of residential homes, public and social housing, and
offices were gathered. We used the number of vehicles per squared
kilometer as a proxy for parking pressure. Information on paid parking
areas was retrieved from the four municipalities. GPS locations of the
charging stations were matched with paid parking areas using the sp
package in R (Bivand et al., 2013; Pebesma and Bivand, 2005).

An obvious candidate to model the type of dependent variable in
our data (note that connection times were measured at a so-called ratio-
level) is linear regression. However, the distribution of connection
times was found to be highly non-normal (see Fig. 1; Kolmogorov-
Smirnov test: D(2,531,841)= 0.217, p < 0.001), making linear re-
gression unsuitable as an analysis technique and implying the need for a
transformation of the connection time variable. Straightforward trans-
formations such as log or square root transformations could not be
applied due to the multiple peaks in the distribution. The peaks in the
distribution suggest that heterogeneity in connection times results from
qualitatively different types of charging behaviour occurring within the
dataset. To explore categories of qualitatively different charging ses-
sions, a binning technique was used with several cut-off points. The
following bins were identified: 0–1.5 h, 1,5–7 h, 7–11 h, 11–24 h and
longer than 24 h. The selection of the bin sizes is elaborated in the next
Section 4.1. Here, it is important to note that, since the bins reflect
qualitatively different types of charging behaviour, we decided to apply
a multinomial logistic regression (rather than an ordered logistic re-
gression), to model and explore the effects of different factors on this
outcome. Data were analyzed using the Latent Gold software (Vermunt
and Magidson, 2006). An indicator for the ID of the user was added to
the model as primary sampling unit to take into account repeated ob-
servations.

4. Results

4.1. Descriptive results – identification and interpretation of bins

The distribution of connection times at charging stations binned per
half hour is shown in Fig. 1. The data is maximized at 72 h as the dis-
tribution has a very long tail with a maximum of 298 h. Close inspection
of the figure shows that there are several segments to be recognized,

including short sessions (up until 1.5 h) which account for 15% of all
sessions, representing EV-drivers that are only stopping to refill their
car to be able to continue their trip; note that this segment seems to be
represented in the modelling efforts described in (Brady and O’Mahony,
2016; Brooker and Qin, 2015; Dong et al., 2014). The next segment
(between 1.5 and 7 h) can mainly be attributed to visitors on the net-
work, which park their car for a longer time at a charging station during
a visit. The distribution spikes between 7 and 11 h duration; most ses-
sions in this segment start during the night or in the morning. A fourth
segment with duration between 11 and 24 h contains mostly overnight
sessions starting at the end of the afternoon or during the evening. The
tail of the distribution starts at a duration of 24 h; we call this segment
long charge. Although sessions in this segment only account for 6% of all
sessions they do keep charging stations occupied for 27% of the total
observed time, making them policy-relevant.

A charging session's starting time has significant influence on the
duration of the session. Fig. 2 shows the distribution of connection
durations over the week for different times of day. The figure shows a
clear repeating pattern for working days and a slightly shifted pattern
during weekends. Short sessions up to 1.5 h occur mainly in the after-
noon (due to visitors) but the distribution also features a peak in the
morning. This peak in the morning disappears in the weekends, which
suggests that it is likely related to workplace charging. Nearly half of
the charging sessions starting in the afternoon has a length of in be-
tween 1.5 and 7 h. Sessions with a 7–11 h duration mostly occur during
the morning, but a significant portion also occurs late in the evening or
during the night. This bin seems not only to represent workplace
charging but also late overnight charging in the vicinity of one's re-
sidence. Sessions with longer durations, between 11 and 24 h, peak in
the late afternoon and early evening when drivers arrive home from
work. Sessions longer than 24 h only take a small portion of the total
amount of sessions during working days but they peak significantly at
Friday and Saturday night, suggesting a typical over-the-weekend
parking habit.

