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Abstract
The growing reliance on Artificial Intelligence (AI) systems increases the need for their understandability
and explainability. As a reaction, Neuro-Symbolic (NeSy) models have been introduced to separate neural
classification from symbolic logic. Traditional deep learning models are known to be susceptible to data
poisoning adversarial attacks, such as data poisoning. However, the impact of these attacks on NeSy models
remains under-explored. Most work on the subject records the attack effects by measuring Attack Success
Rate (ASR) or Benign Accuracy (BA). Because of the separate neural and symbolic components within
NeSy models, a backdoor attack can specifically target the models’ reasoning capabilities. The knowledge
of how potential reasoning is affected by such a model after an attack is unavailable. This research delves
into how BadNets backdoor attacks influence the reasoning of the DeepProbLog (DPL) Neuro-Symbolic
(NeSy) framework.

This study employed a novel, generalisable benchmarking suite to quantify the upper bound of the
Reasoning Shortcut Risk for various tasks. Experiments were conducted across multiple model instances
to perform a comparative review of the Reasoning Shortcut Risk between these settings.

The findings reveal that BadNets attacks generally increase the upper bound of the Reasoning Shortcut
Risk in DPL models. This means that the existence of this backdoor in such a model can be identified based
on this metric. Additionally, it was discovered that even model hyperparameter tuning on the DPL model
itself can increase the Reasoning Shortcut Risk. This suggests that optimisation for higher accuracies may
inadvertently lead these models to exploit new reasoning shortcuts. No significant correlation was observed
between the accuracy of the DPL model and its upper bound of Reasoning Shortcut Risk. The results
indicate that default metrics fail to define whether a DPL model behaves as desired. DPL models can
appear functionally correct while internally suffering from faulty reasoning.

This research found a higher upper bound for the Reasoning Shortcut Risk after a BadNets attack for
tasks that rely more on the neural component of the DPL NeSy model. Furthermore, the research found
that optimising poisoning parameters can influence the upper bound of the Reasoning Shortcut Risk. This
highlights the importance of the threat model under analysis when researching reasoning in DPL NeSy
models after applying a backdoor attack.

In conclusion, BadNets backdoor attacks fundamentally compromise the reasoning process in DPL
NeSy models. This increase in Reasoning Shortcut Risk is often worsened by routine model optimisation.
The research highlights the need for integrity metrics in addition to traditional performance indicators.
These insights are vital for creating NeSy models that act according to why they are used, to be robust,
trustworthy, and explainable.
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1. Introduction
The increasing interest in AI systems raises the necessity of their interpretability, robustness, and reasoning
capabilities. The result is that NeSy models are gaining more traction (Dingli & Farrugia, 2023;
Kalutharage et al., 2025). NeSy models aim to combine neural networks with symbolic reasoning. In
other terms, it combines learning from data with logic, rules and structure.

It is known that traditional Deep Neural Networks (DNNs) (Samek et al., 2021) are susceptible
to various adversarial attacks, including data poisoning backdoor attacks (Michel et al., 2022). Data
poisoning backdoor attacks involve subtly poisoning the training data so that the trained model behaves
abnormally, only when presented with specific malicious input.

However, the vulnerability of the mentioned NeSy models to these backdoor attacks remains relatively
unexplored. The limited existing backdoor research on NeSy models primarily focuses on analysing an
attack’s effect on the output’s final correctness (Kalutharage et al., 2025). They measure metrics like
Attack Success Rate (ASR), which denotes the accuracy on triggered inputs, or Benign Accuracy (BA),
which calculates the accuracy on non-triggered inputs.

Additionally, this limited research does not usually incorporate that NeSy models will be affected
differently based on the part an attack targets. Their unique separation of neural and symbolic analysis
allows, for example, an attack to focus the model’s reasoning (symbolic part). These reasoning changes,
or rather, reasoning shortcuts, are unintended strategies learned by a NeSy model. These strategies allow
the model to make correct predictions and satisfy the symbolic rules. However, when classifying based
on a reasoning shortcut, the model does not truly understand the underlying concepts. The reasoning
shortcuts are often rooted in spurious correlations present in the data and can lead to poor generalisation,
misleading reasoning and security issues. While accuracy is an important measure of model performance,
it is also necessary to understand whether a model is truly behaving as it should.

Papers such as that of Yang et al. (2024) formulated a mathematical approach to the quantification
of the concept of “reasoning shortcuts” in NeSy models. Unfortunately, the research lacked options to apply
and extend these calculations to trained models. Following this, research including that of Bortolotti
et al. (2024) set out to perform these quantifications. However, the benchmark suites provided by such
papers are often limited in their applicability to multiple tasks and datasets.

