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CHAPTER 1

M AGNETIC Resonance Imaging (MRI) is a popular non-invasive imaging technique
that is frequently used in many hospitals for medical diagnosis, as it can provide

high-resolution three-dimensional images of the anatomy of the body. One of the ma-
jor challenges in MRI is to produce high-quality images within a short scanning time.
High quality images improve the diagnostic value as tissue contrast is enhanced, and
the short scan time improves the patients’ comfort and it minimizes the risk of patient’s
movements that degrade the scan. This dissertation will address both challenges sepa-
rately by focusing on improving the quality using dielectric pads in Part I, and reducing
the image reconstruction time to obtain the scan using a preconditioner in Part II.

1.1. DIELECTRIC PAD DESIGN
MR images are acquired by placing the patient in a very strong static magnetic field,
referred to as the B0 field. Hereafter, a circular polarized magnetic field is transmitted
(the B+

1 field) in the form of a pulsed radio-frequency (RF) field that induces precessing
magnetization in the human body. Subsequently, the precessing magnetization induces
a voltage in the receiver coils that contains information about the tissue. Finally, this
information is processed to obtain the final scan [1–3]. Systems with a magnetic field
strength of 1.5 and 3 tesla are frequently used in the clinic, but there is great interest in
7 tesla systems as well. This is because the signal to noise ratio (SNR) increases with the
B0 field strength, and subsequently, the improved SNR can be traded for a higher spatial
resolution, reduced scanning times, or a combination of both [4, 5].

Despite an improved SNR, there are also a number of image artifacts that are encoun-
tered which are not present on low-field systems (B0 ≤ 1.5T). The fundamental cause is
the frequency of the transmitted RF field, referred to as the Larmor frequency, that in-
creases linearly with the B0 field strength. The reduced wavelength becomes compara-
ble with the dimensions of the human body and may introduce interference effects. As a
consequence, the B+

1 distribution becomes less homogeneous, resulting in areas with a
very low transmit efficiency, i.e. a very low B+

1 per square root of input power [6]. These
regions translate into signal voids in the final scan where the tissue contrast is reduced,
and hence these voids decrease image quality, as is illustrated in Figure 1.1a.

The RF homogeneity and efficiency can be improved by active and passive shimming
techniques that tailor the magnetic field, such that in a certain region of interest (ROI)
the B+

1 distribution becomes uniform and the transmit efficiency focused. Active shim-
ming uses multiple coils in the form of transmit arrays and requires additional (expen-
sive) hardware, i.e. coils and RF amplifiers. The field can then be tailored by driving each
coil element with a specific current and phase such that RF interference patterns can
be controlled [7]. Unfortunately, when the number of channels is large, these patterns
cannot be predicted and controlled completely, and hence it leads to uncertainty in the
power deposition in the human body which compromises safety [8, 9]. These arrays are
therefore not used clinically, except when body coils with a limited number of channels
(typically two) are used and this occurs only at 3T systems where almost all systems are
dual transmit.

Alternatively, passive shimming can be applied in the form of dielectric pads, as de-
picted in Figures 1.1b and 1.1c [10, 11]. These pads are easy to use and have low pro-
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(a) (b)

(c)

Figure 1.1: Abdomen scan obtained with a 3T system. Signal voids are encountered at the posterior and an-
terior of the body due to interference effects and the anatomy cannot be seen clearly anymore (a). The image
quality can be restored by placing a dielectric pad on the posterior and the anterior of the body (b). Dielectric
pads that are typically used in practice (c).

duction costs [12]. They have a very high relative permittivity (up to 300) and induce a
secondary magnetic field that allows for tailoring the B+

1 field. Typically, the dielectrics
are placed in the vicinity of the ROI and as a result they change the RF distribution. Fur-
thermore, because these pads do not increase the power deposition in the human body,
they are safe to use [13–15].

Unfortunately, the design of a dielectric pad is not straightforward; it depends on
the patient’s dimensions and gender, but also on the antenna configuration, the B0 field
strength, and the region of interest to be imaged. For any given scenario, it is generally
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not known what the optimal geometry and constitution of the pad are, nor is it always
obvious where to place the dielectric. In addition, if it is not well designed, the image
quality might even decrease because of a wrongly focused transmit efficiency outside
the ROI or an inhomogeneous field distribution in the ROI.

Conventionally, a parametric design study is carried out using commercially avail-
able electromagnetic field solvers. The RF response is evaluated for a large number of
pad realizations, i.e all pads have a different geometry, location, and constitution [15].
Afterwards, a suitable pad for a specific application can be selected. The simulations
are time intensive, as they involve a very large computational domain encompassing a
heterogeneous body model and a coil model. As the parameter space is very large and
the simulations are time-consuming, it takes hours, days, or even weeks to find a pad
for a single application. Furthermore, as the parameter space is too large to be covered
completely, the resulting design is not necessarily the optimal one.

In contrast to the conventional trial-and-error method, a more elegant procedure
would be to find the dielectric pad’s properties and geometries by following an opti-
mization methodology. Therefore, we need a forward model that offers more freedom
than the currently available electromagnetic fields solvers, in terms of geometry design
and available electromagnetic field data. In addition, the computations should be fast,
because they form the building blocks of the design approach. Finally, this approach
should allow us to optimize the B+

1 field for different regions of interest and for different
MR configurations to develop a flexible tool.

The aim for this first part of the thesis is to create a user-friendly tool that assists in find-
ing the optimal dielectric pad that improves MR image quality for an arbitrary ROI. This
tool should be easy to use and should also be flexible towards different body models and
antenna configurations. In addition, the solution is to be computed within seconds on
standard PC.

1.2. ACCELERATING RECONSTRUCTIONS
Clinical MR scans generally take about 30 to 60 minutes, which can be a tedious proce-
dure for the patient; hence it is a matter of comfort and convenience for the patient to
reduce these long scanning times. Furthermore, this reduction also minimizes the risk
of patient movement, which corrupts the scan. During a scan, data is acquired that in-
volves multiple measurements, where for each measurement a series of sample points
is obtained. After a certain number of samples, determined by the Nyquist criterion, the
signal (in our case related to the anatomy) can be reconstructed completely [16]. There-
fore, the acquisition is complete when this criterion has been satisfied. At this stage, a
k-space data matrix has been built that can easily be converted to an actual anatomic
image by efficient Fourier transformations [17].

The scanning times can be reduced by parallel imaging (PI) techniques that exploit
the spatial selectivity of the receiver coils. With PI the number of measurements can be
structurally reduced, which implies that the data is undersampled and hence the Nyquist
criterion is violated. This results in aliasing artifacts in the image, as is depicted in Fig-
ure 1.2a [18]. The true image can still be recovered, however, by using the spatial encod-
ing information from the individual coil elements as is shown in Figure 1.2b. Using this
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(a) (b)

(c)

Figure 1.2: Reconstruction results for different undersampling methods. The structured undersampling leads
to aliasing as shown in (a), in contrast to the fully sampled reference image from (b). For random undersam-
pling the artifacts behave like noise (c).

technique, the undersampling factor can theoretically be made as large as the number
of coil channels [19].

Even higher undersampling factors are possible using compressed sensing (CS) tech-
niques. With this method, the k-space is undersampled randomly and the resulting
aliasing artifacts behave like noise, as is illustrated in Figure 1.2c. Subsequently, the
missing information can be recovered by adding a priori information [20]. This addi-
tional information relies on the sparsity of the image in a certain transform domain. It is
possible to combine PI and CS, both of which reduce scanning times [21].

Although the actual acquisition time is reduced, the efficient Fourier transformation
cannot be used anymore as it introduces aliasing or noise-like artifacts. Therefore, more
sophisticated reconstruction algorithms are required. Consequently, the reconstruction
time increases considerably. Besides the inability to simply use efficient Fourier trans-
formations, reconstructing the image is not straightforward as it is an ill-posed problem
with a non-unique solution. Normally, this issue is resolved by converting it to a well-
posed system first, which can be accomplished by regularization in the form of addi-
tional constraints that promote sparsity. This makes sense, as from a priori information
we know that the image should be sparse in a certain domain. The degree of sparsity can
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be set through regularization parameters, which are non-unique and have to be chosen
properly to obtain satisfactory image quality and convergence [22, 23].

Many different methods can be used for reconstruction, each having its own
strengths and weaknesses [24, 25]. On the whole, it is a trade-off among stability,
image quality, and convergence. Stable methods are likely to be slow, and fast methods
might experience unstable behavior for certain regularization parameter choices. For
adoption in the clinic, unstable methods cannot be used obviously, as they might
be unreliable [26]. Although many methods are promising, many of them are either
unstable or not very fast.

The aim for the second part of the thesis is therefore to accelerate a frequently used sta-
ble PI and CS reconstruction method by designing an easy to construct and easy to im-
plement preconditioner that reduces the reconstruction time considerably.

1.3. THESIS CONTRIBUTIONS AND OUTLINE
The key contributions of this dissertation are summarized as follows:

1. Efficient forward modeling of dielectric pads by setting up a scattering formalism
for a pad-independent domain and a pad-dependent domain [Chapter 2].

2. Reduction of the complexity of the forward modeling formalism by using
projection-based model order reduction [Chapter 3].

3. Implementation of a pad design tool that assists the user in finding a suitable di-
electric pad for an arbitrary ROI [Chapter 4].

4. Development and implementation of a circulant preconditioner that accelerates
MR reconstruction [Chapter 5].

The outline of the thesis is presented in Figure 1.3 and is divided into two parts: improv-
ing image quality and improving reconstruction times.

The first part will start by introducing the currently used methods for modeling di-
electric pads in Chapter 2. In the same chapter, a new model is presented that will form
the framework for the remainder of the thesis. The developed method is not yet suitable
for effective pad design due to its complexity, and hence this complexity will be reduced
using model order reduction techniques in Chapter 3. Furthermore, an optimization
approach is proposed that will allow for practical and efficient pad design. Chapter 4
continues with this approach and introduces a design tool that can be used by the MR
community.

The second part concentrates on the reconstruction aspects of MRI. In Chapter 5, a
currently available stable method called the Split Bregman algorithm is described. This
algorithm is accelerated with the proposed design of a preconditioner. Subsequently, its
performance is tested on a number of MRI data sets.
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Figure 1.3: Visual outline of the thesis. The dissertation consists of two parts: dielectric pad design and accel-
erating ronstructions.
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DIELECTRIC PAD DESIGN





2
FORWARD MODELING OF

DIELECTRIC PADS

In this chapter we present a methodology that aims for fast electromagnetic field com-
putations to model a wide range of dielectric pads in a typical MRI configuration. This is
accomplished by using the Sherman-Morrison-Woodbury formula that allows us to model
a dielectric pad as a small perturbation of a large static computational background do-
main, encompassing the human body model and the RF coil. The solution methodology,
simulations, and measurements that validate our approach are presented.

This chapter has been published in IEEE Transactions in Medical Imaging.
(Volume: 36, Issue: 2, 2017)
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CHAPTER 2

2.1. INTRODUCTION

C LINICAL Magnetic Resonance Imaging (MRI) is a well known noninvasive imaging
modality to create detailed images of the human body. The generation of a high

quality image can be extremely challenging, however, especially when imaging body
parts that are large compared with the wavelength of the Radio-Frequency (RF) field.
Constructive and destructive interference effects of the RF field can severely degrade the
quality of an MR image reducing its use for interpretation and diagnostics [1, 2]. Inter-
ference effects may be particularly predominant for abdominal and cardiac imaging at
3T and neurological, abdominal, and cardiac imaging at 7T [3–6]. The corresponding
RF frequencies for 3T and 7T are 128 MHz and 298 MHz, respectively. As an illustration,
Figure 2.1a shows the effects of interference in an head scan of a patient obtained with
a 7T MRI system. Dark signal drop-outs or signal voids are clearly visible and certain
parts of the anatomy can simply not be distinguished. Furthermore, the increased spa-
tial variations in the RF excitation field may also lead to an increase of the local Specific
Absorption Rate (SAR).

The RF excitation field is characterized by the forward circular polarized B+
1 field,

defined as

B+
1 = Bx + jBy

2
,

where j is the imaginary unit, and Bx and By are the transverse x- and y-components
of the frequency-domain magnetic flux density [7]. As is well known, this field flips the

(a) (b)

Figure 2.1: Head scan of a patient in a 7T (298 MHz) MRI system. (a) Signal drop-outs due to wavelength effects
in a scan made without any dielectric pad. (b) Scan made with a dielectric pad on the right side of the head.
The pad clearly resolves the signal-drop out problem in the right hemisphere of the brain. The pad that is used
has a relative permittivity of about 300 with dimensions 18×18×1 cm3. The scans have been acquired using
a 7T Philips Achieva, where the head coil has been used for transmission and a 32-channel receive coil for
reception. For this scan a T2-weighted turbo spin echo sequence has been used with an echo time of 44.8 ms,
a pulse repetition time of 6300 ms, and a 120◦ refocusing pulse. 17 slices were acquired with a field-of-view of
107×240×198 mm3. A parallel imaging acceleration factor of 1.5 has been used leading to a total scan time of
164 s.
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spins of the protons during an MRI experiment. Spatial inhomogeneities in the B+
1 mag-

nitude will therefore directly translate into spatial variations in the nutation of spins, and
corresponding signal intensity in the final image.

RF shimming is a technique to tailor the RF field interference effects with the use of
a transmit array or pTx (active shimming) or by using dielectric materials (passive shim-
ming). Active shimming may require advanced coil designs and additional hardware.
Dielectric shimming, on the other hand, makes use of high-permittivity dielectric pads
which are relatively cheap to fabricate and can be readily integrated into the existing
system architecture without any additional hardware [8].

The materials that are used for these pads typically have relative permittivity values
of 80 and higher. In particular, calcium titanate powder mixed with deuterated water
can be used if pads with a relative permittivity of about 110 are needed, while barium
titanate powder mixed with water with a relative permittivity 300 is used if higher dielec-
tric permittivities are required [9].

In practice, dielectric pads are placed in the vicinity of that part of the body to be
imaged and a properly designed pad induces a secondary magnetic field that increases
the signal in the regions of interest [10–16]. An example of the impact of a dielectric pad
on the resulting MR image is illustrated in Figure 2.1b, where a dielectric pad has been
placed on the right side of the head. The signal drop-outs have been eliminated and
detailed structures within the right hemisphere of the brain are now clearly visible. An
additional advantage of dielectric shimming is that the RF power required for excitation
of the spins can be significantly reduced. In [17] for example, it is shown that by including
dielectric pads in the MRI measurement setup, the RF power can be reduced by 50%
while increasing the Signal-to-Noise ratio. Furthermore, dielectric pads do not influence
the B0 field distribution noticeably [13].

Designing optimal pads is a nontrivial task, however, since the homogeneity of the
B+

1 field is strongly dependent upon its parameters (location, constitution, and geom-
etry). Pads are also patient specific and strongly depend upon the particular body part
that is being imaged [18]. Furthermore, a straightforward design approach in which the
B+

1 field is determined for a range of pad parameters (so-called parameter sweeps) is far
from practical, since for each realization the B+

1 field inside the ROI needs to be com-
puted using three-dimensional electromagnetic field solvers resulting in huge computa-
tional costs and computations that can even take days to complete.

In this paper, we propose a solution to this problem by computing the B+
1 field in

an efficient manner. This efficiency can be achieved by exploiting the fact that the di-
mensions of a dielectric pad are small compared with the dimensions of the background
model (the body, RF shield, and RF coil). Specifically, since the body, the RF shield, and
the RF coil remain fixed during pad design, we show that different pad realizations form
low-rank perturbations of the background model. By computing and storing RF field re-
sponses in this background model during an offline stage, the RF fields resulting from
a wide range of different pads (pads with different locations, sizes, and constitution)
can be evaluated very efficiently during an online or design stage using the Sherman-
Morrison-Woodbury formula [19]. By following this approach, significant speed-up fac-
tors can be achieved. In particular, for a realistic three-dimensional MRI imaging exper-
iment of the human head, we show that speed-up factors ranging from 35 (for “large"
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pads) to 2000 (for “small" pads) can be achieved if we compare the computation times
of our method with the time that is required to compute the RF field for each realiza-
tion separately using FDTD. Furthermore, we also show that the Sherman-Morrison-
Woodbury formula allows us to efficiently carry out a sensitivity analysis in which vari-
ations in the B+

1 field due to variations in a pad (permittivity, geometry, etc.) can be
determined. Finally, we validate our solution methodology by comparing computed B+

1
fields with measured B+

1 data in vivo.

2.2. MODELING PROCEDURE FOR DIELECTRIC PADS
As an illustrative example, we consider a typical MRI measurement setup in which the
objective is to image an ROI in the right hemisphere of the brain at 7T. The configuration
of interest is illustrated in Figure 2.2 and consists of an RF shield, an RF coil, and a human
body model. To compute the RF field in this configuration, we need to solve Maxwell’s
equations

−∇×H+σE+ jωεE =−Jext

and

∇×E+ jωµH = 0,

where E and H are the desired electric and magnetic field strengths and Jext is the external
electric-current density describing the impressed current within an RF coil [20]. The
conductivity, permittivity, and permeability within the domain of interest are given by σ,
ε, and µ=µ0, respectively, where µ0 is the permeability of vacuum.

Given the complexity of this configuration, we can use a three-dimensional numer-
ical solver to determine the RF fields. In practice, this amounts to solving the spatially
discretized Maxwell system

(D+N) f =−q (2.1)

at a particular Larmor frequency ω [21]. In the above equation, D is the spatial differen-
tial operator containing the discretized curl operators occurring in Maxwell’s equations
and

N=C+ jωM

is the medium matrix with C a medium matrix containing the conductivity values within
the configuration and M a medium matrix containing the permittivity and permeability
values within the computational domain. Furthermore, f is the field vector containing
the components of the electric and magnetic field strength and q is a source vector con-
taining the components of the external electric current densities as its elements. Finally,
the order N of the discretized Maxwell system is equal to the total number of primary
and dual grid edges in the computational domain [22]. We note that this order is typ-
ically very large especially for realistic three-dimensional configurations as considered
here, usually it is in the order of 106−7. Directly solving the discretized Maxwell system
for different medium matrices as is required when pads of different sizes and constitu-
tion are included can therefore be prohibitively expensive.
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Figure 2.2: The three-dimensional simulation setup used for 7T MRI imaging of the brain. The configuration
consists of an RF shield, an RF coil, and a human body model.

Dielectric pads are small compared to the dimensions of the computational domain,
however, and inclusion of a dielectric pad therefore forms a small rank perturbation of
the discretized Maxwell system of Eq. (2.1), since the position of the human body and
the RF coil remain fixed. We take this observation into account by introducing the pad
matrix

Npad = ∑
k∈P

[
σpad(rk )+ jωεpad(rk )

]
ekeT

k ,

where P = {k1,k2, ...,kP } is the index set of the pad, ek is the kth canonical basis vector,
rk is the position vector of the kth grid edge that is occupied by the pad, and σpad(rk )
and εpad(rk ) are the conductivity and permittivity of the pad on the kth grid edge. The
discretized Maxwell system for a configuration including a pad then becomes(

D+N+Npad
)
f =−q.

We exploit the fact that the number of grid edges occupied by the pad P is much
smaller than N to efficiently compute only the small rank perturbation of the system
due to a dielectric pad by using the Sherman-Morrison-Woodbury formula (see [19], for
example). To make this explicit, let us introduce the N -by-P pad support matrix S as

S= [
ek1 ,ek2 , ...,ekp

]
and the reduced P-by-P pad matrix Ñpad = diag(n) with its argument being a P-by-1
vector given by

n= [
σpad(rk1 )+ jωεpad(rk1 ), ...,σpad(rkP )+ jωεpad(rkP )

]T
.
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Here, the operation diag(n) constructs a square diagonal matrix with the elements of the
vector n on its main diagonal. Using these definitions, we can also write Npad = SÑpadST

and the discretized Maxwell system with pad included becomes(
A+SÑpadST )

f =−q, (2.2)

where we have introduced the discretized Maxwell operator for a configuration without
any pad as A = D+N. Clearly, computing fno pad = −A−1 q amounts to determining the
RF field in the case that no pad is present.

To find the RF field when a pad is present, we now formally solve Eq. (2.2) and apply
the Sherman-Morrison-Woodbury formula. We obtain

f =−(
A+SÑpadST )−1 q

= fno pad +Z(IP − ÑpadST Z)−1ÑpadST fno pad,
(2.3)

where IP is the identity matrix of order P and where we have introduced the so-called
library matrix Z =−A−1S, which is a tall N -by-P matrix. Every column of S represents a
unitary current forced on one edge of the pad domain, note that the birdcage does not
act as a primary source in this case. The resulting fields in the domain of interest and
the pad domain are stored in one column of matrix Z. We refer to this matrix as a library
matrix, since it can be computed offline before any actual pad inclusion. The formula
we presented here does not involve any approximations. However, the inverse in the
formula should be non-singular, which is normally satisfied.

Equation (2.3) provides us with an explicit expression for all electric and magnetic
field components on the entire domain of computation. To obtain the B+

1 field values
inside the head, we need to extract the relevant components from the field vector f. Sup-
pose, for example, that the j th entry of the field vector f is equal to the x-component of
the magnetic field strength at a particular location in a region of interest inside the head,
while the kth entry of the field vector contains the y-component of the magnetic field
strength at the same location. The B+

1 field at this particular location of interest is then
given by B+

1 = rT f, where r is the recorder vector for the location of interest given by

r= µ0

2
(e j + jek ).

The B+
1 field inside an entire region of interest can be obtained from the field vector by in-

troducing a recorder vector for each location. Storing these recorder vectors as columns
in the N -by-Nr recorder matrix R, where Nr is the total number of locations inside the
region of interest, the B+

1 field inside this region is obtained as

b+
1 =RT f.

Substituting Eq. (2.3) into the above equation, we arrive at

b+
1 = b+;no pad

1 +RT Z(IP − ÑpadST Z)−1ÑpadST fno pad, (2.4)

where b+;no pad
1 = RT fno pad is the B+

1 field inside the region of interest in the case that
there is no pad present.
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The main advantage of using the above formulation is that as soon as the library
matrix Z is available, the B+

1 field response to a wide variety of dielectric pads can be
computed very efficiently, since for each particular pad only the second term in Eq. (2.4)
needs to be evaluated. In fact, Eq. (2.4) suggests that we can split the design procedure
for dielectric pads into an offline stage and online design stage. During the offline stage,
we first identify a pad design domain that surrounds the particular part of the body to be
imaged. This domain consists of all grid edges that can be occupied by a pad and we sub-
sequently construct the library matrix Z for the selected pad design domain. As soon as
the library matrix is available, we start the online design stage by computing the B+

1 field
using Eq. (2.4). We note that when the dimensions of the evaluated pad are smaller than
that of the pad design space, we can further reduce the order of our system by including
only the relevant columns of the support matrix S and library matrix Z. Therefore, the
evaluation of the second term amounts to solving a system of at most order P and, as
pointed out above, this order is much smaller than the order N of the total system. Con-
sequently, we can very efficiently evaluate different RF fields due to a wide variety of pads
with different shapes and constitution. Moreover, since P ≪ N direct solvers can often
even be used and this has the additional advantage that the computation time required
to determine the scattered fields due to the presence of a pad becomes independent of
the contrast of a pad.