Based on the distributions of the durations of sessions, and their
(i.e., the duration) occurrence at particular times of day, the different
bins can be classified as follows: 0–1.5 h sessions represent stop & charge
behaviour, mainly used for actual refueling of the vehicle and occurring
mostly during the afternoon. Park & charge is the name of the bin for
sessions with 1.5–7 h of connection. This bin represents, although not
exclusively, visitors that park their car for a longer time while leaving it
to recharge. Work & charge behaviour is attributed to 7–11 h sessions
which mainly occur in the morning, coinciding with morning traffic
peak due to commuters; yet this bin also captures late night chargers of
which sessions finish the next morning. Drivers recharging their EV in

Fig. 1. Distribution of connection times binned per half hour.
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the late afternoon or early evening more often have a 11–24 h con-
nection time, representing typical overnight or home & charge sessions.
The last category is the long sessions which have a higher occurrence at
Friday and Saturday night, representing typical weekend parking ses-
sions. Although the bins have been named to the behaviour they most
likely represent in the eyes of the authors and based on descriptive
statistics, we emphasize that these names do not exclusively represent
the types of behaviour. These names have been used for readability
reasons. The results of a more systematic and quantitative approach to
evaluate the nature of connection durations at charging stations is
presented in the next paragraph.

4.2. Descriptive statistics

Table 1 shows the descriptive statistics for the main variables that
are included in the model. The number of individuals (charging stations

or users) are given when possible. Both the number of charging sessions
and the total number of hours connected to the charging station per
variable is presented. For the duration bins it is good to note that there
are relatively a large number of sessions below 7 h (47%) but they only
account for 12% of the connection hours. The sessions above 24 h have
a high mean connection time (47 h) indicating that there is a long tail in
the distribution of connection times.

The majority of charging sessions starts at working days, and these
sessions are about 1.5 h shorter than during the weekend. Fig. 2 already
showed that is mainly caused by more sessions that last longer than
24 h. As explained earlier evening sessions are the majority of the
charging sessions due to the demand driven roll-out system and they are
by far the longest charging sessions as most of them last until the next
morning. The majority of charging stations within the dataset are of
level 2 type, with only 20 fast charging stations in the dataset. The
model results are therefore discussed with a focus on the implications

Fig. 2. Distribution of connection times over the week.

Table 1
Descriptive statistics.

Variable Number of individuals Number of charging sessions Hours connected to charging station Mean connection time

Duration bin
0–1.5 h 400,558 (15.8%) 323,422 (1.2%) 0.8 h
1.5–7 h 804,458 (31.8%) 2,812,083 (10.8%) 3.5 h
7–11 h 355,768 (14.1%) 3,243,855 (12.6%) 9.1 h
11–24 h 819,704 (32.4%) 12,537,271 (47.7%) 15.3 h
24+hours 151,353 (6.0%) 7,209,409 (27.6%) 47.6 h
Day of the week
Monday 369,922 (14.6%) 3,666,802 (14.1%) 9.9 h
Tuesday 389,372 (15.4%) 3,756,545 (14.4%) 9.6 h
Wednesday 392,170 (15.5%) 3,757,452 (14.4%) 9.6 h
Thursday 391,348 (15.5%) 3,876,661 (14.9%) 9.9 h
Friday 375,404 (14.8%) 4,251,672 (16.3%) 11.3 h
Saturday 315,168 (12.4%) 3,546,883 (13.5%) 11.2 h
Sunday 298,457 (11.8%) 3,270,022 (12.6%) 10.9 h
Time of Day
Morning 370,358 (14.6%) 2,356,822 (9.3%) 6.4 h
Afternoon 752,799 (29.7%) 5,898,752 (22.6%) 7.8 h
Evening 1156,553 (45.7%) 14,765,927 (56.2%) 12.8 h
Night 252,131 (10.0%) 3,104,539 (11.8%) 12.3 h
Type of charger
Level 2 3490 (98.6%) 2467,878 (97,4%) 25,812,611 (98,8%) 10.4 h
Charge Hub 29 (0.8%) 39,346 (1,6%) 296,995 (1,1%) 7.5 h
Fast charger (50 kW DC) 20 (0.6%) 24,617 (1,0%) 16,436 (0,1%) 0.7 h
Use Type
Taxi 336 (1.3%) 46,034 (1.8%) 339,766 (1.3%) 7.4 h
Frequent 17,166 (26.4%) 2092,221 (82.6%) 23,467,036 (89.9%) 11.2 h
Visitors 46,643 (71.8%) 205,629 (8.1%) 943,137 (3.6%) 4.6 h
Car sharing 818 (0.5%) 187,957 (7.4%) 1,376,101 (5.1%) 7.3 h
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for level 2 charging stations. Fast charging sessions are, as expected,
much shorter than sessions at charging hubs or level 2 chargers.

