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Engine
Agnostic Graph
Environments for

Robotics (EAGERX

A Graph-Based Framework for Sim2real Robot Learning

By Bas van der Heijden®, Jelle Luijkx®,
Laura Ferranti®, Jens Kober®,
and Robert Babuska

Sim2real, that is, the transfer of learned
control policies from simulation to the
real world, is an area of growing inter-
est in robotics because of its potential
to efficiently handle complex tasks.
The sim2real approach faces chal-
lenges because of mismatches

between simulation and reality.
These discrepancies arise from
inaccuracies in modeling physical
phenomena and asynchronous con-
trol, among other factors. To this
end, we introduce Engine Agnostic
Graph Environments for Robotics
(EAGERX), a framework with a uni-
fied software pipeline for both real
and simulated robot learning. It can
support various simulators and aids in
integrating state, action, and time-
scale abstractions to facilitate learning.
EAGERX’s integrated delay simulation,
domain randomization features, and pro-
posed synchronization algorithm contribute
to narrowing the sim2real gap. We demonstrate
(in the context of robot learning and beyond) the
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efficacy of EAGERX in accommodating diverse robotic sys-
tems and maintaining consistent simulation behavior.
EAGERX is open source, and its code is available at https:/
eagerx.readthedocs.io.

INTRODUCTION

Transferring control policies trained in simulation to the real
world, known as sim2real, has gained considerable interest in
the field of robotics because of its potential to address com-
plex tasks with remarkable efficiency [1], [2]. Simulations
offer a safe, cost-effective, and controlled environment for
training and testing robotic algorithms, allowing roboticists
to refine their models and controllers without the risks and
expenses associated with real-world experimentation. The
sim2real approach, however, faces challenges because of the
sim2real gap, that is, unaccounted discrepancies between
simulation and reality. These disparities may stem from inac-
curate modeling of physical phenomena (e.g., friction, defor-
mations, and collisions) or from the use of separate software
implementations for reality and simulation, which may lead
to unintended mismatches, as depicted in Figure 1. Another
subtle but significant source of discrepancy is the asynchro-
nous nature of robotic systems. While robotic systems are
typically simulated sequentially [3], sensing, computation,
and acting happen concurrently in reality. Disregarding these
differences can be detrimental to the real-world performance
of a policy trained in simulation.

Inaccurate modeling of physical phenomena in simulation
is typically mitigated by domain randomization [2]. How-
ever, this approach can make the simulation more challeng-
ing, which may lead to longer training times and suboptimal
policies. Reformulating the task to the right level of abstrac-
tion may be more effective to alleviate the sim2real gap if the
abstraction captures the task and can be extracted accurately
both from simulated and real data [4]. Abstractions can take
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various forms, such as action abstraction, which simplifies
control issues using high-level actions, time-scale abstraction,
which uses macroactions for multiscale planning and learn-
ing, and state abstraction, which condenses raw sensor data
into key features [4]. Therefore, existing sim2real frameworks
[5], [6] have exploited the multirate graph-based design of
Robotic Operating System (ROS) [7] to obtain a unified soft-
ware pipeline that allows for the integration of various kinds
of abstractions. However, these frameworks restrict users to
the Gazebo simulator [8], which can be limiting as different
tasks may require specific types of simulators. Additionally,
these frameworks fall short in synchronizing components that
operate in parallel within the simulation. At faster-than-real-
time simulation speeds, this can exacerbate communication
and processing delays, leading to inconsistencies, inaccura-
cies, and potential system instability. Such amplified delays
can compromise the proper functioning of the simulated sys-
tem, rendering learned policies ineffective when transferred to
real-world environments. Conversely, naive synchronization
may also widen the sim2real gap if it overlooks the concurrent
nature of sensing, computation, and acting in reality.

In addition to ROS-based frameworks, existing robot learn-
ing frameworks provide integration of abstractions through a
modular design and unified framework, often coupled with a
specific simulator. Notable examples include Isaac Orbit [9] and
Drake [10]. Isaac Orbit is a modular robot learning framework
built on top of the Isaac Sim simulator [11], offering benchmarks
and readily available robot models for convenient experimen-
tation. On the other hand, Drake is a model-based framework
combining a multibody dynamics engine with a systems
approach and optimization framework [10]. However, these
frameworks are tied to a single simulator, while various robot
simulators are available, each with its own strengths and weak-
nesses. Existing robot learning frameworks lack the flexibility
to choose a simulator or leverage various simulators’ strengths.
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FIGURE 1. Our framework offers a unified software pipeline for both simulated and real robot learning. It can support various simula-

tors and aids in integrating state, action, and time-scale abstractions.
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The main contribution of this article is EAGERX: a robot
learning framework with a unified software pipeline com-
patible with both simulated and real robots that supports the
integration of various abstractions and simulators, as depict-
ed in Figure 1. EAGERX introduces a novel synchronization
protocol that coordinates internode communication based on
node rates and anticipated delays. By simulating delays, our
protocol maintains asynchronous robotic system relation-
ships synchronously, preserving the benefits of modular and
synchronous simulation. In contrast with sequential simula-
tion, the protocol permits nodes to transmit messages asyn-
chronously and perform tasks without waiting for immediate
responses, thereby accelerating the simulation and allowing
nodes to progress based on their processing capabilities and
data availability. EAGERX is Python based and offers high
simulation accuracy without compromising speed, native sup-
port for domain randomization and delay simulation, and a
modular structure for easy manual reset procedures and prior
knowledge integration. Our framework features a consistent
interface, an interactive GUI, continuous integration with tests
covering 94% of the code, and comprehensive documentation,
including interactive tutorials, easing new user adoption. The
documentation, tutorials, and our open source code can be
found at https://eagerx.readthedocs.io.

In summary, we make four key contributions:

C1: The synchronization protocol ensures consistent simu-

lation behavior even beyond real-time speeds

C2: The modular design can support various robotic sys-

tems and state, action, and time-scale abstractions.

C3: The agnostic design allows compatibility with multi-

ple engines.

C4: The integrated delay simulation and domain randomiza-

tion features in EAGERx can narrow the sim2real gap.

