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Abstract

Parasitic diseases such as malaria remain a mayor burden on global health. One of the biggest
challenges still to be overcome is that of inadequate diagnoses. This research explores the
opportunities that Hyperspectral Imaging yields in this field. The first goal is to estimate
the spectral signature of Malaria parasites in non-stained or Giemsa-stained thin smear blood
samples and of Schistosoma parasite eggs in urine samples. For this different endmember ex-
traction algorithms are combined with various methods of pre-processing and dimensionallity
reduction. The used endmember extraction methods are pure pixel index (PPI), NFINDR,
Statistics Based and simplex identification via split augmented Lagrangian (SISAL). For de-
noising Savitzky Golay and 3 dimensional gaussian filtering is used and the dimensionallity
reduction is done with PCA, ICA or HySime. The resulting spectral signatures of the algo-
rithms are validated by inspecting the endmember locations, spectra and abundance maps.
They have furthermore been compared by the classification performance where the spectral
signatures are used in the feature derivation. This is done by deriving a detection map using
OSP or CEM detection and then using the SVM or random forest classifiers to classify cells
as being infected or not. These performances are furthermore compared to RGB image based
classification.

In case of the stained Malaria sample the four endmember extraction methods are shown to be
applicable to various degrees. Firstly, the PPI method is shown to be inconsistent, resulting
in different spectra each run. Secondly, the statistics based method unable to separate the
spectral signatures of the red blood cells and thirdly the background. Thirdly, The NFINDR
method seems to work well considering the endmember locations, spectra and abundance
maps, but leads to a low classification performance. The research concludes that Sisal made
the most accurate estimations of the spectral signature of the parasite. The results from all
the validation methods are in line with expectations. Furthermore, the use of this spectral
signature in the feature derivation process results in the highest classification performance.
This performance is also shown to be significantly higher compared to using either the first
principal component of the full hyperspectral data or the RGB images. Applying the same
methods to the Schistosoma sample it is found that some of the methods, though interestingly
not Sisal, are able to to create an abundance map in which the egg is separated from the
background. However, none of them are able to separate the egg and the white blood cell
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and detection maps using these signatures did not show the egg more clearly than the first
principal component did. None of the methods are found to be able to extract the spectral
signature of the unstained Malaria parasite.

Finally, a hypothetical multispectral microscope is proposed which images at the wavelengths
where the spectral signature of the parasite in a stained sample has the biggest difference
in light transmittance to the other endmembers. This setup is simulated from the available
hyperspectral data and its classification performance is compared to classification performance
using the full hyperspectral data and using the RGB images which are simulated from the
same data. The classification using the discriminative wavelengths is found to outperform
both in terms of sensitivity and specificity. This implies that the images at these specific
wavelengths provide more discriminative power and such a multispectral setup could provide
a significant advantage over RGB imaging.

This master thesis is performed at Delft Center for Systems and Control (DCSC), Delft
University of Technology (TU Delft).
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Preface

This document is my Master of Science graduation thesis. I have chosen to do my research
on the subject of parasite detection using hyperspectral imaging. The subject specifically
appealed to me since it combined my interest in optics and data science with a prospect of
contributing to a field of research that aims to prevent the deaths and sorrow of millions
of people. This has given me a clear purpose and motivator and my hope is to provide a
significant contribution to the advance of parasite detection techniques with my research.
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“Man is nothing else but what he makes of himself.”
— Jean-Paul Sartre





Chapter 1

Introduction

Parasitic diseases such as Malaria and Schistosomiasis remain a mayor burden on global
health. The majority of the deaths related to these diseases occur in sub-saharan Afrika
where there is a lack of good health facilities. This often leads to inadequate diagnoses which
results in the disease progressing further than necessary. The lack of proper training of the
microscopists has been proven to be one of the root causes. As an answer to this problem
the field of autonomous detection arose, aiming to automate this part of the diagnostics
process. This has traditionally often been done by using bright field microscopy, capturing
the image using and RGB sensor. After segmenting the cells from the image some classifier
is trained to determine whether a cell is infected or not. Most research these days is directed
at the application of different segmentation and classification methods. This research aims
to explore a different path to improve parasite detection, namely multi- and hyperspectral
imaging. These imaging methods have found popularity in a wide range of applications over
the last decade due to the ever increasing computational power at our disposal. The increased
spectral resolution in hyperspectral images gives a lot more data to work with. This data
could be used directly in the process of classifying cells to be infected or not. Given a big
enough samplesize this is likely to result in improved classification performance. However,
as the samplesize in this study is rather small, using the data directly will likely lead to
overtraining. The direct application of hyperspectral data in classification will therefore not
be the main aim of the study. Instead, the main aim will be to use the hyperspectral data to
estimate the spectral signatures of the parasites using various endmember extraction methods.
A somewhat large amount of combinations, namely PPI, NFINDR, statistics based and Sisal
combined with multiple different denoising and dimensionallity reduction methods, will be
tested. This is because little is known about the application of endmember extraction in
microscopy. As the methods have different strengths and weaknesses each of the different
types of endmember extraction is explored. This leads to the first research question

Can Hyperspectral Imaging be used to accurately determine the spectral
signatures of the Malaria and Schistosoma parasite?
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However, hyperspectral imaging equipment is rather expensive and thus not very suitable
for direct application in sub-saharan Afrika. Nonetheless, it might prove valuable in that
the spectral signatures of the parasite and the other substances in the sample can be used
to determine the wavelengths which have the most discriminative power. This could in help
with the development of a more affordable multispectral machine with greater capabilities
than its RGB based counterpart. the second research question will thus be

Does Multispectral Imaging based on these spectral signatures provide a
significant benefit over traditional RGB imaging in autonomous detection?

1-1 Outline

The report is made up of 4 more chapters. In the first chapter Malaria and Schistosomiasis are
introduced along with some of its relevant features, followed by a general overview of some of
the more popular methods of red blood cell segmentation and classification as of the moment
of writing. Here, the methods are explained in the context of RGB images, but note that
these methods can be applied to any image. The main aim of this chapter is to give a good
introduciton into autonomous parasite detection. The next chapter gives an introduction
into hyperspectral imaging, after which the all the steps regarding endmember extraction are
treated in depth. Several algorithms on virtual dimensionallity estimation, dimensionallity
reduction and endmember extraction are discussed. After this chapter come the results.
First, the classification using the hyperspectral data versus the RGB data are compared.
Next, the performance of the endmember extraction methods are validated by inspecting the
corresponding pixels, spectra and abundance maps. The methods are furthermore compared
by their classification performance using the signatures to create detection maps. In the last
experiment, a hypothetical multispectral setup is tested against a RGB setup to determine
whether the previously mentioned discriminative wavelengths do provide an advantage over
RGB imaging. In the final chapter the results are discussed and a conclusion is given in
relation to the research questions.
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Chapter 2

Autonomous Parasite Detection

This chapter will give an short introduction into the current state of Malaria and to a lesser
extend Schistosomiasis. It will cover the parasites that causes the diseases and the most
widely used methods of diagnosis. It will go on to discuss the method of conventional bright
field microscopy as it remains the gold standard and is the most closely related to hyperspec-
tral imaging. The main body of this chapter will subsequently focus on autonomous detection
using bright field microscopy, focusing mostly on Malaria as this research field is much larger.
It will provide the reader with insight into the current state of research and its shortcom-
ings. The subjects of preprocessing, red blood cell segmentation and finally classification are
touched upon and should give the reader necessary background knowledge and serves as a
good introduction into the main subject of the research. Reading this chapter it will become
clear to see the potential hyperspectral microscopy has in this field.

2-1 The State of Malaria Worldwide

Malaria is a parasitic disease that according to the World Malaria report, though declining,
still costs the lives of an estimated 405000 people worldwide in 2018. 2013 million of the total
228 million cases happened in Africa [16]. Most of these deaths occur in rural areas and most
researchers agree that a lack of good health facilities plays a big role. Inadequate diagnosis
is one of the mayor problems that still has to be overcome.

2-1-1 Malaria Detection

Malaria can be diagnosed accurately in more developed countries. Here, bright field mi-
croscopy using giemsa stains remains the gold standard. It has high sensitivity, the chance
of a positive sample to test positive, high specificity, the chance of a negative sample to test
negative, and a low limit of detection, meaning the threshold for amount of parasites in the
blood for them to get detected, is small. However, this method is very time consuming and
requires trained personnel, lack of which can lead to vast variations in performance [17][18].
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4 Autonomous Parasite Detection

In response to this problem various rapid diagnostic tests (RDT) have been developed. These
are fast and easy to perform. However, as described in [19], though outperforming poorly ex-
ecuted bright field microscopy diagnoses, it has its limitations. Sensitivity has been reported
to vary widely [20] and the tests are also unable to detect mixed infections, distinguish be-
tween species and detect low concentrations of parasites. The various other methods that
have been developed also tend to fall into one of these these two categories, either requiring
a lot of expertise and being time consuming or having severe limitations. In recent years,
this has led to the development of various methods combining microscopy and image analysis
software and/or machine learning algorithms [2], ranging from conventional classifiers to neu-
ral networks. These methods can greatly improve the reliability of diagnoses as they are not
reliant on the skill of the microscopist. They can furthermore speed up the process allowing
for more patients to be tested and could reduce cost.

Figure 2-1: Illustration of how the manual examination under the microscope is replaced by an
autonomous process of data acquisition, pre-processing, cell segmentation, feature extraction and
finally classification [1]

2-1-2 The Plasmodium parasite

Malaria is a disease caused by parasites that belong to the Plasmodium genus. In hu-
mans, Malaria is caused by five different Plasmodium species named P.falciparum, P.vivax,
P.Malariae, P.ovale and P.knowlesi. Of these P.falciparum and P.vivax account for the may-
ority of deaths. The different types will not be treated individually, but one should be aware
that being able to differentiate between them is beneficial in determining the best treatment.
These parasites are transmitted through bites of infected female Anopheles mosquito’s. In
humans, the parasites first grow in the liver and then spread to the red blood cells where
they start to cause symptoms. In the blood the parasite infects a red blood cell where it
undergoes four stages, each giving a distinctly different appearance under a microscope. The
total development cycle takes about 48 hours during which the parasite goes through the ring,
trophozite, schizont and gametocyte stage. After the gametocyte stage the cell is destroyed
and merozoites are released which then go on to invade other cells starting over the cycle
[21]. Being able to differentiate between stages can be advantageous as it is a good indicator
of the severity of the disease. Non-severe cases mostly showing first stage parasites and se-
vere cases often showing all stages to be present. Figure 2-2 gives microscope images of each
of the species and stages in a stained thin smear sample as well as some characteristics to
differentiate between types.
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2-2 The State of Schistosomiasis Worldwide 5

Figure 2-2: Five different human Malaria Plasmodium species and their life stages in thin blood
film [2] (Source: K. Silamut and CDC)

2-2 The State of Schistosomiasis Worldwide

Schistosomiasis is a parasitic disease that is caused by trematode worms. The parasite spreads
through infested waters and it is estimated that some 236.6 people are at risk of the disease
and the estimated death toll varies between 24072 and 200000. Almost half of the people at
risk receive preventive treatment as of 2019. As was the case with Malaria, most cases occur
in sub-saharan Afrika. Similarly, inadequate diagnosis remains one of the biggest problems.

2-2-1 Schistosomiasis Detection

For Schistosomiasis there are two main approaches to diagnostics, antibody tests and bright
field microscopy, both with some mayor drawbacks. The antibody test is very fast and
sensitive, but the antibodies remain present for months to years after infection, the test thus
not being able to distinguish between current and past infections. In case of bright field
microscopy, the disease cannot be diagnosed for the first two weeks, after which the eggs start
to show up in the faecal matter. Still, this has resulted in the microscopy based method being
used in most areas. As is the case with Malaria, using bright field microscopy, Schistosomiasis
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6 Autonomous Parasite Detection

can be accurately diagnosed given careful procedure and trained personnel. In this case faecal
matter, using the Kato-Katz technique, or urine samples are examined under the microscope.
If the person is infected, both will contain the eggs of the parasite. In case of the Kato-Katz
technique a piece of cellophane which has been soaked in methylene blue glycerol is used to
make the eggs visible, while in case of the urine test the eggs are generally made visible by
adding iodine. It is however still necessary to use a 20x or 40x lens to see the eggs, which
makes the process of examining the whole sample rather slow. Using lower magnification
lenses would make it possible to examine larger areas of the sample at the same time, but it
also makes it significantly harder to spot the eggs. Some papers show classifiers using textural
information [22]. Others show convolutional neural networks [23] can be applied to this task
to reasonable success, but much is still to be won.

2-2-2 The Schistosomiasis Parasite

The Schistosomiasis disease is caused by blood flukes, parasitic worms, of the Schistosoma
genus. There are 2 major forms of Schistosomiasis, intestinal and urogenital. Of the intestinal
kind there are four four species, the Schistosoma mansoni, Schistosoma japonicum, Schisto-
soma mekongi and Schistosoma guineensis. Of the urogenital kind there is one, Schistosoma
heamatobium. Each specie has a distinct form and size, as displayed in figure 2-3. In this
research we’ll be focusing on the intestinal species as these result in eggs in the urine, thus
being detectable in the way described before. Infection occurs when larval forms of the para-
site, released by freshwater snails, penetrate the skin while in contact with infested water. It
can furthermore be transmitted among humans infected humans contaminate water sources
with their excreta containing the parasite eggs. When the parasite has entered the body it
further develops. The females then lay eggs which end up in faeces and urine, as well as body
tissue, where it causes harm to the organs of the host.

Figure 2-3: The different species of Schistosoma, size given in micrometers

2-3 Light and Microscopy

Understanding the diseases, the next step is to understand the way they are detected. The
most commonly used method for Malaria detection and one of the more common once for
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2-3 Light and Microscopy 7

Schistosoma detection is bright field microscopy and it remains the gold standard to this day.
The theory of how light interacts with matter and how this is used in bright field microscopy
will be treated somewhat more in depth in this section as this is knowledge is important for
understanding hyperspectral microscopy later on.

2-3-1 Light Absorption, Reflection and Transmission

Crucial to understanding microscopy is understanding why we see what we seen when we look
into the microscope. As light hits matter, in this case the sample, one of several things can
happen. The light is either reflected, absorbed, scattered or transmitted, each illustrated in
2-4. In case of reflection the light bounces of the new medium under the same angle. Light
absorption happens when the new medium takes up the energy of the photon. Scattering
is somewhat related as the light is first absorbed and then re-emitted, often in a different
direction and wavelength. Finally, when light is transmitted it passes through the new medium
( albeit its direction is changed, see 2-3-3 ). Of course, not one, but a combination of all
of these phenomena happen simultaneously, and in different proportions depending on the
wavelength of the light. In a microscope the sample is homogeneously lit from below and only
the transmitted light is observed. Due to the difference in light transmittance of substances
at different wavelengths it is possible to differentiate between them.