This results in an understanding of a “reasoning shortcut”, but not a fool-proof way to analyse them
on a NeSy model. The general public still cannot check if their NeSy model performs as expected or
follows reasoning shortcuts instead. This research aims to determine which parts of the model and the
implementation of the poisoning influence the number of shortcuts taken. To achieve this goal, a robust
implementation will be provided to benchmark reasoning shortcuts. This benchmarking suite will be able
to be applied to many different tasks and datasets for NeSy models.

The main question this research aims to answer is: “How does applying a BadNets backdoor
attack to a DeepProbLog model affect the existence of reasoning shortcuts?”

This question is split into multiple sub-questions that, together, lead to an answer to the main research
question.

1. How does a simple BadNets implementation affect the reasoning shortcuts in a DeepProbLog model?

2. How does the attacker’s knowledge of the training process affect the reasoning shortcuts after a
BadNets implementation on a DeepProbLog model?

3. Is there a correlation between the amount of reasoning shortcuts and model accuracy? And if so, to
what extent?

4. How does the difference in tasks performed by the neural network affect the reasoning shortcuts after
a BadNets implementation on a DeepProbLog model?
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The contributions of this paper provide foundational empirical evidence on how BadNets backdoor
attacks degrade the reasoning capabilities that define DPL NeSy models. The technical contributions of
this paper are:

• Quantification of Degradation caused by Reasoning Shortcuts: The central contribution is
to precisely measure the extent to which the attack increases reasoning shortcuts over various model
implementations. The reasoning shortcuts are measured instead of conventional metrics such as ASR
or BA. This research solely records these metrics to analyse whether the backdoor is functional or
active.

• Systematic Application of BadNets on DeepProbLog: In the process of analysing reasoning
shortcuts in multiple backdoor settings, the research provides a blueprint to systematically inject
backdoors and assess their efficacy to introduce reasoning shortcuts in NeSy models.

• Analysis of Backdoor Parameter Influence on Shortcuts: The research details the analysis
of how poisoning parameters influence the resulting reasoning shortcuts.

The outline of the paper is as follows. In Chapter 2, the background and the formal description of
the reasoning shortcuts are detailed. Chapter 3 explains the conducted experiments and their results.
In Chapter 4, the research is analysed from a responsible research perspective. Chapter 5 discusses the
findings and compares them to pre-existing knowledge, and Chapter 6 describes the conclusions of the
research. Lastly, Chapter 7 lists potential future work following any open issues or questions.

2. Background, Problem Description and
Methodology

This chapter explains the under-examined subjects of reasoning shortcuts added by backdoor attacks on
NeSy models. To introduce the research and its components, the concepts of NeSy models (Subsection
2.1.1), data poisoning backdoor attacks (Subsection 2.1.2), and reasoning shortcuts (Subsection 2.1.3)
will be analysed. Subsequently, this chapter formally defines the problem of quantifying these reasoning
shortcuts to use as a metric in the experiments (Section 2.2). Finally, the threat model assumed in this
work will be explained (Section 2.3).

2.1 Background

This background section provides the essential context for the research into how adversarial attacks com-
promise the reasoning integrity of NeSy models.

2.1.1 Neuro-Symbolic Models

A NeSy model represents a combination of the strengths of DNNs (e.g. pattern recognition) with symbolic,
or logical, reasoning. This approach limits the “black box” nature often associated with neural networks.

For example, consider a NeSy model designed to tackle the sum of two integer digits. To achieve this,
the neural component classifies the individual handwritten digits. The symbolic logic then combines these
digits by applying arithmetic formulas. In this case, the formula will be x + y to compute the sum. The
goal of the symbolic logic is to ensure the model adheres to the fundamental mathematical principles.

DeepProbLog is one of many prominent NeSy frameworks. Its implementation combines neural classifi-
cation and symbolic reasoning by inserting neural predicates directly within a probabilistic logic program1.

1Repository DeepProbLog (2025)
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(a) Poisoned MNIST digits (b) Reasoning Shortcut for the Addition task

Figure 2.1: MNIST digits as used in the experiments

The neural network outputs probabilities (confidence). As a reaction, the symbolic logic translates this
into a conclusion. For example, the neural predicate could learn to assume the probability of a certain
image representing a certain digit. In the case of Figure 2.1b, it may say that digit x is 4 with probability a
and digit y is 1 with probability b. These probabilities are then applied to the formula x+y = z ⇒ 4+1 = 5.
Figure 2.2 further illustrates inference within the DPL architecture.

Other Neuro-Symbolic frameworks integrate the two components (neural and symbolic) differently.
Semantic Loss involves, for instance, training a neural network to be regularised by logical constraints
(Xu et al., 2018). Here, the logic is often a soft constraint using a loss term, instead of enforcing hard
requirements.