Theremainder of the articleis structured as follows. The next
section provides a high-level introduction to the framework.
The section “Synchronization” elaborates on a key low-level
component of the framework, i.e., its novel synchronization
algorithm. The section “Experimental Evaluation” provides
an extensive experimental evaluation to show the applica-
bility of EAGERx for sim2real robot learning. The section
“Applications Beyond Reinforcement Learning” shows the
framework’s utility beyond sim2real robot learning in two
real-world robotic use cases. The section “Discussion” com-
pares EAGERx and existing frameworks, and the section
“Conclusion” concludes the article.

FRAMEWORK

This section provides an overview of EAGERx. The sec-
tion “Agnostic Framework” outlines the framework’s main
components. The section “Support” then discusses the
package management system promoting modularity and
versioned compatibility. Finally, the section “Mitigating
the Sim2Real Gap” discusses the framework’s capabilities
for domain randomization, simulator augmentation, and
delay simulation, which are essential to minimize the sim-
2real gap.

AGNOSTIC FRAMEWORK
First, we provide a brief overview of the main components,
followed by a code example.

GRAPH

EAGERX processes are represented as nodes within a graph
structure, linked by directed edges from a node’s output to
one or multiple node inputs. Nodes communicate via edges
by exchanging messages. This versatile decentralized archi-
tecture, ideal for networked hardware and offboard comput-
er interactions, is especially useful for robotics.

NODE

Nodes are central to EAGERX, representing individual pro-
cesses that execute concurrently. Each node begins a new epi-
sode with a user-defined reset that sets its initial state,
followed by the execution of user-defined code, termed a call-
back, at a predetermined rate. These callbacks determine the
node’s functionality and define how inputs from other nodes
are transformed into outputs that are, in turn, sent as output to
subsequent nodes. A typical robotic system usually consists of
many such interconnected nodes. For instance, one node may
be responsible for capturing camera images, another for local-
ization using these images, and yet another for directing the
robot’s movement based on the localization data.

Nodes can be launched in various ways, according to their
operational needs. For example, CPU-bound nodes, which
are computationally intensive, benefit from being launched
as subprocesses. This approach leverages multiprocessing
to bypass the limitations imposed by Python’s global inter-
preter lock, thus enhancing computational efficiency. In con-
trast, input—output (I/0)-bound nodes, which primarily handle
I/0O operations, are more efficiently launched as separate
threads. This minimizes the overhead associated with mes-
sage serialization, streamlining communication. Furthermore,
EAGERKX facilitates distributed computing by enabling nodes
to be launched as external processes on different machines.
This feature allows for the distribution of computational loads
across a network, optimizing the overall performance of the
robotic control system.

OBJECT

EAGERXx objects enable flexible node replacement when
transitioning a robotic system from simulation to reality. For
instance, in reality, nodes for extracting sensor data from a
physics engine become obsolete, requiring replacement with
nodes interfacing robot hardware. EAGERX objects accom-
modate this adaptability.

Objects define abstract inputs and outputs as well as sub-
graphs for each supported physics engine. Users can add
objects to graphs [Figure 2(a)], and establish connections
between nodes and objects. Upon selecting a physics engine,
abstract objects are replaced by corresponding subgraphs [Fig-
ure 2(b) and (c)], rendering the node and object graph engine
agnostic [Figure 2(a)] as it supports multiple physics engines.
Notice how the framework treats reality as just another
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physics engine. Practically, objects represent entities inter-
acting directly with the physical environment. For instance,
a robot may have an abstract input and output for its motors
and encoders, respectively. Depending on the chosen physics
engine, the robot’s subgraph comprises nodes interfacing with
real hardware or nodes communicating with a simulator.

The object’s design also accommodates the difference in
available data between simulators and real-world hardware.
They enable the definition of simulation-specific outputs, such
as data exclusive to simulators, and inputs like randomized
external disturbances, which can be used to enhance policy
robustness. Users can easily configure these elements, select-
ing or deselecting them as needed, to ensure compatibility
across different physics engines, thereby adapting the node and
object graph for diverse simulation and real-world scenarios.

ENGINE

Physics engines (e.g., PyBullet [12] and Gazebo [8]) are inter-
faced by a special node called the engine. The engine initi-
ates the physics engine, adds 3D meshes, and sets dynamic
parameters (e.g., friction coefficients). It controls time pas-
sage, and its rate defines the simulation step size.

BACK END

Node processes, launched in various ways (i.e., as subprocess,
multithreaded, or distributed), communicate through edges
and interact with a collective database called the parameter
server. The back end facilitates low-level node-to-node com-
munication (i.e., establishing connections and the serialization
of messages) for every edge and controls the parameter server.
EAGERX supports two back ends (ROS1 and SingleProcess),
with an abstract back-end application programming interface
(API) allowing users to implement custom back ends. Defined

graphs can be initialized as distributed networks of subpro-
cesses or run in a single process. EAGERx provides an
abstraction layer over ROS, adding key features for robot
learning, such as synchronized faster-than-real-time simula-
tion, domain randomization, and delay simulation.

BASEENV

EAGERX favors composition over inheritance as a design
principle because robotic systems are more naturally con-
structed from various components than by finding common-
alities and using inheritance. EAGERX environments consist
of an engine, a back end, and a graph, which is composed of
nodes and objects. This design promotes code reuse and han-
dles future requirement changes better than an inheritance-
based environment. Nodes operating within the graph of an
EAGERXx environment support multiprocessing, thus
enabling efficient parallel operations. Additionally, EAGERx
facilitates vectorization across multiple environments, there-
by enhancing the system’s scalability and performance capa-
bilities. BaseEnv conforms to the OpenAl Gym interface [3].
The reset method initializes episodes by setting the aggregate
initial state of all graph nodes, enabling domain randomiza-
tion over any registered node state, and returns the first
observation. Users then determine actions, which are relayed
to connected nodes through the step method.

Code Example 1 showcases the steps to create an environ-
ment using EAGERX for the pendulum swing-up problem, a
classic problem in reinforcement learning [3]. It begins with
the creation of a pendulum object and a lowpass node to
filter the agent’s actions, thereby reducing wear and tear on
the system (lines 1-4). Subsequently, an agnostic graph is
constructed in which the various components are connected,
anticipated delays are specified for simulation, and cyclical
connections are handled (lines 6-16).
The environment is set up with the

gym/actions lowpass pendulum
volt u vyl volt th
thdotl

initial_state|

gym/observations

OdeEngine physics engine and a Sin-
gleProcess back end (lines 18-23).
Y Equally, the RealEngine could be used

(a)

to switch to real-world scenarios. Fol-

pendulum
ODE_motor theta

>l state th
I theta_dot -
I state thdot I

volt

ODE_engine

tick u Al tick

X
initial_state

ODE_sensor
tick state

tick

motor_API

real_world

encoder_API

lowing initialization, an interaction is
implemented by sampling an action and
applying it to the environment (lines
25-30), with the environment being
cleanly shut down at the end (line 31).

