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Abstract

Renewable sources come with much more uncertainty. Fossil fuels created back-
bones of predictable flows under a relatively stable demand; however, tomorrow’s
energy system requires not only expansion, but anticipation. This shift forces a
rethinking of what resilience truly means, and a viable path forward is to focus
on flexibility, a spatially explicit design challenge in both principle and practice.
This master’s thesis, developed as a joint program between TU Delft and Stedin,
takes the practical route. It approaches the challenge through a large and detailed
application where flexibility is mapped across 283 high voltage substations and
359 transmission lines with projections to 2050. Decisions taken today will shape
the reliability, security, and economic viability of tomorrow’s power system. In the
Netherlands, the II3050 report offers high level guidelines for grid development
while it also makes clear the need for more operational detail: flexibility must be
placed and sized with greater precision. And yet, that scale still remains undefined.
This thesis addresses that gap. Using the open-source modelling framework Cal-
liope, it builds a national model of the Dutch high voltage grid. It reconstructs
its fully mapped topology and uses it as the structural foundation. From there, it
builds a model to identify where and how much flexibility matters the most, result-
ing in cost-optimal and near-optimal portfolios of design alternatives. The goal is
not only to chase the optimal outcome, but to identify solutions that consistently
perform well. Modelling to generate alternatives (MGA) techniques are applied
to the case through the SPORES method, which improves by also accounting for
the spatially distinctive options rather than just costs. Supporting tools have been
built to assess where technologies and locations recur most frequently across op-
timal portfolios and different scenarios. No-regrets analysis has been carefully
performed to find those robust choices that hold their value even under varying
system conditions.
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1
Introduction

Achieving climate neutrality by 2050 represents an ambitious yet feasible socio
technical transformation in the Netherlands. The II3050 study, jointly developed
by key Dutch grid operators, including TenneT, Gasunie, Stedin, and Alliander,
has been conducted since 2019 to explore credible routes toward a climate neu-
tral energy system by 2050 [4]. However, realising this vision takes several steps.
For instance, a radical electrification of demand, a phase out of fossil fuel, a scale
up of variable renewable energy sources (VRES) while boosting supportive stor-
age options and conversions. To illustrate the magnitude of the change: the four
II3050 scenarios estimate between 90 and 135 GW of combined wind and solar
capacity by mid century [22], roughly a factor five growth compared with June
2025 installed capacity [1]. Delivering and harnessing this scale of generation will,
in turn, demand the deployment of utility scale solutions that can collectively ab-
sorb, store, dispatch and convert electricity. Simultaneously with the development
of dedicated hydrogen streams and end-use technologies capable of converting
green hydrogen into power and heat with high efficiency.
Under the II3050 National Leadership scenario alone, residual demand analysis
indicates that hourly deficits may peak at 35 to 50 GW, while hourly surpluses
could exceed 95 GW [22]. Balancing such an energy system, without compromis-
ing security of supply or affordability, requires a well coordinated and cost effec-
tive deployment of flexibility resources across the power grid. However, balancing
solutions that disregard the network capacity may lead to infeasible operational
outcomes, particularly under problematic system conditions, such as network con-
gestion in the Dutch context. Therefore, determining the location, type, and ca-
pacity of flexibility resources must explicitly account for the physical constraints
and interactions within the transmission network, making this a complex optimisa-
tion problem. Representing the modelling framework and the network constraints
makes optimisation essential. Against this, the present thesis develops a high res-
olution optimisation model aimed at identifying optimal and near optimal portfolios
of spatially located flexibility assets, which, also accounting for grid dynamics, will
offer decisional support and provide system wide overviews.
Recognising these needs while building on Stedin’s call for a tool capable of per-
forming detailed, hourly system analyses for 2050, this thesis was developed in

1



1.1. Background and Motivation 2

collaboration with TUDelft. The available inputs at the starting point were national
consumption projections and a preliminary map of high voltage substations. These
datasets were substantially cleaned, expanded, and revised to serve both as the
modelling foundation for this thesis and as a reusable base layer for future studies
on the Dutch transmission grid. Indeed, the resulting grid dataset is intended to be
widely applicable across different research questions that stem from a shared sys-
tem setup. Likewise, the output model is expected to be equally valuable for other
researchers looking to perform similar assessments or to expand the analysis by
updating assumptions or integrating additional technologies.
Building on this foundation, a high resolution optimisation model was developed
using the open source Calliope modelling system. The model includes 283 high
voltage substations, which are treated as part of a single interconnected system.
Ideal energy exchange is accounted between the four voltage levels (110kV, 150kV,
220kV, 380kV), allowing the model to assess how flexibility technologies could be
optimally deployed while considering the network constraints of the interconnected
power system.

1.1. Background and Motivation

The II3050 outlines four system scenarios for achieving climate neutrality by 2050.
Across all of them, the need for system flexibility emerges as a structural and non
optional feature of the next electricity system. Flexibility is expected to be pro-
vided through a combination of technologies: battery storage, hydrogen electrol-
ysis, power to heat systems, power to gas and more. What remains uncertain,
however, is how these assets should be dimensioned, distributed geographically,
and integrated into the transmission grid under realistic and feasible operating con-
ditions.
While national studies such as II3050 provide a solid baseline for long-term infras-
tructure planning, their estimation of flexibility requirements is derived from the
Energietransitiemodel (ETM) [20], which operates at a single node national level.
However, detailed network simulations are performed by TSOs and DSOs, but
these are typically used for different purposes and not necessary for deriving the
optimal spatial distribution of the predicted flexibility resources. Consequently, the
spatial allocation of such assets in II3050 was based on a simplified grid repre-
sentation, assessing national flexibility needs to regions or substations through
proportional scaling methods rather than optimisation. The previous assessment
methods translate long term scenario assumptions into hourly system profiles us-
ing historic weather data (based year 2012), simplified market modelling and a
merit order dispatch of flexibility resources. This approach, however, ignores in-
ternal grid constraints and treats the Dutch electricity system as a single node.
Flexibility requirements were indeed quantified using deterministic simulation tech-
niques fed by national net load curves obtained by the ETM. Hence, they do not
properly account for the transmission bottlenecks. As a result, the outcomes lack
the potentially achievable level of detail useful to guide system design choices and
spatial planning decisions at the operational level with foresight.
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This thesis responds to this modelling gap by developing a different approach that
shares with the former only the consumption predictions for demand and partially,
the supply. It performs an optimisation over representative time slices, divided into
one six-month period with six-hour intervals, to capture seasonal variations while
maintaining computational feasibility on the DelftBlue supercomputer at TU Delft.
Therefore, it uses the Calliope energy model tool [23], which makes straightfor-
ward and possible to build such models, making it feasible to obtain cost-optimal
and near-optimal solutions. Moreover, it aims to find and assess which combi-
nations of flexibility technologies are most effective and where these should be
located to maximise system efficiency. Furthermore, the model goes beyond the
optimal solution as it applies Modelling to Generate Alternatives (MGA) to iden-
tify near optimal configurations that propose systematically different near optimal
system designs while remaining valid. The deliverables will provide and create
a systematic overview space from which to perform research under tailored input
configurations.

1.2. Problem Statement

The future Dutch power system, as envisioned by the II3050 outlook, will need to
operate reliably under high levels of variability. The complexity of such a system
not only increases the dependency on flexible resources to cope with unpredictabil-
ity and uncertainty of RES, but also raises critical questions about their spatial
location.
National assessments, such the II3050, quantify flexibility using price responsive
mechanisms typical in a simplified market representation, which is blind to the
physical constraints and spatial interactions within the grid. As a result, they lack
sufficient resolution to evaluate system portfolios or to assess the potential effec-
tiveness of capacity deployments at station level solutions in balancing the energy
system. Moreover, system operators increasingly recognise the urgency of im-
proving physical network capacities, but they remain constrained as the analytical
tools available prevent efficient comparison of different technology mixes. This de-
mandsmodels that not only compute optimal dispatch or costs, but that also help to
obtain and visualise complex results while providing confidence indicators. From
a scientific perspective, these limitations also reveal methodological gaps in how
flexibility is represented and optimised in spatially detailed energy system models,
this will be further examined in Chapter 2.2, where other modelling approaches
are discussed to highlight these shortcomings.
This thesis addresses these challenges by developing a spatially detailed optimi-
sation framework that evaluates the performance of multiple flexibility portfolios
across the entire high-voltage grid. It sets out to identify recurrent set of solutions
that seeks to lay down effective energy modelling strategies.
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1.3. Objectives and Research Questions

A more robust approach to assess flexibility is needed to improve confidence in
energy system planning decisions. While simulations accounting for node imbal-
ances and hourly prices have been tested, they do not fully capture the economic
and operational potential of various flexibility resources. Given the uncertainties
surrounding the development of these resources and the lack of precise analytical
tools to evaluate different technology mixes, a comprehensive study is required
to quantify trade-offs and support decision-making processes. This study aims
to provide a different option that can withstand future challenges and support the
country’s energy planning.

This research is guided by the following question:

”What are the spatial distributions of the different flexibility technolo-
gies that could support the Dutch power system at 2050, and how can
they be identified and visualised?”

While, the study further explores:

RQ1 – Which data are needed, and how can they be used to construct a
model capable of performing energy planning decisions at the required
spatial resolution?

RQ2-a – Once the cost-optimal solution is obtained, how can near-
optimal desirable options be explored efficiently?
RQ2-b – How can these alternatives be transformed into no-regrets rec-
ommendations?

RQ3 – How can interactive visualisationmake resultsmore intuitive and
actionable for stakeholders?

1.3.1. RQ1: Data and Model Construction

RQ1 – Which data are needed, and how can they be used to construct a
model capable of performing energy planning decisions at the required
spatial resolution?

The foundation of credible assessment also lies in the accurate representation of
the underlying infrastructure. In practice, detailed description of the high-voltage
grid, demand and generation for each station and techno-economic parameters
needs to be fed in the optimisation model. However, no existing dataset combines
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these three dimensions in a unified format suitable for optimisation with Calliope.
Input data given from Stedin were lacking line connection topologies, while other
high-voltage model representations of the Dutch grid [30] were developed primarily
for operational and technical assessments, aiming to verify the feasibility and per-
formance of existing electrical connections. This narrows their scope to a valuable
yet systematically different purpose compared to this work, as such models cannot
be directly applied to long-term energy planning or optimisation of future flexibility
deployment. Therefore, the data had to be found, harmonised and aligned with
this research aim.
Following an extensive collection phase, the reconstructed high-voltage grid, the
pre-processed demand and supply data, the specific technology prices and param-
eters, as well as the model building blocks, were identified as the data needed to
foster a model capable of energy planning decisions with foresight. The Calliope
modelling tool is therefore used to model the Dutch high voltage energy system,
specifically tailored for the new more suitable material. The structural grid incor-
porates 283 substations and their interconnections. The demand and supply files
describes interactions within stations and supply sources. The technology cata-
logues provides necessary cost estimates and the .yaml file allows to craft the
model.
Nevertheless, RQ1 addresses the fundamental challenge of identifying essential
data sources and translating them into a coherent, computationally tractable model.
The outcome of RQ1 is a structured and reproducible workflow for energy sys-
tem modelling. It establishes a methodological foundation that can be reused and
adapted for future analyses starting from similar data conditions. This workflow
introduces an optimal modelling approach that integrates technical, spatial, and
economic dimensions within an executable sequence of steps. The workflow re-
ported in Table 1.1 was applied to later address RQ2.

Table 1.1: Structured workflow developed to address RQ1 and enable reproducible energy system
modelling.

Workflow step Description
1. Grid Infrastruc-
ture Data

Definition of the spatial structure of the power system, including sub-
stations, voltage levels, and transmission links used to represent
the reference baseline network topology.

2. Demand and
supply data

Collection and preprocessing of demand and generation time series
for each node, to provide homogeneous input attributes.

3. Technology
and Cost Identifi-
cation

Identification and specification of cost projection as well as technical
burdens. Prices per MW - MWh, efficiencies, lifetime parameters
and more.

4. Model build Compilation of all data inputs into structured YAML configuration
files, Calliope readable.
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1.3.2. RQ2: Near-Optimal Solutions and No-regret

RQ2-a – Once the cost-optimal solution is obtained, how can near-
optimal desirable options be explored efficiently?
RQ2-b – How can these alternatives be transformed into no-regrets rec-
ommendations?

Generating one solution, whether global or local, may not be sufficient. Former
approaches, better analysed in Chapter 2.2, provides deterministic national bench-
marks but lacks the exploratory and geographical depth required for robust flexibil-
ity planning. They identify what is most favourable given one set of assumptions
with heuristic methods, and they don’t account for what remains viable across
many plausible futures. Therefore, to ensure a more effective portfolio, recent
mathematical advancements can be incorporated to expand beyond traditional
forecasting methods. For instance, different near-optimal solutions that differ in
system designs while meeting system requirements, can be analysed. Recent
work [17] states ”finding a ’cost-otpimal’ planning strategy provides only a false
sense of certainity”. Additionally, ”it would be sensible to explicitly look for tech-
nically feasible and economically comparable cost alternatives to the sought op-
timum”. RQ2 addresses the methodological gap left by previous approaches by
introducing a three-stage framework that not only generates diverse near-optimal
solutions but also synthesises them into robust investment recommendations
Stage 1: generating near-optimal alternatives
The first stage applies modelling to generate alternatives (MGA), a technique that
systematically explores the solution space surrounding the cost optimum. By iter-
atively maximising the difference from previous solutions while maintaining costs
within a specified tolerance (e.g., within an x-percentile deviation from the mini-
mum feasible system cost - slack), MGA generates hundreds of alternative config-
urations. Each represents a different way to achieve similar system performance
through varied technology combinations. MGA interprets the broader mathemati-
cal and computational practice, indeed, this research project adopts the SPORES
method [18] to grasp all the benefits of the MGA and expand them efficiently
beyond just cost differences, introducing spatially distinctive options exploration.
MGA explores different technology mixes, while SPORES also look at where tech-
nologies are built.
Applying MGA through the SPORES method may identify near-optimal solutions
that overcome the rigidity of traditional single-outcome optimisation, which often
stems from overlooking alternative valuable configurations, relying on uncertain
technology cost assumptions, and maintaining a narrow cost-based focus.
Stage 2: computational efforts
Running the full-scale model, comprising 283 substations and their transmission
links, requires the use of a high-performance computing environment. This step
represents a one-time computational effort carried out by the TUDelft DelftBlue
supercomputer. It executes the entire optimisation that generates the complete
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near-optimal solution spaces. From this single run, a representative set of alterna-
tive system configurations is extracted and stored.
Each configuration is exported into a structured collection of output files. These
files are the analytical backbone of the post-processing phase, as they drive the
further exploration of system behaviours without rerunning the full model. This
decoupling of the computational execution from the post interpretation, allows sub-
sequent analyses to be performed efficiently.
Stage 3: alternatives into no-regret recommendations
The third stage transforms this file collection of alternatives into actionable no-
regret insights. The goal is to identify recurrent system designs, those that consis-
tently appear near the optimum despite minor changes in the input. Static meth-
ods are employed to cross-reference the results to identify system components
that consistently appear as part of optimal solutions across all configurations. This
involves, statistical analysis of technology deployment across all near-optimal so-
lutions, calculating appearance frequencies for each technology-location combina-
tion as well as a classification of investments into confidence indicators: ”no-regret”
(appearing in >90% of solutions), ”robust” (50-90%), and ”considerable” (<50%).
This identifies which types of flexibility and at which certain network nodes fre-
quently recur, meaning finding which system design conditions vary the least.
These consistently high-performing components become core investments, or ”no-
regret” options. The outcome is a well performing set of decision tools, that in-
crease the interpretable accuracy of the model’s findings.

1.3.3. RQ3: interactive visualisation

RQ3 – How can interactive visualisationmake resultsmore intuitive and
actionable for stakeholders?

Clear, fast and organised communication by energy planning models, in a sector
that faces rapid changes and stirs in trajectories, is essential. RQ3 explores the
most straightforward yet exhaustive and accessible way to fill the last steps of
energy modelling: exporting the findings. RQ3 has beenmotivated by the ambition
to redefine the way energy modelling results are communicated and, therefore,
valued. Beyond delivering, it also seeks to bridge the gap between technical and
practical. The aim is to contribute to academia and stakeholders’ interests with a
tool that confidently expands the benefits of the ongoing mathematical innovations
within energy system modelling.
The visualisation platform is an interactive environment in which any change in
assumptions or parameters dynamically alters the displayed system outcomes, in-
cluding the near-optimal and no-regret outputs generated in RQ2. The platform
builds upon an initial version previously developed by the supervisory team, which
has been subsequently adapted, expanded, and refined in this work to interface
with the new model outputs and enhance user interaction and interpretability. Its
redevelopment was essential also to improve the computational and refreshing
speed.



2
Context and Previous Work

This chapter aims to introduce the calculation methods and tools previously used in
the II3050 report to estimate flexibility requirements in the Dutch energy system by
2050 as well as to analyse former applications to highlight the scientific relevance
and positioning of this research. The energy transition goals will be outlined, fol-
lowed by an explanation of the methodology currently in use, which is based on
hourly simulations using amerit order approach and annual climate profiles fed into
the ETM. Finally, the main limitations of this approach are discussed, including the
lack of optimisation methods and the omission of grid dynamics.

2.1. The II3050 Report and Energy Transition Goals

In line with national and European goals, the Netherlands aims to achieve car-
bon neutrality by 2050. The National Climate Act establishes major objectives,
including a completely CO2 neutral electrical system and a 49% reduction in CO2

emissions by 2030 and 95% by 2050 [6]. EU frameworks, such as Fit for 55 and
REPowerEU, advocate for energy diversification, deep decarbonization, and a sig-
nificant reduction in reliance on fossil fuels [5].
The Dutch grid operators want to know how the energy transition and carbon neu-
trality impacts the electrical grid towards 2050. It’s about providing energy to the
appropriate location on schedule, managing supplies, determining the required
space to modify the power infrastructure appropriately, while considering the as-
sociated costs. Based on four long term scenarios, the Dutch operators jointly
collaborated under Netbeheer Nederland to develop the II3050 report [21], which
presents deliverables providing insights into system costs, spatial requirements,
and infrastructure development, including quantified estimates of physical capac-
ity needs.

