
 
 

Delft University of Technology

Availability-based path selection

Yang, S; Trajanovski, S; Kuipers, FA

DOI
10.1109/RNDM.2014.7014929
Publication date
2014
Document Version
Accepted author manuscript
Published in
Proceedings of the 6th International Workshop on Reliable Networks Design and Modeling

Citation (APA)
Yang, S., Trajanovski, S., & Kuipers, FA. (2014). Availability-based path selection. In J. Rak (Ed.),
Proceedings of the 6th International Workshop on Reliable Networks Design and Modeling (pp. 1-8)
https://doi.org/10.1109/RNDM.2014.7014929

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/RNDM.2014.7014929
https://doi.org/10.1109/RNDM.2014.7014929


Availability-Based Path Selection

Song Yang, Stojan Trajanovski and Fernando A. Kuipers

Delft University of Technology, The Netherlands

{S.Yang, S.Trajanovski, F.A.Kuipers}@tudelft.nl

Abstract—In data communication networks, connection avail-
ability, which is defined as the probability that the corresponding
connection will be found in the operating state, is a key element
of many Service Level Agreements (SLA). The path over which
a connection is to be established should obey the agreed-upon
availability, otherwise the service provider may face revenue loss
as stipulated in the SLA.

In this paper, we study the problem of establishing a connection
over at most k (partially) link-disjoint paths for which the avail-
ability is no less than δ (0 < δ ≤ 1). We consider networks with
and without Shared-Risk Link Groups (SRLGs). We prove that
this problem, in general, cannot be approximated in polynomial
time, unless P=NP. We subsequently propose a polynomial-time
heuristic algorithm and an exact Integer Nonlinear Programming
(INLP) formulation for availability-based path selection. Finally,
the proposed algorithms and two existing heuristic algorithms
are compared in terms of acceptance ratio and running time.

Index Terms—Availability, Routing, Survivability, SRLG.

I. INTRODUCTION

Due to the importance of data communication networks,

even short service disruptions may result in significant eco-

nomic loss. Hence, survivability mechanisms to protect con-

nections are called for. For instance, by allocating a pair of

link-disjoint paths (instead of only one unprotected path), data

is transported by the primary path, and upon link failure, can

be switched to the backup path.

Ideally, a survivability mechanism should also take into

account the reliability of links. For instance, if both primary

and backup paths contain links that have a high probability

to be unavailable, then proper protection cannot be provided.

Connection availability, a value between 0 and 1, is therefore

important and refers to the probability that a connection

(including its survivability mechanism) is in the operating state

during the requested life-time of the connection.

However, a survivability mechanism that does not allow for

more than 2 link-disjoint paths for each connection may still

fail to satisfy the customer’s availability requirement and k >
2 link-disjoint paths may be needed. Obviously, the bigger k is,

the greater the availability of the connection could be, but also

the greater the resource consumption (e.g., bandwidth) and

hence price. This paper deals with the following Availability-

Based Path Selection (ABPS) problem:

Definition 1: Given a network represented by G(N ,L)
where N represents the set of N nodes and L denotes the set

of L links, and each link l has its own availability value Al.

For a request represented by r(s, t, δ), where s and t denote

the source and destination, and δ (0 < δ ≤ 1) represents the

availability requirement, establish a connection over at most

k (partially) link-disjoint paths for which the availability is at

least δ.

Our key contributions are as follows:

1) We consider the ABPS problem in networks with and

without Shared-Risk Link Groups (SRLGs).

2) We prove that, in general, the ABPS problem cannot be

approximated in polynomial time.

3) We propose a polynomial-time heuristic algorithm and

an exact Integer Nonlinear Programming (INLP) formu-

lation to solve the ABPS problem.

4) We compare, via simulations, the proposed algorithms

with two existing algorithms in terms of performance

and running time.

The remainder of this paper is organized as follows. Sec-

tion II explains the calculation of availability for different path

types (unprotected path, k fully link-disjoint and k partially

link-disjoint). In Section III, we analyze the complexity of the

considered Availability-Based Path Selection (ABPS) problem.

In Section IV, we consider the ABPS problem in SRLG

networks. Section V presents our heuristic routing algorithm

and an exact INLP formulation. Section VI provides our

simulation results and an overview of the related work is

presented in Section VII. We conclude in Section VIII.

II. CONNECTION AVAILABILITY

The availability of a system is the fraction of time the

system is operational during the entire service time. Like the

papers mentioned in the related work section, we assume

that the link availabilities are uncorrelated/independent. If

a connection is carried by a single (unprotected) path, its

availability is equal to the path availability; if it is protected

by k ≥ 2 disjoint paths, the availability will be determined

by these k protection paths. The availability Aj of a network

component j can be calculated as [1]:

Aj =
MTTF

MTTF +MTTR
(1)

where MTTF represents Mean Time To Failure and MTTR
denotes Mean Time To Repair.

A. End-to-End Path Availability

We assume that the link availability is equal to the product

of availabilities of all its components (e.g., amplifiers). We

also assume multiple link failures may occur. Hence, if a path

contains the links l1, l2, l3,. . . , lm, and their corresponding



availabilities are denoted by Al1, Al2, Al3,..., Alm, then the

availability of this path (represented by Ap) is equal to1:

Ap = Al1 ·Al2 ·Al3 · · ·Alm (2)

If we take the −log of the link availabilities, finding the path

with the highest availability turns into a shortest path problem.