SUPPORT
Robotic system design often involves

t
thdot multiple cycles of design, implementa-

(b)

tion, evaluation, and refinement.
EAGERX supports the users as follows.

FIGURE 2. (a) The engine-agnostic graph of the pendulum environment from Code

Example 1 as generated by the GUI. The engine-specific subgraphs for replacing the
object (i.e., pendulum) are depicted for the (b) ODE and (c) real-world engines. The yel-
low nodes, split for visualization clarity, symbolize the agent’s actions and observations.
Blue squares represent I/O channels, while red squares indicate node states and/or
parameters that can be randomized at the start of an episode. ODE: ordinary

differential equation.

VISUALIZATION TOOLS

EAGERX offers interactive visualiza-
tion tools that aid in understanding and
debugging robotic systems. Users
can visualize the graph of nodes and
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inspect the parameter specifications of individual nodes with
EAGERKX’s interactive GUIL The ability to visualize a com-
plex robotic system is a powerful tool for debugging and
understanding the system’s behavior. Example visualizations
of the GUI are shown in Figure 2(a) and are also illustrated in
the section “Analysis” for C2 and C3.

PACKAGE MANAGEMENT

EAGERX incorporates a package management system that
fosters modularity, versioned compatibility, and automated
unit tests covering 94% of the code. This system allows users
to easily share, import, and reuse code modules in different
projects. By promoting modular design, EAGERX enables
users to build complex robotic systems by combining smaller,
well-tested components.

ONBOARDING RESOURCES

EAGERX provides comprehensive onboarding resources,
including interactive tutorials, code samples, and documenta-
tion, to help users quickly learn and adopt the framework.

MITIGATING THE SIM2REAL GAP
To address the sim2real gap, EAGERX’s
modular design enables manual reset

Delay simulation is enabled by our synchronization protocol
discussed in the section “Support” and emulates communica-
tion latency and computational delays encountered in real-world
systems, yielding a more accurate simulation. Delays can be
implemented across any graph edge, encompassing edges
between nodes and objects, thus simulating sensor and actuator
delays, as demonstrated in Code Example 1, line 10.

SYNCHRONIZATION

Parallel computation, used in robotic system simulations via
ROS [7] in existing sim2real frameworks [5], [6], can
increase simulation speeds. When run at faster-than-real-time
speeds, however, these frameworks suffer from unsynchro-
nized parallel components, unintentionally widening the sim-
2real gap. Here, the individual computation delays become
more pronounced relative to the accelerated simulation clock.
Without suitable synchronization at high speeds, certain
components may struggle to match pace and gradually fall
out of sync, leading to a deviation in the simulation from its
real-world counterpart. Consequently, the learned control

CODE EXAMPLE 1. Environment creation for the swing-up problem.

) . . 1 from .tutorials.pendulum import Pendulum # Make object
routines and simulator augmentation % @ = Baddim el (e e d )
an SuP P 0r1ts Fiomaln randomization and 3 from.tutorials.low pass import LowPass # Make node
clay S{mu at10¥1. . o . 4 n = LowPass.make (name="“lowpass”, rate = 15, cutoff = 7)
While resetting simulations is straight- 5
forv.vard, real-world resets demand 6 fromeagerx import Graph # Make ‘agnostic‘'graph
meticulously crafted routines to revert 7 @ o @reph.cresied e, =)
the system to its initial state. To this end, R e, S )
Slc)le,ClahZEd resethHOfies f?n- be 1lrlltegra;— 9 g.connect (source=n.outputs.y, target=o.actuators.volt,
e 11ndtot © graph, SHEpl ymng t .erza . 10 delay = 0.1) # Simulates actuator delay
Wsr resgt pro.ceilss etween epls((j) es. 11 g.connect (source=n.outputs.y, observation="y”,
T es.e.no ;:S mig .t execu.te procedures 12 skip=True) # Resolves cyclic dependency
re(flum?% uma.nhllnte;actlon ;)lr engage 13 g.connect (source=o.sensors.th, observation=“th”,
s.a et}ll 1tlerde1.t n the graﬁp ’ Opt;ra— 14 window = 2) # Use last 2 sensor readings
tlona. (?ny . urlngl reset p ases., they 15 g.connect (source=o0.sensors.thdot, observation=“thdot”,
remain inactive during regular episodes. 16 e = 3 4 Tme Tesh 9 censer reedihes
Simulator augmentation in EAGERx 17
enables th? integration of custlom mod- 18 from eagerx ode.engine import OdeEngine # Select engine
els, capturing complex dynamics absent 19 @ - OfTagine.mEke (Fehe — 20
in standard simulations. For instance, 20 real time factc;r -0, # 0 ->unlimited
in [1], augmenting the simulator with 21 sync=True)# toggles synchronization
a custom ac.tuator model was k(.zy toa 22 from eagerx.backends.single process import
successful sim2real transfer. This flex- Sl EEEE
ibility in EAG]:T,Rx.enhances S%n,lul?ltlon 23 b = SingleProcess.make () # Make backend
accuracy and fidelity, thus facilitating a 24
more:gectlve mmirleal tzanSItlf)n' 25 from .tutorials.env import CustomEnv # Make env
E. E’RX enables domain - ran- 26 env = CustomEnv(g, ode, b, name=‘env_id”, rate = 30)
domization by varying simulation 27
iafmeter;, such ES Obfle.Ct fshapes ar;(d 28 obs, info = env.reset() # Start a new episode
1gdt1ng [2]. Wlt In_this framework, 29 a = env.action space.sample () # Select an action
nodes can register any parameter as a 30 obs, reward, terminated, truncated, info = env.step(a)

state, enabling its randomization via the
reset method of the environment.

31 env.shutdown ()

# Release resources
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policy’s performance may deteriorate as it could receive out-
dated or mismatched observations, yielding actions based on
inaccurate data. This may render the learned policies ineffec-
tive when transferred to the real-world environment.