To summarize, we propose the following RF field modeling procedure to compute
electromagnetic fields in dielectric shimming:

1. Offline stage

• For a given part of the human body in which the electromagnetic field is re-

quired, first compute the b+;no pad
1 field and the field fno pad, which are the

fields in absence of any dielectric pad.

• Identify a pad design domain where a pad can be positioned.

• Construct the library matrix Z by filling its columns one by one, that is, com-
pute Z(:,k) = −A−1ekp for all kp ∈ P . Here ekp is one of the columns of our
support matrix S. In our case we solve this system using a commercial FDTD
solver since this is known to solve electromagnetic problems efficiently, al-
though other methods are possible as well. If Z(:,k) is computed using an
iterative solver, then Z(:,k −1) may serve as an initial guess.

2. Online stage

• Compute the B+
1 field for a pad of any desired shape or constitution using

Eq. (2.4). For a pad covering P grid edges, only a small P-by-P system needs
to be solved. A particular pad should be located within the preallocated pad
domain, of course, since this domain determines the columns of matrix S.

In Section 2.4 we illustrate the performance of this solution procedure and compare the
computed B+

1 fields with measurements as well.
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2.3. SENSITIVITY ANALYSIS
The RF field changes at a particular location within the human body when a pad is in-
cluded in the background configuration, or when the shape, location, or constitution of
the dielectric pad changes. To investigate these effects, we carry out a sensitivity analysis
using the Sherman-Morison-Woodbury expression for the RF field as given by Eq. (2.3).
This expression allows us to explicitly compute the Jacobian of the field with respect to
changes in the shape, location, and contrast of the pad. In particular, writing b+

1 = b+
1 (n)

for the field as given by Eq. (2.4), we have

b+
1 (n+δn) ≈ b+

1 (n)+J(n)δn

for a sufficiently small contrast perturbation vector δn, where J is the Jacobian given by

J(n) =RT Z(IP − ÑpadST Z)−1 diag(w1, w2, ..., wm) (2.5)

with wm = eT
km

f(n) for m = 1,2, ...,P . The perturbation vector δn allows us to change the
properties of the pad. We observe that with the library matrix Z at our disposal, again
only a small system of order P has to be solved to determine the first-order variations
in the field due to changes in contrast function values of the pad. This allows us to effi-
ciently carry out a pad sensitivity analysis.

Moreover, the availability of the Jacobian also enables us to carry out full nonlin-
ear Gauss-Newton-type minimization schemes for optimal dielectric pad design, see
e.g. [23]. Although this will be something for future work, a first step towards pad de-
sign could be to describe a desired B+

1 field and define a cost function as

C (n) = ∥b+
1 (n)−b+;desired

1 ∥2
2.

This cost function can be minimized for a particular pad (n) in an iterative fashion by
linearizing b+

1 (n) and solving the normal equations to find an update direction. Specifi-
cally, having a current reconstruction ni available, a new reconstruction is computed via
the update direction ni+1 = ni +δn, where

δn= [
JH (ni )J(ni )

]−1 JH (ni )ϵ(ni ).

Here ϵ(ni ) = b+
1 (ni )−b+;desired

1 denotes the error of the desired field with respect to the
field obtained with a pad for iteration i .

2.4. SIMULATIONS AND MEASUREMENTS
We illustrate the performance of our dielectric shimming procedure by evaluating the
design of dielectric pads for 7T MR imaging of a local ROI in the right hemisphere of the
brain. The simulated configuration is depicted in Figure 2.2 and consists of the head
and shoulders of the male body model “Duke” from the Virtual Family dataset [24], a 7T
16-rung high-pass birdcage coil with a radius of 15 cm operating in quadrature mode
at 298 MHz, and an RF shield with a radius of 18 cm. The configuration has a 5 mm3

resolution. The coronal and transverse slices used to depict the B+
1 fields inside the head

are shown in Figure 2.3.
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Figure 2.3: Coronal and transverse slices through the head used to depict the B+
1 fields.

In the offline stage of our solution procedure, we first compute the fields b+;no pad
1

and fno pad. Figure 2.7 (left column) shows the magnitude of this B+
1 field within the

transverse and coronal slices. Interference effects of the 298 MHz RF field at 7T are re-
sponsible for the signal drops on the left and right-hand side of the head. The fields are
computed by Remcom XFdtd software (v.7.5.0.3, State College, PA, USA). The computa-
tional domain in XFdtd consists of nearly 106 grid edges and we have set the stopping
criteria of the simulations to −40 dB convergence.

Having the background field available, we now have to identify a pad design domain.
Since the objective of the MRI experiment is to image an ROI in the right hemisphere of
the brain, we define a pad design domain of 18×18×1 cm3 on the right side of the head
as indicated by the outer square area in Figure 2.4. The thickness of the design domain
is taken to be 1 cm to comply with typical thicknesses of pads used to image parts of the
human head. Subsequently, the library matrix Z is constructed using Remcom’s XFdtd
software. To investigate in which areas the B+

1 field can be affected by a dielectric pad,
we now first carry out a sensitivity analysis using the Jacobian of Eq. (2.5). Specifically,
we select a particular grid edge in the pad domain (the pth grid edge, say) and determine
the normalized sensitivity of the B+

1 field inside the head by computing the pth column
of the Jacobian and normalizing this column with respect to the entry with the largest
absolute value. Figure 2.5 shows the magnitude of the sensitivity of the B+

1 field with
respect to changes in the indicated pad grid edge. This result clearly shows that the B+

1
field can indeed be affected by placing a dielectric pad on the right-hand side of the head.
Sensitivity analyses for other pad grid edges can be carried out in a similar manner.

To illustrate the efficiency of the proposed method, and to illustrate that the degree of
efficiency depends on the dimensions of the pads, we compute the B+

1 fields for a series
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Figure 2.4: Pad design domain of 18×18×1 cm3 located on the right-hand side of the human head. The domain
has a thickness of 1 cm. Pad sizes range from 100% (the pad design domain is completely filled) to 20%. All
pads are centered around the midpoint of the pad design domain.

Figure 2.5: Normalized sensitivity of the B+
1 field inside the head with respect to changes in a single grid edge

located within the pad domain. This grid edge has been indicated with the arrow.

of pads with different sizes. Specifically, we start with a pad that completely occupies the
pad design domain and subsequently reduce its size down to 20% of the volume of the
original full-sized pad (see Figure 2.4). For simplicity, we consider homogeneous pads
only and fix the dielectric properties of the pad (εpad = 285ε0 F/m, σpad = 0.25 S/m), but
we stress that our formulation allows for inhomogeneous pads with varying medium
parameters as well (see Section 2.2).
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Figure 2.6: Speed-up factors for concentric square pads with increasing volumes. The pad volume ranges from
20% of the volume of the preassigned pad domain to 100% of the pad domain (pad domain is completely filled).

To indicate what speed up factors can be achieved with our approach, we compare
the CPU time t1 required by Remcom’s XFdtd package to compute the B+

1 field for a par-
ticular pad with the CPU time t2 needed by the online stage of the design procedure as
proposed in this paper. Specifically, for a particular pad the speed up factor is defined as
S = t1/t2. All CPU times are measured on a Windows 64-bit machine with an Intel Xeon
CPU X5660 @ 2.80 GHz (dual core) with 48 GB internal memory and two NVIDIA Tesla
K40c GPU’s.

Figure 2.6 shows the speed up factor for a series of concentric dielectric pads with
increasing volumes. For the smallest pad with a volume of 20% of the volume of the total
preassigned pad domain, the proposed method is approximately 2000 times faster than
XFdtd. The speed up factor clearly decreases as the volume of the pad increases and
we end up with a speed up factor of 35 for a pad that completely fills the pad domain
(CPU times t1 = 300 s and t2 = 8.5 s). To illustrate the effectiveness in similar configu-
rations, the work presented in [25] where two pads with dimensions 10×14×1 cm3 are
used would have been computed in 6 s (S = 50). And the work presented in [26] where
three pads with dimensions 7×7×0.5 cm3 are used would have been computed in 0.3 s
(S = 1000). These large speed up factors can be achieved since we computed the library
matrix Z beforehand during the offline stage of our solution procedure. For the realistic
3D background model considered in this experiment (see Fig 2.2), we constructed almost
6000 library vectors stored as columns in matrix Z, where each vector results from one
column of our support matrix S (see Section 2.2). This process takes approximately 26
hours on the above mentioned machine when computed using the GPU, but as soon as it
is available for a fixed background consisting of the human body, RF coil, and RF shield,
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it allows for very efficient pad design and B+
1 fields corresponding to a wide variety of

pads of different sizes and constitution can be determined in a very efficient manner.
Finally, we validate our design procedure by comparing the simulated B+

1 field with
direct XFdtd computations and measurements. The second and third column of Fig-
ure 2.7 show the magnitude of the B+

1 field in the coronal and transverse plane as com-
puted by XFdtd and the proposed solution procedure for a pad that completely occupies
the pad design domain (εpad = 285ε0 F/m, σpad = 0.25 S/m). The exact location of the
pad has been indicated in Figure 2.7. The right column of Figure 2.7 shows the rela-
tive error map in percent. The field computed directly by XFdtd and the field computed
using Eq. (2.4) essentially coincide, since Eq. (2.4) is an identity. However, we do see
some small errors in the error map, most of them are located in the low field areas in
the vicinity of the dielectric pad. This is for some part expected, since the relative error
is depicted. Remaining differences between the methods may arise from the finite con-
vergence time used to construct the library matrix Z, which then causes small errors to
accumulate globally. Nevertheless, the differences remain very small (at most 1%). Fur-
thermore, Figure 2.9 shows the measured B+

1 map obtained in vivo for the dielectric pad
used in the simulations. The map was obtained using a DREAM B+

1 mapping sequence
with a 2.5 mm2 resolution [27], a 5 mm slice thickness and preparation and imaging flip
angles of 50◦ and 10◦, respectively. The measured B+

1 maps are clearly in good agreement
with the simulated B+

1 maps and the destructive interference effect at the right-hand side
of the head has been reduced significantly due to the application of the dielectric pad.
Discrepancies between the measured data and simulated data arise from modeling er-
rors that are common in both simulation methods (different body model, position of the
body model, pad position, etc.) and are not related to the proposed solution method.

To show that our method holds for other constitutions of the pad as well, we take
some unusual high values for the conductivity and permittivity, i.e. σpad = 2.5 S/m and
εpad = 1000ε0 F/m. In Figure 2.8 the magnitude of the electric fields are shown for a
transverse slice of the head when computed with FDTD (second column) and with our
proposed method (third column). The relative error map is shown in the right column
where we see that the introduced errors are still very small.

2.5. CONCLUSION AND DISCUSSION
In this paper, we have presented an efficient forward modeling methodology for the ef-
ficient design of dielectric pads in MRI. During the design procedure, the background
consisting of the RF shield, coil, and human body do not change, while the dimensions
of the dielectric pads are small compared to the dimensions of the background model.
Consequently, the pads form a small rank perturbation of the computational domain
and the resulting RF fields can be efficiently determined by exploiting the well-known
Sherman-Morrison-Woodbury formula. We stress that this formula is an identity and
hence does not involve any approximations, provided that the inverse that we need to
compute does exist. Our numerical experiments show that by following this approach,
significant speed-up factors can be achieved compared with straightforwardly comput-
ing the RF field for each pad realization. Obviously, when the pad becomes excessively
large the method might be less efficient since this would not yield a small rank pertur-
bation with respect to the computational domain. However, such configurations are not
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Figure 2.7: Magnitude and error map of the B+
1 field in the coronal and transverse slices through the head.

Left column: magnitude of the B+
1 field without any pad, second column: B+

1 field as computed by Remcom’s
XFdtd, third column: magnitude of the B+

1 field as computed by the proposed solution procedure, right col-
umn: relative error map of the B+

1 field in percent. The dielectric pad is indicated in black and has a permittivity
of 285ε0 F/m and a conductivity of 0.25 S/m.
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Figure 2.8: Magnitude and error map of the electric field in the transverse slice through the head. Left column:
magnitude of electric field without any pad, second column: magnitude of the electric field as computed by
Remcom’s XFdtd in V/m, third column: magnitude of the electric field as computed by the proposed solu-
tion procedure in V/m, right column: relative error map of the electric field in percent. The dielectric pad is
indicated in black and has a permittivity of 1000ε0 F/m and a conductivity of 2.5 S/m.

realistic since dielectric pads are typically small compared to the human subject. Fur-
thermore, we have validated our methodology by comparing predicted B+

1 fields with
full FDTD solutions and measurements carried out on a male human head. The simu-
lated and measured field responses are in good agreement with each other, illustrating
that the proposed solution methodology allows for effective pad analysis in dielectric
shimming.

In our present implementation, the background model is subject dependent and dif-
ferent libraries have to be used for different subjects (male, female, etc.). In practice, a
quick survey scan of the patient will allow us to select a library that fits best with the
posture of the patient. In future work, we will investigate to what extent it is possible to
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Figure 2.9: Magnitude of the measured B+
1 field (in vivo) for a dielectric pad (indicated in black) with a permit-

tivity of 285ε0 F/m and a conductivity of 0.25 S/m. Left column depicts the field for the transverse slice and
the right column depicts the field for the coronal slice.

construct patient independent body models (or models that are suitable for a particu-
lar class of patients) by applying homogenization or more general model-order reduc-
tion techniques to the body models [28]. These techniques can reduce the number of
libraries, thereby reducing the computational costs of the offline stage of our solution
procedure. These computational costs can also be reduced by relaxing the convergence
settings of the FDTD solver used for calculating these libraries, which in this work has
been chosen conservatively.

Additionally, we are planning to combine our proposed solution methodology with
fully nonlinear optimization schemes (Newton- or Gauss-Newton schemes, for exam-
ple) to find optimal dielectric pads that minimize a differentiable objective function that
measures the discrepancy between a desired and a modeled B+

1 field as described briefly
in Section 2.3.

Finally, our method not only determines the magnetic field strength but also the
electric field strength, the SAR within the body can be efficiently computed for a com-
plete range of different pad designs of interest as well. More generally, the method can
be fruitfully applied in any MRI setting in which electrically small materials or devices
are included. The possible appearance of hotspots around implants such as deep brain
stimulators, for example, could effectively be studied using our approach. With our pro-
posed solution methodology, RF fields and derived quantities such as the SAR can be
computed very efficiently for a wide range of devices or pads so long as these devices are
electrically small and form a low rank perturbation of a fixed and large-scale background
model.
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3
MODEL ORDER REDUCTION AND

OPTIMIZATION

In the previous chapter, a forward modeling method was presented which enabled us to
efficiently compute the RF responses of dielectric pads. The method becomes less efficient,
however, when the dimension of the pad increases. In this chapter, the developed model is
reduced in complexity to achieve even lower computation times, and the model is trans-
formed into one that is suitable for optimization-based techniques. To this end, it is pa-
rameterized in terms of the pad’s dimensions, location, and constitution. Subsequently,
a projection-based model reduction technique is used to decrease the problem size to a
great extent, after which it is incorporated into a Gauss-Newton nonlinear optimization
scheme. Optimal dielectric pads are designed for cerebellum imaging and measurements
validate the effectiveness of these pads.

This chapter has been published in IEEE Transactions in Medical Imaging.
(Volume: 37, Issue: 4, 2018)
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3.1. INTRODUCTION

M AGNETIC Resonance Imaging (MRI) is a non-invasive technique that can be used
to create detailed images of the anatomy of the human body. The signal-to-noise

ratio (SNR) of these images can be significantly improved by using higher static magnetic
fields, which in turn enables reduced scan times and MR images with a higher spatial
resolution [1]. The frequency of the radiofrequency (RF) excitation field that is used for
MR imaging is linearly related to the magnitude of the static magnetic field, explicitly

f = γB0,

where γ [Hz/T] is the gyromagnetic ratio and B0 the magnitude of the static field. For
1H the gyromagnetic ratio is γ= 42.576 ·106 Hz/T and consequently the frequency of the
RF field is approximately 64 MHz, 128 MHz, and 298 MHz for MR systems with a field
strength of 1.5T, 3T, and 7T, respectively.

To acquire high quality MR images the magnitude of the forward circularly polar-
ized component of the RF magnetic field should be strong and uniform. In terms of the
Cartesian components of the magnetic flux density phasor, this component is given by

B+
1 = Bx + jBy

2
,

where j is the imaginary unit. A high efficiency with respect to input power is desired,
defined as |B+

1 |/
p

Pin, to ensure minimal energy to be deposited in the subject and to
enable a wider range of sequences to be ran within the peak power limitations of the
system. However, the increase in RF frequency for higher field strengths leads to a short-
ening of the RF wavelength in tissue, leading to interference effects that reduce the uni-
formity of the |B+

1 | distribution. Resulting areas of low transmit sensitivity translate into
areas of low signal intensity and reduced contrast in the resulting MR images, limiting
the image quality [2–6].

The RF uniformity can be improved by active or passive RF shimming techniques
that tailor the B+

1 field distribution. The active method uses transmit arrays and involves
advanced additional hardware [7, 8]. Although many studies have been published on
active RF shimming, complex issues of calculating the power deposited in the patient
with variable transmit phases from the individual elements of the array have meant that
this approach has not yet been used clinically, except for two-channel body coil shim-
ming for clinical 3T systems. The alternative approach using passive RF shimming in the
form of dielectric pads, on the other hand, is relatively cheap and easy to use. Typically,
these dielectric pads are placed in the vicinity of the region of interest (ROI) and have a
high relative permittivity up to 300 [9]. A properly designed pad, that is, a pad with the
correct dimensions, constitution, and appropriate position, will generate a B+

1 field per-
turbation that adds constructively to the total B+

1 distribution and consequently on the
acquired image [10–18].

Obtaining an optimal pad design is not straightforward, however, and the correct
positioning of such a pad is in general not known. Therefore, it involves a multitude of
design parameters that need to be optimized. To obtain the optimal pad design for a spe-
cific case it is common practice to perform a parametric design study by evaluating the
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RF response of a large number of pad realizations with different dimensions, locations,
and constitution. As the parameter space is very large, and it involves a very large com-
putational domain encompassing a heterogeneous body model and coil model, such
trial-and-error approaches are in general very time consuming, involve many human
interactions, can only address a limited set of parameters, and often are not guided by
any enforced optimality principle. Furthermore, the optimal design may vary with vari-
ations in the size and shape of the subject’s anatomy. In addition, when the transmit
antennas in a certain configuration differ from another configuration, or when the mag-
nitude of the B0 differs, a new pad should be designed. As each application requires a
dedicated pad, it is beneficial to have a fast, structured, and efficient method for design-
ing dielectric pads.

In our previous work [13, 19], we proposed a scattering formalism to significantly re-
duce the computation time for B+

1 field evaluations of dielectric pads. The general idea
in this approach is to first identify a spatial domain outside the body where the dielectric
pad could be located, referred to as the “design domain.” The design domain is typically
very small compared with the total computational domain, which allows efficient evalu-
ation of the B+

1 field distribution from a specific pad that is confined within this domain.
Although this method is efficient for evaluating single pad realizations, it does not yield
sufficient acceleration to address the design problem efficiently and systematically.

In this paper, we extend our previous work by reducing the dimensionality of the
model and subsequently using this reduced model in an optimization method to design
dielectric pads. First, we exploit the fact that the constitution of practical pads does not
vary on a voxel-by-voxel scale and it is therefore not necessary to allow for voxelwise
variation in the constitution and size of a pad. The design domain is therefore subdi-
vided into large nonoverlapping subdomains. Hereafter, we describe a pad in terms of
parameters that control its dimensions, position, and constitution Subsequently, this
parametric field representation is reduced via a projection based model order reduction
technique [20] which decreases the computation time for single pad evaluations further.
We can now design pads very efficiently by minimizing a cost functional that measures
the discrepancy between the reduced-order field representations and a desired B+

1 field
distribution. Finally, we demonstrate the effectiveness of our approach by designing a
dielectric pad for imaging the cerebellum at 7T, which is a difficult region to scan with
commonly available RF head coils [21–32]. A parametric pad design study of the cerebel-
lum has not been shown before, and therefore we use such a study here to demonstrate
the method.

3.2. METHODS
Spatially discretizing Maxwell’s equations on a standard staggered finite-difference grid
(Yee grid, [33]) and applying the above mentioned scattering formalism, the discretized
B+

1 field can be written as [19]

B+
1 (c) =B+;no pad

1 +GB+
1 J [IP −Xpad(c)GEJ]−1 Xpad(c)Eno pad, (3.1)

where B+;no pad
1 represents the simulated and discretized B+

1 field without a dielectric
pad, whereas the second term on the right-hand side is the scattered B+

1 field due to a

33



3

CHAPTER 3

(a) (b)

(c) (d)

Figure 3.1: Head and shoulders of the male body model Duke, head coil, and shield used for enhanced imaging
of the cerebellum (a). The pad design domain defined all around the head model (b). Pad design domain
subdivided into subdomains (c). Illustration of the pad design parameters (d).

dielectric pad, Eno pad is the simulated and discretized background electric field strength
in the pad design domain when no pad is present and, finally, Xpad = diag(c) is a diag-
onal contrast matrix that is used to define the dielectric pad (dimensions, location, and
constitution) within the pad design domain. Its diagonal elements are defined by the
P-by-1 vector c= [c1,c2, ...,cP ]T with

cp =σ(rkp )+ jωε0[εr(rkp )−1]

for p = 1,2, ...,P and where σ(rk ) and εr(rk ) are the conductivity and relative permittivity
at grid edge location rk with k ∈ P = {k1,k2, . . . ,kP }. Here, P is the index set of the pad
design domain and P the total number of grid edges belonging to this domain. GEJ and
GB+

1 J are the discretized Green’s tensors of the inhomogeneous background that map
electric currents to the electric field strength and B+

1 field, respectively. The former is
used to compute the electric current distribution in the pad design domain, whereas the
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latter maps this electric current distribution to the B+
1 field in the ROI. These discretized

tensors are constructed one column at a time by computing the field responses due to
Hertzian dipoles located at primary edges that belong to the pad design domain. Since
these tensors are independent of the dielectric pad, we only have to compute them once
and we store the computed field responses in what we call the Full Order Library (FOL).
Having this library available, the scattered field due to any dielectric pad located within
the pad design domain can now be efficiently computed, since for each realization only
a system of order P ≪ N has to be solved, with N being the number of grid edges in the
total computational domain.

