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ABSTRACT
This paper uses RISC-V vector extensions to speed up lattice-based
operations in architectures based on HW/SW co-design. We an-
alyze the structure of the number-theoretic transform (NTT), in-
verse NTT (INTT), and coefficient-wise multiplication (CWM) in
CRYSTALS-Kyber, a lattice-based key encapsulation mechanism.
We propose 12 vector extensions for CRYSTALS-Kyber multiplica-
tion and four for finite field operations in combination with two
optimizations of the HW/SW interface. This results in a speed-up of
141.7, 168.7, and 245.5 times for NTT, INTT, and CWM, respectively,
compared with the baseline implementation, and a speed-up of over
four times compared with the state-of-the-art HW/SW co-design
using RV32IMC.
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1 INTRODUCTION
Currently, the confidentiality and integrity of communication chan-
nels between multiple parties are greatly supported by public-key
cryptography (PKC) algorithms. However, with the arrival of quan-
tum computers, these PKC algorithms are not secure anymore. The
main mathematical problems they rely on, the factorization of big
integers and the calculation of discrete logarithms, can be solved
in polynomial time using Shor’s algorithm [12].

Therefore, post-quantum cryptography (PQC) algorithms, which
are resistant to traditional and quantum computer attacks, are pro-
posed. The National Institute of Standards and Technology (NIST)
has initiated a post-quantum cryptography standardization process
worldwide since 2016 [10]. On July 22, 2020, NIST announced the
15 candidates for Round three [10]. Among these PQC algorithms,
lattice-based algorithms occupy seven places. Thanks to its security
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and efficiency, lattice-based cryptography can be used for many se-
curity applications such as key-encapsulation mechanisms (KEMs),
identity-based encryption (IBE) [20], and Fully Homomorphic En-
cryption (FHE) [9]. The implementation of lattice-based algorithms
is a prominent research area. There are three types of strategies:
pure hardware (HW) design, pure software (SW) design, and hard-
ware/software (HW/SW) co-design [1]. Among those, HW/SW
co-design combines the advantages of the other two, which are
high-speed and flexibility, by partitioning the whole design into
two parts: the hardware part implemented on FPGA or ASIC, and
the software part in one or more processors that can be embedded
in the FPGA or ASIC.

Lattice-based algorithms work with many costly polynomial op-
erations with a high degree. Especially polynomial multiplication
is believed to be one of the bottlenecks in lattice-based implementa-
tions [1]. The number-theoretic transform (NTT), a specialized form
of the Discrete Fourier Transform (DFT) [7], is used by some lattice-
based algorithms such as CRYSTALS-Kyber, CRYSTALS-Dilithium,
and Fully Homomorphic Encryption. Even though NTT can reduce
the time complexity from O(n2) (for traditional DFT algorithms)
to O(nlog(n)), the algorithm is still very time-consuming.

Polynomial operations are suitable for working in a data-parallel
operation mode through vector architectures, also called Single-
Instruction-Multiple-Data (SIMD) architectures. One crucial re-
quirement to implement SIMD processors is to have a vector instruc-
tion set architecture (ISA) that is preferably free and open-source.
Fortunately, vector extensions for the RISC-V ISA are available.
The most recent version is RVV1.0, the 1.0 version of the RISC-
V vector extensions (RVV). To our knowledge, there is only one
work [13] that adopts RVV for the implementation of PQC. In [13],
the authors use RVV in Classic McEliece, a PQC algorithm based
on code-based cryptography. For lattice-based cryptography, per-
formance improvements using RVV are still unexplored.