PROTOCOL

We developed a synchronization protocol for each of the
nodes representing the robotic system that enables parallel
computation and minimizes additional message-passing
overhead, thereby enhancing system efficiency and accuracy.
This protocol ensures that each node’s callback, a user-
defined code block executed at a predetermined rate for pro-
cessing inputs and generating outputs, is triggered under the
right conditions. Properly constructed communication pat-
terns and protocols can achieve global synchronization with-
out a central coordinator, whereby each node proceeds with
its tasks once the necessary input data or conditions have
been satisfied.

Each node is launched as a subprocess that runs a local
protocol version, depicted in Algorithm 1. The conditions
for a node to proceed with the next callback are based on the
expected ordering of events, as dictated by assumed rates and
delays of the system (lines 5-9). Executed with an event loop
thread and dedicated input channel threads, the protocol com-
pares received and expected message counts for input channels
before executing subsequent callbacks (lines 10—13). This com-
parison informs whether a node proceeds with the next call-
back or awaits more messages. Nodes perform tasks based on
the protocol’s decision and asynchronously transmit output to
connected nodes (line 14). Only upon completion of the previ-

ALGORITHM 1. Synchronization protocol executed by

each node.

Input: node rate f,, input rates f;, input delay ;, input
channels i € U, output channels j e Y

Output: Processed data sent to downstream nodes

1 k < Initialize callback index to O

2 B; — Initialize empty buffers for every input channel i

3 Start eventLoopThread

4 Start inputChannelThread for every i € U

5 eventLoopThread:

6 foreach i € U do
7 if channel i is cyclical then
8 |_ o — Expected message count (Alg. 3)
9 else
10 | 6i — Expected message count (Alg. 2)
11 if 8; < size(B)) for every i € U then
12 foreach i € U do
13 |_ ujx — Pop last §; messages from B;
14 yx — Run callback with inputs uik, Vi e U
15 Send yi to all output channels j € Y
16 k — Increment callback index to k + 1
17 Trigger event on eventLoopThread
18 | WaitForEvent
19 inputChannelThread i:
20 Bi — Buffer received message
21 Trigger event on eventLoopThread

ous callback or receipt of a new input channel message does the
event-driven protocol evaluate conditions for the subsequent
callback (line 17). Consequently, task execution is entirely
independent of any global clock or synchronization messages,
thus minimizing additional message-passing overhead.

The protocol computes expected messages per input
channel with node n executing its callback at rate f, and
receiving messages at rate f; delayed by 7; over input chan-
nels i € U as summarized by Algorithm 2. Assuming nodes
maintain their rates, callbacks occur every At,= (1/ fu) s,
and messages are received every At;=(1/f)s. The pro-
tocol expects the kth callback after kAt, s, anticipating
| (kAt, — T)/ Ati] messages from each input channel i, where
|a/b| denotes the integer division operator. While this intu-
ition underpins the synchronization protocol, the implemen-
tation in Algorithm 2 is more complex. Computations are
recast in rates to improve numerical stability by minimizing
the floating-point imprecision in case of high rates (small
time intervals). The protocol sets every input channel’s ini-
tial expected message count to 1, irrespective of 7;, simpli-
fying callback implementations.

The protocol also handles the special case of cyclical
dependencies—which are common in robotics systems inter-
acting with a physics engine and can cause deadlocks other-
wise—with Algorithm 3. In EAGERX, users can designate
input channels as cyclical, postponing dependency to the next
callback. This strategy allows one node to execute first in a
cycle, while others await this node’s output.

LIMITATIONS

The protocol’s limitations should be considered in the context
of the underlying communication protocol, which must
ensure the preservation of message order and be lossless. The
protocol assumes that the robotic system can be represented
by nodes with fixed rates and at least one input. Although the
protocol can be easily toggled between synchronous and
asynchronous modes, it does not allow for a hybrid mode,
where some nodes are synchronized and others are not.

ALGORITHM 2. Expected number of messages to

receive between the k- 1th and Ath callback.

Input: callback index k, node rate f,, input rate f;, input
delay 7;
Output: Expected number of messages & to receive
between the k — 1th and kth callback

1 if k=0then
2 | 51 //Set initial count to 1
3 else
/* Expected count between k - 1
and k */
4 Ni—1 — | (fitk — 1) — fafiTi) /fs ]
5 Nk < | (fi(k) — fofiTi) /fn]
6 A <~ Ni— N1
/* Correct expected count with
delay */
7 (o _l_(flk_an_fnflTI)/fnJ
8 | &< A—min(A,max(0,—c))
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Finally, the protocol does not account for jitter and assumes
deterministic delay; however, this limitation can be mitigated
by varying the delay across episodes if needed.

EXPERIMENTAL EVALUATION
This section presents experiments to show the capabilities of
our framework and to support the four key contributions dis-
cussed at the beginning of the article and repeated here for
the reader’s convenience.
C1: The synchronization protocol ensures consistent simu-
lation behavior even beyond real-time speeds.
C2: The modular design can support various robotic sys-
tems and state, action, and time-scale abstractions.
C3: The agnostic design allows compatibility with multi-
ple engines.
C4: The integrated delay simulation and domain randomiza-
tion features in EAGERx can narrow the sim2real gap.

EXPERIMENTAL SETUP

EAGERKX is validated with a pendulum swing-up task, a
vision-based box-pushing task, and an inclined landing
experiment for a quadrotor. The simulated and real-world set-
ups of all three tasks are depicted in Figure 3. To validate C1,
we experimentally assess Algorithm 1 and employ it in accel-
erated, parallelized training for all tasks. Claims C2 and C3
are validated by the tasks involving different engines and dis-
tinct types of systems, like pendulums, manipulators, quadro-
tors, and quadrupeds. Claim C4 is validated by

Qverview

Overview

(b)

demonstrating the detrimental effect of delays and model
mismatch on sim2real performance and showing how simu-
lating delays and domain randomization can restore sim2real
performance. All policies are trained in simulation and zero-
shot evaluated on their real-world counterparts.

ALGORITHM 3. Expected number of messages to

receive between the k— 1th and Ath callback to
resolve a cyclical dependency.

