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Engine 
Agnostic Graph 
Environments for 
Robotics (EAGERx)

By Bas van der Heijden , Jelle Luijkx ,  
Laura Ferranti , Jens Kober ,  
and Robert Babuska

Sim2real, that is, the transfer of learned 
control policies from simulation to the 
real world, is an area of growing inter-
est in robotics because of its potential 
to efficiently handle complex tasks. 
The sim2real approach faces chal-
lenges because of mismatches 
between simulation and reality. 
These discrepancies arise from 
inaccuracies in modeling physical 
phenomena and asynchronous con-
trol, among other factors. To this 
end, we introduce Engine Agnostic 
Graph Environments for Robotics 
(EAGERx), a framework with a uni-
fied software pipeline for both real 
and simulated robot learning. It can 
support various simulators and aids in 
integrating state, action, and time-
scale abstractions to facilitate learning. 
EAGERx’s integrated delay simulation, 
domain randomization features, and pro-
posed synchronization algorithm contribute 
to narrowing the sim2real gap. We demonstrate 
(in the context of robot learning and beyond) the 
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efficacy of EAGERx in accommodating diverse robotic sys-
tems and maintaining consistent simulation behavior. 
EAGERx is open source, and its code is available at https://
eagerx.readthedocs.io.

INTRODUCTION
Transferring control policies trained in simulation to the real 
world, known as sim2real, has gained considerable interest in 
the field of robotics because of its potential to address com-
plex tasks with remarkable efficiency [1], [2]. Simulations 
offer a safe, cost-effective, and controlled environment for 
training and testing robotic algorithms, allowing roboticists 
to refine their models and controllers without the risks and 
expenses associated with real-world experimentation. The 
sim2real approach, however, faces challenges because of the 
sim2real gap, that is, unaccounted discrepancies between 
simulation and reality. These disparities may stem from inac-
curate modeling of physical phenomena (e.g., friction, defor-
mations, and collisions) or from the use of separate software 
implementations for reality and simulation, which may lead 
to unintended mismatches, as depicted in Figure 1. Another 
subtle but significant source of discrepancy is the asynchro-
nous nature of robotic systems. While robotic systems are 
typically simulated sequentially [3], sensing, computation, 
and acting happen concurrently in reality. Disregarding these 
differences can be detrimental to the real-world performance 
of a policy trained in simulation.

Inaccurate modeling of physical phenomena in simulation 
is typically mitigated by domain randomization [2]. How-
ever, this approach can make the simulation more challeng-
ing, which may lead to longer training times and suboptimal 
policies. Reformulating the task to the right level of abstrac-
tion may be more effective to alleviate the sim2real gap if the 
abstraction captures the task and can be extracted accurately 
both from simulated and real data [4]. Abstractions can take 

various forms, such as action abstraction, which simplifies 
control issues using high-level actions, time-scale abstraction, 
which uses macroactions for multiscale planning and learn-
ing, and state abstraction, which condenses raw sensor data 
into key features [4]. Therefore, existing sim2real frameworks 
[5], [6] have exploited the multirate graph-based design of 
Robotic Operating System (ROS) [7] to obtain a unified soft-
ware pipeline that allows for the integration of various kinds 
of abstractions. However, these frameworks restrict users to 
the Gazebo simulator [8], which can be limiting as different 
tasks may require specific types of simulators. Additionally, 
these frameworks fall short in synchronizing components that 
operate in parallel within the simulation. At faster-than-real-
time simulation speeds, this can exacerbate communication 
and processing delays, leading to inconsistencies, inaccura-
cies, and potential system instability. Such amplified delays 
can compromise the proper functioning of the simulated sys-
tem, rendering learned policies ineffective when transferred to 
real-world environments. Conversely, naive synchronization 
may also widen the sim2real gap if it overlooks the concurrent 
nature of sensing, computation, and acting in reality.

In addition to ROS-based frameworks, existing robot learn-
ing frameworks provide integration of abstractions through a 
modular design and unified framework, often coupled with a 
specific simulator. Notable examples include Isaac Orbit [9] and 
Drake [10]. Isaac Orbit is a modular robot learning framework 
built on top of the Isaac Sim simulator [11], offering benchmarks 
and readily available robot models for convenient experimen-
tation. On the other hand, Drake is a model-based framework 
combining a multibody dynamics engine with a systems 
approach and optimization framework [10]. However, these 
frameworks are tied to a single simulator, while various robot 
simulators are available, each with its own strengths and weak-
nesses. Existing robot learning frameworks lack the flexibility 
to choose a simulator or leverage various simulators’ strengths.
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FIGURE 1. Our framework offers a unified software pipeline for both simulated and real robot learning. It can support various simula-
tors and aids in integrating state, action, and time-scale abstractions.
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The main contribution of this article is EAGERx: a robot 
learning framework with a unified software pipeline com-
patible with both simulated and real robots that supports the 
integration of various abstractions and simulators, as depict-
ed in Figure 1. EAGERx introduces a novel synchronization 
protocol that coordinates internode communication based on 
node rates and anticipated delays. By simulating delays, our 
protocol maintains asynchronous robotic system relation-
ships synchronously, preserving the benefits of modular and 
synchronous simulation. In contrast with sequential simula-
tion, the protocol permits nodes to transmit messages asyn-
chronously and perform tasks without waiting for immediate 
responses, thereby accelerating the simulation and allowing 
nodes to progress based on their processing capabilities and 
data availability. EAGERx is Python based and offers high 
simulation accuracy without compromising speed, native sup-
port for domain randomization and delay simulation, and a 
modular structure for easy manual reset procedures and prior 
knowledge integration. Our framework features a consistent 
interface, an interactive GUI, continuous integration with tests 
covering 94% of the code, and comprehensive documentation, 
including interactive tutorials, easing new user adoption. The 
documentation, tutorials, and our open source code can be 
found at https://eagerx.readthedocs.io.

In summary, we make four key contributions:
C1: �The synchronization protocol ensures consistent simu-

lation behavior even beyond real-time speeds
C2: �The modular design can support various robotic sys-

tems and state, action, and time-scale abstractions.
C3: �The agnostic design allows compatibility with multi-

ple engines.
C4: �The integrated delay simulation and domain randomiza-

tion features in EAGERx can narrow the sim2real gap.
The remainder of the article is structured as follows. The next 

section provides a high-level introduction to the framework.  
The section “Synchronization” elaborates on a key low-level 
component of the framework, i.e., its novel synchronization 
algorithm. The section “Experimental Evaluation” provides 
an extensive experimental evaluation to show the applica-
bility of EAGERx for sim2real robot learning. The section 
“Applications Beyond Reinforcement Learning” shows the 
framework’s utility beyond sim2real robot learning in two 
real-world robotic use cases. The section “Discussion” com-
pares EAGERx and existing frameworks, and the section 
“Conclusion” concludes the article.