To fill in the gap, we use RISC-V vector extensions to improve the
efficiency of lattice-based operations based on HW/SW co-design.
We first realize a scalable SIMD processor written in SystemVerilog
to support RVV1.0. Then, we analyze the structure of the number-
theoretic transform (NTT), inverse NTT (INTT), and coefficient-
wise multiplication (CWM) in CRYSTALS-Kyber, a lattice-based
key encapsulation mechanism. Later, we propose two optimiza-
tions of the HW/SW interface and 16 vector extensions: 12 for
CRYSTALS-Kyber multiplication and four for finite field operations.
Our contributions are the following:
• We realize a scalable SIMD processor supporting RISC-V
vector extensions and implement it on a Xilinx Alveo U250
accelerator card.

733

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3489517.3530552
https://doi.org/10.1145/3489517.3530552
http://creativecommons.org/licenses/by/4.0/


DAC ’22, July 10–14, 2022, San Francisco, CA, USA Huimin Li, Nele Mentens, and Stjepan Picek

• We propose two HW/SW interface optimizations and 16
vector extensions for CRYSTALS-Kyber multiplication and
finite field operations. Our results show a speed-up of 141.7,
168.7, and 245.5 times for NTT, INTT, and CWM, respectively,
compared with the baseline implementation, and a speed-
up of over four times compared with the state-of-the-art
HW/SW co-design using the RV32IMC ISA.

2 NOTATION AND BACKGROUND
INFORMATION

We use lower-case italic letters like 𝑝 to denote polynomials, while
lower-case bold letters like p are used to denote vectors of polyno-
mials, and upper-case bold letters like P denote matrices of polyno-
mials. Furthermore, we use 𝑝 , p̂, and P̂ to represent these variables
in the corresponding NTT domain. Further, let v𝑇 be the transpose
of the vector v and A𝑇 be the transpose of the matrix A. We define
v[𝑖] to denote a vector v’s 𝑖-th entry (where 𝑖 starts from zero), and
A[𝑖] [ 𝑗] to denote the entry in row 𝑖 and column 𝑗 in a matrix A. We
define polynomial rings 𝑅𝑞 as Z𝑞 [𝑋 ]/𝜙 (𝑥). Here, 𝜙 (𝑥) is (𝑋𝑛 + 1),
𝑞 is a prime, and 𝑛 is a power of two. We use NTT, NTT−1, and
CWM for the corresponding functions. We use · to denote integer
and polynomial multiplication, and use ◦ to denote coefficient-wise
multiplication. For two vectors of polynomials, f and g, the product
f · g can be computed efficiently as NTT−1 (NTT(f) ◦ NTT(g)).
Finally, we denote messages as𝑚, ciphertexts as 𝑐𝑡 , public keys as
𝑝𝑘 , and secret keys as 𝑠𝑘 .

2.1 CRYSTALS-Kyber
CRYSTALS-Kyber is a lattice-based cryptosystem of which the
security is based on the hardness of the Module Learning With
Errors (MLWE) problem, with 𝑞 equal to 3 329 and 𝑛 256 [2]. Its
public-key encryption scheme (Kyber.CPAPKE) features indistin-
guishability under chosen plaintext attack (IND-CPA) and includes
three steps: key generation (KeyGen), encryption (Enc), and de-
cryption (Dec) [2]. These three steps can be summarized as follows,
assuming that Â ∈ 𝑅𝑘×𝑘𝑞 is generated through uniform sampling,
and s ∈ 𝑅𝑘𝑞 , e ∈ 𝑅𝑘𝑞 , r ∈ 𝑅𝑘𝑞 , e1 ∈ 𝑅𝑘𝑞 and 𝑒2 ∈ 𝑅𝑞 are generated
through centered-binomial-distribution sampling [2, 3]:
KeyGen: 𝑝𝑘 := Â ◦ NTT(s) + NTT(e), 𝑠𝑘 := NTT(s).
Enc: 𝑐𝑡 := (u, 𝑣), with u = (NTT−1 (Â𝑇 ◦ NTT(r)) + e1 and 𝑣 =

NTT−1 (𝑝𝑘𝑇 ◦ NTT(r)) + 𝑒2 +𝑚.

Dec:𝑚 := 𝑣 − NTT−1 (ŝT ◦ NTT(u)).

