TUDelft

Property-Based Testing in Open-Source Rust Projects

A Case Study of the proptest Crate

Antonios Barotsis
Supervisor(s): Dr. Andreea Costea, Sara JuhoSova
EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
June 27, 2025

Name of the student: Antonios Barotsis
Final project course: CSE3000 Research Project
Thesis committee: Andreea Costea, Sara JuhoSovd, Marco Zuiiiga Zamalloa

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

1 Introduction

Testing is a critical part of software development, since it helps developers ensure that their
programs behave correctly. This is especially true for popular open source projects, because of
how foundational they are to today’s software and society as a whole [I].

Property-Based Testing (PBT) [2], a paradigm popularized by the Haskell framework
QuickCheck [3] and later Python’s Hypothesis [4], has emerged as a simple yet powerful new
testing method. In traditional unit testing, software engineers manually write down input-output
pairs which the testing framework then validates. In PBT, the engineers instead create formal
specifications [] for the components they want to test. These are then validated by the
testing framework against a great number (usually in the hundreds [], [6]) of randomly
generated inputs. There are two unique concepts that PBT introduces: Generators and Shrinkers.
Generators are responsible for creating the test inputs while shrinkers are responsible for finding
a minimum reproducible example of any failing test cases.

PBT has also found success as a soft-proving technique; by carefully defining the properties a
code unit should have, it makes catching even notoriously elusive bugs (e.g., race conditions
[7], [8]) possible. Even though using PBT should not make anyone as confident as a proper
proof of correctness or safety should, its relative simplicity compared to proofs makes it a very
appealing, pragmatic candidate for real-world software where time is often limited [5].

While PBT as a paradigm has gained traction across various domains and programming
ecosystems, and has been explored in previous, foundational research [9], [10], [1 1], few studies
investigate how it gets used in real-world open-source projects. With this paper, we aim to give
insights into the usage of PBT to both researchers and software engineers seeking to adopt or
improve PBT practices.

In order to gather insights into the usage of PBT, this paper seeks to answer the following
questions:
* Properties
1) What type of properties do PBTs generally check?
2) What do these properties look like?
3) What role does PBT play within the correctness guarantees and bug-finding strate-
gies of the project overall?
* Generators and Shrinking:
1) How and when are generators implemented?
2) In which cases is shrinking support explicitly added?

This work is part of a collaboration between the members of our research group. We all aim
to answer the same research questions but in different programming languages or frameworks
[12], [13], [14], [15]. This allows us to make interesting comparisons on the state of PBT
across different ecosystems.

In our case, we chose to investigate the Rust programming language [16] and the proptest
framework. Rust as a language has been gaining a lot in popularity recently. Seeing as how
some of its main selling points are safety guarantees and the ability to catch many types of bugs
at compile time, we consider investigating how Property-Based Testing fits in this ecosystem
quite interesting. Rust has two prominent PBT frameworks, proptest and quickcheck. We
decided to examine proptest in this paper.

2 Methodology

In this section we will detail how we chose and analyzed repositories as well as the Property-
Based Tests found in them.

Language Files Lines Code Comments Blanks

JSON 1 46 46 0 0
TOML 17 835 637 58 140
Markdown 19 6263 0 4595 1668
I BASH 1 17 9 4 4
I Rust 4 186 130 29 27
 TOML 2 4 4 0 0
(Total) 6470 143 4628 1699
Rust 7609 109884 84457 6261 19166
I Markdown 427 46552 1408 34219 10925
(Total) 156436 85865 40480 30091
Total 746 163787 86691 45166 31930

Table 1: tokeil output of the tokio project.

2.1 Finding Repositories

Our first step was to define what we consider an adequately impactful Open Source project to
examine. We decided to use the following three metrics as an indicator (in this order):

1) total downloads,

2) recent downloads (in the last month), and

3) GitHub stars.