FRAMEWORK
This section provides an overview of EAGERx. The sec-
tion “Agnostic Framework” outlines the framework’s main 
components. The section “Support” then discusses the 
package management system promoting modularity and 
versioned compatibility. Finally, the section “Mitigating 
the Sim2Real Gap” discusses the framework’s capabilities 
for domain randomization, simulator augmentation, and 
delay simulation, which are essential to minimize the sim-
2real gap.

AGNOSTIC FRAMEWORK
First, we provide a brief overview of the main components, 
followed by a code example.

GRAPH
EAGERx processes are represented as nodes within a graph 
structure, linked by directed edges from a node’s output to 
one or multiple node inputs. Nodes communicate via edges 
by exchanging messages. This versatile decentralized archi-
tecture, ideal for networked hardware and offboard comput-
er interactions, is especially useful for robotics.

NODE
Nodes are central to EAGERx, representing individual pro-
cesses that execute concurrently. Each node begins a new epi-
sode with a user-defined reset that sets its initial state, 
followed by the execution of user-defined code, termed a call-
back, at a predetermined rate. These callbacks determine the 
node’s functionality and define how inputs from other nodes 
are transformed into outputs that are, in turn, sent as output to 
subsequent nodes. A typical robotic system usually consists of 
many such interconnected nodes. For instance, one node may 
be responsible for capturing camera images, another for local-
ization using these images, and yet another for directing the 
robot’s movement based on the localization data.

Nodes can be launched in various ways, according to their 
operational needs. For example, CPU-bound nodes, which 
are computationally intensive, benefit from being launched 
as subprocesses. This approach leverages multiprocessing 
to bypass the limitations imposed by Python’s global inter-
preter lock, thus enhancing computational efficiency. In con-
trast, input–output (I/O)-bound nodes, which primarily handle 
I/O operations, are more efficiently launched as separate 
threads. This minimizes the overhead associated with mes-
sage serialization, streamlining communication. Furthermore, 
EAGERx facilitates distributed computing by enabling nodes 
to be launched as external processes on different machines. 
This feature allows for the distribution of computational loads 
across a network, optimizing the overall performance of the 
robotic control system.

OBJECT
EAGERx objects enable flexible node replacement when 
transitioning a robotic system from simulation to reality. For 
instance, in reality, nodes for extracting sensor data from a 
physics engine become obsolete, requiring replacement with 
nodes interfacing robot hardware. EAGERx objects accom-
modate this adaptability.

Objects define abstract inputs and outputs as well as sub-
graphs for each supported physics engine. Users can add 
objects to graphs [Figure  2(a)], and establish connections 
between nodes and objects. Upon selecting a physics engine, 
abstract objects are replaced by corresponding subgraphs [Fig-
ure 2(b) and (c)], rendering the node and object graph engine 
agnostic [Figure 2(a)] as it supports multiple physics engines. 
Notice how the framework treats reality as just another 
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physics engine. Practically, objects represent entities inter-
acting directly with the physical environment. For instance, 
a robot may have an abstract input and output for its motors 
and encoders, respectively. Depending on the chosen physics 
engine, the robot’s subgraph comprises nodes interfacing with 
real hardware or nodes communicating with a simulator.

The object’s design also accommodates the difference in 
available data between simulators and real-world hardware. 
They enable the definition of simulation-specific outputs, such 
as data exclusive to simulators, and inputs like randomized 
external disturbances, which can be used to enhance policy 
robustness. Users can easily configure these elements, select-
ing or deselecting them as needed, to ensure compatibility 
across different physics engines, thereby adapting the node and 
object graph for diverse simulation and real-world scenarios.

ENGINE
Physics engines (e.g., PyBullet [12] and Gazebo [8]) are inter-
faced by a special node called the engine. The engine initi-
ates the physics engine, adds 3D meshes, and sets dynamic 
parameters (e.g., friction coefficients). It controls time pas-
sage, and its rate defines the simulation step size.

BACK END
Node processes, launched in various ways (i.e., as subprocess, 
multithreaded, or distributed), communicate through edges 
and interact with a collective database called the parameter 
server. The back end facilitates low-level node-to-node com-
munication (i.e., establishing connections and the serialization 
of messages) for every edge and controls the parameter server. 
EAGERx supports two back ends (ROS1 and SingleProcess), 
with an abstract back-end application programming interface 
(API) allowing users to implement custom back ends. Defined 

graphs can be initialized as distributed networks of subpro-
cesses or run in a single process. EAGERx provides an 
abstraction layer over ROS, adding key features for robot 
learning, such as synchronized faster-than-real-time simula-
tion, domain randomization, and delay simulation.

BASEENV
EAGERx favors composition over inheritance as a design 
principle because robotic systems are more naturally con-
structed from various components than by finding common-
alities and using inheritance. EAGERx environments consist 
of an engine, a back end, and a graph, which is composed of 
nodes and objects. This design promotes code reuse and han-
dles future requirement changes better than an inheritance-
based environment. Nodes operating within the graph of an 
EAGERx environment support multiprocessing, thus 
enabling efficient parallel operations. Additionally, EAGERx 
facilitates vectorization across multiple environments, there-
by enhancing the system’s scalability and performance capa-
bilities. BaseEnv conforms to the OpenAI Gym interface [3]. 
The reset method initializes episodes by setting the aggregate 
initial state of all graph nodes, enabling domain randomiza-
tion over any registered node state, and returns the first 
observation. Users then determine actions, which are relayed 
to connected nodes through the step method.

Code Example 1 showcases the steps to create an environ-
ment using EAGERx for the pendulum swing-up problem, a 
classic problem in reinforcement learning [3]. It begins with 
the creation of a pendulum object and a lowpass node to 
filter the agent’s actions, thereby reducing wear and tear on 
the system (lines 1–4). Subsequently, an agnostic graph is 
constructed in which the various components are connected, 
anticipated delays are specified for simulation, and cyclical 

connections are handled (lines 6–16). 
The environment is set up with the 
OdeEngine physics engine and a Sin-
gleProcess back end (lines 18–23). 
Equally, the RealEngine could be used 
to switch to real-world scenarios. Fol-
lowing initialization, an interaction is 
implemented by sampling an action and 
applying it to the environment (lines 
25–30), with the environment being 
cleanly shut down at the end (line 31).