2.1.1. Flexibility Needs in the Dutch Power System

By 2050, the dynamic of energy flows will be radically different from today. Figure
2.1 report the key energy system figures in the National Leadership scenario 2050,
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Figure 2.1: Key energy system figures in the National Leadership scenario in 2050

reference flag of this project. Greater variability is predicted in supply and demand
due to meteorological factors and intense electrification driving peaks in demand
[21]. This might be in terms of short-term fluctuation, such as intra-day depend-
ability, and in the form of larger seasonal imbalances. Moreover, the II3050 report
highlights inconsistencies between where the electricity is produced and where
it is consumed [21]. For instance, offshore wind farms are far from consumption
centres. Similarly, large industrial scale electrolysers, may be located in coastal
areas where abundant green energy will be available. But far away from where
hydrogen demand could emerge for mobility or industrial applications.
Such a system requires a profound development of supportive technologies. A
radical rethinking of flexibility, not as a complementary asset but as a main actor.
According to projections from the II3050 study, the Netherlands will need to absorb
electricity surpluses rising from 5 TWh in 2019 to an average of 225 TWh by 2050,
andmust also deal with shortages growing from 3 TWh to 90 TWh per year over the
same period [22]. These requirements must be met. All levels of the energy sys-
tem must develop, implement, and integrate a broad range of flexibility resources
in order to meet these challenges. This includes adopting technologies that are
either not fully commercially available yet or only marginally present in the existing
system, such as fuel cells, hydrogen turbines, electrolyzers (alkaline, PEM, and
SOEC types), and utility-scale batteries. However, these asset distributions at the
grid level and their geographic deployment have to be carefully planned to prevent
rising grid congestion due to higher demand. A lack of coordination between tech-
nologies and location can overload the existing infrastructure, fostering undesired
outcomes.
Furthermore, the future energy demand profiles will also be different; the electrifi-
cation of transport, deployment of heat pumps, as well as weather uncertainty, will
constantly contribute to increasing volatility in demand profiles. For these reasons,
imbalances between the supply and demand of energy from different energy car-
riers happen frequently. Solar and wind energy are inherently uncontrollable, and
this mismatch calls for a flexible energy system that adjusts supply dynamically
rather than passively following fixed demand profiles. To address this, the II3050
report sets out a series of strategic recommendations. The focus is all about accel-
erating. The deployment and integration of flexibility solutions across all voltage
levels and energy sectors must become a reality. Specifically [21]:
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• Build flexibility through innovation, and incentives. Policy support is needed
to ensure that flexible technologies are available. Timely and wise invest-
ment will avoid price peaks and ensure system security.

• Guaranteeing that flexibility resources contribute to balancing the energy sys-
tem and preventing congestion at all voltage levels. Current incentives do not
ensure that storage, electrolysers, or flexible loads are sited where they help
the most. Policy must ensure deployment contributes to solving rather than
worsening congestion at all voltage levels.

• Accelerate the development of hydrogen infrastructure and storage Salt cav-
erns for hydrogen must be operational by 2030, with continued expansion
after. Otherwise, electrolysers will fail to provide a flexible reservoir match
with variable energy sources.

• Strengthen European coordination and integration. Deep collaboration with
European partners is essential to align interconnectors, hydrogen pipelines,
gas networks, and the offshore grid. Rapid implementation of EU policy
into national regulation. Standardise CO2 reduction accounting methods be-
tween EU countries.

Above all, the II3050 report suggests that flexibility in the energy system can no
longer be confined only to electrons flowing, but instead, on the ideal and strategic
interaction between electrical and molecular energy carriers. Technologies that
can adjust consumption in real time, such as demand-side response, smart charg-
ing, and batteries, are examples of electrical flexibility [4]. On the molecular level,
it involves transforming electricity into forms that can be stored, like heat or hydro-
gen (through electrolysis). All of this aligns well with the ambition of this master’s
thesis.

2.1.2. II3050 Workflow

It’s now clear that flexible support is essential for the future Dutch energy system.
It’s no longer a nice to have, but rather a critical part. The next section builds
the workflow which was previously in use to quantify flexibility in the II3050 re-
port. It examines the data sources, modelling tools, results and points to several
methodological limitations. Content is derived from the II3050 appendix and from
information gathered during group project meetings.
The ETM is an open-source modelling tool developed to simulate the Dutch energy
system. For each scenario, it generates detailed 8760-hour demand and supply
profiles for each wanted category. It carries out a deterministic energy flow type
of calculation. It is based on predefined efficiencies, capacities, and assumptions;
all inputs are predefined and fixed, fostering results directly based on these values.
The resulting profiles are structured by carrier, type (demand, supply, storage, ex-
change, flexibility), and sector. However, the ETM does not have an underlying
energy grid topology. Table 2.1 gives an overview of the categories.
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Table 2.1: Categories Overview

Type Category Examples

Demand Buildings Buildings, Buildings_hp_electric/hybrid
Demand Households Households, Households_hp_electric/hybrid
Demand Transport Bus, Car, Train, Truck, Van, Other
Demand Other Agriculture, Heat_network, Industry, Other

Exchange International BE, DK, DE, NO, UK connections
Exchange General Import/Export

System_flex Storage Battery (households/vehicle), Hydro
System_flex Gas Gas CHP/Large, Hydrogen

Supply Renewable Solar (4 types), Wind (2 types), Hydro, Biomass
Supply Conventional Nuclear, Coal, Waste, Other

The II3050 research process set out four distinctive scenarios. Each of them re-
flects a different socio-political vision and translates it into assumptions about how
the Netherlands will decarbonise by 2050. While they are built around key struc-
tural assumptions such as intensive electrification, they differ to some extent:

• Decentralised Initiatives (DEC). Citizens and regions take the lead, pushing
a bottom-up transition with massive local PV and onshore wind, but limited
coordination and weak industrial policy. Flexibility is mostly decentralised.

• National Leadership (NAT). The state centrally directs the energy mix, priori-
tising offshore wind (72 GW), nuclear, and hydrogen production for heavy
industry and grid balancing. The system is highly electrified, with strong de-
ployment of H2 storage (45 GW) and dispatchable power (18 GW).

• European Integration (EUR). EU-wide coordination drives investment in shared
infrastructure and renewable trade; Dutch flexibility leans on interconnection
(28.8 GW) and carbon capture storage, with lower national storage (46%).
Biomass and BECCS play a stronger role in industry.

• International Trade (INT). The Netherlands bets on importing carriers like
hydrogen, acting as a logistics hub. Domestic production is modest, but
the system is exposed to global market risks and depends heavily on cross-
border flexibility and trade flows.

Once being defined, the four scenarios were translated into quantitative input for
the Energy TransitionModel (ETM). To summarise theworkflow, Figure 2.2 sketches
how ETM national outputs obtained by demand and supply market clearing dynam-
ics, are translated into substation-level inputs for subsequent analyses.
At first, to obtain the aggregated national demand and supply files, the ETM uses a
simplified market-based approach built on the concept of the merit-order dispatch.
In each hour, different technologies submit bids based on their willingness to ac-
cept prices for generation, or willingness to pay in case of demand. Power produc-
ers bid at lowest at their Marginal Costs (MC), which reflects the least acceptable
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Previous Methods

The ETM provides hourly profiles for national en-
ergy demand and supply at the NAT2050 scenario

Supply and demand are mapped to trans-
mission substations - regionalisation phase

Residual load profile is derived for each substation

Depending on the residual deficits/sur-
pluses, flexibility is distributed; see Figure 2.3

Figure 2.2: Schematic of the previous workflow used to derive substation time series from ETM
outputs.

price to run the plant (fuel, maintenance) to meet a certain required demand. Re-
newables can bid very low marginal costs as it’s cheap to run them. The ETM
then ranks these offers and selects them, assessing which resource is more con-
venient to deploy, respecting this order (from cheapest to most expensive) until the
system is balanced. This is how it decides which resource is used, when, and at
what price the market is cleared. It follows straightforward Demand & Supply dy-
namics. In addition, the model assumes a copper plate setup, meaning it ignores
internal transmission constraints and therefore energy can flow freely across the
system. Between zones (like the Netherlands and neighbouring countries), the
ETM includes hourly trade flows based on interconnection capacity and relative
electricity prices. This process fosters hourly prices that are sorted as a result of
balancing demand and supply with the economic parameter pre defined in the sce-
nario stage. These aggregated files are then used to determine at a station level,
how much flexibility is needed and, what type.
After generating hourly national aggregated profiles for supply and demand, the
II3050 workflow proceeds to calculate the actual flexibility needs in the system at
the station level. This is done by comparing, hour by hour, the residual load curve
per station, meaning power demand deficits and generation surpluses. A general
example is offered in Figure 2.3. The figure illustrates how flexibility technologies
are assigned according to the residual load profile previously obtained. When the
residual load shows positive peaks, battery systems are sized to absorb that value
of excess generation. During negative troughs, gas-to-power technologies are
dimensioned too. Considering periods with higher and more prolonged variations,
power-to-gas systems are sized. The resulting flexibility contributions at the station
level are then quantified and reported in structured tables, normalised between 0
and 1 with respect to the total national values identified by their sum.
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Figure 2.3: Flexibility sizing process previously adopted in the II3050 starting from the residual
load curve per station. Battery and gas-to-power capacities are derived directly from short-term
positive and negative peaks, while power-to-gas systems are dimensioned from longer variations
periods.

2.2. Review of Existing Approaches

This section reviews the main modelling approaches previously applied to assess
flexibility in the Dutch energy systems, identifying their methodological scope, lim-
itations, and underlying assumptions. It concludes by remarking the remaining
scientific and practical gaps that motivate the development of this thesis.

II3050

The II3050 approach to flexibility remains structurally andmathematically constrained.
This limitation arises primarily from the deterministic nature of the Energy Transi-
tion Model (ETM) and the simply heuristic allocation applied during the regional-
isation and net load curve phases. The ETM uses fixed profiles and simplified
economic dispatch in order to obtain the national demand and supply curve. It is
indeed deterministic, as it allows to investigate only one single solution stemming
from the fixed inputs. Moreover, it treats the Dutch energy system as a single
node bus with no network topology included. Additionally, the framework does not
accommodate recent mathematical advancements that enable the generation of
alternative system configurations.
Simulation and optimisation serve different purposes, and each comes with trade-
offs. Simulation-based energy models, such as the ETM, focus on reproducing
system operation given different inputs, but do not optimise decisions across tech-
nologies and geographical nodes. Furthermore, the ETM has been used for na-
tional calculations, while the regionalisation phase was carried out using heuristic
calculation tools (as reported in the third block of figure 2.2). The primary limita-
tion of the current approach lies in the assumption that each node operates as an
isolated system, which neglects potential synergies arising from inter-node inter-
actions. For instance, when a node is assessed independently, the deployment
of a battery storage system may appear economically unjustified. However, in a
multi-node context, if a neighbouring node exhibits surplus generation but lacks ad-
equate flexibility, the installation of storage capacity in the first node could optimally
improve the energy balancing.
Optimisation, when deciding how many and which flex resources to deploy, offers
the advantage of finding solutions that may be innovative or original because they
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are not based on assumptions that reflect current dispatching rules and typical tra-
ditional planning approaches (e.g. a region with high solar potential but low local
demand could host additional PV capacity to supply neighbouring areas, which
an optimisation model would capture by considering system-wide benefits rather
than local assumptions). Nevertheless, a cost-based optimiser such as Calliope,
although it is expected to be similar to a merit order in some cases, will make “un-
expected” choices because it can make more complex considerations, also due to
the larger number of variables while subject to binding system constraints (require-
ments). For instance, it may positively anticipate specific operating conditions and
account for potential synergies across nodes and technologies within the system.
These limitations highlight a clear methodological gap: current approaches fail
to capture inter-node synergies, rely on heuristic regionalisation, and restrict the
exploration of alternative configurations due to their deterministic nature. However,
optimisation frameworks such as Calliope makes straightforward to build energy
systemmodels capable to address these shortcomings while bringing results. This
master’s thesis improve the research by simultaneously introducing the benefits
of optimisation and enhances them by developing an ad-hoc network that allows
geographically in-depth considerations not attempted before.

FLEXNET

Similar attempts to quantify the national flexibility needs with foresight can be found
through different agencies employing different research methods. For instance,
the TNO published in 2022 a revised version of the FLEXNET project [26], for-
merly compiled by several Dutch DSOs. The scope was to analyse demand and
supply of flexibility in the Dutch power system up to 2050 at both the national and
regional levels. In this case, the COMPETES [29] model used, introduced a full
optimisation framework compared to the simulation-based methods discussed ear-
lier. Specifically, it consists of two major modules: a capacity expansion module
formulated as a linear program to determine the least-cost combination of new gen-
eration and transmission assets under perfect competition, and a unit commitment-
economic dispatch module formulated as a relaxed mixed-integer program to min-
imise short-term operational costs while accounting for flexibility requirements, in-
vestment costs, and load constraints of generation technologies. This represents a
significant methodological advancement, as it incorporates an optimisation-based
framework rather than relying on deterministic simulation approaches.
However, despite the introduction of optimisation methods, COMPETES still fails
to account for the spatial granularity required to assess detailed substation level
dispatches necessary to provide geographically in-depth directions. COMPETES
does indeed perform well at the level of EU countries (outputs are typically ex-
pressed in aggregated indicators, i.e flows in Wh), but it cannot be applied to more
detailed evaluations of internal national patterns, specifically where tailored net-
work constraints (bringing intra-node synergies) deeply shape model outcomes.
This limitation leaves an analytical gap between European-National level flexibility
assessments and the operational granularity achievable with the introduced model.
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Open Data Based Model of the Dutch High-Voltage Power System

Authors in [30] built and compiled an open-source model of the 2021 high voltage
power grid. The system is implemented in Pandapower, a Python library that al-
lows to run power and optimal power flow assessments. Contributions lie in demon-
strating how open data (publicly available online) can replicate the behaviour of a
real transmission system. It reconstructs the 110kV to 380kV transmission net-
work with real grid topology, electrical parameters, and generator characteristics
for the years 2018 and 2021. It is a useful and precise tool that offers a realis-
tic and in-depth operational replica of the Dutch high voltage system. It is easily
applicable and, depending on the selected input parameters, technical feasibility
studies can be carried through operation simulations. Rigorous electrical assess-
ment (voltages, line loadings, dispatch given fixed assets and costs) can therefore
be done with a large geographical detail introduced by this work. System techni-
cal parameters, as well as their variation, can be therefore inspected under varying
scenarios.
However, its scope is inherently limited to simulating existing conditions. It cannot
support forward-looking planning decisions, such as determining where and how
much flexibility should be deployed under future scenarios making it not suitable to
academically address the research questions presented in Section 1.3. In this re-
gard, future developments could bridge the two approaches by coupling the newly
introduced energy planning framework with a power flow validation tool, such as
the one introduced above [30]. This would surely combine the parameters ac-
curacy of operational models with the decision-oriented capacity of optimisation
frameworks.

2.3. Scale of Former Calliope Models

Calliope is an open-source software designed by authors in [24] to support the
development and solution of complex optimisation models, particularly in the con-
text of energy systems planning and analysis. It facilitates their implementation
and solution. Former applications have typically been applied at broader spatial
scales, adopting national or multi-regional models partitioned into roughly a dozen
zones, such as the 12 provinces in the Netherlands. In contrast, this study intro-
duces a substation resolution to better reflect real system behaviour. At coarser
levels, transmission is often represented by a small set of power lines, which do
not necessary follow existing layouts. Moreover, previous models, lacking explicit
network topology at a narrower scale, produced system design outputs that were
partially unable to refine results by accounting for intra-station transmission capaci-
ties across the entire network with larger geographical details. For the Netherlands,
datasets pointing at a substation level of the high voltage grid have not been stan-
dard practice in energy modelling, so former analyses have relied on aggregated
geographies and simplified network constraints when compared to large scope of
this research (283 substations and dedicated connection lines).
This project raises the resolution to the level of the entire high voltage transmission
system itself. It represents 283 substations, interconnected by 359 lines, together
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(a) Substation-level dataset of the Dutch high-voltage grid,
developed in this thesis. It visualises 283 transmission sta-
tions and their interconnections, input to the new Calliope
model.

(b) Previous Calliope application of the Netherlands
(adapted from [12], where the system is represented at the
provincial scale.

Figure 2.4: Comparison between the substation-resolved network model (left) and a previous
province-level Calliope application (right).

with 27 inter voltage transformer links coupling the 380 kV, 220 kV, 150 kV and
110 kV networks. Each element of the network is reported with explicit operational
attributes distinguishing transformer nodes, under construction assets, and non
active connector nodes that may be added to the optimisation problem during fu-
ture work, results are reported in Section 4.1. Used as a basis input for Calliope,
this new structure (considering its improve spatial accuracy) expands the scope of
energy modelling analyses as results and interactions could therefore be of greater
relevance for stakeholders. To illustrate this shift in focus, Figure 2.4 includes a
comparison between a standard Calliope base model introduced by authors in [12]
and the new model developed trough this research.
The field of Energy Modelling Systems is undergoing a rapid phase of expansion,
driven by both the growing complexity of energy transitions but also the increasing
demand for supporting tools. During the period of this thesis project, these inter-
ests became tangible as we were invited to actively participate in settings outside
the academic scope of the project, reflecting a genuine recognition of the value of
the research approach developed throughout.



3
Methodology

This chapter sets out the methods that enable the transition from former simulation-
based analysis to a full optimisation framework. The reported methodology is
adopted in order to address the research questions presented in Section 1.3. Start-
ing from the collection and preparation phase, the methodology introduces the
mathematical background at the foundation of the model’s ability to produce op-
timal and near-optimal outcomes. In addition, it explains what tools have been
created and introduced to intuitively and practically support the presentation of the
results.

3.1. Data Collection and Preparation

3.1.1. Network Dataset

As this is a collaborative project with a network operator, access to detailed power
grid datasets has been granted. However, considering the foundation of this study
is to approach the former simulation differently, a combination of property and pub-
lic resources was needed to tailor it to the new optimisation structure. The starting
point consisted of a list of substations provided by Stedin, which included loca-
tions (coordinates) and descriptive attributes (voltage level, regional code) but no
information on the physical relations and connections between them. Therefore,
it required substantial enrichment before it could be used in the model to address
the gaps left by previous work and highlighted in Section 2.2.
Two main challenges emerged at this stage. First, the dataset provided only a
partial view of the infrastructure, as substations that were crucial for transmission
links were not presented. These were added manually, drawing on previous work
and publicly available information [30] [9] [28] . Second, the absence of explicit
power line connections meant that the network topology had to be reconstructed
from scratch. To this extent, building a new and more robust dataset was needed.
In doing so, the purposes of this project expanded as, providing a solid founda-
tion for those seeking a similar structure to support their own research became a
relevant goal.
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In order to do so, several resources and techniques have been deployed. The
starting point was a dataset provided by Stedin, which contained a list of 271 sub-
stations. However, no information regarding the network topology was included.
To fill this gap, previous work proved particularly valuable.
The following sources were used: the Open Data Based Model of the Dutch High-
Voltage Power System available through the TU Delft Research Portal [30], the
online high-voltage map from HoogspanningsNet [9], and the official grid maps
published by TenneT [28]. Building on these resources, all substations from the
Stedin dataset were manually connected one-to-one, creating the grid topology.
This was done by analysing Google Earth .kmz files and manually drawing the cor-
responding transmission lines, including their new and more accurate coordinates.
The process was further validated by cross-checking with the work of TUDelft re-
searchers [30] and comparing it with the network layouts published by TenneT. This
allowed a realistic reconstruction of the grid topology. This entire work is available
through an Excel file, namely the PowerNetDataset. The resulting topology will be
later presented in Chapter 4.1.
The reconstructed network topology underwent extensive validation to ensure ac-
curacy and consistency:

• all station coordinates were cross-referenced with publicly available TenneT
network maps and OpenStreetMap data to confirm location accuracy;

• line connections were validated against transmission links to ensure physi-
cally realistic network paths;

• each line segment was verified to connect stations of the same voltage level,
• designated transformer locations were geographically individuated and aligned
with naming;

• station roles (active, connector, under construction) were validated based on
current and planned operational characteristics.