2.2 Number-theoretic Transform
For the number-theoretic transform (NTT), when 𝜙 (𝑥) is of form
𝑥𝑛+1, the negativewrapped convolution [14] is used to directly com-
pute polynomial multiplication with coefficients in 𝑅𝑞 . For a vec-
tor 𝑓 =

∑𝑛−1
𝑖=0 𝑓𝑖𝑥

𝑖 , its NTT operation transform is 𝑓 = NTT(𝑓 ) =∑𝑛−1
𝑖=0 𝑓𝑖𝑋

𝑖 with 𝑓𝑖 =
∑𝑛−1

𝑗=0 𝜓
𝑗 𝑓𝑗𝜔

𝑖 𝑗 (mod 𝑞) for 𝑖 = 0, 1, . . . , 𝑛−1.𝜔
is the twiddle factor, defined as the 𝑛-th root of unity, with the con-
ditions that ∀𝑖 < 𝑛,𝜔𝑖 ≠ 1(mod 𝑞) and 𝜔𝑛 ≡ 1(mod 𝑞). 𝜓 =

√
𝜔 .

Similarly, the corresponding inverse (INTT) operation is defined as
𝑓 = NTT−1 (𝑓 ) = ∑𝑛−1

𝑖=0 𝑓𝑖𝑋
𝑖 with 𝑓𝑖 = 𝑛−1𝜓−𝑖

∑𝑛−1
𝑗=0 𝑓𝑗𝜔

−𝑖 𝑗 (mod
𝑞) for 𝑖 = 0, 1, . . . , 𝑛 − 1.

The negative wrapped convolution technique dramatically im-
proves the work efficiency of NTT and INTT by eliminating the
doubling of the sizes of inputs with zero padding and a separate
polynomial reduction operation by 𝜙 (𝑥) [14]. However, it adds
pre-processing and post-processing by multiplying with𝜓 𝑗 or𝜓−𝑖 .
Since Round 2 of the NIST PQC competition, the parameter 𝑞 in
CRYSTALS-Kyber has been reduced from 7 681 to 3 329, eliminating
the need for pre-processing and post-processing operations. The
newNTT operation requires an early termination and generates 128
polynomials with a degree of two. Analogously, the INTT operation
processes 128 degree-2 polynomials, and an extra coefficient-wise
multiplication (CWM) is required to multiply two degree-2 poly-
nomials in Z𝑞 [𝑥]/

(
𝑥2 − 𝜔𝑖

)
. In [19] and [17], the authors use a

technique, named DIVby2, to eliminate the multiplication with
𝑛−1 (mod 𝑞) after the butterfly structure of the INTT operation.
That is, when 𝑥 is even, 𝑥/2(mod 𝑞) equals (𝑥 ≫ 1), while when
𝑥 is odd, 𝑥/2(mod 𝑞) = (𝑥 ≫ 1) + 𝑥 [0] × ((𝑞 + 1)/2). The three
algorithms are shown in Algorithms 1, 2, and 3, respectively, where
𝑏𝑟𝑙−1 (·) is the bit-reversal operation for a word size of 𝑙 − 1 [16, 17].