Input: callback index k, node rate f,, input rate f;, input
delay 7;, fudge factor € ~ 107°
Output: Expected number of messages § to receive
between the k — 1th and kth callback

1 if k=0 then
2 | §<~0 //Set initial count to 0
3 else
/* Calculate count as if k is
shifted */
4 if f, > f; then
5 | o<|(f,—e)/f] //Forward
6 else
7 |_o ——1 //Backward

/* Expected count between k - 1
and k */

8 | Nio1—|(ftk—1+0)—fufT)/f]

9 Ny — | (fi(k + 0) — fufiTi) /fn|

0 A~ Nk—Ng-1 /* Correct expected
count with delay */

1M | ¢ <|(fk—fa(A—1)—FfiT)/fa]

12 8 — A—min(A, max(0,—c))

(©

FIGURE 3. Diverse robotic system tasks illustrating the EAGERx framework’s flexibility. (a) Swing-up task with an inverted pendulum,
highlighting delay compensation in reinforcement learning. The task involves zero-shot evaluations on a real-world pendulum setup,
comparing a disk-based simulator with the OpenAl Gym rod-based environment. (b) Box-pushing experiment using a Viper 300x
robotic manipulator, emphasizing the need for domain randomization with a low-resolution Logitech C170 webcam for box localiza-
tion tracking. (c) Inclined landing task where a quadrotor lands on a moving and inclined deck, showcasing the integration of multiple

mobile robots into a dynamic task.
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SWING-UP TASK

The inverted pendulum task addresses the classic control
problem of swinging up and stabilizing an underactuated
pendulum. The choice of this task is intentional; it emphasiz-
es the critical challenge of delay compensation in reinforce-
ment learning. By showing how ignoring delay simulation
can hinder policy transfer even in straightforward scenarios,
we highlight the significant consequences for more complex
systems where delays are inevitable and the complexity is
higher. The simplicity of the task underscores the fundamen-
tal importance of addressing delays in sim2real approaches.
We conduct zero-shot evaluations using a real-world pendu-
lum setup comprising a mass on a disk driven by a dc motor.
To train policies, we utilize two simulators. The first simula-
tor’s dynamics model aligns with the physical system, repre-
senting the pendulum as a disk. By contrast, the second
simulator adopts the OpenAl Gym Classic Control’s Pendu-
lum environment, modeling the pendulum as a rod [3], inad-
vertently introducing a sim2real gap that requires mitigation.
All three systems are depicted in Figure 3(a). In all experi-
ments, the pendulum is controlled at a rate of 20 Hz, while
sensor measurements are obtained at a rate of 60 Hz. The
agent observes the last two received sensor measurements.
Users can specify such a rolling window length when con-
necting nodes in EAGERX, as shown in lines 14 and 16 of
Code Example 1. Policies are trained using the soft actor-crit-
ic (SAC) [13] implementation from [14].

BOX-PUSHING EXPERIMENT

In the box-pushing experiment, a Viper 300x robotic manipu-
lator moves a box to a target based on streaming webcam
images. To emphasize the importance of domain randomiza-
tion, we use a consumer-grade Logitech C170 webcam, select-
ed for its low resolution, modest frame rate, and high latency,
to track the box’s position and orientation. For evaluation, we
selected six unique initial configurations (three positions
approximately 30 cm from the goal for both a yaw angle of 0
and 7/2 rad) and repeated them thrice per policy. Policies are

3 600 i Sim (Mean)

% 500 == Real (Mean)

Q --- Success Threshold

§ 400 - Data

-2 300

w200

g 100 i
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Gym Async (RTF = 1) EAGERx

FIGURE 4. Comparison of mean episodic cost between simu-
lations and real-world pendulum performance. The success
threshold denotes the level below which a 100% success rate is
achieved. Performance drops notably in the real-world scenario
with a conventional gym approach, illustrating the sim2real

gap. async at real-time speeds mitigates the gap but leads to
excessively long training times. Synchronized training under
our protocol (EAGERX) facilitates consistent performance at
faster-than-real-time simulation speeds. Sim: simulation; async:
asynchronous simulation; RTF: real-time factor.

trained in PyBullet using the SAC [13] implementation from
[14] with hindsight experience replay [15]. The simulation and
real-world setups are shown in Figure 3(b).

INCLINED LANDING

To demonstrate the framework’s ability to facilitate control in
highly dynamic environments, we trained an agent to perform
the challenging maneuver of landing a quadrotor on an inclined
and moving landing deck. Because of the configuration of its
rotors, standard quadrotors can only exert thrust upwards as
rotor spinning directions cannot be reversed midflight. This
underactuation complicates landing on an incline as the agent
can only decelerate when approaching the deck. Therefore, if
the agent initiates the landing procedure with insufficient
momentum, it cannot accelerate, resulting in a crash. In [16],
proximal policy optimization (PPO) [17] was used to learn a
policy for landing on a stationary landing deck in two dimen-
sions (an xz-plane) with a fixed inclination (25°). In this article,
we follow a similar approach using the PPO implementation
from CleanRL [18]. However, we extend the policy’s capability
to land in three dimensions (an xyz-plane), at various inclina-
tions (0—25°), and on a moving landing deck (0—1 m/s).

As in [16], the quadrotor dynamics are prescribed by ordi-
nary differential equations (ODEs) identified with real-world
data. In simulation, the landing deck moves in a straight line
at a fixed inclination, varying speed, inclination, and direc-
tion across episodes to learn multigoal behavior. To model the
interaction between the landing deck and quadrotor, we extend
the ODE dynamics with MuJoCo’s [19] collision detection
capabilities to detect successful landings and crashes. During
real-world evaluation, we move the landing deck around with
a quadruped and track the pose of both the deck and quadrotor
with an accurate motion capture system. The simulation and
real-world setups are shown in Figure 3(c).

ANALYSIS

C1

We tested Algorithm 1’s ability to maintain consistent simu-
lation behaviors at speeds surpassing real time, using experi-
ments with the disk pendulum. Initially, we utilized the disk
simulator within a standard OpenAl Gym environment,
trained a policy, and then conducted a zero-shot evaluation
on the actual system. As depicted in Figure 4, the perfor-
mance significantly declines in the real world, indicating a
substantial sim2real gap. This discrepancy results from the
sequential communication in simulations contrasted with the
asynchronous sensor and actuator commands in the real sys-
tem via ROS topics [7], forcing the agent to sometimes rely
on outdated information in real-world scenarios. To mimic
this asynchronous nature, we adapted the gym environment
to use asynchronous communication in simulation. This
adaptation enabled the policy to handle occasional delays,
enhancing its real-world applicability. However, this required
limiting the simulation speed to a real-time factor (RTF) of 1,
considerably prolonging training duration. The RTF, the ratio
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of simulation to real-world time, at 1 signifies running the
simulation in real time. Figure 5 demonstrates that increasing
this factor degrades performance, underscoring the challeng-
es in accelerating simulation beyond real time while ensuring
effective real-world transfer.

