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Abstract

In proximal causal inference framework, the identification of average treatment effect (ATE) depends
on finding the bridge functions. The bridge functions are functions about proxy variables used in the
proximal standardization formulae. They are the solutions to two Fredholm integral equations of the
first kind, whose existence is determined by Picard’s conditions about the singular systems of two
conditional expectation operators. However, since singular systems required by Picard’s conditions are
hard to determine, it is an extremely tough task to solve the bridge functions directly from the integral
equations. Therefore, people turn to find estimators of the bridge functions. Many literatures have
provided approaches to the estimators under certain assumptions although which inevitably restrict the
feasibility of their application. In this thesis, we propose a kernel embedded estimator for the treatment
confounding bridge function (𝑞-bridge function) based on a dual kernel embedding method, under the
assumption that there exist at least one bounded continuous 𝑞-bridge function for each treatment.
In addition, we show the consistency of the 𝑞-bridge function estimator and give a consistent ATE
estimator based on the proximal inverse probability weighted estimator.
Key words: Estimator; 𝑞-bridge function; ATE; Reproducing kernel Hilbert space; Fenchel duality;
interchangeability.
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1
Introduction

Causal inference has roots in ancient philosophy, where thinkers like Aristotle defined different kinds
of causes and David Hume questioned how we can justify causal claims beyond mere observation.
The statistical era began in the early 20th century, when Ronald A. Fisher formalized randomized
controlled trials and Sewall Wright developed path analysis to represent causal relationships mathe-
matically. Mid-century, Jerzy Neyman and Donald Rubin introduced the potential outcomes framework,
giving causality a precise probabilistic foundation. In the late 20th century, Judea Pearl’s causal dia-
grams and do-calculus revolutionized the field by unifying graphical models with statistical inference,
enabling rigorous causal analysis even from observational data. Today, causal inference is central
to fields from epidemiology to artificial intelligence, blending experimental design, econometrics, and
machine learning to answer questions about interventions, policies, and complex systems.
As the beginning of the thesis, we introduce the basic counterfactual model of the causal inference,
and then its evolution in problems with unmeasured confounders.

1.1. From basic model to proximal model
In the basic counterfactual causal setting, the binary treatment and the outcome are affected by a
common confounder. To better illustrate the details, we consider a scenario in which some patients
with serious heart diseases made decisions on whether taking heart transplantation surgeries or not
(adapted from [17]). After the surgeries, deaths and survivals happened.
In this story, we denote 𝐴 to be the binary treatment variable taking 1 if the transplantation is received
and 0 if not. 𝑌 is the binary outcome variable representing a death if taking 1 and a survival if taking 0.
The physical condition 𝐿 of the patients is crucial to the determination of accepting the transplantation
as well as the result of the treatment.
The directed acyclic graph for the model representing the relationship of all the three variables is given
in Figure 1.1.

𝐿

𝐴 𝑌

Figure 1.1: A directed acyclic graph (DAG) for basic counterfactual model

Notice that the patient can’t be both treated and not treated at the same time, so the outcome variable
𝑌 only reflects one possible result based on the decision made by the patient. However, this is not
enough to determine the effect of the transplantation surgery. Instead we introduce a set of counter-
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1.1. From basic model to proximal model 2

factual outcome variables {𝑌𝑎 ∶ 𝑎 ∈ {0, 1}}. The counterfactual outcome variables follow their own data
generating schemes (or to say densities in continuous cases) but which are never observable. The
outcome variable 𝑌 takes one of the values 𝑌0 or 𝑌1 after the patient determined whether to take the
treatment. The observable outcome 𝑌 can be written as 𝟙𝐴=1𝑌1 and 𝟙𝐴=0𝑌0 depending on the treat-
ment for each individual. This is the consistency assumption of the counterfactual model, which states
mathematically that

Assumption 1.1 (Consistency) On the event 𝐴 = 𝑎, we have 𝑌 = 𝑌𝑎.

Now a group of patients are chosen if their physical conditions 𝐿 are the same. The death rate (or
survival rate) of the patients who haven’t (have) taken the transplantation surgery would have been the
same as the patients who have (haven’t) taken the treatment, if they had (hadn’t) taken the surgery.
Mathematically, it can be represented by

𝑃𝑟 {𝑌0 = 1|𝐴 = 0, 𝐿} = 𝑃𝑟 {𝑌0 = 1|𝐴 = 1, 𝐿} = 𝑃𝑟 {𝑌0 = 1|𝐿}
𝑃𝑟 {𝑌1 = 1|𝐴 = 0, 𝐿} = 𝑃𝑟 {𝑌1 = 1|𝐴 = 1, 𝐿} = 𝑃𝑟 {𝑌1 = 1|𝐿} .

The statement is equivalent to the conditional exchangeability assumption:

Assumption 1.2 (Conditional exchangeability) 𝑌𝑎 ⊥ 𝐴|𝐿, ∀𝑎 ∈ {0, 1}.

To emphasize the significance of the conditions of the patients, we assume there must be treated and
not treated individuals for any value of this confounder. Mathematically, it is the positivity assumption
of the propensity score:

Assumption 1.3 (Positivity) 0 < 𝑃𝑟 {𝐴 = 𝑎|𝐿} < 1, ∀𝑎 ∈ {0, 1}.

To find the effect of the transplantation surgery on the patients with heart diseases, we need to deter-
mine the average outcome 𝐸𝑌𝑎 to find the average treatment effect 𝐸𝑌1 − 𝐸𝑌0. In fact, we can find it
through the standardization formula.

Theorem 1.1 (Standardization formula)
Under the consistency, conditional exchangeability and positivity assumptions, the average outcome
under treatment 𝑎 is identified as

𝐸𝑌𝑎 = 𝐸𝐿𝐸(𝑌|𝐿, 𝐴 = 𝑎).

Proof:
By the tower property of conditional expectation, 𝐸𝑌𝑎 = 𝐸𝐿𝐸(𝑌𝑎|𝐿). By the consistency and conditional
exchangeability assumptions, we have 𝑌|𝐿, 𝐴 = 𝑎 ∼ 𝑌𝑎|𝐿. So, 𝐸𝐿𝐸(𝑌𝑎|𝐿) = 𝐸𝐿𝐸(𝑌|𝐿, 𝐴 = 𝑎). This
leads to 𝐸𝑌𝑎 = 𝐸𝐿𝐸(𝑌|𝐿, 𝐴 = 𝑎).

□
However, the conditional exchangeability does not hold all the time. For example when there is another
factor called environmental impact that is strongly influential to the condition of patients (𝐿), the decision
on taking the treatment (𝐴) and the outcome (𝑌). This may cover the level of hygiene, the condition of
heart donators, the quality of medical devices and so on. To determine the average treatment effect,
by the standardization formula (1.1), the average outcome is given by

𝐸𝑌𝑎 = 𝐸𝑈,𝐿𝐸[𝑌|𝑈, 𝐿, 𝐴 = 𝑎]. (1.1)

The standardization formula (1.1) works only when the confounder 𝑈 is observable. However the
environmental compact is difficult to measure because it consists of various factors that are hard to be
represented mathematically. An alternative method to compute the average outcome in this case is to
identify by some measurable proxies of the unmeasurable confounder.
We can partition the confounder 𝐿 into three factors (𝑍, 𝑋,𝑊), where 𝑍 and 𝑊 will only affect 𝐴 and 𝑌
respectively, while 𝑋 will influence all factors except 𝑈. We call 𝑍 a treatment-inducing confounding
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𝑈

𝑋𝑍 𝑊

𝐴 𝑌

Figure 1.2: A DAG for proximal counterfactual model

proxy and𝑊 an outcome-inducing confounding proxy. In other cases, both 𝑍 and𝑊 can be a group of
confounders with the same function [45]. The corresponding directed acyclic graph is shown in Figure
1.2.
Faithful to the random variables (𝑈, 𝑍, 𝑋,𝑊, 𝐴, 𝑌), the DAG 1.2 implies two conditional independencies
for 𝑌 and𝑊: 𝑌⊥𝑍|𝑈, 𝑋, 𝐴 and𝑊⊥(𝑍, 𝐴)|𝑈, 𝑋. Adaptions of assumptions 1.2 and 1.3 are made to fit the
proximal counterfactual model. This gives the assumptions for proximal counterfactual models:

Assumption 1.4 (Proximal counterfactual model)

• Consistency: 𝑌 = 𝑌𝐴,

• Conditional independence for 𝑌: 𝑌 ⊥ 𝑍|𝑈, 𝑋, 𝐴,

• Conditional independence for𝑊: 𝑊 ⊥ (𝑍, 𝐴)|𝑈, 𝑋,

• Conditional exchangeability: 𝑌𝑎 ⊥ 𝐴|𝑈, 𝑋, ∀𝑎 ∈ {0, 1}

• Positivity: 0 < 𝑃𝑟(𝐴 = 𝑎|𝑈, 𝑋) < 1, ∀𝑎 ∈ {0, 1}.