When, for a single connection, there are k ≥ 2 link-disjoint

paths p1, p2,..., pk with availabilities represented by Ap1 ,

Ap2
,..., Apk

, the connection availability can be calculated for

two cases, namely: (1) fully link disjoint: these k paths have

no links in common, (2) partially link disjoint: at least two of

these k paths traverse at least one same link. In case (1), the

availability (represented by Ak
FD) is:

Ak
FD = 1−

k∏
i=1

(1−Api) =

k∑
i=1

Api −
∑

0<i<j≤k

Api ·Apj

+
∑

0<i<j<u≤k

Api ·Apj ·Apu + · · ·+ (−1)k−1
k∏

i=1

Api (3)

Au Av

Au Aw1

s b t

a

Fig. 1: Availability calculation of a pair of fully and partially

link-disjoint paths.

If we use Eq. (3) to calculate the availability for the partially

link disjoint case, the availability of the overlapping links will

be counted more than once. To amend this, we use a new

operator ◦, which is defined as follows:

X1 ·X2 · · ·Xk ◦ Y =

{ ∏k
i=1 Xi if ∃Xi = Y∏k
i=1 Xi · Y otherwise

(4)

where X1, X2, ..., Xk and Y represent different link availabil-

ities. Therefore, the availability (represented by Ak
PD) of k

partially link-disjoint paths can be calculated as follows:

Ak
PD = 1−

k∐
i=1

(1−Api)

= 1− (1−Ap1) ◦ (1−Ap2) ◦ ◦ ◦ (1−Apk ) (5)

=
k∑

i=1

Api −
∑

0<i<j≤k

Api ◦Apj+

∑
0<i<j<u≤k

Api ◦Apj ◦Apu + · · ·+ (−1)k−1
k∐

i=1

Api

where
∐

is used to denote the ◦ operations of different sets.

Let us use an example to describe the difference between case

1A network having node and link availabilities can be transformed to a
directed network with only link availabilities, as done in [2]. Therefore, we
assume the nodes have availability 1 in this paper.

1 and case 2, where k is set to 2 for simplicity. In Fig. 1 where

the link availability is labeled on each link, paths s − a − t
and s−b− t are fully link disjoint. According to Eq. (3), their

availability is equal to:

1− (1−Au ·Aw) · (1−Au ·Av)

=Au ·Aw +Au ·Av −A2
u ·Aw ·Av (6)

On the other hand, paths s − a − t and s − a − b − t are

two partially link-disjoint paths. According to Eq. (5), the

connection availability can be calculated as follows:

1− (1−Au ·Aw) ◦ (1−Au ·Av)

=Au ·Aw +Au ·Av −Au ·Aw ·Av (7)

The following theorem will formalize the intuitive notion that

if a set of paths pi with availabilities Api
have overlapping

links that their total availability is less than when those paths

are fully link disjoint.

Theorem 1: For given Api , where 1 ≤ i ≤ k, Ak
FD ≥

Ak
PD.

Proof: A proof by mathematical induction:

When k = 2, A2
FD = Ap1

+Ap2
−Ap1

·Ap2
, and A2

PD =
Ap1

+Ap2
−Ap1

◦Ap2
. Since Ap1

·Ap2
≥ Ap1

◦Ap2
according

to Eq. (4) when 0 ≤ Api ≤ 1, the theorem is correct for k = 2.

Assume when k = m the theorem is correct:

Am
FD = 1−

m∏
i=1

(1−Api
) ≥ Am

PD = 1−
m∐
i=1

(1−Api
) (8)

When k = m + 1, Am+1
FD = 1 − (1 − Ap1

) · (1 − Ap2
) · · ·

(1− Apm) · (1− Apm+1) and Am+1
PD = 1− (1− Ap1) ◦ (1−

Ap2) ◦ ◦ ◦ (1−Apm) ◦ (1−Apm+1). According to Eq. (8), we

have:

(1−Ap1
) · (1−Ap2

) · · · (1−Apm
) · (1−Apm+1

)

≤(1−Ap1
) ◦ (1−Ap2

) ◦ ◦ ◦ (1−Apm
) · (1−Apm+1

) (9)

Since (1− Apm) · (1− Apm+1) ≤ (1− Apm) ◦ (1− Apm+1),
we have:

(1−Ap1
) ◦ (1−Ap2

) ◦ ◦ ◦ (1−Apm
) · (1−Apm+1

)

≤(1−Ap1
) ◦ (1−Ap2

) ◦ ◦ ◦ (1−Apm
) ◦ (1−Apm+1

)
(10)

By combining Eq. (9) and Eq. (10), we get that Am+1
FD ≥

Am+1
PD .

III. ABPS COMPLEXITY ANALYSIS

In this section, we study the complexity of the ABPS

problem in networks without SRLGs. For the case k = 1, by

taking the −log of the link availabilities, the ABPS problem

turns into a shortest path problem, which is polynomially

solvable.

Theorem 2: The ABPS problem is NP-hard for k ≥ 2.

Proof: The case for partially link-disjoint paths can be

reduced to the case of fully link-disjoint paths by a transfor-

mation such as in Fig. 2. More specifically, if we assume any

link in Fig. 2, except for (s, s′) and (t′, t), has availability



Fig. 2: Reduction of ABPS problem from partially link disjoint

to fully link disjoint.

less than δ, then no link, except for (s, s′) and (t′, t), can be

the unprotected link in the solution of the ABPS problem for

the partially link disjoint case from s to t. In this context, for

such δ, solving the fully link-disjoint ABPS problem from s′

to t′ is equivalent to solving the partially link-disjoint ABPS

problem from s to t. It therefore sufficies to prove that the

fully link disjoint variant for k = 2 is NP-hard. The proof for

k > 2 follows analogously from the proof for k = 2.