CONSTRUCTING DIELECTRIC SUBDOMAINS
In the above scattering formalism, the conductivity and relative permittivity can vary on
a voxel-by-voxel scale within the pad design domain. Allowing for this many degrees
of freedom is not needed, however, since pads that vary in their constitution on a voxel
scale are never realized in practice. We therefore reduce the number of unknowns by first
subdividing the design domain into subdomains with constant material parameters, and
then describing the dielectric pad as a collection of these subdomains. Taking the diag-
onal matrix representation Xpad = diag(c) as a starting point, we form dielectric subdo-
mains by specifying the same material properties at grid edges that belong to a certain
subdomain. Consequently, with a pad domain that is subdivided into D nonoverlapping
homogeneous subdomains, the contrast matrix can be written as

Xpad =
D∑

i=1
ci Xpad;i , (3.2)

where ci is the contrast of the i th subdomain and Xpad;i is its diagonal P-by-P support
matrix. Substitution of this decomposition in Eq. (3.1) gives

B+
1 =B+;no pad

1 +GB+
1 J

[
IP −

D∑
i=1

ci GEJ
i

]−1 D∑
i=1

ci Xpad;i Eno pad, (3.3)

where we have introduced the P-by-P Greens tensor matrix that corresponds to the i th
subdomain as GEJ

i =Xpad;i GEJ for i = 1,2, ...,D . Figure 3.1c shows a subdivision of the pad
design domain of Figure 3.1b into subdomains. The contrast within each subdomain is
constant.

PAD PARAMETRIZATION
The majority of dielectric pads that are realized in practice have a rectangular shape and
are homogeneous. To take this into account in our subdomain formalism, we introduce
a set of pad design parameters that fully describe such practical pads. Specifically, in
cylindrical coordinates (with the z-axis parallel to the bore of the MRI scanner), the z-
coordinate of the bottom and top edge of a pad are denoted by zB and zT, respectively,
while the edges of the pad in the azimuthal direction have φL and φR as angular coor-
dinates (see Figure 3.1d). Furthermore, since the pads are typically homogeneous, the
conductivity σ and relative permittivity εr of the pad are constant. In our implementa-
tion, we fix the conductivity of the pad, since the B+

1 field is generally much more sensi-
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tive to variations in the permittivity. For simplicity, we do not vary the thickness of the
pad either, but we stress that, if desired, thickness variations can be included as well.

To summarize, the parameters that we use to describe a pad within the pad design
domain are the coordinates zB, zT, φL, φR, and the relative permittivity εr of the pad as
shown in Figure 3.1d. To indicate that the B+

1 field depends on these parameters, we
write B+

1 =B+
1 (p), where p is the parameter vector

p= [
zB, zT,ϕL,ϕR,εr

]T
. (3.4)

Finally, to enforce a rectangular shape for a dielectric pad, we use an approximation of
the Heaviside step function given by

ũ(x,k) = 1

1+exp(−2kx)
,

where k determines the smoothness (i.e. k →∞ gives the true Heaviside function) and
x is a normalized coordinate. By using these approximate step functions for each of the
cylindrical coordinates z and φ separately, we are able to impose a rectangular shape for
the pads into our subdomain formalism. In particular, the pad parametrization can be
included through the parameter dependent contrast functions

fi (p) = [
σ+ jωε0(εr −1)

] ·{
ũ

[
1

zℓ
(zi − zT) ,k

]
− ũ

[
1

zℓ
(zi − zB) ,k

]}
·{

ũ

[
1

2π

(
φi −φL

)
,k

]
− ũ

[
1

2π

(
φi −φR

)
,k

]
+

ũ

[
1

2π

(
φi −φL +2π

)
,k

]
− ũ

[
1

2π

(
φi −φR +2π

)
,k

]
+

ũ

[
1

2π

(
φi −φL −2π

)
,k

]
− ũ

[
1

2π

(
φi −φR −2π

)
,k

]}
. (3.5)

where zi and φi are the coordinates of the midpoint of the i th subdomain and zℓ is the
length of the pad design domain, as illustrated in Fig. 3.2. The first term on the right-
hand side of Eq. (3.5) determines the shape in the z-direction, whereas the other three
terms determine the shape in the φ-direction. The third and fourth term are two shifted
versions of the second term (over 2π and−2π, respectively) to enforce continuity. Finally,
the arguments of the approximated Heaviside functions are normalized such that the
smoothness parameter k has the same influence on all normalized coordinates.

With the introduction of the contrast functions of Eq. (3.5), the parameter dependent
expression for the B+

1 field is given by

B+
1 (p) =B+;no pad

1 +GB+
1 J

[
IP −

D∑
i=1

fi (p)GEJ
i

]−1 D∑
i=1

fi (p)Xpad;i Eno pad. (3.6)

This parameterized field expression serves as a starting point in the projection based
model reduction technique discussed in the next section.
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PROJECTION BASED MODEL REDUCTION
By introducing the electric current state vector as

j(p) =
[
IP −

D∑
i=1

fi (p)GEJ
i

]−1 D∑
i=1

fi (p)Xpad;i Eno pad, (3.7)

representing the conduction currents and the displacements currents in the pad design
domain, the B+

1 field of Eq. (3.6) can be written as

B+
1 (p) =B+;no pad

1 +GB+
1 Jj(p). (3.8)

This equation provides a direct relationship between the B+
1 field within the region of

interest and induced electric currents with their support in the pad design domain. Ob-
viously, different pad realizations produce different induced currents densities resulting
in different B+

1 field patterns within a region of interest. According to Eq. (3.7), to obtain
the current vector j(p) for a certain pad relatization as described by the parameter vec-
tor p, a system of order P has to be solved. Even though this order is much smaller than
the total order N of the system, a further reduction may be achieved by representing a
general current vector j(p) in terms of a reduced basis consisting of r ≪ P basis vectors.
If such a reduced basis can be found, then evaluating specific pad realizations would in-
volve solving a system of order r instead of order P . This is particularly beneficial in a
pad optimization framework (see Section 3.2), since it allows us to efficiently compute
B+

1 fields due to pads with different pad design parameters.
To find a reduced order basis for the induced current densities, we follow a Projection

Based Model Reduction approach as outlined in [20], for example. Specifically, for a
given set of different pad design vectors p1, p2, ..., pS , we first compute the corresponding

Figure 3.2: Subdomains of the the pad design domain. The coordinates of the subdomain
{
φi , zi

}
refer to

the midpoint of each subdomain indicated by the dot. The length of the pad design domain is zℓ, i.e. zℓ =
|zmax − zmin|.
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induced current densities j(p1), j(p2), ...,j(pS ) and store these distributions as columns in
a snapshot matrix S, i.e.

S= [j1(p1) . . . jS (pS )] (3.9)

where S ≥ 1 is the number of snapshots. Subsequently, we compute the thin singular
value decomposition of the snapshot matrix. This decomposition is given by

S=UΣVH ,

where the columns of U and V are the left and right singular vectors of the snapshot ma-
trix, while Σ is a diagonal matrix with positive decreasing singular values on its diagonal,
i.e. σi ≥ σi+1. To remove possible redundancy among the computed currents j(pi ), we
now take the r most significant left-singular vectors corresponding to the r largest sin-
gular values as basis vectors to describe an arbitrary current distribution j(p). In other
words, we approximate the current distribution by the reduced-order model

jr (p) =α1(p)u1 +α2(p)u2 + ...+αr (p)ur =Ur ar (p),

where the basis matrix Ur has the column partitioning Ur = [u1,u2, ...,ur ] and ar (p) =
[α1(p), ....,αr (p)]T is the vector of expansion coefficients. To find these coefficients, we
require that the residual of the reduced-order model

r=
D∑

i=1
fi (p)Xpad;i eno pad −

[
IP −

D∑
i=1

fi (p)GEJ
i

]
Ur ar (p)

is orthogonal to the basis vectors ui , i = 1,2, ...,r , that is, the expansion coefficients are
found from the Galerkin condition UH

r r= 0 as

ar (p) =
[
Ir −

D∑
i=1

fi (p)GEJ;r
i

]−1 D∑
i=1

fi (p)Xr
pad;i E

no pad, (3.10)

where Ir is the identity matrix of order r and where we have introduced the reduced
matrices GEJ;r

i = UH
r GEJ

i Ur and Xr
pad;i = UH

r Xpad;i . It should be noted that, in order to

compute the expansion coefficients, a system of order r needs to be solved instead of a
system of order P as in Eq. (3.6). Finally, substituting the reduced-order model for the
currents in Eq. (3.8), we arrive at the reduced-order model for the B+

1 field as

B+;r
1 (p) =B+;no pad

1 +GB+
1 J;r ar (p), (3.11)

where GB+
1 J;r =GB+

1 JUr maps the expansion vector of the currents as given by Eq. (3.10) to
the B+

1 field. The reduced matrices GEJ;r
i , Xr

pad;i , and GB+
1 J;r constitute the reduced order

library (ROL).

PAD DESIGN FOR CEREBELLUM IMAGING
Having the parametrized reduced-order model for the B+

1 field as given by Eq. (3.11),
allows the design of an optimal pad for a certain ROI within the human body. As an
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illustrative example, we focus on imaging of the cerebellum at 7T, but we stress that the
approach can equally be applied to other parts of the human body as well.

To find a pad design for which the amplitude of the B+
1 field is as uniform as possible

within the ROI, we minimize the cost function

C (p) = 1

2

∥B+;r
1 (p)−B+;desired

1 ∥2
2

∥B+;desired
1 ∥2

2

, (3.12)

over all feasible pad parameter vectors p, where B+;r
1 (p) and B+;desired

1 are the modeled
and desired B+

1 fields within the ROI, respectively. Since we only prescribe the amplitude
of the desired B+

1 field throughout the ROI (1 µT, for example) we follow [34] and take

B+;desired
1 = b exp

[
j∠B+;r

1 (p)
]
, (3.13)

for the desired complex B+
1 field, where b is the prescribed amplitude. In other words,

the phase of the desired field is set equal to the phase of the current B+
1 field.

Since the cost functional of Eq. (3.12) defines a nonlinear least squares problem, we
minimize C (p) using the standard Levenberg-Marquardt algorithm [35]. This minimiza-
tion procedure should take place over feasible pad parameter vectors, i.e. describing
physically realizable dielectric pads. We include this requirement by imposing the con-
straints εr ≥ 1, |φR −φL| ≥ ℓ, |zT − zB| ≥ w , and zT ≤ d . The first constraint is imple-
mented by writing the relative permittivity as εr = 1+ϵ2 and taking ϵ as an optimization
parameter. The second and third constraint are implemented by setting the length and
width of the pad to the minimum length ℓ and minimum width w , respectively, when-
ever a length or width is found that is smaller than these prescribed minima. The last
constraint is included so that no pads will be positioned at the top of the head, since
the contrast functions fi (p) degenerate into triangles in this region. The triangles result
since all subdomains in this region are bend to the same center point on top of the head.
We implement this constraint by setting zT equal to its permitted value d whenever we
encounter a zT for which the fourth constraint is not satisfied. Finally, we note that since
the reduced-order model for the B+

1 field is used to describe the B+
1 field, only systems

of order r need to be solved to determine the elements of the Jacobian, since the pad
parameters occur in the r expansion coefficients αi (p) only.

3.3. IMPLEMENTATION AND RESULTS
To illustrate the performance of our dielectric pad design procedure, we have divided
this section into three parts. First, we construct an FOL without any model reduction
using the technique proposed in our previous work [19]. We subsequently reduce this li-
brary using the parametric reduced-order modeling techniques described in Section 3.2.
These reduction techniques produce an ROL and we demonstrate the accuracy of the
ROL by comparing B+

1 field maps computed with the FOL with B+
1 maps computed us-

ing the ROL. Finally, in the third part, we design a dielectric pad for cerebellum imaging,
after which we validate our design using an MR measurement.
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CREATING THE FULL ORDER LIBRARY

The configuration that is used for simulations is depicted in Fig. 3.1a and consists of the
head and shoulders of the male body model “Duke” from the Virtual Family dataset [36],
and a shielded 16-rung high-pass birdcage coil. The coil has an inner radius of 15 cm and
outer radius of 18 cm and operates in quadrature mode at a frequency of 298 MHz which
corresponds to the 1H Larmor frequency at 7T. The birdcage is tuned using 6.7 pF capac-
itors and driven by two current sources. The resulting electromagnetic fields from this
loaded coil have been normalized to 1 W input power. These fields are computed using
XFdtd software (v.7.5.0.3,Remcom State College, PA, USA) with a voxel size of 5 mm3.
Computations are performed on a Windows 64-bit machine with an Intel Xeon CPU
X5660 @ 2.80 GHz (dual core) with 48 GB internal memory and two NVIDIA Tesla K40c
GPU’s.

The pad design domain is defined as a continuous layer covering the head with a
thickness of 1 cm (to fit inside the close-fitting 32-channel receive array) as depicted in
Fig. 3.1b. This domain consists of about P = 27,000 FDTD primal grid edges, i.e. edges
where the material of a dielectric pad can be defined. As outlined above, for each grid
edge in the pad design domain we perform a single simulation, after which the FOL is
constructed. Constructing this library took approximately 48 hrs and results in 30 GB of
data. We note that, once it is generated, any pad within the pad domain can be modeled
using this library.

CREATING THE REDUCED ORDER LIBRARY

To compress the library, we now divide the pad design domain into D = 400 subdomains
with 20 subdivisions in the z-direction and 20 subdivisions in the φ-direction as illus-
trated in Fig. 3.1d. The average resolution of one subdomain is about 3× 1.2× 1 cm3

(φ× z × thickness).
Subsequently, the snapshot matrix S of Eq. (3.9) is constructed by performing S =

2000 simulations in Remcom XFdtd for different pad realizations described by the pa-
rameters of Eq. (3.4). For each pad, the pad parameters are chosen randomly (using the
function rand in Matlab) and such that the pads have a minimum width of w = 3 cm, a
minimum length of ℓ= π/5, and a top edge z-coordinate that satisfies zT < 5 cm. These

Figure 3.3: Illustration of the first, second, and 500th left singular vector of the snapshot matrix are shown.
These vectors represent electric currents in the pad design domain.
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parameters constraints were also used in the Levenberg-Marquardt algorithm during
the pad design stage (see below). Moreover, all randomly generated pads have a relative
permittivity smaller than 500, since pads with a higher relative permittivity are difficult
to realize in practice. In each simulation, the electric current density in the pad design
domain is computed and stored as a column in the snapshot matrix S.

Having the snapshot matrix available, we compute its SVD. We select the first r = 500
left singular vectors as expansion vectors in our reduced-order model (σ500 = 0.0044).
As a rule, we generally include all left singular vectors in our reduced order basis for
which the corresponding normalized singular values are larger than 0.004. Three of these
singular vectors are shown in Fig. 3.3, which physically represent electric currents in the
pad design domain.

With the 500 most dominant singular vectors at our disposal, we now form the re-
duced matrices GEJ;r

i =UH
r GEJ

i Ur , Xr
pad;i =UH

r Xpad;i , and GB+
1 J;r =GB+

1 JUr . As mentioned

above, these matrices constitute the ROL and this library requires significantly less mem-
ory than the FOL. To be specific, for the problem considered here, disk storage for the
ROL is approximately 1 GB, which amounts to a storage reduction factor of 30 compared
with the FOL storage requirement. Moreover, to compute the B+

1 field for different pad
realizations, systems of order P = 27,000 need to be solved when using the FOL, while
reduced systems of order r = 500 need to be solved when using the ROL. In particular,
for the cerebellum imaging problem considered here, a B+

1 field evaluation for a sin-
gle pad realization takes about 90 seconds on the computer system system mentioned
above (using the GMRES iterative solver [37] with a tolerance of 10−6) when the FOL is
used, while the computation time for evaluating the reduced-order model is approxi-
mately 0.35 seconds, which amounts to a speed up factor of 260. Finally, in Fig. 3.5 we
show the absolute error for three different pad realizations of the reduced-order mod-
els at cross-sections where this error is maximum (the maximum being defined over the
complete head and shoulder model). We observe that the reduced-order models are in
good overall agreement with the B+

1 field computed using XFdtd and maxima in the ab-
solute error essentially occur only at the outer periphery very close to the dielectric pads.
The reduced-order fields can therefore safely be used in the pad optimization stage to ef-
ficiently design a dielectric pad for cerebellum imaging.

DESIGNING PADS

Imaging the cerebellum at 7T has its difficulties due to the reduced RF homogeneity. At
this particular ROI, there is a substantial drop-off in the sensitivity of the volume trans-
mit coil that leads to poor image quality (see Fig. 3.7a and Fig. 3.7b). The simulated
background B+

1 field (i.e. without any pad) is shown in the left column of Fig. 3.6 for a
coronal and transverse slice through the cerebellum. Clearly, we can see the reduced
transmit sensitivity in the cerebellum ROI, which is outlined by the black line. Explicitly,
the mean B+

1 field in the ROI is 0.29 µT/
p

W and the coefficient of variation Cv is 34%,
i.e. the ratio of the standard deviation to the mean. Our aim is to optimize the B+

1 field
within this ROI using a dielectric pad, i.e. we aim at increasing the transmit sensitivity
by designing a pad that yields a homogeneous high-intensity field.

Minimizing the cost functional from Eq. (3.12) results in optimizing both transmit
efficiency and homogeneity of the B+

1 field, but it does not address the balance between
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Table 3.1: Sensitivity analysis of the optimal pad. The optimal parameters are disturbed slightly to show the
effect on the Cv and the transmit efficiency.

Pad Cv Transmit efficiency

(%) (µT
p

W)

None 34 0.29

Optimal 14 0.48

Optimal εr increased by 10% to 325 13 0.50

Optimal εr decreased by 10% to 266 16 0.46

Optimal shifted vertically by 1.2 cm 20 0.44

Optimal shifted horizontally by 3 cm 17 0.47

Optimal width changed by ±3 cm 17 0.47

Optimal length changed by ±1.2 cm 20 0.44

the two. Furthermore, the permittivity of the optimized pad is not restricted to a set
a values, but can take any permittivity value. In practice, a wide range of relative per-
mittivities can be fabricated, but only up to a maximum of 300 [9]. Therefore, to find
the optimal pad that increases both transmit efficiency and homogeneity, and can be
fabricated, we run the optimization algorithm multiple times for different desired field
strengths, which can be done since our optimization algorithm is very efficient. To this
end, the B+;desired

1 field in the cost functional is initially set to the B+
1 field per square root

of input power that is produced by the birdcage transmit coil with no dielectric present.
Repeatedly, we increase the desired field strength and optimize for the pad parameters
after which we list the relative permittivity and the coefficient of variation Cv of the B+

1
field in the cerebellum. The results are depicted in the graph of Fig. 3.4. Subsequently,
the dielectric is selected that gave the best performance in terms of transmit efficiency
and homogeneity, and leads to a flexible pad that can be fabricated. This corresponds to
the optimization where the B+;desired

1 field has been set to 0.48 µT/
p

W. We stress, that
the trends of these curves are not known beforehand and a permittivity value that is too
high can decrease both transmit efficiency and Cv.

For this particular optimization, the optimal pad has been found within 10 iterations,
which takes about 30 seconds on the above mentioned computer system. The resulting
pad has a relative permittivity of εr = 295 and dimensions 32 × 9.5 × 1 cm3. The transmit
efficiency has increased by 66% from 0.29 µT/

p
W to 0.48 µT/

p
W and the coefficient of

variation of the B+
1 in the cerebellum has decreased from 34% to 14%. We subsequently

fabricated this pad using a mixture of barium titanate and deuterated water [9]. For the
optimum dielectric pad we carry out a sensitivity analysis to investigate the possible de-
crease in optimality for near-optimal parameters, as this might occur when fabricating
and positioning the pad in practice. The optimal parameters are perturbed and the re-
sulting change in the coefficient of variation and the transmit efficiency are listed, as
shown in Table 3.1. This table is acquired in 3.5 seconds as forward simulations are eval-
uated quickly. In the worst-case scenario the Cv increases to 20% and the transmit ef-
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Figure 3.4: The cost functional from Eq. (3.12) is optimized for different desired transmit efficiency’s. The
resulting coefficient of variation is shown on the left axis and the required permittivity on the right axis.

ficiency reduces to 0.44 µT/
p

W implying that the designed pad is not very sensitive to
small changes.

Additionally, we investigate how this specific dielectric pad performs for a smaller
female head model. To this end we replace the body model Duke in Remcom XFdtd by
the female version Ella and run a simulation without dielectric pad and one with the
previously-determined optimal dielectric pad. Similar performance metrics were ob-
tained as compared to those of the male head model. Specifically, a transmit efficiency
gain of 64%, from 0.32 µT/

p
W to 0.53 µT/

p
W, and the Cv decreases from 27% to 17%.

To confirm our findings with actual measurements T1-weighted and T2-weighted
scans were acquired with and without the dielectric pad, as shown in Fig. 3.7c and
Fig. 3.7d, respectively. The T1-weighted scans are obtained with a 3D Turbo Field Echo
sequence with a FOV of 256 × 256 × 174.4 mm3 and an isometric resolution of 0.8 mm3.
The T2-weighted scans are acquired with a turbo spin echo sequence where a FOV is
used of 107×240×198 mm3 and an in-plane resolution of 0.8×0.66 mm2. The effect of
the dielectric pad is clearly visible and increases the contrast and signal intensity in the
cerebellum, improving the visibility of structural details, thereby confirming that the pad
designed with our optimization technique is able to significantly improve the quality of
MR images.

3.4. DISCUSSION AND CONCLUSIONS
In this work we have presented a fast and efficient method for designing dielectric pads.
The scattered field model presented in [19] was taken as a starting point, and we showed
that the order of this model can be reduced to a great extent by employing a projec-
tion based model order reduction technique, which can subsequently be used in an op-
timization method. The scattered field models of [19] with an order of approximately
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Figure 3.5: Comparison of the transmit fields for three pad realizations with different material properties. The
transverse slices where the maximum absolute B+

1 errors occur are depicted. The absolute error in the third
column is shown in the same color scale.
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Figure 3.6: Intermediate optimization results are shown. The first and second row illustrate the right and left
hand side view of the head where the pad is formed. The third and fourth row depict the B+

1 transmit fields for
the transverse and coronal slice, respectively. The cerebellum is outlined, and in this ROI the signal intensity is
low. The columns show a few of the iterations of the optimization method. After 10 iterations it has converged
to an optimal dielectric pad. The figures shown at the bottom of the figure depict the intermediate coefficient
of variation and transmit efficiency.
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(a) (b)

(c) (d)

Figure 3.7: T1 and T2 weighted head scans of the brain at 7T (298 MHz). Low contrast is encountered in
the cerebellum due to non-uniformity in the B+

1 transmit field indicated with the arrows. Scans have been
obtained on a 7T Philips Achieva, where a quadrature head coil is used for transmission and a 32 channel
receive array for reception. (a) A T1-weighted turbo field echo sequence was used with a TR of 5.5 ms. 218
slices were acquired with an isometric resolution of 0.8 mm3 and a field-of-view of 256×256×174 mm3. The
total scan time was 6 minutes. (b) A T2-weighted turbo spin echo sequence was used with a field-of-view of
107× 240× 198 mm3 and an in-plane resolution of 0.8× 0.66 mm2. The total scan time was 1.5 minutes for
17 slices. The left column shows the results without a dielectric pad, and the right column for an optimized
dielectric pad. The pad has a relative permittivity of εr = 295, a conductivity of σ = 0.2 S/m, and dimensions
32 × 9.5 × 1 cm3. The optimized pad resolves the low signal intensities at the cerebellum.

27,000 were successfully reduced to a system of order 500, thereby reducing the model
order by a factor of 54. Having the reduced-order models available, B+

1 field responses
can be computed in a fraction of a second for each pad realization at the price of a neg-
ligible loss in accuracy.