In this story, the unobservable confounder break the assumption of conditional exchangeability 1.2
and thus makes the classical counterfactual model fail. If people still apply the classical counterfactual
model to identify the average treatment effect regardless of the influence from the environmental im-
pact, the average treatment effect calculated from the observed data won’t be consistent with the true
one. Hence, the use of proxy variables brings possibilities to find methods of standardization through
variables that inherit the information from unobservable confounder and directly affect the treatment
and outcome. This helps reduce the bias brought up by the confounders.
There are many methods related to proxies (negative control methods) that are proposed to deal with
the unobservable confounding. Flander et al.[14] used a so-called indicator variables to detect the un-
measurable confounder under a series of assumptions including linearity standardization formula and
conditional expectation of confounder under proxies. Moreover, based on negative control outcomes,
Tchetgen [40] proposed a control outcome calibration approach to correct causal effect estimates for
bias due to unobserved confounding, while Sofer [34] showed the negative outcome control approach
is equivalent to the difference-in-differences approach under certain circumstances. For more negative
control methods, Shi et al.[31] made a review of negative control methods in epidemiology, including
methods in bias detection, bias reduction and bias correction. Although these approaches are effec-
tive under certain assumptions, they are also restricted by the assumptions which narrow down the
applicable situations.
One of the most prominent methods based on proxy variables is given by Miao et al.[24]. The author
generalized the method of identifying the unknown data generation mechanism of Kuroki et al.[21]. In
this way, they put forward a standardization method through the outcome confounding bridge function
about proxies such that with at least two independent proxy variables satisfying certain completeness
assumptions, the causal effect could be nonparametrically identified without any prior knowledge on
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the distribution relevant to the unobservable confounder. Therefore, they changed the point of the
problem from the uncertainty in the unknown mechanism of confounders to solving the outcome con-
founding bridge function from integral equations, which provided more connections to operator theory
and inverse problems.
After the work of Miao et al., Tchetgen et al.[39] introduced a formal framework for proximal causal
inference, where they systematically gave the proximal assumptions and completeness assumption for
nonparametric identification. They also described the algorithm for estimating proximal g-formula under
a parametric model for outcome confounding bridge function. This spurs the later work on the proximal
causal inference for example identifying causality from treatment confounding proxy and finding the
g-formula through treatment confounding bridge function by Cui et al.[45].

1.2. Proximal standardization formulae
In this section, we will introduce the proximal standardization formulae through outcome confounding
bridge function by Miao et al.[24] and treatment confounding bridge function by Cui et.al [45]. The
proximal standardization formulae are based on the existence of bridge functions. The bridge functions
connect the average outcome and the proxies without the requirement of the information from the
unmeasurable confounders. To build up the proximal standardization formulae, we need the following
completeness assumptions 1.5 and 1.6, which are crucial for using the bridge functions to determine
the average outcome under certain treatment 𝐸[𝑌𝑎].

Assumption 1.5 (Completeness)
For any square-integrable function 𝑔 and for any 𝑎, 𝑥, 𝐸[𝑔(𝑈)|𝑍, 𝐴 = 𝑎, 𝑋 = 𝑥] = 0 almost surely if and
only if 𝑔(𝑈) = 0 almost surely.

Assumption 1.6 (Completeness)
For any square-integrable function 𝑔 and for any 𝑎, 𝑥, 𝐸[𝑔(𝑈)|𝑊, 𝐴 = 𝑎, 𝑋 = 𝑥] = 0 almost surely if
and only if 𝑔(𝑈) = 0 almost surely.

The square-integrable function 𝑔 must not depend on 𝑍 or𝑊 if applied to Assumption 1.5 or 1.6.

Example 1.1 (Counter example)
Suppose square-integrable function 𝑔𝑍(𝑈) = 𝑈 − 𝑍 and 𝑈|(𝑍, 𝐴 = 𝑎, 𝑋 = 𝑥) ∼ 𝒩(𝑍, 1), ∀𝑎, 𝑥, then
completeness assumption 1.5 fails for 𝑔𝑍. In fact, 𝐸[𝑔𝑍(𝑈)|𝑍, 𝐴 = 𝑎, 𝑋 = 𝑥] = 𝑍 − 𝑍 = 0 but 𝑔𝑍(𝑈) isn’t
almost surely a zero function.

We use the following Gaussian model to give a straightforward example of distribution families which
satisfy the two completeness assumptions.

Example 1.2 (Gaussian distribution)

𝑈 ∼ 𝒩(𝜇𝑈 , Σ𝑈) ∈ ℝ𝑑1 𝑓𝐴(1|𝑈, 𝑍, 𝑋) =
1

1+exp{−‖𝜇𝐴+𝛾𝐴|𝑍𝑍+𝛾𝐴|𝑋𝑋+𝛾𝐴|𝑈𝑈‖2}
𝑋|𝑈 ∼ 𝒩(𝜇𝑋 + 𝛾𝑋|𝑈𝑈, Σ𝑋) ∈ ℝ𝑑2 𝑌1|𝑈, 𝑋,𝑊 ∼ 𝒩(𝜇1 + 𝛾1|𝑋𝑋 + 𝛾1|𝑊𝑊 + 𝛾1|𝑈𝑈, Σ1) ∈ ℝ𝑑5
𝑍|𝑈, 𝑋 ∼ 𝒩(𝜇𝑍 + 𝛾𝑍|𝑈𝑈 + 𝛾𝑍|𝑋𝑋, Σ𝑍) ∈ ℝ𝑑3 𝑌0|𝑈, 𝑋,𝑊 ∼ 𝒩(𝜇0 + 𝛾0|𝑋𝑋 + 𝛾0|𝑊𝑊 + 𝛾0|𝑈𝑈, Σ0) ∈ ℝ𝑑5
𝑊|𝑈, 𝑋 ∼ 𝒩(𝜇𝑊 + 𝛾𝑊|𝑈𝑈 + 𝛾𝑊|𝑋𝑋, Σ𝑊) ∈ ℝ𝑑4

Table 1.1: Gaussian model in a proximal setting

Consider the two conditional distribution 𝑝(𝑈|𝑍, 𝐴 = 𝑎, 𝑋) (A.1) and 𝑝(𝑈|𝑊, 𝐴 = 𝑎, 𝑋) (A.3) under the
Gaussian model in Table 1.1. The distribution families of 𝑇1(𝑈) and 𝑇2(𝑈), which are given by

𝑇1(𝑈) = (‖𝑈‖2Σ−1𝑈 , ‖𝛾𝑍|𝑈𝑈‖
2
Σ−1𝑍
, ‖𝛾𝑍|𝑈𝑈‖2Σ−1𝑍 , 𝜇(𝑍, 𝑋)

𝑇𝑈, log 𝑓𝐴(𝑎|𝑈, 𝑍, 𝑋))
𝑇2(𝑈) = (‖𝑈‖2Σ−1𝑈 , ‖𝛾𝑋|𝑈𝑈‖

2
Σ−1𝑋
, ‖𝛾𝑊|𝑈𝑈‖2Σ−1𝑊 , ‖𝛾𝑍|𝑈𝑈‖

2
Σ−1𝑍
, 𝜇(𝑊, 𝑋)𝑇𝑈, log𝑇(𝑈)),

are all complete.
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Proof:
The statement is a direct result of Theorem 2.1.

□
From a view in functional analysis, for example in Assumption 1.5, the completeness assumption im-
plies that the conditional expectation operator 𝐸 ∶ 𝐿2(𝑃𝑈|𝐴=𝑎,𝑋=𝑥) ↦ 𝐿2(𝑃𝑍|𝐴=𝑎,𝑋=𝑥) is injective, since its
null space is just {0}. By Theorem 2.3, the range of 𝐸∗ ∶ 𝐿2(𝑃𝑍|𝐴=𝑎,𝑋=𝑥) ↦ 𝐿2(𝑃𝑈|𝐴=𝑎,𝑋=𝑥) is dense in
𝐿2(𝑃𝑈|𝐴=𝑎,𝑋=𝑥). Usually, the completeness can be interpreted as the proxies capturing the variability of
the unmeasured confounder.
In the binary treatment cases, if the confounders are all categorical, the completeness assumption
is equivalent to assuming the category of the proxies are at least as numerous as the unmeasured
confounder to make sure the probability matrix is invertible and the redundant categories of the prox-
ies can be incorporated by some coarsening methods [24]. Suppose 𝑃 (𝑈|𝑍, 𝐴 = 𝑎, 𝑋 = 𝑥) represents
the probability matrix with entries 𝑃𝑟 {𝑢𝑖|𝑧𝑗 , 𝐴 = 𝑎, 𝑋 = 𝑥}, for 𝑖, 𝑗 ∈ {1,⋯ , 𝑛}. And 𝑔(𝑈) is the row
vector with elements 𝑔(𝑢𝑖), for 𝑖 ∈ {1,⋯ , 𝑛}. The left hand side of the assumption 1.5 is equal to
∑𝑛𝑖=1 𝑔(𝑢𝑖)𝑃𝑟 {𝑢𝑖|𝑧𝑗 , 𝐴 = 𝑎, 𝑋 = 𝑥} = 0, a.s. for 𝑗 ∈ {1,⋯ , 𝑛}. By the invertibility of the probability matrix,
the null space is just {0}, which means 𝑔(𝑈) = 0 almost surely.
If the confounders are continuous, in parametric and semiparametric background, the completeness
assumption usually requires certain density families to realize. In fact, many commonly used parametric
and semiparametric models such as exponential families [27][22] and location-scale families [18] meet
the demand. For nonparametric regression models, the results of [11] and [10] based on instrumental
variable estimation can be used to justify the completeness conditions.
With the help of the completeness assumptions, we can build the identification formulae of the average
treatment effect without any information from the unmeasurable confounders. Two standardization
formulae identifying the average treatment effect through bridge functions are elaborated in Theorem
1.2 and 1.3. The existence of outcome-inducing and treatment-inducing bridge functions are introduced
in Lemma 1.1 and 1.2, which are applications of Theorem 2.9.