Power Grid Capacity

The grid topology reconstructed in this work represents substations and transmis-
sion lines between them. However, for modelling purposes, at each link must be
assigned a maximum power transfer capacity. In this model, capacity values were
derived from voltage level and literature-based ranges of values, cross referencing
with work from [8] [11]. Specifically, each transmission line between nodes was as-
signed a power capacity consistent with standard operating ranges according to
nominal voltage (110, 150, 220, and 380 kV) and compared with European capacity
distributions reported in [8]. It’s worth considering that the model accounts power
capacity constraints rather than detailed power flow analysis. This simplification
follows a common practice in energy system planning models, where the aim is
to capture large-scale spatial allocation and infrastructure needs rather than de-
tailed operational physics. Even if relevant, introducing optimal power flow (OPF)
equations would significantly increase computational complexity and runtime with-
out substantially directly affecting strategic-level insights, focus of this research
approach. Nonetheless, power flow calculations aspects are typically addressed
in operational studies such as [30], while future planning models such the one
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introduced in this work, focus instead on energy balance under simplified yet rep-
resentative transmission constraint which are a key novelty, distinguishing from
previous works reviewed in Section 2.2.

3.1.2. ETM supply and demand input files

The Energy Transition Model (ETM) was used by the II3050 research team to gen-
erate hourly national projections of electricity demand and technology-specific sup-
ply for 2050. A known limitation of the ETM is its single-node representation of the
Netherlands, which prevents the distribution of projected quantities across substa-
tions and transmission lines, both of which have limited capacities that can lead
to congestion or unfeasible balancing decisions. To address this, the authors per-
formed a regionalisation step: starting from national totals, hourly profiles were
allocated to individual transmission stations using documented assumptions on
where demand is expected to occur and where each technology is expected to
be present, given the spatial development of resources and projects. The result
is, for every node in the grid, a realistic hourly demand pattern and an hourly sup-
ply pattern consistent with the national trajectories under the NAT2050 scenario
assumptions.
The regionalised dataset contains the following station-level categories for demand
and supply. The list below reflects the incoming structure before any modelling
consolidation and post-processing that will be presented later in the text.

Table 3.1: Station-level categories after ETM regionalisation (carrier fixed to electricity).

Category

Demand categories (16)

Agriculture Buildings
Buildings heat pump (electric) Buildings heat pump (hybrid)
Heat network Households
Households heat pump (electric) Households heat pump (hybrid)
Industry Other demand
Transport bus Transport car
Transport other Transport train
Transport truck Transport van

Supply categories (12)

Biomass Hydro (run-of-river)
Power plant coal Power plant nuclear
Power plant other Power plant waste
Solar PV (buildings) Solar PV (field)
Solar PV (households) Solar PV (offshore)
Wind offshore Wind onshore
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Input data Re-organisation

The raw material previously presented and reported in Table 3.1, required substan-
tial re-organisation to become model-ready. Similar labels were grouped, naming
was harmonised, and each sub-series was checked and kept at the appropriate
substation. For demand, all categories associated with a given station were com-
bined into a single hourly demand profile per station. For supply, the many detailed
labels were consolidated into six transparent technology families that match how
assets connect to the grid and how results are interpreted.
The generation portfolio available at the outset, included several technology cat-
egories mapped to their respective connection substations. Dispatchable power
plants made of: conventional thermal and biomass-based units, large gas, CHP,
hydrogen-fired plants, coal, other thermal sources, and waste-to-energy. Nuclear
power is included as a separate category. Renewable generation from utility-scale
and large distributed solar PV installations (covering buildings, fields, households),
together along with offshore and onshore wind technologies.
The outcome is a complete set of time series files, resulting in a node-resolved
detailed dataset. Every one of the active 271 stations has an hourly demand pro-
file, and all these profiles are compiled into a single national demand file. Here,
each column stands for the aggregated hourly station demand. On the supply
side, every active station has an hourly generation profile by technology, resulting
in 271 different time series files. In there, columns represent the seven above-
mentioned supply categories. Non-active connector stations remain in the network
for topology only and therefore carry zero demand and zero supply by construction.
Stations marked as under construction are included with full capabilities, in both
demand and supply, to reflect their role in the 2050 outlook.

Supply categories

The original supply categories were consolidated into six technologies, two of
which merge several source categories. This keeps the model transparent while
preserving the essential behaviour of the system. Table 3.2 summarises the fami-
lies and gives examples of the source categories that feed into each group.
Each family retains the hourly shape provided by ETM. The re-arranging process
produces station-level series that are both internally consistent and straightforward
to interpret in the optimisation. Table 3.3 illustrates the shared header structure for
the 271 post-processed supply files corresponding to active substations.
Input model files
Two input sets are provided to the optimisation, both at hourly 2050 resolution and
covering the 271 active substations:

• Supply (per station): techs_supply_{stationID}.csv — one file for each
active substation (271 files). Each file contains the common header shown
in Table 3.3.

• Demand (all stations together): full_net_demand.csv — one matrix with
hourly 2050 timesteps as the first column and one column per active substa-
tion (271 columns in total).
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Table 3.2: Supply technology families and typical constituent categories

Technology Examples of source categories
Dispatchable Power Plants Conventional thermal units (e.g., gas and coal

where present), combined heat and power where
applicable, biomass units, and waste plants
mapped to their connection substations.

Nuclear Power All nuclear output connected to the transmission
grid.

Solar PV Utility scale and large distributed PV that injects at
transmission/sub-transmission nodes.

Wind Offshore Offshore wind parks and landing points connected
to the high voltage network.

Wind Onshore Onshore wind connected at 110–150 kV substa-
tions.

Table 3.3: Schema of a station-level supply CSV (commonly shared by all 271 files).

timesteps dispatchable_pp hydro_ror power_plant_nuclear solar_pv wind_offshore wind_onshore
2050-01-01 00:00:00 0.0 0.0 0.0 0.0 0.0 0.0

In the demand file, column headers use substation codes; the carrier is electric-
ity only, and figures are in MW. Altogether, the model imports 272 CSV tailored
files: 271 station-level supply files and 1 multi-station demand file. File process-
ing was performed using automated Python functions that standardise structure,
nomenclature, and time indexing, creating model-ready files. The optimisation
model imports these inputs and maps them to the corresponding grid nodes and
technologies, for which specific Calliope lines of code were implemented.

3.1.3. Cost and Technical Data

Other than network topology and energy profiles, the model requires technology
related parameters that account for both economic and technical specifications.
These inputs assign values to the optimisation variables, which are the core com-
ponents of the objective function. In long term planning is usually a good practice
to find cost estimates that reflect expected prices years earlier than the forecasted
ones. This will therefore increase the accuracy by looking at relatively closer time
windows. In this research, the flexible deployment is predicted for the year 2050.
Nevertheless, the prices adopted refer to 2040.
To maintain consistency between the assumptions and conventions used to deter-
mine certain cost categories, it was precautiously decided to consider relatively
few sources. This has guaranteed a precise differentiation between the prices of
the technologies and, being so, it positively impacted the model’s ability to diversify
the solutions.
The Danish Energy Agency produces statistics, key data, projections, analysis and
technology catalogues, publicly available for download in their website [2]. While
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the others offer an important overview and knowledge of the energy sector, for the
scope of this project, the technology catalogues served an important role. The
data sheets are continuously updated as technologies evolve as well as if the data
changes significantly or if errors are found. The date for the latest update of the
ones considered is February 2025; all the cost data are in 2020 EURO [2].
Among the many, three stood for their relevance:

1. Technology data for energy storage
Provides cost and performance benchmarks for battery systems and other
storage technologies. technology_data_for_el_and_dh_-_0017_1.xlsx

2. Technology data for renewable fuels
Offers techno-economic parameters for biofuels, hydrogen, and other renew-
able carriers. Technology_datasheet_for_energy_storage_--_0010.xlsx

3. Technology data for generation of electricity and district Heating
Covers investment costs, efficiencies, and operating characteristics of major
generation technologies. Includes both conventional and renewable options.
data_sheets_for_renewable_fuels.xlsx

Costs Tech Parameters

Table 3.4 presents the operational cost inputs to the model for each technology.
The accompanying descriptions facilitate locating the specific technologies in the
technical catalogue [2] anticipated above, where they are listed under similar des-
ignation. Prices are reported in 2020 EUR, and technical units are homogeneous.
Again, the prices selected are forecasted estimates to the year 2040. Operational
costs include variable O&M (and, where relevant, fuel costs).
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Table 3.4: Technology cost assumptions used in optimisation model.

Technology Description CAPEX OPEX Ref.

GENERATION
Solar PV Utility-scale photovoltaic

systems (2040)
320 8.1 kEUR/MW/yr +

1.06e-5 kEUR/MWh
[3]

Onshore Wind Onshore wind turbines
(2040)

1,110 15.97 kEUR/MW/yr +
0.00198 kEUR/MWh

[3]

Offshore Wind Fixed-bottom offshore
wind, AC connected
(2040)

2,141 32 kEUR/MW/yr +
0.00345 kEUR/MWh

[3]

Hydro Run-of-river
hydroelectric

2,000 80 kEUR/MW/yr +
0.002 kEUR/MWh

[3]

Nuclear Power
Plant

Generation III nuclear
reactor (2040)

8,594 0.00355 kEUR/MWh
+

fuel 0.00341
kEUR/MWh

[3]

Dispatchable PP Biomass, waste, and
other dispatchable
sources

2,500 50 kEUR/MW/yr +
0.045 kEUR/MWh

[2]

CONVERSION
Power to
Hydrogen

Electrolyser system
(2040)

425 4% of CAPEX
per year

[2]

Hydrogen to
Power

Hydrogen turbine /
CCGT

905 3.34 kEUR/MW/yr [2]

Hydrogen Import Hydrogen import
terminal

— 0.231 kEUR/MWh [2]

Hydrogen Export Hydrogen export facility — 0 kEUR/MWh [2]

STORAGE
Large Battery
Storage

Vanadium Redox Flow
battery (2040)

390† 2.92 kEUR/MW/yr [1]

Battery Storage Lithium-ion battery
system (2040)

299† 8.67 kEUR/MW/yr [1]

Hydrogen Storage Underground storage
caverns

— Storage losses
1% per year

[1]

DEMAND & BALANCING
Curtailment Renewable energy

curtailment / power
shedding

— — —

Load Demand Electricity system load
demand

— — —

Loss of Load Value of Lost Load
(VOLL) penalty

— 10,000 EUR/MWh —

Notes: CAPEX (Capital Expenditure) in kEUR/MW for generation and conversion tech-
nologies. OPEX (Operational Expenditure) includes fixed costs in kEUR/MW/yr and vari-
able costs in kEUR/MWh. †Battery storage costs in kEUR/MWh.
References: [1] Energy Storage Catalogue, [2] Renewable Fuels Catalogue, [3] Electricity
and District Heating Catalogue.
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Technology Tech Parameters

Table 3.5 reports the main technical parameters used in the model. The values
include lifetimes, efficiencies, and operational constraints, which determine the
performance and comparability of the considered supply, storage, conversion, and
demand technologies.

Table 3.5: Technical parameters adopted in the model.

Technology Parameter Value
SUPPLY TECHNOLOGIES

Solar PV flow_out_eff 1.0
lifetime 40

Onshore Wind lifetime 28.5
Offshore Wind lifetime 27.5
Hydro flow_out_eff 0.90

lifetime 40
Nuclear Power
Plant

flow_out_eff 0.326

flow_ramping 0.5
lifetime 40

Dispatchable
Power Plant

flow_out_eff 0.4

lifetime 25
Loss of load lifetime 1
Hydrogen import flow_cap_max inf

STORAGE TECHNOLOGIES
Large Battery
Storage

lifetime 35

flow_out_eff 0.91
flow_in_eff 0.91

flow_cap_per_storage_cap_max 0.08
storage_discharge_depth 0.11

storage_loss 6.25e-05
Battery Storage lifetime 30

flow_out_eff 0.985
flow_in_eff 0.975

flow_cap_per_storage_cap_max 0.25
storage_discharge_depth 0.11

storage_loss 4.17e-05
Hydrogen
storage

storage_cap_max inf

flow_out_eff 1
flow_in_eff 0.99

storage_loss 0.01
Continues on next page
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Technology Parameter Value
storage_initial 0.5

lifetime 30
CONVERSION TECHNOLOGIES

Power to
Hydrogen

lifetime 25

flow_out_eff 0.653
Hydrogen to
Power

lifetime 25

flow_out_eff 0.57
flow_ramping 0.8

DEMAND TECHNOLOGIES
Curtailment resource_use_max 20000
Hydrogen export resource_use_max 20000

3.2. Linear Programming

After having discussed and identified the methodology to retrieve the input compo-
nents necessary for the new model, this section aims to expand and clarify why
optimisation and the mathematics behind it. Here, we are specifically dealing with
the modelling of energy systems. However, the same mathematical methods are
widely applicable and applied in a variety of optimisation problems, each fostering
different outcomes but following a common logic.
Energy system modelling is a discipline used to generate results and insights re-
garding the balancing of energy systems at different scales [27]. It can be applied
within a wide range, spanning from households (utilities) and neighbourhoods to
national and beyond. In general, there are many interconnected components that
together actively participate, while following supply and demand dynamics. As
noted by Lund et al. [7] the general purpose of ESM is ’ ..to guide the design, plan-
ning, and implementation of future energy systems’. Building upon this concepts,
recent mathematical and computational developments expands their utility by also
looking beyond the optimal outcome [18].
The following paragraph introduces a simple yet exhaustive example of a convex
optimisation problem representative of the Linear Programming (LP), supported
by author-generated figures (snapshots from an interactive tool) designed to clarify
the key concepts necessary for grasping themethodological focus and terminology
implied during this research.

3.2.1. Convex Optimisation

The mathematical structure underlying most energy system models can be ex-
pressed as a convex optimisation problem. In linear programming, both the ob-
jective function and all constraints are linear and, in its simplest form, the problem
consists in finding the combination of decision variables x that minimises a given
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objective function f(x), subject to a set of linear constraints that define the feasible
space of solutions:

min
x

f(x) = c⊤x

s.t. Ax ≤ b,

x ≥ 0

(3.1)

where c is the cost vector, A and b represent the constraint matrix and boundary
vector, and x is the vector of decision variables (e.g., investments in generation,
storage, or flexibility to deploy).
The visualisation in Figure 3.1 provides a three-dimensional representation of this
mathematical framework from the interactive tool. The curved surface f(x1, x2)
represents the objective function through a quadratic convex form, included for
illustrative purposes to help the reader intuitively grasp the underlying optimisation
concept. The optimal point x∗ (marked in red) corresponds to the lowest point on
the surface within the feasible region, where f(x∗) = f ∗.

Figure 3.1: Three-dimensional author compiled visualisation of a convex objective function f(x)
defined over two decision variables x1 and x2 with ε = 0. The surface represents the feasible search
space of the optimisation problem, while the red point indicates the global minimum.

To explore alternative combinations that lead to nearly optimal outcomes, the con-
cept of near-optimal feasible space is introduced. By relaxing the optimality condi-
tion through a small tolerance ε, the near-optimal region can be defined as:

Xε = {x ∈ Xfeas | f(x) ≤ (1 + ε)f ∗} (3.2)



3.2. Linear Programming 27

This set contains all feasible solutions whose objective value lies within a fraction
ε above the optimal cost. In the following graph, the optimal surface due to a shift
in the ε is displayed. As ε increases, the plane moves upward, expanding the
near-optimal feasible region (coloured). The illustration adopts a quadratic convex
function for clarity.

Figure 3.2: Representation of the near-optimal feasible region. The left panel shows the objective
function f(x) as a convex surface, with the red point indicating the global optimum. The coloured
layer below the paraboloid represents all feasible solutions whose objective value lies within the
tolerance (1 + ε)f∗. The right panel provides the top view of the same surface, showing how the
near-optimal region expands as the tolerance ε increases when compared to Figure 3.1. Note that
the convex paraboloid shown here is used for visualisation purposes.

Such representation is particularly useful as it allows to visualise the near-optimal
area, where configurations of technologies may achieve almost identical costs with
the optimal one but lead to distinct spatial distributions. The screenshots above
were taken from an interactive environment developed by the author, where adjust-
ing the value of ε dynamically with a slider, shifts the near-optimal region, visually il-
lustrating how the feasible area expands as the tolerance increases. This research
stretches the boundaries of the optimal area to find different sets of near-optimal
alternatives representative of systematic different flexibility distributions.

Flexibility in Calliope

In Calliope [24], the decision on how much flexibility capacity to install and where
to locate it is formulated as part of a linear programming problem. The model
introduces a set of decision variables that represent the desired system behaviours
under defined requirements (constraints).
In Calliope, flexibility emerges as an outcome of the optimisation process, deter-
mined through the model’s space of the decision variables. The framework defines
variables such as flow_cap (installed capacity) and flow_in/flow_out (dispatch lev-
els) for each technology, node, and energy carrier. The objective function min-
imises total system costs, including investment, operational, and penalty terms for
unmet demand or curtailed supply. Flexibility is therefore allocated only where it
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contributes to lowering the system’s overall cost while maintaining feasibility under
all operational constraints.

