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In reference Bravyi et al., [Nature (London) 627, 778 (2024)], Bravyi et al. found examples of bivariate
bicycle (BB) codes with similar logical performance to the surface code but with an improved encoding
rate. In this work, we generalize a novel parity-check circuit design principle called morphing circuits and
apply it to BB codes. We define a new family of BB codes whose parity check circuits require a qubit
connectivity of degree five instead of six while maintaining their numerical performance. Logical input or
output to an ancillary surface code is also possible in a biplanar layout. Finally, we develop a general
framework for designing morphing circuits and present a sufficient condition for its applicability to two-
block group algebra codes.

DOI: 10.1103/PhysRevLett.134.090602

Introduction—Quantum error correction (QEC) is cru-
cial for achieving fault-tolerant universal quantum compu-
tation. One of the most widely studied QEC codes is the
surface code [1–3], whose strengths include its planar qubit
connectivity and good performance at experimentally
achievable error rates. However, since only one logical
qubit is encoded in each surface code patch, the qubit
overhead becomes extremely high at the low error rates
required for practical quantum algorithms.
One alternative approach is to use low-density parity

check (LDPC) codes which encode more than one logical
qubit per code block, at the expense of no longer having a
purely planar connectivity. Recently, Bravyi et al. [4]
introduced a set of LDPC codes called bivariate bicycle
(BB) codes—a subset of the more general two-block group
algebra (2BGA) codes [5,6]—that, for the first time, match
the logical performance of surface codes even at relatively
high physical error rates. As was noted inRef. [4], physically
implementing these BB codes using, for example, super-
conducting qubits, presents an additional experimental
challenge: each qubit performs a CNOT gate with six other
qubits in a biplanar layout.
In thiswork,we simplify the experimental requirements by

constructing a set of closely relatedBB codeswhose physical
implementation only requires each qubit to interact with five
other qubits in a biplanar layout. The new codes are designed
using a recently proposed parity check circuit design phi-
losophy that we refer to as morphing. Originally called
“middle-out” circuits, these morphing circuits have been
applied to both surface codes and color codes to reduce the
connectivity requirements in those codes [7,8].Wechoose the
namemorphing circuits as the procedure is also related to the
concept of morphing quantum codes from Ref. [9].

Our contribution is to generalize the idea of morphing
circuits to generate parity check circuits for general codes and
apply this methodology to the BB codes in Ref. [4]. The
procedure takes as input a knowncodeC and outputs a pair of
new “end-cycle” codes C̃1 and C̃2 along with a pair of parity
check circuits. Each parity check circuit measures all of the
stabilizer generators of one end-cycle code C̃i while simul-
taneously transforming into the other code C̃i0 , see Fig. 1.
Moreover, midway through the parity check circuit the joint
state of the data and ancilla qubits is encoded in the original,
known code C. Despite this, the end-cycle codes may bear
little resemblance to the codes fromwhich they are derived—
indeed, in our case, the weight of the stabilizers of the end-
cycle codes is nine instead of six.
To demonstrate the practicality of our new codes, we

investigate their performance against uniform circuit-level
depolarizing noise using the BP-OSD decoder [10,11]. We
find that the new codes perform at least as well as those in
Ref. [4], and therefore provide the same overhead savings
versus the surface code as those in Ref. [4]. Moreover, we

FIG. 1. Graphical summary of the operation of the morphing
protocol, including the known mid-cycle code C, the end-cycle
codes C̃i, the contraction circuits Fi, and the measurement and
reset rounds Mi, Ri.
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demonstrate that the input and output (I=O) of arbitrary
logical qubits from the new codes to the surface code is
possible using morphing circuits with a biplanar graph
layout. To the best of our knowledge, our I=O construction
is the first time morphing circuits have been used to
perform a lattice surgery operation.
Mid- and end-cycle codes—We begin by introducing