Figure 2-4: The four main interactions light has with matter

2-3-2 Light as a Wave

Without getting to in depth, as this is not necessary to understand the rest of the research,
light in optics is treated as wave in the electromagnetic spectrum, the electric and magnetic
field of this wave being orthogonal to each other and propagating away from a point source. Its
respective wavelength is determined by the source that produced it and different wavelengths
have vastly different effects on matter. These wavelengths range from 10000km - 1mm ( radio
waves ) to smaller than an atomic nuclei ( gamma rays ), with the visible spectrum in between
ranging from 400 to 700 nm. Treating light as a wave in the electromagnetic spectrum helps
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8 Autonomous Parasite Detection

Figure 2-5: Refraction of light at when changing medium [3]

us understand some essential phenomena in microscopy, namely refraction and the Rayleigh
criterion.

2-3-3 Refraction

Refraction can be understood by looking at what happen to the electromagnetic wave at the
plane of incidence as it enters a new material. When entering a new material, the speed of
propagation of the wave changes, which in turn causes the the waves in the new material to
have a different wavelength. However, since the waves need to be connected at the plane of
incidence, the direction of the wave must change ( unless the wave is perpendicular to the
plane of incidence ), as can be seen in 2-5.

The refraction change of direction due to this refraction can be most easily calculated using
Schnell’s law, given by

sin θ1
sin θ2

= n1
n2

where θ1 is the angle between the direction of propagation of the light in the first medium and
the plane of incidence and θ2 the angle between the direction of propagation of the light in
the second medium and the plane of incidence. n1 and n2 are the refractive index of medium
1 and medium 2.

2-3-4 Lenses

Lenses make use of this phenomenon. Due to their shape the change in direction of propaga-
tion of the light happens twice in the same direction, causing a coherent light source to either
be converging or diverging afterwards. In case of a converging lens, the coherent light source
is focused in a single point at the focus length of the lens. Any point source is also focused
at a certain distance from the lens which can be calculated using the thin lens formula.
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2-3 Light and Microscopy 9

Figure 2-6: A real image of the object is created at a distance which can be determined using
the thin lens formula [4]

1
f

= 1
s1

+ 1
s2

Here, f is the focal length of the lens, s1 is the distance of the point source to the lens and
s2 is the distance to the plane in which the image of the point source is formed. As an object
can for the purpose of optics be represented as a multitude of point sources, a real, inverted
image of the object will be formed in this plane, as is represented in ??.

2-3-5 Rayleigh Criterion

However, these light waves interact with each other when passing through a circular aperture
or lens. Two waves of the same amplitude, wavelength and polarization with no phase dif-
ference would add up in what is known as constructive interference, while two waves of the
same amplitude, wavelength, polarization, but a 180 degrees phase difference would cancel
out completely in what is known as destructive interference. Due to this interference the light
source is not reconstructed perfectly, but produces a ring shaped diffraction pattern, known
as the airy disk. The radius of the inner circle can be calculated using

θ = 1.22fλ
D

where is the wavelength, f is the focal length of the lens and D is the diameter of the lens.
When two points are too close together, their airy disks will be indistinguishable from each
other, thus limiting the spatial resolution of the image, as can be seen in 2-7.

2-3-6 Microscopy

A microscope uses multiple optical elements such as lenses and apertures to first properly
illuminate the sample and then enlarge it so it can either be looked at directly or captured by a
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10 Autonomous Parasite Detection

Figure 2-7: Two airy discs located too close together are indistinguishable from each other

camera sensor. The schematic ?? shows the microscope used in this research. The microscope
is broken up into three sections, the illumination path (orange), the sample (green) and the
imaging section. Given all the optical elements are aligned properly the light passes through
through the various lenses in the illumination path eventually homogeneously illuminating the
area of interest on the sample with coherent light. Moving the objective lens such that the
sample is in the focal plane it then creates a coherent beam which can either go through an
eyepiece which makes it possible to observe the sample directly or be focused on the camera
sensor by the tube lens as is the case in this setup.

2-4 Sample Preparation

Focusing back on Malaria, before the sample can be observed under the microscope it needs to
be prepared. There are multiple choices to be made here. The first important choice is between
creating a thin or thick smear sample, each with their own advantages and disadvantages.
The second choice what type of staining is to be applied to the sample to make the parasites
more visible. This is then furthermore dependant on the type of microscopy used. This
section will give a short overview of some of the possible choices.

2-4-1 Thin and Thick smear samples

In order to observe the blood sample under the microscope a drop of it needs to be applied to
a glass slide. This can be done in one of two ways, a thick or thin smear, the effects of which
can be seen in 2-8. Using the thick smear it is currently only possible to detect whether the
parasite is present, while using the thin smear it is also possible detect the type and stage
of the parasites, as well as the parasitemia, the percentage of cells that are infected. These
factors play an important role in the determination of the severity of the case and in choosing
the right treatment. However, thick smears are generally used in the field as they make it
possible to examine a larger amounts of blood cells at once, increasing the sensitivity[24].
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2-5 Data Acquisition 11

Figure 2-8: A thick (left) and thin (right) smear blood sample under the microscope [5]

2-4-2 Staining

The next topic to discuss is staining. Hyperspectral imaging could possibly make this step
redundant, but for traditional methods it is necessary in order to be able to see the para-
sites. Many different kinds of stains have been developed over the years in order to increase
detection performance. However, the most widely used stains remain the Giesma (1902) and
Leishman (1901) stain combined with bright field microscopy. The former has been proven
to be very reliable but requires experienced personnel and is relatively time consuming while
the latter is cheaper and easier to perform at the cost of being slightly less reliable. Further-
more, several staining methods have been developed for other types of microscopy and have
been found to be advantageous in some regards. Notable examples are fluorchrome [25] and
Dapi/Mitotracker [26]. using the fluorchrome stain for example, the sample is illuminated
by a near monochromatic (single wavelength) coherent light source with a very specific short
wavelength which is absorbed by the fluorophores (fluorescent stains) which then emit light
of a much longer wavelength in the near infrared range. The source light can then be filtered
out to reveal the materials which the fluorophores bind to.

2-5 Data Acquisition

Traditionally the Malaria detection is mostly done by direct observation. The sample is
observed under the microscope to make a diagnosis. However, the last few years have seen a
lot of research is being done to automate this last step, capturing the image on a camera and
then automating the diagnosis. Depending on the microscope and method to be used, different
kinds of cameras can be used. Bright field microscopy is the most used as the equipment
necessary is cheap and therefore usable in low-resource settings. On the other hand fluorescent
microscopy has shown to be very reliable in cases where type, stages and parasitemia needs
to be determined [25]. These methods require different kinds of microscopes and imaging
equipment. In bright field microscopy only the part of the electromagnetic spectrum that
belongs to visible light is employed to image the sample. The sample is illuminated by
coherent white light. An image is created by a RGB (red, green and blue) CCD camera
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12 Autonomous Parasite Detection

which measures an three intensities per pixel, one for each of the colorbands. These values
can be used to recreate the color image of the object. For other kinds of imaging such as
fluorchrome the sample is generally imaged by a monochromatic CCD camera producing a
single intensity image as only the light at a specific wavelength is of interest.

2-6 Preprocessing

When the image has been captured by the camera sensor it generally first needs to be pre-
processed. The main objectives here are to remove unwanted distortions such as noise and
enhance features such as contrast and signal-to-noise ratio. Various relevant methods of spa-
tial preprocessing are discussed in this section. Since they are of spatial nature these are
generally applied to the intensity images of the three colorbands if bright field microscopy
is used or the single greyscale images resulting from various other types of microscopy. One
of the most commonly used spatial processing techniques is smoothing. Smoothing is often
used to reduce noise. It does so by convolving the image with a mean or gaussian filter where
the output pixel is the average or weighted average of the original pixel and neighbouring
pixels. To increase contrast, two techniques are most commonly used. Contrast enhancement
and (adaptive) histogram equalisation, the effects of which can be seen in 2-9. In the case of
contrast stretching the range of intensity values of the image are stretched to the maximum
dynamic range. In case of histogram equalization a linear mapping is found that brings the
histogram in which intensity value is equally probable of occurring.

Figure 2-9: Effects of contrast stretching (middle) and histogram equalization (right) [6]

2-7 Red Blood Cell Detection and Segmentation

When the image has been enhanced it can be analysed. Generally the first step is red blood
cell segmentation. This is the process that creates masks which are used to separate each cell
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from the rest of the image, as shown in 2-10. In most publications some type of thresholding
is used to create a binary image after which morphological operation are used to create masks
that can be used to segment an area (in this case the blood cell) from the image. A popular
type of thresholding is Otsu thresholding [27], which separates the image into a foreground and
background by finding a threshold which minimizes intra class variance. Further processing
can be done to split clusters, or these can simply be left out. However, in some publications
edge detection is used instead. An edge of an object in the image is often a high fluctuation in
intensity in one or several wavebands. However, since using these filters corresponds to high
pass filtering, it also results in amplifying the noise in the image. These techniques may thus
not work well in high noise datasets. Common methods in this category include gradient and
Laplacian filters. These edge maps can be used to find boundary edges by some criterion,
as in [28]. The terminal points of these boundary edges are then linked together if they are
close to each other and the curvature is similar to the curvature of RBC’s. As before, these
closed circles can be further processed to split clusters and then be used to create masks.
Both techniques are generally combined with morphological operation such as opening and
closing in order to determine the final mask. If performed correctly, this will result in non
connected masks that are close to the outlines of the RBC’s. Each RBC can now be separated
and classified.

Figure 2-10: segmentation boundaries obtained in RBC segmentation [7]

2-8 Parasite Detection

Classifying the RBC’s as being infected or uninfected requires the choice and training of a
classifier. The training in turn requires a training set consisting of a preferably large set of
examples for which the classification of being infected or not is known. such a set is generally
created by a trained microscopist. However, in case of many traditional classifiers a small set
of features needs to be extracted from the image of the RBC. These features should hold as
much useful information on the cell as possible as they are the input by which the classifier
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has to determine whether a RBC is infected or not. However, the choice of classifier also has
a great influence on the choice of features.

2-8-1 Feature Extraction

Preferably, a set of features is determined which is not too large as this could lead to worse
performance due to the curse of dimensionallity, a phrase introduced by [29] referring to
various phenomena that occur in the analysis of high dimensional spaces. However, the set
has to be chosen big enough and in such a way that it provides enough discriminative power
to determine which RBC is infected and which is not. These features are generally derived
from greyscale or colorband intensity images and are generally statistical, geometrical or
textural in nature. In the first case a feature is to derived from the intensity histogram of an
image containing the intensity values and their number of occurrences. These histograms can
then be described by a few descriptors. Obvious possibillities are mean, variance and higher
order statistics. Textural features, introduced by Haralick [30], try to capture the textural
information in the image. It assumes that this textural information is contained in the overall
average spatial relation between grey tones in the image. A grey level co-occurrence matrix is
determined which counts the occurrences of neighbouring pixels to the reference pixels given a
certain distance. This matrix is then used to determine the various Haralick descriptors. The
most commonly used are maximum probability, correlation, contrast, energy, homogeneity
and entropy as the other descriptors are all correlated to these. Finally, some geometrical
features can be derived from the masking image. Common examples are area, perimeter,
compactness and circularity.

Figure 2-11: feature extraction diagram

2-8-2 Classification

Finally, having derived a feature set for each cell we can move on to the last stage where
the infected and non-infected red blood cells are to be distinguished, as shown in 2-12. This
is generally achieved with some sort of classifier. Examples of the use of supervised learn-
ing algorithms for Malaria detection such as the linear discriminant analysis or quadratic
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discriminant analysis classifier, k-nearest neighbor classifier and support vector machine are
easily found in the literature and often provide good results. The first two are based upon
the assumption that the classes have a Gaussian density distribution. The k-nearest neigh-
bour classifier does not make this assumption but does rely on euclidean distances for its
classification. These classifiers are thus more likely to suffer from the curse of dimensional-
lity. Less susceptible to this are support vector machines. These types of classifier have been
getting more and more popular over the past few years due to the fact they can handle larger
amount of features relative to the size of the dataset. The same benefits and often even better
performance can be achieved with random forest classifiers, but these are computationally
heavier. Lately, the field has also been expanding into neural networks and deep learning
classifiers [31]. Though these have been shown to outperform traditional classifiers, they are
very computationally heavy to train and need large datasets. As no publicly available dataset
of hyperspectral Malaria sample images exists and needs to be created for this research, these
types of classifiers will are not considered for this research. The classifiers used in this research
are discussed more in detail at the end of the next chapter.

Figure 2-12: infected cells (left) and parasitized cells (right) according to classification algorithms
[8]
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Chapter 3

Hyperspectral Image Analysis

This chapter will start with a short introduction into how hyperspectral imaging (HI) works.
It then proceeds to discuss how the preprocessing should be approached differently compared
to RGB, after which it moves on to the main subject of the chapter, endmember extraction.
In this process a certain amount of signal sources, which most likely make up the data, are
estimated. This process consists of several stages. In the first stage the amount of distinct
spectral signatures present in the data, namely the virtual dimensionallity (VD), is estimated.
The second stage reduces the dimensionallity of the data. In the last step the endmembers are
extracted from the data. The algorithms discussed in this chapter have each found themselves
to useful in a range of applications. The chapter then moves on to how these endmembers
can then be detected in new data and be used to make a per cell classification of whether it
is infected or not. It finally concludes with a short overview of the microscope used in the
experiments.

3-1 Introdcuction to Hyperspectral imaging

HI is a very powerful technique that has found popularity in a wide range of applications
over the last decade. This rise in popularity is mainly caused by the decrease in price of the
necessary equipment and ever increasing power of computers. These factors are making the
acquisition and processing of the large amount of data in hyperspectral imaging much more
achievable. HI differs from conventional color imaging in that instead an intensity value in
three large wavebands, namely belonging to the red, green and blue (RGB) color ranges in
the visible spectrum, it captures many more intensity values as it divides the electromagnetic
spectrum into many more small wavebands. Due to this higher so called spectral resolution,
it contains a lot more information.