Algorithm 1 NTT Algorithm in CRYSTALS-Kyber
Input: 𝑓 (𝑥) ∈ 𝑅𝑞 , 𝜔𝑛 ∈ Z𝑞 , 𝑛 = 2𝑙 .
Output: 𝑓 (𝑥) ∈ 𝑅𝑞
1: 𝑘 ← 1
2: for 𝑖 from 1 by 1 to 𝑙 − 1 do
3: 𝑚 ← 2𝑙−𝑖
4: for 𝑠 from 0 by𝑚 to 𝑛 do
5: for 𝑗 from 𝑠 by 1 to 𝑠 +𝑚 do
7: a, b,w← 𝑓 [ 𝑗], 𝑓 [𝑚 + 𝑗], 𝜔𝑏𝑟𝑙−1 (𝑘) mod 𝑞
8: t← (w · b) mod 𝑞
9: e, o← (a + t) mod 𝑞, (a − t) mod 𝑞
10: end for
11: 𝑘 ← 𝑘 + 1
12: end for
13: end for
Algorithm 2 INTT Algorithm in CRYSTALS-Kyber
Input: 𝑓 (𝑥) ∈ 𝑅𝑞 , 𝜔−1𝑛 ∈ Z𝑞 , 𝑛 = 2𝑙
Output: 𝑓 (𝑥) ∈ 𝑅𝑞
1: 𝑘 ← 0
2: for 𝑖 from 𝑙 − 1 by −1 to 1 do
3: 𝑚 ← 2𝑙−𝑖

4: for 𝑠 from 0 by𝑚 to 2𝑙 do
5: for 𝑗 from 𝑠 by 1 to 𝑠 +𝑚 do
6: a, b,w← 𝑓 [ 𝑗], 𝑓 [ 𝑗 +𝑚], 𝜔𝑏𝑟𝑙−1 (𝑘)+1 mod 𝑞
7: e, o← (a + b) mod 𝑞, (a − b) ·w mod 𝑞
8: 𝑓 [ 𝑗], 𝑓 [ 𝑗 +𝑚] ← DIVby2 (e), DIVby 2(o)
9: end for
10: 𝑘 ← 𝑘 + 1
11: end for
12: end for
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Algorithm 3 CWM Algorithm in CRYSTALS-Kyber
Input: 𝑓 (𝑥), 𝑔(𝑥) ∈ 𝑅𝑞 , 𝜔 ∈ Z𝑞
Output: 𝑐 (𝑥) ∈ 𝑅𝑞
1: for 𝑖 from 0 by 1 to 2𝑙−1 do
2: w← 𝜔𝑏𝑟𝑙−1 (𝑖)+1 mod 𝑞
3: a0, a1 ← 𝑓 [2𝑖], 𝑓 [2𝑖 + 1]
4: b0, b1 ← 𝑔[2𝑖], 𝑔[2𝑖 + 1]
5: 𝑐 [2𝑖] ← (a0 · b1 + a1 · b0) mod 𝑞
6: 𝑐 [2𝑖 + 1] ← (a1 · b1 ·w + a0 · b0) mod 𝑞
7: end for

3 SYSTEM DESIGN
3.1 SIMD Processor Design
Similar to [11] and [18], the proposed SIMD processor in our paper
contains two parts, as illustrated in Figure 1: a scalar core (top) and
a vector processing unit (bottom). To accelerate the design process,
we use the existing RISC-V core, Ibex [8], as the scalar core. Ibex is
a two-stage, 32-bit open-source core, written in SystemVerilog [8].
The two parts interface with each other through vector instructions,
scalar registers, and memory data.

The vector unit consists of four modules: Vector Instruction In-
terface (VecISAInterface), Vector Load and Store Unit (VecLSU),
Vector Register File (VecRegfile), and Vector Operation Execu-
tion (VecOpExec), as shown in Figure 1. The VecISAInterface
module decodes the vector instructions, which are fetched and
transferred from the scalar core. It decouples these instructions
into configuration-setting instructions, memory instructions, and
vector arithmetic instructions. Then, the configuration-setting in-
structions are processed inside the VecISAInterface module; the
memory instructions are sent to the VecLSU module, and vector
arithmetic instructions are sent to the VecOpExec module. In the
VecLSUmodule, the memory instructions are decoupled into vector
load instructions and vector store instructions. In the VecOpExec
module, the vector arithmetic instructions are decoded further into
different operations by the Arithmetic Operation Pre-Processing
(ArithOpPrepro) submodule, according to the two fields of funct3
and funct6 in the instruction. And then, the exact instructions are
sent to the execution modules, all of which are in the same Exe-
cution Lane (ExLane) sub-module. The lane number (LaneNum)
parameter defines the number of ExLane sub-modules instantiated
in the SIMD architecture.