3.3. MGA with HSJ and SPORES

From the methodological point of view, this research project implements modelling
to generate alternatives (MGA) through the SPORES algorithm developed by au-
thors in [19], simply, a different way to generate those alternatives. First instances
of the MGA techniques appeared back in the 80’s as a result of a common acknowl-
edgement that ”structural uncertainty in optimisation models will always exist” [3].
Therefore, early developers of MGA started broadening the inspection of the re-
sults, leading to a ”..realisation that all models are highly simplified versions of
reality, and that feasible, near-optimal solutions returned by optimisation models
are likely to be as useful as the optimal result” [3].
Theoretically, MGA begins from the optimal solution and systematically investi-
gates neighbouring feasible configurations. Instead of searching the entire solu-
tion space, it deliberately restricts, iterations after iterations, the exploration to a
controlled area close to the optimum. Therefore, alternative system designs that
achieve nearly equivalent performance are identified.
Practically, it adopts Hop, Skip, and Jump algorithm (HSJ) as the structural basis
behind the conceptual implementation of MGA [10]. The mathematical structure
and notation presented are derived from the original formulation by Brill et al. [10],
whose HSJ method represented the structural procedure to implement the newly
developed MGA concept. The interpretation, however, aligned with this project’s
focus on exploring flexibility within near-optimal decision spaces and it will help
the reader to understand the novelties proposed by the SPORES algorithm used
in this research [19].

Hop , Skip and Jump

Within the early literature on MGA, the HSJ approach [10] offers a mechanism
to produce solutions that are both good and deliberately, different from a given
optimum.
LetX be the feasible set defined by the constraints, and let fj(x) denote the objec-
tive function. HSJ stems from the optimal solution x(0), by searching for alternatives
that satisfy requirements, fostering a swift in the decision pattern.
Let’s define K = {k : x

(0)
k > 0}, as the set of all the decision variables that are

nonzero in the optimal configuration. HSJ then introduces and solves the minimi-
sation of the sum of all the non-zero decision variables in K. Those variables are
part of the optimal solution. Respectively, HSJ solves:

min
x∈X

p(x) =
∑
k∈K

xk s.t. fj(x) ≤ Tj ∀j, (3.3)

where Tj are target bounds (e.g., Tcost = (1+ε) fcost(x
(0)) for some tolerance ε > 0).

The objective of (3.3) penalises the reuse of variables active in the optimal config-
uration (K), steering the optimisation towards a feasible solution that satisfies the



3.3. MGA with HSJ and SPORES 29

target bounds (Tj) while differing in its composition. In straightforward terms, if k
points to node–technology capacity choices, minimising

∑
k∈K xk discourages re-

using the same set of choices and promotes alternative spatial deployments. The
process reported on the right of Picture 3.3, points to intuitively explain how HSJ
iteratively identify and updates the penalty weights in the optimisation runs.

x∗(1 + ε)f∗ HSJ alternative

Convex objective
Incumbent x∗

Near-optimal region

x1
x2

f
(x
)

Optimisation run

Optimal solution

Penalty update

New weights into
next optimisation

Explore alternatives

Figure 3.3: On the left, HSJ schematic on a convex objective. The red point marks the optimum
x∗. The feasible plane at (1 + ε)f∗ bounds the near-optimal set. HSJ seeks a feasible point that
remains under this cost target while differing from x∗ in its decision pattern; here, a representative
alternative (blue) lies on the near-optimal “ring,” fostering a move away (motioned by minimising
the set of variables at the optimum) from the single solution towards the near-optimality. The right
panel outlines the iterative process of assigning penalties and exploring less-penalised alternatives.
Together, they represent the conceptual foundation of the HSJ method.

In the context of this work, the iterative search aims to identify and diversify feasible
system configurations on how flexibility appears across near-optimal regions of the
solution space. By relaxing the narrow ’dominance’ of the cost-optimal solution, the
logic allows flex technologies to appear where they add systemic overall value and
support beyond the global optimum. The resulting set of solutions thus serves as
a structured investigation of near-optimal flexibility deployments.

SPORES

The spores method extends the HSJ principle introducing two main differentiations.
First, a different treatment of penalties and, the introduction of multiple-direction in-
vestigation techniques to better explore the near optimal space [16]. Compared to
the HSJ method, rather than directly minimise the sum of active decision variables
(X set in the former example), SPORES introduces a new penalty classification to
account for the more spatially distributed options (geographically diversified) that
evolve iteratively after each optimisation run. In addition, it allows the iteration
process to start, or better, to run by anchoring [16] to near-optimal points located
far from the cost optimal, which near optimal region would otherwise remain unex-
plored. These alternatives, previously hard to reach with traditional methods, now
become new optimisation centres. SPORES was introduced by authors in 2020
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[19] driven by the intention to incorporate spatial reasoning rather than focusing
solely on costs. The supporting mathematical definitions introduced in [19] and
further recalled in [16] and [14] are here reported to support the methodological
framework adopted in this thesis to generate the spatial deployments of flexible
assets while answering RQ2.
The following overview helps interpret the assigned and updated spatial penalty
weights to generate near-optimal and spatially differentiated solutions. The guid-
ing common logic seeks to penalise what has already been used, so that the next
sub-optimisation problem is pushed towards different decision spaces that were
’underused’ (see Figure 3.4). Finding the optimal solution reveals, for example,
the installed capacity xcap(i, j) for each technology i at location j (e.g. a battery at
node j). For each pair, the algorithm assigns a positive penalty weight w(n)

ij (see
equation 3.4), which increases as the technology has already been used exten-
sively in that location. It is therefore summed with the weight from the previous
iteration w

(n−1)
ij . Here x

(n)
cap,ij is the capacity chosen at iteration n, and xmax

cap,ij is
the maximum potential at that site. The update rule in Equation 3.4 implies that
the penalty weight increases proportionally to the capacity already deployed. This
mechanism can be summarised as follows: large deployment ⇒ larger incre-
ment of the weight ⇒ stronger future penalty at next iteration.

w
(n)
ij = w

(n−1)
ij +

x
(n)
cap,ij

xmax
cap,ij

(3.4)

Figure 3.4: Spatial penalty weights wij by technology (i) and location (j) across iterations. Itera-
tion 4 can be seen as a memory of all the prior spatially-distinctive choices.
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Figure 3.4 is an author-compiled penalty heatmap based on random entries. It vi-
sualises the evolution of spatial weights across four SPORES iterations. Each cell
represents a technology–location pair (i, j), with a colour intensity that reflects the
penalty accumulated by former steps (w(n)

ij ). Darker cells mean points that, as a re-
sult of being largely deployed in previous iterations, are now strongly discouraged
approaching the next one. On the contrary, clearer cells indicate less explored
sites that, for this reason, remain attractive for future iterations. The algorithm pro-
gressively ’learns’ in the arrow motion. At the end, the accumulated penalties of
iteration 4 can be seen as a memory of all the prior spatially-distinctive choices.
Meaning at each iteration n+1, SPORES solves the new weighted optimisation
problem, so the model prefers less-penalised configurations while keeping total
cost within the near-optimal slack s:

min
x

Y =
∑
i,j

w
(n)
ij xcap,ij (3.5)

s.t. system constraints Ax ≤ b, x ≥ 0,

total cost ≤ (1 + s) (least-cost),

While this offers supporting mathematical understanding, the weighting process
used in the SPORES generation relative to this research, attributes random penal-
ties values during the inspection loops. This comeswith benefits such as improving
the spatial dissimilarity of iterative runs [16]. For instance, instead of incrementally
reinforcing over previous penalties, it applies randomise perturbations to the weight
assignments procedures at each iteration, defined as:

w
(n)
ij = w

(n−1)
ij + rij, with rij = U(0, 100) (3.6)

At each iteration, small random changes are added to theweights of each technology–
location pair, pushing the model to explore new areas of the solution space . This
helps generate a wider and more spatially distinct set of near-optimal designs.
In its general mathematical form, the SPORES - MGA problem can be expressed
as:

minY = a ·
∑
j

∑
i

wijx
cap
ij ± b ·

∑
j

xcapij s.t.

{
costn ≤ (1 + s) cost0
Ax ≤ b, x ≥ 0

(3.7)

Here, i and j represent the technology and location indices, respectively; xcapij is the
capacity decision variable for each technology–location pair. Coefficients a and b
weight the two explicit objectives. The first term applies spatial and technological
penalties through the weights wij, discouraging the repeated use of previously lo-
cations and promoting spatial distinctiveness between consecutive runs. This cor-
responds to the “spatial and technological distinctiveness” stage a. in Figure 3.5,
where the algorithm explicitly diversifies siting patterns while remaining within the
near-optimal cost range.
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Figure 3.5: Stylised representation of the SPORES algorithm, in its standard formulation. Re-
trieved from [14]

The second term introduces an intensification factor, controlled by the ±b param-
eter. This component defines the so-called “intensified key feature” batches (b.),
which focus the optimisation on increasing or decreasing the deployment of a spe-
cific technology. These intensifications pushes the system’s response and map
different regions of the feasible decision space. For b > 0, the model minimises
the share of the selected technology, while for b < 0, it maximises it. When b = 0,
the formulation reduces to a single-objective search driven only by spatial diversity
[14].

Parallel search batches

The model futures four main flexible technologies for optimal and near optimal
capacity allocations: Battery Storage, Large Battery Storage, Power to Hydrogen
and Hydrogen to Power.
In this research the SPORES framework has been applied to perform a parallel
search for near-optimal alternatives by executing independent optimisation batches
anchored to different regions of the feasible decision space [19]. Each batch de-
fines a distinct direction of exploration by modifying the weighting structure or in-
troducing secondary objectives linked to the deployment of specific flexibility tech-
nologies (see point b of Figure3.5). This parallel configuration allows simultaneous
searches across several system designs, each targeting a unique technological
configuration within the same near-optimal cost region.
In this study, eleven parallel batches are implemented (see Table 3.6 for refer-
ence), each representing a different search direction. The baseline runs include
the net_model and mode_define configurations, which generate the initial cost-
optimal and the firsts near-optimal set of alternatives without technology-specific
intensifications (only the cost slack). The following batches are designed to explore
alternative system configurations by either maximising or minimising the capacity
of specific flexibility technologies. These include:

• bat_flow_max and bat_flow_min for large storage,

• bat_system_max and bat_system_min for battery storage,
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• gas2power_max and gas2power_min for hydrogen to power, and

• p2h2_max and p2h2_min for power to hydrogren.

Each of these batches produces eleven SPORES alternatives, obtained through
successive iterations of the weighting procedure. Together, they form a parallel
exploration of the near-optimal solution space, where each run investigates a dis-
tinct combination of technology intensifications and spatial penalties. Two addi-
tional batches, h2_integer and h2_random, are introduced to test different penalty
assignment methods for hydrogen-related flexibility. The integer method applies a
deterministic threshold-based weight increment [16], assigning a fixed value (e.g.,
100) to technologies whose deployment exceeds a minimum capacity threshold;
this approach generates four SPORES alternatives.

Table 3.6: Overview of SPORES batches, scoringmethods, and corresponding numeric distinction.

Batch name Scoring method SPORES per batch Spores .. to ..
net_model Cost-optimal - 0
mode_define Random 11 1-11
bat_flow_max Random 11 12-22
bat_flow_min Random 11 23-33
bat_system_max Random 11 34-44
bat_system_min Random 11 45-55
gas2power_max Random 11 56-66
gas2power_min Random 11 67-77
p2h2_max Random 11 78-88
p2h2_min Random 11 89-99
h2_integer Integer 4 100-103
h2_random Random 11 104-114
Tot. SPORES — 114 115

Across all batches, the model produces a total of 114 independent SPORES runs,
all computed in parallel under a consistent cost-slack constraint of 10% the nominal
cost optimal value. Accounting for the cost-optimal solution the model prints 115
systematic different ways to distribute the flexible supporting technologies.

SPORES scenarios

Considering the SPORES framework is not part of the built-in Calliope function-
alities, this model uses an external script developed by the supervisory team, to-
gether along with costume maths and scenarios. The GitHub repository can be
found in [13]. The structure of this framework is governed by three main compo-
nents: the spores.yaml configuration file, the spores_algorithm.py functions, and
a series of Python batch scripts, each dedicated to a specific technology and di-
rection of intensification as decipted in Table 3.6. The spores.yaml file defines the
scenarios and parameter sets used in the optimisation runs. Each scenario speci-
fies how the model should intensify, meaning whether a given technology is to be
favoured or penalised in the subsequent iteration.
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The mathematics core is implemented in spores_algorithm.py, where the function
run_spores() automates the generation of near-optimal runs. For each iteration,
it computes a new cost-weight structure and applies the corresponding scoring
method (either integer or random), according to the scenario definition. The up-
dated penalty weights are then passed to the next optimisation run, building a
chain of iterative steps that progressively results in a diversification of alternatives.
Each near-optimal batch (listed in Table 3.6) is then executed through an indepen-
dent Python script. Each script retrieves the model structure, defined scenarios,
and spores parameters, and calls the functions through:

spores_results, spores_scores, backend = run_spores(...)

Each call produces one SPORE (a single near-optimal systematic different system
design) which is saved in easily accessible CSV format. Multiple consecutive runs
form a batch sequence of SPORES per technology scenario. A total of 11 SPORES
batches were executed. For each flexibility technology, two distinct sub-series
were defined, each implementing higher or lower deployment through positive or
negative intensification factors, see Table 3.6. The intensification factor (±b) (see
Figure3.5) defines the direction of preference in the penalty update. As mentioned
above, +b penalises the corresponding technology, leading to lower deployment
in the next iteration while, −b promotes the same technology, leading to higher
deployment in the next iteration.

3.4. Interface

Authors in [15] emphasises that the true tangible value of MGA lies not only in
generating diverse near-optimal alternatives but in presenting them through inter-
active environments that allow experts, stakeholders and developers to interpret,
compare, and explore model outcomes. Translating this idea into practice, the
former interface developed by the author’s supervisor was redesigned to tailored
needs due to the new model larger scope, therefore: improve interpretation, re-
sponsiveness (refreshing rates) and exploration. It is indeed worth noticing that
all the model results are available with one click in a single collective environment
that is not locked to the model but to its output files. Reproducibility, new time
windows, new techs, different supply and demands patterns fostering different out-
comes could therefore easily be represented by the same environment indeed
under different scenarios.
Practically, the interactive dashboard was developed using Plotly Dash, a Python
framework for building web-based analytical applications. The interface backend
files consists of two main modules: load_interface.py manages data loading,
user interactions , and callbacks (updating visuals depending on input system pref-
erences), while plotting_utils.py handles all the visualisation logic from the files
reading. A useful methodological choice was to implement dynamic capacity filter-
ing in the presence analysis through sliders; users can select the portion of interest
(e.g. flexible technologies with capacity >200MW) and therefore explore the new-
adapted solution space, gaining different (more tailored) conclusions. Instantly all
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linked visualisations updates. In addition, provincial aggregation (stemming from
coordinates approximations) can help to reveal regional technology preferences.

3.4.1. Design: Near-optimal Designs

Each element in the Near optimal design page is introduced to allow direct explo-
ration of the flexibility results obtained by the Calliope runs in the DelftBlue super-
computer. It consists of the technology filters, the normalised capacity deployment
scatterplot, the geographical network map, and the dispatch and capacity ranking
panels. The dispatch at node graph is particularly valuable to inspect the transmis-
sion synergies with the neighbouring sub-stations.
Select Spore The first page opens with a dropdown menu that allows users to
select specific SPORE configurations of interest. This feature supports targeted
inspection of individual near-optimal alternatives. For reference, Table 3.6 lists all
SPORE batches and their corresponding scoring methods, helping users identify
which SPOREs originate from different parallel search directions.
Technology Filter and SPORES selection panel The filter panel allows users to
interactively select the deployment range of each flexibility technology through nor-
malised capacity sliders. Adjusting these sliders dynamically filters the solutions
shown in the Normalised Capacity Deployment plot. Each point in the scatterplot
represents a SPORE alternative, and only those whose deployment of a selected
technology falls within the chosen range remain visible. This enables the user to
isolate specific capacity thresholds and visually identify how different near-optimal
solutions distribute technologies across the system.

Figure 3.6: Interactive filtering and normalised capacity deployment visualisation. The sliders on
the left allow users to filter SPORE alternatives based on the normalised deployment level of each
flexibility technology. The scatterplot on the right updates dynamically, displaying only the SPORES
whose installed capacity for the selected technologies falls within the chosen range.

Network Map The network map builds from the topology previously introduced
in Figure 2.4a and adds sizing bubbles as well as different colours to assess , at
geographical node level, how the optimal and the different near-optimal portfolios
of flexible capacities are distributed. Upon filtering, it also displays the exogenous
supply dispatch at the national tissue.
Dispatch This graph illustrates the 6-hourly balance of generation and consump-
tion across all nodes for a selected SPORE. Each coloured layer represents the
flow contribution of a specific technology, while the black line denotes total load
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demand. The graph updates dynamically with each SPORE selection also ac-
counting for variations between neighbouring substations.

Figure 3.7: Dispatch view for power carrier across all nodes. Each coloured area corresponds to a
technology’s hourly flow contribution, while the black curve represents total load demand. The plot
updates with each SPORE selection, allowing comparison of dispatch patterns and flow interactions
between adjacent substations.

Capacity deployment The capacity chart ranks the substations according to their
installed flexibility capacity for the selected SPORE. Each bar is divided by tech-
nology, showing the relative contribution of each flexible technology. The graph
dynamically updates with every SPORE selection, as well as the Top 20, 50, 100,
or all the nodes.

Figure 3.8: Flexible capacity deployment for the top 50 substations in the selected SPORE.
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3.4.2. Design: No-regrets Alternatives

This subsection first introduces the presence analysis to formalise the mathemat-
ical foundations behind the visual outputs. It then presents the design of the sec-
ond section of the interactive platform, where no-regret alternatives are explored
through dynamic graphical representations.

Presence Analysis

The ’no-regret’ analysis on the second page of the interactive platform is motivated
by the quantification of how often each flexibility technology appears at a specific
node across the entire near-optimal set of configurations (cost-optimal plus 114
near-optimal alternatives). This kind of newly-introduced presence analysis repre-
sents a valuable outcome that can be derived from an MGA adoption to traditional
optimisation problems. Starting from the vast number of alternative configurations,
this methodology effectively points at the most feasible options coming from dif-
ferent search strategies. This could help planners or developers to identify what
pushes the model (supply, network, weather or maybe cost drivers) towards ’more
recurrent’ choices. This could also help, depending on system input interests, to
identify which technology appears to be the most suitable. A node–technology
appearances matrix is therefore specifically introduced see Figure 3.11. Its rows
represent network nodes and columns represent flexibility technologies while the
values in each cell are the percentage of appearances of the four fixed technolo-
gies per node per tech per entire set of solutions.
This methodology is not part of standard practice but was specifically developed
by the author in response to the distinctive nature of the results due to their nov-
elty and particularly, quantities. It well aligns to the ongoing evolution of the MGA
framework itself, which calls for new methods to interpret complex (and many) so-
lution spaces.
Practically, the method considers the set of near-optimal designs S, nodes N , and
technologies T . For each design, node and tech (s, n, t), a binary (1, 0) indicator is
assigned according to whether the installed capacity flow_cap(s, n, t) is deployed.
Therefore, this defines the presence condition as:

present(s, n, t) =

{
1, if flow_cap(s, n, t) > 0

0, otherwise
(3.8)

The frequency of presence for each node–technology pair (n, t) is then calculated
as the proportion of near-optimal configurations (spores) in which the technology
is active, expressed as a percentage:

presence_pct(n, t) =

∑
s∈S

present(s, n, t)

NS

× 100 (3.9)

where NS represents the total number of spores under consideration for the given
selection.