In contrast, Logic Tensor Networks maps symbolic predicates into a tensor space where the logic
operations are performed using fuzzy logic operators (Badreddine et al., 2022). This ensures the logic
is somewhat integrated in the neural network.

DeepProbLog distinctly disjoints the neural and symbolic parts of a NeSy model and enforces hard
constraints on the output. Therefore, DPL is best suited to analyse backdoor attacks that may specifically
target either the neural or the symbolic part of the model.

2.1.2 Data Poisoning Backdoor Attacks

AI systems face vulnerabilities against data poisoning backdoor attacks (Ji et al., 2017). A data poisoning
backdoor attack generally involves a malicious actor poisoning (changing) a small portion of the model’s
training data (Bai et al., 2025). The idea is to add another association to the model. When the trigger
is inserted in the data, the model should output an inconsistent attacker-defined output. Figure 2.1a shows
the trigger inserted in digit x in the top left corner. In this example, the model will be trained to classify
that digit as a 0 instead of its original value of 1.

NeSy models add more complexity to this attack strategy. The two components are not necessarily
affected alike by an attack. For example, the attacker can try to influence the neural network itself (i.e.
corrupt the classification) or influence the symbolic components (i.e. bypass some parts of the symbolic
reasoning process).

BadNets (Gu et al., 2019) is a foundational and simple data poisoning backdoor attack. It embeds
a small trigger pattern in a less important part of the image (see Figure 2.1a). These images are then
mislabelled as the chosen target class. In the case of Figure 2.1a, the digit x will be classified as a 0 instead
of a 1, resulting in a sum of 4 instead of 5.

Other Data Poisoning Backdoor Attacks exist with each their own methodology. WaNet
(Watermark-based Neural Network Backdoor Attacks) is implemented by embedding a subtle, often im-
perceptible, distributed watermark or noise pattern across the images as a trigger (Nguyen & Tran,
2021). Unlike trigger patches, the WaNet trigger is spread throughout the image. This makes it difficult
to detect the attack visually or through simple pixel analysis, increasing its stealth.
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Figure 2.2: Example of the DeepProbLog Inference Process

Differently, Clean Label attacks ensure the poisoned training samples retain their original, correct
labels (Turner et al., 2019). Instead of mislabeling, the attacker subtly manipulates the features of
benign images.

For this research, BadNets was chosen to investigate backdoor attacks on DPL models. The clear,
simplistic nature of the BadNets trigger allows for a more direct and interpretable analysis. Additionally,
the BadNets attack is a widely studied backdoor attack. These features, together with the lack of pre-
existing research on the topic of reasoning shortcuts in NeSy models, make the BadNets attack a suitable
starting point for this research.

2.1.3 Reasoning Shortcuts

This paper defines a reasoning shortcut as: “A deviation from the model’s intended conceptual understand-
ing and logical consistency”.

This means that a model relies on an unintended feature to reach a conclusion, rather than applying
conceptual understanding. Figure 2.1b shows an example of a reasoning shortcut. Here, the conclusion of
the mathematical formula is inherently correct. Regardless of the order of the digits, the digit 4 and the
digit 1 add up to 5. However, the classification of digit x = 4 and digit y = 1 is unintended.
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2.2 Formal Problem Description

The problem investigated in this research is, first and foremost, the formal quantification of how a backdoor
attack influences the reasoning shortcuts taken by a DPL NeSy model. The research will not utilise default
metrics such as ASR or BA for experiment output. These metrics will only be used for tuning and
determining if the backdoor is at least functional. The research aims to analyse the reasoning shortcuts
as a metric over multiple instances of DPL NeSy models with various implementations of the BadNets
backdoor attack.

To record the metric of reasoning shortcuts, the framework proposed by Yang et al. (2024) will be
utilised to define and measure the upper bound of the Reasoning Shortcut Risk (Rs). This value gives a
quantifiable guarantee of the maximum risk of relying on reasoning shortcuts in the classification process
of a trained model.

The research by Yang et al. (2024) decomposes the NeSy model’s behaviour into its two parts, the
neural component and the symbolic component. Let:

• Z (Intermediate Concepts): The high-level symbolic concepts resulting from the neural network
when given some input (x ∈ X). For example, this may be the digit extracted from an image.

• KB (Knowledge Base): The symbolic logic implementation and any constraints to define the
relationships between intermediate concepts (z ∈ Z) and the output (y ∈ Y ).