SUPPORT
Robotic system design often involves 
multiple cycles of design, implementa-
tion, evaluation, and refinement. 
EAGERx supports the users as follows.

VISUALIZATION TOOLS
EAGERx offers interactive visualiza-
tion tools that aid in understanding and 
debugging robotic systems. Users 
can visualize the graph of nodes and 

(a)

(b) (c)

FIGURE 2. (a) The engine-agnostic graph of the pendulum environment from Code  
Example 1 as generated by the GUI. The engine-specific subgraphs for replacing the  
object (i.e., pendulum) are depicted for the (b) ODE and (c) real-world engines. The yel-
low nodes, split for visualization clarity, symbolize the agent’s actions and observations. 
Blue squares represent I/O channels, while red squares indicate node states and/or  
parameters that can be randomized at the start of an episode. ODE: ordinary  
differential equation.
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inspect the parameter specifications of individual nodes with 
EAGERx’s interactive GUI. The ability to visualize a com-
plex robotic system is a powerful tool for debugging and 
understanding the system’s behavior. Example visualizations 
of the GUI are shown in Figure 2(a) and are also illustrated in 
the section “Analysis” for C2 and C3. 

PACKAGE MANAGEMENT
EAGERx incorporates a package management system that 
fosters modularity, versioned compatibility, and automated 
unit tests covering 94% of the code. This system allows users 
to easily share, import, and reuse code modules in different 
projects. By promoting modular design, EAGERx enables 
users to build complex robotic systems by combining smaller, 
well-tested components.

ONBOARDING RESOURCES
EAGERx provides comprehensive onboarding resources, 
including interactive tutorials, code samples, and documenta-
tion, to help users quickly learn and adopt the framework.

MITIGATING THE SIM2REAL GAP
To address the sim2real gap, EAGERx’s 
modular design enables manual reset 
routines and simulator augmentation 
and supports domain randomization and 
delay simulation.

While resetting simulations is straight-
forward, real-world resets demand 
meticulously crafted routines to revert 
the system to its initial state. To this end, 
specialized reset nodes can be integrat-
ed into the graph, simplifying the real-
world reset process between episodes. 
These nodes might execute procedures 
requiring human interaction or engage 
safety filters within the graph. Opera-
tional only during reset phases, they 
remain inactive during regular episodes.

Simulator augmentation in EAGERx 
enables the integration of custom mod-
els, capturing complex dynamics absent 
in standard simulations. For instance, 
in [1], augmenting the simulator with 
a custom actuator model was key to a 
successful sim2real transfer. This flex-
ibility in EAGERx enhances simulation 
accuracy and fidelity, thus facilitating a 
more effective sim2real transition.

EAGERx enables domain ran-
domization by varying simulation 
parameters, such as object shapes and 
lighting [2]. Within this framework, 
nodes can register any parameter as a 
state, enabling its randomization via the 
reset method of the environment.

Delay simulation is enabled by our synchronization protocol 
discussed in the section “Support” and emulates communica-
tion latency and computational delays encountered in real-world 
systems, yielding a more accurate simulation. Delays can be 
implemented across any graph edge, encompassing edges 
between nodes and objects, thus simulating sensor and actuator 
delays, as demonstrated in Code Example 1, line 10.

SYNCHRONIZATION
Parallel computation, used in robotic system simulations via 
ROS [7] in existing sim2real frameworks [5], [6], can 
increase simulation speeds. When run at faster-than-real-time 
speeds, however, these frameworks suffer from unsynchro-
nized parallel components, unintentionally widening the sim-
2real gap. Here, the individual computation delays become 
more pronounced relative to the accelerated simulation clock. 
Without suitable synchronization at high speeds, certain 
components may struggle to match pace and gradually fall 
out of sync, leading to a deviation in the simulation from its 
real-world counterpart. Consequently, the learned control 

  1 � from .tutorials.pendulum import Pendulum # Make object
  2  o = Pendulum.make(name=“pendulum”)
  3  from .tutorials.low_pass import LowPass # Make node
  4  n = LowPass.make(name=“lowpass”, rate = 15, cutoff = 7)
  5
  6  from eagerx import Graph # Make ‘agnostic‘graph
  7  g = Graph.create([o, n])
  8  g.connect(action=“volt”,      target=n.inputs.u)
  9  g.connect(source=n.outputs.y,  target=o.actuators.volt,
10          delay = 0.1) # Simulates actuator delay
11  g.connect(source=n.outputs.y,    observation=“y”,
12          skip=True)  # Resolves cyclic dependency
13  g.connect(source=o.sensors.th, observation=“th”,
14          window = 2)  # Use last 2 sensor readings
15  g.connect(source=o.sensors.thdot, observation=“thdot”,
16          window = 2)  # Use last 2 sensor readings
17
18 � from eagerx_ode.engine import OdeEngine # Select engine
19  e = OdeEngine.make(rate = 30,
20                  �real_time_factor = 0, # 0 -> unlimited
21  sync=True) # toggles synchronization
22  �from eagerx.backends.single_process import 

SingleProcess
23  b = SingleProcess.make() # Make backend
24
25  from .tutorials.env import CustomEnv # Make env
26  env = CustomEnv(g, ode, b, name=“env_id”, rate = 30)
27
28  obs, info = env.reset()      # Start a new episode
29  a = env.action_space.sample()    # Select an action
30  obs, reward, terminated, truncated, info = env.step(a)
31  env.shutdown()  # Release resources

CODE EXAMPLE 1. Environment creation for the swing-up problem.
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policy’s performance may deteriorate as it could receive out-
dated or mismatched observations, yielding actions based on 
inaccurate data. This may render the learned policies ineffec-
tive when transferred to the real-world environment.

PROTOCOL
We developed a synchronization protocol for each of the 
nodes representing the robotic system that enables parallel 
computation and minimizes additional message-passing 
overhead, thereby enhancing system efficiency and accuracy. 
This protocol ensures that each node’s callback, a user-
defined code block executed at a predetermined rate for pro-
cessing inputs and generating outputs, is triggered under the 
right conditions. Properly constructed communication pat-
terns and protocols can achieve global synchronization with-
out a central coordinator, whereby each node proceeds with 
its tasks once the necessary input data or conditions have 
been satisfied.