3-1-1 Construction of the Hypercube

In HI, for each pixel an intensity value for many wavebands is captured. This results in a 3D
hypercube of data, two spatial dimensions and one spectral dimension, as illustrated in 3-2.
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18 Hyperspectral Image Analysis

Figure 3-1: The difference between RGB, multispectral and Hyperspectral imaging

Figure 3-2: A schematic representation of the hyperspectral imaging hypercube showing spatial
dimensions x and y and spectral dimension λ. Spectra on the right correspond to single pixel
locations in the image [9]

An image containing the intensity values of a single waveband is called an intensity image and
a vector containing the intensity values of all wavebands in a single pixel is called a spectrum.
A hypercube can be constructed in 2 ways. The first method is to use a spectral sensor at
each location to measure its spectrum and then stack them accordingly. The second, and
the one that will be used in the thesis project is to illuminate the sample with just a narrow
waveband and then take an intensity image and stack each subsequent waveband to create
the hypercube.

3-1-2 Resolution

Two resolutions are to be considered, namely the spatial and spectral resolution. Spatial
resolution is easily interpreted as the number of pixels used to capture an image and spectral
resolution as the number wavebands used to break up the electromagnetic spectrum. Ob-
viously higher resolution holds more information and is thus preferable, but the limitations
of the microscope and computational power for a given application have to be taken into
account.

S. Krab Final Thesis
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3-1-3 Bit-depth

Finally, the bit depth is to be taken into account. It refers to the amount of intensity levels
that can be captured for a given pixel and waveband. RGB is generally captured in 8-bit, but
in HI higher bit-depths are preferable. Higher bit-depth is generally used to achieve a higher
signal to noise ratio but also increases the computational power required to process the data.
The bit-depth is furthermore limited by the sensor.

3-2 Spectral Preprocessing

Since many hyperspectral processing techniques are only interested in spectral information
and not in spatial information the hypercube is generally unstacked resulting in a 2D matrix
of Nx × Ny by L, where Nx is the amount of pixels in the x-direction, Ny is the amount of
pixels in the y-direction and L is the number of wavebands. The way the image is unstacked
is not important as long as the restacking later on is done accordingly. After the hypercube is
unstacked the new data matrix, denoted by X, often undergoes preprocessing. This process
tries to remove known disturbances and enhance features that are important for analysis. The
preprocessing in this research will consist of two steps. the first is a step where some processes
are applied to the data which aim to correct for flaws in the setup and/or equipment. In the
second step we aim to remove some of the noise in the image.

3-2-1 Correction for the Setup

The first disturbances that need to be removed are the ones that are inherent to the setup.
The most important are the uneven illumination and zero-input pixel values. The former
disturbance is caused by the light source generally not producing the same intensity in all
wavelengths, often lowering in intensity towards the maximum and minimum wavelength it
can produce. This problem is easily solved by measuring the average intensity in the sensor
at all wavelengths without a sample present. These values can then be used to determine a
multiplier which compensates for this uneven illumination. However, this does not suddenly
create new information in the less powerful wavelengths and more even illumination in the
setup is always preferable. The latter disturbance is caused by the sensor. By putting the
lens cap on the camera and taking multiple images it can be determined whether some pixels
tend have a nonzero value given zero input that cannot be accounted for by noise. This is
easily compensated for by determining which pixel present this behaviour, averaging its value
and subtracting this bias from the data.

3-2-2 Noise Removal

The next disturbance that is to be minimised is the the noise in the image. The subject of
denoising was already touched upon in 2-6 in the form of smoothing. However, using spatial
filtering as is the case in smoothing also alters the spectra of the individual pixels in the
process. Since retaining as much information in these spectra is essential to the workings
of endmember extraction, these spatial filtering techniques are best avoided in HI. In this
section we’ll be looking at two different filtering techniques. The first filters in the spectral
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domain instead of the spatial domain, thus retaining more spectral information, and the
second technique uses a three dimensional kernel to convolve the image.

Savitzky Golay Filtering

The first possible approach is the Savitzky Golay filter[32]. In this method the spectrum is
convolved with a window of a chosen length, where each subset of datapoints is fitted with
a polynomial of an order less than the window size, minimizing the least squares error. The
output spectrum will consist of the respective value on the polynomial of the central points
of each subset. A polynomial of an order of one less than the window length will result in a
perfect recreation, thus not changing the data, while a polynomial of a much smaller order
will result in very aggressive smoothing. The Savitzky Golay filter is popular as it is less
likely to distort the signal trend. However it has no edge preserving characteristics like the
bilateral.

3D Gaussian Filtering

The second type of filtering that is considered for this problem is 3-dimensional gaussian
filtering. Due to the relative simplicity of the gaussian filter it is possible to apply this
in a 3-dimensional fashion without making it too computationally heavy. This way both
spectral and spatial information will be taken into account in the denoising process. The
three dimensional kernel is given by

K = 1
(
√

2πσ)3 exp (−(x
2 + y2 + z2

2σ2 )p) (3-1)

convolving this kernel with the hypercube will likely result in a denoised hyperspectral image
which has clearer waveband images compared to the savitzky golay method, which could
also result in clearer abundance maps later on in the process, but might be less successful in
preserving information in the spectral domain. This could in turn lead to lesser performance
in the endmember extraction process.

3-3 Virtual dimensionallity

As all unwanted effects have now been removed we can start looking towards the process
of estimating the source signals, the endmember extraction. However, many endmember
extraction algorithms require the amount of signal sources to be known a priori. Since this
is not the case in our intended use, this value will need to be estimated. This is where
the concept of virtual dimensionallity (VD) comes into play. VD is defined as the number of
spectrally distinct signatures in a hyperspectral image. Multiple methods have been developed
to estimate this value, many originating from different fields. A large sum of these make one
of two assumptions (or both) that are might not work in our case. The first being that the
signal sources to have a significant influence on the eigenvalues, which is not always the case
when the target is low in occurance. The second being that the noise is gaussian white, which
is generally not true in hyperspectral data. Considering this, one method seems particularly
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of interest for this research, namely HySime[33]. This method does not require any input
from the user and also immediately gives a subspace to project the data onto for optimal
dimensionallity reduction in the sense of the mean square error. In order to do this the signal
and noise correlation matrices are estimated and then a subset of eigenvectors is selected
that minimizes the mean square error between the signal subspace and the data. First the
noise needs to be estimated. This is done by assuming that each data sample vector can be
represented as a linear mixture of the other data sample vectors. This assumption holds for
most data vectors as long as the total amount of data vectors is significantly larger than the
amount of signal sources, which is generally the case in HI. Let X = [r1, r2, . . . , rN ] be the
data matrix of L by N where L is the amount of spectral bands and N the total amount of
pixels. Now let Z be the transverse of X its transverse and Zδi

be Z with the ith column
missing. Then

z1 = Zδi
βi + ξi

where zi is the ith column of Z, β is the regression vector and ξi is the modelling error. The
regression vector can now be estimated in in the least squares sense by

β̂i = (ZT
δi
Zδi

)−1ZT
δi
zi

and the noise is then estimated by

ξ̂i = zi −Zδi
β̂i

Exploiting the relation between (ZT
δi
Zδi

)−1ZT
δi

and Z the noise can be estimated for every
data vector with little computational load. For the complete derivation the reader is referred
to the referred article. Let R̂ = (ZTZ) and R′ be its inverse. Now let [R̂]δi,δi

denote the
R matrix with the ith column and row deleted, [R̂]i,δi

the ith row of [R̂]δi,δi
, [R̂]δi,i the ith

column of [R̂]δi,δi
and finally [R̂]i,i be the value of the ith row and ith column. Having the

same rules apply to R′ then β can be estimated in the following way

β̂i = ([R̂]δi,δi
− [R̂′]δi,i[R̂

′]i,δi
/[R̂′]i,i)[R̂

′]δi,i

In this case R and R′ are determined outside of the loop determining β and ξ thus lowering
the computational complexity. Knowing ξ̂ the sample, noise and signal correlation matrix
can be estimated by

R̂y = (XXT )/N

R̂n = ΣL
i=1(ξ̂iξ̂

T
i )

N

R̂x = ΣL
i=1((ri − ξ̂i)(ri − ξ̂i)T )

N
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Let E = e1, . . . , eL be the eigenvectors of R̂x. When projecting onto a subset of E the mean
square error is determined by the projection error power (parts of the signal not projected
onto the subset) and the noise power (noise projected onto the subset). The minimization
problem can be solved by determining

δi = −eTi R̂yei + 2eTi R̂nei

and sorting by ascending order whilst remembering the permutation. The estimated number
of endmembers is then equal to the number of terms δi ≤ 0 and the the corresponding
eigenvectors span the signal subspace.

3-4 Dimensionallity Reduction

Given an estimate of the amount of signal sources, the next step of extracting these signal
sources can be done in a number of ways, most belonging to some sort of endmember extrac-
tion. However, most of these methods require the dimensionallity to be reduced to a certain
dimension, generally one less than the VD. Methods can generally be categorized as either
feature selection or feature extraction. In case of HI feature selection would be selecting the
wavebands that are statistically most interesting by some criterion. Feature extraction is the
more interesting of the two. It performs a transform where each new feature is a combination
of the original wavebands. Again the statistically most interesting of the new features are se-
lected. Note that for some endmember extraction methods discussed in the following section
dimensionallity reduction (DR) is included, whilst others require it to be performed prior,
leaving multiple DR options to choose from. This section will discuss principle component
analysis and independent component analysis.

3-4-1 Principle Component Analysis

The most well known method in feature extraction is principle component analysis (PCA)
which is an eigenvalue based transform where combinations of wavebands that maximize
the variance are found. It does so by finding the eigenvectors that belong to the biggest
eigenvalues of the covariance matrix. Consider the data matrix X = [r1r2...rN ] where ri is
a L-dimensional spectrum of a pixel and N the total amount of pixels. The mean of the data
set is given by µ = (1/N)ΣN

i=1ri. The Covariance matrix can now be determined by

K = (1/N)ΣN
i=1(ri − µ)(ri − µ)T

Which can be rewritten as

K = ΛDσΛT

whereDσ = diag(σ1, σ2, ..., σN ), sigmai being the ith eigenvalue of the covariance matrix, and
Λ = [v1v2...vN ] where vi are the corresponding eigenvectors. The covariance and eigenvector
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matrix are then ordered in descending order of eigenvalue denoted by D′σ and Λ′. The data
is then transformed

X̂ = ΛTX

each row now being an principal component. Dimensionallity reduction is achieved by only
retaining a certain amount of the principle components corresponding to the biggest eigen-
values. Normally, the amount of principle components to retain is often chosen by looking
for a big jump in the size of the eigenvalues. Only those components corresponding to the
eigenvalues prior to the gap ( in descending order ) are then retained. However in case of
endmember extraction the dimensionallity is often simply reduced to one less than the VD.

3-4-2 Independent Component Analysis

Up until now only the variance has been used in order to find the components. However,
the components with the highest variance are not necessarily the ones of interest. An issue
with second order statistics based component analysis methods is that they generally have
problems finding many subtle substances due to their small amounts and little contribution
to the second order statistics. This is where higher order statistics based component analysis
comes in. One of the most prominent, though its use in dimensionallity reduction [34] is
quite new, is independent component analysis (ICA), first introduced by Jutten and Herault
[35]. This method uses a combination of higher order statistics such as skewness and kurtosis
to measure statistical independence. In order to accomplice this the first and second order
statistics ( mean and variance ) need to be removed. This is done by a technique called
sphering. Let X = [r1, r2, . . . , rN ] again be the data matrix. The sample mean is first
removed by

X̃ = X − µ× 1T

where

µ = ( 1
N

)ΣN
i=1ri

and 1 is a column vector with all ones as components. Then the variance is to be removed.
Let KX̃ = ( 1

N )X̃X̃T be the sample covariance matrix of X̃ and {λl}Ll=1 and {vl}Ll=1 to be
its eigenvalues and eigenvectors respectively. Suppose Λ to be the eigenvector matrix, then

ΛTKX̃Λ = Dλ

where Dλ = diag(λ1, λ2, . . . , λL). From this we conclude that

(Dλ)−1/2ΛTKX̃Λ(Dλ)−1/2 = I

and the sphering matrix M = Λ(D)−1/2 is obtained. The data can now be transformed
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Xsph = MX

ICA can be implemented in many ways. Initially many methods suggested to find a vector of
norm one that yields maximum or minimum kurtosis, the fourth order statistic. Kurtosis is
defined as

kurt(v) = E{v4} − 3(E{v2})2

for random variable v. Let ||w|| be bounded by 1. There exists a linear combination of sphered
observations wTX which yields maximum kurtosis. An objective function is determined as

kurt(wTXsph) = E{(wTXsph)4} − 3(E{wTXsph)2})2

= E{(wTXsph)4} − 3||w||2

A well known algorithm is the FastICA [36], in which a very fast iteration is utilized derived
from this equation. It consist of just a few steps

• Take a random initial vector w(0) of norm 1. let k = 1

• Let w(k) = E[Xsph(w(k − 1)TXsph)3] − 3w(k − 1). The estimation can be estimated
using a large sample of Xsph vectors ( say 1000 points )

• divide w(k) by its norm.

• If |w(k)Tw(k − 1)| is not close enough to one, let k = k + 1 and go back to step 2.
Otherwise output vector w(k)

If multiple vectors need to be found simply iteratively use orthogonal projection to remove
the previously found vector from the data set.

• let k = 1

• let k = k + 1

• Use the FastICA algorithm to find wk

• apply the orthogonal projection matrix Pwk
= I − wk((wk)Twk)−1(wk)T to the

dataset X−ksph = Pwk
X−k+1

sph .

• if k is the amount of previously determined dimension than stop, if not return to step
2.

Important to note is that ICA assumes there to be at most one gaussian source as the mean
and variance is removed by the sphering. This means that these sources cannot be separated
by ICA.
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3-5 Endmember Extraction

Now that dimensionallity reduction is achieved the next step is to find the endmembers of
the data as these are an estimation of the sources present in the data. An endmember is an
idealised pure spectrum of a class. These endmembers can provide meaningful insight into the
sample. In the ideal case a single endmember can be matched to the parasite. This endmember
can then later be used to detect the parasite in a new sample. The field of endmember
extraction methods is very extensive with a multitude of algorithms that have been found
to be well performing in various different applications. A few of the most commonly used
methods are discussed in this section. A big group of methods can be categorized as pure
pixel based. They assume for each endmember there is at least one pure pixel in the image.
Two methods are discussed that fall outside this classification. These try to find endmembers
that best represent the data by some criterion.