In practice, we used total downloads as our indicator and included all three as descriptors in our
data. We chose to weigh total downloads higher than recent downloads purely for convenience.
The Rust package registry - crates.io' - conveniently keeps track of every published project’s
dependencies. This allows us to easily perform a reverse search to find all projects that depend
on proptest sorted by total downloads”.

We considered Github stars to be less important for three reasons:

* We analyzed 16 repositories, all of which had tens of millions recent downloads but
fewer than 500 stars. While downloads reflect substantial usage, GitHub stars often signify
interest in contributing to or drawing inspiration from a project rather than measuring
adoption. Thus, stars alone are a poor proxy for a library’s real-world usage.

* It has been known for some time that Github stars can be purchased [17], [18], [19],
which renders them unsuitable to be used for determining which projects to examine.

* They do not always make sense in the context of Cargo workspaces as multiple separate
published crates are often uploaded as a single repository (see)

We nonetheless included them as an extra datapoint in order to remain consistent with the rest
of the research group. In addition to the previously mentioned metrics, we also recorded the
following metadata about each repository:

Lines of code There are a number of tools that automatically compute the number of lines

of code automatically, we decided to use one called tokei’. See for an example
output. In the example, we are interested in the number 84457, showing the total lines of
Rust code.

Total number of tests Counting the amount of tests is easy as all Rust tests are marked with
the #{test] macro. We used ripgrep’ and the following expression to count them:

rg "#\\[test\\]" . --stats --quiet

Total number of Property-Based Tests Unfortunately we did not find an easy way to reliably
count PBTs automatically as they look like regular Rust tests. We can however locate them

thttps://crates.io
2https://crates.io/crates/proptest/reverse_dependencies
3https://github.com/XAMPPRocky/tokei
4https://github.com/BurntSushi/ripgrep

https://crates.io
https://crates.io/crates/proptest/reverse_dependencies
https://github.com/XAMPPRocky/tokei
https://github.com/BurntSushi/ripgrep

easily as they are always inside proptest! {...} blocks with the following regular
expression:

rg proptest!

We then manually counted each test inside those blocks to get the amount of PBTs for
each repository.

2.1.1 A Word on Rust Workspaces

Rust has a way of separating code into collections of one or more packages called workspaces
[20]. In essence they function similarly to namespaces or modules from other programming
languages. A key difference is that these packages are often published as separate units. Because
of this, we end up with multiple packages under one single repository, akin to a monorepo’.

As an example, when looking through proptest’s reverse dependencies we came across the
following two packages: anstream and anstyle-parse. Both of these are part of the same
workspace and repository anstyle. In these cases, instead of providing the number of Github
stars, we instead provide a link to the parent repository. Similarly, instead of providing the total
number of tests for the entire repository, we performed our searches inside each workspace
member we were examining at the time.

2.2 Analyzing Individual Tests

We used qualitative data analysis techniques such as open coding [21] to analyze our tests.
Our collected data is in the form of an Excel Sheet meant to both be human readable as well
as programmatically parsable for easy further analysis A detailed explanation of what each of
our 22 columns measures as well as what value types it contains can be found in our data
archive [22].

2.2.1 Open Coding

We began by deciding that each member of our research group should perform an early,
brief analysis in their respective ecosystem of choice and create labels for their data. We then
combined and standardized our findings into a shared dictionary which was used to conduct
analyses on all the considered ecosystems. Due to the differences between ecosystems, we
all retained the freedom of adding new, non-shared codes that match our ecosystem but not
everyone else’s. This way, we kept our data as consistent as possible while not ignoring details
specific to each language. We naturally iterated upon our labels and data structure as we
discovered new patterns in our data worth keeping track of.