For the different users we see that the majority of unique users are
actually visitors (72%). Despite this larger number of unique users they
only account for 8% of the total amount of sessions and only 3% of the
total occupation measured in hours. For frequent visitors and car
sharing vehicles the opposite applies, their share in charging sessions is
greater than their share in unique users.

4.3. Model results

In Table 2 results for model estimation are presented; note that long
charge sessions (24+ hours) were used as a reference category, and
that the explanatory categorical variables, time of day, day of the week
and type of charger were dummy coded. Interactions between variables
have been tested but did not provide a significant improvement in the
model fit nor in a better interpretability of the model results. Most
variables are significant and of the expected sign (see below), but note
that the effects of many variables are relatively small compared to the
constants. In general, the model provides a significant improvement
(LLβ =−3,052,058) compared to the null model (LL0 =− 4,120,764)
despite that –as could be expected– a significant amount of unexplained
variation in connection duration remains.

4.3.1. Timing
Time-of-day was dummy coded using the morning as a reference.

Wednesday, a regular working day, served as reference for the day-of-
the-week variable. The model results show that the timing (i.e., the
starting point) of the charging sessions has the greatest impact on how
long the session will last. Short sessions (stop & charge or park & charge)
are more likely to occur in the morning and afternoon than during the
evening or night, as suggested by parameters for the evening and night
dummy variables which are significant and negative. These short ses-
sions are equally likely to happen across working days. Significant
negative parameters are obtained for weekend days, with the exception
of Saturday. This result is intuitive, since during Fridays and Sundays
less kilometers are driven (due to less work related traffic) whereas
Saturdays generate shopping related traffic which is likely to corre-
spond to charging behaviour of the stop & charge and park & charge
types. The timing parameters for work & charge are negative for the
afternoon and evening dummies, showing that charging behaviour as-
sociated with the work & charge bin (see previous section for ela-
boration) is most likely to occur in the morning or night. A negative
parameter was also obtained for the Friday dummy. This effect for
Fridays can mainly be explained by the lack of sessions which start very
late in the evening but do not end during the next morning (and in that
sense contrasts with a normal working day). For sessions with a dura-
tion between 11 and 24 h (home & charge) we find a positive dummy for

Table 2
Model estimation results.

Stop & charge 0–1.5 h Park & charge 1.5–7 h Work & charge 7–11 h Home & charge 11–24 h Long charge 24+h

Intercept 3.2182** 4.7381** 4.4408** 2.4339**

Time of Day
Morning (ref.)
Afternoon − 0.6058** − 1.0402** − 3.0575** 0.2186**

Evening − 1.6433** − 2.0761** − 3.1030** 1.2998**

Night − 2.5737** − 2.8124** − 0.9075** 0.7410**

Day of the week
Monday − 0.1266** − 0.062** 0.0256 0.0719**

Tuesday − 0.0558** − 0.0253 0.0128 0.0087
Wednesday (ref.)
Thursday − 0.1255** − 0.1033** − 0.1644** − 0.1517**

Friday − 0.5997** − 0.6596** − 1.2141** − 0.7651**

Saturday − 0.7900** − 0.9211** − 1.9219** − 1.0579**

Sunday − 0.5996** − 0.4251** − 0.6546** − 0.1923**

Use Type
Taxi (ref.)
Frequent − 0.9925** − 0.6437** − 0.4010** − 0.5945**

Visitors 1.3998** 1.6110** 0.6851** − 0.3917*

Car sharing 0.5508** 0.7232** − 0.0409 − 0.6511**

City Characteristics
% Dwellings living − 0.6595** − 0.9009** − 0.7196** − 0.1775*

% Dwellings business − 0.7239** 0.1646 0.1832 − 0.5771**

% Dwellings public 0.7855 0.0595 0.2978 0.1735
% Dwellings Social − 0.4425 − 0.3400 − 1.0163* − 0.2499
Charging station density (charging stations/km2) 0.0473** − 0.0715** − 0.0117** 0.0015**

Paid parking − 0.3132** − 0.4445** − 0.4600** − 0.4222**

Parking pressure (cars/km2) − 0.0023** 0.0004 − 0.0001* 0.0002
City Dummy
Amsterdam − 0.1558* − 0.3324** − 0.4216** − 0.2404**

The Hague 0.2350** 0.2247** 0.2117** 0.1428**

Rotterdam 0.0975 0.0632 0.0275 0.1463**

Utrecht (ref.)
Price 1.8766** 0.1779 0.6019 − 0.955
Type of charger
Level 2 charger (ref.)
Fast Charger 6.4502** 2.3835** 0.8644 0.2001
Charge Hub 0.6339** 0.8224** 0.5703** 0.0351
Number of observations 2,531,841
Nul-Loglikelihood − 4120764
Final loglikelihood − 3,048,663
Ρ2 0.2601