Yang et al. (2024) states that the Rs may be quantified as the discrepancy between the model’s prediction
behaviour and its ideal behaviour (when consistent with prior knowledge). This is shown in Equation 2.1.
Let:

• L (Empirical Loss): The expected loss of the NeSy model on the given task. This regards the ability
for the model to predict the ground truth labels (or the loss function minimised during training).

• L̂nesy (Empirical Loss with Concept Alignment): The loss when the intermediate concepts
z ∈ Z perfectly align with prior knowledge. This regards the ideal loss when the neural component
consistently acquires the correct classification.

Rs = L− L̂nesy (2.1)

In this research, the calculation of Rs will be performed on multiple instances of trained models.
Theoretically, the trained models’ hypothesis space F mapping X → Y should satisfy the pre-training
condition. Yang et al. (2024) denotes this formally in their Definition 4.3. For all instances used in this
research, the found accuracies after training are utilised as ϵ. This will then be applied to the Equation
2.2. Let:

• f(z|x) (Classification Probability): The predicted probability of z given x.

• g (Grounding Label): The label appointed to x that corresponds to the correct translation x → z.

Fϵ = {f |f ∈ F ∧ ∀x ∈ X,∀z ̸= g, f(z|x) ≤ ϵ} (2.2)

The pre-training condition states that the smaller hypothesis space Fϵ contains only those “classifiers”
that are accurate to a certain extent (ϵ). Meaning that, when given a data point x, all incorrect symbols
z ∈ Z, correspond to a classification probability less than the given accuracy ϵ.

In this case, the smaller hypothesis space Fϵ is defined by the model instances with their corresponding
accuracies ϵ after training. Using this, Yang et al. (2024) described that the Reasoning Shortcut Risk
(Rs) will have an upper bound for any 0 ≤ δ1 ≤ 1, 0 ≤ δ2 ≤ 1 (see Theorem 4.5 (ii)). This is shown in
Equation 2.3. Further proof of the translation from Equation 2.1 to Equation 2.3 can be found in Yang
et al. (2024). Let:

• N (Size of Dataset): The amount of data provided in the dataset.
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• C (Size of Z): The amount of symbols in the symbol space Z.

• D̂KB (Empirical Complexity of KB): The complexity of the knowledge base KB based on the
number of aligning y ∈ Y for different z ∈ Z. As described in Definition 3.3 of Yang et al. (2024).

• γϵ (Constant): A constant about Fϵ, γϵ =
(C−1)ϵ2

2(C−1)ϵ2−4(C−1)ϵ+2
. As described in Theorem 4.4. (ii) of

Yang et al. (2024).

• R̂m(Fϵ) (Rademacher Complexity): The empirical Rademacher complexity of Fϵ.

Rs ≤
1

2
ln(C + (C − 1)

√
ln2/δ1
2N

− D̂KB) + 3Bϵ

√
ln2/δ2
2N

+ 2R̂m(Fϵ) + γϵ, ∀f ∈ Fϵ

where Bϵ is the bound of L̂nesy, Bϵ = −ln(1− (C − 1)ϵ).

(2.3)

The calculations of Equation 2.3 for each model instance used in the experiments shall be used as
metrics. The results of these upper bounds of the Reasoning Shortcut Risk are detailed in Chapter 3.

2.3 Threat model

For an adversary, multiple options exist for inserting their backdoor attack. Generally, the easiest approach
for an attacker is to provide a poisoned dataset. The target will then be able to train its models on the
poisoned data.

The most preferred way of inserting the backdoor would be to provide a fully trained and poisoned
model. In that case, the attacker may even perform tuning or other optimisations to make the attack more
efficient or stealthy.

Most research on AI or NeSy backdoors focuses on one of these threat models. However, in this work,
both options are explored. These comparisons provide a better understanding of the Reasoning Shortcut
Risk in either situation. In the experiments that assume attacker control over training processes, poisoning
hyperparameters will also be tuned to find an efficient poisoned model.

3. Experimental Setup and Results
This chapter explains the experiments conducted (Section 3.1) and presents the obtained results (Section
3.2).

3.1 Experimental Setup

For this research, the MNIST dataset (Deng, 2012) is used for two different tasks:

• Parity Task: The DPL model uses a neural network to classify a single digit, and the symbolic logic
determines its parity.

• Addition Task: The DPL model uses a neural network to classify two digits, and its symbolic logic
computes their sum.
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3.1.1 Experiments

The primary output values for the experiments will be Reasoning Shortcut Risk calculations obtained using
Equation 2.3 described in Section 2.2. ASR and BA are used only to verify if the backdoor is functioning.
To perform the calculations, the Rademacher complexity will have to be approximated. This is done trial-
wise with a randomised guesser over 10.000 trials. The other formula parameters are valued at: δ1 = 0.05
and δ2 = 0.05.