Lemma 1.1 (Existence of outcome confounding bridge function)
Denote the singular system1 of the conditional expectation operator 𝑇 ∶ 𝐿2(𝑃(𝑊,𝐴,𝑋)) ↦ 𝐿2(𝑃(𝑍,𝐴,𝑋)) by
(𝜎𝑖 , 𝑢𝑖 , 𝑣𝑖)𝑖≥1. There exists a solution ℎ for the integral equation:

𝐸[𝑌|𝑍, 𝐴 = 𝑎, 𝑋] = ∫ℎ(𝑤, 𝐴, 𝑋)𝑑𝐹(𝑤|𝑍, 𝐴 = 𝑎, 𝑋) = 𝐸[ℎ(𝑊, 𝑎, 𝑋)|𝑍, 𝐴 = 𝑎, 𝑋], (1.2)

if

∑
𝑖≥1

| ⟨𝐸[𝑌|𝑍, 𝐴 = 𝑎, 𝑋], 𝑣𝑖⟩ |2
𝜎2𝑖

< ∞. (1.3)

Theorem 1.2 ([24] Outcome confounding standardization formula)
Under proximal assumptions for counterfactual models and completeness assumption 1.5, if the solu-
tion of equation (1.2) exists, the proximal standardization formula is given by:

𝐸𝑌𝑎 = 𝐸[ℎ(𝑊, 𝑎, 𝑋)]. (1.4)

The average treatment effect is given by:

𝜒 = 𝐸[ℎ(𝑊, 1, 𝑋) − ℎ(𝑊, 0, 𝑋)].

Proof:
By the existence of ℎ(𝑊, 𝑎, 𝑋), we have

𝐸[𝑌|𝑍, 𝐴 = 𝑎, 𝑋] = 𝐸[ℎ(𝑊, 𝐴, 𝑋)|𝑍, 𝐴 = 𝑎, 𝑋].
1See Theorem 2.8
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By the tower property of conditional expectation, the above equation becomes

𝐸𝑈[𝐸[𝑌|𝑍, 𝐴 = 𝑎, 𝑋, 𝑈]|𝑍, 𝐴 = 𝑎, 𝑋] = 𝐸𝑈[𝐸[ℎ(𝑊, 𝐴, 𝑋)|𝑍, 𝐴 = 𝑎, 𝑋, 𝑈]|𝑍, 𝐴 = 𝑎, 𝑋]
⟹𝐸𝑈[𝐸[𝑌 − ℎ(𝑊, 𝐴, 𝑋)|𝑍, 𝐴 = 𝑎, 𝑋, 𝑈]|𝑍, 𝐴 = 𝑎, 𝑋] = 0
⟹𝐸𝑈[𝐸[𝑌 − ℎ(𝑊, 𝐴, 𝑋)|𝐴 = 𝑎, 𝑋, 𝑈]|𝑍, 𝐴 = 𝑎, 𝑋] = 0. (𝑊 ⊥ (𝑍, 𝐴)|𝑈, 𝑋)
Here 𝐸[𝑌−ℎ(𝑊, 𝐴, 𝑋)|𝐴 = 𝑎, 𝑋, 𝑈] is a function dependent only on 𝑈 for a fixed 𝑋. So, by the complete-
ness assumption 1.5, we have

𝐸[𝑌 − ℎ(𝑊, 𝐴, 𝑋)|𝐴 = 𝑎, 𝑋, 𝑈] = 0, 𝑎.𝑠.
⟹𝐸[𝑌|𝐴 = 𝑎, 𝑋, 𝑈] = 𝐸[ℎ(𝑊, 𝐴, 𝑋)|𝐴 = 𝑎, 𝑋, 𝑈], 𝑎.𝑠..

The left hand side equals 𝐸[𝑌𝑎|𝑋, 𝑈] by consistency and conditional exchangeability. The right hand
side equals 𝐸[ℎ(𝑊, 𝑎, 𝑋)|𝑋, 𝑈] since𝑊⊥(𝑍, 𝐴)|𝑈, 𝑋. So, we have

𝐸[𝑌𝑎|𝑋, 𝑈] = 𝐸[ℎ(𝑊, 𝑎, 𝑋)|𝑋, 𝑈]
⟹ 𝐸𝑋,𝑈𝐸[𝑌𝑎|𝑋, 𝑈] = 𝐸𝑋,𝑈𝐸[ℎ(𝑊, 𝑎, 𝑋)|𝑋, 𝑈]

⟹ 𝐸𝑌𝑎 = 𝐸[ℎ(𝑊, 𝑎, 𝑋)].

□

Lemma 1.2 (Existence of treatment confounding bridge function)
Denote the singular system of the conditional expectation operator 𝑇∗ ∶ 𝐿2(𝑃(𝑍,𝐴,𝑋)) ↦ 𝐿2(𝑃(𝑊,𝐴,𝑋)) by
(𝜎∗𝑖 , 𝑢∗𝑖 , 𝑣∗𝑖 )𝑖≥1. There exists a solution 𝑞 for the integral equation:

1
𝑓(𝑎|𝑊, 𝑋) = ∫𝑞(𝑧, 𝐴, 𝑋)𝑑𝐹(𝑧|𝑊, 𝐴 = 𝑎, 𝑋) = 𝐸[𝑞(𝑍, 𝑎, 𝑋)|𝑊, 𝐴 = 𝑎, 𝑋], (1.5)

where 𝑓(𝑎|𝑊, 𝑋) = 𝑃𝑟 {𝐴 = 𝑎|𝑊, 𝑋}, if

∑
𝑖≥1

| ⟨ 1
𝑓(𝑎|𝑊,𝑋) , 𝑣

∗
𝑖 ⟩ |2

(𝜎∗𝑖 )2
< ∞. (1.6)

Before giving the treatment confounding standardization formula, we introduce a useful result to be
used in the upcoming proof.

Lemma 1.3 Consider random variables 𝑋, 𝑌 and 𝑍 on a measurable metric space 𝑆. Let 𝑓(𝑋|𝑌, 𝑍) and
𝑓(𝑋|𝑍) be the positive conditional density of 𝑋 relative to a 𝜎-finite measure 𝜈. If the base measure for
𝑌 on 𝑆 is the 𝜎-finite measure 𝜇, then the two conditional densities are connected through the following
equation

1
𝑓(𝑋|𝑍) = 𝐸𝑌[

1
𝑓(𝑋|𝑌, 𝑍) |𝑋, 𝑍].

Proof:

1 = 𝐸𝑌[
1

𝑓(𝑋|𝑌, 𝑍)𝑓(𝑋|𝑌, 𝑍)|𝑋, 𝑍]

= ∫ 1
𝑓(𝑋|𝑦, 𝑍)𝑓(𝑋|𝑦, 𝑍)𝑓(𝑦|𝑋, 𝑍)𝑑𝜇(𝑦)

= ∫ 1
𝑓(𝑋|𝑦, 𝑍)𝑓(𝑦|𝑋, 𝑍)𝑓(𝑋|𝑍)𝑑𝜇(𝑦)

= 𝑓(𝑋|𝑍)𝐸𝑌[
1

𝑓(𝑋|𝑌, 𝑍) |𝑋, 𝑍]

⟹ 1
𝑓(𝑋|𝑍) = 𝐸𝑌[

1
𝑓(𝑋|𝑌, 𝑍) |𝑋, 𝑍].

□
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Theorem 1.3 ([45] Treatment confounding standardization formula)
Under proximal assumptions for counterfactual models and completeness assumption 1.6, if the solu-
tion of equation (1.5) exists, the proximal standardization formula is given by:

𝐸𝑌𝑎 = 𝐸[𝑌𝑞(𝑍, 𝑎, 𝑋)𝟙𝐴=𝑎]. (1.7)

The average treatment effect is given by:

𝜒 = 𝐸[𝑌(𝟙𝐴=1𝑞(𝑍, 1, 𝑋) − 𝟙𝐴=0𝑞(𝑍, 0, 𝑋))] = 𝐸[(−1)1−𝐴𝑌𝑞(𝑍, 𝐴, 𝑋)].