3.1.1 Vector Register File. Besides the scalar register file inside
the Ibex core, another vector register file is foreseen inside the
vector processing unit. According to the RVV1.0 specification, there
should be in total 32 vector registers [15]. In each vector register,
there are several vector elements. The width of every element is
defined by the parameter ELEN. To be compatible with the Ibex
core, ELEN is fixed to 32-bit in this work. The width of the vector
registers is defined by the parameter VLEN. Consequently, LaneNum
is determined by VLEN /ELEN. That is, a vector register is viewed
as being divided into VLEN /ELEN elements [15]. VL and LMUL are
two other important parameters in RVV1.0. VL is the vector length
and specifies the number of elements to be operated on in parallel
within a vector extension. It can be less or greater than LaneNum.
When VL is less than LaneNum, all elements are put in the same

Figure 1: The architecture of the SIMD RISC-V based Proces-
sor.

vector register. When VL is greater than LaneNum, several vector
registers are grouped. RVV1.0 [15] defines the parameter LMUL, the
vector length multiplier, to specify the number of vector registers
that are grouped.

Figure 2 shows an example with LaneNum = 4 and VL = 8. In this
case, LMUL should be set to 2. As defined in the RVV specification,
the maximum value of LMUL is 8. When LMUL is greater than one,
the base address of each vector that uses the vector register file
changes. For the instruction: {vadd.vv v0,v0,v1}, the base address of
v0 is zero, while the base address of v1 is two. TheVecISAInterface
module takes care of the address allocation.

Figure 2: Vector register file and address allocation.

3.1.2 Vector Load and Store. The vector unit shares the same datap-
ath as the scalar core to read and write scalar registers and load and
store memory data. The data from the two read ports in the scalar
register file are always ready. The writing to the scalar register file is
only enabled when a configuration-setting instruction is processed.
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For vector load and store instructions, our SIMD processor supports
all three different types of address modes as specified in the RVV1.0,
including vector unit-stride mode, vector constant-strided mode,
and vector indexed mode [15]. Vector unit-stride mode accesses
contiguous elements in memory, starting from the base address.
Vector constant-strided mode accesses memory elements with a
constant address space bigger than the width of one element in
memory, starting from the base address. The vector indexed mode
accesses several elements with their address offset value given by a
vector and the base address provided by a scalar register.

The vector load and store instructions are the only ones that
cannot do data-parallel implementations because only one RAM
address can be set, and only one RAM element can be accessed.
Thus, these memory instructions are the most time-consuming
in the SIMD processor. When the store instruction is triggered,
the VecLSU module first reads all elements from the first vector
register address. It then sends these elements to Data RAM one
by one corresponding to the lane order from zero to {LaneNum
- 1}. Then, all elements from the following vector data registers
belonging to the same vector will be fetched in sequence and sent
to RAM through the procedure mentioned above. The process of
the load instruction is the reverse process of the store instruction.
The required data will be fetched from RAM with the address order
defined by the three different modes. All readout data will be sent
directly to the vector register file.

3.1.3 Vector Execution. In the VecOpExec module, the ArithOp-
Prepro sub-module further decodes the vector arithmetic instruc-
tions based on the three-bit funct3 and six-bit funct6 fields. The
funct3 field is to specify sub-categories of arithmetic instructions:
whether the two operands are vector-vector (.vv), vector-immediate
(.vi), or vector-scalar (.vx), and whether the corresponding oper-
ations are integer operations, multiply/division (MULT/DIV) op-
erations, or fixed-point operations. The funct6 field specifies the
operation type, for example, whether the operations are addition,
shift, multiplication, etc.