some terminology (following Ref. [7]) for an arbitrary
parity check circuit that measures the stabilizer generators
of the code. Each round of parity checks begins and ends
with a measurement and reset of a set of ancilla qubits.
During this time, we say that the remaining data qubits are
encoded in the end-cycle code. Next, a circuit of Clifford
gates is performed. At each step during this circuit, the data
and ancilla qubits are also encoded in some QEC code. In
particular, we define the mid-cycle code as the code that
arises precisely midway through the circuit [12]. The
stabilizer generators of this mid-cycle code can be deter-
mined using the Gottesman-Knill theorem [13] and origi-
nate from two sources: the stabilizers of the end-cycle code,
and the reset of the ancilla qubits at the start of the QEC
cycle. This latter set of stabilizers ensures that the mid-
cycle code has the same number of logical qubits as the
end-cycle code despite being encoded across both the data
and ancilla qubits.
QEC through morphing circuits—The standard

approach to designing a parity check circuit is to assume
that the end-cycle code corresponds to some specified,
“known” code. In contrast, to design a morphing parity
check circuit we instead assume that the known code
corresponds to the mid-cycle code of the circuit, while
the end-cycle code is yet-to-be-determined.
More precisely, the morphing construction is defined by

a series of contraction circuits Fi. Each contraction circuit
Fi must be a Clifford circuit that takes a subset Si ⊆ S of the
stabilizer generators of the known, mid-cycle code C and
contracts each generator onto a single qubit. We call the
stabilizers in Si contracting stabilizers. The circuit Fi
should not use any additional qubits since the mid-cycle
code C is already encoded across all the data and ancilla
qubits. Subsequently, each qubit that hosts a contracted
stabilizer is measured in the X- or Z-basis to reveal the
eigenvalue of the contracted stabilizer. We label this set of
measurements Mi. At this point, the remaining nonmeas-
ured qubits are encoded in the end-cycle code C̃i, which is a
new code determined by propagating the stabilizers of the
known code C through the circuit Mi∘Fi. Finally, we
restore the mid-cycle code C by first resetting all the
measured qubits (labeled Ri) and then applying the inverse
circuit F†

i .
A set of contracting circuits Fi defines a valid morphing

(parity check) protocol if every stabilizer generator is
contained in at least one of the contracting sets Si, i.e.,
∪i Si ¼ S. When this is the case, we can use the morphing
protocol to implement a parity check schedule of the end-

cycle code C̃i, that simultaneously transforms the code into
C̃iþ1 after each QEC round. The end-cycle codes C̃i are
new and their parameters are ½½ñi; k; d̃i�� when the known
code C has parameters ½½n; k; d��. It is guaranteed that ñi <
n and, typically, the distance d̃i ≤ d; in [14] we give a
simple lower bound on d̃i given the circuits Fi.
For the codes considered in this Letter, we only need two

contracting circuits F1 and F2, with each contracting subset
Si containing half of the generators in S. In this case, the
parity check schedule from C̃1 → C̃2 measures all of the
stabilizers of C̃1, and vice versa. In Fig. 1 we summarize
the practical operation of such a morphing protocol. The
parity check circuit for C̃1 is given by M2∘F2∘F†

1∘R1, after
which we are in the code C̃2. Then, the parity check circuit
for C̃2 is M1∘F1∘F†

2∘R2, which returns us back to C̃1.
Weight-6 Abelian 2BGA codes—We consider weight-6

Abelian 2BGAcodeswhich includes theBBcodes studied in
Ref. [4]—see [14] for a generalization to all 2BGA codes.
Each code is defined by an Abelian groupG and two sets of
group elements A ¼ fa1; a2; a3g and B ¼ fb1; b2; b3g. The
code is defined on n ¼ 2jGj physical qubits labeled qðL; gÞ
or qðR; gÞ for g∈G, with L and R standing for “left” and
“right” qubits, respectively.WewriteXðP;QÞ for the product
of X operators on the left qubits with labels in the subset
P ⊆ G and on right qubitsQ ⊆ G, and similarly for ZðP;QÞ
for aZ operator. The stabilizer generators of the code are then
given by sðX; gÞ ¼ XðAg; BgÞ and sðZ; gÞ ¼ ZðB−1g; A−1gÞ
for g∈G, both of which have weight w ¼ jAj þ jBj ¼ 6.
Here, for any subset H ⊆ G, we interpret inverse and
multiplication elementwise, i.e., Hg ¼ fhgjh∈Hg and
H−1 ¼ fh−1jh∈Hg. MultiplyingA orB by a group element
leaves the code invariant [6]; sowithout loss of generality we
can assume that a1 ¼ b1 ¼ 1.
In Ref. [4], the authors find a number of examples of