We arrived at the following codes for describing PBT types:

1) DrrrereNTPATHS: Tests multiple execution paths through the system (e.g., if/else
branches, error handling). Verifies all logical routes behave correctly.
2) RounpTrrp: Tests data transformations that should be reversible (encode/decode, seri-
alize/deserialize).
3) INVARIANT: a property that must hold throughout the execution of a test,
4) IpEMPOTENCE: Ensures repeating an operation yields the same result.
5) StructUurRALINDUCTION: Tests recursive structures by verifying:
a) base cases (smallest instance) and
b) inductive step (if property holds for n, it holds for n + 1).
6) HarpToProveEasyToVERrIry: Focuses on properties where correctness is complex to
implement but simple to check.
7) TesTORACLE: Compares results against a known-correct reference implementation.

Shttps://en.wikipedia.org/wiki/Monorepo

https://en.wikipedia.org/wiki/Monorepo

2.2.1.1 Example

Here is an example of what our analysis looks like in a PBT from the nom® crate (more detailed
explanations can be found in our data archive [22]):

proptest! {

#[test]

#[cfg(feature = "std")]

fn floats(s in "\\PCx") {
println! ("testing {}", s);
let resl = parse_f64(&s);
let res2 = double::<_, ()>(s.as_str());
assert_eq!(resl, res2);

hy

1
2
3
4
5
6
7
8
9

10 }

* Line 4: Uses a custom regex generator which filters on printable characters. Test has one
input of type String.

* Line 6: Helper function that runs the standard library’s parser behind the scenes. Serves
as a TestOracLE. Input is used directly.

* Line 7: The system under test. Input is used directly.

* Line 8: The single assertion

In addition we note things such as:
* The test does not use a custom shrinker.
* It asserts errors (resl and res2 are Result<0k, Error> monad types).
e This is a functional test.

This is a subset of the data we collected for each test, the rest are omitted from here to keep
the section short. They are all explained in detail in our data archive [22].

3 Results
We first perform a general exploration of our dataset to get a feel of what our data looks like.
pem{ 942 crypto-bigint _ 79.9m
anstyle-parse{ 1511 console _ 96.8m
base64ct{| 1992 pem _ 99.9m
anstream{ | 2261 base64ct _ 100.7m
prost-types{ | 2787 arc-swap _ 101.2m
GEJ arc-swap{ 2958 GEJ const-oid _ 101.1m
k] console{ 3213 s der S 1182m
> sharded-slab{ | 4509 > prost-types _ 141.7m M Total
-(‘% const-oid 7067 -‘%anstyle-parse _ 156.7m Monthly
2 der 9597 S anstream _ 158.3m
2 toml_edit 14343 & sharded-slab ESE 57m
nom 17829 prost] [CSRI 1736m
crypto-bigint 24692 winnow _ 198.7m
winnow 33648 toml_edit{" [CET 226.6m
prost 42713 nom{' R >56.5m
tokio 84457 tokio{ " T 312.4m
Lines of Code Downloads
Figure I: Lines of code per repository Figure 2: Total and Monthly Downloads per

Shttps://archive.is/PxHWG

Repository

https://archive.is/PxHWG

In we can see that the projects we examined showed significant variance in code size
with tokio being considerably larger than the rest. In we can see that the amount
of downloads were much closer together with tokio being the most popular in terms of total
downloads. Monthly downloads were much more tightly packed together.

0]
§ g
= er n
g. prost-types {21 M Unit Tests
g 1 PBTs
-(‘% anstyle-parse g 52.4%
08)_ anstream g9
¥ sharded-slab i
prost jul&
winnow
toml_edit
nom
tokio 874 W Assert internal struct validity 1 Type (de)serializes correctly
Behavior consistent with test oracle ll Type converts back and forth correctly
Tests W Parser correctness M Other
Figure 3: Amount of Unit and PBTs per Repos- Figure 4: PBT Category Breakdown

itory

There proved to be a surprising discrepancy between the number of unit and Property-Based
tests as shown in . tokio in particular was interesting, seeing as how it is a very
well tested project but only used PBTs twice. crypto-bigint is a big outlier here as the
number of PBTs it had was around half of all the PBTs from every other project we examined

combined.
In We can see that the Test Oracle pattern is by far the most commonly used PBT type.