As shown in Figure 2, after the instruction {vadd.vv v0,v0,v1}
is sent to the VecOpExec module, it is recognized as an integer
operation with two operands to be vector-vector (.vv), and the
operation code to be an addition. Then the two vectors: v0 and
v1, will be read from the vector register file, with the vectors’ base
addresses set to zero and two, respectively. All elements from the
first vector register are read out at the same time. Two elements
from the vector v0 and v1 in Figure 2, with the same index number
(or lane order), will be sent to the same ExLane sub-module for the
addition operation. After the addition operation finishes, the result
from every ExLane sub-module will be sent to vector v0 according
to the index number. Then, all elements from the following vector
registers belonging to the same vector will be fetched in sequence.
Again, two elements with the same index number will be sent
to their corresponding ExLane sub-module, and the result from
every ExLane sub-module will be written back to vector v0. The
parameter LMUL defines the total number of operations.

3.2 NTT Design
We propose two HW/SW interface optimizations to improve the
performance of our architecture: register pooling and automatic

index generation. Further, we propose custom vector instructions
for NTT and for finite field arithmetic operations.

3.2.1 Register Pooling. We use the term register pool for multiple
registers doing the same job. Unlike RAM, where there is often
only one address that can be set, the data in the same register pool
operate independently, and multiple data can be read and written
simultaneously. The purpose of applying register pooling is to
increase the loading and storing throughput in every loop of NTT,
INTT, and CWM and eliminate the time lost when exchanging data
with the Data RAM. Three types of register pools are proposed in
this design to support the parallel computation of the NTT, INTT,
and CWM algorithms in CRYSTALS-Kyber.

The first register pool, named coeff_data, is used to store coeffi-
cient data. There are two register sub-pools in coeff_data, called
coeff_data0 and coeff_data1, respectively, in which there are 256
12-bit registers to store all polynomial coefficients in one NTT vec-
tor. coeff_data0 serves as temporary storage for the coefficient data
of the NTT and INTT algorithms, and for the first coefficient data in
the CWM algorithm. coeff_data1 serves as temporary storage for
the second coefficient data in the CWM algorithm. The second reg-
ister pool, called poly_index, is used to store the index number for
each loop. There are three register sub-pools in poly_index, called
poly_indexa and poly_indexb, and poly_indexw, respectively, in
which there are 128 7-bit registers to store the index number of a, b
and w in Algorithms 1, 2, and 3. The third register pool, named tw,
has 128 12-bit registers to store the twiddle factors. The initial value
of all twiddle factors is pre-calculated and stored in bit-reversal
order, and updated to different values according to the type of
algorithms.

3.2.2 Automatic Index Generation. Before the three algorithms get
started, all polynomials in one vector are stored in the register
pool coeff_data. That is, the result of the previous operation is
not sent back to the Data RAM but stored here in coeff_data. Our
design keeps the outer loop structure and unloops the inner two
loop structures (Algorithms 1 and 2). Customized vector extensions
control the loop number of the outermost layer. The register pool
poly_index changes automatically according to the loop number.
In Figure 3, we illustrate the processing of a vector in NTT with
the polynomial number, the index and the loop number equal to 16,
8 and 3, respectively.

Figure 3: Automatic index generation for a, b, and w in NTT

In each loop, vector a and vector b are read from register pool
coeff_data, and vector w is read from register pool tw. Their poly-
nomial order is changed according to register pool poly_indexa,
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Table 1: Customized vector extensions in the SIMD processor.

Instruction Type Instructions Description Latency
Customized Polynomials Load vlpolye8/16/32 Load Polynomials from Data RAM to coeff_data with element width of 8-bit/16-bit/32-bit. 1+VL
Customized Polynomials Store vspolye8/16/32 Store Polynomials coeff_data to Data RAM with element width of 8-bit/16-bit/32-bit. 1+VL

Customized Multiplication Configuration
vnttcfg Configure multiplication type to be NTT, and set loop number. 2
vinttcfg Configure multiplication type to be INTT, and set loop number. 2
vcwcfg Configure multiplication type to be CWM, and set loop number. 2

Customized Polynomials Read vreadpoly Read polynomial from coeff_data to Vector Register File.