Each node is launched as a subprocess that runs a local 
protocol version, depicted in Algorithm 1. The conditions 
for a node to proceed with the next callback are based on the 
expected ordering of events, as dictated by assumed rates and 
delays of the system (lines 5–9). Executed with an event loop 
thread and dedicated input channel threads, the protocol com-
pares received and expected message counts for input channels 
before executing subsequent callbacks (lines 10–13). This com-
parison informs whether a node proceeds with the next call-
back or awaits more messages. Nodes perform tasks based on 
the protocol’s decision and asynchronously transmit output to 
connected nodes (line 14). Only upon completion of the previ-

ous callback or receipt of a new input channel message does the 
event-driven protocol evaluate conditions for the subsequent 
callback (line 17). Consequently, task execution is entirely 
independent of any global clock or synchronization messages, 
thus minimizing additional message-passing overhead.

The protocol computes expected messages per input 
channel with node n executing its callback at rate fn  and 
receiving messages at rate fi  delayed by ix  over input chan-
nels i U!  as summarized by Algorithm 2. Assuming nodes 
maintain their rates, callbacks occur every /( ) ,t f1 sn nT =  
and messages are received every /( )t f1 s.i iT =  The pro-
tocol expects the kth callback after k tnT  s, anticipating 

/( )k t tn i iTT x-6 @ messages from each input channel i, where 
/a b6 @ denotes the integer division operator. While this intu-

ition underpins the synchronization protocol, the implemen-
tation in Algorithm 2 is more complex. Computations are 
recast in rates to improve numerical stability by minimizing 
the floating-point imprecision in case of high rates (small 
time intervals). The protocol sets every input channel’s ini-
tial expected message count to 1, irrespective of ,ix  simpli-
fying callback implementations.

The protocol also handles the special case of cyclical 
dependencies—which are common in robotics systems inter-
acting with a physics engine and can cause deadlocks other-
wise—with Algorithm 3. In EAGERx, users can designate 
input channels as cyclical, postponing dependency to the next 
callback. This strategy allows one node to execute first in a 
cycle, while others await this node’s output.

LIMITATIONS
The protocol’s limitations should be considered in the context 
of the underlying communication protocol, which must 
ensure the preservation of message order and be lossless. The 
protocol assumes that the robotic system can be represented 
by nodes with fixed rates and at least one input. Although the 
protocol can be easily toggled between synchronous and 
asynchronous modes, it does not allow for a hybrid mode, 
where some nodes are synchronized and others are not. 

    Input: � node rate ,fn  input rates ,fi  input delay ,ix  input 
channels ,i U!  output channels j Y!

    Output:  Processed data sent to downstream nodes
  1  k ! Initialize callback index to 0
  2  Bi ! Initialize empty buffers for every input channel i
  3  Start eventLoopThread
  4  Start inputChannelThread for every i U!
  5  eventLoopThread:
  6       foreach i U!  do
  7            if channel i is cyclical then
  8                i !d  Expected message count (Alg. 3)

  9            else
10                i !d  Expected message count (Alg. 2)

11       if ( )Bsizei i#d  for every i U!  then
12            foreach i U!  do
13                u ,i k ! Pop last id  messages from Bi

14            yk ! Run callback with inputs ,u i U,i k 6 !
15            Send yk  to all output channels j Y!
16            k ! Increment callback index to k + 1
17            Trigger event on eventLoopThread

18       WaitForEvent

19  inputChannelThread i:
20       Bi ! Buffer received message
21       Trigger event on eventLoopThread

ALGORITHM 1. Synchronization protocol executed by 
each node.

ALGORITHM 2. Expected number of messages to 
receive between the k – 1th and kth callback.

   � Input: � callback index k, node rate ,fn  input rate ,fi  input 
delay ix

   � Output: � Expected number of messages d  to receive 
between the k – 1th and kth callback

1  if k = 0 then
2       1!d              //Set initial count to 1
3  else
       �/* Expected count between k – 1  

  and k */
4       ( ( ) ) /N f k f f f1k i n i i n1 ! x- -- 6 @
5       ( ( ) ) /N f k f f fk i n i i n! x-6 @
6       N Nk k 1!T - -

       �/* Correct expected count with  
  delay */

7       ( ) /c f k f f f fi n n i i n! T x- -6 @
8       ( , ( , ))min max c0! T Td - -
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Finally, the protocol does not account for jitter and assumes 
deterministic delay; however, this limitation can be mitigated 
by varying the delay across episodes if needed.

EXPERIMENTAL EVALUATION
This section presents experiments to show the capabilities of 
our framework and to support the four key contributions dis-
cussed at the beginning of the article and repeated here for 
the reader’s convenience.

C1: �The synchronization protocol ensures consistent simu-
lation behavior even beyond real-time speeds.

C2: �The modular design can support various robotic sys-
tems and state, action, and time-scale abstractions.

C3: �The agnostic design allows compatibility with multi-
ple engines.

C4: �The integrated delay simulation and domain randomiza-
tion features in EAGERx can narrow the sim2real gap.

EXPERIMENTAL SETUP
EAGERx is validated with a pendulum swing-up task, a 
vision-based box-pushing task, and an inclined landing 
experiment for a quadrotor. The simulated and real-world set-
ups of all three tasks are depicted in Figure 3. To validate C1, 
we experimentally assess Algorithm 1 and employ it in accel-
erated, parallelized training for all tasks. Claims C2 and C3 
are validated by the tasks involving different engines and dis-
tinct types of systems, like pendulums, manipulators, quadro-
tors, and quadrupeds. Claim C4 is val idated by 

demonstrating the detrimental effect of delays and model 
mismatch on sim2real performance and showing how simu-
lating delays and domain randomization can restore sim2real 
performance. All policies are trained in simulation and zero-
shot evaluated on their real-world counterparts.