We also notice that most other categories are related to some form of parsing/(de)serialization.
In practice, a lot of the TESTORACLE tests are also testing parsers.

%0 ((crypto-bigint
60
K2
o
o
©
o 40
(O]
o)
£
Z
20 ‘prost anstream
base64ct
nom prost-types tokio sharded-slab
‘ pem % der winnow
tol const-oid ./
0 console—@® ®—arc-swap o anstyle-parse—®
2016 2018 2020 2022
First Release Date
B Ba

204060 Amount of PBTs
Projects with =10 PBTs are inbold
Figure 5: First Release Date vs Amount of PBTs

An interesting finding in Figure 5 is that crate maturity and amount of PBTs do not seem to
correlate. We initially expected older projects to make more prominent use of PBT but it seems
that this is not the case.

M byte list [sut instance

[0 numeric [l sut instance,numeric M byte list [string
M string [l Other [numeric [Other
Figure 6: PBT Input Type Breakdown. Com- Figure 7: PBT Input Type Breakdown, Exclud-
mas in types indicate both being used together ing Outliers
in one test.

Finally, we take a look at the types on inputs produced by generators in Figure 6. While we see
that sut instance is the most common one, removing the crypto-bigint outlier results in
Figure 7 where we see that string and numeric primitives now constitute the majority instead.

vec of sut inputs I
sut instance,numeric -
string,numeric list I
(= . = 4
= numeric - g 0
a 5}
< list object I (&)
duration
datetime I 20
byte list,numeric I
byte list -
0 20 40 60 0
Count 0 1 2 3 4 5 7
Has assumptions [l Does not have assumptions Number of Assertions
Figure 8: Assumption Usage per Input Type Figure 9: Assertions per Test
In we examine the different input types used in our PBTs and whether or not they

made use of assumptions. We can see that numeric stands out for having an almost 50-50
split. This is rather surprising as initially we were expecting assumptions to be used for more
complex data types, either to reject invalid or meaningless states or to help generate them
correctly. Instead assumptions tend to be rather simple edge-case filtering. Lastly, in

we can see the amount of assertions each test we examined had. Compared with some of the
other ecosystems our group examined, this was rather low.

datetime
dllra t IOI]
Object

S
g

lisg

IN bJ’te lisy
Ne) Strlng

anstream

anstyle- 1
parse

arc-]
swap

base64ct| 3]

console 1

\]

const- 1

oid
crypto- 63 14
bigint

\]

der
nom 6
pem
prost

prost-
types
sharded-
slab

tokio 1]
toml_edit 2

winnow | 2

Table 2: PBT Input Type Breakdown. Commas in types indicate both being used together in
one test.

The data presented in is the same as with from earlier but from a different
lens. The table makes it obvious that sut instance is almost exclusively used in the crypto-
bigint crate. Additionally, we observe a limited input type variety within each repository with
most repositories having just one or two different input types.

4 Discussion

4.1 PBT Complexity

Our tests were relatively simple compared to those of other ecosystems we examined. Only
13.3% of our tested properties can be decomposed. Looking at , we can also see that
most of our tests only had up to 2 assertions (in fact the mean is 2.01).

4.1.1 Why Are Our PBTs Simpler?

While we cannot make any definitive claims, we do have some unverified hypotheses which
future work could examine further:

1) Rust has many specialized tools that help test for specific (and usually rather tricky!) bug
types. Two of those that come to mind are miri’ and loom® which test for undefined
behavior (UB) and concurrency bugs respectively. We found that in some of the other
ecosystems we explored, PBT was used to test for these. Since Rust does have these
specialized frameworks, the complexity that comes with testing for UB and concurrency
issues is moved away from PBTs.