We first introduce the NP-hard 3SAT problem [3] and then

reduce the ABPS problem to it. The 3SAT problem is defined

as: There is a boolean formula C1 ∧ C2 ∧ ...Cm, where Ci

denotes the i-th clause. Each clause contains 3 variables with

an OR relation. The question is whether there is a truth

assignment to the variables that simultaneously satisfies all m
clauses. Given a 3SAT instance, the graph construction follows

xi+1xi

v1
iu1

i

1
iv

u2
i v2

i uqii v i

1
iu u2

i v2
i

qi

uqii v iqi

Fig. 3: A lobe for each xi.

similarly to [4]. Assume there are n variables in the 3SAT

instance. First, we create a lobe for each variable xi, which is

shown in Fig. 3, where qi represents the number of occurrences

of variable xi in all the clauses. The availability value for each

link is also shown in Fig. 3, where 0 < b < 1. For each clause

2 3 n

1 1 2 2 m m

a

Fig. 4: Lobes for all clauses.

Ci two nodes yi and zi are created and a link connects zi and

yi+1 with availability of 1, where 0 < i < m. We assume

that s = x1 and t = xn+1. Moreover, we draw a link (s, y1)
with availability a and a link (zm, t) with availability 1, where

0 < b < a
2 < 1. Fig. 4 depicts this process.

To relate the clause and variables in the constructed graph,

we add the following links: (i) links (yj , u
i
k) and (vik, zj) are

added if the k-th occurrence of variable xi exists in clause

Cj ; or (ii) links (yj , u
i
k) and (vik, zj) are added if the k-th

occurrence of variable xi exists with a negation in the clause

Cj . For instance, a network corresponding to 3SAT instance

(x1∧x2∧x4)∨(x1∧x2∧x3)∨(x2∧x3∧x4)∨(x1∧x3∧x4)
is shown in Fig. 5. Based on the constructed graph, which

2 3 4

1 1 2 2 4 4

a

33

Fig. 5: Constructed graph that corresponds to (x1∧x2∧x4)∨
(x1 ∧ x2 ∧ x3) ∨ (x2 ∧ x3 ∧ x4) ∨ (x1 ∧ x3 ∧ x4).

corresponds to a given 3SAT instance, we are asked to solve

the ABPS problem for k = 2 and δ = a+ bq − abq , where q
is the sum of occurrences for each variable in all the clauses,

i.e., q =
∑n

i=1 qi. Because one shortest path can at most have

availability a, which is less than δ, we have to find 2 link-

disjoint paths. Next we will prove the fully link disjoint variant

of the ABPS problem is NP-hard.

3SAT to ABPS: If there exists a truth assignment that

satisfies all the clauses, then each clause j has (at least) one

variable with true or (negated) false assignment to make this

clause true. Therefore, an upper subpath yj−ui
k−vik−zj−yj+1

or a lower subpath yj − ui
k − vik − zj − yj+1 will be selected.

By concatenating these m subpaths with s − y1 and zm − t
we obtain one path (denoted by p1) with availability a. Since

each variable only has one truth assignment, p1 cannot traverse

both the upper subpath and lower subpath in the same lobe.

Subsequently, we can get another fully link-disjoint path p2:

For each lobe i (corresponding to variable xi), p2 traverses

the upper (lower) subpath with availability of bqi if p1 goes

through the link of lower (upper) subpath. The availability

of p2 is bq = b
∑n

i=1 qi , therefore p1 and p2 together have

availability of a+ bq − abq , which satisfies the requirement δ.

ABPS to 3SAT: If there are two fully link-disjoint paths

from s to t with availability no less than a + bq − abq , then

one path must have availability a. The reason is that if none

of two paths has availability a, without loss of generality,

we denote one path has availability of acbe, where c can be

either 0 or 1 indicating whether link (s, y1) has been traversed,

and e > 0 is the number of links which have availability b.
Since there exists only one link with availability a, the other

link-disjoint path has availability ac
′
bf , where c′ is either 0

or 1 meaning whether link (s, y1) has been traversed and

c′ + c ≤ 1, and f > 0 is the number of links which have

availability of b. Hence, the availability of these two paths is

acbe + ac
′
bf − ac+c′be+f < b + b < a < δ, when b < a

2 .

Based on this analysis, there must exist one path p1 from

s to t with availability a, which goes through (s, y1) and

(zm, t) and the other links with availability of 1. To satisfy

the availability requirement, there must also exist another fully

link-disjoint path p2 from s to t with availability of no less



than bq . For each lobe, p2 should traverse either the upper

subpath or the lower subpath, otherwise p1 and p2 cannot

be fully link disjoint. Therefore, p2 will traverse the (entire)

lower subpath if p1 goes through link (ui
k, v

i
k) in the upper

subpath, and traverse the (entire) upper subpath if p1 goes

through link (ui
k, v

i
k) in the lower subpath for each lobe xi.

That is to say, p1 cannot simultaneously traverse one link in

the upper subpath and another link in the lower subpath for

each same lobe. Consequently, p1 either goes via an upper

subpath yj − ui
k − vik − zj − yj+1 to set variable xi to true or

via a lower subpath yj−ui
k−vik−zj−yj+1 to set variable xi

to false for clause j, where i = 1, 2, ..., n and j = 1, 2, ...,m.