Proof:
By the existence of 𝑞(𝑍, 𝐴, 𝑋), we have

1
𝑓(𝑎|𝑊, 𝑋) = 𝐸[𝑞(𝑍, 𝑎, 𝑋)|𝑊, 𝐴 = 𝑎, 𝑋]. (1.8)

Notice that the left hand side is equivalent to 𝐸[ 1
𝑓(𝑎|𝑈,𝑋) |𝑊, 𝐴 = 𝑎, 𝑋] because

1
𝑓(𝑎|𝑊, 𝑋) = 𝐸𝑈[

1
𝑓(𝑎|𝑈,𝑊, 𝑋) |𝑊, 𝐴 = 𝑎, 𝑋], (Lemma 1.3)

𝐸𝑈[
1

𝑓(𝑎|𝑈, 𝑋) |𝑊, 𝐴 = 𝑎, 𝑋] = 𝐸𝑈[
1

𝑓(𝑎|𝑈,𝑊, 𝑋) |𝑊, 𝐴 = 𝑎, 𝑋]. (𝑊 ⊥ (𝑍, 𝐴)|𝑈, 𝑋)

Hence, Equation (1.8) is equivalent to

𝐸𝑈[
1

𝑓(𝑎|𝑈, 𝑋) |𝑊, 𝐴 = 𝑎, 𝑋] = 𝐸[𝑞(𝑍, 𝑎, 𝑋)|𝑊, 𝐴 = 𝑎, 𝑋]

= 𝐸𝑈[𝐸[𝑞(𝑍, 𝑎, 𝑋)|𝑊, 𝐴 = 𝑎, 𝑋, 𝑈]|𝑊, 𝐴 = 𝑎, 𝑋]
= 𝐸𝑈[𝐸[𝑞(𝑍, 𝑎, 𝑋)|𝐴 = 𝑎, 𝑋, 𝑈]|𝑊, 𝐴 = 𝑎, 𝑋]. (𝑊 ⊥ (𝑍, 𝐴)|𝑈, 𝑋)

Here 𝐸[𝑞(𝑍, 𝑎, 𝑋)|𝐴 = 𝑎, 𝑋, 𝑈] is a function dependent only on 𝑈 for a fixed 𝑋. So, by the completeness
assumption 1.6, we get

1
𝑓(𝑎|𝑈, 𝑋) = 𝐸[𝑞(𝑍, 𝑎, 𝑋)|𝐴 = 𝑎, 𝑋, 𝑈].

By consistency and conditional exchangeability,

𝐸𝑌𝑎 =𝐸𝑈,𝑋𝐸[𝑌|𝐴 = 𝑎, 𝑈, 𝑋]
=𝐸𝑈,𝑋 {𝐸[𝑌|𝐴 = 𝑎, 𝑈, 𝑋]𝐸[𝑞(𝑍, 𝑎, 𝑋)|𝐴 = 𝑎, 𝑈, 𝑋]𝑓(𝑎|𝑈, 𝑋)}
=𝐸𝑈,𝑋 {𝐸[𝑌𝑞(𝑍, 𝑎, 𝑋)|𝐴 = 𝑎, 𝑈, 𝑋]𝑓(𝑎|𝑈, 𝑋)} (𝑌 ⊥ 𝑍|𝑈, 𝑋, 𝐴)
=𝐸𝑈,𝑋 {𝐸[𝑌𝑞(𝑍, 𝑎, 𝑋)𝟙𝐴=𝑎|𝑈, 𝑋]} (𝐸[⋅|𝑈, 𝑋] = 𝐸𝐴[𝐸[⋅|𝐴, 𝑈, 𝑋]|𝑈, 𝑋])
=𝐸[𝑌𝑞(𝑍, 𝑎, 𝑋)𝟙𝐴=𝑎].

The average treatment effect 𝜒 is given by𝐸[𝑌(𝟙𝐴=1𝑞(𝑍, 1, 𝑋)−𝟙𝐴=0𝑞(𝑍, 0, 𝑋))] = 𝐸[(−1)1−𝐴𝑌𝑞(𝑍, 𝐴, 𝑋)].
□

The proximal standardization formulae (1.4) and (1.7) provide feasible methods to acquire the aver-
age treatment effect regardless the unobservable confounders. In fact, Cui et al.[45] proposed three
ATE estimators based on the estimators of the two bridge functions ℎ̂ and 𝑞, named as proximal out-
come regression estimator, proximal inverse probability weighted estimator and proximal double robust
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estimator. They are given as follows.

𝜒𝑃𝑂𝑅 =
1
𝑛

𝑛

∑
𝑖=1
(ℎ̂(𝑊𝑖 , 1, 𝑋𝑖) − ℎ̂(𝑊𝑖 , 0, 𝑋𝑖))

𝜒𝑃𝐼𝑃𝑊 =
1
𝑛

𝑛

∑
𝑖=1
(𝑌𝑖𝟙𝐴𝑖=1𝑞(𝑍𝑖 , 1, 𝑋𝑖) − 𝑌𝑖𝟙𝐴𝑖=0𝑞(𝑍𝑖 , 0, 𝑋𝑖)) (1.9)

𝜒𝑃𝐷𝑅 =
1
𝑛

𝑛

∑
𝑖=1
((−1)1−𝐴𝑖𝑞(𝑍𝑖 , 𝐴𝑖 , 𝑋𝑖)[𝑌𝑖 − ℎ̂(𝑊𝑖 , 𝐴𝑖 , 𝑋𝑖)] + ℎ̂(𝑊𝑖 , 1, 𝑋𝑖) − ℎ̂(𝑊𝑖 , 0, 𝑋𝑖)) . (1.10)

Among the three estimators, the double robust estimator (1.10) is able to tolerate situations in which
the existence assumptions of bridge functions fail. This means even if consistent estimator for ℎ or 𝑞
doesn’t exist at the same time, only one consistent estimator for any of the bridge functions will preserve
the consistency of the ATE estimator.
The estimator for ATE depends on at least one of the consistency bridge function estimators. Ghas-
sami et al.[16] and Kallus et al.[19] used minimax optimization of the two bridge functions restricted
to reproducing kernel Hilbert spaces to get the estimators. Ghassami et al. constructed the minimax
optimization through the double robustness of the influence function that the expectation of the per-
turbation of influence function at point (𝑞𝑡𝑟𝑢𝑒 , ℎ) or (𝑞, ℎ𝑡𝑟𝑢𝑒) toward (𝑞𝑡𝑟𝑢𝑒 , ℎ′) or (𝑞′, ℎ𝑡𝑟𝑢𝑒) should be
zero. While the motivation for Kallus et al. is based on the following equalities

𝐸[𝑓(𝑋)|𝑌] = 0 ⟺ 𝐸[𝑔(𝑌)𝑓(𝑋)] = 0 ⟺ sup
𝑔∈𝐿2(𝑃𝑌)

(𝐸[𝑔(𝑌)𝑓(𝑋)])2, ∀𝑔 ∈ 𝐿2(𝑃𝑌). (1.11)

They also gave the estimators for the two bridge functions after restricting them into reproducing kernel
Hilbert spaces. Although their methods are efficient in determining bridge functions in nonparametric
models, they also need the assumptions for the existence of the two bridge functions to hold at the
same time. However, this is quite challenging in real cases because the Picard’s conditions are hard
to verify.
There are many other results for estimating the ATE through bridge function estimators. Mastouri et
al.[23] used a two-kernel-based approach to estimate outcome confounding bridge function, where in
the first stage the conditional covariance operator is learnt from the first group of samples, and in the
second stage the estimator for outcome confounding bridge function is derived from a ridge regression
problem. Similar to the second stage of the method by Mastouri et al., Singh [32] proposed a family of
algorithms based on kernel ridge regression for learning nonparametric treatment effects with negative
controls. In addition, Kompa et al.[20] combined (1.11) and reproducing kernels to use neural network
to find the estimated outcome confounding bridge function under a loss function transformed from
(1.11). Furthermore, beyond the binary treatment, Wu et al.[44] derived a double robust estimator under
continuous treatment with a kernel function 𝐾ℎ𝑏𝑤(𝐴 − 𝑎) ∶=

1
ℎ𝑏𝑤

𝐾(𝐴−𝑎ℎ𝑏𝑤
) approximating the indicator

function 𝟙𝐴=𝑎 as ℎ𝑏𝑤 ⟶ 0. This helps identifying the treatment effect when 𝐴 is continuous.
Although estimating the ATE only depends on one of the estimated bridge functions and many litera-
tures have already find the right ways to estimating the outcome confounding bridge function, it is still
intriguing to find the estimator of the treatment confounding bridge function. Hence, in Chapter 4, we
will discuss the approach to estimating the treatment confounding bridge function 𝑞.



2
Mathematical preliminary

This chapter aims at introducing all the mathematical preliminaries that are needed in other chapters.
Section 2.1 introduces the definition of complete distribution family and gives a theorem about the
completeness of exponential family, which is useful for the explanation of the two completeness as-
sumptions determining the standardization formulae. Section 2.3 introduces the Picard’s condition for
the existence of the solutions to the Fredholm integral of the first kind. For example the existence of the
two bridge functions by Lemma 1.1 and 1.2. Section 2.2 focuses on the basic knowledge in functional
analysis on Hilbert spaces. The spectral theorems about compact operators are the most important
points in this section because they will be widely used through out the whole thesis. Section 2.4 is one
of the core parts of the Chapter 2, it includes the Moore-Aronszajn theorem 2.14 which is the key to un-
derstanding the structure of reproducing kernel Hilbert spaces. The kernel embeddings are also crucial
since they are the basis for the kernel method used for estimating the treatment confounding bridge
function. Section 2.7 systematically introduces the results in convex analysis from semi-continuity to
the interchange of minimization and integration. These helps explaining the series of transforms given
in Chapter 4 combining the ERM theorem 2.18 given by Section 2.6. The rest two Sections 2.5 and 2.8
are designed to illustrate the existence of Fisher information mentioned in Chapter 3 and the derivative
of inner product when deriving the closed form expression of extremal value points in Chapter 4.

2.1. Complete distribution family
This section is a brief introduction to complete probability distribution families based on the section 4.3
of [22], which helps explaining the completeness assumptions 1.5 and 1.6.

Definition 2.1 (Complete distribution family)
A probability distribution family𝒫 is complete if∀𝑝 ∈ 𝒫, anymeasurable function 𝑔 satisfying𝐸𝑃[𝑔(𝑋)] =
0 implies 𝑃 {𝑔(𝑋) = 0} = 1.