    Input: � callback index k, node rate ,fn  input rate ,fi  input 
delay ,ix  fudge factor 10 9.e -

    Output: � Expected number of messages d  to receive 
between the k – 1th and kth callback

  1  if k = 0 then
  2    �   0!d           //Set initial count to 0
  3  else
      � /* Calculate count as if k is  

  shifted */
  4      if f fn i2  then
  5        ( ) /o f fn i! e-6 @                    //Forward
  6      else
  7        o 1!-                            //Backward

      � /* Expected count between k – 1  
  and k */

  8       ( ( ) ) /N f k o f f f1k i n i i n1 ! x- + -- 6 @
  9       ( ( ) ) /N f k o f f fk i n i i n! x+ -6 @
10    �   N Nk k 1!T - -   /* Correct expected  

  count with delay */
11       ( ( ) ) /c f k f f f f1i n n i i n! T x- - -6 @
12       ( , ( , ))min max c0! T Td - -

ALGORITHM 3. Expected number of messages to 
receive between the k – 1th and kth callback to 
resolve a cyclical dependency.

x
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Overview

Overview

(a) (b) (c)

FIGURE 3. Diverse robotic system tasks illustrating the EAGERx framework’s flexibility. (a) Swing-up task with an inverted pendulum, 
highlighting delay compensation in reinforcement learning. The task involves zero-shot evaluations on a real-world pendulum setup, 
comparing a disk-based simulator with the OpenAI Gym rod-based environment. (b) Box-pushing experiment using a Viper 300x 
robotic manipulator, emphasizing the need for domain randomization with a low-resolution Logitech C170 webcam for box localiza-
tion tracking. (c) Inclined landing task where a quadrotor lands on a moving and inclined deck, showcasing the integration of multiple 
mobile robots into a dynamic task.
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SWING-UP TASK
The inverted pendulum task addresses the classic control 
problem of swinging up and stabilizing an underactuated 
pendulum. The choice of this task is intentional; it emphasiz-
es the critical challenge of delay compensation in reinforce-
ment learning. By showing how ignoring delay simulation 
can hinder policy transfer even in straightforward scenarios, 
we highlight the significant consequences for more complex 
systems where delays are inevitable and the complexity is 
higher. The simplicity of the task underscores the fundamen-
tal importance of addressing delays in sim2real approaches. 
We conduct zero-shot evaluations using a real-world pendu-
lum setup comprising a mass on a disk driven by a dc motor. 
To train policies, we utilize two simulators. The first simula-
tor’s dynamics model aligns with the physical system, repre-
senting the pendulum as a disk. By contrast, the second 
simulator adopts the OpenAI Gym Classic Control’s Pendu-
lum environment, modeling the pendulum as a rod [3], inad-
vertently introducing a sim2real gap that requires mitigation. 
All three systems are depicted in Figure 3(a). In all experi-
ments, the pendulum is controlled at a rate of 20 Hz, while 
sensor measurements are obtained at a rate of 60 Hz. The 
agent observes the last two received sensor measurements. 
Users can specify such a rolling window length when con-
necting nodes in EAGERx, as shown in lines 14 and 16 of 
Code Example 1. Policies are trained using the soft actor-crit-
ic (SAC) [13] implementation from [14].

BOX-PUSHING EXPERIMENT
In the box-pushing experiment, a Viper 300x robotic manipu-
lator moves a box to a target based on streaming webcam 
images. To emphasize the importance of domain randomiza-
tion, we use a consumer-grade Logitech C170 webcam, select-
ed for its low resolution, modest frame rate, and high latency, 
to track the box’s position and orientation. For evaluation, we 
selected six unique initial configurations (three positions 
approximately 30 cm from the goal for both a yaw angle of 0 
and /2r  rad) and repeated them thrice per policy. Policies are 

trained in PyBullet using the SAC [13] implementation from 
[14] with hindsight experience replay [15]. The simulation and 
real-world setups are shown in Figure 3(b).

INCLINED LANDING
To demonstrate the framework’s ability to facilitate control in 
highly dynamic environments, we trained an agent to perform 
the challenging maneuver of landing a quadrotor on an inclined 
and moving landing deck. Because of the configuration of its 
rotors, standard quadrotors can only exert thrust upwards as 
rotor spinning directions cannot be reversed midflight. This 
underactuation complicates landing on an incline as the agent 
can only decelerate when approaching the deck. Therefore, if 
the agent initiates the landing procedure with insufficient 
momentum, it cannot accelerate, resulting in a crash. In [16], 
proximal policy optimization (PPO) [17] was used to learn a 
policy for landing on a stationary landing deck in two dimen-
sions (an xz-plane) with a fixed inclination (25°). In this article, 
we follow a similar approach using the PPO implementation 
from CleanRL [18]. However, we extend the policy’s capability 
to land in three dimensions (an xyz-plane), at various inclina-
tions (0–25°), and on a moving landing deck (0–1 m/s).

As in [16], the quadrotor dynamics are prescribed by ordi-
nary differential equations (ODEs) identified with real-world 
data. In simulation, the landing deck moves in a straight line 
at a fixed inclination, varying speed, inclination, and direc-
tion across episodes to learn multigoal behavior. To model the 
interaction between the landing deck and quadrotor, we extend 
the ODE dynamics with MuJoCo’s [19] collision detection 
capabilities to detect successful landings and crashes. During 
real-world evaluation, we move the landing deck around with 
a quadruped and track the pose of both the deck and quadrotor 
with an accurate motion capture system. The simulation and 
real-world setups are shown in Figure 3(c).

ANALYSIS

C1
We tested Algorithm 1’s ability to maintain consistent simu-
lation behaviors at speeds surpassing real time, using experi-
ments with the disk pendulum. Initially, we utilized the disk 
simulator within a standard OpenAI Gym environment, 
trained a policy, and then conducted a zero-shot evaluation 
on the actual system. As depicted in Figure  4, the perfor-
mance significantly declines in the real world, indicating a 
substantial sim2real gap. This discrepancy results from the 
sequential communication in simulations contrasted with the 
asynchronous sensor and actuator commands in the real sys-
tem via ROS topics [7], forcing the agent to sometimes rely 
on outdated information in real-world scenarios. To mimic 
this asynchronous nature, we adapted the gym environment 
to use asynchronous communication in simulation. This 
adaptation enabled the policy to handle occasional delays, 
enhancing its real-world applicability. However, this required 
limiting the simulation speed to a real-time factor (RTF) of 1, 
considerably prolonging training duration. The RTF, the ratio 
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FIGURE 4. Comparison of mean episodic cost between simu-
lations and real-world pendulum performance. The success 
threshold denotes the level below which a 100% success rate is 
achieved. Performance drops notably in the real-world scenario 
with a conventional gym approach, illustrating the sim2real 
gap. async at real-time speeds mitigates the gap but leads to 
excessively long training times. Synchronized training under 
our protocol (EAGERx) facilitates consistent performance at 
faster-than-real-time simulation speeds. Sim: simulation; async: 
asynchronous simulation; RTF: real-time factor.
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of simulation to real-world time, at 1 signifies running the 
simulation in real time. Figure 5 demonstrates that increasing 
this factor degrades performance, underscoring the challeng-
es in accelerating simulation beyond real time while ensuring 
effective real-world transfer.