weight-6 Abelian 2BGA codes that achieve comparable
circuit-level performance to the surface code, listed in
Table I. Each code has G ¼ Zl × Zm for positive integers
l; m. The syndrome extraction schedule for this family of
codes is highly optimized and requires seven rounds of
CNOTs in total during which each qubit interacts with six
other qubits. The Tanner graph of the codes—the bipartite
graph with qubits and checks as nodes and an edge between
a qubit and a check if the check acts on the qubit—is
biplanar, meaning the edges can be split into two subsets
each of which forms a planar graph.
Applying the morphing protocol—We now show how to

construct a pair of contraction circuits F1 and F2 that
measure all the stabilizers of a given weight-6 Abelian
2BGA code, whenever the code satisfies the following:
Criterion 1—There exists a group homomorphism

f∶G → Z2 with the property that fða1Þ ≠ fða2Þ ¼ fða3Þ
and fðb1Þ ≠ fðb2Þ ¼ fðb3Þ.
Under the assumption that a1 ¼ b1 ¼ 1, Criterion 1

becomes simply fða2Þ ¼ fða3Þ ¼ fðb2Þ ¼ fðb3Þ ¼ u,
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where we write Z2 ¼ f1; ug with u2 ¼ 1. Since any group
homomorphism obeys fðxyÞ ¼ fðxÞfðyÞ, f can be uniquely
specified by how it acts upon the generators of G. As such,
whenG ¼ Zl × Zm, there are at most three possible choices
of homomorphism that could satisfy Criterion 1, given by

fxðxÞ ¼ u; fxðyÞ ¼ 1; if l≡ 0 mod 2; ð1aÞ
fyðxÞ ¼ 1; fyðyÞ ¼ u; if m≡ 0 mod 2; ð1bÞ

fxyðxÞ ¼ u; fxyðyÞ ¼ u; if l≡m≡ 0 mod 2: ð1cÞ

Note that the conditions on l and m are necessary to ensure
that the function f is a group homomorphism of G.
The BB codes from Ref. [4] are listed in Table I, along

with the possible choices of homomorphism in Eq. (1) that
satisfy Criterion 1 [21]. When a code satisfies Criterion 1,
we define the two cosets K ¼ ker f ¼ fgjfðgÞ ¼ 1g and
Kc ¼ GnK ¼ fgjfðgÞ ¼ ug. Moreover, we call qubits and
stabilizers “even” if they are labeled by an element g∈K
and “odd” if g∈Kc.
The morphing circuit is defined through the contracting

circuitsFi, measurementsMi, and resetsRi listed in Table II.
In particular, Fi consists of three rounds of CNOTs, such that
the total CNOT depth of the parity check circuit F2∘F†

1 is six.

The contracting stabilizers in the set S1 are all even X
stabilizers sðX; gÞ (g∈K) and the odd Z stabilizers sðZ; gÞ
(g∈Kc), while the contracting stabilizers in S2 are the oddX
and even Z stabilizers. Both measurements M1 and M2

measure all of the right qubits of C, in the X or Z basis
depending onwhether the qubit is even or odd.One can see in
Fig. 2 that the contracting stabilizers are indeed contracted
andmeasured under the circuitMi∘Fi, we show this formally
in [14].
Connectivity—One advantage of the morphing protocol is