3-5-1 Pure Pixel Index

The first endmember extraction method to be discussed is the pure pixel index (PPI). This
method assumes endmembers to be present as a pure pixel in the data and is well known for
its in the ENVI software. However, literature about the method is scarce and thus the version
Chang [10] describes in his 2013 book is considered. This version is tested against the ENVI
software to performs similarly. For PPI the dimensionallity of the the data is first reduced to
the VD minus one. After this the endmembers are determined using the assumption that if a
data point is an endmember it is likely to give a maximum or minimum orthogonal projection
on a random vector. First k random vectors are created denoted by {sk}ki=1 and are called
skewers. k has to be chosen sufficiently large in order to achieve good performance. When
the skewers are created each data sample vector ri is orthogonally projected onto each skewer
by

Psk
(r) = sks

T
k

s2
k

ri

The set of skewers onto which r produces either a maximal or minimal projection is called
Sextrema(r). The PPI count nPPI is then determined by the number of skewers in Sextrema(ri).
A threshold t is then chosen on the count nPPI and finally all the sample vectors with nPPI ≥ t
are extracted as endmembers. An example is given in 3-3. Three random skewers are created.
e1 is shown to have 3 maxima/minima, e2 has 2 and e3 has 1. The grey circle x is also
shown to have an PPI count of 1 as it projects on the same minimum of skewer 1 as e2.
However, when calculating the volumes of the triangles spanned by three out of four possible
endmembers, {e1, e2, e3} produces the maximum volume. Thus {e1, e2, e3} are likely the
desired endmembers.
This technique has several drawbacks. Since the algorithm is not iterative, but determines
all the endmembers at once while being dependant on the random initialization of the skew-
ers, each run of the algorithm can give a different result. Furthermore, the results are very
dependant on the choice of K and t. A bad choice could result in certain important signa-
tures missing in the endmembers or having multiple endmembers represent the same spectral
signature.
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Figure 3-3: Illustration of the PPI endmember extraction algorithm displaying several data points
(open circles), skewers (arrows) and endmembers (dark circles) [10].

3-5-2 N-FINDR

Another widely used technique is the N-FINDR, developed by Winter [37]. This technique
is also of the former kind assuming endmembers to be present as a pure pixel in the data.
It assumes that in N dimensions the so called N -volume contained by a simplex with the
endmembers on its vertices is the largest possible simplex in terms of volume. Once again,
dimensionallity reduction is performed prior by one of the techniques described in section
3. After determining the VD denoted by p the data is transformed to a dimensionallity of
p− 1. The volume of the simplex with any p data sample vectors e1, e2, . . . , ep denoted by
S(e1, e2, . . . , ep) is given by

V (e1, e2, . . . , ep) =

∣∣∣∣∣det
[

1 1 . . . 1
e1 e2 . . . ep

]∣∣∣∣∣
(p− 1)!

Then an exhaustive search is performed to find the combination of data sample vectors for
which the volume of the simplex is maximal

{e∗1, e
∗
2, . . . , e

∗
p} = arg{maxe1,e2,...,epV (e1, e2, . . . , ep)}

where {e∗1, e∗2, . . . , e∗p} are the desired endmembers. Unlike PPI this method does not require
the user to choose certain parameters, yet does still suffer from the drawback that all endmem-
bers need to be determined simultaneously. The exhaustive search can be computationally
quite heavy depending on the amount of datapoints and endmembers. However, a variation
on the N-FINDR algorithm has been developed called the simplex growing algorithm [38].
In this algorithm the endmembers are determined sequentially instead of all at once. The
process is described as followed

S. Krab Final Thesis



3-5 Endmember Extraction 27

1. Initialization: A random endmember is selected from the data and let k = 0.

2. at k ≥ 0 the original L dimesional data is transformed to k dimensions by dimensionallity
reduction method. Then the volume of the k+ 1-dimensional simplex is determined for
each data sample vector r

V (e(0), . . . , e(k), r) =

∣∣∣∣∣det
[

1 1 . . . 1 1
e(0) e(1) . . . e(k) r

]∣∣∣∣∣
(k)!

3. The new endmember is the data sample vector which corresponds to the largest volume

e(k+1) = arg{maxr[V (e(0), . . . , e(k), r)]}

4. If k ≤ p − 1 then k → k + 1 and go to step 2, otherwise {e(1), e(2), . . . , e(p)} is the
final set of endmembers.

As this version of the algorithm only determines one endmember at a time it demands much
less computational power. Furthermore, if the amount p is increased the algorithm can
continue using the previously found endmembers. This could be useful if a certain set of
endmembers in the data is already known. A drawback of the algorithm is that its performance
is very dependant on the initial randomly selected endmember.

3-5-3 SISAL

Another simplex based approach is to minimize the volume of a simplex that encloses all the
data instead of inflating a simplex inside the data as is the case with N-FINDR, a concept in-
troduced by Craig [39]. However, since this algorithm is computationally very heavy multiple
publications have be done to increase performance by reformulating the optimization problem.
The Algorithm discussed here is the simplex identification via split augmented Lagrangian
(SISAL) [40], which proposes to solve the optimization problem by using soft constraints and
then use a sequence of augmented Lagrangian optimizations. The concept is based on the
assumptions that the vertices of the simplex that encloses the data and is minimal in volume
coincide with the endmembers. Since it is too computationally heavy to do an exhaustive
search an optimization algorithm is applied. Let X = [r1, r2, . . . , rN ] ∈ RLxN be the data
matrix. Assuming each data sample vector is well approximated by a linear mixing model
results in

X = MA+N

where M = [m1,m2, . . . ,mp] is the the mixing matrix containing the endmembers and A is
the abundance matrix containing all the abundance vectors. The matrices M and A are then
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to be determined by fitting a minimum volume simplex that encapsulates all the data. In the
SISAL method this optimization problem is rewritten to

Q∗ = argmin(−log|det(Q)|+ λ‖QX‖
)s.t.: 1TpQ = aT

where Q ≡ M−1, p is the amount of endmembers and a = 1nXT (XXT )−1. Here λ‖QY ‖
represents a soft constraint on negative abundances and 1TpQ = aT represents a hard sum-
to-one constraint on the abundances. The Lagrangian of this problem is given by

L(q, z, d,τ) ≡ gTq + µ‖q − qk‖2 + λ‖z‖+ τ‖Cq − z − d‖2 + c

where q is column vector containing the columns of Q, z = Cq, d = −Bq2τ , where C =
(XT ⊗ I) and B = (I ⊗ 1Tp ). The term µ‖q − qk‖2 prevents unbounded growth (µ being
a regularizing parameter) and finally τ‖Cq − z − d‖2 can be interpreted as the constraints,
now all soft. The problem can now be solved iteratively,

1. set t = 0 and choose (q0, z0, a0 and t > 0

2. repeat

3. (qt+1, zt+1) ∈ argminz L(q, z, d,τ)
s.t. Bq = a

4. dt+1 = dt − (Aqt+1 − zt+1)

5. t = t+ 1

6. until stopping criterion is met

where the starting values q0 and z0 are derived from another pure pixel based method, namely
VCA. Due to the soft constraints and implementation of augmented lagrangian, this method
is much faster than other minimum volume simplex methods and has been shown to perform
similarly in case of lower amounts of endmembers, as is the case in this application. The
method is still slower than the other methods discussed in this research, but not unreasonably
so. It could however provide significantly better results in some circumstances.

3-5-4 Statistics based

However, in the case that the data is highly mixed the endmembers found by previous meth-
ods might be much smaller than the true endmembers as shown in figure 3-4. In this case a
statistics based approach might provide a solution. Using the components found by higher
order dimensionallity reduction such as ICA for endmembers extraction might provide bet-
ter results. A method such as FastICA is used to determine p components. The maximal
projection of the data vectors onto each component is determined. The set of spectral signa-
tures corresponding to these maximal projections, denoted by {ej}pj=1, is the desired set of
endmembers.
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Figure 3-4: Minimum volume simplex of three data sets. In the left and middle case the
endmembers can be found by a minimum volume simplex algorithm. In the right case this is not
possible. This corresponds to heavily mixed data. [11]

3-6 Spectral Unmixing

We have now found the endmembers that most likely make up the data. These should
represent spectral signatures of substances in the sample. However, since the endmembers
are found in an unsupervised manner, they need to be analysed. Ideally, one endmember can
be matched to a type of parasite, as this could make the parasite easily detectable in new
future samples. One way to analyse these endmembers is to use the endmembers to unmix
the hyperspectral images and look at there respective abundance images. The unmixing of
the hyperspectral image can be done by Fully Constrained Least Squares (FCLS) unmixing.
In this method the well known least squares regression, which would result in the abundances
being given by

α̂LS = (MTM)−1MT r

is altered to include two constrains relevant to our problem, namely that the abundance of a
signature cannot be negative and that the abundances must sum to one in each pixel. Taking
these constraints into account the regression problem becomes a lot more complex. Fully
constrained least squares linear unmixing (FCLSLU), as proposed by [41] was first method
able to find a solution to this optimization problem. First the solution to the nonnegativity
constrained least squares (NCLS) problem is derived

minα{(r −Mα)T (r −Mα)}
s.t. α ≥ 0

Since the constraint is not an equality constraint Lagrange multipliers cannot be used to
solve the optimization. However, by introducing an unknown vector c = (c1, c2, . . . , cp)T a
Lagrange multiplier can be introduced in the following way.

J = 1
2{(r −Mα)T (r −Mα)}+ λ(α− c)

with α = c and
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‖∂J
∂α
‖α̂NCLS

= 0→MTM α̂NCLS −MT r + λ = 0

which leads to the equations

α̂NCLS = (MMT−1MT r − (MTM)−1λ (3-2)
= αLS − (MTM)−1λ (3-3)

and

λ = MT (r −M α̂NCLS)

Two index sets are formed. P consists of all the indices corresponding to all the positive
components of αLS and R consists of all the indices corresponding to all the negative or
zero components of αLS . An optimal solution must then satisfy the following Kuhn-Tucker
conditions

λj = 0 j ∈ P
λj < 0 j ∈ R

The following iterative process can then be used to find αNCLS

1. set P (0) = {0, 1, . . . , p, R(0) empty and k = 0

2. compute α̂LS using 3-2 and let α̂(0)
NCLS = α̂LS

3. If all components of α̂(0)
NCLS are negative the algorithm is terminated. If not, continue.

4. let k ← k + 1

5. All indices corresponding to negative values in α̂(k−1)
NCLA are moved from P (k−1) to R(k−1)

resulting in P (k) and R(k). Let S(k) be equal to R(k)

6. Let α̂R(k) be the vector consisting of all components of α̂LS corresponding to R(k)

7. A steering matrix φ(k)
α is then formed by deleting all the rows and columns of (MM)T−1

that correspond to P (k).

8. Let the new lagrange multiplier be given by λ(k) = (φ(k)
α )−1α̂R(k) . If all entries are

negative, go to step 13, otherwise continue.

9. Determine the maximum lagrange multiplier λmax and move its index to P (k).
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10. Another matrix ψ(k)
λ is formed by deleting all the columns from (MM)T−1 that corre-

spond to P (k).

11. Let α̂S(k) = α̂LS − ψ(k)
λ λ(k).

12. If any components of α̂S(k) are negative, their corresponding indices are moved from
P (k) to R. go to step 6

13. Another matrix ψ(k)
λ is formed by deleting all the columns from (MM)T−1 that corre-

spond to P (k).

14. Let α̂(k)
NCLS = α̂LS − ψ(k)

λ λ(k). go to step 3.

Now the sum to one constraint has to be implemented. Luckily, this is easy to implement in
the previously discussed framework by M by

N =
[
δM
1T

]

where 1 = (1, 1, . . . , 1)T of length p. Furthermore r is replaced by

s =
[
δr
1

]

where δ controls the impact of the sum-to-one constraint on the iteration process.

3-7 Semi-Supervised Spectral Signature Estimation

Of course, in the case of giemsa stained samples, it is easy to verify whether the algorithm
worked as even in many of the waveband images the parasites are already visible. However,
in case of the unstained samples, they are not. This makes it much harder to verify whether
the algorithm worked properly. It is possible that the abundance maps derived from the
hyperspectral image of the unstained sample clearly show the parasites, but this might be
an overly optimistic expectation. However, if the algorithm works in on the stained sample,
but does not work as hoped in the unstained case, there is still one more possibility that can
be explored. Namely, to image the same part of a sample in both the stained and unstained
condition. If the cells and parasites remain in the same position during the staining process,
the images could be aligned. This would make it possible to use the abundance maps of
the stained and unstained condition to derive the spectral signatures of the unstained image.
Using the hyperspectral data of the unstained image and the abundance map of the stained
image least squares regression could be used to determine these sought after signatures.
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3-8 Target Detection

If the matching of endmembers to the parasites, RBC’s and the like was successful, the
next challenge is to be able to use these signatures to be able to detect the parasites in
new samples. The previously discussed FCLS method could again be used for this, but is
computationally very heavy and thus not suited for quick diagnostic methods. Luckily, there
are many computationally lighter possibilities to tackle this so called target detection. The
choice is often very dependant on the amount of information that is known a priori. In some
cases it could only be necessary to just look at how similar the spectrum of a given pixel is
to a reference spectrum and other cases might require the use of all the known endmembers
to create a more reliable abundance map. This section will discuss some of the possibilities.

3-8-1 Similarity Measures

The first possibility is to just look at how similar the pixel spectrum is to a given reference
spectrum. Two measures will be discussed in this report, euclidean distance and spectral
angle mapper. They are often used as a computationally lighter way to inspect new samples.

Euclidean Distance

A widely used metric is the euclidean distance (ED) and is simply the distance between two
points in euclidean space. In HI it can be used to determine the distance between two spectral
signature si and sj in the following way

ED(si, sj) = ||si − sj || =
√

ΣL
l=1(sil − sjl)2

Generally, the more similar the signatures the smaller the euclidean distance. However, when
the illumination levels differ greatly between the two pixels, two very similar pixels could still
have a significant euclidean distance. In such an instance it is often preferable to use Spectral
angle mapping.

Spectral Angle Mapper

Spectral Angle Mapping (SAM) is a very popular technique in HI as it is not dependant on
the intensity of the spectrum unlike euclidean distance. Two similar spectra but with very
different illumination levels will therefore still have a small spectral angle. The spectral angle
mapper determines the angle between two spectral signatures si and sj in the following way

SAM(si, sj) = cos−1( 〈si, sj〉
||si||||sj ||

)

where 〈si, sj〉 = ΣL
i=1silsjl, ||si|| = (ΣL

l=1(sil)2)
1
2 and ||sj || = (ΣL

l=1(sjl)2)
1
2 . Once again the

signatures are most similar when the SAM is small.
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3-8-2 Constrained energy minimization

However, often the pixel will be a mixture of multiple of the endmembers. In such a case the
spectrum will not be very similar to the reference spectrum. Thus, if the parasite spectrum is
mixed with other spectra, euclidean distance and spectral angle mapper might not pick up on
its presence. This is where constrained energy minimization (CEM) [42] provides a solution.
A signal detector is designed by finding a finite impulse response linear filter that minimizes
the filter output energy. Let the output of the filter be expressed by

yi = (w)Tri = (ri)w

Where w is an L dimensional weighing vector. The average output is then given by

1
N

ΣN
i=1y

2
i = wTRw

where R = 1
NΣN

i=1ri(ri)T is the auto correlation matrix. In order to minimize the output
energy the following optimization problem is considered

min
w
{wTRw} s.t. dTw = wTd = 1

where d is the target signature. The optimal solution is derived to be

wCEM = R−1d

dTR−1d

The abundance can then be determined by

αCEM
d (r) = (wCEM)Tr = dR−1r

dTR−1d

Note that the result is not strictly speaking an abundance map, but an impulse response.
The resulting image therefore does not have properties such as its values being between 0
and 1. However, it is very suitable to be used for visual inspection or for feature creation for
classification purposes.