3.4. Interface 38

The output is new dataset that can be reshaped into a node–technology appear-
ances matrix, where each row corresponds to a network node and each column to
a flexibility technology. The resulting values, ranging from 0 to 100, indicate how
frequently each technology is installed across all near-optimal configurations. A
value of 100% indicates that a technology is always present at that node and in
each of the many configurations, while 0% implies that it never appears in any of
the scenarios analysed.
It came in handy to introduce a means of these frequency presences to assess
how structurally suitable (ready) each substation is for hosting flexibility assets. It
measures how ’favourable’ a substation is, according to the many systematically
different near-optimal portfolios. Defined as ’infrastructure readiness index - IRI, it
measures the average presence frequency of flexibility technologies at each node:

IRI(n) = 1

|T |
∑
t∈T

presence_pct(n, t) (3.10)

where |T | is the number of flexibility technologies considered. The IRI expresses
the overall maturity of a node’s willingness to install a flexibility supportive infras-
tructure. Nodes with high IRI can be seen as robust investment locations, as they
consistently accommodate flex resources.
Equation 3.11 illustrates a representative snippet of the frequency matrix. In there,
each cell expresses how often a given flexibility option is installed. The last row
reports the corresponding Infrastructure Resilience Index (IRI), obtained as the
average of each column.

Presence =


85.0 42.0 91.7 77.8
100.0 65.0 94.2 88.3
74.0 30.0 82.1 66.0
58.3 0.0 71.2 55.8
90.5 48.1 86.7 79.3
66.7 10.0 60.3 45.0

 (3.11)

Example of node–technology frequency matrix. Each row corresponds to a network
node (e.g. EHO380, MDM380, VSG150, ZBM150, BRW110, OM150) and each column
to a flexibility technology. Values represent the percentage of alternatives in which each

technology is active.

No-regret Alternatives

The no regret investment page offers decisional support with the post interpretation
of the results. It applies a systematic point of view and creates insights considering
the cost optimal and the near optimal solutions as a whole. The displayed figures
are built upon the mathematical concepts of the presence matrix introduced above,
where the percentage of appearances of the four fixed technologies across the en-
tire node-level dataset is found. Frequencies, presences, confidence, and regional
analysis all stem from how many times, in the 115 optimal and near-optimal config-
urations, a specific technology appears at the determined node. For instance, how
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many times at node X is an electrolyser deployed in the 115 systematic different
designs? By acknowledging the potential of these insights, a variety of supporting
visual materials offering different interpretations has been built to directly address
RQ3 presented in Section 1.3.

Presence threshold (MW) All the no regret analytical tools presented below are
interconnected through the presence threshold slider, which defines the minimum
installed capacity considered in the analysis. It allows dynamic filtering and it up-
dates all the subsequent visualisations according to the selected threshold value.
The default setting (0 MW) displays the full range of flexibility deployments across
the near optimal solution space. However, by increasing the threshold, only nodes
with installed capacities exceeding the selected minimum are shown. This intro-
duces another practical layer of results exploration.

Figure 3.9: Presence threshold slider controlling the minimum capacity included in all no regret
analysis tools.

Frequency of appearance -heatmap At first it is depicted a visual representa-
tion of the presence matrix through the deployment of a heatmap. Colour intensi-
ties trace the most robust node-technologies pairs while accounting for the entire
dataset on a scale from 0 to 100% , meaning that technology is present in that node
above the entire solution space ... % of the times. Each column, therefore, stands
for the flexible technology, while rows account for the 271 active nodes. Zoomed-
in windows of the heatmap allow for increasing the visual detail of the nodes and
analysing the deployment at the node level. In Figure 3.11, nodes showing darker
shades across the four technologies can be interpreted as more robust in terms of
flexibility presence. Additionally, by pointing over each cell, the user can also visu-
alise the exact share of a specific technology at a given node; Node, Technology
and Presence values are therefore displayed while pointing at each cell.
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Figure 3.10: Heat map displaying the frequency of appearance with gradient colours

Investment readiness index As introduced above, the infrastructure readiness
index (IRI) measures the average presence frequency of flexibility technologies at
each node. The following graph is its representation. Higher values identify nodes
that consistently emerge considering he four flexible technologies as favourable
locations.

Figure 3.11: Average presence frequency of flexibility technologies at each node
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Presence intensity map In Figure 3.12 the overall SPORES generated per node
per tech, translate onto the national tissue. The bubble size stands for larger val-
ues of the presence matrix; the legend reports average bubble sizes related to
three level of appearances percentages. There, the parameters from the pres-
ence matrix are traced back to their coordinates and the national layout is used
again not anymore to display the capacity but rather their presence scores. The
diameter of the nodes helps to grasp their relevance, larger markers represents
more recurrent installations across the near optimal solution space. This no regret
supporting tool is particularly valuable from a system perspective, it indeed identi-
fies regional clusters and allows for narrowing the flexibility potential to provinces
that therefore will need greater attention.

Figure 3.12: Spatial frequency of flexibility technology deployment across all near-optimal solu-
tions. Marker size represents the frequency of appearance per technology, as derived from the
presence matrix. Legend helps the reader to grasp their meaning.

Confidence distribution This classification in the no regret page distributes the
271 active nodes between three confidence groups. No-Regret (technologies ap-
pearing in more than 90% of feasible solutions), Robust (50–90%), and Consid-
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erable (below 50%). Each bar represents the number of nodes where a given
technology falls within a specific confidence level. Systematic conclusion will be
drawn later in the text. Figure 3.13 reports a representation for reader’s reference.

Figure 3.13: Distribution of confidence classes by technology across all near-optimal solutions.
No- Regret (technologies appearing in more than 90% of feasible solutions),Robust (50–90%),
and Considerable (below 50%).

Regional deployment mix Lastly, the focus narrowed down from the national
perspective to reach the regional level. Therefore, geographical boundaries were
introduced at the coordinates level to both filter the spatial deployment and the
presence of the configurations in the cost optimal and near optimal spaces. Re-
sulting in a flexibility distribution between the 12 Dutch provinces. A portion of the
tool is shown in Figure 3.14.

Figure 3.14: Provincial average presence frequency of flexibility technologies across near-optimal
solutions



4
Results

4.1. Dataset and Model (RQ1)

This section reports the outputs of the data preparation and adjustment process
needed to enable the building of the high-resolution energy system model used in
this research project. The resulting network topology (in terms of network maps
and dataset), as well as the processed demand and supply profiles, represent the
outcomes of this first phase. Together, they allow to draw the spatially detailed
foundation upon which the flexibility solutions explored in the subsequent sections
are built.

4.1.1. Grid Infrastructure Data

The newly obtained PowerNetDataset represents the Dutch high-voltage transmis-
sion network, comprising 283 transmission stations, 359 transmission lines, and
27 different voltage-level interconnections (transformation points). This compre-
hensive dataset forms the backbone of the new optimisation model. It therefore
represents the network as it stands, together with the infrastructure currently be-
ing built. The transmission network operates at four distinct voltage levels: 110 kV
and 150 kV, classified as High Voltage, and 220 kV and 380 kV, classified as Extra-
High Voltage. The 283 stations in the dataset are categorised into three functional
groups based on their state and functionalities:
The 283 stations in the dataset are classified into four categories:

1. Active - 271 stations: Fully operational nodes that participate in the optimi-
sation model with both generation and demand data.

2. Under construction - 10 stations): a subset of the active group. Even
though not present yet, these stations are modelled with full capabilities to
reflect their expected role in future demand and supply forecasts towards
2050. They consist of 5 new 150 kV and 5 new 380 kV installations, all
planned to be operated by TenneT.

43
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3. Transformation - 51 stations: substations that enable interconnection be-
tween different voltage levels, ensuring the flow of power across the 110, 150,
220, and 380 kV layers of the grid. Of these, 42 are active, while 9 serve
purely as transformers, highlighting the need to be identified and included.

4. Connector - 12 stations): stations with no active participation that serve as
purely structural connectors in the dataset. They are included to preserve
network topology but are excluded from optimisation.

Table 4.1 presents the distribution of stations by voltage level and characteristic.

Table 4.1: Distribution of Transmission Stations by Voltage Level and Characteristics

Characteristic 110 kV 150 kV 220 kV 380 kV Total
Active Stations 79 171 3 18 271
Under Construction 0 5 0 5 10
Transformation Stations 9 15 8 19 51
Connector Stations 2 0 6 4 12

Total Stations 81 171 9 22 283

The distribution shows a concentration of stations at the 150 kV level (171 stations,
60.4%), which forms the backbone of the regional transmission network. The 110
kV level (81 stations, 28.6%) serves as the interface with distribution networks,
while the 380 kV level (22 stations, 7.8%) provides the extra-high voltage backbone
for long-distance transmission. The 220 kV level, with only 9 stations (3.2%), is
mainly utilised for long-distance electricity transmission in the north-eastern region
of the Netherlands
Table 4.2 presents a snippet of the entire dataset, reporting geographical coordi-
nates and operational characteristics. The colours distinguish between categories:

• Red indicates stations under construction (UC, all also active).
• Green indicates transformation stations (T), i.e. substations enabling ex-
changes between different voltage levels.

• Blue indicates connector stations (C), i.e. non-active stations that preserve
the network topology without participating in optimisation.

Table 4.2: New PowerNet Transmission Stations Dataset (283 stations)
Active (A) – 271 ; Under Construction (UC, subset of A) – 10 ; Transformation Stations (T) – 51 ;
Connector Stations (C, non-active) – 12

Station ID Code Longitude Latitude Voltage Operator Flags
(°E) (°N) (kV)

b001 AMLM11 6.630 52.357 110 Enexis A
b002 MSKZ11 7.031 52.914 110 Enexis A
b003 RWD110 5.744 53.104 110 Liander A
b004 SKS110 5.774 53.196 110 Liander A

Continued on next page
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Table 4.2 – continued from previous page
Station ID Code Longitude Latitude Voltage Operator Flags
b005 MEE110 6.946 53.124 110 Enexis A+T
... ... ... ... ... ... ...

b254 HSW220 6.188 52.532 220 – T
b255 MDN220 6.946 53.124 220 – T
... ... ... ... ... ... ...

b264 HCL110 6.110 52.470 110 – C
b265 LSM110 5.874 53.190 110 – C

b268 A10380 5.016 52.338 380 TenneT A+UC
b269 A4Z150 4.876 52.429 150 TenneT A+UC
b270 AGP150 5.069 52.775 150 TenneT A+UC
b271 AHM380 4.014 51.952 380 TenneT A+UC
b272 HVL380 3.591 51.450 380 TenneT A+UC
b273 KRH150 5.798 50.971 150 TenneT A+UC
b274 POM380 4.567 51.689 380 TenneT A+UC
b275 SLD150 4.823 52.393 150 TenneT A+UC
b276 SPD380 4.678 52.473 380 TenneT A+UC
b277 WSP150 5.030 52.305 150 TenneT A+UC

Grid Operator Distribution

The Dutch transmission network involves multiple grid operators with distinct op-
erational responsibilities. TenneT, as the national Transmission System Operator
(TSO), manages the high-voltage backbone, while Distribution System Operators
(DSOs), which Stedin is part of, handle regional networks. Table 4.3 shows the dis-
tribution of stations by operator, however, each DSO station typically corresponds
to a paired TSO substation at the same interface node, standing for the physical
connection point where electricity is transferred from the transmission to the distri-
bution network (all the DSO stations also have a TSO counterpart).

Table 4.3: Station distribution by grid operator. The listed DSO stations represent the primary
connection points to the transmission network managed by TenneT. Each DSO station typically
corresponds to a paired TSO substation at the same interface node, where electricity is handed
over from the transmission to the distribution network

Grid Operator Type Number of Stations
Enexis DSO 112
Liander DSO 76
Stedin DSO 44
TenneT TSO 47
WestlandInfra Regional DSO 2
Tbd – 2

Total 283
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Transmission

The physical connections between stations are represented by 359 transmission
lines spanning a total of 5,048 kilometres. These lines operate at the same four
voltage levels as the stations they connect; voltage consistency within each net-
work segment is therefore checked. Table 4.4 summarizes the transmission line
characteristics by voltage level.

Table 4.4: Total number of transmission lines by voltage level

Voltage Level Number of Lines
380 kV 87
220 kV 42
150 kV 98
110 kV 132

Total 359

The 380 kV lines form the backbone of the transmission system, characterised by
longer average distances as they connect major generation centers with load hubs.
In contrast, the 110 kV lines serve more localised distribution functions, resulting
in shorter average lengths. The complete line dataset, including origin-destination
pairs and exact distances, is available in the supplementary materials.

Voltage Interconnections

Critical to themulti-voltage network operation are 27 transformation bridges that en-
able power flow between different voltage levels. These interconnections, detailed
in Table 4.5, primarily consist of transformer stations with minimal geographic sep-
aration between voltage terminals within the same substation complex. The aver-
age separation distance of 0.128 km reflects the typical spacing within transformer
stations as well as the accuracy of this new dataset. For modelling purposes, the
transformer stations have been represented as virtual transmission links without
losses, enabling unrestricted power transfer between different zones (virtual ca-
bles).
Table 4.6 provides a comprehensive overview of the new PowerNetDataset char-
acteristics. This dataset is a significant advancement over previously available
materials, providing researchers with a complete and validated representation of
the Dutch transmission network suitable for further studies. If used properly, it will
prove useful as a foundation for future analyses and contribute to a better under-
standing of the challenges to then create new opportunities in the Dutch power
system.
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Figure 4.1: PowerNet representation of the Dutch high voltage transmission network. The map
shows 283 stations interconnected by 359 transmission lines across four voltage levels: 380 kV
(red), 220 kV (orange), 150 kV (blue), and 110 kV (green). Stations with connector function are
highlighted with green borders, while stations under construction are marked with red borders.
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Table 4.5: Voltage Level Interconnections and Transformer Stations

Station A kV Station B kV Distance (km) Type
MDM150 150 MDM380 380 0.000 Transformer
MEE110 110 MDN220 220 0.025 Transformer
MDN220 220 MDN380 380 0.179 Transformer
DIM150 150 A10380 380 0.026 Transformer
OZN380 380 A4Z150 150 0.045 Transformer
ERP150 150 ERP380 380 0.052 Transformer
ZYV220 220 ZYV110 110 0.084 Transformer
MVL150 150 MVL380 380 0.125 Transformer
HSW220 220 ZWO380 380 0.135 Transformer
ZLH110 110 HSW220 220 0.136 Transformer
EHVO15 150 EHO380 380 0.177 Transformer
BSL150 150 BSL380 380 0.184 Transformer
BGM110 110 BGM220 220 0.184 Transformer
OHK110 110 ODH220 220 0.187 Transformer
HGLO11 110 HGL380 380 0.207 Transformer
VVL110 110 VVL220 220 0.236 Transformer
LLS150 150 LLS380 380 0.270 Transformer
MBT150 150 MBT380 380 0.292 Transformer
VSG150 150 HVL380 380 0.303 Transformer
VHZ150 150 VHZ380 380 0.304 Transformer
DZW110 110 WEW220 220 0.496 Transformer
GT150 150 GT380 380 0.829 Transformer
DOD150 150 DOD380 380 0.918 Transformer
RBB220 220 EOS380 380 1.517 Transformer
EHM110 110 RBB220 220 2.020 Transformer
MDK150 150 POM380 380 2.942 Transformer
VLN150 150 SPD380 380 3.000 Transformer

4.1.2. Model Build

In line with RQ1, this subsection describes how the required data were organised
to construct a model capable of supporting energy planning decisions at high spa-
tial resolution. Here, the above-mentioned set of information was used to create
the model’s core component files. Together, they cover node and technology defi-
nitions, connections within different voltage levels, supporting import material and
both the power and hydrogen transmission networks. This process resulted in a
fully functional optimisation model, readable by Calliope, and thus designed to ad-
dress the remaining research questions. The model architecture leverages YAML
(a human-friendly data serialisation standard for all programming languages [25])
format files, chosen for their compatibility with the Calliope optimisation tool.
The developed Calliope model relies on a structured set of interconnected configu-
ration files. Figure 4.2 defines the model used in this research. Here, each YAML
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Table 4.6: Poweret summary

Network Component Count
Stations
Total 283
Active 271
Under Construction (still Active) 10
Connector Stations (non-active) 12

Transformation points
Transformation 51

Infrastructure
Transmission lines 359
Total network length 5,048 km
Voltage level interconnections 27

Voltage Levels
380 kV 22 stations
220 kV 9 stations
150 kV 171 stations
110 kV 81 stations

file describes a specific component of the system and is linked through a central
model.yaml file, which manages the overall configuration, calls the mathematical
solver, and specifies the optimisation time window. However, each file serves a
different purpose within the model architecture.
To execute the model, Calliope [25] must

Figure 4.2: Structure of the model_files direc-
tory.

be properly installed and configured. The
framework requires Python (version 3.10–
3.12), several scientific libraries such as
Pyomo, Pandas, and Xarray, and a com-
patible optimisation solver such as CBC,
GLPK,Gurobi, andCPLEX. In this research,
the environment was managed through
Conda and theGurobi solver, properly tweaked
following resolution requirements. The fol-
lowing paragraphs investigate these spe-
cific files, reflecting the assumptions car-
ried out to build them.