Hence, all the m clauses can be simultaneously satisfied.

We proceed to study the approximability of the ABPS prob-

lem.

Theorem 3: The ABPS problem for k ≥ 2 cannot be

approximated to arbitrary degree in polynomial time, unless

P=NP.

Proof: We can check in polynomial time whether a single

path can accommodate the requested availability. Hence, the

theorem is equivalent to: for a request r(s, t, δ) and any

constant number d > 1, there is no polynomial-time algorithm

that can find at least 2, but at most k, fully or partially link-

disjoint paths from s to t with availability at least δ
d . We prove

the theorem for the fully link disjoint variant2 of the ABPS

problem for k = 2.

We will use a proof by contradiction and assume a

polynomial-time approximation algorithm A exists for any

d > 1. In the constructed graph based on the given 3SAT

instance in Fig. 5 (also using the same notation and condi-

tions), assume δ = a+ bq − abq , so algorithm A can find two

fully link-disjoint paths with availability at least a+bq−abq

d .

Next, we prove that when 0 < b < a
2d , except for an exact

solution, there exists no solution with availability no less than
a+bq−abq

d . If the exact solution is not achieved by algorithm

A, according to our previous analysis, then one path must

have availability of acbe and the other path has availability

of ac
′
bf . Therefore, the availability of these two paths is

equal to acbe + ac
′
bf − ac+c′be+f . For a given d, we have

acbe+ac
′
bf −ac+c′be+f < b+b = 2b < a

d , when 0 < b < a
2d

and 0 < a < 1. Therefore, under 0 < b < a
2d , except for an

exact solution, any two fully link-disjoint paths cannot have

availability no less than a+bq−abq

d . To fulfill the assumption,

algorithm A has to find two link-disjoint paths with availability

a+bq−abq . In this context, the fully link disjoint variant of the

ABPS problem for k = 2 can be solved exactly in polynomial

time, which is a contradiction.

IV. SHARED-RISK LINK GROUPS

In this section we will assume two types of fail-

ures/availabilities, namely Shared-Risk Link Group (SRLG)

failures and single link failures/availabilities. A Shared-Risk

Link Group (SRLG) [5] reflects that a certain set/group of

links in a network will fail simultaneously. For instance, in

2The partial link disjoint variant follows analogously.

optical networks, several fibers may reside in the same duct

and a cut of the duct would cut all fibers in it. One duct

in this context corresponds to one distinct SRLG. If each

link is a single member of an SRLG, then no SRLGs exist.

Hence the ABPS problem in SRLG networks includes as a

special case the ABPS problem without SRLGs as discussed

in the previous section. Each link can belong to one or more

SRLGs, and the links which contain the same SRLG will

simultaneously fail when the corresponding SRLG fails. The

probability of this happening (or not) is the SRLG failure

(availability) probability. We assume there are g SRLGs in the

network G(N ,L), and the failure probability of the i-th SRLG

(represented by srlgi) is denoted by πi, for 1 ≤ i ≤ g. For a

particular link l ∈ L, we denote by SRl the set of all SRLGs

that l belongs to. Different from [6], where all SRLG events

are assumed to be mutually exclusive which means only one

SRLG failure can occur at one time, we assume that multiple

SRLG events may occur simultaneously. The availability of a

single path should incorporate the SRLG availabilities as well

as the link availabilities. Consequently, the availability of path

p can be calculated as:

∏
i;srlgi∩p �=∅

(1− πi)
∏
l∈p

Al (11)

where
∏

i;srlgi∩p �=∅
(1−πi) in Eq. (11) is the contribution of all

the traversed SRLGs, while
∏

l∈p Al is the availability of path

p under the condition that all its traversed SRLGs do not fail.

For example, in Fig. 6, suppose there are three SRLGs in the

network with failure probability 0.1, 0.4 and 0.2, respectively,

and all the links have availability 0.9. We calculate the

availability of path s − a − b − t, which traverses 2 SRLGs

(srlg1 and srlg3). The probability that both srlg1 and srlg3
do not fail is (1 − 0.1) × (1 − 0.2). Under this condition,

all the links on path s − a − b − t have availability 0.9
and therefore path s − a − b − t has a total availability of

(1− 0.1)× (1− 0.2)× (0.9)3 = 0.52488.

Fig. 6: Availability calculation in a SRLG network.

Next, we will prove that the single path variant of the ABPS

problem in SRLG networks is NP-hard. To that end, we first

introduce the Minimum Color Single-Path (MCSiP) problem,

which is NP-hard [7]. Given a network G(N ,L), and given the

set of colors C = {c1, c2, ..., cz} where z is the total number

of colors in G, and given the color {cl} for every link l ∈ L,

the Minimum Color Single-Path (MCSiP) problem is to find

one path from source node s to destination node t such that

it uses the least amount of colors.



Theorem 4: The ABPS problem is NP-hard in SRLG net-

works even for k = 1.

Proof: Assume a network, where all the links have

availability 1 when their SRLGs do not fail, and there are

g SRLGs with the same failure probability 1
g . Hence, a path’s

availability is only determined by the number of SRLGs it

traverses. If we denote one SRLG by one particular color,

then the single-path ABPS problem in SRLG networks can be

reduced to the MSCiP problem.