3-8-3 Orthogonal Subspace Projection

Finally, if all spectra present in the sample are known it would be ideal to be able to use this
information. This is possible using orthogonal subspace projection. Using OSP for spectral
unmixing, as first described by [43], the abundance of one desired target signature is sought
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after, while the other signatures are suppressed. Let d be the desired target signatures and
U be the undesired signature matrix. The undesired signatures are then removed from the
signal prior to the detection of d. Let each data vector be given by

r = dαp +Uγ + n

where αp is the abundance value corresponding to the desired target signature, γ is the
abundance vector corresponding to the undesired signatures and n is the noise. The undesired
signatures are removed from the data by an orthogonal subspace projector

P⊥U r = P⊥U dαp + P⊥U n

given

P⊥U = I − UU

where U is the pseudo inverse of U . Then SNR maximization is used as a criterion to find
the optimal weighing vector w in

wTP⊥U r = wTP⊥U dαp +wTP⊥U n

which is optimal by Schwartz inequallity

|wTP⊥U r| = ||w||||P
⊥
U d||

which is optimal for w = κP⊥U d for some constant κ. Thus, the optimal detector becomes

δOSP (r) = κdTp⊥Ur

OSP can be combined with CEM by implementing an orthogonal projection which removes
some known undesired targets from the data prior to CEM. Let U be the matrix containing
all the undesired signatures. The orthogonal projection matrix removing these signatures is
then given by

P⊥U = I − UU

Multiplying the data by this matrix prior to using CEM can greatly improve the results.
However, in some cases, if the signature of the desired target is close to one of the signatures
of the undesired targets this can result in significant deterioration of the signal detectabillity.
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3-9 Classification

In the previous section the derived spectral signatures were used in order to create a detection
image. The next step is to give a positive or negative diagnosis and determine the parasitemia.
In order to do this first the RBC’s have to be individually segmented from the image. When
a RBC is segmented a set of features is to be derived in order to use as an input to the
classifier. These features are derived from the detection image as these should clearly display
the parasites and thus make for easier classification. This section will describe the proposed
methods for each of methods.

3-9-1 RBC Segmentation

The subject of RBC segmentation in RGB images was already touched upon in the first
chapter. The segmentation in the hyperspectral case is not very different other than that we
start with a large hypercube. In order to apply regular RBC segmentation algorithms the
data first has to be turned into a single intensity image. It is possible to use the detection
image, but these generally display quite a lot of noise, making the segmentation process a
lot harder. Therefore, the image displaying the first principal component of the hypercube
is much better suited for this as it displays the signal with the highest variance and thus
improves the signal-to-noise ratio. This image and the subsequent steps can be seen in figure
3-5. This image is then turned into a binary image by Otsu thresholding.

(a) (b) (c)

(d) (e) (f)

Figure 3-5: The RBC segmentation process: first principal component of the hyperspectral image
(a), binary image after thresholding (b), binary image after morphological operations (c), distance
map of the binary image (d), watershed image with different colors representing different masks
(e), resulting masks drawn on original image (f)

Using various morphological operation including hole filling, opening and closing, the image
should now display 1 values where the cells are and 0 values where there no cells are. It is
now possible to segment the cells from the rest of the image. However, it is not yet possible
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to segment clustered cells from each other. In order to do this a watershed algorithm is used.
First, a distance map is created, where the values of the pixels represent the distance to the
closest 0 value in the binary image. Local maxima are, with a minimum distance between
them, are likely located in the middle of cells. A watershed algorithm starting in these local
maxima is then able to separate small clusters. Since RBC segmentation is not the focus of
this research this is considered sufficient.

3-9-2 Feature Extraction

Many modern day classification is done using neural networks and deep learning, where the
whole detection image could be used as input to the classifier. However, since a new dataset
had to be created for this research and the amounts of data required for these types of
classifiers are much larger than was feasible in the timeframe, more traditional classifiers were
considered. These classifiers do however require a set of features to be derived from the image
to be used as inputs. A set of 10 features, some statistical in nature and some textural in
nature, was decided on.

Histogram descriptors

An easy way to determine determine a feature is to derive a histogram from an intensity image
containing the intensity values and their number of occurrences. These histograms can then
be described by a few descriptors. The most obvious choices are mean value and variance,
but many more are possible. Common choices include but are not limited to entropy and
higher order statistics like skewness and kurtosis. Let H(i) be the histogram that denotes
the number of times the intensity i is present in an intensity image. The histogram is then
normalized by

H ′(i) = H(i)
ΣiH(i) (3-4)

and some statistical features are then given by

MV = ΣiiH
′(i) (3-5)

V A = Σi(i−MV )2H ′(i) (3-6)

SK = Σi(i−MV )3H ′(i)
σ3 (3-7)

KU = Σi(i−MV )4H ′(i)
σ4 (3-8)

Haralick descriptors

Another popular choice is textural features. Introduced by Haralick [30], these feature try
to capture the textural information in the image. It assumes that this textural information
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is contained in the overall average spatial relation between grey tones in the image. A grey
level co-occurrence matrix is determined which counts the occurrences of neighbouring pixels
to the reference pixels given a certain distance. For example let Q = (dx, dy) = (0, 1) be the
distance, meaning the pixel directly to the right is the neighbouring pixel. For all the pixels
of a given reference intensity, the amount occurrences an intensity in the neighbouring pixel
is then captured in the grey level co-occurrence matrix P (i, j) as displayed in 3-6.

Figure 3-6: Example of determination of normalised GLCM from intensity image [12]

This matrix is then used to determine the various Haralick descriptors. The most commonly
used are maximum probability, correlation, contrast, energy, homogeneity and entropy as the
other descriptors are all correlated to these. They are described by

MP = max
i,j

P ′(i, j) (3-9)

CR = ΣiΣj
(i− µx)(j − µy)

σxσy
(3-10)

CN = ΣiΣj(i− j)2P (i, j) (3-11)
EN = ΣiΣjP

2(i, j) (3-12)

HO = ΣiΣj
P (i, j)

1 + |i− j| (3-13)

ET = −ΣiΣjP (i, j)log2P (i, j) (3-14)

where

µx = ΣiΣjiP (i, j) (3-15)
µy = ΣiΣjjP (i, j) (3-16)

σx =
√

ΣiΣj(i− µx)2P (i, j) (3-17)

σy =
√

ΣiΣj(i− µx)2P (i, j) (3-18)

3-9-3 Classifier

As stated before, since the dataset is limited in size, a classifier is needed that has good
performance with relatively many features compared to the amount of samples to train on.
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Two classifiers are particularly well suited for this. The support vector machine and the
random forest classifier.

Support Vector Machine

The first classifiers is the support vector machine [13]. In its simplest form it just finds
the linear decision boundary that perfectly separates the classes with the largest margin as
displayed in 3-7

Figure 3-7: linear decision surface in 2 dimensional space with largest margin [13]

The respective optimization problem is

min 1
2‖w

2‖

s.t. wTxi + b ≥ +1, for yi = +1
s.t. wTxi + b ≤ −1, for yi = −1

Introducing slack variables and solving the Lagrangian leads to

max
α

ΣN
i=1αi −

1
2ΣN

i,jyiyjαiαjx
T
i xj

s.t. αi ≥ 0 ∀i
ΣN
i=1αiyi = 0 ∀i
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where αi is the lagrange multiplyer. Finally, using of a non-linear mapping into a high
dimensional feature space and finding the linear decision surface that separates the classes
in this higher dimensional space, makes nonlinear boundaries in the original feature space
possible. However, working in high dimensional spaces is computationally very heavy. In order
to prevent this a kernel is used, which prevents the need for explicit mapping in the higher
order space. Given that the kernel k(xi, xj) is equal to the inner product < φ(xi), φ(xj) >,
the kernel can be used in the optimization problem instead. This leads to the following
optimization problem.

max
α

ΣN
i=1αi −

1
2ΣN

i,jyiyjαiαjK(xTi xj)

s.t. αi ≥ 0 ∀i
ΣN
i=1αiyi = 0 ∀i

and the class of a new sample given by

f(z) = ΣN
i=1αiyiK(xi, z) + b

where z is the feature vector of a new sample. The support vector machine has been shown to
be a very powerful classifier, able to generalise very well. It is thus very suitable for situations
where the feature space is relatively large for the amount of samples to train on.

Random Forrest

The other classifier to be discussed is the random forest classifier [44]. It is based on the simple
decision tree classifier. In this classifier the data is sequentially split along a single feature
as shown in 3-8. The set is split at the value which gives the lowest inter-class similarity
and highest intra-class similarity. It will continue to do so until a stopping criterion is met.
However, these decision tree classifiers are very simple and depending on the stopping criterion
often not complex enough. Random forest tries to overcome this problem by training many
slightly different decision trees. These different trees are made using boosting and bagging.
Boosting is the process of altering the tree by for example changing the tree depth or altering
the features available to the tree, for example having the tree train on only 5 randomly selected
features out of 10. Bagging in the process of training multiple trees on random subsets of the
data. These subsets are with replacements, meaning a single sample can be present multiple
times in this new subset. Having created this large amount of different decision tree classifier,
the random forest classifier works by majority rule. The decision tree classifier generally has
a low bias and both boosting and bagging can greatly reduce the variance, leading to a very
powerful classifier. Random forest classifiers have even been shown to be able to outperform
support vector machines at large numbers of trees, though they are generally computationally
heavier at these amounts.
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Figure 3-8: Example of a decision tree [14]

3-10 The Microscope

The microscope used to make the hypserspectral images is very similar to a conventional
bright-field microscope. As displayed in 3-9, it has an illumination path consisting of a light
source, collector lens, field aperture, field lens, condenser aperture and a condenser lens,
of which the latter is adjustable to be able to align it so that koehler illumination can be
achieved. The sample substage consist of a holder in which the glass slides can be fixed in
place, which itself is xy-tunable to be able to examine different parts of the sample. The
capturing stage consists of a objective lens which is y-tunable to allow for focusing on the
sample, field lens and camera. Three of these parts are somewhat different from what you
would find on a regular bright-field microscope and will be treated more in depth. These are
the light source, the objective lens and the camera.

3-10-1 Light Source

The first and most important difference between a conventional bright-field microscope and
this hyperspectral microscope is the light source. It consists of three part. The first is a
halogen lamp which emits light in a broad spectrum. This halogen lamp is followed by a
monochromator, which is used to select a much more narrow band of wavelengths from this
wider spectrum. It does so through dispersion, as can be seen in 3-10. The width of the
slid determines the width of the resulting waveband. The narrower the slid, the narrower the
waveband and thus the higher the spectral resolution. However, it also greatly reduces the
brightness of the illumination and thus reduces both the signal to noise ratio and how much
of the available spectrum from the halogen lamp can be used. A slid of 300 micro meter was
found to be a good trade-off, being able to use most of the provided spectrum with a decent
signal to noise ratio, yet retaining a high spectral signature, wavebands of 4 nano meter wide
having minimal overlap.
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Figure 3-9: The hyperspectral microscope used in the experiments[1]
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Figure 3-10: The schematic of a monochromator. The entrance slid determines how narrow the
exiting waveband is and turning the grating changes the outgoing wavelength

Finally, the light is captured by a fiber optics cable which lead to the collector lens of the
microscope.

3-10-2 Objective Lens

Next is the objective lens for which a apo-chromatic lens has been chosen. This is due to
what is called chromatic aberration, a phenomenon which causes the sample to be in focus
when illuminated with one wavelength, yet out of focus when illuminated with another. An
apo-chromatic lens has been developed in such a way as to minimise this effect in the visible
spectrum, as can be seen in 3-11.

(a) (b)

Figure 3-11: Chromatic aberration causes different wavelengths to have different focal points
(a). In apochromatic lenses three wavelengths of interest have the same focal point with minimal
defocus in between (b). [15]
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3-10-3 Camera

Lastly, instead of an RGB sensor which captures an intensity value for red, green and blue
simultaneously, a monochromatic camera is used as only a very small part of the spectrum is
used for illumination at a time. This way only a single intensity image is created at a time
and by changing the wavelength of the light source each time before the next image is taken
the hyperspectral image of the sample is captured.
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Chapter 4

Results

This chapter outline how the methods described in the previous chapter are applied in this
research. More specifically, how they are applied for the purpose of parasite detecion in
stained Malaria infected blood samples, unstained Malaria infected blood samples and finally
Schistosoma infected urine samples. First the methodology of how these methods are used and
how they are evaluated is explained. After this a more detailed description of each experiment
is given and the results are presented. The largest part of the chapter is dedicated to the
analysis of the endmember extraction methods. These do not have a groundtruth to compare
the results to and their performance analysis thus poses the biggest challenge. The smaller
part is dedicated to the analysis of a hypotetical multispectral setup which uses the knowledge
derived in the endmember extraction. This setup is compared to traditional RGB imaging to
evaluate the potential multispectral imaging has in the field of parasite detection.

4-1 Methodology

This section will start by mentioning the preprocessing used on the data and the parameters
used in the various methods. It will then explain the methodology used to determine the
performance of the various endmember extraction methods and classification schemes. More
detailed descriptions of the experiments are given throughout the chapter at the start of the
corresponding sections. It will conclude with a quick overview of the abbreviations used in
this chapter.

4-1-1 Technical Details

Firstly, the parameters and preprocessing used in the experiments will be briefly mentioned.
The data is treated for the sensor disturbance as was explained in 3-2-1. The illumination
correction is applied to the endmembers in order to accurately represent them. Furthermore,
it was found that hot and dead pixels greatly affect the performance of the endmember
extraction methods. Therefore, a 3 x 3 x 3 median filter is applied to the hypercube prior
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to any of the denoising steps. This has a negative effect on the ability of the endmember
extraction to be able to pick up on subpixel substances, but it was found to improve both the
separation of parasites, RBC’s and background as well as improve classification performance
of the reference spectrum assisted classification. Of course, this median filter already has
a denoising characteristic. Therefore, the endmembers extraction methods are also tested
without any further denoising. When further denoising is applied the following parameters are
used. The 3d gaussian filter was chosen to be 3 x 3 x 3 and the savitzky golay filter was given
a window size of 11 and a polynomial degree of 4. The dimensionallity reduction methods
did not require additional parameters to be chosen other than the required dimensionallity.
The number of skewers used by the PPI algorithm was chosen to be the industry standard
of 10000 as this gave it a similar computational load as NFINDR, which did not require
additional parameters. Statistics based and Sisal also did not require additional parameters
to be chosen.