An classical example of the complete distribution families is the exponential family, which is given by
the following theorem.

Theorem 2.1 (Completeness of exponential family)
Suppose 𝑋 is a random vector with density

𝑝𝜃(𝑥) = 𝐶(𝜃) exp{
𝑛

∑
𝑖=1
𝜃𝑖𝑇𝑖(𝑥)} .

Let 𝒫𝑇 be the distribution family of 𝑇 = (𝑇1, ⋯ , 𝑇𝑛). if 𝜃 = (𝜃1, ⋯ , 𝜃𝑛) contains a 𝑛-dim rectangle, then
𝒫𝑇 is complete.

An application of the completeness of exponential family can be found in Example 1.2, in which the
theorem is used to verify the completeness assumptions 1.5 and 1.6 of a Gaussian proximal model.

9
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2.2. Functional analysis on Hilbert spaces
In this section, we set 𝕂 ∈ {ℝ, ℂ}, 𝐻 to be a Hilbert space of functions 𝑓 ∶ 𝑆 ↦ 𝕂 and ℒ(𝐻) to be the
set of all bounded linear operators from 𝐻 to itself. We choose 𝑆 to be a compact subset of 𝕂𝑑 and
denote the linear space of all square integrable functions by 𝐿2(𝑆). Without additional statements, the
measure used in the 𝐿2 space is the Lebesgue measure. The following basic definitions and theorems
about Hilbert space and operators in Subsection 2.2.1, 2.2.2 and 2.2.3 are introduced based on [26]
and [6].

Definition 2.2 (Hilbert space)
A Hilbert space is a linear space equipped with an inner product ⟨⋅, ⋅⟩ that is complete relative to the
induced norm ‖ ⋅ ‖.

Classical Hilbert spaces include 𝐿2(𝑆, 𝜇) for any measure 𝜇.

2.2.1. Basic definitions and theorems
In this part, we mainly introduce the definitions of adjoint and compact operators through dual spaces
and Riesz representation theorem.

Definition 2.3 (Linear operator)
An operator 𝑇 ∶ 𝐻 ↦ 𝐻 is said to be linear if

𝑇(𝛼𝑓 + 𝛽𝑔) = 𝛼𝑇(𝑓) + 𝛽𝑇(𝑔), ∀𝑓, 𝑔 ∈ 𝐻, 𝛼, 𝛽 ∈ 𝕂.

Definition 2.4 (Bounded operator)
An linear operator 𝑇 ∶ 𝐻 ↦ 𝐻 is said to be bounded if there exists a positive 𝐶 ∈ 𝕂 such that

‖𝑇(ℎ)‖𝐻 ≤ 𝐶‖ℎ‖𝐻 , ∀ℎ ∈ 𝐻.
The norm ‖𝑇‖ℒ(𝐻) of 𝑇 on ℒ(𝐻) is defined to be the smallest constant 𝐶.

The definition gives the inequality ‖𝑇(ℎ)‖𝐻 ≤ ‖𝑇‖ℒ(𝐻)‖ℎ‖𝐻.
Furthermore, the definition also implies that for linear operators boundedness is equivalent to continuity.

Example 2.1 (Integral operator on 𝐿2(𝑆))
Let 𝑘(⋅, ⋅) ∈ 𝐿2(𝑆2) ∶ 𝑆×𝑆 ↦ 𝕂. The integral operator 𝑇 ∶ 𝐿2(𝑆) ↦ 𝐿2(𝑆), with 𝑇(𝑓)(𝑥) = ∫𝑆 𝑘(𝑥, 𝑦)𝑓(𝑦)𝑑𝑦,
∀𝑓 ∈ 𝐿2(𝑆), ∀𝑥 ∈ 𝑆, is bounded by ‖𝑘‖2.

Proof:

‖𝑇(𝑓)‖22 = ∫
𝑆
(∫
𝑆
𝑘(𝑥, 𝑦)𝑓(𝑦)𝑑𝑦)

2
𝑑𝑥

≤ ∫
𝑆
(∫
𝑆
|𝑘(𝑥, 𝑦)|2𝑑𝑦)(∫

𝑆
|𝑓(𝑦)|2𝑑𝑦)𝑑𝑥 (Cauchy-Schwartz inequality B.1)

= (∫
𝑆
∫
𝑆
|𝑘(𝑥, 𝑦)|2𝑑𝑦𝑑𝑥)(∫

𝑆
|𝑓(𝑦)|2𝑑𝑦)

= ‖𝑘‖22‖𝑓‖22.

Hence, we get ‖𝑇(𝑓)‖2 ≤ ‖𝑘‖2‖𝑓‖2. For 𝑓 with nonzero 𝐿2-norm, we have ‖𝑇(𝑓)‖2
‖𝑓‖2

≤ ‖𝑘‖2. When
taking the supremum over all 𝑓 with ‖𝑓‖2 ≤ 1, we finally reach the upper bound of ‖𝑇‖:

‖𝑇‖ = sup
‖𝑓‖2≤1

‖𝑇(𝑓)‖2
‖𝑓‖2

≤ ‖𝑘‖2.

□
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Theorem 2.2 (Riesz representation theorem)
If 𝜓 ∶ 𝐻 ↦ 𝕂 is a bounded linear functional, there exists a unique element 𝜓̃ ∈ 𝐻 such that

𝜓(𝑔) = ⟨𝑔, 𝜓̃⟩ , ∀𝑔 ∈ 𝐻.

Since every closed subspace of 𝐻 is also a Hilbert space, the Riesz representation theorem can be
applied to any closed subspace of 𝐻 with the same bounded linear functional if the functional is well-
defined everywhere on 𝐻. The Riesz representation theorem is not only vital in unveiling the isometri-
cally isomorphic essence in Hilbert space and its dual space, but also quite useful in computationally
finding the uniquely existing representative elements in a Hilbert space given a bounded functional. The
example of the later statement can be found in finding the efficient influence function of an estimator
which is shown in Chapter 3.

Definition 2.5 (Dual space)
The dual space of Hilbert space 𝐻 is the Hilbert space 𝐻∗ ∶= ℒ(𝐻,𝕂).

Since the dual space is always complete, 𝐻∗ is also a Hilbert space. The Riesz representation theorem
implies there exists a bijective map between 𝐻 and 𝐻∗, thus 𝐻∗ can be canonically identified with 𝐻.

Definition 2.6 (Adjoint operator)
Let 𝐻1 and 𝐻2 be two Hilbert spaces. Suppose 𝑇 ∈ ℒ(𝐻1, 𝐻2), then its adjoint operator 𝑇∗ is the linear
operator belonging to ℒ(𝐻2, 𝐻1) and satisfying

⟨𝑇ℎ1, ℎ2⟩ = ⟨ℎ1, 𝑇∗ℎ2⟩ , ∀ℎ1 ∈ 𝐻1, ℎ2 ∈ 𝐻2.

If 𝑇 ∈ ℒ(𝐻), and 𝑇 = 𝑇∗, then 𝑇 is self-adjoint.

After introducing the adjoint operators on Hilbert spaces, we state a useful decomposition result based
on the range and the kernel space of bounded linear operators and their adjoints. The theorem can be
used to explain the completeness assumptions 1.5 and 1.6.

Theorem 2.3 (Orthogonal decomposition)
If 𝑇 is a bounded linear operator in ℒ(𝐻1, 𝐻2), then 𝐻1 and 𝐻2 have orthogonal decompositions

𝐻1 = Null(𝑇) ⊕ Range(𝑇∗), 𝐻2 = Null(𝑇∗) ⊕ Range(𝑇).

In particular,

• 𝑇 (or 𝑇∗) is injective if and only if 𝑇∗ (or 𝑇) has dense range;

• 𝑇 (or 𝑇∗) is surjective if and only if 𝑇∗ (or 𝑇) is injective and has closed range.

Definition 2.7 (Compact operator)
A bounded operator 𝑇 is compact if it maps any bounded sets to relatively compact sets, i.e. sets with
compact closures.

Example 2.2 (Finite rank operators)
A bounded operator is said to be finite rank if its image belongs to a finite-dimensional space. We claim
that any finite rank operator is compact.

Proof:
Any bounded set in a finite-dimensional space is relatively compact. Since finite rank operators are
bounded, they map any bounded set to bounded set. This means finite rank operators are compact.

□
The finite rank operator can be used to approximate a compact linear operator, as shown in the following
theorem.
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Theorem 2.4 (Finite rank operator approximation)
An linear operator is compact if and only if it is the uniform limit of some finite rank operators.

Example 2.3 (Hilbert-Schmidt operator)
Every Hilbert-Schmidt operator (Definition 2.8) is compact and can be approximated by finite rank
operators in Hilbert-Schmidt norm. One can check Proposition 14.5 in [26] for details.

Example 2.4 (Hilbert-Schmidt integral operator)
The Hilbert-Schmidt integral operator 𝑇𝑘 ∶ 𝐿2(𝑆, 𝜇) ↦ 𝐿2(𝑆, 𝜇) is given by

𝑇𝑘(𝑓)(𝑥) = ∫
𝑆
𝑘(𝑥, 𝑦)𝑓(𝑦)𝑑𝜇(𝑦), ∀𝑓 ∈ 𝐿2(𝑆, 𝜇),

where 𝜇 is a Borel finite measure on 𝑆. The function 𝑘(⋅, ⋅) ∈ 𝐿2(𝑆2, 𝜇 ⊗𝜇) ∶ 𝑆 × 𝑆 ↦ 𝕂 in the integral is
called Hilbert-Schmidt kernel function. Any Hilbert-Schmidt integral operator is bounded and compact.
If the Hilbert-Schmidt kernel function is symmetric, the operator is self-adjoint.