The experiments will involve calculating the Reasoning Shortcut Risk (Rs) across different instances of
models within each task. Additionally, the Reasoning Shortcut Risk will be compared between the Parity
and the Addition task. This is done to observe if the complexity or nature of the symbolic reasoning
between tasks influences the resistance to reasoning shortcuts after a backdoor attack.

The experimental procedure is structured into the creation of the following model instances:

• {M−
clean}. The simple, “untuned”, clean models.

• M+
clean = MAXacc({M−

clean}). The tuned clean model that uses optimal model parameters, analysed
against model accuracy. This model has the highest average accuracy of all possible combinations of
model parameters.

• {M−
poisoned}. The simple, “untuned”, poisoned models.

• M+
poisoned = MAXasr({M−

poisoned}). The tuned poisoned model uses the optimal poisoning parame-
ters, analysed against ASR. This model has the highest average ASR of all possible combinations of
poisoning parameters. This model is used to analyse the effect of attacker control over model training
and their ability to optimise this process.

Any poisoned model will be applied with the optimal model parameters found.
The untuned clean models are intermediary models necessary to obtain the optimal model hyperpa-

rameter configuration. The poisoned untuned model instances are required to allow comparisons between
the two threat models detailed in Section 2.3.

In this research, “untuned” for model hyperparameters will be defined as: “A model that does not have
a gradual improvement in loss and/or achieves a lower test accuracy than the optimal found model”.

For the poisoning hyperparameters, “untuned” will be defined as: “A model that results in a significant
(a = 0.05) decrease in total accuracy compared to its clean counterpart.”

Training optimisation in the experiments will be implemented according to the Adam optimiser
(Kingma & Ba, 2017). Additionally, Bayesian hyperparameter tuning (Victoria & Maragatham,
2020) will optimise the DPL model parameters. The model parameters used for the experiments are the
Batch Size, the Learning Rate, and the Weight Decay. Values allowed during tuning for the given model
hyperparameters can be found in Appendix A, Table A.1.

Experiments that assume attacker control over training processes use Bayesian hyperparameter tun-
ing for the backdoor poisoning parameters. The parameters used as poisoning hyperparameters are the
following:

• Poisoning Rate. The percentage of training and test data that is added to the trigger.

• Poison Size. The trigger pattern will always entail a square in the top left corner of the image as
shown in Figure 2.1a in digit x. This parameter defines the pixel size of this square (i.e. the width
and height of the square).

• Poison Intensity. The trigger pattern will have an intensity at which it is applied. If this intensity
is low, the pattern will be less visible.

Values used for these poisoning hyperparameters can be found in Appendix A, Table A.2.
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3.2 Results

The results of the experiments are organised by task in the following sections. First, the findings of the
Parity task will be reported (Subsection 3.2.1). Following this, the results are shown for the Addition task
(Subsection 3.2.2).

3.2.1 Parity Task

For the MNIST Parity task, the basic clean DPL model revealed an accuracy of 77%. The Reasoning
Shortcut Risk was calculated at 1.2214. Hyperparameter tuning against model accuracy found optimal
values to be a learning rate of 0.001, a weight decay of 0.001 and a batch size of 64. The tuned parameters
resulted in an increased model accuracy of 100%. This tuning also increased the Reasoning Shortcut Risk
to 1.2718. Figure 3.1a shows the changes in the upper bound of RS over different model hyperparameters.

(a) Parity (b) Addition

Figure 3.1: Importance of Model Hyperparameters for the Upper Bound of Rs

The basic poisoned model for this task obtained a 78% BA and a 79% ASR. It also demonstrated a
Reasoning Shortcut Risk of 1.2681. Interestingly, this means the risk is lower than the tuned clean model.
Hyperparameter tuning the poisoning parameters against ASR found the optimal parameters to be a 10%
poisoning rate, a 3x3 pixel trigger, and an intensity of 255. When both model and poisoning parameters
were optimised, the BA was increased to 96% and the ASR to 100%. This resulted in the escalation of the
Reasoning Shortcut Risk to 1.2792. Figure 3.2a shows the changes in the upper bound of RS over different
poisoned model instances. All of these parameters seem to affect the measures’ upper bound. They all
have a slight negative correlation with the Reasoning Shortcut Risk.

Further details on the results for the MNIST Parity Task for the different model instances are shown in
3.3a. Figure 3.4a illustrates how the found model accuracies relate to the calculated Reasoning Shortcut
Risk. This is shown for all clean and poisoned model instances. There is no specific correlation between
the total accuracy and the Reasoning Shortcut Risk upper bound for the Parity task. There is, however, a
visible correlation between the poisoned models and an increased upper bound of the Reasoning Shortcut
Risk versus the clean models. Appendix B, Figure B.1 shows the separate plots of the clean (Figure B.1a)
and poisoned (Figure B.1b) models.