1+LMUL

Customized Polynomials Write vwritepoly Write polynomial from Vector Register File to coeff_data.
Customized Twiddle Factor Read vreadtw Read twiddle factors from tw to Vector Register File.

Finite Field Addition vaddmod Finite Field Addition
Finite Field Subtraction vsubmod Finite Field Subtraction
Modular Reduction vmod Modular Reduction

Finite Field Division by Two vdivby2 Divide the butterfly output by two in the Finite Field

poly_indexb, and poly_indexw, respectively. Later, the re-ordered
vectors a, b and w are stored in the destination vector registers for
the consecutive arithmetic operations. After all operations in one
loop are finished, the order of polynomials in vectors a and b will
be changed back to their initial order according to poly_indexa and
poly_indexb, and written back to register pool coeff_data. Note
that vector w is not sent to tw because it does not change with the
loop number. The whole process is illustrated in Figure 4, where
all parameters are the same as in Figure 3.

Figure 4: The polynomial order changes according to the loop
number in NTT.

3.2.3 Customized Vector Instructions for NTT. There are usually
three methods to extend instructions in RISC-V: 1) using custom
instructions; 2) modifying the compiler; 3) rewriting unused exist-
ing instructions. In [1] and [5], the authors use the first method,
while the second method is adopted in [4]. Modifying the compiler
is often too time-consuming and inflexible because the toolchain
needs to be configured whenever one instruction changes. In this
paper, we use the first and third methods.

To realize the above mentioned operations in 3.2, we use custom
instructions, including custom_0 and custom_1, to extend the spe-
cific vector extensions for multiplication in CRYSTALS-Kyber, see
Table 1. In our design, all these vector extensions are R-Type [1, 5].
The two source operands and the destination operand can be scalar
registers or vector registers. We design 12 customized Vector ex-
tensions for NTT, which belong to six categories.
Polynomial Load Extensions include vlpolye8, vlpolye16, and
vlpolye32. They are used to load data from Data RAM to the vector
register file with a data width of 8-bit, 16-bit, and 32-bit, respec-
tively.
Polynomial Store Extensions include vspolye8, vspolye16, and
vspolye32. They are used to store data from the vector register file to
Data RAMwith a data width of 8-bit, 16-bit, and 32-bit, respectively.
MultiplicationConfigurationExtensions include vnttcfg, vinttcfg,
and vcwcfg. They configure the multiplication to NTT, INTT, and

Table 2: Resource usage for SIMD Processor supporting
CRYSTAL-Kyber multiplication.

Lane Num LUT LUTRAM FF BRAM DSP
0 2.4K 48 890 16 4
4 45.5K 48 13.3K 16 26
8 93.2K 48 17.9K 16 42
16 166.1K 48 27.2K 16 74
32 318.2K 48 46.0K 16 138

CWM, respectively. They also set the loop number.
Polynomial Read Extension includes vreadpoly. It is used to read
a polynomial from coeff_data to the vector register file.
Polynomial Write Extension includes vwritepoly. It is used to
write polynomials from the vector register file to coeff_data.
Twiddle Factor Read Extension includes vreadtw. It is used to
read twiddle factors from tw to the vector register file.

3.2.4 Optimization for finite field arithmetic operations. In this
work, we also extend four vector extensions for finite field opera-
tions using the third method mentioned in 3.2.3, including vaddmod,
vsubmod, vmod, vdivby2, as listed in Table 1. We define vaddmod
for finite field addition, vsubmod for finite field subtraction, vmod
for modular reduction, and vdivby2 for 𝑥/2 mod 𝑞 after the INTT
operation, as described in Section 2.2. What is worth mentioning
here is the modular reduction operation, vmod. We adopt the tech-
nique proposed in [17] to reduce the latency to one clock cycle by
utilizing the property that 212 ≡ 29 + 28 − 1(mod 3329).