Setting an excessively high target RTF may cause par-
allel components in the simulation to desynchronize and
lag. Figure 6(a) and (b) demonstrates the consequences of
this lag in asynchronous simulations. Specifically, Fig-
ure 6(a) displays the variation in the simulated pendulum’s
angle, sin(0), at t =2 s across five runs with identical input
sequences, highlighting the increasing discrepancy in angle
measurements as the RTF rises. By contrast, simulations
synchronized via our protocol remain deterministic while
still allowing parallel operations, enhancing speed without
sacrificing accuracy. Synchronous simulations naturally
cap the RTF to preserve synchronization, whereas asyn-
chronous ones might show a misleadingly high factor, as
evidenced in Figure 6(a), where increased speed incurs
greater variability and component desynchronization. This
illustrates the adverse effects of unsynchronized, accel-
erated simulations. Adapting the disk simulator into an
EAGERX environment for synchronized training under our
protocol facilitated faster-than-real-
time speeds while ensuring consisten-

various robotic systems, the tasks involve distinct robot sys-
tems, such as pendulums, manipulators, quadrotors, and
quadrupeds. EAGERX’s graph-based design, enabling diverse
abstractions, is demonstrated in the vision-based box-pushing
task. Rather than end-to-end training on raw images, an
aruco detector is used for state abstraction, as depicted in
Figure 7(e), negating the need for photorealistic rendering.
Action abstractions, visible in Figure 7(b), include an inverse
kinematics node for task-space learning and a safety filter
correcting hazardous commands. Nodes set at optimal rates
ensure efficient resource use and learning. The pendulum
task underlines the framework’s modularity using an angle
reset node, visible in Figure 7(a), to position the pendulum at
the initial angle via proportional-integral-derivative (PID)
control before a new episode. Finally, we demonstrate
EAGERX’s capability to coordinate diverse systems, such as a
quadruped and quadrotor, in a delay-sensitive and dynamic
task with the inclined landing experiment.

C3

To support the claimed contribution that EAGERX is compatible
with a variety of physics engines and the real world, we con-
ducted experiments with four different engines—PyBullet [12],
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availability. This is illustrated in Fig-
ure 6(b), where we introduced a simulat-
ed delay between the pendulum actuator
and the physics engine. Consequently, 15

asynchronously.
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FIGURE 5. The impact of varying RTFs on the mean episodic cost in a simulated pendu-
lum environment. Performance declines as the rtf increases, indicating the challenges
of maintaining fidelity in faster-than-real-time simulations when components operate
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C2
To support the claimed contribution
that the framework accommodates
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FIGURE 6. A comparison between async and sync simulations of a pendulum at faster-
than-real-time speeds. (a) The variation in angle sin(6) at t = 2 s over five runs of a
simulated pendulum as a function of the RTF. (b) The realized RTF of the simulation for
both synchronous and asynchronous cases.
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OpenAl Gym Classic Control [3], real-world, and simula-
tions with sets of ODEs—showing the ability to switch
between real and simulated counterparts. The box-pushing
task demonstrates how a division of the graph into engine-
specific and engine-agnostic subgraphs resulted in a unified
pipeline between PyBullet and reality. The inverse kinemat-
ics and safety filter nodes work with any simulator, as seen
in the agnostic graph [Figure 7(b)], while the aruco detector
and webcam nodes are swapped with PyBullet-specific
nodes in Figure 7(d) and (e). Likewise, the agnostic graph
in Figure 7(a) was used in all pendulum experiments to dis-
play sim2real transfer across physics engines. The inclined
landing experiment further illustrates the framework’s flex-
ibility by combining the collision detection capabilities of
MuJoCo [19] with the accurately identified ODE dynamics
of the quadrotor. This task highlights how different phys-
ics engines can be integrated seamlessly within EAGERX.
The collision detection in MuJoCo is used to detect success-
ful landings and crashes, while the ODE dynamics ensure
realistic quadrotor behavior. Collision detection is used in
both simulation and reality, so it is therefore placed in the
agnostic graph Figure 7(c). During real-world evaluation,
the landing deck is moved by a quadruped, and the poses of
both the deck and the quadrotor are tracked using a motion
capture system. Since simulating the full dynamics of a
quadruped during policy learning is unnecessary and would
only slow down training with redundant computation, the
quadruped control nodes are placed in the real-world
engine-specific graph. We can simulate just a moving land-
ing platform without the quadruped as actuation is not
required to move objects in simulation. This approach
focuses computational resources on what truly matters
for training.

C4

We show that the integrated delay simulation and domain
randomization features can reduce the sim2real gap by dem-
onstrating that the negative impacts of actuator delay can be
counteracted using the delay simulation feature during train-
ing for two different simulated versions of the pendulum. In
this task, we supported C4 by evaluating policies on the real
system with an actuator delay set at the smallest value that
led to a breakdown in baseline performance. When we pro-
gressively increased the actuator delay, it resulted in baseline
policy failure for delays of 0.025 s and 0.035 s for the rod and
disk pendulum, respectively. Our experiments studied the
potential of training with domain randomization and/or delay
simulation to mitigate the adverse effects of the actuator
delay. For the disk pendulum, we applied randomization
within +10% of the mean values (0.033 kg for mass and 0.1 m
for length). For the rod pendulum, randomization was limited
to +5%, considering the higher accuracy of this model. Delay
simulation involved randomization within +0.005 s around
the set actuator delay. The results shown in Figure 8 suggest
that delay simulation can mitigate the adverse effects of actu-
ator delay for zero-shot transfer from both the rod and disk
simulator to the real pendulum system. In the disk scenario,
adding domain randomization to delay simulation further
improved performance and resulted in successful transfer
with the smallest performance gap between simulation and
reality. The effectiveness of domain randomization is further
highlighted in the box-pushing task (Figure 9). We examined
its impact by altering the box’s friction coefficient between
0.1 and 0.4. Figure 9 shows that, compared to the baseline,
friction randomization reduces the performance gap between
simulation and reality, despite lowering the overall perfor-
mance, thereby illustrating that relying solely on domain
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FIGURE 7. Diverse robotic system tasks demonstrating the versatility of EAGERX’s graph-based design. (a) The pendulum swing-up
task uses an agnostic graph with an angle reset node for initializing the pendulum’s position. (b) The vision-based box-pushing task
utilizes an agnostic graph with inverse kinematics node for task-space learning and a safety filter for correcting hazardous commands.
The engine-specific subgraphs for replacing the box object in (b) are depicted for the PyBullet (d) and real-world (e) engines. (c) The
agnostic graph for the inclined landing task illustrates how EAGERX integrates collision detection in MuJoCo with ODE dynamics to