Proof:
Since the boundedness has been proved in Example 2.1 and that the Hilbert-Schmidt integral operator
is self-adjoint is a direct result of the symmetry of the Hilbert-Schmidt kernel function, we only prove
that Hilbert-Schmidt integral operator is compact.
Fix 𝜖 > 0. Since for a compact 𝑆 and a finite Borel measure 𝜇, the linear space of all continuous functions
on 𝑆2: 𝒞(𝑆2) is dense in 𝐿2(𝑆2), we can find a function 𝑘̃ ∈ 𝒞(𝑆2) such that ‖𝑘̃−𝑘‖2 < 𝜖. By the uniform
continuity of 𝑘̃, there exists a 𝛿 > 0 such that |𝑘̃(𝑥, 𝑦) − 𝑘̃(𝑥′, 𝑦′)| < 𝜖, where |𝑥 − 𝑥′| + |𝑦 − 𝑦′| < 𝛿.
For a large 𝑛 > 2, the compactness of 𝑆 implies there exists a finite open cover {𝜃𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛} of 𝑆
with diameter at most 12𝛿. Define 𝐵1 = 𝜃1, 𝐵2 = 𝜃2 − 𝜃1,⋯,𝐵𝑖 = 𝜃𝑖 −∑

𝑖−1
𝑗=1 𝜃𝑗,⋯, so that 𝐵𝑖 ∩ 𝐵𝑘 = ∅, for

𝑖 ≠ 𝑘. We know 𝐵𝑖, for 1 ≤ 𝑖 ≤ 𝑛, is with diameter at most
1
2𝛿 such that 𝑆 = ⋃

𝑛
𝑖=1 𝐵𝑖. Next set

𝑘𝑛(𝑥, 𝑦) =
𝑛

∑
𝑖=1

𝑛

∑
𝑗=1
𝑘̃(𝑥𝑖 , 𝑦𝑗)𝟙𝐵𝑖(𝑥)𝟙𝐵𝑗(𝑦), 𝑥𝑖 ∈ 𝐵𝑖 , 𝑦𝑗 ∈ 𝐵𝑗 .

Then 𝑘𝑛 is a kernel function since the symmetry and positive semi-definiteness is guaranteed by the
kernel function 𝑘̃. We denote the corresponding integral operator by 𝑇𝑛 which is given by, for any
𝑓 ∈ 𝐿2(𝑆), 𝑥 ∈ 𝑆,

𝑇𝑛(𝑓)(𝑥) = ∫
𝑆
𝑘𝑛(𝑥, 𝑦)𝑓(𝑦)𝑑𝜇(𝑦)

=
𝑛

∑
𝑖=1
(

𝑛

∑
𝑗=1
∫
𝐵𝑗
𝑘̃(𝑥𝑖 , 𝑦𝑗)𝑓(𝑦)𝑑𝜇(𝑦)) 𝟙𝐵𝑖(𝑥).

The range of 𝑇𝑛 is contained in the linear span of {𝟙𝐵1 , ⋯ , 𝟙𝐵𝑛} and hence 𝑇𝑛 is finite rank. Now apply
the result in Example 2.1, we have

‖𝑇𝑘 − 𝑇𝑛‖ ≤ ‖𝑘 − 𝑘𝑛‖2
≤ ‖𝑘 − 𝑘̃‖2 + ‖𝑘̃ − 𝑘𝑛‖2

< 𝜖 + (∫
𝑆
∫
𝑆
(𝑘̃(𝑥, 𝑦) −

𝑛

∑
𝑖=1

𝑛

∑
𝑗=1
𝑘̃(𝑥𝑖 , 𝑦𝑗)𝟙𝐵𝑖(𝑥)𝟙𝐵𝑗(𝑦))

2

𝑑𝑥𝑑𝑦)

1
2

≤ 𝜖 + (
𝑛

∑
𝑖=1

𝑛

∑
𝑗=1

sup
(𝑥,𝑦)∈𝐵𝑖×𝐵𝑗

|𝑘̃(𝑥, 𝑦) − 𝑘̃(𝑥𝑖 , 𝑦𝑗)|2𝜇(𝐵𝑖)𝜇(𝐵𝑗))

1
2

< 𝜖(1 + 𝜇(𝑆))
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This shows that 𝑇𝑘 is the uniform limit of some finite rank operators since 𝜖 is arbitrary. So, the Hilbert-
Schmidt integral operator is compact by Theorem 2.4.

□
An application of Example 2.4 is to verify that the conditional expectation operator is compact.
We use 𝐿2(𝑃⋅) to represent the Hilbert space consisting of square integrable functions with probability
measure 𝑃⋅.

Example 2.5 (Compactness of conditional expectation operator)
Suppose 𝑋 and 𝑌 are two random variables on a measurable space (Ω,𝒜) with 𝜎-finite measures 𝜇
and 𝜈. Their probability distributions are 𝑃𝑋 and 𝑃𝑌 respectively. By Radon-Nikodym theorem, their
density functions 𝑓𝑋 and 𝑓𝑌 exist as 𝑑𝑃𝑋

𝑑𝜇 and 𝑑𝑃𝑌
𝑑𝜈 . We claim that the conditional expectation operator

𝐸 ∶ 𝐿2(𝑃𝑋) ↦ 𝐿2(𝑃𝑌) is compact, with 𝐸(𝑔)(𝑦) = ∫Ω 𝑔(𝑥)𝑓𝑋|𝑌(𝑥|𝑦)𝑑𝜇(𝑥), ∀𝑔 ∈ 𝐿2(𝑃𝑋), ∀𝑦 ∈ Ω, if
𝑘(𝑥, 𝑦) = 𝑓𝑋𝑌(𝑥,𝑦)

𝑓𝑋(𝑥)𝑓𝑌(𝑦)
∈ 𝐿2(𝑃𝑋 × 𝑃𝑌), i.e.

∫
Ω
∫
Ω
(𝑘(𝑥, 𝑦))2 𝑑𝑃𝑋𝑑𝑃𝑌 < ∞.

Proof:
For any 𝑔 ∈ 𝐿2(𝑃𝑋), 𝑦 ∈ Ω,

𝐸(𝑔)(𝑦) = ∫
Ω
𝑔(𝑥)𝑓𝑋|𝑌(𝑥|𝑦)𝑑𝜇(𝑥)

= ∫
Ω

𝑓𝑋𝑌(𝑥, 𝑦)
𝑓𝑋(𝑥)𝑓𝑌(𝑦)

𝑔(𝑥)𝑓𝑋(𝑥)𝑑𝜇(𝑥)

= ∫
Ω

𝑓𝑋𝑌(𝑥, 𝑦)
𝑓𝑋(𝑥)𝑓𝑌(𝑦)

𝑔(𝑥)𝑑𝑃𝑋

= ∫
Ω
𝑘(𝑥, 𝑦)𝑔(𝑥)𝑑𝑃𝑋 .

Since 𝑘(𝑥, 𝑦) ∈ 𝐿2(𝑃𝑋 × 𝑃𝑌), by Example 2.4, the conditional expectation operator is compact.
□

2.2.2. Hilbert-Schmidt operators
In this subsection we introduce the definition and basic properties of the Hilbert-Schmidt operators. Let
𝐻 and 𝐹 be two separable Hilbert spaces with orthonormal basis (𝑒𝑖)𝑖≥1 and (𝑙𝑖)𝑖≥1 respectively.

Definition 2.8 (Hilbert-Schmidt operator)
A bounded linear operator 𝑇 ∈ ℒ(𝐻, 𝐹) is Hilbert-Schimdt if its Hilbert-Schmidt norm is finite, i.e.

‖𝑇‖2𝐻𝑆 =∑
𝑖≥1
‖𝑇𝑒𝑖‖2𝐹 < ∞.

Example 2.6 (Hilbert-Schmidt integral operator)
The Hilbert-Schmidt integral operator 𝑇𝑘 ∶ 𝐿2(𝑆, 𝜇) ↦ 𝐿2(𝑆, 𝜇) in Example 2.4 is a Hilbert-Schmidt
operator.

Proof:
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Suppose (𝜉𝑖)𝑖≥1 is an orthonormal basis of 𝐿2(𝑆, 𝜇).

‖𝑇𝑘‖2𝐻𝑆 =∑
𝑖≥1
‖𝑇𝑘𝜉𝑖‖2𝐿2(𝑆,𝜇) =∑

𝑖≥1
∫
𝑆
|∫
𝑆
𝑘(𝑥, 𝑦)𝜉𝑖(𝑦)𝑑𝜇(𝑦)|

2𝑑𝜇(𝑥)

= ∫
𝑆
∑
𝑖≥1
⟨𝑘(𝑥, ⋅), 𝜉𝑖(⋅)⟩𝐿2(𝑆,𝜇) 𝑑𝜇(𝑥)

= ∫
𝑆
‖𝑘(𝑥, ⋅)‖2𝐿2(𝑆,𝜇)𝑑𝜇(𝑥) (Parseval’s identity B.2)

= ‖𝑘‖2𝐿2(𝑆2 ,𝜇⊗𝜇) < ∞.