V. HEURISTIC AND EXACT ALGORITHMS

Algorithm 1 MMA(G, s, t, δ, k, I)

1: Find one shortest path p1, return it if the availability

requirement is satisfied, otherwise go to Step 2.

2: ps ← 1, H ← p1, P ← H , Pb ← ∅ and Q ← ∅
3: While ps ≤ k
4: P ← H
5: For each path ap ∈ P
6: Pb ← P and counter ← 0
7: While counter ≤ I do
8: Randomly remove one link (u, v) ∈ ap and find

one shortest path ψu→v from u to v.

9: If it succeeds then
10: Replace (u, v) with ψu→v in ap, denote it as ap′

11: Pb. Remove(ap), Pb. Add(ap′), ap ← ap′

12: Find another link-disjoint path p2 with Pb.

13: Return {p2} ∪ Pb if δ is met.

14: For each link (u, v) ∈ ap′

15: If its availability is at least δ then
16: Q. Add((u, v))
17: while (Q �= ∅) do
18: (u, v) ← EXTRACT-MIN(Q)

19: Find a path p3 which shares (u, v) with ap′.
20: If p3 /∈ Pb && {p3} ∪ Pb satisfy δ then
21: Return {p3} ∪ Pb

22: else H ← Max Availability{H, {p3}∪Pb}
23: counter ← counter + 1.

24: ps ← ps+ 1

A. Heuristic Algorithm

Our heuristic, called Min-Mins Algorithm (MMA) to solve

the ABPS problem in both generic and SRLG networks, is

presented in Algorithm 1. Since we want to use as least (and

no more than k) link-disjoint paths to satisfy the requested

availability, we gradually increase the number of paths.

In what follows, we explain each step of the heuristic

algorithm. We assign link l ∈ L with the weight of −log(Al)
(−log(

∏
i∈SRl(1−πi) ·Al) for SRLG networks) in MMA. If

a shortest path (represented by p1) in Step 1 fails to satisfy

the availability requirement, we keep it as the initial path flow.

In Step 2, we use ps to record the number of already found

link-disjoint paths. Initially ps is set to 1. H stores the already

found ps link-disjoint paths, and it is initially assigned with

p1. While ps is no greater than k, Steps 3-24 continue finding

a solution. In Step 4, we assign P with the already found

paths H . Based on P from Step 5 to Step 23, we each time

select one path ap from path set P . We also use a variable,

denoted by counter in Algorithm 1, to record the number

of iterations. Initially, counter is set to 0. As long as the

number of iterations is less than a user given value I , Steps

7-23 are going to find a solution based on ap and path set Pb.

The (sub)path from u to v found by the algorithm is denoted

by ψu→v . In Step 8, we randomly remove one link (u, v)
from ap, and we apply a shortest path algorithm from u to v
to obtain a path ψu→v . By concatenating subpath ψu→v and

the links of path ap except for (u, v), we obtain a new path

ap′. Further, by substituting ap with ap′ in Pb, we have a

new path set Pb. After that, the algorithm tries to find Pb’s

fully link-disjoint path in Step 12. When solving the ABPS

problem in SRLG networks, since each SRLG only contributes

once to the path availability calculation, the link l’s weight

is set to −log(
∏

i∈{SRl\SRc}(1 − πi) · Al) before running a

shortest path algorithm in Step 12 (also the same for Step 19),

where SRc is the common traversed SRLGs between link l
and path set Pb. If it fails to find p2 or {p2}∪Pb cannot satisfy

the availability requirement, the algorithm tries to find a path

which is partially link disjoint with ap′ (in Steps 13-22). The

general idea is that we first use a queue Q to store the links in

ap′ whose availability is no less than δ in Steps 14-16. After

that, as long as Q is not empty in Steps 17-22, each time

the link with the greatest availability in Q is extracted as the

unprotected link (represented by (u, v)), and then we remove

all the links traversed by ap′ except for (u, v). Subsequently,

we find one shortest path ψs→u from s to u (if it exists), and

find another shortest path ψv→t from v to t (if it exists). By

concatenating ψs→u, (u, v) and ψv→t, we can get a new path

p3, which is partially link disjoint with ap′.
The time complexity of MMA can be computed as follows.

Step 1 has a time complexity of O(N logN +L). From Step

3 to Step 24, there are at most O(I)+O(2I)+ · · ·+O(kI) =
O(k2I) iterations before the algorithm terminates. Steps 14-

16 have a time complexity of O(N) since a path contains

at most N − 1 links and therefore Steps 17-22 consume

O(N(N logN +L)) time. Finally, the whole time complexity

of MMA is O(k2IN(N logN + L)).

B. Exact INLP Formulation

In this subsection, we present an exact Integer Nonlinear

Program (INLP) to solve the ABPS problem. We first solve

the ABPS problem without SRLGs and start by explaining the

required notation and variables.

INLP notation:
r(s, t, δ): Traffic request, with source s, destination t and

requested availability δ.

Ai,j : Availability of link (i, j).
g : The total number of SRLGs.

πm
i,j : The occurring probability of the m-th SRLG if link

(i, j) belongs to it, otherwise it is 0.

INLP variable:



P r,u
i,j : Boolean variable equal to 1 if link (i, j) is traversed

by path u (1 ≤ u ≤ k) for request r ; 0 otherwise.