Setting an excessively high target RTF may cause par-
allel components in the simulation to desynchronize and 
lag. Figure 6(a) and (b) demonstrates the consequences of 
this lag in asynchronous simulations. Specifically, Fig-
ure 6(a) displays the variation in the simulated pendulum’s 
angle, ( ),sin i  at t 2 s=  across five runs with identical input 
sequences, highlighting the increasing discrepancy in angle 
measurements as the RTF rises. By contrast, simulations 
synchronized via our protocol remain deterministic while 
still allowing parallel operations, enhancing speed without 
sacrificing accuracy. Synchronous simulations naturally 
cap the RTF to preserve synchronization, whereas asyn-
chronous ones might show a misleadingly high factor, as 
evidenced in Figure  6(a), where increased speed incurs 
greater variability and component desynchronization. This 
illustrates the adverse effects of unsynchronized, accel-
erated simulations. Adapting the disk simulator into an 
EAGERx environment for synchronized training under our 
protocol facilitated faster-than-real-
time speeds while ensuring consisten-
cy between simulated and real-world 
behaviors, as depicted in Figure 4.

Our protocol, designed for robotic 
system synchronization, does not neces-
sitate synchronous operation within 
the simulation. In fact, asynchronous 
communication still permits nodes to 
transmit messages and perform tasks 
without waiting for immediate respons-
es, thereby accelerating the simulation 
and allowing nodes to progress based 
on their processing capabilities and data 
availability. This is illustrated in Fig-
ure 6(b), where we introduced a simulat-
ed delay between the pendulum actuator 
and the physics engine. Consequently, 
the pendulum’s callback and the physics 
engine’s callback can be executed con-
currently because the physics engine’s 
callback relies on the pendulum’s output 
from the previous time step rather than 
the current one. Since each node’s proto-
col operates independently, this parallel-
ization occurs naturally, resulting in an 
approximately 50% increase in the real-
ized RTF for the synchronized simula-
tion compared to the case without delay.

C2
To support the claimed contribution 
that the framework accommodates 

various robotic systems, the tasks involve distinct robot sys-
tems, such as pendulums, manipulators, quadrotors, and 
quadrupeds. EAGERx’s graph-based design, enabling diverse 
abstractions, is demonstrated in the vision-based box-pushing 
task. Rather than end-to-end training on raw images, an 
aruco detector is used for state abstraction, as depicted in 
Figure 7(e), negating the need for photorealistic rendering. 
Action abstractions, visible in Figure 7(b), include an inverse 
kinematics node for task-space learning and a safety filter 
correcting hazardous commands. Nodes set at optimal rates 
ensure efficient resource use and learning. The pendulum 
task underlines the framework’s modularity using an angle 
reset node, visible in Figure 7(a), to position the pendulum at 
the initial angle via proportional-integral-derivative (PID) 
control before a new episode. Finally, we demonstrate 
EAGERx’s capability to coordinate diverse systems, such as a 
quadruped and quadrotor, in a delay-sensitive and dynamic 
task with the inclined landing experiment.

C3
To support the claimed contribution that EAGERx is compatible 
with a variety of physics engines and the real world, we con-
ducted experiments with four different engines—PyBullet [12], 
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FIGURE 5. The impact of varying RTFs on the mean episodic cost in a simulated pendu-
lum environment. Performance declines as the rtf increases, indicating the challenges 
of maintaining fidelity in faster-than-real-time simulations when components operate 
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OpenAI Gym Classic Control [3], real-world, and simula-
tions with sets of ODEs—showing the ability to switch 
between real and simulated counterparts. The box-pushing 
task demonstrates how a division of the graph into engine-
specific and engine-agnostic subgraphs resulted in a unified 
pipeline between PyBullet and reality. The inverse kinemat-
ics and safety filter nodes work with any simulator, as seen 
in the agnostic graph [Figure 7(b)], while the aruco detector 
and webcam nodes are swapped with PyBullet-specific 
nodes in Figure 7(d) and (e). Likewise, the agnostic graph 
in Figure 7(a) was used in all pendulum experiments to dis-
play sim2real transfer across physics engines. The inclined 
landing experiment further illustrates the framework’s flex-
ibility by combining the collision detection capabilities of 
MuJoCo [19] with the accurately identified ODE dynamics 
of the quadrotor. This task highlights how different phys-
ics engines can be integrated seamlessly within EAGERx. 
The collision detection in MuJoCo is used to detect success-
ful landings and crashes, while the ODE dynamics ensure 
realistic quadrotor behavior. Collision detection is used in 
both simulation and reality, so it is therefore placed in the 
agnostic graph Figure  7(c). During real-world evaluation, 
the landing deck is moved by a quadruped, and the poses of 
both the deck and the quadrotor are tracked using a motion 
capture system. Since simulating the full dynamics of a 
quadruped during policy learning is unnecessary and would 
only slow down training with redundant computation, the 
quadruped control nodes are placed in the real-world 
engine-specific graph. We can simulate just a moving land-
ing platform without the quadruped as actuation is not 
required to move objects in simulation. This approach 
focuses computational resources on what truly matters  
for training.

C4
We show that the integrated delay simulation and domain 
randomization features can reduce the sim2real gap by dem-
onstrating that the negative impacts of actuator delay can be 
counteracted using the delay simulation feature during train-
ing for two different simulated versions of the pendulum. In 
this task, we supported C4 by evaluating policies on the real 
system with an actuator delay set at the smallest value that 
led to a breakdown in baseline performance. When we pro-
gressively increased the actuator delay, it resulted in baseline 
policy failure for delays of 0.025 s and 0.035 s for the rod and 
disk pendulum, respectively. Our experiments studied the 
potential of training with domain randomization and/or delay 
simulation to mitigate the adverse effects of the actuator 
delay. For the disk pendulum, we applied randomization 
within ±10% of the mean values (0.033 kg for mass and 0.1 m 
for length). For the rod pendulum, randomization was limited 
to ±5%, considering the higher accuracy of this model. Delay 
simulation involved randomization within ±0.005 s around 
the set actuator delay. The results shown in Figure 8 suggest 
that delay simulation can mitigate the adverse effects of actu-
ator delay for zero-shot transfer from both the rod and disk 
simulator to the real pendulum system. In the disk scenario, 
adding domain randomization to delay simulation further 
improved performance and resulted in successful transfer 
with the smallest performance gap between simulation and 
reality. The effectiveness of domain randomization is further 
highlighted in the box-pushing task (Figure 9). We examined 
its impact by altering the box’s friction coefficient between 
0.1 and 0.4. Figure 9 shows that, compared to the baseline, 
friction randomization reduces the performance gap between 
simulation and reality, despite lowering the overall perfor-
mance, thereby illustrating that relying solely on domain 