4 EXPERIMENTAL RESULTS
We first develop the scalable SIMD processor using SystemVerilog
and select a Xilinx Alveo U250 Data Center accelerator card for
FPGA evaluation. The Alveo U250 has rich resources to support
multiple lanes, within a total of 1 728K LUTs, 791K LUTRAM, 3 456K
flip-flops, 2 688 BRAM, 12 288 DSP, 676 IO, 1 344 BUFG, and 32 PLL.
After completing the behavioral simulations using Vivado 2019.2,
we set LaneNum to 4, 8, 16, and 32, respectively. The four different
architectures and the original IBex core (zero lanes) are synthesized
and implemented through Vivado 2019.2 using the Alveo U250 card.
The resource usage is shown in Table 2, where the LUT, LUTRAM,
FF, BRAM, and DSP usage is compared.

The next step is to optimize the NTT, INTT, and CWM algo-
rithms. We use the RISC-V GNU Compiler Toolchain (version rvv-
intrinsic)1. Similar to [4], we set the optimization flag to ‘O3’ to
compile the code and the baseline implementations to the clean
1https://github.com/riscv-collab/riscv-gnu-toolchain/tree/rvv-intrinsic
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Table 3: Execution time for different values of LaneNum in our SIMD processor and comparisons with the baseline implemen-
tation and [4].

Test [4] C-baseline
(Ibex )

Our SIMD Processor
Lane4 Lane8 Lane16 Lane32

Cycles Cycles Cycles Speedup Cycles Speedup Cycles Speedup Cycles Speedup
NTT 1 935 54 261 3 022 18 1 538 35.3 796 68.2 383 141.7
INTT 1 930 76 413 3 582 21.3 1 818 42 936 81.6 453 168.7
CWM — 28 228 926 30.5 466 60.6 236 119.6 115 245.5

C-code of the PQ-M4 project [6]. First, we run the baseline code on
the pure IBex core, the clock cycle count for the three algorithms
are 54 261, 76 414, and 28 228, respectively. Then we optimize these
three algorithms using RV32IMC, RVV1.0, and customized vector
extensions for CRYSTALS-Kyber multiplication and finite field op-
erations. Again, we set the LaneNum to 4, 8, 16, and 32 and then
count the clock cycles for the NTT, INTT, and CWM algorithms. All
results are shown in Table 3. From the results, we can see that the
execution time of NTT, INTT, and CWM in our design is optimized
by 141.7, 168.7, and 245.5 times respectively, compared to the base-
line when the LaneNum is set to 32. When compared with relevant
related work in [4], which is a RISC-V based HW/SW co-design
written in SystemVerilog using the RV32IMC ISA, the execution
times of NTT and INTT are optimized by nearly 5.1 and 4.3 times,
respectively.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we explore RISC-V vector extensions to improve the
efficiency of lattice-based operations based on HW/SW co-design.
We first realize a scalable SIMD processor written in SystemVerilog
to support RVV1.0. And then, we analyze the structure of the three
polynomial multiplication algorithms in CRYSTALS-Kyber, namely
NTT, INTT, and CWM. We propose two techniques, called register
pooling and automatic index generation, to optimize the HW/SW
interface and design 12 vector extensions for CRYSTALS-Kyber
multiplication and 4 for finite field operations. Our results show a
speed-up of 141.7, 168.7, and 245.5 times for NTT, INTT, and CWM,
respectively, compared with the baseline implementation, and a
speed-up of over four times compared with state-of-the-art HW/SW
co-design using RV32IMC. In future work, we will focus on the
vectorization of the Keccak core and the whole CRYSTALS-Kyber
cryptosystem. Additionally, we will also consider countermeasures
against side-channel attacks on SIMD architectures. We will publish
all our code to facilitate follow-up research.
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