2) Rust has a very concrete and descriptive type system. We found that in some other
languages, PBTs were used to validate that variables had the expected types which is not
a concern that you need to test for in safe Rust. When it comes to unsafe conversions,
tools such as miri can be used as mentioned above.

3) Rust uses errors as values instead of exceptions.

4) proptest itself is both powerful and easy to use which helps with keeping the tests
simpler. We found the generators and filtering specifically to be quite powerful as well
as features such as shrinking support by default.

5) Lastly, when we began the project, we expected to find PBTs being used as documentation
examples which turned out to not be the case, Rust has special natively supported
doctests’ that do exactly that. It could be the case that because the tests were therefore
not meant to be user-facing, self-explanatory and contain everything there is to know
about the system under test, they ended up being smaller and simpler.

4.2 Comparing to quickcheck

Unlike other language environments we examined, Rust happens to have two almost equally
dominant PBT frameworks: proptest - which this paper is examining - and quickcheck
[15]. Considering how unusual this is, we found it interesting to compare and contrast the two.

4.2.1 Shrinkers & Generators

We think that the usage of custom Generators and Shrinkers are linked to each other as
expressive Generators can reduce the need for custom Shrinkers.

We were surprised to find zero custom shrinker implementations with proptest in all of the
data we examined. We performed a code search using both SourceGraph Code Search - a code
search tool for large datasets - looking for instances of custom shrinker implementations. We
found custom shrinkers used in 20 proptest repositories and 116 quickcheck repositories.
More details on how we arrived in these numbers can be found in

We suspect this to be caused by a couple of reasons:

1) As the proptest documentation [23] explains, in contrast to quickcheck, re-using
existing generators is common due to how easily one can map them from one type to
another.

2) proptest makes generating constrained inputs easy to achieve without the need for
custom generators. This is achieved by defining special syntax that can be used in the
generator definitions (as an example: num in 0..42).

3) quickcheck does not shrink by default unlike proptest. This results in a significant
amount of the custom shrinkers in quickcheck to be rather trivial to implement by
hand and would be implemented automatically by proptest.

Thttps://github.com/rust-lang/miri
8https://github.com/tokio-rs/loom
https://doc.rust-lang.org/rustdoc/write-documentation/documentation-tests.html

9

https://github.com/rust-lang/miri
https://github.com/tokio-rs/loom
https://doc.rust-lang.org/rustdoc/write-documentation/documentation-tests.html

An interesting thing to note is that the author of quickcheck believes that “proptest
improves on the concept of shrinking” [24].

As expected, because proptest leans heavily on generators, most (74.1%) of the projects we
examined used some form of custom generator.

4.2.2 Assumptions

Assumptions are another interesting topic. Normally we define assumptions as conditions or
constraints that are expected to hold true for the properties being tested. These are typically
the preconditions that must be satisfied for the properties to be valid. The difference between
assumptions and filtering is simple:

» Filtering happens at the input generation phase. PBT frameworks are configured to generate
n inputs per test and once input generation is done, the test is guaranteed to have n inputs.

In practice there are checks in place to ensure test generation does not go on forever, in
which case a test might end up with less than the expected n inputs but that is more of
an implementation detail. On paper there should be n inputs.

* Assumptions take place during the test execution which means that some subset of those
n test inputs may be ignored. This can be often dangerous as the test might execute
significantly less times than one would expect.

An unorthodox implementation detail of proptest is that the built-in assumptions actually
function like filtering: they attempt to regenerate the rejected test input. There are two ways of
making assumptions:
1) By returning TestCaseError::Reject from a test,
2) By invoking the prop_assume! macro (which itself returns
TestCaseError::Reject)

Both of these function as filters, in order to make a “true” assumption, if statements need to
be used instead.

A surprising difference with quickcheck is that it does not support filtering in the way we
defined it earlier. As a result, it makes significantly higher use of assumptions than proptest.

