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Induced Dimension Reduction Method to Solve
the Quadratic Eigenvalue Problem

R. Astudillo(B) and M.B. van Gijzen

Delft Institute of Applied Mathematics, Delft University of Technology,
Mekelweg 4, 2628 CD Delft, The Netherlands
{R.A.Astudillo,M.B.vanGijzen}@tudelft.nl

Abstract. In this work we are interested in the numerical solution of
the Quadratic Eigenvalue Problem (QEP)

(λ2M + λD + K)x = 0,

where M, D, and K are given matrices of order N . Particularly, we study
the applicability of the IDR(s) for eigenvalues to solve QEP. We present
an IDR(s) algorithm that exploits the special block structure of the lin-
ealized QEP to compute its eigenpairs. To this end we incorporate ideas
from Second Order Arnoldi method proposed in [3].

Keywords: Quadratic Eigenvalue Problem · Induced Dimension
Reduction

1 Introduction

In this work we are interested in solving the Quadratic Eigenvalue Problem
(QEP), i.e., find a subset of pairs (λ, x), where λ ∈ C and x ∈ C

N such that,

(λ2M + λD + K)x = 0, (1)

where M , D, and K are (sparse) matrices of order N often referred as mass,
damping, and stiffness matrices, respectively. The QEP appears in different areas
like vibration analysis, dynamical systems, or stability of flows in fluid mechanics
(see [8] and their references within).

One of the most common options to solve the quadratic eigenvalue problem
(1) is to linearized it to an standard eigenvalue problem. First, problem (1) can
be written as a generalized eigenvalue problem, i.e.

Cy = λGy, (2)

where

C =
[−D −K

I 0

]
, and G =

[
M 0
0 I

]
.
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Second, if the matrix M is not singular, (2) can be rewritten as standard eigen-
value problem,

Ay = λy, (3)

with

A =
[−M−1D −M−1K

I 0

]
. (4)

It is easy to check that the eigenvalues of A and the eigenvalues of (1) are
related by:

yi =
[
λixi

xi

]
. (5)

Then, one can apply any eigensolver software for the standard eigenvalue (3) and
obtain approximate solutions of the quadratic eigenvalue problem (1). This app-
roach has two main disadvantages. First, it solves a standard eigenvalue problem
of double the dimension of the original quadratic eigenvalue problem. Second,
some properties of the matrices M , D, and K are lost during the linealization;
for example, matrices M , D and K can be symmetric positive definite (SPD)
matrices but the matrix A does not keep the SPD property.

To overcome the disadvantages of using the linealization (3), the authors in [3]
propose a method called Second Order Arnoldi (SOAR), which is a modification
of the Arnoldi method [1]. By exploiting the block structure of the matrix A, the
SOAR method uses approximately half of the memory of the classical Arnoldi
method applied to the problem (3). Also and more importantly, this method
preserves essential structures and properties of the matrices involved.

The Arnoldi method has as main drawback its demanding computational
requirements. In this contribution, we study the Induced Dimension Reduction
Method for eigenvalue problem [2] to solve the Quadratic Eigenvalue Problem
as an alternative to the Arnoldi method.

This document is organized as follow. Section 2 presents an introduction to
the Induced Dimension Reduction method for solving linear system of equations.
In Sect. 3, we present how the IDR(s) method has been adapted to solve the
standard eigenvalue problem, and in Sect. 4, we present an IDR(s) to solve the
Quadratic Eigenvalue problem, using ideas from SOAR. In Sect. 5, we conduct
numerical experiments to illustrate the numerical behavior of the IDR(s) for
QEP. Section 6 presents the conclusions and remarks of this work.

2 Induced Dimension Reduction Method - IDR(s)

IDR(s) was presented originally in [7], as a short recurrences iterative Krylov
method to solve large and sparse systems of linear equations,

Ax = b. (6)

The IDR(s) method is based on the following theorem,
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Theorem 1 (IDR(s) theorem). Let A be any matrix in C
N×N , and let P =

[p1, p2, . . . ,ps] be an N × s matrix with s linear independent columns. Let {μj}
be a sequence in C. With G0 ≡ C

N , define

Gj+1 ≡ (A − μj+1I)(Gj ∩ P⊥) j = 1, 2 . . . , (7)

where P⊥ represents the orthogonal complement of P . If P⊥ does not contain
an eigenvector of A, then, for all j = 0, 1, 2 . . . , the following hold

1. Gj+1 ⊂ Gj, and
2. dimension(Gj+1) < dimension(Gj) unless Gj = {0}.

Proof. See [7].

The subspaces Gj for j = 0, 1, 2, . . . are shrinking and nested subspaces. IDR(s)
uses recurrences of size s to create an approximated solution xk+1 forcing its
corresponding residual vector rk+1 = b − Axk+1 to be in the subspace Gj+1.
Using the fact that Gj∗ = {0} for some j∗, the residual will become zero and
IDR(s) will obtain the solution of (6).