4-1-2 Hyperspectral - RGB Comparison

The first experiment that has been conducted was that of comparing the classification results
using the hyperspectral data directly as compared to using RGB images. To make the com-
parison as fair as possible the RGB data is derived from the hyperspectral data by averaging
over the corresponding wavelengths. Since the light source used in the microscope was found
to not be bright enough in the lower wavelengths of the blue spectrum the choice was made to
only use red and green. Using a spectral resolution of 4 nano meter this resulted in 50 images
ranging the wavelengths from 500 to 700 nano meter for the hyperspectral data and 2 images,
500-600 and 600-700, for the RGB data. Finally, both sets are reduced to 1 image (each)
using PCA and the same set of features, namely mean, variance, dissimilarity and contrast,
is derived. Using the same classifier the results will give valuable insight into the potential of
hyperspectral imaging in this application.

4-1-3 Spectral Signature Validation

Next, the endmember extraction methods are validated. The endmember extraction is an
unsupervised process and there is no groundtruth to compare either the resulting spectra or
corresponding abundance maps to. To determine their performance four methods are used. In
the first step the locations of the endmembers in the image are inspected. For the pure pixel
methods the pure pixels are used and for the other the most similar pixels are determined using
the SAM metric on the median filtered image. Secondly, the spectra themselves are inspected
to see if they demonstrate unlikely or noise like behaviour. Thirdly, FCLS is used to create
the corresponding abundance maps. Good performance in each of these tests are indicated
by proper separation of the parasites (or parasite eggs), cells and background. These tests
are conducted for the stained Malaria sample, unstained malaria sample and Schistosomiasis
sample. Finally, in case of the Malaria sample, the spectral signatures are used to create
detection maps from which features are then derived. The performance of the classification
using these features will then be a good indicator of the quality of the spectral signatures.
By extension, they will also be a good indicator of the corresponding endmember extraction
method. These performances are furthermore compared to the red-green and hyperspectral
image classifiers mentioned previously.
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4-1-4 Multispectral - RGB Comparison

Finally, the spectral signatures corresponding to the most successsful endmember extraction
method are used to determine the wavelengths which give the most discriminative power. A
hypothetical multispectral setup imaging only at the two most discriminative wavelengths is
compared to red-green imaging. To make sure both have a similar signal-to-noise ratio both
are derived from the same hyperspectral data and for both a single image is constructed by
averaging five underlying images in the hyperspectral data. For the multispectral setup these
are the image at the wavelength and the four neighbouring it. For the red-green images these
are five wavelengths equidistant from each other in the relevant waveband are used. Similar
to before these sets are reduced in dimensionallity using PCA. The same set of features are
used for classification, namely mean, variance, dissimilarity and contrast.

4-1-5 Abbreviations

To refer to the various combinations of denoising, virtual dimesnionallity, dimensionallity
reduction and endmember extraction methods described in the previous section some abbre-
viation will be used, as displayed in table 4-1-5. So for example, the combination of savitzky
golay filting, a virtual dimensionallity of 4, pca dimensionallity reduction and PPI endmember
extraction will be denoted by S4PP. One notable exception is when Sisal is used as the dimen-
sionallity reduction is part of the endmember extraction process. A combination using Sisal,
no denoising and a VD of 3 would be N3S. Why HySime is grouped with the dimensionallity
reduction instead of the virtual dimensionallity is explained in 4-3-1.

Noise reduction virtual dimensionallity dimesnionallity reduction endmenber extraction
N (None) 3 P (PCA) P (PPI)

G (3d Gaussian) 4 I (ICA) N (NFINDR)
S (Savitsky Golay) 5 H (Hysime projection) B (Statistics based)

6 S (Sisal)

4-2 Hyperspectral - RGB Comparison

The first experiment that has been conducted was to compare hyperspectral imaging and
RGB imaging directly in the the application it is to be used, namely classification. The aim is
to determine on individual cells whether they are infected or not. This is done by comparing
two classifiers, one trained on features derived from the hyperspectral data and the other
trained on the same features but derived from the RGB data. However, the used lightsource
does not extend into the blue spectrum with enough brightness so only red and green are
used. Since the spectral range is limeted for both the comparison is still informative and will
likely extend to the situation where the blue waveband is included. Both the hyperspectral
data and red-green images are derived from the same set of images ranging from 500 to 700
nano meter. The RBC’s are segmented from these images and labelled as being infected or
not. The dimensionallity of both datasets is reduced to 1 image by the PCA transform as
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the lower feature count greatly improved the classification performance. The features that
are derived from these images are the mean, variance, contrast and dissimilarity as analysis
of both classifiers showed these features to be the most important. The classifiers are the
SVM with a regularization parameter of 1000 and a balanced class weight and random forest
with 100 individual trees and also a balanced class weight. They are trained and tested using
leave-one-out crossvalidation. The results are given in table 4-1.

sens spec s
PCA-SVM 0.696 0.888 0.861
RG-SVM 0.867 0.867 0.849

PCA-Forest 0.478 0.972 0.903
RG-Forest 0.565 0.979 0.922

Table 4-1: The sensitivity, specificity and success rate of the SVM and Random Forest classifiers
using the red-green images or first two principal components.

Interestingly, the red-green simulated images provided a better basis for classification than
the full hyperspectral data as it resulted in a significantly higher sensitivity in both classifiers.
An unexpected result since the RGB image is derived from the hyperspectral data and holds
much less information. This implies that the principal component analysis generalises to
much in the process of turning the 75 wavebands into 1 image. However, due to the relatively
small samplesize, adding more features or using supervised dimensionallity reduction such
as LDA only decreases the performance, likely due to overtraining. In order to utilize the
extra information in the hyperspectral data thus requires either a higher samplesize or some
other way to reduce the dimensionallity. Since the first option is not viable at this time due
to the slow data acquisition the second option is explored further. Using a priori knowledge
derived in the endmember extraction the classifier using the hyperspectral data will be shown
to outperform the classifier using the RGB data in section 4-4.

4-3 Spectral Signature Validation

The next step is to determine whether the endmember extraction methods combined with the
various methods of virtual dimensionallity estimation, denoising and dimensionallity reduction
are able to accurately estimate the spectral signature of the parasitic subtance in the samples.
This is tested on firstly the unstained Malaria parasites, secondly the Schistosoma eggs and
thirdly the unstained Malaria parasites. The output of these methods is a set of spectra
for which the groundtruth is unknown. This makes it significantly harder to determine the
performance. Luckily, there are also multiple things that are known, the first being the
endmember locations. Of these at least one should be located on a parasite, one on a RBC
and one on the background. In case of the pure pixel methods the endmembers correspond to
a pixel in the image. In case of statistics based and Sisal the Spectral Angle Mapper metric
is used to determine the pixels in the image which are most similar to the endmembers. Next
the spectra themselves can be inspected. It is known that one endmember should have high
light transmittance values for all wavelengths, namely the one that belongs to the background
where there are no cells or parasites. Furthermore, any sudden jumps or noise like behaviour
serves as an indicator that it is not an actual spectral signature of a substance in the sample.
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Thirdly, the FCLS regression method is used to create abundance maps corresponding to each
of the endmembers. Here, clear low noise abundance maps in which the parasites, RBC’s and
background are separated well from each other are an indicator of good performance. These
three validation methods are also applied to the Schistosoma egg infested Schistosoma sample
and the unstained Malaria infected blood sample. Furthermore, each sample is imaged using
a 20x apochormatic magnification objective lens a spectral range of 500nm to 750 nm was
chosen. Below this the lightsource was not be strong enough to provide a good signal-to-noise
ratio and above this large chromatic aberration was found to occur.

4-3-1 Virtual Dimensionallity Estimation and Dimensionallity Reduction

The first step in the spectral signature estimation process is the estimation of the virtual
dimensionallity. For this the HySime method was chosen. However, the method was found to
consistently overestimate the VD no matter the preprocessing used. It often found the VD to
be 22 or higher. However, when the data is projected onto this subspace. All the dimensions
past the fifth were found to mostly contain noise, as is displayed in 4-1.

Figure 4-1: The first 8 dimensions of the HySime subspace

This was also the case when other dimensionallity reduction was used, as can be seen in 4-2
and 4-3.
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Figure 4-2: The first 8 components of the PCA transform

Figure 4-3: The first 8 components of the ICA transform

Therefore, the choice was made to test each method using a VD of 3 to 6 and compare them
instead of relying on the HySime method for VD estimation. However, the HySime method
does provide an additional way of dimensionallity reduction and is still used for that purpose
in this research.

4-3-2 The Stained Malaria Infected Blood Sample

The first sample is the giemsa stained Malaria infected thin smear blood sample and should
provide the easiest task as these parasites are already easily visible in regular RGB images.
A part of the full image which contains some clearly visible parasites is cut. Note that the
amount of pixels is still much higher than what is generally used in many other hyperspectral
imaging applications such as remote sensing.
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PPI

Due to how the PPI method works, the choice of a higher or lower VD does not impact
the first endmembers that are found. However, since the skewers are generated randomly,
each run could produce different results. Running several combinations multiple times these
differences were found to be quite severe, as displayed in 4-4 where three runs of the same
method produce significantly different results.

(a) (b) (c)

Figure 4-4: Three runs of the N6IP method resulting in different endmember locations highlighted
by the yellow circles

Looking at general trends in behaviour, figure 4-5 a to f show that the pixels corresponding
with the endmembers are consistently those belonging parasites. However, it often selects
neighbouring pixels of the same parasite as separate endmembers. Furthermore, there seem
to be no pixels that belong to the RBC’s or other substances. Since a set of distinct spectral
signatures containing a singular spectral signature corresponding to the parasite is sought
after, the PPI method seems to be lacking in this regard.

(a) (b) (c)

(d) (e) (f)

Figure 4-5: The locations of the pure pixels for the N6PP (a), G6PP (b), S6PP (c), N6IP (d),
G6IP (e) and S6IP (f) methods on the Malaria sample highlighted by the yellow circles
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As the method was found to select neighbouring pixels as endmembers it is no surprise
that the spectral signatures are similar also, as displayed in 4-6 a to d, which display the
spectral signatures resulting from the PPI method when coupled with Savitsky Golay/ 3d
gaussian filtering and PCA /ICA. In each example, there are only two distinctly different
endmembers, the other endmembers being slight variations, neither meeting the requirements
of a background spectral signature. This is the case for most combinations using PPI, with the
occasional exception, but these exceptions are caused by the randomness of the PPI method
rather than the specific combination of denoising and/or dimensionallity reduction method.

(a) (b)

(c) (d)

Figure 4-6: The spectral signatures of the endmembers found by the for the N6PP (a), G6IP
(b), S6PP (c) and S6IP (d) methods on the Malaria sample highlighted by the yellow circles

However, when the PPI method seems to work well, the corresponding abundance maps show
the parasite being separated from the rest of the image using only 3 endmembers, the best
result being displayed in 4-7. However, even in this case the PPI method is not able to
separate the RBC’s and the background from each other. Nonetheless, the endmember that
corresponds to the abundance map that most clearly shows the parasite could still be a good
estimation of the spectral signature and the PPI method should not be discarded just yet.
It does however make it very hard to determine at which wavelengths the signature is most
different from those the other substances as these have not been accurately estimated.
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Figure 4-7: The abundance maps derived in the S3PP method

NFINDR

For NFINDR, unlike as was the case with PPI, multiple runs of the same method resulted in
the same outcome. What did seem to have a large influence is the given virtual dimensionallity,
as is displayed in 4-8. The locations of endmembers are very different when tasked with
finding 4 endmembers compared to finding 6. However, looking at the corresponding spectral
signatures, these remain very similar across different dimensionallities as can be seen in ??.

(a) (b) (c)

Figure 4-8: Three runs of the G_PN method using different VD’s resulting in different endmem-
ber locations

Eventually, a VD of 5 was chosen for the stained Malaria sample as this resulted the highest
quality abundance maps. The NFINDR method clearly do not suffer from the same problems
as the PPI method. Figures 4-9 a to f show no endmember pixels being neighbouring, though
there are still two endmembers that seem to correspond to the parasites. It furthermore shows
that it finds at least one endmember on a parasite, one on a RBC and one on the background,
which is in line with the expectations.
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(a) (b) (c)

(d) (e) (f)

Figure 4-9: The locations of the pure pixels for the N5PN (a), G5PN (b), S5PN (c), N5IN (d),
G5IN (e) and S5IN (f) methods on the Malaria sample highlighted by the yellow circles

Furthermore, the resulting spectral signatures are much more distinct from each other than
those of resulting from PPI as can be seen in ??. Each set contains one endmember which
lets through all wavelengths equally, corresponding to parts of the sample where no RBC of
parasite is present, thus being our sought after background pixel.

(a) (b) (c)

Figure 4-10: The spectral signatures of the endmembers found by the G4PN (a), G5PN (b) and
G6PN (c) method

The corresponding abundance maps resulting from the NFINDR endmember extraction are
are shown to be high detail and low noise, the best images being derived using the savitsky
golay filtering, though the differences are small. However, the results vary significantly across
different dimensionallities. Given a VD of 3 the method was not able to separate the parasite
from the rest of the image while given a VD of 4 combined with HySime it was able to do so
4-11. A VD of 5 and using the PCA transform resulted in a clear separation of the parasites
while containing much less noise than using HySime 4-12. Unlike PPI, NFINDR creates a
clear separation between the parasite, the RBC’s and the background. It is unclear what the
remaining two abundance maps might correspond to, but it is clear that the higher VD has
a beneficial effect on the results as a whole.
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Figure 4-11: The endmembers derived in the S4HN method with negative light transmittance
values

Figure 4-12: The endmembers derived in the S5PN method with negative light transmittance
values

Statistics Based

The statistics based method does not select pixels to be endmembers like the pure pixel
methods. Therefore, the spectral angle mapper metric is used to determine the pixels which
are most similar to the endmembers. Similar to NFINDR, the results are shown to be very
dependant on the given VD, as can be seen in 4-13. However, it is hard to argue what VD
works best reasoning from the pixel locations as most results are plausible. Given the ICA
transform is used, there is generally a pixel corresponding to a parasite and the other pixels
are generally distinct from each other.
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(a) (b) (c)

Figure 4-13: Three runs of the G_IS method using different VD’s resulting in different endmem-
ber locations

Another important factor is the dimensionallity reduction. Next to finding neighbouring
pixels, due to finding the pixels using SAM it is also possible to find the exact same pixel for
multiple endmembers. This is shown to often be the case when PCA is used, as can be seen
in 4-14. The method works much better when coupled with the ICA transform, finding many
multiple distinct pixels. A VD of 3 was chosen as this results in the best abundance maps.
Finally, the choice of denoising method also has a significant effect on the results. When 3d
gaussian filtering is used, the method is often able to find pixels on the parasite, the RBC’s
and the background, compared with 3 pixels on the parasite when no denoising is applied.