* Significant at 0.05 level.
** Significant at 0.01 level.
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the evening, signaling that these sessions mainly start after working
hours; also this result is intuitive. A negative parameter is found for the
Friday dummy, indicating that this behaviour is replaced by long ses-
sions during the Friday night, as this variable is also negative for all
other options. Most likely these are sessions that last throughout the
entire weekend. These results show that knowing the timing of demand
for charging provides important information concerning the duration of
the corresponding charging sessions. The fact that the relative im-
portance of the time-of-day factors is high, suggests that charging be-
haviour is to a considerable extent habitual.

4.3.2. User types
User types were also dummy coded in which the taxi category

served as reference category. Estimation results show that frequent
users have tendencies for longer charging sessions, which is intuitive in
light of the fact that these users are more likely to live in the area and
therefore charge overnight and during the weekend. Signs of para-
meters for the visitor user type suggest that visitors are more likely to
show park & charge behaviour and also very short sessions up to 1.5 h,
which is in line with expectations as these represent typical visiting
parking behaviours. Taxis were expected to have a large number of
short sessions to refill their car in between picking up customers.
Results, however, show that they are actually more likely to exhibit
home charging behaviour in contrast to other user types, indicating that
many EV-taxi drivers live in the city were they charge overnight. Only
charging overnight is sufficient for an entire day of driving. Car sharing
vehicles, as expected, have a positive and significant parameter for stop
& charge and park & charge sessions. These vehicles are used more in-
tensively and are not parked for a long amount of time as they are then
picked up by another user. These results show that different user types
have different distributions of connection times at charging stations.

4.3.3. City characteristics
Parameters associated with city characteristics show that the type of

built environment is correlated with charging behaviour. The betas for
residential areas show that these areas are more prone to exhibit home
& charge behaviour and very long sessions, most likely referring to re-
sidents leaving their car connected over the weekend. The same holds
for business areas in which the parameters suggest more park or work &
charge behaviour, most likely by employees or visiting costumers. The
estimates for the public buildings variable show that public buildings
have a stronger tendency to attract work & charge behaviour. These
could refer to visitors to e.g. the city hall who leave their car connected
while there. Very long charging sessions are less likely to happen in
these areas. The parameter estimates for social buildings were not
significant.

Charging station density has a relatively big (but still small) positive
effect on 7–11 h charging sessions and a small negative effect on 24+
hour charging sessions. A possible explanation for this result is that
because areas with a high density are also more likely to have a high
demand, the throughput will be higher, resulting in shorter charging
sessions. Paid parking has a positive effect on very long sessions and
also on stop & charge behaviour. Such very short sessions are intuitive in
light of the fact that drivers have to pay a parking fee in line with
parking literature (e.g. Shoup, 2005). Very long sessions could be ex-
plained by EV owners that have a parking permit, making them more
likely to leave their car parked and connected over the weekend.
Parking pressure seems to have little effect on the duration of the
connection to charging stations. The city dummies included in the
model are significant but their effects are small. Hence, to some extent
they account for differences between the cities (e.g. in infrastructure).

4.3.4. Charging station characteristics
The price variable reveals a positive significant effect for smaller

sessions. This is in line with expectations as fast charging stations and
strategically placed charging stations by “EVNet” had slightly higher

prices compared to others. The results indicate that EV drivers used
charging stations with higher prices more often for short charging
sessions. As expected, charging at fast charge stations results in much
shorter connection times than level 2 charging (which served as the
reference category); users specifically choose this type of charging
station if they are in needed of refueling their vehicle. Also note that
these fast charging stations are (often) paid for by the minute, making
longer connection times than necessary unnecessarily costly. Charging
hubs, which are combinations of several level 2 chargers at one place,
are more likely to serve park & charge behaviour, although parameter-
sizes do not indicate a large effect. The model suggests that these hubs
are often used by visitors and car sharing users and serve as a re-
cognizable point where the user is more certain to find an available
charging station than at single stations. They are less likely to be used
for home and long charging.