The design of dielectric pads has been posed as an optimization problem in which
a cost functional that measures the discrepancy between the modeled and desired B+

1
field distribution is minimized over feasible pad parameters values, i.e. dimensions, lo-
cation, and constitution. This optimization problem can be solved very efficiently, since
the modeled field approximations in the cost function are of reduced-order. The opti-
mization has been successfully applied to MR cerebellum imaging reducing the coeffi-
cient of variation by a factor 2.4. The resulting optimal pad has been fabricated and its
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performance was verified in an MR imaging experiment.
The optimization results from Fig. 3.6 show that the Cv and the transmit efficiency

improve for every iteration. The dielectric from the third iteration, for example, im-
proved the transmit efficiency already by 35%, but is still far from the optimal dielectric.
This enforces the need for a rigorous optimization approach as shown in this work.

The dielectric pad might couple to the birdcage coil when the permittivity value is
high and/or the distance from the coil is small. This coupling is taken into account in
the current work since the library is constructed with a tuned birdcage coil present in
the background. However, in the rare case that the birdcage should be retuned, a new
library should be constructed. In future work, we investigate whether we could combine
the method with co-simulation techniques to retune the coil without constructing a new
library [38].

In the design process of this work, single dielectric pads have been considered that
are homogeneous and have a simple geometry. A second dielectric pad can be included
in the model as well, as this is often required in practical applications [10, 14, 15, 18,
39, 40]. However, the design could be much more sophisticated. For example, more
complicated dielectric structures such as pre-fractal pads add several degrees of free-
dom to the design process [41], hence, increasing the complexity of the design problem.
The design problem becomes even more computationally challenging when optimizing
multi-element dielectric pads for multi-element RF transmit and receive coil arrays, in
which increasingly dielectric materials are incorporated [42]. As the coupling between
the dielectric and the coils is taken into account, one could think of optimizing for SNR,
the g-factor for parallel imaging, or the receive sensitivities of the individual coil ele-
ments. Therefore, an efficient way of designing these pads as presented here becomes
even more relevant.

In this current work, we created the snapshot matrix by simulating a large number of
random pad realizations confined to the pad design domain. Since we used the method
to optimize a pad for the cerebellum specifically, it would have also sufficed to reduce
the random pad realizations to a domain that is more closely related to the extent of
the ROI, hence reducing the size of the ROL even further. We stress, however, that by
considering the entire design domain we have obtained a reduced-order model that is
more generic and application independent. The method may still benefit from a more
structured approach, nonetheless, e.g. by using a greedy algorithm that determines the
next snapshot on the basis of maximum error reduction [20]. However, this requires an
explicit expression for the projection error which needs further investigation.

Finally, two-sided reduction techniques can further speed up the design procedure.
In the present work, reduced-order models for the induced currents in the pad design
domain have been constructed and the resulting B+

1 fields are computed using the dis-
cretized electric current to B+

1 Green’s tensor (see Eq.(3.1)). Two-sided reduction tech-
niques can also reduce the size of this operator, further reducing the complexity of the
optimization potentially allowing for an even faster pad design procedure for any body
part of interest.
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DESIGN TOOL FOR

DIELECTRIC PADS

The framework for designing dielectric pads was developed in the previous chapters. It
enabled us to find the optimal pad for a region of interest within half a minute, instead
of hours or even days. The methodology cannot be used effortlessly by the MR community,
however, due to a lack of software, resources, or knowledge in this specific field. Therefore,
in this chapter, a graphical design tool is developed that is easy to use and which makes
it possible to find the optimum pad(s) for an arbitrary region of interest in any 3T body
imaging and 7T neuroimaging application.

This chapter is submitted to Magnetic Resonance in Medicine (in press).
(DOI: 10.1002/mrm.27629, November, 2018)
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4.1. INTRODUCTION

O BTAINING MR images with spatially-invariant tissue contrast becomes more chal-
lenging at higher static magnetic field strengths. The fundamental reason for this is

the increase in Larmor frequency, which leads to a shortened wavelength of the RF field
in tissue. For static fields strengths of 3T and higher, this wavelength becomes compa-
rable to the dimensions of the body, or shorter. As a consequence, wave-interference
effects that reduce the homogeneity and strength of the transmit RF magnetic field, re-
ferred to as the B+

1 field become apparent [1, 2]. The homogeneity of this field is of crucial
importance in obtaining a uniform contrast in MRI.

Over the last decade, many RF shimming studies have been devoted to improving the
B+

1 field distribution and efficiency. Active shimming techniques use multiple separate
transmit coils: the amplitudes and phases are configured for each element individually,
such that the B+

1 field is tailored in a certain region of interest (ROI) [3–6]. Alternatively,
dielectric materials can be used to tailor the B+

1 field, as a passive shimming approach.
These materials typically have a high relative permittivity on the order of 80-300, and
they induce a strong secondary magnetic field in their vicinity [7–15]. These materials
can be produced easily via aqueous suspensions of calcium titanate and/or barium ti-
tanate to obtain the appropriate permittivity [16–18]. Subsequently, the mixture is sealed
in a polypropylene bag with appropriate dimensions to form flexible pads. Typically,
these dielectric pads are placed in close vicinity to the imaging ROI tangent to the body.

Despite the ease of constructing such dielectric pads, their design is not trivial as it
depends on many aspects; the optimal design varies with ROI, application requirements
(e.g. transmit efficiency or homogeneity), and MR configuration (e.g. static field strength
and transmit antenna). Therefore, the pads dimensions, location, and constitution need
be optimized in an application-specific manner. One common approach is to perform a
parametric optimization using general-purpose electromagnetic field solvers, based on
a systematic trial-and-error approach and guided by user intuition, and then to choose
the best pad-properties afterwards. As each of these simulations involve a large com-
putational domain with an RF coil and heterogeneous body model, such procedures
typically take multiple days for a single application [8, 19–21]. Some applications also
benefit from having more than one dielectric pad, which further complicates the design
procedure. This limits the exploitation of this practical shimming approach.

In previous work [22], we have developed advanced reduced order modeling tech-
niques to accelerate pad evaluations by characterizing stationary components such as
the RF coil and body model in an offline-stage, and compressing the resulting model.
This yielded up to four orders of magnitude of acceleration when compared to using
commercial software and enabled the automated design of a single dielectric pad in un-
der a minute. Although these methods have been demonstrated, the offline procedures
can present a challenging task for any MR user planning to use dielectric pads due to
either lack of software, resources, or expertise in this specific field. The approach up to
now did not allow for designing two dielectric pads at once, which can be beneficial in
many applications.

In this work, we aim to extend our modeling approach to include 3T body imaging
as well as 7T neuroimaging and bridge the gap between these advanced design meth-
ods and practical application by the MR community. We address this gap by integrating
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the automated design procedure into a stand-alone software tool which is available for
download. This tool can be run on a standard PC, is fast, and can be used to design mul-
tiple dielectric pads to optimize either the homogeneity or the efficiency of the B+

1 field,
or a combination of both, in any arbitrary ROI in the head at 7T or the body at 3T. Fur-
thermore, for 3T, the imaging landmark can be shifted throughout the torso to enable
different imaging targets to be centered in the body coil.

4.2. METHODS

CONFIGURATION

The 7T neuroimaging configuration was simulated using a shielded and tuned high-pass
birdcage head coil with a radius of 15 cm operating at 298 MHz (7T). The body model
“Duke” from the Virtual Family dataset was used [23], and the computational domain
was discretized on a uniform and isotropic grid with a spatial resolution of 5 mm. The
pad-design domain was taken as a 1 cm thick layer around the head model, which is
constrained in practice by the tight-fitting receive arrays used in neuroimaging.

The 3T body-imaging configuration was simulated using a generic wide-bore high-
pass birdcage body coil with a radius of 35 cm operating at 128 MHz, in which the “Duke”
body model is situated. The computational domain was discretized on a uniform and
isotropic grid with a spatial resolution of 7.5 mm and the pad-design domain was defined
as a 1.5 cm thick layer around the torso extending from just below the top of the shoul-
ders down to the hips. Whereas the position of the head with respect to the head coil
is fixed in the 7T neuroimaging setting, this is not the case for 3T body imaging. There-
fore, additional field simulations were performed for a 1.5 cm spaced range of imaging
landmarks within the torso to enable shifting of the body coil for different body imaging
applications.

All field quantities were normalized to 1 W input power.

MODELING DIELECTRICS

The backbone of the design tool is a modeling approach which stems from the work
established in [24, 25], where an efficient forward model was presented for evaluat-
ing the effect of a dielectric pad. The basic idea is to split the computational domain
into two parts as illustrated in Figure 4.1a and 4.1b for 7T neuroimaging and 3T body-
imaging, respectively. The first domain is stationary and consists of the heterogeneous
body model and RF transmit coil. These components remain unaffected throughout the
pad-simulations and can therefore be characterized in advance. The second domain is
dynamic and confines the pad-design domain where any desired dielectric pad can be
positioned during the design process, i.e. with arbitrary geometry, location, and mate-
rial properties. This formulation allows us to compute a pad-independent background
field and field response library in an offline-stage, such that only the pad-specific sec-
ondary field needs to be computed in the online-stage. As this latter domain is much
smaller than the original full computational domain, computations are accelerated with-
out compromising accuracy.

The complexity of the calculations can be reduced further through the application
of reduced order modeling techniques as has been shown in [22]. In this procedure the
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(a)

(b)

(c)

Figure 4.1: Splitting of computational domains and the parameterization of the dielectric pad. In (a) the 7T
neuroimaging configuration is divided into a static part, consisting of a heterogeneous body model, RF coils,
and an RF shield, and a dynamic part to which the dielectric is confined. In (b) the 3T body-imaging configu-
ration is shown, here the wide-bore birdcage is omitted for visualization purposes of the pad design domain.
As only the pads that can be easily fabricated are of interest, the model is parameterized in the pad’s charac-
teristics as is shown in (c).
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practical degrees-of-freedom of the pad design problem (i.e. many fewer than allowed
by the computational grid) are exploited to further compress the model. To this end,
the pad design is parametrized in terms of its width, height, location, and constitution,
through the parameter vector

p= [
zB, zT,ϕL,ϕR,εr

]T
,

as illustrated in Figure 4.1c. Subsequently, the model is compressed by projecting onto
a reduced order basis obtained from randomized pad simulations, to further acceler-
ate B+

1 field computations to under one second of computation time for any arbitrary
dielectric pad.

In the 3T configuration, each landmark position of the body coil requires specific
background fields to be generated in advance. Due to the close vicinity of the pad-design
domain to the body model, however, we argue that the field response library can be re-
used as coupling is dominated by the body model and is not significantly influenced by
the body coil.

OPTIMIZATION METHODS
The pad optimization procedure can be used in two different approaches. The first ap-
proach allows the user to find the optimal position for an existing pad, i.e. the user can
define the dimensions and the material properties of the pad (which they may already
have prepared), and the routine optimizes the placement of this pad. The second ap-
proach forms a full parametric design which optimizes the pads dimensions, material
properties, and position simultaneously by iteratively minimizing a cost functional. In
both cases, we measure the characteristics of the resulting B+

1 field within the ROI in
terms of its average magnitude as a measure of transmit efficiency, and its coefficient of
variation Cv as measure of homogeneity. The latter is defined as the ratio of standard
deviation to mean value.

The first approach employs a parameter sweep over all possible positions within the
pad design domain for a given pad geometry and constitution. This sweep can be carried
out quite rapidly, as the simulations are fast and the number of possible solutions is
rather small, in contrast to the full parametric design. Subsequently, the optimum pad
positioning is found by selecting the maximum of the following objective function:

O(p) = γGefficiency(p)+ (1−γ)
[
1−Cv(p)

]
where the first term on the right hand side is the gain in average transmit efficiency
(Gefficiency) due to the dielectric pad and the second term is a measure of field homo-
geneity. The weight γ is used to give a preference to either efficiency or homogeneity.

In the second approach, the pad optimization problem is formulated using a target
field approach in which we aim to achieve a certain desired B+

1 field magnitude in a
defined ROI. This is achieved by minimizing a cost functional C as a function of the pad-
parameter vector p. This functional is defined as

C (p) = 1

2

∥B+
1 (p)−B+;desired

1 ∥2
2;ROI

∥B+;desired
1 ∥2

2;ROI

, (4.1)
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where B+;desired
1 is the desired B+

1 magnitude in the ROI, B+
1 (p) is the field due to a pad

with model parameters p, and ∥·∥2
2;ROI denotes the ℓ2 norm over the ROI. The cost func-

tion in Eq. (4.1) aims to minimize the discrepancy between the prescribed B+
1 field and

the B+
1 field generated by the model, integrated over the ROI.

To minimize this nonlinear function, we use a gradient descent method combined
with a line search to determine the step-size, as the gradient of the function can be com-
puted analytically [24, 26]. Other methods can also be used, but we found that this is the
most efficient and stable method in the context of this application. To ensure smooth
convergence, we adopted the following rules for the update steps:

Algorithm 4.1 Update rules

1: For iteration j compute gradient as g j =∇pC
2: Set update direction as

3: u j
1 =−sign

{
g j

1

}
×w1 ×0.75 cm % zB update

4: u j
2 =−sign

{
g j

2

}
× 1

w1
×0.75 cm % zT update

5: u j
3 =−sign

{
g j

3

}
×w2 × π

8 cm % ϕL update

6: u j
4 =−sign

{
g j

4

}
× 1

w2
× π

8 cm % ϕR update

7: u j
5 =−sign

{
g j

5

}
×20 % εr update

8: With the weights defined as

9: w1 = |g j
1 |

|g j
2 |

and w2 = |g j
3 |

|g j
4 |

10: and restricted to
11: 1

1.5 ≤ w1 ≤ 1.5 and 1
1.5 ≤ w2 ≤ 1.5

12: Update pad parameters p as
13: p j+1 = p j +αu with an optimum step-size 0 ≤α≤ 1 found by line search

The weights w1 and w2 control the weight between related variables and serve to
include gradient sensitive information in the update steps.

DESIGN TOOL

The tool is implemented in MATLAB (R2015a, The MathWorks, Inc., Natick, Mas-
sachusetts, USA). It allows for computations on a GPU when available to speed up
computations and requires approximately 3 GB of working memory for 7T neuroimag-
ing and 7 GB for 3T body imaging. When the GPU is being used, it requires approx-
imately 0.8 GB and 2.5 GB video memory on the GPU for 7T neuroimaging and 3T
body imaging, respectively. The tool is available for download as an executable file
https://paddesigntool.sourceforge.io.

The graphical user interface of the design tool is shown in Figure 4.2. The top row
depicts the tissue map of the head for the transverse, coronal, and sagittal slice, as well
as a 3D view of the slices. If desired, the B+

1 fields without dielectrics can be displayed
here instead. The bottom row shows the B+

1 field with pads, as well as a 3D view of the
current pad design, which is updated throughout the optimization process. The contrast
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Figure 4.2: Graphical user interface of the pad design tool. Tissue profiles are shown in the top row, whereas
B+

1 fields are depicted in the bottom row. After a ROI is drawn, the user can start the optimization with the
selected options.

Figure 4.3: The center of the birdcage can be selected, after which the corresponding electromagnetic fields
are updated.
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and brightness of all displays can be manually adjusted. The imaging landmark of the
3T body coil can be shifted manually as is illustrated in Figure 4.3.

The tool allows optimization of the B+
1 field using either one or two dielectric pads.

In view of the implementation of the resulting pad design, we can limit the maximum
allowed relative permittivity εr and incorporate a realistic conductivity throughout the
iterations. Furthermore, the desired B+

1 field efficiency for the ROI can be entered, or
alternatively a sweep can be executed over a discrete set of predefined target fields to
enable a trade-off analysis between transmit efficiency and homogeneity.

The user can specify a custom ROI by drawing a two-dimensional ellipsoid in each of
the three isometric views. The three-dimensional ROI is then generated by their cross-
section. Alternatively, for example purposes, a predefined ROI can be selected from a
list. Subsequently, the optimization can be carried out, during which the design of the
dielectric pad is continuously updated and illustrated in the bottom-right corner.

After the optimization is complete, the obtained results are summarized in a sepa-
rate window. The results display the dimensions (width, height, and thickness) and the
dielectric properties of the optimized dielectric pad. Furthermore, the resulting aver-
age transmit efficiency and coefficient of variation are listed for the scenarios with and
without dielectric pad. All results can be stored for later reference.

4.3. RESULTS
For demonstration purposes, we show two application examples in which the B+

1 field is
optimized in terms of transmit efficiency and homogeneity: first in cardiac imaging at 3T
using a single dielectric pad, and then in imaging the inner ear at 7T using two dielectric
pads. All computations have been executed on an Intel Xeon CPU X5660 @ 2.80 GHz
(dual core) equipped with a NVIDIA Tesla K40c GPU.

For the 3T example the body coil was first shifted to be centered at the heart, which
was then assigned as the ROI. A sweep over a set of eight target fields was carried out us-
ing the sweep-option, which took 2 minutes to compute on the GPU or under 8 minutes
on the CPU. The maximum relative permittivity was set to 300 and the electrical conduc-
tivity of the pad was fixed at 0.2 S/m. The results for this sweep are shown in Figure 4.4a
and the lookup table for the individual simulations is given in Supporting Information
Table S1. From the trade-off analysis we chose iteration number 5 to be the optimum,
yielding a dielectric pad with dimensions 22.5×35×1.5 cm3 and a relative permittivity

of 206. This design corresponded to a target field equal to 0.5271 µTp
W

, and improved the

transmit efficiency by 28% and reduced the Cv from 13.3% to 6.0%. The optimization
results are illustrated in Figure 4.4a and the results correspond with findings from [19].
Higher efficiencies can be obtained as well, e.g. iteration number 7, but as the dimen-
sions of the dielectric pad become larger, its implementation becomes less practical.

For the 7T inner ear example an ROI was drawn that covered both inner ears, and
the B+

1 field was optimized with two dielectric pads. The optimal pad design was found
using the sweep-option in under 3 minutes on the GPU or in about 10 minutes on the
CPU, which increased the transmit efficiency by 46% and reduced the Cv from 38% to
13%. The corresponding B+

1 field and design summary are shown in Figure 4.5, which
suggested one pad with dimensions 11× 16× 1 cm3 and a relative permittivity of 269,
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Figure 4.4: Design procedure for imaging the heart at 3T. In (a) the result is shown for a parameter sweep
over a predefined set of target fields, after which a desired design can be selected based on the efficiency-
homogeneity plot. For the selected design (here, number 5), a single optimization is performed to obtain
the results as shown in (b) for later reference. Design number 7 is not chosen here, as the dimensions of the
dielectric pad are not practical. The lookup table for the individual simulations can be found in Supporting
Information Table S1.
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(a)

(b)

Figure 4.5: Pad design results for the inner ear using two dielectric pads. The improved field and the location
and dimension of the two dielectric pads are shown in (a). The details on the improvement and the pad’s
parameters can be found in (b).
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Table 4.1: Lookup table for the individual optimizations of the design procedure for imaging the heart at 3T.
The result is shown for a parameter sweep over a predefined set of target fields, after which a desired design
can be selected based on the efficiency-homogeneity plot from Figure 4.4 and the table shown here. For all
results, the pad’s conductivity is 0.2 S/m and the thickness 1.5 cm.

Sweep ID Desired field Transmit eff. Cv εr Height Azimuthal width

(µT
p

W) (µT
p

W) (%) (cm) (cm)

no pad 0.413 13.4

1 0.430 0.442 9.32 119 12.0 17.4

2 0.454 0.467 7.35 150 15.0 21.9

3 0.479 0.480 6.68 168 18.0 21.9

4 0.503 0.516 5.98 195 19.5 31.6

5 0.527 0.531 5.97 206 22.5 35.1

6 0.551 0.545 6.31 271 22.5 60.7

7 0.576 0.574 5.60 283 25.5 70.2

8 0.600 0.585 5.88 278 30.1 73.6

and a second one with dimensions 22 × 12 × 1 cm3 and a relative permittivity of 300,
which agrees with previous findings [21].

4.4. DISCUSSION AND CONCLUSION
In this work we have presented a software tool that allows for designing dielectric pads
for any arbitrary ROI in 3T body imaging and 7T neuroimaging applications. Computa-
tions are fast due to the underlying reduced order model, which enables MR operators
to identify the optimal design and/or position in a matter of minutes. Aided by an opti-
mization scheme, optimal design parameters can be determined which improve either
the B+

1 field magnitude or homogeneity within the ROI, or a combination of both.

The optimization method used in the tool has been chosen in view of its stability.
Other methods may be considered as well, such as Gauss-Newton methods which in-
corporate an approximant of the Hessian in the gradient direction. In our case, the Hes-
sian is rank deficient and hence would need to be regularized in an application-specific
manner, so this approach was not pursued here. In addition, we truncated the update
steps to ensure smooth convergence. Without these limitations, the algorithm had the
tendency to converge to very large dielectrics with a low permittivity, which is not very
practical to use. Using the truncated update steps, we avoided this undesired behavior.
Alternatively, penalty terms can also be considered to discourage pad designs with large
volumes or cross-sectional areas.

The reduced order model that was used for 3T body imaging was created using snap-
shot datasets obtained in one single birdcage landmark, centered at the liver. We showed
that the same field response library can be used in other landmarks as well, without the
need to compute this time-intensive part again. This exploits the fact that the electro-
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magnetic interactions within the pad domain are dominated by the body, and therefore
allows us to decouple the transmit coil from this response. We found that the errors that
are introduced by this approximation are minimal and do not affect the solution quality.
This suggests that a library may be efficiently re-used for other applications as well, e.g.
in case of using a local transmit coil or transmit array. We do note that such translation
still requires generating the corresponding background fields, i.e. corresponding with
the body model and grid employed in the reduced order model, to ensure compatibility.
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PRECONDITIONER FOR PI AND CS

RECONSTRUCTIONS

In Part I of this thesis we described how to improve the image quality of MR scans by tailor-
ing the B+

1 field using dielectric pads. In this chapter, we focus on the reconstruction part
of MR imaging when parallel imaging (PI) and compressed sensing (CS) techniques are
used to accelerate the acquisition times. Processing the data becomes more difficult due
to the increased problem complexity which leads to longer reconstruction times. Hence,
this chapter describes the design and implementation of an efficient preconditioner for
accelerating PI and CS reconstructions in a Split Bregman framework.

This chapter has been published in Magnetic Resonance in Medicine.
(Volume: 81, Issue: 1, 2019)
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INTRODUCTION

T HE undersampling factor in Parallel Imaging (PI) is in theory limited by the number
of coil channels [1–4]. Higher factors can be achieved by using Compressed Sensing

(CS) which estimates missing information by adding a priori information [5, 6]. The a
priori knowledge relies on the sparsity of the image in a certain transform domain. It
is possible to combine PI and CS, e.g. [7] and [8], achieving almost an order of magni-
tude speed-up factors in cardiac perfusion MRI and enabling free-breathing MRI of the
liver [9].