4.2.3 What Types of Projects Use Each Framework?

That said, we anecdotally found quickcheck to be predominantly used in low-level projects
(such as custom allocators, hashmaps, checksum implementations and more) while proptest
was very commonly used in various, higher level projects and specifically (de)serializer imple-
mentations.

4.2.4 Amount of PBTs

We were surprised to find that projects that used quickcheck had significantly more PBTs
than projects that used proptest. The reasons for this phenomenon are unclear, however, we
have formulated several hypotheses:

1) quickcheck’s generation is significantly quicker, by an order of magnitude [23]. This
seems important, however, we anecdotally inspected the Continuous Integration (CI) runs
of the crypto-bigint'® crate (which had by far the most PBTs in our data set at around
70) and were surprised to find them surprisingly short.

Tests took anywhere between 20 and 70 seconds to both compile and execute all tests
in the project, not just PBTs. Considering crypto-bigint had around 500 tests total,
we consider this to be reasonable. We can see that even though proptest is on paper
a lot slower, it would take very extensive usage for it to become a bottleneck.

Ohttps://github.com/RustCrypto/crypto-bigint

10

https://github.com/RustCrypto/crypto-bigint

4.3
1)

2)

3)

4)

5)

4.4

In

Answers to the Research Questions

RQ1: What type of properties do PBTs generally check?

As we can see in , the most common property type is TESTORACLE where results
are compared against known, correct reference implementations. This is attributed to the
prevalence of parsing/(de)serialization crates in our data.

RQ2: What do these properties look like?

Simple and focused: Most (86.7%) tests are not decomposable and have two assertions
on average. In we see that most input types are either Strings or numeric.
RQ3: What role does PBT play within the correctness guarantees and bug-finding
strategies of the project overall?

* Complementary to Rust’s safety tools: PBT focuses on logic errors (e.g., parser
edge cases), while tools like miri (undefined behavior) and loom (concurrency)
handle specialized bug classes ().

* Less critical for type safety: Rust’s strong static typing reduces the need to test
type-related properties common in dynamically typed languages.

* Not documentation: Unlike doctests, PBTs are internal checks and not designed as
user-facing examples.

RQ4: How and when are generators implemented?
* Custom generators are common: 74.1%of projects implement them (
).
* Implementation: Defined via proptest! blocks using:
» Built-in syntax: Constraints (e.g., num in 0..42) simplify common cases.
» Mapping: Reusing/composing generators via .prop_map ().
* When used: For constrained inputs (e.g., regex-filtered strings) or complex types
RQS5: In which cases is shrinking support explicitly added?
Zero custom shrinkers were found in the analyzed projects. Possible reasons for that
include:

* proptest’s design: Built-in shrinking is automatic and composable via generators.

* Filtering over assumptions: prop_assume! regenerates inputs (acting like a gener-
ator filter), reducing the need for manual shrinking ().

Future Work

we noticed that crate maturity does not seem to correlate with the amount of

PBTs. Perhaps it would be interesting to examine when in each project’s development history
PBT was introduced. Did the projects consider PBT from the beginning or was it more of an
afterthought? We unfortunately did not have the time to look into this any further.

Due

to how time consuming the analysis of our data was, we believe that there is a lot of

value to be gained in investigating whether it can be automated through the use of Machine
Learning. This would allow us to get insights on a lot more repositories and tests, leading to
more statistically significant insights.

4.5

Threats to Validity

It is important to remember we only had time to examine very few projects compared to
the total amount of repositories that make use of each of our respective frameworks. This
means that any patterns we encountered could be drastically different if our input sizes
were sizeably larger.

We chose repositories based on their download counts. This prioritizes high-usage projects
while niche or emerging crates could be overlooked. It is possible that those projects use
PBT differently.

Our data represents a snapshot of projects, however, PBT usage patterns may evolve
over time.