□

Example 2.7 (Rank-one operator)
For any ℎ ∈ 𝐻, 𝑓 ∈ 𝐹, the tensor product (Definition 2.18) operator 𝑓 ⊗ ℎ is a rank-one operator from
𝐻 to linear expansion of 𝑓, which is a 1-dim subspace of 𝐹. The operator is given by

(𝑓 ⊗ ℎ)(𝑔) = ⟨𝑔, ℎ⟩𝐻 𝑓, ∀𝑔 ∈ 𝐻. (2.1)

The tensor product operator is a Hilbert-Schmidt operator.

Proof:

‖𝑓 ⊗ ℎ‖2𝐻𝑆 =∑
𝑖≥1
‖(𝑓 ⊗ ℎ)𝑒𝑖‖2𝐹 =∑

𝑖≥1
‖ ⟨ℎ, 𝑒𝑖⟩𝐻 𝑓‖2𝐹

=∑
𝑖≥1
⟨ℎ, 𝑒𝑖⟩

2
𝐻 ‖𝑓‖2𝐹

= ‖ℎ‖2𝐻‖𝑓‖2𝐹 < ∞. (Parseval’s identity B.2)

□
Moreover, all Hilbert-Schmidt operators in ℒ(𝐻, 𝐹) forms a Hilbert space denoted by𝐻𝑆(𝐻, 𝐹), equipped
with inner product ⟨⋅, ⋅⟩𝐻𝑆. Suppose 𝑇1, 𝑇2 ∈ 𝐻𝑆(𝐻, 𝐹). The inner product is given by

⟨𝑇1, 𝑇2⟩𝐻𝑆 =∑
𝑖≥1
⟨𝑇1𝑒𝑖 , 𝑇2𝑒𝑖⟩𝐹 , (2.2)

which is well-defined by the symmetry, linearity and positive definiteness of the inner product defined on
𝐹. From the definitions, it is clear that the Hilbert-Schmidt norm ‖⋅‖𝐻𝑆 is induced by the Hilbert-Schmidt
inner product ⟨⋅, ⋅⟩𝐻𝑆. Below we give an equivalent expression of the Hilbert-Schmidt inner product.

Proposition 2.1 (Equivalent expression of Hilbert-Schmidt inner product)
The Hilbert-Schmidt inner product (2.2) is equivalent to

⟨𝑇1, 𝑇2⟩𝐻𝑆 =∑
𝑖≥1
∑
𝑗≥1
⟨𝑇1𝑒𝑖 , 𝑙𝑗⟩𝐹 ⟨𝑇2𝑒𝑖 , 𝑙𝑗⟩𝐹 . (2.3)

Proof:
Since 𝑇1𝑒𝑖 and 𝑇2𝑒𝑖 are elements in 𝐹, ∀𝑖 ≥ 1, we suppose their representations are given by

𝑇1𝑒𝑖 =∑
𝑘≥1

𝜆(𝑖)𝑘 𝑙𝑘 , 𝑇2𝑒𝑖 =∑
𝑘≥1

𝛾(𝑖)𝑘 𝑙𝑘 ,
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where 𝜆(𝑖)𝑘 , 𝛾
(𝑖)
𝑘 ∈ 𝕂, ∀𝑖, 𝑘 ≥ 1. By (2.2),

⟨𝑇1, 𝑇2⟩𝐻𝑆 =∑
𝑖≥1
⟨𝑇1𝑒𝑖 , 𝑇2𝑒𝑖⟩𝐹 =∑

𝑖≥1
⟨∑
𝑗≥1
𝜆(𝑖)𝑗 𝑙𝑗 ,∑

𝑘≥1
𝛾(𝑖)𝑘 𝑙𝑘⟩

𝐹

=∑
𝑖≥1
∑
𝑗≥1
𝜆(𝑖)𝑗 ⟨𝑙𝑗 ,∑

𝑘≥1
𝛾(𝑖)𝑘 𝑙𝑘⟩

𝐹

=∑
𝑖≥1
∑
𝑗≥1
𝜆(𝑖)𝑗 𝛾

(𝑖)
𝑗

=∑
𝑖≥1
∑
𝑗≥1
⟨𝑇1𝑒𝑖 , 𝑙𝑗⟩𝐹 ⟨𝑇2𝑒𝑖 , 𝑙𝑗⟩𝐹 .

□
The equivalent expression of the Hilbert-Schmidt inner product (2.3) is crucial for the following property.

Proposition 2.2 (Irrelevant orthonormal basis)
The definition of the Hilbert-Schmidt operator is irrelevant to the choice of the orthonormal basis.

Proof:
Suppose (𝑒𝑖)𝑖≥1 and (𝑙𝑖)𝑖≥1 are also the orthonormal basis of 𝐻 and 𝐹 respectively. Denote the adjoint
operator of 𝑇1 and 𝑇2 by 𝑇∗1 and 𝑇∗2 .

⟨𝑇1, 𝑇2⟩𝐻𝑆 =∑
𝑖≥1
∑
𝑗≥1
⟨𝑇1𝑒𝑖 , 𝑙𝑗⟩

𝐹
⟨𝑇2𝑒𝑖 , 𝑙𝑗⟩

𝐹

=∑
𝑗≥1
∑
𝑖≥1
⟨𝑇∗1 𝑙𝑗 , 𝑒𝑖⟩𝐻

⟨𝑇∗2 𝑙𝑗 , 𝑒𝑖⟩𝐻
(Adjoint operators 2.6)

=∑
𝑗≥1
⟨𝑇∗1 𝑙𝑗 , 𝑇∗2 𝑙𝑗⟩𝐻

(Proposition 2.1)

=∑
𝑗≥1
∑
𝑖≥1
⟨𝑇∗1 𝑙𝑗 , 𝑒𝑖⟩𝐻

⟨𝑇∗2 𝑙𝑗 , 𝑒𝑖⟩𝐻

=∑
𝑖≥1
∑
𝑗≥1
⟨𝑇1𝑒𝑖 , 𝑙𝑗⟩

𝐹
⟨𝑇2𝑒𝑖 , 𝑙𝑗⟩

𝐹

=∑
𝑖≥1
⟨𝑇1𝑒𝑖 , 𝑇2𝑒𝑖⟩𝐹 , (2.4)

where the last three lines use the repeated trick of the first three lines. Comparing (2.2) and (2.4), we
find that the choice of orthonormal basis doesn’t influence the definition of Hilbert-Schmidt operator.

□

Proposition 2.3 (Hilbert-Schmidt inner product between operators)
Consider the tensor product operator 𝑓⊗ℎ in Example 2.7. For any 𝐿 ∈ 𝐻𝑆(𝐻, 𝐹), the Hilbert-Schmidt
inner product between 𝐿 and 𝑓 ⊗ ℎ satisfies

⟨𝐿, 𝑓 ⊗ ℎ⟩𝐻𝑆 = ⟨𝑓, 𝐿ℎ⟩𝐹 . (2.5)

Proof:



2.2. Functional analysis on Hilbert spaces 16

Given the orthonormal basis of 𝐻 (𝑒𝑖)𝑖≥1, ℎ has the representation

ℎ =∑
𝑖≥1
⟨ℎ, 𝑒𝑖⟩𝐻 𝑒𝑖 . (2.6)

The left hand side of (2.5) becomes

⟨𝐿, 𝑓 ⊗ ℎ⟩𝐻𝑆 =∑
𝑖≥1
⟨𝐿𝑒𝑖 , (𝑓 ⊗ ℎ)𝑒𝑖⟩𝐹 (By 2.2)

=∑
𝑖≥1
⟨𝐿𝑒𝑖 , ⟨ℎ, 𝑒𝑖⟩𝐻 𝑓⟩𝐹

=∑
𝑖≥1
⟨ℎ, 𝑒𝑖⟩𝐻 ⟨𝐿𝑒𝑖 , 𝑓⟩𝐹 . (2.7)

The right hand side of (2.5) becomes

⟨𝑓, 𝐿ℎ⟩𝐹 = ⟨𝑓, 𝐿(∑
𝑖≥1
⟨ℎ, 𝑒𝑖⟩𝐻 𝑒𝑖)⟩

𝐹

=∑
𝑖≥1
⟨ℎ, 𝑒𝑖⟩𝐻 ⟨𝐿𝑒𝑖 , 𝑓⟩𝐹 . (2.8)

Comparing (2.7) and (2.8), we get the identity (2.5).
□

An crucial application of Proposition 2.3 is to find the equivalent expression of Hilbert-Schmidt inner
product between two tensor product operators. Substituting 𝐿 by another tensor product operator 𝑓′⊗
ℎ′, where 𝑓′ ∈ 𝐹 and ℎ′ ∈ 𝐻, we have the following equation

⟨𝑓′⊗ℎ′, 𝑓 ⊗ ℎ⟩𝐻𝑆 = ⟨𝑓, 𝑓′⟩𝐹 ⟨ℎ, ℎ′⟩𝐻 . (2.9)

2.2.3. The spectral theorem for compact operators
In this part, the final aim is to introduce the singular value decomposition theorem for compact operators.
To achieve this, we start from the definition of spectrum and explain how the set of eigenvalues of a
compact operator composes its spectrum. This leads to the spectral theorem for compact self-adjoint
operators showing that a self-adjoint compact operator in a Hilbert space can be represented by the
combination of its eigenvalues and the outer products between its eigenfunctions. From this important
theorem, we are able to introduce the general representation theorem for compact operators.