3 IDR(s) to Solve the Eigenvalue Problem

Several methods to compute a subset of eigenpairs (λi, xi) of a large and sparse
matrix A ∈ C

N×N rely on the construction of a standard Hessenberg relation of
the form,

AUm = UmHm + f eT
m, (8)

where Hm is an upper Hessenberg matrix of order m (much smaller than N),
Um = [u1, u2, . . . ,um] ∈ C

N×m is a basis for the Krylov subspace Km(A,u1)
with u1 �= 0, f ∈ C

N , and em is the m-th canonical vector. It can be proved
that the eigenpairs of A can be approximated by (λ̂j , Umŷj), where (λ̂j , ŷj) are
the eigenpairs of the smaller matrix Hm.

Two examples of well-known methods to construct a Hessenberg relation and
approximate eigenpairs, are the Lanczos [5] and Arnoldi [1] method. While the
Lanczos method is suitable when the coefficient matrix is symmetric, in the case
of unsymmetric matrices this method might suffer from numerical instability.
For this reason, the Arnoldi method is the most common option to build a
Hessenberg relation for unsymmetric matrices. The Arnoldi method explicitly
build an orthogonal basis for the Krylov subspace and because of this the work
and storage per iteration grow with the number of iterations.

In [4] and later in [2] the IDR(s) method was adapted to build a Hessenberg
relation and approximate eigenpairs of unsymmetric large matrices. The Hes-
senberg relations based on the IDR(s) method keep the computational work
(almost) constant per iteration. Next, we review of how to obtain an IDR-
Hessenberg relation.
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IDR creates a vector in Gj+1 with the assumption that s + 1 vectors are
already in Gj namely {wk−i}s

i=0. A new vector wk+1 in the subspace Gj can be
written as,

wk+1 = (A − μj+1I)

(
wk −

s∑
i=1

βiwk−i

)
, (9)

where the coefficient βi are computed via the solution of the following s × s
system of linear equation,

PT [wk−1, wk−2, . . . ,wk−s]c = PTwk where c = [β1, . . . , βs]T .

It is possible to rewrite (9) as,

A

(
s∑

i=0

βiwk−i

)
= wk+1 − μj+1

s∑
i=0

βiwk−i, (10)

with β0 = −1. From the equation above, the authors in [4] constructed a gener-
alized Hessenberg relation,

AWmÛm = WmĤm + weT
m, (11)

where Ûm is an upper triangular matrix and Ĥm is an upper banded Hessenberg
matrix. The banded matrix pencil (Ĥm, Ûm) is called the Sonneveld pencil. The
eigenvalues of this pencil are divided into two sets: {μk}t

i=1 where t is the number
of subspaces Gj created, and the approximations to the eigenvalues of A or Ritz
values {θk}m

i=t. In [2], the authors construct a standard Hessenberg relation using
IDR(s),

AWm = WmHm + weT
m = Wm+1H̄m, (12)

where the i−th column of the upper Hessenberg matrix Hm is defined as,

hi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎣

0
...
0

⎤
⎥⎦

−μj+1

⎡
⎢⎣

c1
...
cs

⎤
⎥⎦

μj+1

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
s∑

�=1

c�hi−�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (13)

and this matrix has the same eigenvalues as the pencil (Ĥm, Ûm) obtained from
(11) in [4]. At this point, one can apply directly IDR(s) for eigenvalues to the
problem (3). Especially in applications where only the eigenvalues are needed,
IDR(s) can be used as a short-recurrences method to create Hm (see Eq. (9) and
(13)) and approximate the eigenvalues of (1).
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4 IDR(s) to Solve the Quadratic Eigenvalue Problem

Bai and Su in [3] proposed a special version of the Arnoldi algorithm for the QEP.
This so called second order Arnoldi algorithm (SOAR) exploits the structure of
(3)–(5) to reduce the memory requirements for the Arnoldi method by a factor
of two. In this section we examine how the ideas underlying in SOAR can be
incorporated in IDR to obtain a second order IDR (SOIDR) algorithm.

4.1 Second Order IDR(s)

One can exploit the block structure of the 2N × 2N matrix A in Eq. (4) for the
creation a standard Hessenberg relation (12). Let us consider Eq. (12), with the
matrix Wm rewritten in two block matrices of size N × m as,

Wm =

[
W

(U)
m

W
(L)
m

]
, (14)

Then Eq. (12) can be written as,

−M−1DW (U)
m − M−1KW (L)

m = W (U)
m Hm + w(U)

m+1e
T
m (15)

W (U)
m = W (L)

m Hm + w(L)
m+1e

T
m. (16)

From Eq. (16), and assuming that the first column vector (w1) of the matrix
Wm has the following pattern

w1 =
[
u
0

]
, with u �= 0 ∈ C

N ,

we have (using the Matlab subindex notation),

W (U)
m = W

(L)
m+1H̄m = W

(L)
m+1(:, 2 : m + 1)H̄m(2 : m + 1, 1 : m). (17)

The Eq. (15) can be rewritten as,

− M−1DW (U)
m − M−1KW (U)

m Tm = W (U)
m Hm + w(U)

m+1e
T
m, (18)

where

Tm =
[
0 H̄m(2 : m, 1 : m − 1)−1

0 0

]
. (19)

Equations (18) and (19) suggest a formula to compute the column vectors of the
matrix W

(L)
m as a linear combination of the column vector of W

(U)
m . Algorithm 1

shows a possible implementation of these ideas. This method needs only half
of the memory of the classical Arnoldi method applied to the matrix A. The
memory requirements of SOIDR are equivalent to those from SOAR [3].
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Algorithm 1. SOIDR(s) for solving the QEP.
1: Given s ∈ N, P ∈ R

N×s, M, D, and K.
2: Run SOAR to obtain W ∈ C

n×s+1 and H ∈ C
s+1×s, s.t.