CS allows reconstruction of an estimate of the true image even in the case of con-
siderable undersampling factors, for which the data model generally describes an ill-
posed problem without a unique solution. This implies that the true image cannot be
found by directly applying Fourier transforms. Instead, regularization is used to solve
the ill-posed problem by putting additional constraints on the solution. For CS, such a
constraint enforces sparsity of the image in a certain domain, which is promoted by the
ℓ0-norm [6, 10, 11]. However, practically the ℓ1-norm is used instead as it is the clos-
est representation that is numerically feasible to implement. The wavelet transform and
derivative operators, integrated in total variation regularization, are examples of sparsi-
fying transforms that can be used in the spatial direction [8, 12–16] and temporal dimen-
sion [9], respectively.

Although CS has led to a considerable reduction in acquisition times either in paral-
lel imaging applications or in single coil acquisitions, the benefit of the ℓ1-norm regular-
ization constraint comes with the additional burden of increased reconstruction times,
because ℓ1-norm minimization problems are in general difficult to solve. Many meth-
ods have been proposed that solve the problem iteratively [12, 14, 17–23]. In this work,
we focus on the Split Bregman (SB) approach because of its computational performance,
and its well-established track record [14, 24–28]. SB transforms the initial minimization
problem, containing both ℓ1 and ℓ2-norm terms, into a set of subproblems that either
require solving an ℓ2-norm or an ℓ1-norm minimization problem, each of which can be
approached using standard methods.

The most expensive step in SB, which is also present in many other methods, is
to solve an ℓ2-norm minimization problem, which can be formulated as a linear least
squares problem, e.g. [29]. The system matrix of the least squares problem remains con-
stant throughout the SB iterations and this feature has shown to be convenient for find-
ing an approximation of the inverse system matrix as is done in e.g. [30]. This approach
eliminates the need for an iterative scheme to solve the ℓ2-norm minimization prob-
lem, but for large problem sizes the initial computational costs are high, making it less
profitable in practice. An alternative approach for eliminating the iterative scheme to
solve the ℓ2-norm minimization problem was demonstrated in [31]. In this approach,
extra variable splitting is introduced to separate the coil sensitivity matrices from the
Fourier transforms, such that all individual subproblems can be solved directly in the
case of Cartesian sampling. This can lead to a considerable reduction in reconstruction
time, provided that the reconstruction parameters are optimized. Simulations and in
vivo experiments showed significant improvements in convergence compared to non-
linear conjugate gradient and a monotone fast iterative shrinkage-thresholding algo-
rithms. The extra variable splitting introduces penalty parameters, however, and unsta-
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ble behavior can occur for certain parameter choices due to nontrivial null-spaces of the
operators [31–33]. This can be seen as a drawback of this approach. Furthermore, de-
termining the extra parameters is obviously nonunique. Considering the fact that each
image slice would be reconstructed optimally with possibly different reconstruction pa-
rameters, we prefer the more straightforward SB scheme. Moreover, for non-Cartesian
trajectories, direct solutions are no longer possible and iterative schemes are needed.

Alternatively, to keep the number of reconstruction parameters to a minimum and
to minimize possible stability issues, preconditioners can be used to reduce the num-
ber of iterations required for solving the least squares problem [34]. The incomplete
Cholesky factorization and hierarchically-structured matrices are examples of precon-
ditioners that reduce the number of iterations drastically in many applications [35, 36].
The drawback of these type of preconditioners is that the full system matrix needs to be
built before the reconstruction starts, which for larger problem sizes can only be done
on a very powerful computer due to memory limitations. Although in [37–39] a penta-
diagonal matrix was constructed as a preconditioner, solving such a system is still rela-
tively expensive. In addition, before constructing the preconditioner, patient-specific
coil sensitivity profiles need to be measured, which often leads to large initialization
times. In [31, 40], the extra variable splitting enables building a preconditioner inde-
pendent of coil sensitivity maps, resulting in a preconditioner for non-Cartesian recon-
structions, but one that is not applicable for the more stable SB scheme.

In this work, we design a Fourier transform-based preconditioner for PI-CS recon-
structions and Cartesian trajectories in a stable SB framework, that takes the coil sen-
sitivities on a patient-specific basis into account, has negligible initialization time and
which is highly scalable to a large number of unknowns, as often encountered in MRI.

THEORY
In this section we first describe the general parallel imaging and compressed sensing
problems. Subsequently, the Split Bregman algorithm, which is used to solve these prob-
lems, is discussed. Hereafter, we introduce the preconditioner that is used to speed up
the PI-CS algorithm and elaborate on its implementation and complexity.

PARALLEL IMAGING RECONSTRUCTION

In parallel imaging with full k-space sampling the data, including noise, is described by
the model

FSi x = yfull,i for i = 1, ...,Nc

where the yfull,i ∈ CN×1 are the fully sampled k-space data sets containing noise for
i ∈ {1, ..,Nc}, with Nc the number of coil channels, and x ∈ CN×1 is the true image [3].
Here, N = m ·n, where m and n define the image matrix size in the x and y-directions,
respectively, for a 2D sampling case. Furthermore, Si ∈CN×N are diagonal matrices rep-
resenting complex coil sensitivity maps for each channel. Finally, F ∈ CN×N is the dis-
crete two-dimensional Fourier transform matrix. In the case of undersampling, the data
is described by the model

RFSi x = yi for i = 1, ...,Nc, (5.1)
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where yi ∈ CN×1 are the undersampled k-space data sets for i ∈ {1, ..,Nc} with zeros at
non-measured k-space locations. The undersampling pattern is specified by the bi-
nary diagonal sampling matrix R ∈RN×N , so that the undersampled Fourier transform is
given by RF. Here it is important to note that R reduces the rank of RFSi , which means
that solving for x in Eq. (5.1) is in general an ill-posed problem for each coil and a unique
solution does not exist. However, if the individual coil data sets are combined and the
undersampling factor does not exceed the number of coil channels, the image x can in
theory be reconstructed by finding the least squares solution, i.e. by minimizing

x̂ = argmin
x

{
Nc∑
i=1

∥∥RFSi x−yi
∥∥2

2

}
, (5.2)

where x̂ ∈CN×1 is an estimate of the true image.

PARALLEL IMAGING RECONSTRUCTION WITH COMPRESSED SENSING

In the case of higher undersampling factors, the problem of solving Eq. (5.2) becomes
ill-posed and additional regularization terms need to be introduced to transform the
problem into a well-posed problem. Since MR images are known to be sparse in some
domains, adding ℓ1-norm terms is a suitable choice for regularization. The techniques
of parallel imaging and compressed sensing are then combined in the following mini-
mization problem

x̂ = argmin
x

{
µ

2

Nc∑
i=1

∥∥RFSi x−yi
∥∥2

2 +
λ

2

(∥Dx x∥1 +
∥∥Dy x

∥∥
1

)+ γ

2
∥Wx∥1

}
, (5.3)

with µ,λ and γ the regularization parameters for the data fidelity, the total variation,
and the wavelet, respectively [8]. A total variation regularization constraint is introduced
by the first-order derivative matrices Dx , Dy ∈ RN×N , representing the numerical finite
difference scheme

Dx (x)|i , j = xi , j −xi−1, j i = 2, ..,m, j = 1, ..,n

D y (x)
∣∣
i , j = xi , j −xi , j−1 i = 1, ..,m, j = 2, ..,n

with periodic boundary conditions

Dx (x)|1, j = x1, j −xm, j j = 1, ..,n

D y (x)
∣∣
i ,1 = xi ,1 −xi ,n i = 1, ..,m

so that Dx and Dy are circulant. A unitary wavelet transform W ∈RN×N further promotes
sparsity of the image in the wavelet domain.

SPLIT BREGMAN ITERATIONS

Solving Eq. (5.3) is not straightforward as the partial derivatives of the ℓ1-norm terms
are not well-defined around 0. Instead, the problem is transformed into one that can be
solved easily. In this work, we use Split Bregman to convert Eq. (5.3) into multiple mini-
mization problems in which the ℓ1-norm terms have been decoupled from the ℓ2-norm

74



PRECONDITIONER FOR PI AND CS RECONSTRUCTIONS

5

term, as discussed in detail in [14, 24]. For convenience, the Split Bregman method is
shown in Algorithm 5.1. The Bregman parameters bx ,by ,bw are introduced by the Breg-
man scheme and auxiliary variables dx ,dy ,dw are introduced by writing the constrained
problem as an unconstrained problem. The algorithm consists of two loops: an outer
loop and an inner loop. In the inner loop (steps 4-11), we first compute the vector b
that serves as a right-hand side in the system of equations of step 5. Subsequently, the
ℓ1-norm subproblems are solved using the shrink function in steps 6-8. Hereafter, the
residuals for the regularization terms are computed in steps 9-11 and are subsequently
fed back into the system by updating the right hand side vector b in step 5. Steps 4-11
can be repeated several times, but one or two inner iterations are normally sufficient for
convergence. Similarly, the outer loop feeds the residual encountered in the data fidelity
term back into the system, after which the inner loop is executed again.

The system of linear equations,

Ax̂ = b, (5.4)

in line 5 of the algorithm follows from a standard least squares problem, where the sys-
tem matrix is given by

A=µ
Nc∑
i=1

(RFSi )H RFSi +λ
(
DH

x Dx +DH
y Dy

)
+γWH W

with right-hand side

b =µ
Nc∑
i=1

(RFSi )H yi +λ
[
DH

x

(
dk

x −bk
x

)
+DH

y

(
dk

y −bk
y

)]
+γWH

(
dk

w −bk
w

)
.

In this work we focus on solving Eq. (5.4), which is computationally the most expensive
part of Algorithm 5.1. It is important to note that the system matrix A remains constant
throughout the algorithm and only the right hand side vector b changes, which allows us
to efficiently solve Eq. (5.4) by using preconditioning techniques.

STRUCTURE OF THE SYSTEM MATRIX A
The orthogonal wavelet transform is unitary, so that WH W= I. Furthermore, the deriva-
tive operators are constructed such that the matrices Dx ,Dy ,DH

x and DH
y are block circu-

lant with circulant blocks (BCCB). The product and sum of two BCCB matrices is again
BCCB, showing that DH

x Dx+DH
y Dy is also BCCB. These type of matrices are diagonalized

by the two-dimensional Fourier transformation, i.e.

D1 =FCFH or D2 =FH CF

where C is a BCCB matrix and D1 and D2 are diagonal matrices. This motivates us to
write the system matrix A in Eq. (5.4) in the form

A=FH FAFH F
=FH KF
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with K ∈CN×N given by

K=µ
Nc∑
i=1

FSH
i FH RH RFSi FH

︸ ︷︷ ︸
Kc

+λF
(
DH

x Dx +DH
y Dy

)
FH

︸ ︷︷ ︸
Kd

+γ I︸︷︷︸
Kw

. (5.5)

The term DH
x Dx +DH

y Dy is BCCB, so that Kd in K becomes diagonal. If there is no
sensitivity encoding, that is Si = I ∀i ∈ {1, ..,Nc}, the entire K matrix becomes diagonal in
which case the solution x̂ can be efficiently found by computing

x̂ =A−1b =FH K−1Fb

for invertible K. In practice, Fast Fourier Transforms (FFTs) are used for this step. With
sensitivity encoding, Si ̸= I and SH

i FH RH RFSi is not BCCB for any i , hence matrix K
is not diagonal. In that case we prefer to solve Eq. (5.4) iteratively, since finding K−1

is now computationally too expensive. It can be observed that the system matrix A is
Hermitian and positive definite, which motivates the choice for the conjugate gradient
(CG) method as an iterative solver.

PRECONDITIONING

A preconditioner M ∈CN×N can be used to reduce the number of iterations required for
CG convergence [41]. It should satisfy the conditions

Algorithm 5.1 Split Bregman Iteration

1: Initialize y[1]
i = yi for i = 1, ...,Nc, x[1] = Sum of Squares(FH yi , i = 1, ...,Nc),

Initialize b[1]
x ,b[1]

y ,b[1]
w ,d[1]

x ,d[1]
y ,d[1]

w = 0
2: for j = 1 to nOuter do
3: for k = 1 to nInner do

4:
b =µ

Nc∑
i=1

SH
i FH RH y[ j ]

i +λ
[
DH

x (d[k]
x −b[k]

x )+DH
y (d[k]

y −b[k]
y )

]
+

γWH (d[k]
w −b[k]

w )

5: solve Ax[k+1] = b with x[k] as initial guess

6: d[k+1]
x = shrink

(
Dx x[k+1] +b[k]

x , 1
λ

)
7: d[k+1]

y = shrink
(
Dy x[k+1] +b[k]

y , 1
λ

)
8: d[k+1]

w = shrink
(
Wx[k+1] +b[k]

w , 1
γ

)
9: b[k+1]

x = b[k]
x +Dx x[k+1] −d[k+1]

x
10: b[k+1]

y = b[k]
y +Dy x[k+1] −d[k+1]

y

11: b[k+1]
w = b[k]

w +Wx[k+1] −d[k+1]
w

12: end for
13: for i = 1 to Nc do
14: y[ j+1]

i = y[ j ]
i +y[1]

i −RFSi x[k+1]

15: end for
16: end for
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1. M−1A≈ I to cluster the eigenvalues of the matrix pair around 1, and

2. determination of M−1 and its evaluation on a vector should be computationally
cheap.

Ideally, we would like to use a diagonal matrix as the preconditioner as this is computa-
tionally inexpensive. For this reason, the Jacobi preconditioner is used in many applica-
tions with the diagonal elements from matrix A as the input. However, for the current
application of PI and CS the Jacobi preconditioner is not efficient since it does not pro-
vide an accurate approximate inverse of the system matrix A. In this work, we use a
different approach and approximate the diagonal from K in Eq. (5.5) instead. The moti-
vation behind this approach is that the Fourier matrices in matrix K center a large part of
the information contained in SH

i FH RH RFSi around the main diagonal of K, so that ne-
glecting off-diagonal elements of K has less effect than neglecting off-diagonal elements
of A.

For the preconditioner used in this work we approximate A−1 by

M−1 =FH diag{k}−1F, (5.6)

where diag{} places the elements of its argument on the diagonal of a matrix. Further-
more, vector k is the diagonal of matrix K and can be written as

k =µkc +λkd +γkw , (5.7)

where kc , kd and kw are the diagonals of Kc , Kd and Kw , respectively. Note that Kd and
Kw are diagonal matrices already, so that only kc will result in an approximation of the
inverse for the final system matrix A.

EFFICIENT IMPLEMENTATION OF THE PRECONDITIONER

The diagonal elements kc;i of Kc;i = FSH
i FH︸ ︷︷ ︸
CH

i

RH R︸ ︷︷ ︸
R

FSi FH︸ ︷︷ ︸
Ci

for a certain i are found by not-

ing that Ci = FSi FH is in fact a BCCB matrix. The diagonal elements kc;i of Kc;i can now
be found on the diagonal of CH

i RCi , so that

kc;i =
N∑

j=1
e j

(
cH

j ;i Rc j ;i

)
,

with cH
j ;i being the j th row of matrix CH

i and e j the j th standard basis vector. Note that

the scalar
(
cH

j ;i Rc j ;i

)
is the j th entry of vector kc;i . Since R is a diagonal matrix which can
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be written as R= diag{r}, we can also write

kc;i =
N∑

j=1
e j

(
cH

j ;i ◦cT
j ;i

)
r

=


cH

1;i ◦cT
1;i

cH
2;i ◦cT

2;i
...

cH
N ;i ◦cT

N ;i

r

= (
CH

i ◦CT
i

)
r, (5.8)

where ◦ denotes the element-wise (Hadamard) product. Since the element-wise product
of two BCCB matrices is again a BCCB matrix, the circular convolution theorem tells
us [42, 43] that

Fkc;i =F
[(

cH
1;i ◦cT

1;i

)T ∗ r
]
=F

[(
cH

1;i ◦cT
1;i

)T
]
◦Fr.

The resulting matrix vector product in Eq. (5.8) can now be efficiently computed as

kc;i =FH
{[

F
(
cH

1;i ◦cT
1;i

)T
]
◦Fr

}
. (5.9)

Finally, the diagonal elements d of the diagonal matrix D with structure D = FCFH can
be computed efficiently by using d = Fc1, where c1 is the first row of C. Therefore, the

first row cH
1;i of matrix CH

i is found as
(
cH

1;i

)T =FH
(
sH

i

)T
, with sH

i a row vector containing

the diagonal elements of matrix Si . For multiple coils Eq. (5.9) becomes

kc =FH

{[
F

Nc∑
i=1

(
cH

1;i ◦cT
1;i

)T
]
◦Fr

}
, (5.10)

where the action of the Fourier matrix on a vector can be efficiently computed using the
FFT. Since DH

x Dx+DH
y Dy is BCCB, the elements of kd can be quickly found by evaluating

kd = Ft1, where t1 is the first row of DH
x Dx +DH

y Dy . Finally, the elements of kw are all
equal to one, since Kω is the identity matrix.

COMPLEXITY

For every inner-iteration of the Split Bregman algorithm we need to solve the linear sys-
tem given in Eq. (5.4), which is done iteratively using a Preconditioned Conjugate Gra-
dient method (PCG). In this method, the preconditioner constructed above is used as a
left preconditioner by solving the following system of equations:

M−1Ax̂ =M−1b, (5.11)

where x̂ is the approximate solution constructed by the PCG algorithm. In PCG this im-
plies that for every iteration the preconditioner should be applied once on the resid-
ual vector r = Ax̂ − b. The preconditioner M can be constructed beforehand since
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Table 5.1: FLOPs required for construction of M−1 and for evaluation of A on a vector

Operation FLOPs

of M−1

(
cH

i

)T =FH
(
sH

i

)T ∀i ∈ {1, ..,Nc}, NcN log N

Construction
∑Nc

i

(
cH

1;i ◦cT
1;i

)T
2NcN −N

FH [F (. . .)◦F (. . .)] N +3N log N

kd =FH t1 N log N

k = kc +kd +kw 2N

k−1 N

Total (3+2Nc)N + (4+Nc)N log N

A on vector

∑Nc
i=1 (RFSi )H RFSi Nc(3N +2N log N )+NcN −N

Evaluation DH
x Dx +DH

y Dy 5N

WH W 0

Summation of the three terms above 2N

Total (6+4Nc)N +2NcN log N

it remains fixed for the entire Split Bregman algorithm as the regularization param-
eters µ, λ, and γ are constant. As can be seen in Table 5.1, M−1 is constructed in
(3+2Nc)N +(4+Nc)N log N FLOPs. Evaluation of the diagonal preconditioner M−1 from
Eq. (5.6) on a vector amounts to two Fourier transforms and a single multiplication, and
therefore requires N +2N log N FLOPs.

To put this into perspective, evaluation of matrix A on a vector requires (6+4Nc)N +
2NcN log N FLOPs, as shown in Table 5.1. The upper bound on the additional costs per
iteration relative to the costs for evaluating A on a vector is therefore

lim
N→∞

N +2N log N

(6+4Nc)N +2NcN log N
= 1

Nc
,

showing that the preconditioner evaluation step becomes relatively cheaper for an in-
creasing number of coil elements. The scaling of the complexity with respect to the
problem size is depicted in Fig. 5.1 for a fixed number of coils Nc = 12.

METHODS
MR DATA ACQUISITION

Experiments were performed on healthy volunteer after giving informed consent. The
Leiden University Medical Center Committee for Medical Ethics approved the experi-
ment. An Ingenia 3T dual transmit MR system (Philips Healthcare) was used to acquire
the in vivo data. A 12-element posterior receiver array, a 15-channel head coil, a 16-
channel knee coil (also used for transmission) and a 16-element anterior receiver array
were used for reception in the spine, the brain, the knee and the lower legs, respectively.
The body coil was used for RF transmission, except for the knee scan.
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Figure 5.1: The complexity for different problem sizes. The number of FLOPs for the action of the precon-
ditioner M on a vector (black), A on a vector (red), and the combination of the two (yellow) are depicted for
Nc = 12.

For the spine data set, T1-weighted images were acquired using a turbo spin-
echo (TSE) sequence with the following parameters: field of view (FOV) = 340×340
mm2; in-plane resolution 0.66×0.66 mm2; 4 mm slice thickness; 15 slices; echo time
(TE)/repetition time (TR)/TSE factor = 8 ms/ 648 ms/8; flip angle (FA) = 90°; refocusing
angle = 120°; water-fat shift (WFS) = 1.5 pixels; and scan time = 2:12 min. T2-weighted
TSE scans had parameters: FOV = 340×340 mm2; in-plane resolution 0.66×0.66 mm2; 4
mm slice thickness; 15 slices; TE/TR/TSE factor = 113 ms/4008 ms/32; FA = 90°; WFS =
1.1 pixels; and scan time = 3:36 min.

For the brain data set, T1-weighted images were acquired using an inversion recovery
turbo spin-echo (IR TSE) sequence with parameters: FOV = 230×230 mm2; in-plane res-
olution 0.90×0.90 mm2; 4 mm slice thickness; 24 slices; TE/TR/TSE factor = 20 ms/2000
ms/8; refocusing angle = 120°; IR delay: 800 ms; WFS = 2.6 pixels; and scan time = 05:50
min. T∗

2 -weighted images were measured using a gradient echo (FFE) sequence with
parameters: FOV = 230×230 mm2; in-plane resolution 0.90×0.90 mm2; 4 mm slice thick-
ness; 28 slices; TE/TR = 16 ms/817 ms; FA = 18°; WFS = 2 pixels; and scan time = 3:33
min.

For the knee data set, T1-weighted images were acquired using an FFE sequence with
parameters: FOV = 160×160 mm2; in-plane resolution 1.25×1.25 mm2; 3mm slice thick-
ness; 32 slices; TE/TR = 10 ms/455 ms; FA = 90°; WFS = 1.4 pixels; and scan time = 1:01
min.

For the calf data set, T1-weighted images were acquired using an FFE sequence with
parameters: FOV = 300×300 mm2; in-plane resolution 1.17×1.17 mm2; 7 mm slice thick-
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ness; 24 slices; TE/TR = 16 ms/500 ms; FA = 90°; WFS = 1.5 pixels; and scan time =
2:11 min.

The different acquisitions techniques (TSE, FFE) were chosen to address different ba-
sic contrasts used in daily clinical practice. Undersampling in the case of non-stationary
echo signals, such as during a T2-decaying TSE train, can result in image quality degra-
dation. This effect can be mitigated, for example, in TSE scans using variable refocusing
angle schemes as outlined in [44].

To show the performance of the preconditioner also in the presence of these and sim-
ilar effects, scans in the brain were acquired directly in undersampled mode employing
a simple variable density sampling pattern, with acceleration factors R=2 and R=3. To
validate the results, fully sampled data is acquired as well in a separate scan. Data for a
T2-weighted TSE scan (R=2, FOV = 230×230 mm2; in-plane resolution 0.90×0.90 mm2;
4 mm slice thickness; 1 slice; TE/TR/TSE factor = 80 ms/3000 ms/16; refocusing angle =
120°; WFS = 2.5 pixels; and scan time = 00:30 min), a FLAIR scan (R=2, FOV = 240×224
mm2; in-plane resolution 1.0×1.0 mm2; 4 mm slice thickness; 1 slice; TE/TR/TSE factor
= 120 ms/9000 ms/24; IR delay = 2500 ms; refocusing angle = 110°; WFS = 2.7 pixels; and
scan time = 01:30 min) and a 3D magnetization prepared T1-weighted turbo field echo
(TFE) scan (R=3, FOV = 250×240×224 mm2; 1.0 mm3 isotropic resolution; TE/TR = 4.6
ms/9.9 ms; TFE factor = 112; TFE prepulse delay = 1050 ms; flip angle = 8°; WFS = 0.5
pixels; and scan time = 04:17 min).