3.2.2 Addition Task

Initial experiments with a basic clean DPL model for the MNIST Addition task had a model accuracy
of 77%. This model suffered from a Reasoning Shortcut Risk of 4.641. Optimal parameters found after
hyperparameter tuning against model accuracy included a learning rate of 0.001, a weight decay of 0.0001
and a batch size of 64. The tuned clean model achieved an accuracy of 99%, but also a significantly
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(a) Parity (b) Addition

Figure 3.2: Importance of Poisoning Hyperparameters for the Upper Bound of Rs

higher Reasoning Shortcut Risk. The new upper bound of the Reasoning Shortcut Risk was calculated
at 5.6085. Figure 3.1b shows how the upper bound of RS changes with different model hyperparameters.
Interestingly, the size of the batches is the most important factor, with a negative relationship.

The basic poisoned model initially received 70% BA and 76% ASR. This model suffered an upper
bound for the Reasoning Shortcut Risk of 5.6108. This is a slight increase from the tuned clean model.
Further hyperparameter tuning of the poisoning parameters against ASR found the optimal values for this
task to be a 10% poisoning rate, a 3x3 pixel trigger, and an intensity of 255. This tuning increased the
BA to 92% and the ASR to 100%. These optimal poisoning parameters did drop the upper bound of the
Reasoning Shortcut Risk slightly back to 5.6074. Figure 3.2b shows how the upper bound of RS changes
with different poisoned model instances. All poisoning parameters affect the measure’s upper bound, but
to a lesser extent than seen with model hyperparameters. They all tend to have a negative correlation
with the Reasoning Shortcut Risk.

(a) Parity (b) Addition

Figure 3.3: Upper Bound Rs per Trained Model

Further details on the results for the MNIST Addition Task for the different model instances are shown
in 3.3b. Figure 3.4b illustrates how the found model accuracies relate to the calculated Reasoning Shortcut
Risk. This is shown for all clean and poisoned model instances. There is no specific correlation between the
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total accuracy and the Reasoning Shortcut Risk bound for the Addition task, which was also the case for
the Parity task. Additionally, similar to the Parity task, there is a visible correlation between the poisoned
models and an increased upper bound of the Reasoning Shortcut Risk versus the clean models. Appendix
B, Figure B.2 shows the separate plots of the clean (Figure B.2a) and poisoned (Figure B.2b) models.

(a) Parity (b) Addition

Figure 3.4: Accuracy against Upper Bound Rs over all model instances*
* In the case of poisoned models, this accuracy includes both ASR and BA

4. Responsible Research
This research investigates the vulnerabilities of NeSy models to data poisoning backdoor attacks. Com-
promising these systems was done to provide insights into how to improve their defences. All experiments
were conducted in a contained environment, with no risk of deploying compromised models or causing real-
world harm. This research does not address societal bias or fairness issues in AI. However, bias inherently
correlates with the notion of reasoning shortcuts. Therefore, the research does acknowledge these issues as
ethical considerations.

The nature of the utilised dataset (MNIST) is essentially non-sensitive. No personal or privacy-related
information was processed, handled, or exposed.

Concerning reproducibility, the experimental setup provides all used configurations of the DPL models
and backdoor implementations. Additionally, the code used is openly available in the online code repository.

Furthermore, the custom-developed reasoning shortcut benchmarking suite for DPL will be publicly
available upon publication.
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5. Discussion
This chapter interprets the experimental results presented in Chapter 3. It analyses if the observed output
aligns with or challenges existing understanding of backdoors in NeSy models or DNNs in general.

5.1 The Introduction of the Backdoor

This research mainly examined the differences in the upper bound of the Reasoning Shortcut Risk between
any clean model (tuned or untuned) and any functional poisoned model (tuned or untuned). The results
show that, regardless of the assigned task, simply adding any backdoor will increase the number of shortcuts
in the reasoning of a DPL NeSy model.

This extends prior work (Kalutharage et al., 2025), highlighting that backdoors compromise the
process of NeSy models. These results now measure this in Reasoning Shortcut Risk instead of general
ASR or BA metrics.

5.2 Tuning the Models

An initially more counterintuitive finding is that model tuning often increases Reasoning Shortcut Risk.
This effect is more prominent for more complex tasks. For the Addition task, tuning led to around a 20%
increase, whereas for the Parity task, the increase was a more modest 4%.