A

[
W (U)

W (L)

]
s

=

[
W (U)

W (L)

]
s+1

H̄s.

3: Ts = H̄s(2 : s, 1 : s − 1)−1

4: for i = s + 1, . . . , m do
5: if i is multiple of s + 1 then
6: Choose the parameter μj for the subspace Gj .
7: end if
8: Solve (P T [w

(U)
i−s, w

(U)
i−s+1, . . . , w

(U)
i−1])c = P Tw

(U)
i .

9: v = w
(U)
i −∑s

�=1 β�w
(U)
i−�.

10: Compute the latest column of W
(L)
i as v(L) using (17) and (19).

11: w
(U)
i+1 = −M−1(Dv + Kv(L)) − μjv.

12: Create the i-th column of H according to (13).
13: Update Ti using (19).

14: W
(U)
i+1 = [w

(U)
1 , w

(U)
2 , . . . , w

(U)
i , w

(U)
i+1].

15: end for
16: Compute the eigenpairs {(λi, zi)}m

i=1 s.t. Hmzi = λizi.

17: return {(λi, W
(U)
m zi)}m

i=1.

It is important to mention that the SOIDR(s) algorithm and IDR(s) for eigen-
values generate the same Ritz values for the same input parameters. The low-
memory IDR(s) for eigenvalues algorithm is a short-recurrences method that uses
2s + 2 vectors of dimension 2N and it is only possible obtain approximations to
the eigenvalues. While SOIDR(s) can obtain approximation of the eigenpairs, this
is a more expensive algorithm. SOIDR(s) uses long-recurrences in the step (10) of
Algorithm 1 and the complete upper part of Wm needs to be stored.

5 Numerical Experiments

Experiment 1: The purpose of this example is to compare the convergence
of Arnoldi, SOAR, and SOIDR for the exterior eigenvalues of the QEP. The
matrices M , D, and K are random sparse of order 400. Figure 1 shows a com-
parison between the errors of the Ritz values generated by Arnoldi, SOAR, and
SOIDR(4) or 35 Ritz values after 40 matrix vector products (Fig. 2 shows the
Ritz values computed).

Experiment 2: In our second experiment we measure the execution times for
SOAR, SOIDR(4), and IDR(4) for eigenvalues [2]. We only compute a set of 10
the eigenvalues of the (1) and the matrices M , D and K are random matrices
of size 6000 × 6000. Table 1 shows the CPU times for each method.

Experiment 3: This example was presented in [6], and models the propagation
of sound waves in a room with five solid walls and one wall of a sound-absorbing
material,
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Fig. 1. Experiment 1: Convergence for 35 Ritz values after 40 matrix vector products.
One can see a similar convergence behavior, however some Ritz values of the SOIDR(4)
have a larger error.
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Fig. 2. Experiment 1: (a) Exterior eigenvalues and their approximation by SOAR. (b)
Exterior eigenvalues and their approximation by SOIDR(4).

Table 1. Experiment 2: Execution time comparison for SOAR, SOIDR(4), and IDR(4)
after 40 matrix vector products.

Method Time [s]

SOAR 3.67

SOIDR(4) 3.78

IDR(4) 2.41
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λ

c2
p − �p = 0 in [−2.0, 2.0]3 (20)

where c is the speed of sound (340 meter/second) and the boundary conditions
are,

∂p

∂n
= 0 for the solid walls, (21)

and,
∂p

∂n
= − λ

cZn
p for the absorbing wall. (22)

Selecting an impedance Zn = 0.2 − 1.5i0, this problem has an analytical eigen-
value −5.19 + 217.5i. We discretized Eqs. (20)–(22) using finite element and
obtain matrices of order 1681. Figure 3 shows the evolution of the error of the
Ritz values generated by SOAR and SOIDR(2).

0 2 4 6 8 10 12 14 16
10−9

10−5

10−1

103

Matrix-vector

‖λ
∗

−
λ̂
‖

SOAR
SOIDR(2)

Fig. 3. Experiment 3: Error convergence for SOAR and SOIDR(2) to the known eigen-
values λ∗ = −5.19 + 217.5i.

6 Conclusions

We have developed a second order IDR algorithm (SOIDR) based on the ideas
underlying SOAR. In contrast to IDR for the standard eigenvalue problem,
SOIDR is not short recurrence. The memory requirements for SOIDR are com-
parable to that of SOAR. Compared to SOIDR, SOAR is for our test cases the
preferred method, since it exhibits a faster convergence. However, more numer-
ical test are needed.
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