Model.yaml

The model.yaml file performs several core functions: it imports all files, configures
the temporal and operational settings, and specifies the solver and model param-
eters for the optimisation algorithm.
import:
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- "techs.yaml" # Technology definitions and costs
- "nodes.yaml" # 283 substations with constraints
- "transmission.yaml" # Power line connections
- "transmission_h2.yaml" # Hydrogen network topology
- "connection.yaml" # Voltage level bridges
- "imports.yaml" # Temporal data (demand/supply)
- "scenarios/spores.yaml" # SPORE scenario definitions

Time resolution of the optimisation is defined as follows:
config:

init:
name: Flexibility Model
calliope_version: 0.7.0
time_subset: ["2050-01-01", "2050-06-30"]
time_resample: 6h

It operates in plan mode, meaning it optimises capacity investments and opera-
tional dispatch jointly.
build:

ensure_feasibility: true # Enables unmet demand slack variable
mode: plan # Joint investment-operation optimisation

The ensure feasibility introduces slack variables (auxiliary constraints) for unmet
demand, with the goal to avoid infeasibilities. It makes unmet demand extremely
expensive, so the optimiser will only leave some demand unsupplied if it’s truly
impossible to meet it otherwise. Solver parameters were tuned for computational
stability and efficiency.
solve:

solver: gurobi
zero_threshold: 1e-10
solver_options:

DualReductions: 0
Presolve: 0
Threads: 6
Method: 2
Crossover: 0
FeasibilityTol: 1e-3
OptimalityTol: 1e-4
BarConvTol: 1e-4

Total system costs are minimised through a unified monetary objective function.
By doing so, all cost components are aggregated into a single monetary metric.
parameters:

objective_cost_weights:
data: 1
index: monetary
dims: costs
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Nodes.yaml

The nodes.yaml file translates the substations in the dataset into the nodes of the
model. It defines the technologies available at each node, and any node con-
straints. It uses a useful calliope setting, such as, a set of reusable templates to
avoid duplication during definition.
It came in handy to define three distinctive templates: standard_node_techs, used
for fully operational nodes; pass_through_node_techs, applied to connector sub-
stations (not part of the optimisation); and h2_hub_techs, used for the hydrogen
hub. Templates are referenced by each node through the key template.
templates:

standard_node_techs:
techs: {export_h2, lost_load, dispatchable_pp, hydro_ror,
power_plant_nuclear, solar_pv, wind_offshore, wind_onshore,
battery_flow, battery_system, power_2_h2, gas_2_power, curtailment,
demand_power}

pass_through_node_techs:
techs: {}

h2_hub_techs:
techs: {storage_h2, export_h2, import_h2}

The hydrogen hub acts as the central point for storage and hydrogen flow ex-
change.
nodes:

h2_hub:
longitude: 5.5
latitude: 52.3
station_code: H2HUB
template: "h2_hub_techs"
techs:

storage_h2:
flow_cap_per_storage_cap_max: 0.001
storage_cap_max: 43300000
storage_loss: 0.001

export_h2:
flow_cap_max: 50000

import_h2:
flow_cap_max: 50000

Each node entry contains geographical coordinates, a station identifier, a reference
template, and specific technology constraints.
When flow_cap_max = flow_cap_min, the capacity at that node is fixed rather than
optimised, meaning the model treats it as non investment parameter (fixed). The
following structure repeats across the 283 substations in the dataset, each with its
respective parameters.
nodes:
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WDO150: "# Westdorpe 150kV"
longitude: 3.82931993
latitude: 51.26374943
station_code: WDO150
voltage level: 150
template: "standard_node_techs"
techs:

solar_pv:
flow_cap_max: 887.74
flow_cap_min: 887.74

wind_onshore:
flow_cap_max: 127.44
flow_cap_min: 127.44

Techs.yaml

This section reports the flexible technologies and the h2 stream supporting com-
ponents used in the optimisation. Generation (supply) technologies are defined
with their costs and parameters as well, but are not reported here, as they do not
participate in optimisation (treated as given). Fixing a capacity at a node is done
in nodes.yaml for the relevant technology; the model then treats that capacity as
given rather than an investment decision.
Both battery variants are modelled as storage technologies (carrier_in=carrier_out)
with round-trip efficiency, depth-of-discharge and losses; capacity costs are ap-
plied to the energy component. Power to Hydrogen and Hydrogen to Power are
conversion units (different carriers in/out). More specifics are reported in the follow-
ing code snippets. Asmentioned in detail in section 3.1.3, tech and costs estimates
come from the Danish Energy Agency Catalogue.

battery_flow: # Vanadium Redox Battery - DEA2040
name: "Battery Flow"
base_tech: storage
carrier_in: power
carrier_out: power
template: interest_rate_setter
lifetime: 35 # [years]
flow_out_eff: 0.91 # discharge efficiency
flow_in_eff: 0.91 # charge efficiency
flow_cap_per_storage_cap_max: 0.08 # 12.5h autonomy
storage_discharge_depth: 0.11 # 89% usable capacity
storage_loss: 0.0000625 # [1% per hour]
cost_storage_cap:

data: 390.30 # kEUR per MWh (CAPEX)
cost_om_annual:

data: 2.92 # kEUR per MW per year (O&M)

battery_system: # Lithium-ion Battery - DEA2040
name: "Battery System"
base_tech: storage
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carrier_in: power
carrier_out: power
color: "#4B0082"
template: interest_rate_setter
lifetime: 30 # [years]
flow_out_eff: 0.985 # discharge efficiency
flow_in_eff: 0.975 # charge efficiency
flow_cap_per_storage_cap_max: 0.25 # � 4h autonomy
storage_discharge_depth: 0.11 # 89% usable capacity
storage_loss: 0.0000417 # [per hour]
cost_storage_cap:

data: 299.16 # kEUR per MWh (CAPEX)
cost_om_annual:

data: 8.67 # kEUR per MW per year (O&M)

power_2_h2: # AEC 100 MW Electrolyser - DEA2040
name: "Power to �H"
base_tech: conversion
carrier_in: power
carrier_out: hydrogen
template: interest_rate_setter
lifetime: 25 # [years]
flow_out_eff: 0.653
cost_flow_cap:

data: 425.00 # kEUR per MW (CAPEX)
cost_om_annual_investment_fraction:

data: 0.04 # % of investment per year (O&M)

gas_2_power: # Hydrogen Turbine – DEA 2040
name: "Gas to Power"
base_tech: conversion
carrier_in: hydrogen
carrier_out: power
template: interest_rate_setter
lifetime: 25 # [years]
flow_out_eff: 0.57 # hydrogen → power efficiency
flow_ramping: 0.8 # operational flexibility
cost_flow_cap:

data: 904.78 # kEUR per MW (CAPEX)
cost_om_annual:

data: 3.34 # kEUR per MW per year (O&M)

The import_h2 technology allows the model to request hydrogen from external
systems whenever it is convenient to do so. Hydrogen storage creates a national
sink that balances hydrogen supply and demand internally across all substations.

import_h2:
name: "Hydrogen Import"
base_tech: supply
carrier_out: hydrogen
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flow_cap_max: inf
cost_flow_in:

data: 0.231 # keuro /MWh

export_h2:
name: "Export �H"
base_tech: demand
carrier_in: hydrogen
resource_use_max: 20000
cost_flow_in:

data: 0 # kEUR per MWh

storage_h2: # DEA2040
name: "Hydrogen Storage"
base_tech: storage
carrier_in: hydrogen
carrier_out: hydrogen
storage_cap_max: inf
flow_out_eff: 1 # DEA Round-trip efficiency
flow_in_eff: 0.99
storage_loss: 0.01 # Daily loss rate
storage_initial: 0.5 # Start at 50%
lifetime: 30

Curtailment and lost load provide ”last-resort” flexibility; the latter is purposely heav-
ily penalised.
curtailment:

base_tech: demand
carrier_in: power
resource_use_max: 20000

lost_load:
base_tech: supply
carrier_out: power
lifetime: 20
cost_flow_out: 1e4

Transmission.yaml

The transmission.yaml file defines the four voltage connections between substa-
tions. Each template specifies the available voltage level, nominal transfer ca-
pacity, efficiency, and associated cost per unit of installed capacity and operation.
The configuration is based on the Net Transfer Capacity (NTC) principle, which ex-
presses the maximum permissible power exchange between two connected nodes
while maintaining grid security.
The NTC for each transmission line is defined as:

NTCi,j = Vij · Iij ·
√
3 · cosϕ (4.1)
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where Vij is the line-to-line voltage between nodes i and j, Iij is the maximum
allowable current, and cosϕ represents the power factor (typically close to unity
for transmission systems). This product determines the upper bound for active
power transfer in megawatts. The (n−1) security criterion has also been applied to
account for system reliability
The file defines four transmission templates corresponding to the Dutch transmis-
sion voltage levels: 380 kV, 220 kV, 150 kV, and 110 kV. Each template specifies
the base capacity cost, efficiency, and flow constraints.
templates:

transmission_110kv:
name: "110 kV AC power transmission"
base_tech: transmission
carrier_in: power
carrier_out: power
flow_out_eff_per_distance: 0.99995
lifetime: 60 # years
flow_cap_min: 94.69 # V_L = 110 kV, I = 710 A, (n-1) -> 0.7
flow_cap_max: 94.69

transmission_150kv:
name: "150 kV AC power transmission"
base_tech: transmission
carrier_in: power
carrier_out: power
flow_out_eff_per_distance: 0.99995
lifetime: 60
flow_cap_min: 145.49 # V_L = 150 kV, I = 800 A, (n-1) -> 0.7
flow_cap_max: 145.49

transmission_220kv:
name: "220 kV AC power transmission"
base_tech: transmission
carrier_in: power
carrier_out: power
flow_out_eff_per_distance: 0.99995
lifetime: 60
flow_cap_min: 699.91 # V_L = 220 kV, I = 2 624 A, (n-1) -> 0.7
flow_cap_max: 699.91

transmission_380kv:
name: "380 kV AC power transmission"
base_tech: transmission
carrier_in: power
carrier_out: power
flow_out_eff_per_distance: 0.99995
lifetime: 60
flow_cap_min: 1188.67 # V_L = 380 kV, I = 2 580 A, (n-1) -> 0.7
flow_cap_max: 1188.67
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Each connection between substations uses one of these templates, ensuring con-
sistency in voltage-level modelling and cost assumptions. Each bidirectional link is
defined once and automatically replicated in the opposite direction by Calliope. An
example connection between two neighbouring substations (Amersfoort–Apeldoorn)
is shown below:
links:

AMFA15, APDO15: # Amersfoort � Apeldoorn (150 kV)
template: 150KV_template
length: 49.2 # km
flow_cap_max: 1000 # MW (nominal)
flow_cap_min: -1000 # bidirectional

Transmission_h2.yaml

In the hydrogen configuration, all the 283 substations are connected to the central
h2_hub. The model optimally decides which transmission should be operated de-
pending on the willingness to install a relevant conversion technology in the nodes.
Transmission links follow a similar topology to the above-reported configuration.
templates:

transmission_h2:
name: "Hydrogen transmission pipeline"
base_tech: transmission
carrier_in: hydrogen
carrier_out: hydrogen
color: "#FF00FF"
flow_out_eff_per_distance: 1
flow_cap_min: 0
flow_cap_max: 5000

Connectors.yaml

This yaml file serves to establish the links between the four different voltage lev-
els. There, voltage transformation happens in real life, and these points allow the
model to relocate deficits or surpluses of power within different topology layers.
BY modelling these bridges as virtual_cables with unit efficiency, any bottleneck
related to transformation losses is removed.
templates:

virtual_cable:
base_tech: transmission
carrier_in: power
carrier_out: power
flow_out_eff_per_distance: 1 # zero-loss (distance = 0 km)
lifetime: 60
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Connectors.yaml

Finally, the import.yaml attributes at each of the 271 active substations, their rele-
vant post-processed supply files, while also importing the comprehensive national
demand.
datatables:

supply_A10380:
data: timeseries/techs_supply_A10380.csv
rows: timesteps
columns: [techs]
add_dims:

nodes: [A10380]
parameters: source_use_equals

4.2. Spatial Deployment of Flexible Assets

The interactive platform serves as the environment where all results are visualised.
At this point readers are invited to consult Appendix A, which provides screenshots
of the interface to help connect the way results are exported. This environment
makes cost-optimal, near-optimal and no-regrets results easily available and syn-
chronised within each other. It runs upon Python files and the csvs files stemming
from the mga-spores configurations. The csvs files available as the input to the
platform come from the outputs of parallel different runs performed by Calliope
and the DelftBlue supercomputer. Divided in two main pages, it distributes the re-
sults between exploration of the system design and their collective interpretations.
Exploration focuses on navigating the range of system designs generated by the
SPORES algorithm. It includes cost-optimal and near-optimal solutions, allowing
users to select configurations based on specific system interests, explore them ge-
ographically, and analyse dispatch and power exchanges at the single node level.
Interpretation, on the other hand, provides visual insights from different readings
of the presence matrix (see section 3.4) to understand patterns and relationships
among technologies across all the scenarios as well as graphical representations.
In addition, confidence class analysis is present together along with a regionalisa-
tion presence table distribution of flexible dispatches in the twelve Dutch provinces.
This section will report the system findings by naturally using the platform func-
tionalities. The cost-optimal configuration (spore 0) will be presented both in its
exploration and interpretation dimensions, drawing overall conclusions on the ge-
ographical interdependencies of the optimal solution by analysing spatial patterns
and the technological dispatch in relation to local supply conditions.

Cost-optimal configuration (Spore 0)

Table 4.7 reports the capacity outputs of the flexible technologies in the cost-optimal
configuration, obtained from the initial model run prior to any near-optimal explo-
ration. This configuration identifies a portfolio composed of four flexibility options
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and they represents the least cost available portfolio in order to balance the en-
ergy system. The national wide installed cost optimal flexible capacity reaches
136 GW, distributed across three of the four available flexible technologies. Power
to hydrogen represents the largest share, with 60 GW of electrolysers deployed
mainly across northern and coastal regions as well as inner land high-res (highly
renewable) points. Hydrogen to power follows with 55 GW, while battery storage
accounts for 22 GW. Large battery does not appear in this configuration, as its
contribution remains less optimal while accounting for cost minimisation, they are
indeed more expensive to deploy when compare to the other electrical storage al-
ternative and offers lower discharge efficiencies. This specific design, lacking of
larger storage options, offers a good window from where, benefits of MGA could
be of great value to expand the systematic exploration at other near-optimal alter-
natives.

Technology Capacity [GW]

• Power to Hydrogen 60.00
• Hydrogen to Power 55.00
• Battery Storage 22.00
• Large Battery Storage 0.00

TOTAL 137.0

Table 4.7: Flexible capacity in the cost-optimal configuration (Spore 0).

Figure 4.3 offers a first systematic overview of the optimal decision variables laid
on top of the new network topology. The figure represents the spatial allocation
of flexibility assets within the high-voltage grid and it represents the base case
before any penalty or intensification is introduced; it defines the benchmark com-
pared to which the spores alternatives are generated. In Figure 4.3 each coloured
bubble corresponds to a specific technology, while its position is the geographic
location of the substation where the asset is dispatched. The bubble size denotes
the installed power capacity with size ranges for reading references. Figure 4.3
reveals distinct deployment patterns. For instance, looking at Figure4.4 hydrogen
to power capacity is concentrated in the station nodes of the Randstad area in the
Netherlands, respectively the Noord Holland, Zuid Holland and Zeeland area. It
also appears in the south region of the Limburg province. Therefore, it has a strong
recurrent technology deployment in energy intensive regions. Power to hydrogen
in Figure ?? appears as well in Zuid Holland, due to the large offshore wind instal-
lations (see Figure 4.6c) and, more widely, in Noord Brabant. It is worth noticing
that Figure 4.6c displays several large offshore generation nodes positioned in-
land. This ’counterintuitive’ distribution comes from assumptions embedded in the
ETM, where offshore wind landing points are not constrained directly immediate
to coastline. Instead, they are allocated according to broader research directions
about the technical and economic feasibility of long-distance transmission cables.
The general idea was indeed to directly serve major industrial centres with abun-
dant offshore wind supply. The model positively aligns with these assumptions,
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and it coherently incorporate them into its spatial allocation logic. Figure 4.5 clearly
matches this logic as hydrogen is largely installed in those landing points (see bub-
ble sizes >1GW). In Figure 4.6 battery units emerge sparsely in the national area
but they tend to cluster similarly to p2h2 supporting technologies. The Randstad
area is again involved due to its need of supporting technologies to cope with high
demand and, interesting peaks also appears in the Eindhoven region consistent
with high RES supply deployment as supported in Figure 4.6c and 4.6a as well as
the North and North-East Groningen with high shares of wind onshore and consis-
tent solar supply, see Figure 4.6d 4.6a.

Figure 4.3: Spatial deployment of flexibility technologies in the cost-optimal configuration (Spore 0).
Total installed capacity equals 137 GW.
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Figure 4.4: Spatial deployment of hydrogen to power in the cost-optimal configuration.

Figure 4.5: Spatial deployment of power to hydrogen in the cost-optimal configuration.
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Figure 4.6: Spatial deployment of battery storage in the cost-optimal configuration.

Supply exogenous patterns

(a) Solar PV (b) Nuclear power

(c) Offshore wind (d) Onshore wind

Figure 4.7: Spatial distribution of the exogenous supply options used as model inputs
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SPORES - II3050

Under the NAT2050 scenario reported in Figure 2.1, the II3050 projects 60 GW of
battery storage, 45 GW of Power to Hydrogen, and 20 GW of Hydrogen to Power
by 2050. Benefitting from the MGA application in this research, the exploration of
the near-optimal space generated through the SPORES algorithm, does not repro-
duce a single configuration identical to these values but reveals several SPORES
with comparable proportions and structural patterns. Table 4.8 lists the ten closest
configurations to the II3050. However, it’s interesting to consider how the model
reshapes flexibility installations while sharing the same supply and demand input
values.

Table 4.8: SPORE configurations closest to the II3050 NAT2050 scenario. The table reports the
capacities of the main flexibility technologies, their combined battery deployment, and total flexible
capacity.

SPORE P2H2 (GW) H2P (GW) Total Batteries (GW) Total (GW)
1 49.27 51.16 24.38 124.81
2 32.02 50.20 23.34 105.56
3 20.13 36.78 23.69 80.60
34 42.97 52.47 23.39 118.83
45 47.40 53.31 23.63 124.34
89 41.63 52.57 22.60 116.80
90 29.95 50.66 24.87 105.48
91 20.27 42.20 23.01 85.48
100 38.61 50.93 24.93 114.47
101 29.34 51.74 25.14 106.22

The optimisation implied in this research and grounded by the cost estimates pre-
sented in Section 3.1.3, to match the P2H2 and H2P shares simulated in the II3050,
consistently converges towards systems with lower total battery deployment, see
Table 4.8 column total batteries. Indeed previous results projected a more rele-
vant role for batteries while here, there is more reliance on power to hydrogen and
hydrogen to power installations. This deviation can be partially explained by the
temporal resolution adopted in the model. The six hour timestep directly smooths
the short-term fluctuations and it might be generally blind upon the visibility of in-
tra day variability so, limiting the relative advantage of batteries. As a result, the
model tends to attribute a larger share of flexibility to hydrogen technologies, which
remains better visible.
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4.2.1. Near-optimal alternatives RQ2

Each of the previous system analysis could be performed for a total of 115 system-
atic different flexible portfolios. Indeed, as introduced in Section 3.4.1 the visuali-
sation environment offers the possibility to select a specific SPORES and, all the
relevant supporting graphs change accordingly, picturing a different near optimal
balanced portfolio representing the desired input configurations. This research fos-
tered a total of 114 different near optimal spores designs, the cost optimal solution
counts as the SPORES number 0. The methodology explained in section 3.3 was
largely applied and therefore resulted in a wide set of near optimal alternatives. By
maximising and minimising the deployment of the selected technologies, the near
optimal area was covered and designs that differ in capacity deployments can be
investigated, gaining similar in scope but systematically different conclusions.
Figure 4.8 displays the capacity distribution per technology while, Table 4.2.1 re-
port their values. Again, each of these configurations is a different set up and, at
the node - dispatch level, capacities are therefore different, and power exchanges
within neighbouring nodes follow different patterns as well. This can be seen as
the tangible output of the MGA theoretical workflow, it started with the cost optimal
and it obtained 114 different solutions.