that the connectivity graph of the circuits—with vertices for
each qubit and edges between qubits that participate in a
CNOT—has degree 5, one fewer than the degree of the circuits
in Ref. [4]. Indeed, by considering Table II for both circuits
F1 and F2, we see that the connectivity graph is bipartite
between the left and right qubits, with edges fqðL; gÞ;
qðR; a−1i bjgÞg for all g∈G and ði; jÞ∈ fð1; 1Þ; ð1; 2Þ;
ð1; 3Þ; ð2; 1Þ; ð3; 1Þg. Moreover, we explicitly prove that
the connectivity graph is biplanar in [14]. For each of the
codes listed in Table I, the standard circuit can be imple-
mented in the “toricþ” layout using the four short-range
connections of the toric code plus two long-range edges.
Meanwhile, the morphing protocol requires the three short-
range connections of the hex-grid rotated toric code [7] plus
two long-range edges; see [14] for more details.

TABLE I. Table of BB codes from [4], with the possible choices of homomorphism fx, fy, or fxy [Eq. (1)] that satisfy Criterion 1,
including the code parameters and circuit-level distance of the corresponding standard parity check schedule. When at least one
homomorphism exists that satisfies Criterion 1, we list the code parameters of the end-cycle codes and the circuit-level distance upper
bound of the morphing circuits, which are the same for all choices of f and for both end-cycle codes. Note here that n refers to the
number of qubits in the BB code from [4], which includes both data and ancilla qubits when ran as a morphing circuit, but only includes
data qubits when ran using the circuits from [4].

Code definition BB code C [4] End-cycle code C̃i

l; m A B f ½½n; k; d�� dcirc ½½ñ; k; d̃�� d̃circ

6, 6 fx3; y; y2g fy3; x; x2g fx; fy; fxy ½½72; 12; 6�� ≤ 6 ½½36; 12; 3�� ≤ 3

9, 6 fx3; y; y2g fy3; x; x2g fy ½½108; 8; 10�� ≤ 8 ½½54; 8; 8�� ≤ 7

12, 6 fx3; y; y2g fy3; x; x2g fx; fy; fxy ½½144; 12; 12�� ≤ 10 ½½72; 12; 6�� ≤ 6

12, 12 fx3; y7; y2g fy3; x; x2g fx; fy; fxy ½½288; 12; 18�� ≤ 18 ½½144; 12; 12�� ≤ 12

FIG. 2. Visual representation of a contracting X stabilizer,
beginning with the mid-cycle support of sðX; gÞ, then, the three
steps of the contraction circuit Fi, and the measurement step Mi,
as given in Table II. The support of the stabilizer before each step
is shown in red.

TABLE II. Definition of the contracting circuits Fi and
measurements Mi, assuming that Criterion 1 is satisfied.
CNOTðq1; q2Þ indicates a CNOT gate with control q1 and target
q2 and MP represents a measurement in the P basis. The circuit
F1 (respectively, F2) is defined by applying the gates below for
each g∈K (g∈Kc) and h∈Kc (h∈K).

Round 1 CNOTðqðL; gÞ; qðR; b3gÞÞ,
CNOTðqðR; a−13 hÞ; qðL; hÞÞ

Round 2 CNOTðqðL; gÞ; qðR; b2gÞÞ,
CNOTðqðR; a−12 hÞ; qðL; hÞÞ

Round 3 CNOTðqðR; gÞ; qðL; gÞÞ,
CNOTðqðL; hÞ; qðR; hÞÞ

Round 4 MXðqðR; gÞÞ, MZðqðR; hÞÞ
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The end-cycle codes—The stabilizers that are not con-
tracting are called expanding stabilizers, and these form a
set of stabilizer generators for the end-cycle code C̃i. Each
end-cycle code has support only on the left qubits of C, and
has stabilizer generators of the form XðABg; 0Þ and
ZðA−1B−1h; 0Þ, where g∈K and h∈Kc for the code C̃1