While hyperparameter tuning efficiently optimises models for higher accuracy, it might inadvertently
lead the model to exploit more reasoning shortcuts. This phenomenon can be attributed to models finding
the easiest path to achieve higher accuracies and is known as “Gradient Starvation”. Research defines
this challenge as “the model becoming over-confident in its predictions by capturing only a few dominant
features” (Pezeshki et al., 2021).

For tuning poisoning parameters, these results were less uniform. Depending on the task, some param-
eters increased the ASR and the upper bound of the Reasoning Shortcut risk. Other parameters, however,
reduced the risk when the ASR was improved. This makes the Reasoning Shortcut Risk upper bound
potentially a less viable metric to find if a model has been backdoored.

5.3 Differences in Tasks

The results of the experiments show that the Addition task consistently had a higher upper bound of
the Reasoning Shortcut Risk than the Parity task. Since the Addition task requires two digits to be
classified instead of one, it relies more on the neural component of the DPL NeSy model. This offers more
opportunities for the model to identify and exploit shortcuts. These findings align with previous research,
which has shown that “The complexity of the symbolic knowledge base (KB) is a key factor influencing
the severity of reasoning shortcuts” (Yang et al., 2024).

5.4 Differences in Metrics

Generally, the accuracy does not significantly correlate with the calculated upper bound of the Reasoning
Shortcut Risk. For poisoned models, this accuracy included both the ASR as well as the BA. This means
that having high accuracy in a trained DPL NeSy model does not necessarily mean the risk of reasoning
shortcuts is low. In contrast, it also does not always mean the risk will be high. Therefore, a DPL NeSy
model, which is deemed “high-performing” by conventional metrics, cannot always be labelled as sound in
its reasoning.

This aligns with the wide understanding that neural networks can achieve accuracies by exploiting
statistical correlations that are not robust or semantically meaningful (Suhail & Sethi, 2025). The
findings in this paper indicate the need to rely less on traditional metrics such as accuracy as the sole
indicator of model quality in NeSy models.
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6. Conclusions
6.1 General Impact of Backdoors on Reasoning Shortcuts

Sub-question 1 in Chapter 1 concerns how a simple BadNets implementation affects the reasoning shortcuts
in a DPL model. To answer this question, the results of the clean models were compared against poisoned
models. These results show that, on average, poisoned DPL models result in a higher upper bound for the
Reasoning Shortcut Risk than any clean model, regardless of the task. Simply adding any backdoor will
increase the number of shortcuts in its reasoning.

6.2 Impact of Attacker Capabilities on Reasoning Shortcuts

Most research assumes a specific threat model before performing the experiments. For this paper, it was
important to analyse whether the differences in the threat model affect metric outputs (see sub-question 2).
The experiment results show that the tuning of poisoning parameters can increase or decrease the upper
bound of the Reasoning Shortcut Risk. This depends mainly on the changes in poisoning parameters.
Therefore, an attacker can decrease the number of shortcuts taken by simply having power over training
the model. In general, the model will contain a higher Reasoning Shortcut Risk after poisoning, but the
amount by which this metric will be increased can be limited by the attacker.

6.3 Correlation between Model Accuracy and Reasoning Shortcuts

Another important observation is that model accuracy when poisoning does not significantly correlate with
the upper bound of the Reasoning Shortcut Risk (see sub-question 3). The existence of any significant
poisoned data increases the upper bound to such an extent that, regardless of model accuracy, the shortcuts
introduced by the backdoor will remain.

6.4 Impact of the Task Nature on Reasoning Shortcuts

Now that the direction of the effect of a backdoor on the Reasoning Shortcuts is clearer, sub-question 4
asks to what extent this differs between tasks. The experiments performed indicate that the upper bound
of the Reasoning Shortcut Risk is higher for tasks that rely more on the neural component of the DPL
model. For instance, the Addition task consistently showed a higher Reasoning Shortcut Risk than the
simpler Parity task. Logically, high complexity tasks rely more on the neural network and, with it, offer
more opportunities for the model to exploit shortcuts.

6.5 Reasoning Shortcuts imposed by BadNets on a DeepProbLog model

To answer the main research question, “How does applying a BadNets backdoor attack to a DeepProbLog
model affect the existence of reasoning shortcuts?”, this study highlights a new vulnerability in NeSy
models. The BadNets backdoor attack compromises the process of reasoning by introducing Reasoning
Shortcuts.

This effect is increased when the task relies more on the neural component of the NeSy model. The
difficulty or complexity of the assigned task seems to be a direct cause for this.

Unexpectedly, the hyperparameter tuning process, even for clean models, may increase the upper bound
of the risk for Reasoning Shortcuts. This suggests a trade-off between maximising accuracy and maintaining
integrity if the shortcuts are not removed.