Figure 4.8: Distribution of flexible capacity across all SPORES configurations. Each dot represents
a near-optimal solution, vertical lines indicate minimum–maximum ranges, and diamonds mark the
median capacity for each technology. Abbreviations: P2H2 (Power to Hydrogen), H2P (Hydrogen
to Power), BS (Battery System), LBS (Large Battery Storage)
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To avoid unnecessary repetition and maintain readability, the abbreviations intro-
duced in the caption of Figure 4.8 are used throughout the discussion. Figure
4.8 report the solution space with the distributions of the near-optimal points that
reveal the boundaries and clustering areas of the deployed technologies. These
expanded distributions, positively reveal a coherent and good initial configuration
of the SPORES parallel batches presented in Section 3.3, indeed broader areas
are covered by P2H2 and H2P while technologies that apparently tends to cluster
more, such as BS and LBS, concentrate within narrow and numerically consistent
ranges. On one hand, this result can be seen as a stable and recurring contribution
of battery storage across many near-optimal settings, with deployment levels that
vary little under P2H2 and H2P dispatches. On the other hand, the broader spread
of hydrogen-related options shows a higher sensitivity, where their operation and
installed capacity fluctuates the most.
In the entire set of solutions, P2H2 has a low median with a long upper cap (see
Figure 4.8). Relative close to zero deployment levels of P2H2 push the model to
import hydrogen streams to cope with the H2P needs to fulfil demand. The model
finds more economic viable to buy it rather than in-house producing. Pointing to
lower P2H2 installations, the system designs reported in Table 4.2.1 show that
larger shares of battery capacity are dispatched to compensate for its reduced
contribution. Approximately 60 SPORES solutions deploys close to zero P2H2
shares, therefore balancing the system with the remaining available H2P and bat-
teries flexible technologies. This trend, which might be less evident in Figure 3.6,
becomes clear when cross-referenced with Table 4.2.1.
From a stakeholder perspective, this configuration represents a significant policy
crossroads: whether to rely on domestic hydrogen production or to import it from
external suppliers. Producing hydrogen locally could improve national energy au-
tonomy but it would require substantial infrastructure. In the Netherlands, land
availability is a recurrent topic and its limited spatial availability might push de-
velopers to lean towards different options. From the SPORES analysis, appear
that importing hydrogen may reduce spatial pressure but, it would reinforce the
dependency on external energy markets and long-distance transport routes. In
both cases, the outcome deductible by the MGA implementation to the case study,
points out the need for stronger hydrogen transmission infrastructure as well as
better oriented siting strategies if the national system aims to pursue large scale
hydrogen integration. This could be considered as an hypothetical low in-house hy-
drogen production scenarios from where stakeholders could develop future guide-
lines by also analysing the geographical patterns at the 283 substation level, avail-
able for those h2 scarce SPORES with the support of the near-optimal exploration
page.
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SPORE •P2H2 •H2P •BS •LBS Total

0 60.06 54.64 21.63 0.04 136.37
1 49.27 51.16 18.99 5.39 124.80
2 32.02 50.20 16.05 7.29 105.56
3 20.13 36.78 15.60 8.09 80.61
4 3.63 35.47 12.05 9.85 61.01
5 0.37 30.91 11.39 10.25 52.92
6 0.00 28.49 10.62 10.42 49.52
7 0.00 26.10 13.18 8.38 47.66
8 0.00 23.82 9.24 13.05 46.11
9 0.00 21.72 10.55 12.36 44.63
10 0.00 20.02 10.54 12.88 43.44
11 0.00 18.13 10.73 13.32 42.18
12 45.56 54.06 15.67 6.55 121.84
13 31.19 53.56 15.10 5.35 105.20
14 20.99 43.63 11.26 9.66 85.54
15 13.67 38.71 11.53 9.19 73.10
16 7.70 39.30 11.52 8.26 66.77
17 0.94 36.86 10.44 8.20 56.44
18 0.07 33.56 10.58 8.27 52.48
19 0.00 29.84 8.66 11.41 49.90
20 0.00 27.99 8.58 12.04 48.61
21 0.00 26.31 8.47 12.69 47.48
22 0.00 24.46 8.72 13.08 46.27
23 43.36 53.79 18.85 2.92 118.93
24 33.61 52.53 16.23 4.40 106.76
25 20.53 47.19 19.57 4.11 91.39
26 13.47 40.05 19.32 3.47 76.32
27 6.80 35.69 18.10 3.66 64.25
28 0.64 35.47 16.34 3.89 56.34
29 0.00 31.90 14.74 5.48 52.12
30 0.00 29.11 12.75 7.98 49.84
31 0.00 27.01 13.31 8.10 48.43
32 0.00 25.28 15.42 6.53 47.23
33 0.00 23.83 15.57 6.63 46.03
34 42.97 52.47 19.75 3.64 118.83
35 30.25 51.03 19.10 3.02 103.40
36 19.32 45.45 13.99 7.63 86.38
37 13.50 40.62 13.68 7.52 75.32
38 6.39 40.50 12.00 8.37 67.26
39 0.63 39.75 11.38 8.27 60.03
40 0.31 32.98 8.99 11.25 53.53
41 0.00 29.29 9.16 11.13 49.59
42 0.00 27.70 10.07 10.73 48.50
43 0.00 25.85 11.12 10.30 47.27
44 0.00 23.69 12.54 9.70 45.94
45 47.40 53.31 15.87 7.76 124.33
46 29.46 52.17 12.19 10.98 104.79
47 19.60 44.21 14.64 5.84 84.28
48 13.29 39.04 15.13 5.53 72.99
49 6.91 37.35 12.32 6.59 63.17
50 2.42 35.18 10.18 9.57 57.35
51 0.00 32.99 9.51 9.94 52.44
52 0.00 29.59 8.93 11.52 50.03
53 0.00 27.79 9.72 11.11 48.61
54 0.00 26.16 8.31 12.86 47.33
55 0.00 24.20 9.11 12.78 46.09
56 43.64 53.61 13.81 7.00 118.06
57 28.96 52.04 11.54 10.99 103.52
58 19.07 46.79 13.45 6.64 85.94
59 13.75 42.45 9.48 10.17 75.85
60 7.22 36.93 10.51 9.78 64.44

SPORE •P2H2 •H2P •BS •LBS Total

61 0.57 36.98 9.61 9.60 56.76
62 0.00 33.07 7.94 12.04 53.05
63 0.00 30.11 7.03 12.98 50.12
64 0.00 28.37 6.75 13.89 49.01
65 0.00 26.28 8.25 12.99 47.52
66 0.00 24.54 8.66 13.19 46.39
67 41.75 54.16 19.14 3.72 118.77
68 29.87 52.63 14.34 6.44 103.28
69 19.88 47.94 13.54 5.77 87.13
70 13.71 40.93 12.46 7.04 74.15
71 6.31 40.09 10.48 9.17 66.04
72 0.68 39.30 8.59 9.67 58.24
73 0.00 35.07 9.03 9.65 53.74
74 0.00 33.10 6.80 12.33 52.23
75 0.00 29.96 7.89 12.22 50.07
76 0.00 27.21 7.24 13.78 48.23
77 0.00 24.95 8.08 13.83 46.86
78 42.01 54.69 16.34 5.17 118.20
79 32.79 53.92 13.23 6.01 105.94
80 20.01 47.19 13.97 6.71 87.88
81 13.49 41.97 14.60 7.05 77.11
82 6.43 39.92 14.18 6.04 66.57
83 0.66 39.37 12.42 7.68 60.13
84 0.00 33.09 12.38 7.39 52.86
85 0.00 29.97 12.14 8.18 50.30
86 0.00 27.65 10.01 11.24 48.90
87 0.00 26.24 10.19 11.37 47.80
88 0.00 24.13 10.57 11.64 46.33
89 41.63 52.57 20.49 2.11 116.80
90 29.95 50.66 17.05 7.82 105.47
91 20.27 42.20 14.97 8.04 85.48
92 13.33 38.94 12.80 9.12 74.19
93 6.55 35.94 13.24 8.60 64.33
94 1.16 35.94 9.41 11.47 57.98
95 0.00 32.68 8.52 12.50 53.70
96 0.00 29.76 6.59 14.42 50.77
97 0.00 28.49 7.39 13.37 49.26
98 0.00 26.34 7.89 13.50 47.73
99 0.00 24.88 7.63 14.21 46.72
100 38.61 50.93 21.35 3.58 114.47
101 29.34 51.74 22.12 3.02 106.22
102 22.85 52.00 16.39 9.34 100.59
103 22.19 51.35 19.86 6.41 99.80
104 43.04 53.92 18.34 2.61 117.91
105 28.89 52.05 16.28 5.23 102.44
106 21.91 46.69 15.79 5.47 89.85
107 12.95 43.32 14.03 4.49 74.79
108 6.98 37.59 12.00 6.70 63.27
109 1.01 37.43 11.00 6.84 56.27
110 0.00 33.63 11.07 7.71 52.42
111 0.00 29.93 9.85 10.18 49.95
112 0.00 27.86 10.56 10.24 48.66
113 0.00 26.29 11.04 10.30 47.63
114 0.00 24.83 9.92 11.90 46.65
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4.2.2. No-Regret Analysis

As reported in Section 3.4.2 and Section 1.3.3, this section extends the exploratory
work conducted under RQ3 by applying the visualisation platform to the identifi-
cation of No-Regret Investments. The aim is to recognise flexibility options that
consistently appear across near-optimal configurations and, therefore, represent
confident system components that consistently appear in the set of alternatives re-
ported in Table 4.2.1. To explore its full functionalities, two complementary cases
are presented. The first analyses the full near-optimal space without any capacity
threshold. The second applies an indicative 200 MW threshold, therefore remov-
ing from the presence matrix logic (see section 3.4.2), less relevant deployments
while isolating the most recurrent and system nodes. Strategic locations more in
line with real system sizes can therefore be inspected.
Figure 4.9 compares side by side the frequencies of appearances from the pres-
ence matrix. It is indeed evident the important functionality of the presence thresh-
old. By increasing the deployed capacity of the set under analysis, the focus nar-
rows towards fewer nodes that display clearer geographical patterns and more
consistent physical meaning see Figure 4.11 for reference. Figure 4.10 compares
the full set of unfiltered nodes with the one threshold applied. The high-voltage
substations that remain active even at higher capacity levels are reported in Fig-
ure 4.9b. From Figure 4.11 (a) and (b) H2P capacity patterns analysed for the
Spore 0 configurations are confirmed trough the lens of their consistent presence
in the many solutions. It clusters in the Randstad area, Zeeland and south Limburg
region; moreover, its solid presence is remarked by Figure 4.11(b) where larger in-
stallations (>200MW) are again prominent in the most industrialised areas. While
more spread throughout the national tissue, BA and LBS confirms their peak pres-
ences in similar location than H2P (see Figures 4.11(f) and 4.11(h). The model
is therefore complementary deploying H2P and batteries to jointly support those
area of the Netherlands. P2H2 even if it comes with generally lower absolute val-
ues (bubble sized) it is mainly deployed in the similar location of Wind Offshore
supply (See Figure 4.6c).

(a) Heatmap, baseline (no threshold). (b) Heatmap, threshold ≥ 200 MW.

Figure 4.9: Frequency of appearance per node and technology. Darker tones indicate higher
presence across SPOREs.
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(a) Presence intensity map, baseline (all technologies).

(b) Presence intensity map, threshold ≥ 200 MW (all technologies).

Figure 4.10: System-wide presence. Marker size denotes frequency across SPOREs.
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(a) H2P, baseline. (b) H2P, threshold ≥ 200 MW.

(c) P2H2, baseline. (d) P2H2, threshold ≥ 200 MW.

(e) Battery Storage, baseline. (f) Battery Storage, threshold ≥ 200 MW.

(g) Large Battery Storage, baseline. (h) Large Battery Storage, threshold ≥ 200 MW.

Figure 4.11: Technology-specific presence maps, baseline vs threshold.
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Looking at the confidence class distribution, the 200 MW threshold reduces the
amount of No-Regret and Robust options, those with appearances above 90% and
between 50% and 90%. However looking at the comparison proposed in Figure
4.10, the 200MW threshold filters out the more widespread installations keeping
those that are structurally more relevant, indeed local or generally less dispatched
units are excluded. Recurrent patterns highlighted above still confirms their dom-
inance at a higher MW threshold. In terms of numbers, H2P shows the greatest
stability even with the higher MW filter threshold, 13 nodes remain ’no-regret- and
24 ’robust’, this can be confirmed while visually comparing Figures 4.11 (a) and (b)
with reference to their bubble sizes. P2H2 on the other hand has low appearances
values, yet this might be due to the model preference to import h2, highlighted in
Section 4.2.1 as a response to many SPORES alternatives not deploying it. How-
ever, from a geographic comparison P2H2 appears in those wind-intensive sites.
Battery Storage (BS and LBS) lose almost all of their more robust no-regret nodes.
Batteries remain widespread but rarely reach capacities that would make invest-
ments above 200 MW no-regret. This suggests that their role remains local and
complementary while the model it confirms more inclined to deploy hydrogen sup-
porting technologies. From a planning and policy perspective, these results do not
suggest to install less flexibility, but to install it better in more accurate locations,
see Figures 4.11 (b) (d) (f) (h).

Technology No-Regret (>90%) Robust (50–90%) Considerable (<50%) Total Nodes
Battery Storage 60 112 98 270
Large Battery Storage 26 70 169 265
Power to Hydrogen 0 8 219 227
Hydrogen to Power 46 69 154 269

Table 4.9: Distribution of confidence classes by technology in the baseline case. Without the
threshold, most nodes remain active, indicating widespread flexibility presence but less concentra-
tion around dominant large-scale sites.

Technology No-Regret (>90%) Robust (50–90%) Considerable (<50%) Total Nodes
Battery Storage 2 13 193 208
Large Battery Storage 2 8 168 178
Power to Hydrogen 0 2 133 135
Hydrogen to Power 13 24 165 202

Table 4.10: Distribution of confidence classes by technology for the 200 MW threshold case. The
higher capacity filter reduces the total number of active nodes, revealing only the most recurrent
large-scale deployments.
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Top 20 scoring stations

Applying another dynamic filter it is possible to display the no regret tools for the
higher IRI as introduced in Section 3.4.2. This allows to directly identify, between
the many, the high-voltage substations that have a better predisposition to host the
four flexible assets. Once removed the 200MW threshold and applied the Top20
nodes, new system figures are available to support the findings. Table 4.11 reports
the list of substations. The provincial distribution in Tables 4.12, retrieved from the
presence tools in the No-Regret page, reveals how flexibility is distributed in terms
or presences at the provinces scales; this could be seen as another strong indicator
to facilitate DSOs and TSO policy making. Limburg, Zeeland, and Zuid-Holland
stand out for their higher recurrence of hydrogen to power and batteries. These
regions host some of the most energy intensive and industrialised areas of the
Netherlands. There, flexibility is more about securing stability for heavy industry
and port infrastructures. In the northern and eastern provinces, such as Groningen
and Gelderland, flexibility appears in a more hybrid form. Further south, Noord-
Brabant and Overijssel maintain good battery deployment but with the support of
Figure 4.10 flexibility is more at the local level.

Table 4.11: Nodes with highest frequency of flexible technology presence, indicating strong poten-
tial for hosting flexibility assets.

Code Name Voltage (kV)
SMH380 Simonshaven 380 380
AP150 Alphen a/d Rijn 150 150
KRH150 StratioDSM-2 Kerensheide 150
AK150 Arkel 150 150
DZF110 Delfzijl Farmsum 110 110
TNZ150 Terneuze 150 150
WDO150 Westdorpe 150 150
ZBM150 Zaltbommel 150 150
DDZ150 Dordrecht Zuid 150 150
GD150 Gouda 150 150
DDM150 Dordrecht Merwedehaven 150 150
HW150 Amsterdam Hemweg 150 150
TL150 Tiel 150 150
HPT150 Hapert 150 150
SS150 Sassenheim 150 150
WYW150 Wijdewormer 150 150
GNBH11 Groningen Bornholmstraat 110 110
UD150 Uden 150 150
HGLB110 Hengelo Boldershoek 110 110
GNHK110 Groningen Van Heemskerckstraat 110 110
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Table 4.12: Provincial distribution of flexibility technologies across the top 20 high-IRI nodes. The
table shows the percentage of nodes within each Dutch province retrieved from the No-Regret
page.