(a) (b)

(c) (d) (e)

FIGURE 7. Diverse robotic system tasks demonstrating the versatility of EAGERx’s graph-based design. (a) The pendulum swing-up 
task uses an agnostic graph with an angle reset node for initializing the pendulum’s position. (b) The vision-based box-pushing task 
utilizes an agnostic graph with inverse kinematics node for task-space learning and a safety filter for correcting hazardous commands. 
The engine-specific subgraphs for replacing the box object in (b) are depicted for the PyBullet (d) and real-world (e) engines. (c) The 
agnostic graph for the inclined landing task illustrates how EAGERx integrates collision detection in MuJoCo with ODE dynamics to 
get the best of both simulators. 
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randomization can increase task difficulty. Conversely, 
incorporating the inverse kinematics node combined with 
friction randomization enhances performance while reducing 
the gap between simulation and real-
world execution. We used a delay sim-
ulation of 0.02 s for the inclined 
landing task and randomized the mass 
within ±5%, leading to the results in 
Figure  10. However, we refrain from 
conducting an extensive ablation study 
on the effects of delay simulation and 
domain randomization to avoid unnec-
essary hardware damage.

APPLICATIONS BEYOND 
REINFORCEMENT LEARNING
The modular design and unified soft-
ware pipeline of the framework have 
utility in various other domains. This 
section explores two such instances: 
interactive imitation learning and 
machine learning (ML)-enhanced 
cla ss ica l  cont rol ,  showca s i ng 
EAGERx’s utility beyond reinforce-
ment learning.

INTERACTIVE IMITATION LEARNING
This application shows how EAGERx 
is suitable for (interactive) imitation 
learning. Here, the task involves assem-
bling a mock-up diesel engine by fol-
lowing voice commands from a human 
operator. The parts used in this task are 
3D-printed versions of the parts from 
an actual diesel engine assembly setup. 
To solve this task, we apply a learning-
from-demonstration approach based on 
CLIPort [20]. However, we utilize an 
interactive imitation learning approach 
instead of gathering offline demonstra-
tions only. Collecting on-policy data 
helps us to, for example, learn to recov-
er from failures. Learning recovery 
behavior is often not possible using 
demonstrations collected offline by 
experts since they are unlikely to visit 
failure states. We apply an active learn-
ing method based on uncertainty quan-
tification [21]. This method actively 
queries the human teacher for a demon-
stration in case there is high prediction 
uncertainty. EAGERx offers three 
main advantages in this scenario. First 
of all, we can easily create a digital 
twin of the real-world environment in 
simulation. This allows one to debug a 

large portion of the pipeline in simulation, which is safe and 
time efficient. Moreover, the simulated environment facili-
tates the cost-effective collection of synthetic demonstrations. 
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v  = 0 m/s,   θ = 26°

Landing Deck:
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FIGURE 10. Results for the inclined landing experiment show the success rate for landing 
on a stationary and moving deck at various inclinations in simulation and real-world set-
tings. The experiments evaluate the performance of the policy in terms of successful land-
ings across 10 episodes, demonstrating the framework’s capability to handle dynamic and 
delay-sensitive tasks involving diverse robotic systems like quadrupeds and quadrotors.
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These can be used to pretrain the policy in simulation and 
speed up learning. Finally, EAGERx’s modular graph struc-
ture enables the simple connection of various components. In 
this case, the graph includes a speech-to-text transcriber, the 
policy node, the red, green, blue (RGB)-D camera, and the 
manipulator. An overview of the task is shown in Figure 11. A 
video demonstration of this application is available at https://
eagerx.readthedocs.io.

ML-ENHANCED CLASSICAL CONTROL
This application illustrates EAGERx’s integration of pre-
trained ML models with classical control in a custom simula-
tor, addressing a practical challenge. EAGERx was applied to 
an adaptive swimming pool environment, showcased in Fig-
ure 12. This environment enhances traditional countercurrent 
pools by dynamically adjusting the current based on the 
swimmer’s position. Normally, it is the swimmer’s task to 
stay centered in the pool, a difficult task for beginners. Our 
approach, however, modifies the pool’s countercurrent in line 
with the swimmer’s location, maintaining central positioning 
regardless of swim speed. This adaptability makes the pool 
more user friendly for novice swimmers.

Variable transport delays complicate the control problems. 
Specifically, alterations in motor power do not instantaneously 
translate into flow changes; this delay results from the gradual 
response of the water pump’s first-order dynamics as well as 
the variable time it takes for a change in water flow to impact 
the swimmer, contingent on the swimmer’s position in the 

pool. When the swimmer is toward the front, he/she feels 
the effects of flow velocity changes more rapidly than when 
positioned at the rear. The absence of a readily available off-
the-shelf simulator for this specific scenario underscored the 
utility of EAGERx, which facilitated the creation of a custom 
simulator, proving invaluable in the development of the con-
trol pipeline.

The modular architecture of EAGERx facilitated the inte-
gration of a pose detector with a Kalman filter, resulting in 
estimates of the swimmer’s position and velocity from solely 
top-view camera imagery. Subsequently, a PID controller was 
employed to modulate the pool current in alignment with 
these estimates. A video demonstration is available in the 
supplementary downloadable material available at https://doi.
org/10.1109/MRA.2024.3433172, provided by the authors.

DISCUSSION
Comparing EAGERx with ROS [7] might seem natural 
because of their modular structures and asynchronous com-
munication. Nonetheless, such a comparison risks being mis-
leading since EAGERx represents an abstraction based on 
the actor model [22] and can operate atop a back end like 
ROS. This abstraction layer offers vital functionality for 
robot learning, including synchronized faster-than-real-time 
simulation, domain randomization, and delay simulation, 
which are not inherently supported by ROS. Recent research 
[23] presented a reactive solution to ROS’s asynchronous pro-
gramming challenges via an event-driven API, inspiring 

EAGERx’s synchronization approach. 
However, this API didn’t specifically 
aim to synchronize simulations using 
expected rates and delays as demon-
strated in our work. Importantly, 
EAGERx’s protocol extends beyond 
ROS to other back ends as well.