COIL SENSITIVITY MAPS

Unprocessed k-space data was stored per channel and used to construct complex coil
sensitivity maps for each channel [45]. Note that the coil sensitvity maps are normalized
such that

Ŝi =
[

Nc∑
j=1

SH
j S j

]− 1
2

Si for i = 1, ...,Nc.

The normalized coil sensitivity maps were given zero intensity outside the subject, re-
sulting in an improved SNR of the final reconstructed image. For the data model to be
consistent, also the individual coil images were normalized according to

mi = Ŝi

Nc∑
j=1

ŜH
j m j for i = 1, ...,Nc.

COIL COMPRESSION

Reconstruction of the spine data set was performed with and without coil compression.
A compression matrix was constructed as in [46], and multiplied by the normalized in-
dividual coil images and the coil sensitivity maps, to obtain virtual coil images and sen-
sitivity maps. The six least dominant virtual coils were ignored to speed up the recon-
struction.

UNDERSAMPLING

Two variable density undersampling schemes were studied: a random line pattern in
the foot-head direction, referred to as structured sampling, and a fully random pattern,
referred to as random sampling. Different undersampling factors were used for both
schemes.
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RECONSTRUCTION

The Split Bregman algorithm was implemented in MATLAB (The MathWorks, Inc.). All
image reconstructions were performed in 2D on a Windows 64-bit machine with an Intel
i3-4160 CPU @ 3.6 GHz and 8 GB internal memory.

Reconstructions were performed for reconstruction matrix sizes of 128×128, 256×
256, and 512× 512, and the largest reconstruction matrix was interpolated to obtain a
simulated data set of size 1024×1024 for theoretical comparison. For prospectively un-
dersampled scans, additional matrix sizes of 240×224 were acquired. For the 3D scan,
an FFT was first performed along the readout direction, after which one slice was se-
lected. To investigate the effect of the regularization parameters on the performance of
the preconditioner, three different regularization parameter sets were chosen as:

1. set 1 µ= 10−3, λ= 4 ·10−3, and γ= 10−3

2. set 2 µ= 10−2, λ= 4 ·10−3, and γ= 10−3

3. set 3 µ= 10−3, λ= 4 ·10−3, and γ= 4 ·10−3.

The Daubechies 4 wavelet transform was used for W. Furthermore, the SB algorithm
was performed with an inner loop of one iteration and an outer loop of 20 iterations.
The tolerance (relative residual norm) in the PCG algorithm was set to ϵ= 10−3.

RESULTS
Figure 5.2 shows the T1-weighted TSE spine images for a reconstruction matrix size of
512×512, reconstructed with the SB implementation for a fully sampled data set and for
undersampling factors of four (R=4) and eight (R=8), where structured Cartesian sam-
pling masks were used. The quality of the reconstructed images for R=4 and R=8 demon-
strate the performance of the compressed sensing algorithm. The difference between
the fully sampled and undersampled reconstructed images are shown (magnified five
times) in Fig. 5.2d and Fig. 5.2e for R=4 and R=8, respectively.

The fully built system matrix A=FH KF is compared with its circulant approximation
FH diag{k}F in Fig. 5.3 (top-row) for both structured and random Cartesian undersam-
pling in the spine, without regularization to focus on the approximated term containing
the coil sensitivities. The elements of A contain many zeros due to the lack of coil sen-
sitivity in a large part of the image domain when using cropped coil sensitivity maps.
These zeros are not present in the circulant approximation, since the circulant property
is enforced by neglecting all off-diagonal elements in K. The entries introduced into
the circulant approximation do not add relevant information to the system, because the
image vector on which the system matrix acts contains zero signal in the region corre-
sponding with the newly introduced entries. For the same reason, the absolute differ-
ence maps in the bottom row were masked by the coil-sensitive region of A, showing
that the magnitude and phase are well approximated by assuming the circulant prop-
erty. Figure 5.3 (bottom-row) and 5.4 show the same results for the brain, the knee and
the calves, demonstrating the generalizability of this approach to different coil set-ups
and geometries. The product of the inverse of the preconditioner M−1 and the system
matrix A is shown for the spine, the brain, the knee and the calves in Fig. 5.5 and 5.6,
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respectively. Different regularization parameter sets show that the preconditioner is a
good approximate inverse, suggesting efficient convergence.

Fully sampled

(a)

R=4

(b)

R=8

(c)

Difference (5x)

(d)

Difference (5x)

(e)

Figure 5.2: Reconstruction results for different structured Cartesian undersampling factors. (a) shows the fully
sampled scan as a reference, whereas (b) and (c) depict the reconstruction results for undersampling factors
four (R=4) and eight (R=8), respectively. The absolute difference, magnified five times, is shown in (d) and (e)
for R=4 and R=8, respectively. The reconstruction matrix has dimensions 512×512. Regularization parameters
were set to µ= 1 ·10−3,λ= 4 ·10−3, and γ= 1 ·10−3.
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Figure 5.3: System matrix and its circulant approximation. The first and the second columns show the system
matrix elements for structured and random undersampling and R=4, respectively, for the spine (a), the brain
(b), the knee (c) and the calves (d). The top row depicts the elementwise magnitude for the true system matrix
A, the second row depicts the elementwise magnitude for the circulant approximated system matrix and the
bottom row shows the absolute difference between the true system matrix and the circulant approximation.
The difference maps were masked by the nonzero-region of A, since only elements in the coil-sensitive region
of the preconditioner describe the final solution.84
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Figure 5.4: System matrix and its circulant approximation. The first and the second columns show the system
matrix elements for structured and random undersampling and R=4, respectively, for the spine (a), the brain
(b), the knee (c) and the calves (d). The top row depicts the elementwise magnitude for the true system matrix
A, the second row depicts the elementwise magnitude for the circulant approximated system matrix and the
bottom row shows the absolute difference between the true system matrix and the circulant approximation.
The difference maps were masked by the nonzero-region of A, since only elements in the coil-sensitive region
of the preconditioner describe the final solution. 85
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Figure 5.5: The new system matrix. The first and third row and the second and fourth row show the elements
of the effective new system matrix M−1A for structured and random undersampling and R=4, respectively, for
the the spine and the brain. The columns show this result for the three studied regularization parameter sets.
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Figure 5.6: The new system matrix. The first and third row and the second and fourth row show the elements
of the effective new system matrix M−1A for structured and random undersampling and R=4, respectively, for
the the knee and the calves. The columns show this result for the three studied regularization parameter sets.
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Table 5.2: Initialization times for constructing the preconditioner for different problem sizes. Even for very
large problem sizes the initialization time does not exceed two seconds. Additional costs are given as percent-
age of the total reconstruction time without preconditioning.

Problem size 128×128 256×256 512×512 1024×1024
Initialization time (s) 0.0395 0.0951 0.3460 1.3371
Additional costs (%) 1.7 0.85 0.52 0.48

Table 5.2 reports the number of seconds needed to build the circulant preconditioner
in MATLAB before the reconstruction starts, for different orders of the reconstruction
matrix. Note that the actual number of unknowns in the corresponding systems is equal
to the number of elements in the reconstruction matrix size, which leads to more than 1
million unknowns for the 1024×1024 case. For all matrix sizes the initialization time is
negligible compared with the image reconstruction time.

Figure 5.7a shows the number of iterations required for PCG to converge in each
Bregman iteration without preconditioner, with the Jacobi preconditioner and with the
circulant preconditioner for regularization parameters µ= 10−3,λ= 4·10−3 and γ= 10−3

and a reconstruction matrix size of 256×256. The Jacobi preconditioner does not reduce
the number of iterations, which shows that the diagonal of the system matrix A does
not contain enough information to result in a good approximation of A−1. Moreover, it
shows that the linear system is invariant under scaling. The circulant preconditioner,
however, reduces the number of iterations considerably, leading to a total speed-up fac-
tor of 4.65 in the PCG part.

The effect of the reduced number of PCG iterations can directly be seen in the com-
putation time for the reconstruction algorithm, plotted in Fig. 5.8 for different problem
sizes. Figure 5.8a shows the total PCG computation time when completing the total SB
method, whereas Fig. 5.8b shows the total computation time required to complete the
entire reconstruction algorithm. A fivefold gain is achieved in the PCG part by reducing
the number of PCG iterations, which directly relates to the results shown in Fig. 5.7a. The
overall gain of the complete algorithm, however, is a factor 2.5 instead of 5, which can be
explained by the computational costs of the update steps outside the PCG iteration loop
(see Algorithm 5.1). Figure 5.8c also shows the error, defined as the normalized 2-norm
difference with respect to the fully sampled image, as a function of time. The precondi-
tioned SB scheme converges to the same accuracy as the original SB scheme, since the
preconditioner only affects the required number of PCG iterations.

The number of iterations required by PCG for each Bregman iteration is shown in
Fig. 5.7b for the three parameter sets studied. The preconditioned case always outper-
forms the non-preconditioned case, but the speed up factor depends on the regular-
ization parameters. Parameter set 1 depicts the same result as shown in Fig. 5.7a and
results in the best reconstruction of the fully sampled reference image. In parameter set
2 more weight is given to the data fidelity term by increasing the parameter µ. Since the
preconditioner relies on an approximation of the data fidelity term, it performs less opti-
mally than for smaller µ (such as in set 1) for the first few Bregman iterations, but there is
still a threefold gain in performance. This behavior was already predicted in Figures 5.5
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and 5.6. Finally, there is very little change between parameter set 3 and parameter set
1, because the larger wavelet regularization parameter γ gives more weight to a term
that was integrated in the preconditioner in an exact way, as for the total variation term,
without any approximations.

Figure 5.7c illustrates the required iterations when half of the coils are taken into ac-
count by coil compression. Only a small discrepancy is encountered for the first few it-
erations, since the global structure and content of the system matrix A remain the same,
which demonstrates that coil compression and preconditioning can be combined to op-
timally reduce the reconstruction time.

The method also works for different coil configurations. In Figures 5.9-5.11 the result
is shown when using the 15-channel head coil for the brain scans, the 16-channel knee
coil for a knee scan and the 16-channel receive array for the calf scan. The circulant
preconditioner clearly reduces the number of iterations, with an overall speed-up factor
of about 4.1-4.5 in the PCG part.

Figure 5.12 shows reconstruction results for scans where the data was directly
acquired in undersampled mode instead of retrospectively undersampled, for a T2-
weighted TSE scan, a FLAIR scan and a 3D magnetization prepared T1-weighted TFE
scan, leading to PCG acceleration factors of 4.2, 5.1 and 5.4, respectively. The conver-
gence behavior is similar to the one observed for the retrospectively undersampled data,
demonstrating the robustness of the preconditioning approach in realistic scan setups.

DISCUSSION AND CONCLUSIONS
In this work we have introduced a preconditioner that reduces the reconstruction times
for CS and PI problems, without compromising the stability of the numerical SB schem.
Solving an ℓ2-norm minimization problem is the most time-consuming part of this al-
gorithm. This ℓ2-norm minimization problem is written as a linear system of equations
characterized by the system matrix A. The effectiveness of the introduced precondi-
tioner comes from the fact that the system matrix is approximated as a BCCB matrix.
Both the total variation and the wavelet regularization terms are BCCB, which means
that only the data fidelity term, which is not BCCB due to the sensitivity profiles of the
receive coils and the undersampling of k-space, is approximated by assuming a BCCB
structure in the construction of the preconditioner. This approximation has been shown
to be accurate for CS-PI problem formulations. The efficiency of this approach comes
from the fact that BCCB matrices are diagonalized by Fourier transformations, which
means that the inverse of the preconditioner can simply be found by inverting a diago-
nal matrix and applying two additional FFTs.

With the designed preconditioner the most expensive ℓ2-norm problem was solved
almost 5 times faster than without preconditioning, resulting in an overall speed up fac-
tor of about 2.5. The discrepancy between the two speed up factors can be explained
by the fact that apart from solving the linear problem, update steps also need to be per-
formed. Step 4 and steps 13-15 of Algorithm 1 are especially time consuming since for
each coil a 2D Fourier transform needs to be performed. Furthermore, the wavelet com-
putation in steps 4, 8, and 11 are time consuming factors as well. Therefore, speed up
factors higher than 2.5 are expected for an optimized Bregman algorithm. Further ac-
celeration can be obtained through coil compression [46, 47], as the results in this study
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Figure 5.7: Number of iterations needed per Bregman iteration. The circulant preconditioner reduces the
number of iterations considerably compared with the non-preconditioned case. The Jacobi preconditioner
does not reduce the number of iterations due to the poor approximation of the system matrix’ inverse. (a)
depicts the iterations for Set 1:

(
µ= 1 ·10−3,λ= 4 ·10−3,γ= 1 ·10−3)

, whereas (b) depicts the iterations for Set
1, Set 2:

(
µ= 1 ·10−2,λ= 4 ·10−3,γ= 1 ·10−3)

, and Set 3:
(
µ= 1 ·10−3,λ= 4 ·10−3,γ= 4 ·10−3)

The precondi-
tioner shows the largest speed up factor when the regularization parameters are well-balanced. (c) Shown are
the number of iterations needed per Bregman iteration with and without coil compression applied. The solid
lines and the dashed lines depict the results with and without coil compression, respectively.
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Figure 5.8: Computation time for 20 Bregman iterations and different problem sizes. (a) Using the precondi-
tioner, the total computation time for the PCG part in 20 Bregman iterations is reduced by more than a factor
of 4.5 for all studied problem sizes. (b) The computation time for 20 Bregman iterations of the entire algorithm
also includes the Bregman update steps, so that the total speedup factor is approximately 2.5 for the considered
problem sizes. (c) The two methods converge to the same solution, plotted here for R=4 and a reconstruction
matrix size 256×256.
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Figure 5.9: Reconstruction results for the brain. (a) shows the fully sampled scan as a reference, whereas (b) de-
picts the reconstruction results for an undersampling factor of four (R=4). The absolute difference, magnified
five times, is shown in (c). The reconstruction matrix has dimensions 256×256 and regularization parameters
were chosen as µ = 1 ·10−3,λ = 4 ·10−3, and γ = 2 ·10−3. The convergence results for the PCG part with and
without preconditioner are plotted in (d), showing similar reduction factors as with the posterior coil.
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Figure 5.10: Reconstruction results for the knee. (a) shows the fully sampled scan as a reference, whereas (b)
depicts the reconstruction results for an undersampling factor of two (R=2). The absolute difference, magnified
five times, is shown in (c). The reconstruction matrix has dimensions 128×128 and regularization parameters
were chosen as µ= 0.1,λ= 0.4, and γ= 0.1.
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Figure 5.11: Reconstruction results for the calves. (a) shows the fully sampled scan as a reference, whereas (b)
depicts the reconstruction results for an undersampling factor of four (R=4). The absolute difference, magni-
fied five times, is shown in (c). The reconstruction matrix has dimensions 256×256 and R=4. Regularization
parameters were chosen as µ= 0.1,λ= 0.4, and γ= 0.1.
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Figure 5.12: Reconstruction results for data acquired in fully and undersampled mode. (a) shows a fully sam-
pled scan as a reference for a T2-weighted TSE scan in the brain, whereas (b) depicts the reconstruction results
for a prospectively undersampled scan with an acceleration factor of two (R=2). The reconstruction matrix has
dimensions 256×256 and regularization parameters were chosen as µ= 1,λ= 4, and γ= 1. The convergence
results for the PCG part with and without preconditioner are plotted in (c). Results for the FLAIR brain scan are
shown in (d)-(f) for a reconstruction matrix size 240×224 and R=2. Regularization parameters were chosen as
µ= 1.4·102,λ= 5.7·102, and γ= 1.4·102. Results for a 3D magnetization prepared T1-weighted TFE scan in the
brain are shown in (g)-(i) for a reconstruction matrix size 240×224 and R=3. Regularization parameters were
chosen as µ= 0.5,λ= 2, and γ= 0.5. Note that the data in the left column stem from a different measurement
as the data in the middle column.
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showed that it has negligible effect on the performance of the preconditioner.

The time required to construct the preconditioner is negligible compared with the
reconstruction times as it involves only a few FFTs. The additional costs of applying
the preconditioner on a vector is negligible as well, because it involves only two Fourier
transformations and an inexpensive multiplication with a diagonal matrix. Therefore,
the method is highly scalable and can handle large problem sizes.

The preconditioner works optimally when the regularization terms in the minimiza-
tion problem are BCCB matrices in the final system matrix. This implies that the total
variation operators should be chosen such that the final total variation matrix is BCCB,
and that the wavelet transform should be unitary. Both the system matrix and the pre-
conditioner can be easily adjusted to support single regularization instead of the combi-
nation of two regularization approaches.

The BCCB approximation for the data fidelity term supports both structured and ran-
dom Cartesian undersampling patterns and works well for different undersampling fac-
tors. The performance of the preconditioner was experimentally validated using a vari-
able density sampling scheme to prospectively undersample the data. The convergence
behavior shows similar results as the retrospectively undersampled case.

The regularization parameters were shown to influence the performance of the pre-
conditioner. Since the only approximation in the preconditioner comes from the ap-
proximation of the data fidelity term, the preconditioner results in poorer performance
if the data fidelity term is very large compared with the regularization terms. In practice,
such a situation is not likely to occur if the regularization parameters are chosen such
that an optimal image quality is obtained in the reconstructed image. In this work, the
regularization parameters were chosen empirically and were kept constant throughout
the algorithm. For SB-type methods, however, updating the regularization parameters
during the algorithm makes the performance of the algorithm less dependent on the
initial choice of the parameters [48]. Moreover, it might result in improved convergence,
from which our work can benefit.

This work focussed on the linear part of the SB method, in which only the right-hand
side vector changes in each iteration and not the system matrix. Other ℓ1-norm mini-
mization algorithms exist that require a linear solver [49], such as IRLS or Second-Order
Cone Programming. For those type of algorithms linear preconditioning techniques can
be applied as well. Although the actual choice for the preconditioner depends on the sys-
tem matrix of the linear problem, which is in general different for different minimization
algorithms, similar techniques as used in the current work can be exploited to construct
a preconditioner for other minimization algorithms.

As outlined earlier in the introduction, there are alternative approaches to eliminat-
ing the iterative scheme to solve the ℓ2-norm minimization problem. Although a de-
tailed comparison of techniques is difficult due to the required choice of reconstruc-
tion parameters, it is worth noting that in [31] a comparison was made between the
non-preconditioned SB scheme that we also use as comparison in our work, and the
authors’ extra variable splitting method. Their results suggest that the preconditioned
SB scheme with an acceleration factor of 2.5 is very similar to the performance of the
method adopting extra variable splitting. Moreover, variable splitting is not possible for
non-Cartesian data acquisition, but is easily incorporated into the preconditioned SB
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approach. In this extension, the block circulant matrix with circulant blocks is replaced
by the block Toeplitz matrix with Toeplitz blocks [40]. Given the promising results for
Cartesian trajectories, future work will therefore focus on including non-Cartesian data
trajectories into a single unified preconditioned SB framework.

Another large group of reconstruction algorithms involve gradient update steps; ex-
amples in this group are the Iterative Shrinkage-Thresholding Algorithm (ISTA), FISTA,
MFISTA, and BARISTA [21, 50–52]. In [52] it was discussed that the performance of FISTA,
for which convergence depends on the maximum sum of squared absolute coil sensitiv-
ity value, can be poor due to large variations in coil sensitivities. In our work, however,
the coil sensitivity maps were normalized such that the corresponding sum-of-squares
map is constant and equal to one in each spatial location within the object region. The
normalization of these coil sensitivities might therefore lead to acceleration of FISTA-
type algorithms. Thus, it would be interesting to compare the performance of the pre-
conditioned SB algorithm with the performance of FISTA when incorporating normal-
ized coil sensitivities into both algorithms.

In conclusion, the designed FFT-based preconditioner reduces the number of itera-
tions required for solving the linear problem in the SB algorithm considerably, resulting
in an overall acceleration factor of 2.5 for PI-CS reconstructions. The approach works
for different coil-array configurations, MR sequences, and non-power of two acquisition
matrices, and the time to construct the preconditioner is negligible. Therefore, it can be
easily used and implemented, allowing for efficient computations.
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I MAGING in MR knows many facets that are all of great importance in order to acquire
diagnostic valuable scans. Two of these facets have been addressed in this disserta-

tion: improving the transmit magnetic field in an ROI using a well-designed dielectric
pad in Part I, and reducing image reconstruction times using a preconditioner in Part II.
This has led to the following key contributions:

1. A forward model that can be used to evaluate the pad induced electromagnetic
fields by considering the dielectric pad as a small perturbation of a large compu-
tational static background model.

2. Reduction of the complexity of the forward model by parameterizing the model in
the pad’s characteristics and by using a projection-based model order reduction
technique.

3. A pad design tool for finding an effective and practical dielectric pad for an arbi-
trary ROI in 3T body imaging and 7T neuroimaging applications.

4. Accelerating parallel imaging and compressed sensing reconstruction times in a
Split Bregman framework using a circulant preconditioner.

PART I: DIELECTRIC PAD DESIGN
One of the main challenges of today in high-field MRI is to obtain an effective B+

1 field
in an ROI; such a field is characterized by a high transmit efficiency and a homogeneous
distribution throughout the region to obtain an equally weighted contrast in the MR im-
age. For strong background fields of 3T and higher, this condition cannot be taken for
granted anymore, as it could for MR systems with a static field strength up to 1.5 T. Due
to the increase in the RF resonance frequency for higher field strengths, wavelength ef-
fects occur that perturb this previously assumed homogeneous RF field. Dielectric pads
can be used to overcome these interference effects, although their design needs to be de-
termined carefully beforehand. Because designing a pad was previously a cumbersome
and time consuming trial-and-error procedure, we have created an intuitive design tool
that finds the optimum dielectric pad within minutes.