Flow conservation constraints:

∑
(i,j)∈L

P r,u
i,j −

∑
(j,i)∈L

P r,u
j,i =

⎧⎨
⎩

1,
−1,
0,

i = s
i = t
otherwise

(12)

∀i ∈ N 1 ≤ u ≤ k

Availability constraint:
k∑

u=1

∏
(i,j)∈L

(
1 − P

r,u
i,j + P

r
i,jAi,j

)
−

∑
1≤u<v≤k

∏
(i,j)∈L

min
(
1 − P

r,u
i,j + P

r,u
i,j Ai,j , 1 − P

r,v
i,j + P

r,v
i,j Ai,j

)

+ · · · + (−1)
k−1

⎛
⎝ ∏

(i,j)∈L
min

1≤u≤k
(1 − P

r,u
i,j + P

r,u
i,j Ai,j)

⎞
⎠ ≥ δ (13)

When both the flow conservation constraint (Eq. (12)) and

the availability constraint (Eq. (13)) are satisfied, an optimal

solution is found by the INLP, otherwise there is no solution.

Therefore, there is no objective in the proposed INLP, although

one could include the objective of minimizing the number of

path (or links) used. Eq. (12) accounts for the flow conser-

vation for each of the at most k paths. For a particular uth

path (1 ≤ u ≤ k), it ensures that (i) for the source node s
of request r, the outgoing traffic for each request is 1; (ii) for

the destination node t of request r, the incoming traffic is 1;

(iii) and for an intermediate node which is neither source nor

destination, its incoming traffic is equal to the outgoing traffic.

Eq. (13) ensures that either the found single unprotected path

or the (partially) link-disjoint paths should have availability no

less than δ, according to the availability calculation of k link-

disjoint paths in Eqs. (3) and (5). Since the overlapped link’s

availability in the partially link-disjoint calculation according

to Eq. (5) can only be counted once, we take the minimum

value of the variables P r,u
i,j for each link and then take the

product over all the links for (partially) link-disjoint paths.

We also note that Eq. (13) can simultaneously calculate the

availability of the fully link disjoint variant, partially link

disjoint variant and the unprotected variant. For instance when

k = 2, Eq. (13) becomes:

∏

(i,j)∈L
(1− P r,1

i,j + P r,1
i,j Ai,j) +

∏

(i,j)∈L
(1− P r,2

i,j + P r,2
i,j Ai,j)−

∏

(i,j)∈L
min(1− P r,1

i,j + P r,1
i,j Ai,j , 1− P r,2

i,j + P r,2
i,j Ai,j) ≥ δ (14)

When P r,1
i,j = P r,2

i,j for all (i, j) ∈ L, Eq. (14) is equal to
∏

(i,j)∈L
(1− P r,1

i,j + P r,1
i,j Ai,j) ≥ δ or

∏
(i,j)∈L

(1− P r,2
i,j + P r,2

i,j Ai,j) ≥ δ

, which is the availability constraint for a single unprotected

path.

To solve the ABPS problem in SRLG networks,

we need to slightly modify Eq. (13) (and keep flow

conversation constraints Eq. (12) the same) by using∏
1≤m≤g

k
min
u=1

(
1− min

(i,j)∈L
(1− P r,u

i,j + P r,u
i,j πm

i,j)

)
to multiply

the left side of Eq. (13), which is the non-occurring probability

of the SRLGs which at most k link-disjoint paths have

traversed.

VI. SIMULATION RESULTS

A. Simulation Setup

Fig. 7: USA carrier backbone network.

8

4

5

1 2
3

6

7

10
11

9

14

12

13

18

16

17

24

21
23

22

15

20
19

29 28

30
32

31

38

33 27

26

34
36

37

39

40

25

35

Fig. 8: GÉANT pan-European research network.

We conduct simulations on two networks, one is USANet,

displayed in Fig. 7, which is a realistic carrier backbone

network consisting of 24 nodes and 43 links, and the other

is GÉANT, shown in Fig. 8, which is the pan-European

communications infrastructure serving Europe’s research and

education community consisting of 40 nodes and 63 links.

The simulation deals with the ABPS problem in both generic

networks (i.e., without SRLGs) and SRLG networks. For

generic networks, we assume the availability of fiber links is

distributed among the set {0.99, 0.999, 0.9999}, with a propor-

tion of 1:1:2. Based on the same link availabilities with generic

networks, in SRLG networks we assume that there are in total

5 SRLG events with the occurring failure probabilities 0.001,

0.002, 0.003, 0.004 and 0.005, respectively. Each link has ran-

domly been assigned to at most 3 SRLG events. For both two

networks, since we want to compare the ability of finding paths

for the algorithms, the capacity is set to infinity. We vary the

number of traffic requests from 100 to 1000. The source and

destination of each request are randomly generated, and each

request has infinite holding time. The requested availability

includes two cases: (i) general availability requirement case:

the availability is randomly distributed among the set {0.98,

0.99, 0.995, 0.997, 0.999}; (ii) high availability requirement



200 400 600 800 1000
0.75

0.8

0.85

0.9

0.95

traffic demand

A
cc

ep
ta

nc
e 

ra
tio

 (A
R

)

INLP
MMA
MRA
TRA

(a) GÉANT

200 400 600 800 1000
0.88

0.9

0.92

0.94

0.96

traffic demand

A
cc

ep
ta

nc
e 

ra
tio

 (A
R

)

INLP*
MMA
MRA
TRA

(b) USANet

200 400 600 800 1000
0.5

0.55

0.6

0.65

0.7

0.75

traffic demand

A
cc

ep
ta

nc
e 

ra
tio

 (A
R

)