The proposed synchronization pro-
tocol can be seen as an application of 
the actor model for computation [22]. It 
is a powerful and flexible model of con-
current computation, where actors, the 
primary units, execute tasks concur-
rently and communicate by exchang-
ing messages. The actor model is 
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FIGURE 11. In this application of EAGERx, a CLIPort [20] model is trained using an active learning approach that queries the human 
teacher for a demonstration in case of high prediction uncertainty. Also, the model is pretrained using demonstrations gathered in 
simulation.
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FIGURE 12. Application of EAGERx in an adaptive swimming pool environment. (a) Cus-
tom simulator. (b) Real. The system modulates the pool’s countercurrent in response to 
the swimmer’s hip position relative to a preset boundary (red line), utilizing a pose detec-
tor and Kalman filter for position estimation and a PID controller for current adjustment.
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well suited for synchronizing robotic systems represented as 
graphs of nodes, where various nodes need to operate con-
currently. Our protocol operates on an event-driven basis and 
circumvents dependence on a global/local clock, a central coor-
dinator [24], or extra synchronization messages [25]. Instead, 
it assesses conditions for subsequent callbacks exclusively 
after finalizing the preceding one or obtaining a new input 
channel message. This process can outperform busy-waiting 
techniques (or spinlock) [26] that continuously evaluate condi-
tions at a fixed time interval.

Ptolemy II [27] constitutes a software framework for 
designing, modeling, and simulating heterogeneous systems. 
Like EAGERx, it applies the actor model of computation, 
enabling concurrency and asynchronous communication. 
Both frameworks offer GUIs for visualizing complex systems. 
Ptolemy II holds an advantage over EAGERx in its support 
for a wider range of computation models and the ability to 
combine them within a single system. Nevertheless, Ptolemy 
II serves as a general-purpose framework, while EAGERx 
specifically targets robot learning. Furthermore, Ptolemy II 
employs a Java-based structure, in contrast with EAGERx’s 
exclusive use of Python.

In comparison to Gym [3]—which offers a flexible API 
but lacks a unified sim2real framework—EAGERx addresses 
this deficiency. Unlike Gym’s default sequential simulation, 
EAGERx supports concurrent, distributed operations across 
devices within environments, enhancing its applicability to 
robot learning. Gym environments use object-oriented classes, 
frequently constructed via inheritance and extended with wrap-
per patterns. However, this approach in Gym, particularly with 
the extensive use of wrappers, tends to create overly complex 
and difficult-to-manage class structures in robotic systems, 
leading to maintenance challenges and reduced clarity in sys-
tem design. Additionally, incorporating time abstraction within 
Gym environments is challenging, often confining it to mul-

tiples of the environment’s step size. Conversely, EAGERx 
allows each node within the graph environment to operate at 
separate frequencies.

Various robot learning frameworks with connections to 
EAGERx have been introduced in the field. Among these, 
Isaac Orbit [9] and Drake [10] stand out as recent frame-
works with shared design principles. In line with EAGERx, 
Orbit and Drake adopt a modular approach to construct-
ing robot environments, enabling the execution of different 
nodes at varying rates to support both lower and higher level 
control for effective robot learning. However, these frame-
works exhibit three critical differences from EAGERx. First, 
EAGERx is designed to be engine agnostic, whereas Orbit 
relies on a proprietary simulator, and Drake incorporates an 
integrated multibody dynamics simulator, hence restricting 
them to a single simulation platform. Second, EAGERx fea-
tures dedicated reset procedures in the form of reset nodes. 
These nodes can be added to the graph and are only activat-
ed during environment resets. Third, EAGERx offers a uni-
fied pipeline for both simulation and reality. Although Orbit 
and Drake promote component reusability in both simula-
tion and reality, EAGERx enforces this more rigorously 
through engine-agnostic and engine-specific graphs. This 
effectively isolates the engine-agnostic code and minimizes 
the risk of discrepancies. Additional frameworks, such as 
Robo-Gym [5] and Gym-Gazebo(2) [6] aimed to exploit the 
node structure of ROS for robot learning and were primarily 
centered around the Gazebo simulator without synchroniza-
tion. To speed up training, EAGERx uses multiprocessing 
instead of complete GPU acceleration for parallelization 
across multiple environments. While GPU paralleliza-
tion can significantly speed up learning [1], its practicality 
can sometimes be limited for simulations requiring CPU-
bound computations or non-GPU-adaptable libraries. In 
such cases, the latency from data transfer between GPU and 

EAGERX ORBIT [9] DRAKE [10] ROBO-GYM [5] GYM-GAZEBO2 [6] 

Engine agnostic ✓ ✗ ✗ – ✗ 

Specialized reset procedures ✓ ✗ ✗ ✗ ✗ 

Unified pipeline sim/real ✓ – – – – 

Synchronized simulation ✓ ✓ ✓ ✗ ✗ 

Distributed computing ✓ ✓ ✓ ✓ ✓ 

GPU accelerated ✗ ✓ ✗ ✗ ✗ 

Gradient information available ✗ ✗ ✓ ✗ ✗ 

Domain/delay randomization ✓ / ✓ ✓ / ✗ ✓ / ✓ ✗ / ✗ ✗ / ✗ 

Environment visualization ✓ ✓ ✓ – – 

Open source/license free ✓ / ✓ – / – ✓ / ✓ ✓ / ✓ ✓ / ✓ 

Documentation/tutorials ✓ / ✓ ✓ / ✓ ✓ / ✓ – / ✗ ✗ / ✗ 

Last commit (age) <one week Two months <one week One year Four years 

TABLE 1. A comparison of various modular sim-to-real robot learning frameworks, where – indicates  
partial feature presence.
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CPU can become the dominant factor in simulation speed 
[28]. Among the frameworks discussed, only Orbit currently 
enables parallel training on a GPU. A comparative summary 
of the discussed robot learning frameworks is presented 
in Table 1.

CONCLUSION
This article presented EAGERx, a novel framework to facili-
tate the transfer of robot learning policies from simulation to 
the real world. Our unified framework is compatible with 
simulated and real robots. Its design can accommodate vari-
ous abstractions and simulators. The presented synchroniza-
tion protocol simulates delays without sacrificing simulation 
speed or accuracy, enabling effective policy training in simu-
lation and subsequent transfer to real robots. We evaluated 
our framework on two benchmark robotic tasks, demonstrat-
ing its effectiveness in reducing the sim2real gap. Finally, we 
demonstrated the utility of the framework beyond sim2real 
robot learning in two real-world robotic use cases.

We plan to extend the open source code base with more 
code examples for future work. Also, training can be sped up 
using GPU acceleration, and gradient information can be pro-
vided to facilitate optimization through nodes. Finally, it will 
be valuable to provide real2sim functionalities to reduce the 
sim2real gap further using real-world data.
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