Province Nodes Battery Large Battery P2H2 H2P Avg Presence
Limburg 1 47.8% 66.1% 0.0% 100.0% 53.5%
Zeeland 2 68.2% 37.8% 0.0% 98.2% 51.1%
Zuid-Holland 8 54.1% 52.5% 3.0% 84.3% 48.5%
Groningen 3 65.8% 41.4% 7.5% 52.8% 41.9%
Gelderland 1 60.9% 47.0% 6.1% 47.0% 40.2%
Noord-Holland 2 48.3% 49.6% 3.5% 57.8% 39.8%
Noord-Brabant 2 57.8% 28.2% 10.0% 57.8% 38.5%
Overijssel 1 59.1% 60.0% 3.5% 23.5% 36.5%
Netherlands Total 20 38.5% 31.9% 2.8% 43.5% 29.2%



5
Discussion

5.1. Interpretation of Results

The cost optimal SPORE 0 solutionmainly deploys power to hydrogen (60GW) and
hydrogen to power (55GW). A rather less relevant role is covered by the battery
storage system (22GW), both at the smaller and the larger scale. However, relying
too heavily on a single technology (hydrogen in this case) may expose the system
to higher vulnerability and reduce its overall resilience, thus leading to suboptimal
system performance. However, expanding the exploration, thus, benefitting from
the MGA applied to flexibility deployment in the high-voltage grid in the Nether-
lands, Section 4.2.1 highlighted that approximately 60 SPORES solutions deploys
close to zero P2H2 shares. Therefore, balancing the system with the remaining
available H2P and batteries flexible technologies while relaying on the imports to
fulfil internal h2 needs. From a stakeholder perspective, this configuration brings
a critical strategic choice, deciding between building upon domestic hydrogen pro-
duction capacity or depending on imported supplies from abroad. Producing hydro-
gen domestically could indeed improve national energy resilience, but it would also
demand extensive new infrastructure in a country where land scarcity is a concern.
This considerations might steer developers towards alternative strategies.
In energy modelling, it usually a good practice to not firmly rely on the system de-
signs situated at the extremes points. Instead, attention should be given to more
balanced configurations. A diversified mix of flexibility options is therefore impor-
tant to overcome limitations of traditional cost-optimal approaches previously dis-
cussed in Section 1.3.2. To this extent, this thesis was developed in parallel to
address such cases, where solutions may be cost optimal but not necessarily bal-
anced in terms of spatial distribution, operational viability or social acceptability.
Identifying and accounting for the near-optimal alternatives together with tailored
insights as the one presented in Section 4.4.2, provides a way to explore con-
figurations that offer both economic efficiency and improved structural and social
acceptability, adding greater interpretive value to the overall validity of the results.
With the SPORES framework implemented in this research, the available solu-
tion space has been expanded, and it has therefore become possible to identify,
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analyse, and evaluate alternative configurations. Table 5.1 reports some of the
most balanced SPORES configurations identified by the newly introduced model.
SPORE 3 emerges as a good balance with proportional rates of H2 production (in
house resilience) and H2 consumption together with batteries . SPORE 91, 15,
92, 14, and 48 maintain a good balance with slight variations. Compared to the
other balanced configurations, SPORE 100 has an increase in hydrogen related
capacity while keeping batteries at similar levels. Looking at Table 3.6, SPORE
100 is obtained with a different scoring method (iterative penalities, see Section
3.3). Substantially, looking at Figure 5.1 the integer method seems to deploy larger
shares of P2H2 and H2P with more dissimilarity but a higher widespread capacity
when compared to SPORE 3. Indeed, SPORE 3 concentrates resources in less
geographical points.

Table 5.1: Highlighted balanced SPORE configurations, representing diversified mixes of flexibility
options.

SPORE P2H2 (GW) H2P (GW) Batteries (GW) Total (GW)
3 20.13 36.78 23.69 80.60
91 20.27 42.20 23.01 85.48
15 13.67 38.71 20.72 73.10
100 38.61 50.93 24.93 114.47
92 13.33 38.94 21.92 74.19
14 20.99 43.63 20.92 85.54
48 13.29 39.04 20.66 72.99

(a) SPORE 3 — Random method (b) SPORE 100 — Integer method

Figure 5.1: Comparison of the spatial deployment of flexibility assets between the random (SPORE
3) and integer (SPORE 100) weighting methods. The random configuration shows a more dis-
tributed and exploratory pattern resulting in higher shares of H2 related technologies, while the
integer one concentrates clusters in a few structurally favourable nodes.

Spatially, consistent patterns across the 0-114 systematically different SPORES



5.1. Interpretation of Results 74

suggest hydrogen to power technologies appears well distributed among the Rand-
stad area, particularly in the densely populated and industrial neighbourhoods of
Amsterdam, Den Haag and Rotterdam, see Figure 4.4. Peaks also appear in
Zeeland, the southern part of Limburg province (Maastricht), Eindhoven and are
present as well in the northern regions of the Netherlands. Cost optimal and near
optimal solutions together, therefore deploy power to hydrogen in industrialised
areas as well as strategic connection points with neighbouring countries (south
Limburg - Cologne). From a stakeholder perspective, it might be worth consider-
ing the concentration of hydrogen production in these areas, where deployment
could strengthen the currently limited supply side and improve the hydrogen man-
agement chains. Moreover, this concentration could drive investments and oper-
ations towards the development of a dedicated hydrogen transmission network,
efficiently designed to serve these ’robust’ regions.
Battery systems remain widely spread in the inland regions. However, even if less
deployed in the cost optimal solution (spore 0), their relevance becomes evident
when expanding the dataset to include the near optimal configurations. With the
support of the no regret tools which results have been presented in Section 4.2.2
and Table 4.9, battery storage emerges as a clear ’no-regret’ investment option
with a consistent presence above 90% across 60 of the 271 nodes. Even more
remarkable is that it appears in 112 nodes with a presence frequency between
50% and 90%. Furthermore, it is present in all the remaining nodes, even if below
50%. Geographically, the presence intensity map (Figure 4.10) also displays a
large presence of battery systems in approximately the same locations where hy-
drogen to power is mostly needed. This indeed reflects the lack in these regions
of sufficient supporting technologies to cope with high demand needs. However,
their presence is not limited to these areas alone. In Figure 4.6 batteries also rep-
resent the preferred flexibility option across less energy intensive regions, such
as Noord-Brabant, Utrecht, Flevoland, Drenthe, Overijssel. Hydrogen production
trough electrolysis, even if largely deployed in terms of capacity by the cost op-
timal solution (60GW), its presence is evenly spread across the national tissue
(see Figure 4.5). Friesland and Zeeland sees the largest deployment in frequency
of appearances. However, a good interpretation is offered when considering the
cost optimal solution alone, see Figures 4.4 4.5 in the Noord-Holland, Zuid-Holland
and Zeeland provinces, p2h and h2p are clearly complementary distributed. Sep-
aration of production and utilisation is evident again, with the peak in hydrogen
demand used to produce electricity, being in the Randstad. Due to an intensive
wind deployment see Figure 4.6c, the north Zeeland is seen as the ideal and most
strategic location to massively deploy hydrogen production hubs to support the
Randstad needs. It is straightforward to conclude that the h2 transmission assets,
flowing between south Zeeland up to Noord Hooland, require careful and forward
looking evaluation.
From a power network perspective, while examining the IRI index for evaluation
purposes, an interesting pattern emerges among the top 100 nodes with the high-
est IRI values. IRI simultaneously indicates both readiness to host flexibility sup-
port and, conversely, depicts an actual need for systematic reinforcement. How-
ever, as a result of a internal post processing, it appears among the top 100 nodes
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with the highest IRI, that 81 of those belong to the 150kV network, while 16 to
the 110kV and only three to the higher voltage levels. High voltage topology, see
the 150kV network, mainly deployed in the southern Netherlands provinces, the
north east is covered by the 110kV and 220kV instead. This reflects a call for ac-
tion by the Dutch high voltage system operator TenneT, to canalise investments
and improve coordination with regional DSOs (such as Stedin), responsible for the
medium/low voltage infrastructure branching from those high-voltage connections.
It’s worth acknowledging that the availability of multiple near-optimal configurations
has proven again valuable to offer a broader perspective, resulting in generating
this system-level perspective.

5.2. Research highlights

The main highlights of this research are summarised below, presented as con-
cise responses to the research questions introduced in Chapter 1. Each section
summarises the key findings and methodological contributions obtained with its
respective question.

RQ1 – Data and model: what data are needed and how to build the required
energy system model?

• This research produced a high resolution model based on the Dutch
high-voltage grid with 283 substations, their interconnections, and a
portfolio of four flexible technologies, namely, battery storage, large
battery storage, power to hydrogen and hydrogen to power to distribute
flexibility with foresight at 2050.

• Calliope is an open-source optimisation framework developed to sup-
port the design and analysis of complex energy systems. It provides a
reproducible architecture for modelling generation, demand, and trans-
mission across multiple spatial and temporal dimensions.

• The optimisation run over a six-month horizon with a six-hour temporal
resolution, so the model could capture an entire seasonal cycle while
keeping the computational efforts feasible.

• Previous methods introduced in the II3050 report, based on simulation
techniques, have been reinforced by using Calliope, therefore, intro-
ducing optimisation as the mathematical foundation to build the new
energy system model.

• The network novelty allows nodes to be considered as part of an inter-
connected system of different voltage layers. Intra node relations have
been considered as well.

• Once made available, the complete high voltage network dataset devel-
oped in this research will be open for further academic and operational
use both within Stedin and Academia boundaries.
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• The workflow adopted (data collection, preprocessing of demand and
supply, technology parameters, YAML model assembly) provides a re-
producible framework.

• The technology datasets and the Calliope optimisation tool used in
this research are fully open and reusable. They can be directly im-
plemented by others, and this study could be used as a reference for
the methodological choices and assumptions applied.

RQ2 - Cost optimal, near optimal and no regret tools: how to explore alter-
natives efficiently and turn them into recommendations?

• The cost-optimal solution concentrates on power to hydrogen 60GW
and hydrogen to power 55GW, with 22GW of battery contribution; near
optimal exploration can help to match stakeholder preferences and in-
vestigate different system designs.

• The comparison with the II3050 scenario in Section 4.2 reveals that,
while sharing the same input assumptions, the optimisation introduced
in this research leads to a structurally different balance between flexi-
bility technologies. The system converge to configurations with higher
hydrogen capacities and lower battery deployment. This can be influ-
enced by the six-hour temporal resolution adopted in the model, which
smooths short-term fluctuations and limits the operational ’visibility’ of
batteries. The importance of exploring near-optimal alternatives to un-
derstand the robustness and interpretive depth of system configura-
tions stays.

• The near-optimal analysis trough the tailored input SPORES assump-
tions, resulted in a well distributed set of flexibility technologies across
the 114 generated SPORES. The dispersion of values in Figure 4.8 re-
veals a good exploration of the alternatives such as a coherent cluster-
ing of battery technologies around consistent numerical ranges. P2H2
and H2P exhibit broader variability.

• Around 60/114 SPORES converge towards configurations with very low
Power-to-Hydrogen (P2H2). This is facilitated by the model’s capability
to buy and import hydrogen; in these cases, external hydrogen supply
becomes economically favourable compared to local production. From
a stakeholder perspective, this configuration represents a significant
policy crossroads: whether to rely on domestic hydrogen production or
to import it from external suppliers.

• In the No-regret analysis with 0MW threshold proposed in Table 4.9 and
all nodes included, Battery storage emerges as a solid no regretoption:
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present in 60 nodes in more than 90% of solutions, in 112 nodes within
50–90%, and with less than 50% presence in the remaining nodes. Hy-
drogen to power emerges as another solid no regret option: present in
46 nodes in more than 90% of solutions, in 69 nodes within 50–90%,
and with less than 50% presence in the remaining nodes.

• In the No-regret analysis in Table 4.10 , the 200MW threshold narrows
the set and it highlights those options with grater structural relevance
by filtering out the more widespread installations. Recurrent patterns
still confirm their dominance at a higher MW threshold; H2P shows the
greatest stability even with the higher MW filter threshold, 13 nodes
remain ’no-regret- and 24 ’robust’. P2H2 on the other hand has low
appearances values, yet this might be due to the model preference to
import h2. Battery Storage (BS and LBS) lose almost all of their more
robust no-regret nodes. Batteries remain widespread but rarely reach
capacities that would make investments above 200 MW no-regret.

• The spatial overlap in the presence intensity map (see Figures 4.6 and
4.4), between hydrogen to power and battery systems reflects a com-
plementary relationship, as both technologies tend to cluster in areas
with high demand.

• Hydrogen to power, see Figure 4.11 (a) (b) is mainly concentrated in the
Randstad and other industrial areas such as Amsterdam, Den Haag,
and Rotterdam, with additional peaks in Zeeland, Zuid-Limburg such
as the cities of Maastricht and Eindhoven.

• Power to hydrogen through electrolysis, see Figures 4.11 (c) (d) is
widely distributed, with more recurrence in Friesland and Zeeland; the
cost-optimal layout shows spatial complementarity between P2H siting
(for example north Zeeland with strong wind) and H2P utilisation (Rand-
stad).

• The highlighted spatial complementarity between production (power to
hydrogen) and utilisation nodes calls for dedicated hydrogen transport
infrastructure. Strengthening the hydrogen transmission system along
the Zeeland–Randstad corridor should therefore become a policy prior-
ity.

• From a power network perspective, 81 of the 100 most suitable high-
voltage substations for hosting flexible technologies, belong to the 150
kV network, 16 to the 110 kV, and only three to the extra high-voltage
levels. This calls for stronger coordination between TenneT and re-
gional DSOs to reinforce medium and low voltage connections to then
strengthen future flexibility deployment.
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RQ3 – Interactive visualisation: how to make results intuitive and actionable
for stakeholders?

• The interactive platform developed in this research provides full access
to all the model outputs through a single environment accessible with
one click.

• The first page, near optimal designs, provides capacity and system in-
sights with a complete overview of each system configuration. It dis-
plays the national map of flexibility deployment and the dispatch of the
selected individual nodes, as well as their installed capacity. Every
spore is accounted for, and each represents a distinct system configu-
ration.

• The second page, no regrets analysis, aggregates the results from all
configurations to identify consistent flexibility patterns across the cost
and near optimal alternatives. It uses interactive and supporting tools
to assess where each technology repeatedly appears in the whole so-
lution set.

• The presence threshold slider manages all no regret analytical tools
displayed by filtering nodes above a defined minimum capacity; all the
tools are dynamically updated.

• The presence intensity map visualises the frequency of technology de-
ployment across all nodes, where marker size reflects how often each
technology appears in the solution space. The filtering options isolate
individual technologies or combinations, helping to show spatial com-
plementarities.

• The infrastructure readiness index (IRI) aggregates presence frequen-
cies per node.

• The provincial deployment table exposes regional clusters and sup-
ports province level strategies. It additionally helps DSOs to investigate
their area of interest.
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5.3. Limitations and Future Research

This thesis developed an energy optimisation framework tailored to the largest
dataset yet employed to represent the Dutch network. By delivering tangible re-
sults, it demonstrated their validity and created an interactive environment where
complex outputs are translated into intuitive figures.
However, several limitations and research trajectories remain open. For example:

• The research objective is at the high voltage transmission level. Nevertheless,
insights into local flexibility dynamics remain limited. Future research should
extend the analysis to the DSO level to reflect local grid conditions and analyse
potential investment at smaller scales.

• Current model results do not incorporate capacity line expansions scenarios.
Model runs with x2 and x3 line expansions have been tested but resulted in
non optimal configurations. This would required a new extensive SPORES
and technical parameters adjusting procedures to test and find input settings
what will results in feasible solutions.

• Recent work introduced by authors in [17] describes five progressive stages
for applying MGA in energy planning, with each level adding more depth and
value to the analysis. It serves as a guiding framework to move beyond conven-
tional optimisation approaches for those interested in doing so. Level 1 calls for
recognising that cost based optimisation may miss other valid solutions. Fol-
lowing, level 2 suggests that testing key model assumptions could be simply
validated with smaller MGA checks on those specific hypotheses. Level 3 sug-
gests the use of MGA to identify and acknowledge that there are many different
options to achieve the shared objectives, meaning, to look for those different
technology mixes and locations that can meet the same goals (e.g balance
the energy system). Level 4 pushes the analysis to interpret the entire map
of the near optimal plausible alternatives to understand and draw conclusions
on their interdependencies. Even though not addressed directly, the method-
ology applied in this research naturally incorporated these steps: MGA was
considered valuable from the beginning, while near optimal portfolios and sup-
porting mechanisms to interpret the spores interdependencies were introduced
and evaluated. However, level 5 pushes the analysis even further, introducing
collaboration with policymakers, DSOs, and industry to translate results into
shared and realistic planning strategies. Future developments of this research
should aim toward this direction.

• The model depends on exogenous supply data from the ETM scenario, where
generation capacities and profiles are fixed. Developing new supply datasets
would reduce such dependencies.

• The model, implemented in Calliope v0.7.0, becomes computationally demand-
ing when solving for an extended time frame. Newer versions allow technolo-
gies to be fixed as constants rather than variables in the objective function,
reducing the problem size and therefore improving computational efficiency.
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• The platform could be extended to automatically export numerical and graphical
deliverables for each configuration. A third page ’export scenario’ could be
added where system choices carried out in the previous pages, will result in
the print of supporting material such as, text file, csv, graphs.

• The current formulation focuses solely on cost objectives. Non economic fac-
tors such as social acceptance, environmental externalities, and network rein-
forcement costs should be incorporated, given the MGA capabilities to do so.

• Future realistic operational developments should initially focus on regional hy-
drogen transmission analyses, starting from areas where the network appears
more centralised according to the present results. Starting smaller, for exam-
ple, would foster a more pondering assessment before scaling up to the entire
national system.

• In energy planning, it is common practice to represent transmission capacity
through simplified power transfer limits rather than detailed power flow equa-
tions. This allows to still capture the intra-node synergies while keeping the
model computationally feasible. However, power flow studies could improve
the operational-level analysis. Future developments could extend this frame-
work by integrating OPF-based methodologies as well as validation tools like
pandapower. Previous work analysed in Chapter 2 might come particularly
valuable to this extent.

• The six hour six months timestep adopted in this model, smooths short-term
fluctuations and might be generally blind to the intra day variability, thus lim-
iting the relative advantage of batteries. Under such conditions, the model
shifts flexibility adoption to hydrogen technologies. Future work should run
new systematic optimal end near optimal designs at higher resolution. In doing
this, the newer Calliope capabilities might facilitate the computational solve by
parametrising the exogenous inputs thus leaving more computational space to
run at a finer temporal windows.



6
Conclusion

Finding an answer to the initial research questions made it possible to build and
represent an entire energy modelling system.

This research project introduced a systematic andmathematically differentmethod
to inspect deployment strategies of flexible technologies in the Dutch high voltage
power grid. Stemming from a completely new and more accurate network dataset,
purposely developed for this thesis, as well as tailored pre processing procedures,
it resulted in an enjoyable energy modelling tool with a dedicated environment to
explore its results.

It fully embraces the rapidly expanding field of modelling to generate alterna-
tives. Indeed, the key innovation introduced was the expansion of the focus to
look beyond the traditional cost optimal solution. The shared goal was to under-
stand how flexibility can be distributed in different ways than from the ii3050. In the
course of this thesis, it has been reached, together with all the fundamental steps to
obtain a system capable of creating these solutions and then making them visually
accessible.

With this master’s thesis, a small but meaningful step toward a good way of
approaching energy system modelling, by looking beyond the optimal and valuing
exploration, transparency, and creative ways of understanding complex systems,
has been made.
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A
Energy planning platform

Figure A.1: Interactive platform developed to explore flexibility deployment and near optimal alter-
natives in the Dutch power grid at 2050.
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