get the best of both simulators.
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randomization can increase task difficulty. Conversely,
incorporating the inverse kinematics node combined with
friction randomization enhances performance while reducing

the gap between simulation and real-
world execution. We used a delay sim-
ulation of 0.02 s for the inclined
landing task and randomized the mass
within £5%, leading to the results in
Figure 10. However, we refrain from
conducting an extensive ablation study
on the effects of delay simulation and
domain randomization to avoid unnec-
essary hardware damage.

APPLICATIONS BEYOND
REINFORCEMENT LEARNING

The modular design and unified soft-
ware pipeline of the framework have
utility in various other domains. This
section explores two such instances:
interactive imitation learning and
machine learning (ML)-enhanced
classical control, showcasing
EAGERX’s utility beyond reinforce-
ment learning.

INTERACTIVE IMITATION LEARNING
This application shows how EAGERx
is suitable for (interactive) imitation
learning. Here, the task involves assem-
bling a mock-up diesel engine by fol-
lowing voice commands from a human
operator. The parts used in this task are
3D-printed versions of the parts from
an actual diesel engine assembly setup.
To solve this task, we apply a learning-
from-demonstration approach based on
CLIPort [20]. However, we utilize an
interactive imitation learning approach
instead of gathering offline demonstra-
tions only. Collecting on-policy data
helps us to, for example, learn to recov-
er from failures. Learning recovery
behavior is often not possible using
demonstrations collected offline by
experts since they are unlikely to visit
failure states. We apply an active learn-
ing method based on uncertainty quan-
tification [21]. This method actively
queries the human teacher for a demon-
stration in case there is high prediction
uncertainty. EAGERx offers three
main advantages in this scenario. First
of all, we can easily create a digital
twin of the real-world environment in
simulation. This allows one to debug a

large portion of the pipeline in simulation, which is safe and
time efficient. Moreover, the simulated environment facili-
tates the cost-effective collection of synthetic demonstrations.
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FIGURE 8. Results for the pendulum swing-up task show the mean episodic cost for
five policies (10 episodes per policy) and the impacts of DR and DS. Here rod and disk
refer to the engine used during training, as depicted in Figure 3(a). For clarity, the y-axis
is capped at 1,000, though note that this truncates some data points. The success
threshold indicates a 100% success rate, meaning successful pendulum swing-up and
stabilization each episode for all evaluations below this threshold. DR: domain random-
ization; DS: delay simulation.
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FIGURE 9. Results for the box-pushing task show the mean distance from the goal at the
end of 16 episodes for three policies and evaluate the benefits of an IK node (facilitating
task-space control) and DR of the friction coefficient. IK: inverse kinematics.
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FIGURE 10. Results for the inclined landing experiment show the success rate for landing
on a stationary and moving deck at various inclinations in simulation and real-world set-
tings. The experiments evaluate the performance of the policy in terms of successful land-
ings across 10 episodes, demonstrating the framework’s capability to handle dynamic and
delay-sensitive tasks involving diverse robotic systems like quadrupeds and quadrotors.
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FIGURE 11. In this application of EAGERXx, a CLIPort [20] model is trained using an active learning approach that queries the human
teacher for a demonstration in case of high prediction uncertainty. Also, the model is pretrained using demonstrations gathered in

simulation.

These can be used to pretrain the policy in simulation and
speed up learning. Finally, EAGERX’s modular graph struc-
ture enables the simple connection of various components. In
this case, the graph includes a speech-to-text transcriber, the
policy node, the red, green, blue (RGB)-D camera, and the
manipulator. An overview of the task is shown in Figure 11. A
video demonstration of this application is available at https:/
eagerx.readthedocs.io.

ML-ENHANCED CLASSICAL CONTROL

This application illustrates EAGERX’s integration of pre-
trained ML models with classical control in a custom simula-
tor, addressing a practical challenge. EAGERx was applied to
an adaptive swimming pool environment, showcased in Fig-
ure 12. This environment enhances traditional countercurrent
pools by dynamically adjusting the current based on the
swimmer’s position. Normally, it is the swimmer’s task to
stay centered in the pool, a difficult task for beginners. Our
approach, however, modifies the pool’s countercurrent in line
with the swimmer’s location, maintaining central positioning
regardless of swim speed. This adaptability makes the pool
more user friendly for novice swimmers.

Variable transport delays complicate the control problems.
Specifically, alterations in motor power do not instantaneously
translate into flow changes; this delay results from the gradual
response of the water pump’s first-order dynamics as well as
the variable time it takes for a change in water flow to impact
the swimmer, contingent on the swimmer’s position in the

(a)

(b)

FIGURE 12. Application of EAGERX in an adaptive swimming pool environment. (a) Cus-
tom simulator. (b) Real. The system modulates the pool’s countercurrent in response to
the swimmer’s hip position relative to a preset boundary (red line), utilizing a pose detec-
tor and Kalman filter for position estimation and a PID controller for current adjustment.

pool. When the swimmer is toward the front, he/she feels
the effects of flow velocity changes more rapidly than when
positioned at the rear. The absence of a readily available off-
the-shelf simulator for this specific scenario underscored the
utility of EAGERX, which facilitated the creation of a custom
simulator, proving invaluable in the development of the con-
trol pipeline.

The modular architecture of EAGERX facilitated the inte-
gration of a pose detector with a Kalman filter, resulting in
estimates of the swimmer’s position and velocity from solely
top-view camera imagery. Subsequently, a PID controller was
employed to modulate the pool current in alignment with
these estimates. A video demonstration is available in the
supplementary downloadable material available at https://doi.
org/10.1109/MRA.2024.3433172, provided by the authors.