The backbone of the tool is a fast forward model for evaluating dielectric pads in a
typical MR configuration: a heterogeneous body model, an RF coil and RF shield, and
a pad. Such a configuration can be modeled in FDTD solvers, leading to very large dis-
cretized systems with 106−7 unknowns when discretized with 20 points per wavelength
in free space. For every pad we need to solve this entire system. A significant part of
the computational domain is fixed, however, i.e. the body model, the RF coil, and the
shield do not change when optimizing dielectric pads. Furthermore, the pad itself is
relatively small compared to the full computational domain. We exploited these two
properties by dividing the full computational domain into one domain that is static and
one domain that is dynamic. This was achieved by defining a pad design domain that
covers the body like a shell; every pad should be confined to this domain. To separate
the static configuration part from the dynamic pad part, we set up a scattering formalism
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using the Sherman-Morrison-Woodbury formula. The prerequisite for using this formal-
ism is that the Green’s tensor for an inhomogeneous background medium is computed
first. Explicitly, we placed a Hertzian dipole on every grid-edge in the pad design domain
and computed the field response for each of them. The responses were then stored in a
configuration-dependent library. Although this is a time-consuming task and might take
a week on a computer with two dedicated GPU’s, it only has to be carried out once as it
is pad independent. With the developed model, we can prescribe a permittivity and a
conductivity to every edge in the design domain, after which only a small system needs
to be solved. We tested the method for 7T head imaging for which the head coil is used
for transmission, which let to significant speed up factors as the order was reduced from
106−7 to 104. For a normal sized pad of about 18× 18× 1 cm3 computation times are
decreased by a factor 30 and field solutions are obtained in about 10 seconds. The accu-
racy of the solution is not compromised, however, and relative errors were observed of
at most 1% for regions where the B+

1 is low.

The dielectric materials might couple to the birdcage coil when the pad’s dimensions
are large or if it is placed closely to the transmit coil. We have taken this coupling into
account by having a resonant coil in the background configuration, i.e. capacitors are
placed in the FDTD grid. In case the coil is detuned by the pad and it requires retun-
ing, it will require a new library. Circuit-co-simulation can be used to overcome this
problem. Explicitly, field responses are computed for the sources and the capacitors in
the birdcage coil individually and subsequently the total field can be found by solving
a subproblem coupling these separate responses [1, 2]. The current forward model can
be easily incorporated, by computing the perturbation for each of these source/ capaci-
tor field responses individually. The complexity of the method increases from O

(
N 3

)
to

O
(
mN 3

)
, where m is equal to the number of sources plus capacitors [3].

We applied reduced order modeling techniques to decrease the complexity of our
forward model further for the reason that, in its current form, the model is not suitable
for optimization. For optimization it is required to evaluate the entire pad design, i.e.
computing the sensitivity for each grid-edge in the design domain. Whereas FDTD is
very memory efficient and computational cheap, a direct solver from e.g. Matlab is not.
As the direct solver’s complexity scales as O

(
N 3

)
the forward model will defeat its pur-

pose for large pads. Consequently, we reduced the model in a number of steps. First, the
pad design domain was divided into subdomains. Every subdomain contains an accu-
mulated set of grid edges over a volume of about 3500 mm3 in contrast with the original
125 mm3 resolution, hence reducing the resolution artificially. Second, the model was
parameterized in terms of the pad’s dimensions, location, and constitution. With these
parameters we set material properties to the subdomains by using Heaviside unit step-
functions instead of specifying the material properties at each grid edge separately. With
these functions we restrict all modeled pads to be practically feasible, i.e. only rectan-
gular and homogeneous pads are considered in our model order reduction approach.
Finally, as the solution space is now decreased, we applied projection-based reduced
order modeling to eliminate redundant data from the forward model. To this end, we
simulated a large number of random dielectric pads with the parameterized model, and
computed a singular value decomposition of the resulting currents in the pad design
domain. The 25% most significant components were selected as projection matrix for
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reducing the forward model. This led to a model of order 500 and computation times of
50 ms per dielectric pad evaluation, which decreases computation times by a factor 6000
compared with standard methods. The accuracy of the B+

1 solutions decreases slightly,
but can partly be controlled by the number of random pad simulations and the percent-
age of significant components that is taken into account. We found however that the
B+

1 results are sufficiently accurate to be applied in practice.

For optimal pad design, we defined a cost function that is to be minimized for the
pad’s parameters: namely its dimensions, location, and constitution. Using a least
squares formalism where a target B+

1 field can be defined for a given ROI, the residual
between the modeled and targeted B+

1 field can be minimized. We initially applied the
Gauss-Newton algorithm to solve our non-linear least squares problem, in which the
second order derivatives are approximated using first order information only. Explicitly,
the Hessian matrix is computed using the Jacobian matrix, which in our case resulted
in a rank deficient matrix and hence needed to be regularized. To this end we applied
standard Tikhonov regularization with a regularization parameter that is determined ex-
perimentally. We found that the regularization parameter is generally dependent on the
selected ROI. Hence, exploiting approximated second order information is not beneficial
for a design tool that should work for any ROI. Consequently, we applied the gradient de-
scent algorithm because of its simplicity and a proper step size could be found using a
line-search, since our forward solver is very efficient.

Finally, a design tool was developed in Matlab that is supported by an intuitive graph-
ical user interface. The tool offers the possibility to find a pad that either enhances the
B+

1 efficiency, its homogeneity, or a combination of both. This was achieved by carrying
out a sweep over different target fields in a user-selected 3D volume of interest inside
the head or the body. The result shows a clear overview of the efficiency-homogeneity
combination, such that a desired pad can be selected within minutes due to fast forward
modeling. In addition, as some imaging applications require two dielectric pads instead
of one, we added this design option in the tool as well.

As the input of the design tool is a reduced order library, it can be easily replaced by
other libraries to allow for other body models and other applications. When libraries are
created for subjects with different dimensions and gender, the pad design solutions for
each of these subjects can be easily and quickly compared. Such extensions will result in
an even more flexible design tool. Possible library extensions that can be incorporated
are libraries for 7T female neuroimaging, 3T body imaging using the female body model,
and the male body model with a high body mass index. We have extended the library to
pregnant body models in Appendix A, where a dielectric pad can be efficiently used to
improve the B+

1 field.

In addition, we like to point out that during library creation and testing, we found
that the same reduced order library can be used for more applications than the one it
was designed for. For example, the library that was designed for a birdcage excitation
and a single dielectric pad can also be used to optimize the B+

1 fields for two pads within
the same configuration. This implies that the interactions between the two dielectric
pads, the body, and the coils are taken into account in this library. Moreover, a given
library can sometimes also be used for different body landmark positions in the birdcage
coil, that is, the patient can be moved backwards and forwards in the coil to center a
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specific landmark. The same model can be used, except that now the background field
from the initial position needs to be replaced by a new background field as generated
by the repositioned coil. Finally, we found that the birdcage excitation can be replaced
afterwards by e.g. a local non-resonant coil element. Although the accuracy decreases
slightly, the result is remarkable as the reduced order library is not created using a local
coil element. Apparently, for all these applications, when finding the most significant
current distributions in the pad design domain for random pad evaluations, we actually
find the most significant modes that can occur within the pad.

The developed methods and the design tool can also be used for design problems
that are more complex than the one from this dissertation. Non-rectangular multi-
element pads can be included for example [4]. Furthermore, modeling electric fields
to obtain safety information for patients with an implant or a deep brain stimulation re-
quires complex RF simulations due to the required fine spatial resolution [5, 6]. As these
devices are positioned slightly different in the body for each patient, different patient-
specific electric field distributions are obtained and using the method outlined in Chap-
ter 2, we can create a library for which the design domain is defined inside the body
instead of outside the body as is the case for dielectric pads [7]. This will allow for the
efficient modeling of these devices when combined with the reduced order modeling
technique presented in this thesis. Finally, as parallel transmit and receive systems are
used more frequently, we can optimize for multi-element dielectric pads, either incorpo-
rated in the antenna design or as an addition to existing antennas [8–11]. As the library
is flexible towards other geometries and excitation fields, we can include non-resonant
coil elements and find the resulting transmit B+

1 or receiver B−
1 fields to evaluate trans-

mit and receive sensitivity. Alternatively, as described above, we can model resonant coil
elements in the configuration by using circuit-co-simulation.

In conclusion, we developed a tool that allows for optimal pad design within min-
utes for 3T body imaging and 7T neuroimaging applications. Furthermore, the described
methods can also be fruitfully applied to many other design and field evaluation prob-
lems.

PART II: ACCELERATING RECONSTRUCTIONS
MR scan times can be strongly reduced using parallel imaging and compressed sensing
techniques, which reduce the number of measurements such that part of k-space is not
acquired. Consequently, the Nyquist criterion is violated and an image of the anatomy
cannot be reconstructed anymore because aliasing or noise-like behavior occurs when
a standard Fourier transformation is applied. Missing information from k-space can be
restored by adding additional information to the system by exploiting the spatial sensi-
tivity of the receiver coils and by the a priori knowledge that the anatomic image is sparse
in some transform domain. Incorporating this information in a design problem can be
easily done, but solving this problem requires more advanced techniques since ℓ0 or
ℓ1-norm minimization problems need to be solved. The reconstruction times increase,
since standard efficient Fourier transformation techniques can no longer be applied for
undersampled data. Although undersampling is beneficial for the patient’s comfort and
it reduces motion artifacts, long reconstruction times are a drawback. We designed and
implemented a preconditioner that can be used to speed up this reconstruction in a Split
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Bregman framework.

The minimization problem that is to be solved can be addressed by a multitude of re-
construction algorithms. We chose the Split Bregman framework for its simplicity, stabil-
ity, computational performance, and because of its frequent use. This method converts
a single minimization problem into two subproblems. The first subproblem relaxes the
ℓ1-norm part of the minimization procedure and replaces it with a standard ℓ2-norm
minimization problem that can be solved by standard least-squares minimization tech-
niques. The second subproblem contains the ℓ1-norms that were relaxed before and
these subproblems need to be solved subsequently to correct for the relaxation. Using
an iterative scheme for the two combined subproblems, the initial minimization prob-
lem can be solved.

The ℓ2-norm minimization problem was formulated as a linear least squares prob-
lem and was subsequently written as a system of linear equations Ax = b. The system
matrix A contained three terms: the data fidelity term comprising the undersampling
scheme and coil sensitivities, the total variation operator, and the wavelet operator. The
latter two terms are known to have a sparse result when applied to the image. Iterative
solvers are typically used to solve the system for the unknown image x, since matrix-
vector products with matrix A can be computed very efficiently. Long reconstruction
times may result, however, especially when the number of unknowns is large (105 or
higher). Fortunately, it is possible to significantly reduce these reconstruction times,
since matrix A is not altered in the Split Bregman procedure and therefore may be pre-
conditioned to accelerate convergence.

We designed such a preconditioner by exploiting the block circulant with circulant
blocks structure (BCCB) of the total variation and the wavelet transform parts of the sys-
tem matrix. This structure can be used efficiently as it can be diagonalized using two-
dimensional Fourier transformations. The inverse of such a matrix can be easily com-
puted as only a diagonal matrix is to be inverted. However, the data fidelity term, con-
taining the measurements, sampling patterns, and coil sensitivities, does not possess
this property. Hence, in the construction of our preconditioner we approximated only
this non-BCCB part with a BCCB matrix. Explicitly, by multiplying the data fidelity term
from the left and the right by the discrete Fourier matrix we try to diagonalize this term;
the technique that is used to diagonalize a BCCB matrix. We found a closed-form expres-
sion that prescribes the diagonal of the resulting matrix and use this diagonal to create
a BCCB matrix, i.e. we discarded all off-diagonal information. The closed-form solution
contained only three FFTs and therefore could be efficiently computed. Because the pre-
conditioner could be used throughout the entire Split Bregman framework, we only had
to compute the approximation once for each reconstruction.

The required iterations to solve the system of linear equations decreased by a factor 5
without compromising the solution of SB, as preconditioners do not affect the solution,
but solely enhance the convergence of the iterative solver used in the Split Bregman pro-
cedure. The total framework of SB was accelerated by a factor 2.5, which is caused by
the additional ℓ1-norm problems that need be minimized for every least squares solu-
tion. This factor can be increased, however, as we did not optimize these subproblems
and we could have used more efficient wavelet transformations. The complexity of the
Split Bregman algorithm was not increased much due to the preconditioner, as it only
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requires two additional FFTs compared with the 2Nc FFTs that are already used when
no preconditioning is applied, where Nc is the number of coil channels (typically larger
than 8).

The preconditioner performs well for arbitrary k-space sampling patterns on a Carte-
sian grid and for different coil geometries and anatomies. For sampling on a non-
Cartesian grid the current preconditioner can be used when gridding methods are used
to map the non-uniform samples to a uniform grid [12, 13]. The preconditioner can be
adapted for non-Cartesian trajectories as well by replacing the circulant structure of the
matrix with a Toeplitz structure, i.e. with a block Toeplitz matrix with Toeplitz blocks [14].
We expect that this Toeplitz preconditioner will lead to a significant reduction in com-
putation time given the encouraging results for the Cartesian case.

For all reconstruction methods, there are some regularization and reconstruction pa-
rameters that need to be tuned for fast convergence and accurate image reconstruction
results. In the Split Bregman method the number of parameters is kept to a minimum
to minimize this tuning problem. The parameters in our method were found manually
by tuning them based on image quality and we found that the relative ratio between the
parameters can be kept more or less the same. The order of magnitude of the param-
eters depends on the noise level of the data [15], however, as it serves as a threshold in
the ℓ1-norm minimization problems. Ideally, other methods could be used to find these
parameters in a less heuristic manner [16–20].

In conclusion, the preconditioner leads to a 5-fold acceleration in solving the least
squares problem in a Split Bregman reconstruction framework and results in a 2.5-fold
acceleration in the total reconstruction time. As the preconditioner can be easily and
effectively built because of its circulant structure, it is a suitable tool to accelerate the
time-consuming PI and CS reconstruction times.
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A
FETAL IMAGING USING

DIELECTRIC PADS

The methods and the design tool from Part I of the thesis have been used to design dielectric
pads for fetal MRI at 3T. One of the main concerns in fetal MRI is the amount of power
that is deposited both in the fetus and the mother, which can expressed by the Specific
Absorption Rate (SAR). In this chapter we show that well-designed pads can increase the
homogeneity of the field while substantially reducing the SAR in both the mother and the
fetus for models of the third, seventh, and ninth months of gestation.

This chapter is submitted to Magnetic Resonance in Medicine (under review).
(December, 2018)
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A.1. INTRODUCTION

A LTHOUGH ultrasound (US) remains the predominant diagnostic imaging for evalu-
ating disorders related to pregnancy, fetal MRI is increasingly being used. In con-

trast to ultrasound, MRI visualization of the fetus is not significantly limited by maternal
obesity, fetal position, or oligohydramnios; in addition, visualization of the brain is not
restricted by the ossified skull. Due to its superior soft tissue contrast, MRI is able to
distinguish individual fetal structures such as lung, liver, kidney and bowel [1]. The ex-
tended field-of-view and ability to acquire oblique parallel slices aids examination of
fetuses with large or complex anomalies, and visualization of any lesions within the con-
text of the entire fetal body [2]. In particular, studies of the fetal brain and general central
nervous systems (CNS) disorders are increasing in number and diagnostic quality [3].

Fetal MRI is mainly performed at 1.5T, but there is a growing interest in 3T [4–6]. The
increase in field strength results in an increase in signal-to-noise ratio (SNR), which is
beneficial as the spatial resolution can be increased and the acquisition times can be
reduced. Acquiring high quality images is more challenging, however, as for higher field
strength the wavelength of the RF field is reduced. Consequently, interference effects
occur that decrease the uniformity and efficiency of the RF transmit field (B+

1 ) and hence
the image quality is degraded [7–9].

Another concern in fetal MR is the amount of power deposited in the fetus, as well
as the mother, particularly with respect to the presence of very high conductivity amni-
otic fluid. As discussed in Murbach et al. [10] the allowed specific absorption rate (SAR)
is defined by the International Electrotechnical Commission (IEC) standards in terms
of whole-body SAR (SARwb), and head-averaged SAR. IEC 60601-2-33 suggests that preg-
nant women should undergo only scans which are performed in normal operating mode
which limits the SARwbto 2 W/kg. For this operating mode, the local SAR10g(the SAR
averaged over any 10 g of tissue) is limited to 10 W/kg when local transmit coils or RF
shimmed body coils are used.

A number of previous studies have investigated via electromagnetic (EM) simula-
tions the SAR experienced both by the mother and the fetus at 1.5T and 3T [10–15]. Hand
et al. [11, 12] and Pediaditis et al. [13] used a finite integration technique (FIT): the for-
mer considered a truncated model of a 28-week pregnant woman at 1.5T and 3T, while
the latter looked at a whole-body 30-week pregnant female model at fields between 0.3T
and 4T. Both studies showed that local SAR10gin the mother exceeded 10 W/kg before the
maternal whole-body averaged SAR reached 2 W/kg. Other studies have used finite dif-
ference time domain (FDTD) methods for their simulations at 1.5T and 3T. Wu et al. [14]
considered pregnant female models from 1 to 9 months gestation and determined that
the local SAR10gwithin the mother exceeded the limit of 10 W/kg at both field strengths.
Other researchers have studied the effects of small changes in position of the fetus with
respect to the center of the transmitting RF coil, and found relatively small (<10%) dif-
ferences in SAR.

Some studies have extended the SAR analysis to also estimate temperature increases
within the mother and fetus [10, 12]. These two studies used the Pennes Bioheat equa-
tion [16] and the thermoregulation model presented by Laakso et al. [17], respectively.
In the most recent simulation study, Murbach et al. investigated the effect of using RF-
shimming on a dual-transmit 3T system in terms of the SAR and temperature rise both in
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Athe mother and fetus at different gestational stages [10]. They used models in the third,
seventh and ninth month of gestation [15, 18] with appropriate dielectric properties de-
rived from Gabriel et al. [19]. Their general conclusions were that RF shimming can re-
duce the local RF exposure for the mother, but conversely can increase the whole-body
exposure and peak temperature in the fetus.

Another method to tailor the transmit field and SAR distribution is passive RF shim-
ming using high permittivity materials. For 3T applications, these materials typically
have a relative permittivity on the order of 300-1000, and function by inducing a strong
secondary magnetic field in their vicinity. Several studies performed in adults at 3T have
reported a higher B+

1 efficiency and/or homogeneity, as well as reduced SAR values [20–
27]. The potential benefits of using high permittivity materials in fetal MRI have been
indicated previously [28, 29] but these pads were not optimized and the different ges-
tational stages were not taken into account. In general, for passive RF shimming the di-
mensions, location, and constitution of the high permittivity material need be optimized
in an application-specific manner. A common approach is to perform a parametric opti-
mization study using electromagnetic field solvers, based on a systematic trial-and-error
approach. As each of these simulations involve a heterogeneous body model and a de-
tailed model of the RF coil, such procedures typically take multiple days for a single ap-
plication. In previous work, we have developed an advanced reduced order modeling
technique to accelerate pad evaluations by characterizing stationary components such
as the RF coil and body model in an offline-stage, and compressing the resulting model.
This yielded up to four orders of magnitude of acceleration compared to commercial
software, and enabled the automated design of dielectric pads in under a minute [30].

In this paper we use the design approach described above to investigate the utility of
using high permittivity materials in fetal imaging. Following the general procedures and
guidelines of previous simulation studies, we assess the B+

1 efficiency, B+
1 homogeneity

and the SAR in different areas of the mother and fetus for different gestational stages as
well as positions/orientations within the RF coil. We also performed a sensitivity analysis
to estimate the effects of slight position changes of the pads.

A.2. METHODS

CONFIGURATION

For the EM simulations a wide-bore high-pass birdcage body coil was used with a diame-
ter of 750 mm, and a shield diameter of 800 mm. The shielded coil was tuned to operate
in quadrature mode at a frequency of 128 MHz using 33.25 pF capacitators in the end
rings. Female body models from the Virtual Family dataset [18] in the third, seventh,
and ninth month of gestation (with the fetus positioned head-down) were incorporated
either on a 7.5 mm or a 3.75 mm discretized uniform grid for B+

1 field simulations and
SAR evaluations, respectively. A resolution of 7.5 mm was sufficient to accurately model
the B+

1 fields. For the SAR simulations we used the higher spatial resolution grid in order
to incorporate the isolating material around the dielectric pad. The region in which high
permittivity materials can be placed, referred to as the “pad design domain”, was de-
fined as a 1.5 cm thick layer enclosing the body model from groin to breast as illustrated
in Figure A.1. The pregnant body models can be shifted in the body coil such that differ-
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Pad-design domain Fetus
Brain fetus

Magnet isocenter:

3 months 7 months 9 months

Figure A.1: Pregnant body models in the third, seventh, and ninth month of gestation. The pad design domain
is the region to which every dielectric pad is confined. The imaging landmarks are shown on the right-hand
side: the center and the brain of the fetus.

ent ROIs can be positioned in the magnet isocenter. All field quantities were computed
using XFdtd software (v.7.4.0.3, Remcom State College, PA, USA) and were normalized to
1 W input power.

DESIGNING DIELECTRIC PADS
An efficient forward model was used to evaluate the electromagnetic fields with a dielec-
tric pad in place as described in [27, 31]. (A dielectric pad design tool encompassing the
methods summarized below is freely available at https://paddesigntool.sourceforge.io).
To this end, the computational domain was divided into a domain that is stationary, i.e.
containing the heterogeneous body model and RF transmit coil, and a domain that is
dynamic, i.e. the pad design domain. The design domain allows defining dielectric pads
with any location, geometry, and constitution, provided that the pad is confined within
this domain. For every pad simulation, the stationary components remain unaffected
and hence they can be characterized in advance by computing the pad-independent
background fields and by constructing the so-called field response library. Subsequently,
only the perturbation due to the dielectric pad on the stationary electromagnetic fields
needs to be computed. As the pad design domain is small with respect to the original full
computational domain, only a small problem needs to be solved and hence the compu-
tational times for dielectric pad evaluations are accelerated.

The computational times were accelerated further by applying a reduced order mod-
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Aeling technique [30]. In this method, the degrees-of-freedom for the dielectric pad are
restricted to reduce the solution space and the complexity of the model. For that rea-
son, the forward model was parameterized in terms of the pad’s width, height, location,
and constitution by the parameter vector p= [

ε;width,height, location
]
. The parameter

vector also allows for the definition of two dielectric pads. Furthermore, the pad design
domain was divided into small dielectric subdomains by assigning the same material
properties to grid edges that belong to a given non-overlapping homogeneous subdo-
main. To exploit the reduced solution space due to the subdomains and the parame-
terization, we subsequently created a reduced order basis by simulating a large variety
of dielectric pads using the parameterized model (i.e. snapshots) after which the most
dominant current modes in the pad design domain were extracted to serve as a basis. Fi-
nally, the forward model was compressed by projecting the field library onto this reduced
order basis. This allows for field computations that are up to four orders of magnitude
faster than conventional EM solvers such as XFdtd.

The dielectric pads were designed by optimizing the B+
1 field in a given region-of-

interest (ROI) for a certain dielectric pad parameter vector p. This was achieved by
minimizing a cost functional C (p) that measures the discrepancy between the desired
B+

1 magnitude and the modeled B+
1 magnitude within the ROI, defined as

C (p) = 1

2

∥B+
1 (p)−B+;desired

1 ∥2
2;ROI

∥B+;desired
1 ∥2

2;ROI

, (A.1)

where B+;desired
1 is the desired B+

1 magnitude, B+
1 (p) is the B+

1 magnitude due to a pad
with model parameters p, and ∥·∥2

2;ROI denotes the ℓ2 norm over the ROI. The B+
1 ef-

ficiency is measured in units of µT/
p

W input power, and the B+
1 homogeneity as the

coefficient of variation Cv over the ROI. The cost functional was minimized for a range
of desired B+

1 magnitudes, each of which yields a different solution in terms of transmit
efficiency and Cv. With these solutions, a trade-off between homogeneity and efficiency
can be made, depending upon the particular imaging sequences to be used.