(a) (b) (c)

(d) (e) (f)

Figure 4-14: The locations of the pure pixels for the N3PB (a), G3PB (b), S3PB (c), N3IB (d),
G3IB (e) and S3IB (f) methods on the Malaria sample highlighted by the yellow circles

When the ICA transform is used, though the endmember locations differed, the spectral
signatures are shown to remain quite similar across different virtual dimensionallities, as can
be seen in 4-31. Furthermore, using the ICA transform, each set of endmembers is shown to
have a spectral signature with high values at all wavelengths, which can thus be interpreted
as the background pixel.
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(a) (b) (c)

Figure 4-15: The spectral signatures of the endmembers found by the G4PN (a), G5PN (b) and
G6PN (c) method

The same story holds for the abundance maps. The method combined with PCA consistently
produces low information abundance maps with one almost completely white except for the
location of the parasite, which is displayed in another. Using a VD of 3 and the ICA transform
the method is able to derive abundance maps in which the parasite was separated from the
rest of the image, especially when combined with the Savitsky Golay filtering. However, the
RBC’s and background are still not properly separated, as can be seen in 4-16. The inability
to separate the RBC’s and the background is likely due to the RBC’s higher abundance
and thus higher variance leading to the information on them mostly being lost in the ICA
transform.

Figure 4-16: The endmembers derived in the S3IB method with negative light transmittance
values

Sisal

Similar to the statistics based method, the endmembers of the Sisal method are evaluated
using the SAM metric. Again, the results can change depending on the given VD. This is
shown to be the case in 4-17.
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(a) (b) (c)

Figure 4-17: Three runs of the G_S method using different VD’s resulting in different endmember
locations

The results of the method with a VD of 5 are shown as these generally produce 4 non
neighboring pixels, while a VD of 4 results in only 3 as well as producing the producing the
clearest abundance maps. The results shown in 4-18 clearly shows that of the corresponding
pixels two are located on the upper parasite, one on the edge of the lower parasite and one on
the edge of a RBC. Furthermore, it is shown that the choice of denoising and dimensionallity
reduction has little to no effect on the location of these pixels.

(a) (b) (c)

(d) (e) (f)

Figure 4-18: The locations of the pure pixels for the N5S (a), G5S (b), S5S (c), N5S (d), G5S
(e) and S5S (f) methods on the Malaria sample highlighted by the yellow circles

Unlike other method, the endmember locations being very dependant on the given virtual
dimensionallity is also reflected in the corresponding spectra, as can be seen in 4-19. The the
difference between a VD of 3 and 4 is particularly notable as their third endmembers are the
polar opposite of each other.
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(a) (b) (c)

Figure 4-19: The spectral signatures of the endmembers found by the G3S (a), G4S (b) and
G5S (c) method

The abundance maps resulting from the Sisal endmember extraction are in line with expec-
tations given some endmembers were shown to have the same pixel as most similar using the
spectral angle mapper metric. Using a VD of 4 or above, there are consistently 3 abundance
maps which clearly show something, the remaining maps being mostly black, as is shown in
4-20. These 3 abundance maps clearly show one having a high abundance for the background,
another having a high abundance for the RBC’s as well as the parasite and the last showing
the parasites, though slightly less bright. The parasites on this final abundance map are much
brighter given a VD of 4 or higher compared to a VD of 3. This likely has to do with the
third endmember flipping given a VD of 4 or above.

Figure 4-20: The endmembers derived in the G4S method with negative light transmittance
values

4-3-3 Schistosoma Infected Urine Samples

The methods are tested in a similar manner on urine samples containing Schistosoma eggs.
The eggs are relatively large compared to the Malaria parasites, the eggs of the species used
for this experiment being visible using a 4x magnification objective lens. However, for these
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experiments the sample has been imaged using a 20x magnification objective lens, resulting
in an image only just large enough to contain the egg. The 20x lens is not very useful in
a practical setting because it takes a long time to find the egg and thus does not make
for an efficient diagnostics tool. However, it will likely make for a better approximation of
the spectral signature, which can then in turn be used on the data corresponding to the 4x
magnification objective lens. One final notable difference is that due to the eggs being thicker
than the cells, only one of the 2 can be in focus at a time. Since the eggs are of interest the
most, these will be set in focus.

PPI

The endmember locations of the PPI method are quite similar to when applied to the stained
Malaria sample, as is shown in 4-21. The PPI method mostly selects pixels of the egg to be
endmembers when coupled with PCA, while using ICA the method tends to also select pixels
on the main white blood cell to the right to be endmembers. Using the ICA transform it
furthermore has a lower tendency of selecting neighbouring pixels as endmembers. Whether
it selects a background pixel is a bit harder to say since both the egg and the white blood cell
are mostly transparent and might thus contain a pixel which could be a good representation
of the background spectral signature. A VD of 4 was chosen as this resulted in one set of high
quality abundance maps when combined with no denoising and ICA. Again, the method was
found non-reliable as re-runs gave different results.

(a) (b) (c)

(d) (e) (f)

Figure 4-21: The locations of the pure pixels for the N4PP (a), G4PP (b), S4PP (c), N4IP (d),
G4IP (e) and S4IP (f) methods on the Schistosoma sample highlighted by the yellow circles

The endmembers found by the PPI endmember extraction for the Schistosoma infected urine
sample suffer from the same problems as those in the stained Malaria infected blood sample,
though to a lesser extend. There is still a tendency to select multiple very similar endmembers,
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but it is occasionally able to find 3 or even 4 distinct endmembers coupled with ICA, as was
the case for the previously mentioned run, shown in 4-22.

(a) (b) (c)

Figure 4-22: The spectral signatures of the endmembers found by the G3IP (a), G4IP (b) and
G5IP (c) method

This specific result also corresponds to a set of high quality abundance maps, as can be seen
in 4-23. The egg is separated from the background very well, though it is not able to separate
the egg from the white blood cell.

Figure 4-23: The endmembers derived in the S4IP method with negative light transmittance
values

NFINDR

The NDINDR method is much more consistent and only rarely selects neighbouring pixels as
endmembers. However, similarly to PPI, there is no clear background pixel being selected,
though this could again be caused by the transparency of the egg. Furthermore, the choice
of VD is shown to have a great effect, as can be seen in 4-24.
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(a) (b) (c)

Figure 4-24: Schistosoma urine sample: The pixels found to be most similar to the endmembers
found by the G4PN (a), G5PN (b) and G6PN (c) method as determined by the SAM metric

The same was found to be the case for the denoising algorithm and the choice of dimension-
allity reduction, the ICA transform causing the method to find more pixel on the white blood
cell to be endmembers. The PCA transform causes more pixels on the egg to be selected as
endmembers. This can be seen in 4-25.

(a) (b) (c)

(d) (e) (f)

Figure 4-25: The locations of the pure pixels for the N5PN (a), G5PN (b), S5PN (c), N5IN (d),
G5IN (e) and S5IN (f) methods on the Schistosoma sample highlighted by the yellow circles

In case of the NFINDR method, the spectral signatures are much more distinct from each
other compared to the PPI method. They often contain one endmember that has high light
transmittance in all wavelengths, thus likely corresponding to pixels showing the background.
Furthermore, as can be seen in 4-26 the choice of denoising algorithm has little effect on the
results,
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(a) (b) (c)

Figure 4-26: The spectral signatures of the endmembers found by the for the N6PN (a), G6PN
(b), S6PN (c) methods on the Schistosoma sample

nor has the choice of dimensionallity reduction given a VD of 4 or 6 4-27.

(a) (b) (c)

Figure 4-27: The spectral signatures of the endmembers found by the for the G4PN (a), G5PN
(b), G6PN (c) methods on the Schistosoma sample

A VD of 6 was chosen as this resulted in the clearest abundance maps, as can be seen in
4-28. Combined with the PCA transform it is able to separate the egg from the background
reasonably well, no matter the denoising algorithm.

Figure 4-28: The endmembers derived in the S6PN method with negative light transmittance
values
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Statistics Based

The locations of the pixels most similar to the endmembers of the statistics based method
differ greatly across all combinations of VD, dimensionallity reduction and denoising, some
being shown in 4-29. The denoising, the 3d gaussian filtering cause the pixels corresponding
to the endmembers to be mostly located on the white blood cell, while no or savitsky golay
results in only one or two pixels on the white blood cell. The results across different virtual
dimensionallities are much more consistent when the PCA transform is used compared to
the ICA transform, where any change in VD causes a large change in the locations of the
pixels corresponding to the endmembers. What is furthermore notable is that using the ICA
transform, there often are no two endmembers with the same pixel as the most similar, neither
are there neighbouring pixels most similar. This is different from when the method is applied
to the stained Malaria sample.

(a) (b) (c)

(d) (e) (f)

Figure 4-29: The locations of the pure pixels for the N4PB (a), G4PB (b), S4PB (c), N4IB (d),
G4IB (e) and S4IB (f) methods on the Schistosoma sample highlighted by the yellow circles

The statistics based method shows similar results to the NFINDR method in that it shows
spectral signatures being distinct from each other. Figure 4-31 shows that when coupled with
the PCA transform the method is even able to find an endmember that could correspond
to the background. This is not the case for the ICA or HySime transform, in which case
an endmember with low light transmittance across all wavelengths is extracted, the exact
opposite of the expected background spectrum.
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(a) (b) (c)

Figure 4-30: The spectral signatures of the endmembers found by the for the N4PB (a), N4IB
(b), N4HB (c) methods on the Schistosoma sample

However, the best abundance maps seem to be derived when coupled with the HySime di-
mensionallity reduction, in which case one clearly shows the Schistosoma egg separated from
the background quite well independent of the given VD, though again not from the white
blood cell, as can be seen in 4-31.

Figure 4-31: The endmembers derived in the S4HB method with negative light transmittance
values

Sisal

Finally, the locations of the most similar pixels to the endmembers given by the Sisal end-
member extraction were found to be quite similar across different virtual dimensionallities,
except for when a VD of 3 was given, as can be seen in 4-32 a to c,
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(a) (b) (c)

Figure 4-32: Schistosoma urine sample: The pixels found to be most similar to the endmembers
found by the G4S (a), G5S (b) and G6S (c) method as determined by the SAM metric

as well as denoising algorithms, as can be seen in 4-33 d to f. Notable is that most pixels
most similar to the endmembers are located on the white blood cell and none directly on the
background.

(d) (e) (f)

Figure 4-33: Schistosoma urine sample: The pixels found to be most similar to the endmembers
found by the N5S (a), S5S (b) and G5S (c) method as determined by the SAM metric

The corresponding spectral signatures show each endmember being distinct from each other.
It furthermore shows that each set contains an endmember with high values for all wave-
lengths, likely corresponding to the background. What is interesting is that given different
virtual dimensionallities, endmember 1 and 2 remain similar, but the others change drasti-
cally, as can be seen in 4-34. The choice of denoising method has little to no effect as was the
case with the Malaria sample.

(a) (b) (c)

Figure 4-34: The spectral signatures of the endmembers found by the for the G3S (a), G4S (b),
G5S (c) methods on the Schistosoma sample highlighted by the yellow circles
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However, none of the corresponding abundance maps showed the egg separate from the back-
ground. The closest it achieved was using no denoising and a VD of 6, as can be seen in 4-35,
but it still falls short compared to the other methods in this regard.

Figure 4-35: The endmembers derived in the N6S method with negative light transmittance
values

4-3-4 Unstained Malaria Infected Blood Samples

The methods are similarly tested on the images of an unstained Malaria sample. By imaging
the exact same location on the sample in stained and unstained condition it is possible to
validate the results by referencing the images of the exact same location on the stained sample.
The location of the parasites are thus known and can be similarly compared with the locations
found by the method. The setup is the same as in the stained case with a 20x apochromatic
magnification objective lens and a small cutout of the image containing no large distortions.
The same range of wavelengths of 500 to 748 was used. The assumption was made that the
cells and parasites would remain in place as the giemsa stain was applied. However, though
they remain mostly in the same position, it is not exact as can be seen in 4-36. Compared
to 4-37 all the cells moved to the left slightly (corrected for in the images), changed form
slightly and some cells that were touching are no longer doing so. Since the two maps can
thus not be aligned the semi-supervised endmember derivation discussed in 3-7 can not be
applied. However, they have more or less retained their relative locations and it should still
be possible to use the abundance map of the sample in stained condition to see which cells
contains a parasite.
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Figure 4-36: The abundance maps derived using the G4S method on the stained Malaria sample

These abundance maps were acquired using the the Sisal endmember extraction using 3d
gaussian filtering and given a VD of 4. Though the abundance map is of lower quality than
on the other sample, likely caused by the lower abundance of parasites, it still clearly shows
a parasite in the upper middle of the image. Applying the endmember extraction directly on
the data of the unstained parasite sample, no abundance map had higher intensity spots on
these locations, as can be seen in below.

Figure 4-37: The abundance maps derived using the G4S method on the unstained Malaria
sample

Due to the much lower contrast of the images of the unstained sample the endmember extrac-
tion methods mostly picks up on a small contamination on the microscope, the circular shape
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to the left of the middle, and is not able to extract the spectral signature of the parasite.
None of the other methods showed a brighter spot in the infected cell either.

4-4 Reference Spectrum Assisted Classification

Though the endmember extraction was unsuccessful for the unstained sample, in case of
the stained Malaria parasite some of the endmembers were found to be reliable estimations
of the spectral signature. Up until now these have been validated using the endmembers
locations, spectra and abundance maps which can show clear errors, but give little to compare
the seemingly well working methods by. Therefore, these spectral signatures are compared
to each other in a similar way to how the red-green and principal component images were
compared, namely classification. Furthermore, they are also compared to the classifeir using
the first principal component of the hyperspectral and the simulated red-green (same as
before) data. In order to derive a classification performance using the spectral signatures
they are first used to create a detection map. From these detection maps the features will
be derived using the OSP detection method, which uses all the determined endmembers, or
the CEM detection method, which only requires the spectral signature of the parasite. The
features derived from these detection maps are used to train a classifier which is to determine
whether a cell is infected or not. The more accurate the spectral signatures are, the more the
parasites will light up in the detection map, the better the classifier works. In this test the
same set of features per image is used as before , namely mean, variance, dissimilarity and
contrast. Furthermore, two types of classifier are used. The support vector machine with a
regularization parameter of 1000 and a balanced class weight as well as the random forest
classifier with 100 individual trees and a balanced class weight as well. The balanced class
weight was chosen as in the sample set the ration of uninfected cells to infected cells is 5 to
1. The sensitivity, specificity and success rate of the methods that did well (ranked by their
sensitivity using the SVM classifier) using OSP detection can be seen in 4-2.