DISCUSSION

Comparing EAGERx with ROS [7] might seem natural
because of their modular structures and asynchronous com-
munication. Nonetheless, such a comparison risks being mis-
leading since EAGERX represents an abstraction based on
the actor model [22] and can operate atop a back end like
ROS. This abstraction layer offers vital functionality for
robot learning, including synchronized faster-than-real-time
simulation, domain randomization, and delay simulation,
which are not inherently supported by ROS. Recent research
[23] presented a reactive solution to ROS’s asynchronous pro-
gramming challenges via an event-driven API, inspiring
EAGERX’s synchronization approach.
However, this API didn’t specifically
aim to synchronize simulations using
expected rates and delays as demon-
strated in our work. Importantly,
EAGERX’s protocol extends beyond
ROS to other back ends as well.

The proposed synchronization pro-
tocol can be seen as an application of
the actor model for computation [22]. It
is a powerful and flexible model of con-
current computation, where actors, the
primary units, execute tasks concur-
rently and communicate by exchang-
ing messages. The actor model is
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well suited for synchronizing robotic systems represented as
graphs of nodes, where various nodes need to operate con-
currently. Our protocol operates on an event-driven basis and
circumvents dependence on a global/local clock, a central coor-
dinator [24], or extra synchronization messages [25]. Instead,
it assesses conditions for subsequent callbacks exclusively
after finalizing the preceding one or obtaining a new input
channel message. This process can outperform busy-waiting
techniques (or spinlock) [26] that continuously evaluate condi-
tions at a fixed time interval.

Ptolemy II [27] constitutes a software framework for
designing, modeling, and simulating heterogeneous systems.
Like EAGERYX, it applies the actor model of computation,
enabling concurrency and asynchronous communication.
Both frameworks offer GUISs for visualizing complex systems.
Ptolemy II holds an advantage over EAGERX in its support
for a wider range of computation models and the ability to
combine them within a single system. Nevertheless, Ptolemy
II serves as a general-purpose framework, while EAGERx
specifically targets robot learning. Furthermore, Ptolemy II
employs a Java-based structure, in contrast with EAGERX’s
exclusive use of Python.

In comparison to Gym [3]—which offers a flexible API
but lacks a unified sim2real framework—EAGERX addresses
this deficiency. Unlike Gym’s default sequential simulation,
EAGERx supports concurrent, distributed operations across
devices within environments, enhancing its applicability to
robot learning. Gym environments use object-oriented classes,
frequently constructed via inheritance and extended with wrap-
per patterns. However, this approach in Gym, particularly with
the extensive use of wrappers, tends to create overly complex
and difficult-to-manage class structures in robotic systems,
leading to maintenance challenges and reduced clarity in sys-
tem design. Additionally, incorporating time abstraction within
Gym environments is challenging, often confining it to mul-

tiples of the environment’s step size. Conversely, EAGERx
allows each node within the graph environment to operate at
separate frequencies.

Various robot learning frameworks with connections to
EAGERXx have been introduced in the field. Among these,
Isaac Orbit [9] and Drake [10] stand out as recent frame-
works with shared design principles. In line with EAGERX,
Orbit and Drake adopt a modular approach to construct-
ing robot environments, enabling the execution of different
nodes at varying rates to support both lower and higher level
control for effective robot learning. However, these frame-
works exhibit three critical differences from EAGERX. First,
EAGERKX is designed to be engine agnostic, whereas Orbit
relies on a proprietary simulator, and Drake incorporates an
integrated multibody dynamics simulator, hence restricting
them to a single simulation platform. Second, EAGERX fea-
tures dedicated reset procedures in the form of reset nodes.
These nodes can be added to the graph and are only activat-
ed during environment resets. Third, EAGERXx offers a uni-
fied pipeline for both simulation and reality. Although Orbit
and Drake promote component reusability in both simula-
tion and reality, EAGERx enforces this more rigorously
through engine-agnostic and engine-specific graphs. This
effectively isolates the engine-agnostic code and minimizes
the risk of discrepancies. Additional frameworks, such as
Robo-Gym [5] and Gym-Gazebo(2) [6] aimed to exploit the
node structure of ROS for robot learning and were primarily
centered around the Gazebo simulator without synchroniza-
tion. To speed up training, EAGERX uses multiprocessing
instead of complete GPU acceleration for parallelization
across multiple environments. While GPU paralleliza-
tion can significantly speed up learning [1], its practicality
can sometimes be limited for simulations requiring CPU-
bound computations or non-GPU-adaptable libraries. In
such cases, the latency from data transfer between GPU and

TABLE 1. A comparison of various modular sim-to-real robot learning frameworks, where - indicates

partial feature presence.

EAGERX ORBIT [9] DRAKE [10] ROBO-GYM [5] GYM-GAZEBO2 [6]

Engine agnostic v X X = X
Specialized reset procedures 4 X X X X

Unified pipeline sim/real v = = = =
Synchronized simulation v v v X X
Distributed computing v/ v/ 4 v/ 4

GPU accelerated X v X X X
Gradient information available X X v X X
Domain/delay randomization I X I X/ X X/ X
Environment visualization v/ 4 4 = =

Open source/license free a4 =-/= I I I
Documentation/tutorials I I I/ -/X X/x

Last commit (age) <one week Two months <one week One year Four years

Authorized licensed use limited to: TU Delft Library. Downloaded on July 09,2025 at 11:41:20'UNE20S IEEEE)W%TIMIAEEQMWAGAZWE

111



112

CPU can become the dominant factor in simulation speed
[28]. Among the frameworks discussed, only Orbit currently
enables parallel training on a GPU. A comparative summary
of the discussed robot learning frameworks is presented
in Table 1.

CONCLUSION

This article presented EAGERX, a novel framework to facili-
tate the transfer of robot learning policies from simulation to
the real world. Our unified framework is compatible with
simulated and real robots. Its design can accommodate vari-
ous abstractions and simulators. The presented synchroniza-
tion protocol simulates delays without sacrificing simulation
speed or accuracy, enabling effective policy training in simu-
lation and subsequent transfer to real robots. We evaluated
our framework on two benchmark robotic tasks, demonstrat-
ing its effectiveness in reducing the sim2real gap. Finally, we
demonstrated the utility of the framework beyond sim2real
robot learning in two real-world robotic use cases.

We plan to extend the open source code base with more
code examples for future work. Also, training can be sped up
using GPU acceleration, and gradient information can be pro-
vided to facilitate optimization through nodes. Finally, it will
be valuable to provide real2sim functionalities to reduce the
sim2real gap further using real-world data.
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