INLP*
MMA
MRA
TRA

(c) GÉANT

Fig. 9: AR of four algorithms in generic networks: (a) general availability requirement. (USANet has been omitted since all

4 algorithms always achieved an AR of 1.); (b)-(c) high availability requirement, * max 50 mins per request.

case: the availability is randomly distributed among the set

{0.9995, 0.9996, 0.9997, 0.9998, 0.9999}, by which we want

to challenge the algorithm to find the feasible path under more

difficult conditions. Considering the practical time complexity

and the existing proposed algorithms that only focus on finding

two link-disjoint paths, we choose k = 2. We set I in MMA

to be 
logN� in these two networks (5 in USANet and 6
in GÉANT, respectively). Under the same weight allocation

with our algorithm, we compare the proposed heuristic MMA

and exact INLP with two counterparts: Two-step Reliability

Algorithm (TRA) and Maximal-Reliability Algorithm (MRA),

which are proposed in [4]. TRA first calculates a shortest

path, and then calculates (if it exists) another shortest path

after removing the links traversed by the first path. MRA

applies Suurballe’s algorithm [8] to calculate a pair of two

link-disjoint paths that have minimum weight. Both of these

two algorithms first apply a shortest path algorithm to check

whether an unprotected path solution exits. The simulation is

run on a desktop PC with 3.00 GHz CPU and 4 GB memory.

We use IBM ILOG CPLEX 12.6 to implement the proposed

INLP and C# to implement the heuristic algorithms.

B. Simulation Results

We first evaluate the performance of the algorithms in terms

of Acceptance Ratio (AR) in generic networks. Acceptance

ratio (AR) is defined as the percentage of the number of

accepted requests over all the requests. We first analyze the

general availability requirement case: In USANet, all the

algorithms achieved an AR of 1. We therefore omit the figure

of the general availability performance for USANet. However,

this is not the case for the GÉANT topology. From Fig. 9(a),

we can see that the performance of all algorithms is under

0.95. Since GÉANT is not as well connected as USANet is,

some nodes in GÉANT only have degree one (e.g., nodes

3, 8, etc.), if an one-degree node becomes the source or the

destination of a certain request, the request can only be served

by partial protection (or a single unprotected path). In this

context, a feasible path may not exist in GÉANT or is difficult

to find, which will result in blocking. In terms of performance,

the INLP achieves the highest AR. On the other hand, MMA

200 400 600 800 1000
0.2

0.25

0.3

0.35

0.4

traffic demand

A
cc

ep
ta

nc
e 

ra
tio

 (A
R

)

MMA
MRA
TRA

(a) USANet

200 400 600 800 1000

0.2

0.25

0.3

0.35

traffic demand

A
cc

ep
ta

nc
e 

ra
tio

 (A
R

)

MMA
MRA
TRA

(b) GÉANT

Fig. 10: AR of the heuristic algorithms in SRLG networks for

general availability requirement.

shows a higher AR than the other two heuristics TRA and

MRA (Fig. 9(a)).

For the high availability requirement scenario (shown in

Figs. 9(b) and 9(c)), as expected, the AR of all these algo-

rithms is lower than in the general availability requirement

case. In this scenario, the INLP requires more time to find a

solution, especially when a solution does not exist. In order to

let the INLP return the result in a reasonable time, we set the

time limit for it to serve one request to 50 minutes. Due to this

reason, we can see that INLP has the lowest AR in USANet

and often second highest AR in GÉANT. Meanwhile, MMA

still has the highest AR in most of the cases.

The time limit for the INLP is even more constraining in the

case of SRLG networks, leading to a very poor performance

for SRLG networks. We have therefore omitted the results of

the INLP. Since the optimal solution rarely exists in the high

availability requirement case, we only provide the simulation

results for the heuristic algorithms in the general availability

requirement case. Moreover, to have a fair comparison, we

compare our algorithms with MRA and a modified TRA [6],

which is a heuristic routing algorithm proposed for the prob-

abilistic SRLG networks. Its main idea is that after finding

the first shortest path, the remaining link weights should be

adjusted (We slightly change its link weight adjustment to be

the same with the Step 12 of MMA for a fair comparison), and

then to find another link-disjoint shortest path. Fig. 10 shows



that the proposed heuristic algorithm MMA still achieves

higher AR than these two algorithms.

TABLE I: Running times per request for four algorithms (ms).
INLP MMA MRA TRA

USA Generic (General δ) 10190 0.187 0.128 0.127

GÉANT Generic (General δ) 29896 0.558 0.143 0.142
USA Generic (High δ) 79764 0.224 0.147 0.146

GÉANT Generic (High δ) 135181 0.679 0.162 0.160
USA SRLG (General δ) > 3.6 · 107 0.461 0.136 0.161

GÉANT SRLG (General δ) > 3.6 · 107 0.663 0.167 0.196

Finally, in Table I, we present the (average) running times

per request for these four algorithms in both generic and SRLG

networks. It shows that the INLP is significantly more time

consuming than all three polynomial-time heuristics. On the

other hand, MMA has only a slightly higher running time

than MRA and TRA, but it pays off by having a higher AR

as shown in Fig. 9. Another observation is that, for the same

algorithm in the same network, the running time is higher

for the high availability requirement case than in the general

availability requirement case.