OSP-SVM sens spec s OSP-Forest sens spec s
G4S 0.913 0.923 0.922 0.826 0.986 0.964
G3HB 0.870 0.910 0.903 0.826 0.986 0.958
S3HP 0.826 0.888 0.880 0.783 0.986 0.946
G5PN 0.739 0.832 0.819 0.739 0.965 0.892

Table 4-2: The sensitivity, specificity and success rate of the SVM and random forest classifier
using the endmembers derived in the various endmember extraction methods in the OSP detection
method.

Using the OSP detection, which uses all of the available endmembers, the endmembers deter-
mined in the Sisal method result in the highest sensitivity, specificity and success rate. The
random forest classifier has higher success rate the SVM, but does so by sacrificing sensitivity,
which leads to higher performance due to the relatively larger amount of negative samples.
The results of the same test but using CEM detection are given in 4-3.
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CEM-SVM sens spec p CEM-Forest sens spec p
G4S 0.913 0.881 0.885 0.652 0.990 0.940
G3HB 0.870 0.916 0.892 0.700 0.990 0.946
G5HN 0.870 0.909 0.887 0.610 0.990 0.933
N4HP 0.870 0.888 0.880 0.652 0.993 0.946

Table 4-3: The sensitivity, specificity and success rate of the SVM and random forest classifier
using the endmembers derived in the various endmember extraction methods in the CEM detection
method.

Using the CEM detection method, The highest success rate is actually produced using the
endmember from statistics based. However, the highest sensitivity is still produced using
the endmember corresponding to the Sisal method. Again, the random forest classifier has
a higher succes rate, but at the cost of sensitivity. Finally, the results of these endmember
assisted classification methods can be compared to the same algorithms trained on the first
principal component, which requires no a priori knowledge, given in 4-4.

sens spec p
PCA-SVM 0.740 0.867 0.850
PCA-Forest 0.522 0.993 0.930

Table 4-4: The sensitivity, specificity and success rate of the SVM and random forest classifier
using the first principal component of the hyperspectral data

Which show us that a priori knowledge of the parasites spectral signature leads to significantly
better classification performance which is missed when simply using PCA for dimensionallity
reduction. Interestingly, apart from Sisal where the dimensionallity reduction is part of the
method, the methods which seemingly give the best spectral signatures in terms of detection
are those resulting from methods using the HySime dimensionallity reduction. The corre-
sponding abundance maps, displayed in 4-38, generally show the background and foreground
separated really well, but the RBC’s and parasites not.

(a) (b)

Figure 4-38: The abundance maps resulting from the S3HP (a) and G3HB (b) algorithm
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4-5 Reference Spectrum Assisted Detection

In case of the Schistosoma eggs it is a bit more difficult. Current methods of detection
generally involve some kind of convolutional neural network, which are very heavy to train,
requiring many training samples. At this time training a similar network is not an option
due to the limited samplesize of hyperspectral images. Therefore, the spectral signatures are
once again used to create detection maps using OSP and CEM detection. Out of these maps
the ones that show the egg the most clearly are compared to the first principal component
which requires no a priori knowledge. These images are displayed in 4-39.

(a) (b) (c)

Figure 4-39: The resulting detection maps using OSP detection with the endmembers of the
N4IP algorithm (a), CEM detection with the N6HB algorithm (b) and the first principal component
(c).

Here, the first principal component, which does not require the spectral signature of the
egg to be known, displays the it similarly if not more clearly than the others. Unlike the
abundance maps, the detection methods do not provide an image which make the eggs more
easily detectable.

4-6 Comparing Multispectral and bright field RGB Classification

Up until now some spectral signatures have been found to be a reliable estimation of the
true spectrum of the giemsa stained Malaria parasite. It has also been shown that when
using these spectral signatures in the feature derivation hyperspectral imaging can be used
to achieve superior classification performance. However, It is not realistic to expect labs in
sub-saharan Africa to be in the possession of a hyperspectral microscope in order to diagnose
Malaria. Therefore, the next step is to determine whether the derived spectral signatures can
be used in the development of methods using more cost-effective equipment. The method
that is explored is that of a multispectral microscopy. Using the newfound spectral signa-
tures the most discriminative wavelengths can be determined, the wavelengths where the
signature of the parasite is has the largest squared difference in light transmittance to the
other endmembers, as displayed in 4-40.
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(a) (b)

Figure 4-40: The resulting spectral signatures from the endmember extraction (uncorrected for
illumination) (a) and root mean square difference between the spectral signature corresponding
to the parasite and the others (b)

Imaging at just the two wavelengths where the differences are the largest, in this case 552nm
and 692nm, should give an advantage over using the red-green images. To test this two sets of
two images were derived from the same data. The images in the first set are made by averaging
the 5 images at the discriminative wavelength and nearest neighbouring wavelengths. The
second set again aims to represent the red and green wavebands of an RGB image, but this
time only 5 images equidistant in the relevant spectral domain are used. All the images used
for classification are derived from 5 input images should thus all have a comparable signal-
to-noise ratio while keeping the resolution at these specific wavelength high enough to take
advantage of the increased discriminative power. The results of the SVM algorithm can be
seen in 4-5

sens spec s
DW-SVM 0.826 0.930 0.915
RG-SVM 0.739 0.867 0.849

Table 4-5: The sensitivity, specificity and success rate of the SVM classifier using the discimina-
tive wavelength images versus the red-green images

and the random forest classifier in 4-6.

sens spec s
DW-Forest 0.739 0.979 0.945
RG-Forest 0.565 0.979 0.921

Table 4-6: The sensitivity, specificity and success rate of the random forest classifier using the
disciminative wavelength images versus the red-green images

The results clearly show the classifiers trained on the discriminative wavelength images out-
performing those trained on the red-green images both in the SVM and the random forest
classifier. This implies that such a multispectral setup could indeed give an advantage com-
pared to RGB imaging, provided this result holds when the blue waveband is included. Using
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more wavebands could improve the performance further, but in the field this would translate
to a slower data acquisition process.
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Chapter 5

Discussion and Conclusion

The results shown in the previous chapter have shown some of the strengths and weaknesses
of hyperspectral imaging in the application of Malaria detection in stained and unstained
thin smear blood samples and Schistosoma egg detection in urine samples. This chapter will
discuss each of the tested methods in relation to the research questions. It will then give
a conclusion on these questions and the potential of hyper- and multispectral imaging for
this application as a whole as well as give a recommendation for possible future directions of
related research.

5-1 Discussion

A great many combinations of virtual dimensionallity, denoising method, dimensionallity
reduction and endmember extraction have been applied to the problem of Malaria and Schis-
tosoma detection, with various success. The effectiveness of these methods will be discussed
per type of sample.

5-1-1 The Stained Malaria Sample

Arguably the easiest of the tasks is the spectral signature estimation of the stained Malaria
infected thin smear blood sample. It has been possible to detect Malaria prasites in these kinds
of samples for some time. Traditionally, light microscopy with an RGB sensor combined with
some RBC segmentation methods and various classifiers have been applied to this problem,
often successfully. The application of hyperspectral microscopy on the stained Malaria sample
is therefore mostly focused on the estimation of the spectral signature of both the stained
parasite and the other substances in the sample. This has been done with the intention of
determining the wavelengths in which this spectral signature has the largest difference to
the other endmembers in terms of light transmittance and has been shown to be possible to
various degrees.

Final Thesis S. Krab



76 Discussion and Conclusion

Endmember Extraction

The PPI method is shown to be inconsistent, having different results each run, making it an
unreliable tool for spectral signature estimation. The NFINDR method seems to perform well
looking at the spectra, endmember location and abundance maps, but has a low corresponding
classification performance. Statistics based is unable to separate the RBC’s and background
from each other. The Sisal method performs the best of the tested methods. Both the
locations of the most similar pixel as well as the shape of the endmembers in the spectral
domain are found to be in line with expectation. The abundance maps show the RBC’s,
background and parasites separated quite well and the endmembers resulting from the Sisal
method are in turn found to correspond to the best classification performance. When OSP
is used to create the detection map the classifier using the corresponding endmembers has
higher sensitivity and specificity than the classifiers trained on other sets of endmembers. It
also outperforms the classifiers trained on the first principal component of the data or the
red-green images. When CEM is used to create the detection maps from which the features
are derived the performances are more similar, but the highest sensitivity is still achieved
using the endmembers derived using Sisal. An interesting finding in the classification tests
is that when using OSP detection the other endmember extraction methods methods are
often best coupled with the HySime dimensionallity reduction. These often correspond to
abundance maps in which the back- and foreground are separated well, but do not necessarily
separate the RBC’s and the parasites. This could be implying that during the OSP detection
valuable information is lost in the removal of the endmembers which correspond to the RBC’s
as compared to only removing the background. This would have to be researched further.

Multispectral Classification

The use of these estimated spectral signatures for the determination of the most discriminative
wavelengths proved to be fruitful. The use of images at the most discriminative wavelengths,
the wavelengths where the spectral signature of the parasite has the largest difference to the
other endmembers in terms of light transmittance, leads to significantly higher sensitivity
and specificity compared to using the simulated RGB data. This is shown to be the case the
case using either the SVM classifier or the random forest classifier. Of course, the RGB data
is simulated from the hyperspectral data and made to have a similar signal-to-noise ratio as
the specific wavelength images, which is not representative to the real world where the RGB
images have a much stronger lightsource. However, the results are still promising and further
research should be done to determine whether this could have a real world use.

5-1-2 The Schistosoma Sample

The next task is the estimation of the spectral signature of the Schistosoma eggs. As the
eggs are mostly transparent when using conventional bright field microscopy, it often requires
powerful convolutional neural networks in order to be able to detect them. The application of
hyperspectral microscopy is therefore focused on creating an image on which the eggs are more
easily detected. The abundance maps which show the Schistosoma egg most clearly are in the
occasional successful PPI endmember extraction run. Similarly to before, the method is not
very reliable, resulting in different spectra in multiple runs of the same algorithm. NFINDR
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and statistics based has been shown to be much more reliable in this regard, providing an
abundance map where the Schistosoma egg is almost as visible as in case of the PPI algorithm,
but doing so each time the algorithm is run. The Sisal method is not able to create an
abundance map in which the egg is clearly visible. Finally, though the goal of more easily
detectable eggs was sometimes achieved using FCLS regression, none of the corresponding
detection maps, using the computationally lighter OSP or CEM detection, provided the same
benefit when compared to the first principal component image.

5-1-3 The Unstained Malaria Sample

None of the endmember extraction algorithms is able to find the spectral signature of the
unstained Malaria parasite. The endmember locations are not positioned on the parasites,
nor does one of the abundance maps have the parasites specifically light up. An interesting
finding is that the cells change shape and position slightly in the process of staining. This
makes the use of spatial information from the sample in stained condition for the analysis of
the sample in unstained condition more difficult than expected.

5-2 Conclusion

In search of the potential advantages that multi- and hyperspectral imaging can provide first
the classification of the RBC’s as being infected or not was tested using the hyperspectral data
directly versus the RGB data simulated from the same dataset. Interestingly, the classifier
using the full hyperspectral dataset is shown to be worse than using the RGB data in terms
of sensitivity and specificity. However, as later test do show increased performance using a
different approach, this is most likely due to the the small samplesize. It is not uncommon in
machine learning that, given additional data, the classification performance remains similar
or even decreases if not combined with sufficient training data. To prevent this, a similar test
using a much larger sample size and additional features should be conducted. For this an
altered setup in which the imaging is automated and/or the pushbroom scanning method is
used would be required to handle this task as the process is too slow using the setup used for
this study.

In case of the stained Malaria sample, of all the endmember extraction methods, with the
various combinations of denoising, VD and dimensionallity reduction, The Sisal method using
3d gaussian filtering is found to result in the most plausible spectral signatures. The end-
members themselves, the locations and the abundance maps are all in line with expectations.
Furthermore, the classification which used the signatures derived from the Sisal method in
the feature derivation process have higher sensitivity and specificity compared not only to the
other endmember extraction methods, but also to both the RGB simulated data and the first
principal component derived from the full hyperspectral data. This shows that hyperspectral
imaging can indeed provide an significant advantage over RGB imaging in this application. It
furthermore implies that additional information has been acquired in the endmember extrac-
tion process and that the derived spectral signatures can be considered reasonably accurate.

As for the challenge of spectral signature estimation for the Schistosoma eggs, this proved to
be more difficult. All endmember extraction methods but Sisal are able to separate the egg
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from the background given a high enough VD, but not able to separate the egg and the white
blood cell from each other. Using FCLS regression using the spectral signatures derived in
the endmember extraction, it is often possible to create an abundance map in which the eggs
are clearly separated from the background. This provides a significant advantage over the
RGB representation and the first principle component, but the process is computationally
heavy. Using the computationally lighter OSP or CEM target detection with the estimated
signature corresponding to the egg does not provide the same advantage. It therefore remains
unclear whether an accurate prediction of the spectral signature of the Schistosoma egg is
made. A similar classification comparison as is done with the stained Malaria sample was not
possible in this study. This is because Schistosoma egg detection is currently mainly done
using comvolutional neural networks which require a lot of training data. Here the small
samplesize proves to be the limiting factor. However, this should be considered as a direction
of future research. As stated before, this would require the imaging process to be significantly
quicker.

Finally, none of the tested methods are able to extract the spectral signature of the unstained
Malaria parasite when applying the endmember extraction directly on the data. This likely
means the spectral signature is simply not different enough from the RBC’s at the tested
wavelengths and the endmember extraction methods are not able to make an accurate es-
timation of the spectral signature of the parasite. Perhaps a stronger light source could be
used, making a higher spectral resolution and lower signal-to-noise ration possible, but trying
to use different part of the electromagnetic spectrum is likely to be more fruitful.

The proposed hypothetical multispectral microscope which images just at the most discrimi-
native wavelengths is shown to increase performance compared to its RGB counterpart when
both are derived from the same data. However, it has to be considered that this compar-
ison uses images which are purposefully made to have a similar signal-to-noise ratio, while
normally bright field microscopy would provide a much higher signal-to-noise ratio due to
the stronger illumination. Further research is required to determine whether multispectral
imaging could provide a real world advantage.
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