5. Conclusion and policy implications

This paper is the first to systematically and empirically study the
factors that influence connection times of Electric Vehicles (EVs) at
charging stations. Our overview of the literature shows that many
studies that try to optimize charging infrastructure roll-out strategies,
treat EV charging demand as a spatial-temporal issue (i.e. they focus on
the location and starting time of charging sessions). However, we argue
that, due to the rival nature of charging stations, predicting the char-
ging sessions duration is crucial; also in determining the right number of
charging stations, such duration information is of great importance.
What makes analysis of charging duration particularly difficult in an
urban context, is the fact that charging stations are not solely used for
refueling but for a combination of parking and refueling. An additional
complication factor is that different types of users such as inhabitants,
commuters, visitors, taxis and new modes such as shared electric free
floating cars are all competing for the same charging stations. So far,
the combined nature of parking and charging behaviours, and com-
peting demands by different user types, have not been empirically in-
vestigated in an integral fashion. This research has filled this gap using
a uniquely large dataset containing several millions of charging ses-
sions, over a timespan of three years, at public electric charging stations
in the highly urbanized Western part of The Netherlands, being one of
the front-runners on electric mobility.

Estimation results show that time-of-day-related variables and the
type of charging station have the most substantial effect on the duration
of the connection to the charging station. More specifically, results
show that –especially for level 2 charging stations (up to 11 kW)–
connection duration is very much aligned with parking behaviour and
preferences: due to the lower charging speed at these stations, EV-dri-
vers tend to leave their vehicle parked at a charging station for a longer
time while they are (for example) at work or sleeping. Results even
show that a significant proportion of the charging sessions last longer
than one day, keeping charging stations occupied for almost 30% of the
time in total. Especially for those drivers that do not have a private
parking spot and depend on curbside parking, level 2 charging stations
are vital to serve daily recharging (and parking) needs. Fast charging
stations tend to serve a different purpose as behaviour at such stations is
more like regular refueling behaviour, with short connection times
aimed at the ability to complete the intended trip. Technology ad-
vancements allowing higher charging speeds are therefore also more
likely to result in shorter connection times at these types of stations
compared to level 2 stations, where behaviour coincides with parking.
From an investor perspective it makes sense to focus more on shorter
sessions if investment costs get higher. Policy makers can use this re-
search combined with cost figures (e.g. (Madina et al., 2016)) to see
which type of charging infrastructure provides the most benefit for EV
drivers from a cost perspective.

Our results also suggest that policy makers should be aware that
simply providing areal coverage with charging stations will not
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necessarily meet charging demand in every area. That is because the
type of dwelling also determines the connection duration and also the
timing of the charging session. Areas with mostly one type of dwelling
are expected to experience peak demand, while mixed neighborhoods
could well serve different users with less charging stations due to var-
iation in demand over time. Results also suggest that further in-
vestigation is needed into how different type of users such as car
sharing vehicles, taxis and visitors can make use of charging stations by
home owners. These different user types have different connection
times at charging stations, implying that installing curb sides chargers
could serve multiple types of users at the same time with limited in-
terference.

Our results may assist policy makers and planners in their attempts
to predict demand for charging stations and to adjust accordingly the
number and type of chargers in certain neighborhoods, or implement
policies to increase efficiency at charging stations such as time-based
fees. Other options include stimulating charger sharing by establishing
social norms or allowing EV drivers to connect through applications on
their mobile phone. At closed locations, such as parking garages,
charger sharing could be reached by a ‘valet’ type of service.
Implementing these measures however should be done with great care
and taking into account the local parking situation. For example time-
based fees might not be the best solution for overnight on-street parking
but could do well in high parking pressure areas that have a lot of
daytime parking. Furthermore, our research shows that future research
looking into combining insights from the scholarly literature into
parking with insights into connection times at level 2 charging stations
has the potential to offer better insights in the quite particular kinds of
new parking and EV-charging behaviours at these stations. Combining
the right parking policies with EV charging could prove to be difficult.
Especially with the growing battery sizes of vehicles, cars may possibly
not fully refill if parking times are limited. On the other hand our
analyses show that a significant amount of sessions last longer than
24 h, keeping valuable charging sports unnecessarily occupied. To de-
sign the right policies to tackle this problem, policy makers also need to
combine insights from both the charging and parking literatures. In
contrast, we show that fast charging stations serve a different type of
demand. A promising line of research would be to explore whether
technological advances would allow shorter recharging times, if fewer
of these stations could serve the needs of those that depend on curbside
parking, resulting in a smaller loss of public space.
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