11

Appendix A: Querying for Custom Shrinkers

We archived our search results from SourceGraph for proptest'' and quickcheck

Our queries were as follows:
SourceGraph Query
1 lang:Rust
2 proptest::strategy AND
3 ValueTree AND
4 "fn simplify"
5 not repo:~github\.com/proptest-rs/proptest$
6 count:all

They should be rather self explanatory but very briefly:
1) The Trait we are looking for is proptest::strategy::ValueTree.
a) We break this down to importing proptest::strategy and ValueTree. We
keep them separate in case the import is of the form proptest::strategy::
{..., ValueTree}

b) We additionally search for the simplify function, this is what actually defines
the shrinker.

2) We filter for only Rust repositories.
3) We exclude the proptest repository from our search.

The exact numbers are meant to be indicative as they have not been manually reviewed to get
rid of false positives (or find missing false negatives).

Lastly, for the sake of completeness, this is the query we used for quickcheck:

SourceGraph Query

lang:Rust

quickcheck AND

Arbitrary AND

"fn shrink"

not repo:~github\.com/BurntSushi/quickcheck$
count:all

o~ O N NN B

https://archive.is/UB3q8
RZhttps://archive.is/j9ERk

12

https://archive.is/UB3q8
https://archive.is/j9ERk

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

[8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

M. Hoffmann, F. Nagle, and Y. Zhou, “The Value of Open Source Software,” SSRN
Electronic Journal, 2024, doi: 10.2139/ssrn.4693148.

“What is Property Based Testing? - Hypothesis.” Accessed: Apr. 26, 2025. [Online].
Available: https://archive.is/nJaSR

K. Claessen and J. Hughes, “QuickCheck: a lightweight tool for random testing of
Haskell programs,” SIGPLAN Not., vol. 35, no. 9, pp. 268-279, Sep. 2000, doi:
10.1145/357766.351266.

D. Maclver, Z. Hatfield-Dodds, and M. Contributors, “Hypothesis: A new approach to
property-based testing,” Journal of Open Source Software, vol. 4, no. 43, p. 1891, Nov.
2019, doi: 10.21105/joss.01891.

H. Goldstein, J. W. Cutler, D. Dickstein, B. C. Pierce, and A. Head, ‘“Property-
Based Testing in Practice,” in Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, Lisbon Portugal: ACM, Apr. 2024, pp. 1-13. doi:
10.1145/3597503.3639581.

“Config in proptest::test_runner - Rust.” Accessed: May 08, 2025. [Online]. Available:
https://archive.is/DJrnB

K. Claessen et al., “Finding race conditions in Erlang with QuickCheck and PULSE,”
SIGPLAN Not., vol. 44, no. 9, pp. 149-160, Aug. 2009, doi: 10.1145/1631687.1596574.

J. Hughes, “QuickCheck Testing for Fun and Profit,” Practical Aspects of Declarative
Languages, vol. 4354. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 1-32, 2006.
doi: 10.1007/978-3-540-69611-7_1.

H. Li, S. Thompson, P. Lamela Seijas, and M. A. Francisco, “Automating property-based
testing of evolving web services,” in Proceedings of the ACM SIGPLAN 2014 Workshop
on Partial Evaluation and Program Manipulation, San Diego California USA: ACM, Jan.
2014, pp. 169-180. doi: 10.1145/2543728.2543741.

T. Arts, J. Hughes, J. Johansson, and U. Wiger, “Testing telecoms software with quviq
QuickCheck,” in Proceedings of the 2006 ACM SIGPLAN workshop on Erlang, Portland
Oregon USA: ACM, Sep. 2006, pp. 2-10. doi: 10.1145/1159789.1159792.

Y. Zhang, P. Li, Y. Ding, L. Wang, D. Williams, and N. Meng, “Broadly Enabling KLEE to
Effortlessly Find Unrecoverable Errors in Rust,” in Proceedings of the 46th International
Conference on Software Engineering: Software Engineering in Practice, Lisbon Portugal:
ACM, Apr. 2024, pp. 441-451. doi: 10.1145/3639477.3639714.