(and vice versa for C̃2)—see Fig. 4 of [14]. Here we have
inherited the multiplication operation from the group
algebra representation Z2½G� of the subsets A and B;
explicitly, the product AB is simply the set faibjg unless
some aibj ¼ ai0bj0 , in which case these two elements are
removed from the set. Thus, if each of the products aibj is
unique, each end-cycle stabilizer generator has weight nine.
Moreover, the stabilizer groups of the codes C̃1 and C̃2 are
identical up to a shift of the qubits by any element s∈Kc.
Finally, each end-cycle code can be rewritten as a 2BGA
code by identifying the end-cycle-left and end-cycle-right
qubits as the even and odd left qubits, as shown in [14].
We summarize the parameters of the end-cycle codes

alongside their corresponding mid-cycle BB codes in
Table I. The distance of the end-cycle codes was calculated
using a linear binary integer program [22], following the
methods of Ref. [23]. Perhaps coincidentally, the end-cycle
codes often have the same parameters as a different BB
code. For example, the end-cycle code derived from the
½½288; 12; 18�� BB code has parameters ½½144; 12; 12��,
presenting a second “gross” code that could be targeted
by future experiments.
Circuit-level performance—We have estimated an upper

bound of the circuit-level distance dcirc of the morphing
parity check protocol using the BP-OSD decoder [10,11],
following the methods of Ref. [4]. In Fig. 3 we numerically
simulated the performance of each k ¼ 12 parity check
circuit in Table I under a uniform circuit-level depolarizing
noise model using the BP-OSD decoder, see [14] for the
parameters used and data for more codes. When the code
parameters of the BB code and the end-cycle code match,
we see that they perform similarly under this circuit-level
noise model, demonstrating that the morphing protocol is a
viable alternative to the circuits in Ref. [4].
Logical operations—InRef. [4], Bravyi et al. showhow to

perform the logical input and output (I=O) between an
arbitrary logical qubit of the BB code and a surface code
ancilla system. This involves operations within the BB code
using only already-existing connections, as well as the
addition of a separate linking code [24] that preserves the
biplanarity of the code. In [14] we show that, under some
loose assumptions about the structure of the logical oper-
ators, the I=O of arbitrary logical qubits is also possible in a
biplanar layout with themorphing protocol.We show how to
perform shift automorphisms within the BB code without
using additional connections [25]. Moreover, we explain
how to performgeneral lattice-surgery-like operationswithin
the framework of themorphing protocol and apply this to the
logical I=O between the BB and linking code.

Modifications to Fi—The morphing protocol defined in
Table II is far from unique. For example, one can reverse
the direction of some of the CNOTs in Table II and still
obtain a valid contraction circuit for the BB code. In [14]
we show that a reversal of the CNOTs in round 3 can be used
to swap the data and ancilla qubits in each round of QEC
without compromising the parameters of the end-cycle
codes. This could be used experimentally to mitigate the
effects of leakage [7].
A less trivial modification involves reversing the CNOTs

in round 2. In [14] we show that the resulting end-cycle
codes C̃i are not equivalent to those derived from Table II,
and we identify three circuits that have a larger distance and
circuit-level distance upper-bound than the corresponding
protocols presented in Table I. However, their numerical
performance against circuit-level noise does not improve,
as shown in [14]. We leave further investigation to future
work.
Outlook—In this work we have developed a general

framework to design morphing protocols for arbitrary
codes and applied this framework to the BB codes
presented in Ref. [4]. Similarly to surface codes and color
codes [7,8], these new parity check circuits reduce the
degree of the connectivity graph and allow for the swapping
of data and ancilla qubits between each round. Moreover,
these advantages are achieved without sacrificing the
biplanarity of the connectivity graph, numerical perfor-
mance, or logical capabilities of the original BB codes. An
exciting area of future research is therefore to apply the
morphing construction to more codes; for example, BB
codes that do not satisfy Criterion 1, as well as other classes
of codes such as hypergraph product codes and higher-
dimensional topological codes.

FIG. 3. Numerical logical performance of codes from Ref. [4]
under standard parity check circuits (Std.) and the new codes
designed from morphing circuits (Morph.) with respect to a
uniform circuit-level depolarizing noise model and decoded using
BP-OSD; ½½n; k; d�� here refers to the end-cycle code parameters.
The break-even line represents the logical error rate of 12 bare
physical qubits.
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