Lastly, there is a lack of correlation between reasoning shortcuts and traditional accuracy metrics.
This highlights the need to incorporate evaluation methods like Reasoning Shortcut Risk to validate the
robustness of NeSy models.
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7. Future Work
A main limitation of this research stems from time constraints. These time constraints meant that ex-
perimental results could only be derived from a few training runs for each configuration. Average values
across multiple independent iterations were not consistently found. Therefore, while the observed trends
are compelling, future work must validate the findings through repeated experiments.

7.1 Open Issues

A significant open issue concerns the negative correlations with the poisoning parameters. The increase in
the amount of poisoned data or the increased visibility of a trigger was hypothesised to increase the risk of
reasoning shortcuts. However, the correlation results show that this direction was reversed. The research
could not find a cause for this.

Another focus for future research could be enhancing the benchmarking suite provided by this paper.
The suite can be adapted to allow various NeSy architectures beyond DPL.

Additionally, future work could explore methods to interpret the specific nature of induced shortcuts.
This research does not detail which logical rules are bypassed.

7.2 Open Questions

This study raises several questions for further investigation. Foremost, could the increase of the upper
bound of Reasoning Shortcut Risk be used as a metric to identify a backdoor attack? Research can explore
the average increases based on task structure and provide means to analyse the shortcut risk as a metric
to alert to the existence of a backdoored model.

Additionally, this research focused on the implementation of the BadNets backdoor attack. An im-
portant question is whether different types of adversarial attacks behave differently in their effect on the
Reasoning Shortcut Risk. Similarly, the experiments concerned solely the implementation of DPL NeSy
models. For other NeSy frameworks, the implementation of backdoor attacks may affect their Reasoning
Shortcut Risks differently.

The last question this research raises is whether reasoning shortcuts can be mitigated. As shown in
Chapter 5, the increase in Reasoning Shortcut Risk after model tuning signals a trade-off between increasing
accuracy and decreasing reasoning shortcuts. This is an issue until the nature of the introduced reasoning
shortcuts can be defined and mitigated. This may be a potential threat to the robustness of NeSy models,
one of the reasons we use these models in the first place.
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A. Hyperparameters used for
Hyperparameter Tuning

The tables below provide the hyperparameters used for Model Hyperparameter optimisation and Poison-
ing Hyperparameter optimisation, respectively. The ”Hyperparameter” column describes the name of
the hyperparameter, the ”Distribution” column describes how the values are chosen, provided in the
”Values” column, and the ”Range” column shows the range of the hyperparameter values that could
have been theoretically used but may not have been.

Hyperparameter Distribution Values Range

Batch Size Categorical [32, 64, 128, 256, 512] [0, ∞]

Learning Rate Categorical [0.00001, 0.0001, 0.001, 0.01, 0.1] [0, ∞]

Weight Decay Categorical [0.000001, 0.00001, 0.0001, 0.001, 0.01] [0, ∞]

Table A.1: Model Hyperparameters

Hyperparameter Distribution Values Range

Poisoned Size Categorical [1x1, 3x3, 5x5] [0x0, 28x28]

Poisoned Intensity Categorical [85, 170, 255] [0, 255]

Poisoned Rate Categorical [0.05, 0.1, 0.15] [0, 1]

Table A.2: Poisoning Hyperparameters
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B. Accuracy against Upper Bound Rea-
soning Shortcut

(a) Clean Models (b) Poisoned Models

Figure B.1: Parity Accuracy against Upper Bound Rs over all model instances*
* In the case of poisoned models, this accuracy includes both ASR and BA

(a) Clean Models (b) Poisoned Models

Figure B.2: Addition Accuracy against Upper Bound Rs over all model instances*
* In the case of poisoned models, this accuracy includes both ASR and BA

16


	Introduction
	Background, Problem Description and Methodology
	Background
	Neuro-Symbolic Models
	Data Poisoning Backdoor Attacks
	Reasoning Shortcuts

	Formal Problem Description
	Threat model

	Experimental Setup and Results
	Experimental Setup
	Experiments

	Results
	Parity Task
	Addition Task


	Responsible Research
	Discussion
	The Introduction of the Backdoor
	Tuning the Models
	Differences in Tasks
	Differences in Metrics

	Conclusions
	General Impact of Backdoors on Reasoning Shortcuts
	Impact of Attacker Capabilities on Reasoning Shortcuts
	Correlation between Model Accuracy and Reasoning Shortcuts
	Impact of the Task Nature on Reasoning Shortcuts
	Reasoning Shortcuts imposed by BadNets on a DeepProbLog model

	Future Work
	Open Issues
	Open Questions

	References
	Hyperparameters used for Hyperparameter Tuning
	Accuracy against Upper Bound Reasoning Shortcut