H. Toth, “Property-Based Testing in the Wild!: Exploring Property-Based Testing in Java:
An Analysis of jqwik Usage in Open-Source Repositories,” 2025.

Y. Zhao, “Property-Based Testing in the Wild!: A Study of QuickCheck Usage in Open-
Source Haskell Repositories,” 2025.

D. de Koning, “Property-Based Testing in Practice using Hypothesis: In-depth study on
how developers use Property-Based Testing in Python using Hypothesis.”

M. Derbenwick, “Property-Based Testing in Rust, How is it Used?: A case study of the
quickcheck crate used in open source repositories.”

“The Rust Programming Language - The Rust Programming Language.” Accessed: Jun.
03, 2025. [Online]. Available: https://doc.rust-lang.org/stable/book/

13

https://doi.org/10.2139/ssrn.4693148
https://archive.is/nJa5R
https://doi.org/10.1145/357766.351266
https://doi.org/10.21105/joss.01891
https://doi.org/10.1145/3597503.3639581
https://archive.is/DJrnB
https://doi.org/10.1145/1631687.1596574
https://doi.org/10.1007/978-3-540-69611-7_1
https://doi.org/10.1145/2543728.2543741
https://doi.org/10.1145/1159789.1159792
https://doi.org/10.1145/3639477.3639714
https://doc.rust-lang.org/stable/book/

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

H. He, H. Yang, P. Burckhardt, A. Kapravelos, B. Vasilescu, and C. Kistner, “4.5 Million
(Suspected) Fake Stars in GitHub: A Growing Spiral of Popularity Contests, Scams, and
Malware.” [Online]. Available: https://arxiv.org/abs/2412.13459

“How Much Are GitHub Stars Worth to You? — The Guild.” Accessed: May 13, 2025.
[Online]. Available: https://archive.is/TPXeq

“Over 3.1 million fake "stars" on GitHub projects used to boost rankin....” Accessed:
May 13, 2025. [Online]. Available: https://archive.is/6kyav

“Workspaces - The Cargo Book.” Accessed: May 14, 2025. [Online]. Available: https://
archive.is/bPihy

R. Hoda, Qualitative Research with Socio-Technical Grounded Theory. 2024. doi:
10.1007/978-3-031-60533-8.

M. Derbenwick et al., “Property-Based Testing in the Wild!.” 2025. doi:
10.4121/368f63ab-10fc-4603-al5a-bde25¢72¢778.

“Proptest vs Quickcheck - Proptest.” Accessed: Jun. 03, 2025. [Online]. Available: https://
archive.is/OvLuK

“GitHub - BurntSushi/quickcheck: Automated property based testing for” Accessed:
Jun. 04, 2025. [Online]. Available: https://archive.is/CbeY m#alternative-rust-crates-for-
property-testing

14

https://arxiv.org/abs/2412.13459
https://archive.is/TPXeq
https://archive.is/6kyav
https://archive.is/bPihy
https://archive.is/bPihy
https://doi.org/10.1007/978-3-031-60533-8
https://doi.org/10.4121/368f63ab-10fc-4603-a15a-bde25e72e778
https://archive.is/0vLuK
https://archive.is/0vLuK
https://archive.is/CbeYm#alternative-rust-crates-for-property-testing
https://archive.is/CbeYm#alternative-rust-crates-for-property-testing

	Introduction
	Methodology
	Finding Repositories
	A Word on Rust Workspaces

	Analyzing Individual Tests
	Open Coding
	Example

	Results
	Discussion
	PBT Complexity
	Why Are Our PBTs Simpler?

	Comparing to quickcheck
	Shrinkers & Generators
	Assumptions
	What Types of Projects Use Each Framework?
	Amount of PBTs

	Answers to the Research Questions
	Future Work
	Threats to Validity

	Querying for Custom Shrinkers
	References