VII. RELATED WORK

Zhang et al. [9] present a mathematical model to compute

availability for different protection types (unprotected, dedi-

cated protection and shared protection) for a set of given static

traffic matrix. An Integer Linear Programming (ILP) model

and a heuristic algorithm are proposed to find availability-

aware paths. Tornatore et al. [10] address the availability de-

sign problem: to accommodate a given traffic matrix by using

shared/dedicated protection paths. Song et al. [11] propose

an availability-guaranteed routing algorithm, where different

protection types are allowed. They define a new cost function

for computing a backup path when the unprotected path fails

to satisfy the availability requirement. She et al. [4] prove

that in dedicated protection, finding two link-disjoint paths

with maximal reliability (availability) is NP-hard. They also

propose two heuristics for that problem. Luo et al. [12] analyze

the problem of Protection With Different reliability (PWD),

which is to find one unprotected path or dedicated protection

path such that the cost of the whole path is minimized and the

reliability requirement is satisfied. They subsequently propose

an ILP to solve it exactly as well as two approximation

algorithms. However, the reliability (availability) calculation

in [12] is different from the aforementioned papers, and

assumes a single-link failure model. Assuming each link in

the network has a failure probability (=1-availability), Lee

and Modiano [6] minimize the total failure probability of

unprotected, partially link-disjoint and fully link-disjoint paths

by establishing INLPs. They further transform the proposed

INLPs to ILPs by using linear approximations.

Hu [13] proves that the SRLG Diverse Routing problem,

which is to find two link-disjoint paths such that these two

paths do not share any common SRLG, is NP-hard. To solve

it, Hu [13] presents an exact ILP and Xu et al. [14] propose

a trap-avoidance heuristic algorithm. However, the SRLG-

Diverse Routing problem is not equivalent to the one studied

for SRLG networks in this paper, due to Eq. (11). Hence, the

proposed algorithms in [13] [14] cannot solve our problem

effectively.

VIII. CONCLUSION

Connection availability can quantitatively represent the de-

gree of how reliable a connection can carry data from a source

to a destination. In this paper, we have studied the ABPS

problem, which is to establish a connection over at most k
(partially) link-disjoint paths, for which the total availability

is no less than δ (0 < δ ≤ 1). We have proved that the ABPS

problem in general is NP-hard and cannot be approximated

in polynomial time for k ≥ 2, unless P=NP. We have further

proved that in SRLG networks, even the single-path ABPS

problem is NP-hard.
We have proposed a polynomial-time heuristic algorithm

and an exact INLP to solve the ABPS problem with and

without SRLGs. By simulations, we have found that our

heuristic algorithm outperforms two existing algorithms in

terms of acceptance ratio and it only requires a slightly higher

running time. On the other hand, the running time of the exact

INLP is significantly larger (by several orders of magnitude)

than all the heuristic algorithms.

REFERENCES

[1] W. Zou, M. Janic, R. Kooij, and F. Kuipers, “On the availability of
networks,” in Proc. of BroadBand Europe, Belgium, December, 2007.

[2] G. Dantzig and D. R. Fulkerson, “On the max flow min cut theorem of
networks,” Linear inequalities and related systems, vol. 38, pp. 225–231,
2003.

[3] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York, NY, USA: W. H.
Freeman & Co., 1979.

[4] Q. She, X. Huang, and J. Jue, “How reliable can two-path protection
be?” IEEE/ACM Transactions on Networking, vol. 18, no. 3, pp. 922–
933, 2010.

[5] F. A. Kuipers, “An overview of algorithms for network survivability,”
ISRN Communications and Networking, vol. 2012, p. 19, 2012.

[6] H.-W. Lee, E. Modiano, and K. Lee, “Diverse routing in networks with
probabilistic failures,” IEEE/ACM Transactions on Networking, vol. 18,
no. 6, pp. 1895–1907, 2010.

[7] S. Yuan, S. Varma, and J. Jue, “Minimum-color path problems for
reliability in mesh networks,” INFOCOM 2005, pp. 2658–2669, 2005.

[8] J. W. Suurballe and R. E. Tarjan, “A quick method for finding shortest
pairs of disjoint paths,” Networks, vol. 14, no. 2, pp. 325–336, 1984.

[9] J. Zhang, K. Zhu, H. Zang, N. Matloff, and B. Mukherjee, “Availability-
aware provisioning strategies for differentiated protection services in
wavelength-convertible wdm mesh networks,” IEEE/ACM Transactions
on Networking, vol. 15, no. 5, pp. 1177–1190, 2007.

[10] M. Tornatore, G. Maier, and A. Pattavina, “Availability design of optical
transport networks,” IEEE Journal on Selected Areas in Communica-
tions, vol. 23, no. 8, pp. 1520–1532, 2005.

[11] L. Song, J. Zhang, and B. Mukherjee, “Dynamic provisioning with
availability guarantee for differentiated services in survivable mesh
networks,” IEEE Journal on Selected Areas in Communications, vol. 25,
no. 3, pp. 35–43, 2007.

[12] H. Luo, L. Li, and H. Yu, “Routing connections with differentiated reli-
ability requirements in wdm mesh networks,” IEEE/ACM Transactions
on Networking, vol. 17, no. 1, pp. 253–266, 2009.

[13] J. Q. Hu, “Diverse routing in optical mesh networks,” IEEE Transactions
on Communications, vol. 51, no. 3, pp. 489–494, 2003.

[14] D. Xu, Y. Xiong, C. Qiao, and G. Li, “Trap avoidance and protection
schemes in networks with shared risk link groups,” Journal of Lightwave
Technology, vol. 21, no. 11, pp. 2683–2693, 2003.