All pad optimizations in this study were performed while fixing the pad thickness
to 1.5 cm, electrical conductivity to 0.2 S/m, maximum relative permittivity to 300, and
constraining the width and length of the pad to 30 cm in order to limit the weight of the
pad.

B+
1 AND SAR EVALUATION SCENARIOS

The B+
1 and SAR effects were evaluated for two ROIs: (i) the entire 3D volume of the

fetus and (ii) the fetal brain only. For each evaluation the midpoint of the ROI was po-
sitioned at the magnet isocenter. The cost functional of Eq. (A.1) was minimized for a
range of desired B+

1 magnitudes, first for one pad and subsequently for two pads. The
pad designs that provided the optimum transmit efficiency and the optimum field ho-
mogeneity were then analyzed in terms of SAR after normalizing the input power to 1 W.
The SAR distribution was evaluated in terms of the SARwb, average SAR in the fetus and
amniotic fluid (SARavg), and maximum 10g-averaged SAR (SAR10g,max) in the mother, fe-
tus and amniotic fluid. Furthermore, we evaluated the SAR effects after normalizing to
the B+

1 magnitude achieved in the ROI when no dielectric pad is being used.
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Finally, for the optimized pads a sensitivity analysis was performed to determine how
the transmit efficiency and homogeneity would be affected by a shift in the location of
the pad from its calculated optimum, as this might occur in practice. To this end, the
optimized pad was shifted by ∼3 cm in each direction (horizontally, vertically as well as
diagonally), after which the performance metrics were compared.

A.3. RESULTS
The pad design results in the three pregnant body models are shown in Figure A.2. The
range of desired B+

1 magnitudes considered in each of the optimizations was based
on the B+

1 magnitude without a dielectric pad, defining its lower limit, and the maxi-
mum achievable magnitude, found by running one optimization with a very high desired
B+

1 magnitude. In all cases a dielectric pad was obtained which improved the transmit
efficiency in the ROI. Transmit efficiency gains measured 45% in the 3 months model,
50% in the 7 months model, and 26% in the 9 months model for both the fetal brain
alone and the entire fetal volume. The Cv improved in all cases except for the 9 months
model (ROI: entire fetus). In this case, the Cv was found to be relatively invariant to the
target B+

1 magnitude, while the transmit efficiency was improved by 27%.
SAR effects were evaluated for the dielectric pads that provided the minimum Cv and

the maximum transmit efficiency, as indicated by the green and orange circles in Fig-
ure A.2, respectively. Note that for the 9 months (ROI: fetus) pad design number 2 was
selected as the optimum solution as opposed to number 1, for the reason that a higher
transmit efficiency was obtained with respect to a negligible increase in Cv. Specifica-
tions on the optimized pads can be found in Table A.2, where the number of pads (one
or two) and the pads geometry and relative permittivity are also listed. In the majority of
cases a single dielectric pad was suggested, positioned on the anterior side of the mother.
A second pad on the posterior side improved the result only in the 9 months (ROI: brain)
and 3 months cases.

The B+
1 fields and the SAR distributions for the optimized pads are shown in Fig-

ures A.3 and A.4, and maximum SAR values are summarized in Table A.2 (including
the results for the pads that provided the minimum Cv). The spatial distribution of the
SAR10gwas very similar to that without dielectric pads, which is consistent with previ-
ous studies [21, 24, 26]. In the third and sixth column of Figure 3, the B+

1 normalized
SAR10gdistribution is shown for the case with dielectric pads.

For all SAR evaluations we observe a decrease in SARwbwhen optimized pads are
in place. Specifically, the SARwbwas reduced by more than 53%, 55%, and 31% for the
third, seventh, and ninth months of gestation, respectively. For the pads that minimized
Cv the reductions in SARwbwere slightly lower, i.e. 53%, 51% and 23%. The SARavgand
SAR10g,maxwere reduced in almost all cases, except for the 9 months case where the pad
was optimized to achieve a minimum Cv. Here, we observed an increased SAR10g,maxin
the fetus of 6%-14%, but these values are still below 10 W/kg limit. The largest reductions
in SAR are generally observed in the mother. For the 9 months model the amniotic fluid
showed intermediate reductions and only small variations were observed in the fetus. In
the other models, similar gains were observed in the fetus and the amniotic fluid.

The results from the sensitivity analysis showed that the performance metrics of the
optimized dielectric pads are quite robust to small changes in the optimum location of
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Figure A.2: Sweep results for the three, seven, and nine months of gestation. The ROI is set to the brain of the
fetus (left column) and the fetus (right column). For each sweep the optimization algorithm was run several
times using different desired B+

1 fields. The green and orange circles indicate the cases that gave the minimum
Cv and maximum transmit efficiency, respectively.
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Table A.1: Summary of the B+
1 transmit efficiency gains and the Cv with respect to the case without a dielectric

pad. Results are compared for the dielectric pad that optimizes the efficiency of the field and the homogeneity
of the field
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Figure A.3: B+
1 fields and SAR evaluations the for the seven, and nine months of gestation. The first and fourth

column are the results without any dielectric pad for the ROI set to the brain of the fetus and the fetus, respec-
tively. The second and fifth column depict the results with dielectric pad, and the third and sixth column the
results when normalized for the B+

1 , i.e. the same transmit efficiency in the ROI is achieved as in the case
without dielectric pads.
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Figure A.4: B+
1 fields and SAR evaluations the for the three months of gestation. The first column is the results

without any dielectric pad for the ROI set to the brain of the fetus. The second column depicts the results with
dielectric pad, and the third the results when normalized for the B+

1 , i.e. the same transmit efficiency in the
ROI is achieved as in the case without dielectric pads.

the pad, consistent with previous findings [24]. For the transmit efficiency we found
a maximum degradation of 6.7%, 6.0% and 7.4% with respect to the optimum, for the
three, seven, and nine months gestational age, respectively. By averaging the metrics
over all directional shifts, we found that the efficiency is degraded by 2.5%, 1.9%, and
1.7%. The Cv is increased by a maximum of 1.7%, 3.7%, and 2.3% for the three, seven,
and nine months gestational age, respectively. On average these values are 0.4%, 1.3%,
and 0.7%.

A.4. DISCUSSION AND CONCLUSIONS
In this study we have simulated the effects of optimized dielectric pads on the transmit
field and SAR distribution in fetal imaging at 3T. Our results show that, in general, con-
siderable increases in both transmit efficiency and homogeneity as well as reductions in
SAR can be obtained using this approach.

IEC 60601-2-33 suggests that pregnant women should only undergo scans which are
performed in normal operating mode which limits the SARwbto 2 W/kg. In our study,
we stay within this limit for all scenarios while improving the quality of the B+

1 field at
the same time. Although we are not bound to a SAR10g,maxlimit of 10 W/kg, which only
applies to local transmit coils or RF-shimmed body coils, we see that in the fetus we do
not exceed 8.3 W/kg when using the dielectric pads. The local SAR is also reduced for
the amniotic fluid when the pads are used. This is beneficial, as a higher SAR in this
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Table A.2: Summary of the SAR evaluations. All percentages in the avgSAR and psSAR10g columns are with
respect to the original configuration, i.e. where no dielectric pads are being used.
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non-perfused fluid may indirectly lead to an increased temperature in the fetus [10]. In
all cases, however, we see that the SAR10g,max in the mother exceeds 10 W/kg before the
SARwblimit is reached, as has also been found in other studies in pregnant models [13,
14] as well as non-pregnant models [15].

In the current design study, for practical reasons, we have restricted both the dimen-
sions as well as the relative permittivity of the pad. Higher transmit efficiency gains are
attainable when we relax these constraints. For example, the transmit efficiency can be
increased by up to 36% for the 9 months (ROI: fetus) model instead of the 27% reported
here, however, this would require a dielectric pad of size 30×30×1.5 cm3 with a relative
permittivity of 453. Such a pad would exceed 15 kg in weight, which is impractical. Our
constraints ensure that the weight of the dielectric pad stays below 4 kg, which is consid-
ered a suitable limit in order to preserve subject comfort based on previous experience
at our institute.

The results shown here suggest that the use of dielectric pads could complement RF
shimming as studied by Murbach et al. [10]. In some cases, the dielectric pads may in
fact provide a larger improvement in B+

1 efficiency and homogeneity than conventional
RF shimming, which was also observed in other applications [24]. For example, in the
seven months model RF shimming yielded a 15% increase in transmit efficiency (op-
timum B+

1 efficiency shim settings) and a small improvement in Cv from 18% to 16%
(optimum Cv shim settings). In our current study, using the same model, an increase in
transmit efficiency of 50% (optimum B+

1 efficiency) was obtained with an improvement
in Cv from 19% to 12% (optimum Cv).

We note that compared to the Murbach study we observe slightly different SAR re-
sults for the 7 months configuration where no shimming is applied and where no di-
electric pads are used. These differences may be caused by differences in either the
coil model or the subject meshing; our pregnant models were limited to a uniform and
isotropic spatial resolution of 5 mm, whereas the model from Murbach et al. supported
a higher spatial resolution. These differences should however not change the conclu-
sions with respect to the relative effects of the dielectric materials, which are relatively
independent from the reference model.

In conclusion, we have shown that optimized high permittivity pads can reduce SAR
in the third, seventh, and ninth month of gestation, while improving the transmit field
homogeneity in the fetus. This offers a practical solution to improve image quality and
RF safety in fetal MRI examinations at 3T.
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SUMMARY

This dissertation describes how to design dielectric pads that can be used to increase
image quality in Magnetic Resonance Imaging, and how to accelerate image reconstruc-
tion times using a preconditioner. Image quality is limited by the signal to noise ratio
of a scan. This ratio is increased for higher static magnetic field strengths and therefore
there is great interest in high-field MRI. The wavelength of the transmitted magnetic RF
field (B+

1 field) decreases for higher field strengths, and it becomes comparable to the
dimensions of the human body. Consequently, RF interference patterns are encoun-
tered which can severely degrade image quality because of a low transmit efficiency or
because of inhomogeneities in the B+

1 field distribution. Dielectric pads can be used to
improve this distribution as the pads tailor the B+

1 field by inducing a secondary mag-
netic field due to its high permittivity. Typically, the pads are placed tangential to the
body and in the vicinity of the region of interest. The exact location, dimensions, and
constitution of the pad need to be carefully determined, however, and depend on the
application and the MR configuration. Normally, parametric design studies are carried
out using electromagnetic field solvers to find a suitable pad, but this is a very time con-
suming process which can last hours to days. Therefore, in the first part of this thesis, we
present methods to efficiently model and design the dielectric pads.

To obtain a solution methodology for evaluating the pad induced B+
1 fields, we use

the fact that the dielectric pads form a low rank perturbation of a large scale com-
putational background model. This property is exploited by the Sherman-Morrison-
Woodbury formula to define a forward model that divides the computational domain
into a large static domain, i.e. the heterogeneous body model and RF coils, and a rela-
tively small dynamic pad design domain to account for the wide range of different pad
realizations. As a consequence, only a small problem needs to be solved for a pad, and
significant speed up factors can therefore be achieved compared with traditional field
simulation approaches. For example, the fields for a typically sized dielectric pad is
computed 30 times faster than using conventional methods. We validated our approach
against measurements and have observed that measured and simulated field responses
are in good agreement with each other.

The methods developed thus far become computationally complex for large pads
as the perturbation becomes large, and hence they cannot be used efficiently in an op-
timization approach for pad design. Therefore, the dimension of the design problem
is significantly reduced using a projection based model order reduction technique. To
this end, the forward model is first parameterized in terms of the pad’s characteristics,
i.e. its location, dimension, and constitution. To find a projection basis, we evaluate
a large number of random pads with the parameterized model, which is then used to
extract recurring current patterns in the dynamic pad design domain. The dominant
current patterns are used to eliminate redundant data from the forward model to obtain
a reduced order model, which allows for acceleration factors of about 6000 compared to
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conventional methods. Subsequently, the resulting reduced order model is incorporated
in an optimization method in which a desired field in a region of interest can be set. The
method is validated by designing a pad for imaging the cerebellum at 7T, a region that is
difficult to scan because of its low transmit efficiency. The optimal pad is used in an MR
measurement to demonstrate its effectiveness in improving the transmit efficiency and
subsequently the image quality.

The reduced order model is very efficient to effectively and systematically design a
pad, but it cannot be used easily by the MR community in its current form due to lack of
software, resources, or expertise in this specific field. Therefore, we have created a de-
sign tool that allows for efficient and effortless pad design for any 7T neuroimaging and
3T body imaging application within minutes. The performance of the tool is demon-
strated by designing a dielectric pad for cardiac imaging at 3T, and two dielectric pads
for imaging the inner ear at 7T. Both designs improve the transmit efficiency as well as
the homogeneity of the B+

1 field.
In the second part of the thesis a preconditioner is designed for parallel imaging (PI)

and compressed sensing (CS) reconstructions. MRI acquisition times can be strongly
reduced by using PI and CS techniques by acquiring less data than prescribed by the
Nyquist criterion to fully reconstruct the anatomic image; this is beneficial for patient’s
comfort and for minimizing the risk of patient’s movement. Although acquisition times
are reduced, the reconstruction times are increased significantly, especially for a large
number of coils or a large number of unknowns in the image. In the reconstruction, PI
uses the spatial selectivity of the receiver coils to fill in the data blanks in post-processing,
whereas CS fills in the blanks by exploiting a priori information that the anatomic image
is sparse in some transformation domain. These two methods can be easily combined
in ℓ1 and ℓ2-norm based reconstruction algorithms, but solving them is much more dif-
ficult than standard reconstructions where no PI and CS is used. The equations can be
solved more efficiently, however, when a preconditioner is used, such that not only ac-
quisition times, but also reconstruction times are accelerated.

In this thesis, we construct such a preconditioner for the frequently used iterative
Split Bregman framework. For every iteration, a linear system of equations is to be solved
which is the most time consuming part of the reconstruction procedure. The system
matrix of the linear system remains fixed throughout the iterations, however, and hence
we only have to construct a preconditioner once to accelerate this part. The designed
preconditioner approximates the system matrix of the linear system by a matrix that is
block circulant with circulant blocks. Because of this matrix structure, we can quickly
build and apply the preconditioner using fast Fourier transformations only. We have
tested the performance in a conjugate gradient framework, and show that for different
coil configurations, undersampling patterns, and anatomies, a five-fold acceleration can
be obtained for solving the linear system part of Split Bregman.
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Dit proefschrift beschrijft hoe diëlektrische pads ontworpen kunnen worden om de
beeldkwaliteit van MRI te verbeteren, evenals hoe de beeld-reconstructietijden kan wor-
den verkort door middel van voor-conditionering. In MRI wordt de kwaliteit van de
scans bepaald door de signaal ruisverhouding welke verbetert naarmate het statische
magnetische veld van de MRI sterker wordt. Dit is de reden dat er veel interesse is
in high-field MRI. Een nadeel van high-field MRI is dat de golflengte van het radio-
frequente veld (het B+

1 veld) verkleint. De lengte wordt vergelijkbaar met de afmetingen
van het menselijk lichaam waardoor er interferentie-patronen ontstaan in het lichaam.
Dit zorgt ervoor dat het B+

1 veld op sommige plekken extra sterk zal worden en op an-
dere plekken juist extra zwak. Deze inhomogeniteiten en zwakke velden verslechteren
de beeldkwaliteit. Een praktische oplossing om deze velden te verbeteren is het ge-
bruik van diëlektrische pads. Deze pads hebben een erg hoge permittiviteit waardoor
ze een sterk secundair magnetisch veld opwekken. Vaak worden deze op het lichaam
geplaatst vlakbij het interessegebied zodat ze het magnetische veld plaatselijk kunnen
sturen. Om het gewenste effect te bereiken dient de pad zorgvuldig ontworpen te wor-
den. De afmetingen, locatie en materiaaleigenschappen van de pad hangen sterk af van
de toepassing en de MRI-configuratie. Normaal gesproken worden deze eigenschappen
bepaald aan de hand van parametrische ontwerpstudies in elektromagnetische veldsim-
ulatie programma’s, maar dit is erg tijdrovend en kan uren tot dagen duren. In het eerste
gedeelte van dit proefschrift wordt een alternatieve methode beschreven welke een stuk
sneller is.

Om tot een efficiënt rekenmodel te komen hebben we de eigenschap gebruikt dat
de pads altijd een kleine verstoring veroorzaken op een grootschalig achtergrondmodel.
Dit achtergrondmodel bevat het menselijk lichaam en de zend-spoelen en is statisch,
wat betekent dat deze configuratie hetzelfde blijft ongeacht de locatie en grootte van
een geplaatste pad. Deze eigenschap kan benut worden via de Sherman-Morrison-
Woodbury formule, welke ervoor zorgt dat ons rekenmodel opgedeeld kan worden in
een groot statisch domein en een klein pad-ontwerp domein. Om het B+

1 veld te bereke-
nen voor een willekeurige pad hoeft er nu enkel een klein probleem opgelost te worden.
Dit leidt tot rekentijden die tot 30 keer sneller zijn dan de conventionele methodes.

De methoden die tot dusver ontwikkeld zijn worden rekenkundig complex voor grote
pads omdat de verstoring groot wordt. Dit zorgt ervoor dat ze niet efficiënt gebruikt
kunnen worden voor optimalisatiedoeleinden bij het ontwerp van de pads. Om die re-
den wordt de complexiteit verkleind door gebruik te maken van een projectie-gebaseerd
gereduceerd model. Om hier gebruik van te kunnen maken wordt het model eerst
geparametriseerd in termen van de locatie, afmetingen en materiaaleigenschappen van
de pads. Vervolgens worden de elektromagnetisch velden berekend voor een groot aan-
tal pads met ieder willekeurige eigenschappen. Vanuit de verkregen resultaten worden
de terugkerende stroompatronen gehaald om op deze manier redundante en overbodige
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informatie uit ons oorspronkelijke model te verwijderen. Dit leidt tot een gereduceerd
model dat 6000 keer sneller opgelost kan worden dan conventionele methoden. Het
model wordt vervolgens gecombineerd met een optimalisatietechniek waarmee het mo-
gelijk wordt de juiste pad-eigenschappen te vinden voor een willekeurig interessegebied.
Met deze techniek is er een pad ontworpen om het cerebellum te scannen bij een veld-
sterkte van 7 Tesla, wat een erg lastig gebied is door het zwakke magnetische veld. De
ontworpen pad verbetert het B+

1 veld en daardoor ook de kwaliteit van de cerebellum
scan.

Het gereduceerde model is erg effectief om pads te ontwerpen, maar het kan in de
huidige vorm niet gemakkelijk gebruikt worden door de MRI-gemeenschap wegens ge-
brek aan software, middelen of kennis in dit specifieke gebied. Vandaar dat we een on-
twerptool hebben gemaakt die het mogelijk maakt om binnen een paar minuten de pads
moeiteloos te ontwerpen voor iedere 7T brein-applicatie en 3T lichaam-applicatie. De
doeltreffendheid in het verbeteren van het B+

1 veld wordt getoond door een pad te ont-
werpen voor de hart-scan bij 3T en het binnenoor bij 7T.

In het tweede deel van het proefschrift is een voor-conditioneringsmatrix gemaakt
om de reconstructies te versnellen van metingen die gebruik maken van de technieken
parallelle beeldverwerking (Engels: Parallel Imaging, PI) en gecomprimeerd meten (En-
gels: Compressed Sensing, CS). De meettijden van MRI kunnen sterk gereduceerd wor-
den door deze PI en CS technieken. Dit komt ten goede aan het comfort van de patiënt
en verkleint tevens het risico van beweging tijdens een scan. De technieken meten min-
der data dan voorgeschreven wordt door het Nyquist criterium om een volledige recon-
structie uit te kunnen voeren. De hiaten in de data kunnen namelijk achteraf opgevuld
worden door de extra informatie die beschikbaar is uit PI in de vorm van de ruimtelijke
sensitiviteit van meerdere meetspoelen, en door CS welke de voorkennis gebruikt dat de
anatomische beelden in een bepaald transformatie domein erg weinig informatie bevat-
ten. De twee methoden kunnen makkelijk gecombineerd worden in zogenaamde ℓ1- en
ℓ2-norm gebaseerde reconstructie algoritmes, maar het oplossen van deze problemen
is veel ingewikkelder dan de standaard reconstructies zonder de PI- en CS-technieken.
Hoewel de meettijden dus verkort zijn, worden de reconstructietijden juist groter, vooral
wanneer een groot aantal meetspoelen gebruikt wordt of wanneer het aantal onbekende
pixels in een plaatje groot is. De nieuwe reconstructieproblemen kunnen echter wel
efficiënter en sneller opgelost worden wanneer gebruik wordt gemaakt van een voor-
conditioneringsmatrix, waardoor zowel de meting als de reconstructie snel wordt.

In dit proefschrift is een voor-conditioneringsmatrix ontworpen voor het veelge-
bruikte iteratieve Split Bregman algoritme. Binnen iedere iteratie in dit algoritme wordt
een lineair systeem van vergelijkingen opgelost welke het meest tijdrovende gedeelte
van het algoritme is. De systeemmatrix van het lineaire systeem blijft tijdens het itereren
constant en daarom hoeven we maar een enkele keer een voor-conditioneringsmatrix
te ontwerpen om dit gedeelte te versnellen. Het ontwerp benadert de systeemmatrix
door een matrix die blok circulant is met circulante blokken. Een matrix met deze struc-
tuur kan met behulp van Fourier transformaties snel gebouwd en toegepast worden. We
demonstreren de effectiviteit in een geconjugeerd gradiënt raamwerk en demonstreren
dat voor verschillende interessegebieden en meetspoel-configuraties een vijfvoud ver-
snelling te behalen is in het oplossen van het lineaire gedeelte van Split Bregman.
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PROPOSITIONS

1. Using the solution and optimization methods proposed in this thesis, optimal di-
electric pads can easily be designed within minutes by any MR researcher (this
proposition pertains to this dissertation).

2. The reduced order library that is created using birdcage excited snapshots can ef-
fectively be used for field computations in a configuration that is not excited by a
birdcage coil (this proposition pertains to this dissertation).

3. Potential discomfort caused by a dielectric pad is only a minor side effect com-
pared with the increase in image quality of an MR scan.

4. The number of regularization parameters in MR reconstruction should be kept to
a minimum (this proposition pertains to this dissertation).

5. For Cartesian undersampling patterns, the data fidelity term can be well approxi-
mated by a block circulant matrix with circulant blocks (this proposition pertains
to this dissertation).

6. Deep learning in MR reconstruction for undersampled data should only be
adopted by the clinic once it is combined and supported by physical principles.

7. One cannot say “I have nothing to hide” as the believe of doing nothing wrong is
subjective and dynamic over time.

8. The fight against fake news paves the way to censure.

9. MRI and CT scans should only be performed when it is recommended by a clinical
specialist.

10. Swimming enriches and relaxes the mind and should be learned at any elemen-
tary school in the Netherlands especially in these mobile phone induced stressful
times.
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