Definition 2.9 (Spectrum)
The spectrum 𝜎(𝑇) of a linear operator 𝑇 ∈ ℒ(𝐻) is the set of all 𝜆 ∈ 𝕂 such that 𝜆𝐼−𝑇 is not boundedly
invertible, i.e. there is no bounded linear operator 𝑈 ∈ ℒ(𝐻) such that

𝑈(𝜆𝐼 − 𝑇) = (𝜆𝐼 − 𝑇)𝑈 = 𝐼.

For self-adjoint operator 𝑇 ∈ ℒ(𝐻), its operator norm is chosen from the maximum value between the
absolute of infimum and supremum of its spectrum.

Theorem 2.5 (Norm of self-adjoint operators)
If 𝑇 is self-adjoint on H, then

‖𝑇‖ℒ(𝐻) = sup
‖ℎ‖≤1

| ⟨𝑇ℎ, ℎ⟩𝐻 | =max{|𝑚|, |𝑀|}

and {𝑚,𝑀} ⊆ 𝜎(𝑇) ⊆ [𝑚,𝑀], where 𝑚 = inf‖ℎ‖=1 ⟨𝑇ℎ, ℎ⟩𝐻, 𝑀 = sup‖ℎ‖=1 ⟨𝑇ℎ, ℎ⟩𝐻.
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The set 𝜎𝑝(𝑇) of all eigenvalues of 𝑇 are composed by 𝜆 ∈ 𝕂 such that 𝑇ℎ = 𝜆ℎ for some nonzero ℎ ∈ 𝐻.
Since 𝜆𝐼 − 𝑇 is not injective and thus not boundedly invertible if 𝜆 ∈ 𝜎𝑝(𝑇), we have 𝜎𝑝(𝑇) ⊆ 𝜎(𝑇). In
finite-dimensional cases, the eigenvalues of linear operators are equal to their spectrum, like matrices
acting on ℝ𝑛. However for linear operators acting on infinite-dimensional spaces, 𝜎𝑝(𝑇) ⊊ 𝜎(𝑇), which
means the points in spectrum don’t have to be eigenvalues. When linear operators are compact, the
relationship between their sets of eigenvalues and spectra is clearer, as shown below.

Theorem 2.6 (Riesz-Schauder theorem)
Let 𝑇 ∈ ℒ(𝐻) be a compact operator. Then:

1. Every nonzero 𝜆 ∈ 𝜎(𝑇) is an eigenvalue of 𝑇 and the eigenspace 𝐸𝜆 ∶= {ℎ ∈ 𝐻 ∶ 𝑇ℎ = 𝜆ℎ} is
finite-dimensional;

2. for every 𝑟 > 0, the number of eigenvalues satisfying |𝜆| ≥ 𝑟 is finite;
3. if there exists a sequence of eigenvalues (𝜆𝑛)𝑛≥1 such that lim𝑛→∞ 𝜆𝑛 = 𝜆, then 𝜆 = 0;
4. if dim(𝐻) = ∞, then 0 ∈ 𝜎(𝑇).

The Riesz-Schauder theorem shows that the nonzero part of the spectrum of a compact operator is
discrete and consists of eigenvalues. The only possible accumulation point zero belongs to 𝜎(𝑇) only
if 𝐻 is infinite-dimensional. This can be shown by its converse-negative proposition that if 0 ∉ 𝜎(𝑇),
then 𝑇 is boundedly invertible and so does 𝑇−1. Since 𝑇 is compact, that the unit ball 𝐵 = 𝑇(𝑇−1𝐵) is
relatively compact implies dim(𝐻) is finite. When dim(𝐻) = ∞, 0 ∈ 𝜎𝑝(𝑇) only when the kernel of 𝑇 is
not just {0}.

Example 2.8 (Spectrum of compact and positive semi-definite operators)
We define a positive semi-definite operator in ℒ(𝐻) to be any self-adjoint operator 𝐶 such that

⟨ℎ, 𝐶(ℎ)⟩𝐻 ≥ 0, ∀ℎ ∈ 𝐻 − {0}.
Suppose 𝑇 ∈ ℒ(𝐻) is compact and positive semi-definite. Then every element in its spectrum 𝜎(𝑇) is
non-negative.

Proof:
Since 𝑇 is compact, by Riesz-Schauder theorem 2.6, every nonzero element in 𝜎(𝑇) is eigenvalue. De-
note (𝜉𝑖)𝑖≥1 by its eigenvectors with corresponding eigenvalues (𝜆𝑖)𝑖≥1. By the positive semi-definiteness
of 𝑇, we have that ∀𝑖 ≥ 1,

𝜆𝑖‖𝜉𝑖‖2𝐻 = ⟨𝜉𝑖 , 𝑇(𝜉𝑖)⟩𝐻 ≥ 0

⟹𝜆𝑖 =
⟨𝜉𝑖 , 𝑇(𝜉𝑖)⟩𝐻
‖𝜉𝑖‖2𝐻

≥ 0.

This means the eigenvalues are non-negative. Since 𝜎(𝑇) = 𝜎𝑝(𝑇) or 𝜎(𝑇) = 𝜎𝑝(𝑇)∪{0}, 𝜎(𝑇) consists
of non-negative elements.

□
The eigenvalues and eigenspaces of compact operator in ℒ(𝐻) are crucial for building the orthonormal
system in 𝐻. And the spectral theorem for compact self-adjoint operators explains that the linear span
of eigenspaces is dense in 𝐻, showing that the eigenfunctions can form the orthonormal basis of the
Hilbert space.

Theorem 2.7 (The spectral theorem for compact self-adjoint operators)
Suppose 𝑇 ∈ ℒ(𝐻) is a compact self-joint operator. Let (𝜆𝑛)𝑛≥1 be the sequence of its distinct eigen-
values, (𝜙𝑛)𝑛≥1 be the corresponding sequence of eigenfunctions. Then

𝑇 =∑
𝑛≥1

𝜆𝑛𝜙𝑛⊗𝜙𝑛 ,

where⊗ denotes the tensor product (Example 2.7). The convergence is in the operator norm in ℒ(𝐻).
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The spectral theorem for compact self-adjoint operator states that any self-adjoint and compact linear
operator has a representation built by its eigenvalues and eigenfunctions. The spectral decomposition
of 𝑇 indicates a representation for images of 𝑇:

𝑇(ℎ) = ∑
𝑛≥1

𝜆𝑛 ⟨ℎ, 𝜙𝑛⟩ 𝜙𝑛 .

The spectral theorem for compact self-adjoint operator also makes it possible to deduce the general
representation theorem for compact operators acting between Hilbert spaces, which is known as the
singular value decomposition theorem for compact operators.

Theorem 2.8 (Singular value decomposition theorem for compact operators)
Suppose 𝐻1 and 𝐻2 are two Hilbert spaces. Let 𝑇 ∈ ℒ(𝐻1, 𝐻2) be a compact operator. Then there
exists a sequence of nonzero eigenvalues (𝜎𝑛)𝑛≥1 of the compact operator (𝑇∗𝑇)

1
2 repeated according

to multiplicities, a sequence (𝜙𝑛)𝑛≥1 ⊆ 𝐻1 of eigenfunctions of (𝑇∗𝑇)
1
2 and an orthonormal sequence

(𝜙̃𝑛)𝑛≥1 ⊆ 𝐻2 such that
𝑇 =∑

𝑛≥1
𝜎𝑛𝜙𝑛⊗ 𝜙̃𝑛

converges in the operator norm.

The eigenvalues of compact operator (𝑇∗𝑇)
1
2 are called singular values of 𝑇, which make 𝑇𝜙𝑛 = 𝜎𝑛𝜙̃𝑛

and 𝑇∗𝜙̃𝑛 = 𝜎𝑛𝜙𝑛. Moreover, the eigenvalues of (𝑇∗𝑇)
1
2 are non-negative since the operator is positive

semi-definite. This can be seem by the definition that ∀ℎ ∈ 𝐻 − {0}, ⟨ℎ, (𝑇∗𝑇)
1
2 (ℎ)⟩

𝐻
= ‖𝑇

1
2 (ℎ)‖2 ≥ 0.

𝜙 is called the left eigenfunction and 𝜙̃ is called the right eigenfunction. The tuple (𝜎𝑛 , 𝜙𝑛 , ̃𝜙𝑛)𝑛≥1 is the
singular system of the compact operator 𝑇.
The singular value decomposition theorem for compact operators is a powerful tool in finding the solu-
tions of Fredholm integral equation of the first kind, which will be briefly introduced in the next subsec-
tion.

2.3. Fredholm integral equation of the first kind
Fredholm integral equation of the first kind appears in the causal inference studies with high frequency.
The existence of the bridge functions (Lemma 1.1 and 1.2) in proximal inference is an important case.
We introduce the definition of this kind of integral equation problem and give Picard’s theorem stating
the existence of its solution based on [8] and [29].

Definition 2.10 (Fredholm integral equation of the first kind on 𝐿2(𝑆, 𝜇))
Given a data function 𝑓 ∈ 𝐿2(𝑆, 𝜇) and a kernel function 𝑘 ∈ 𝒞(𝑆2, 𝜇 ⊗ 𝜇), the integral equation

𝑓(𝑥) = ∫
𝑆
𝑘(𝑥, 𝑦)𝑔(𝑦)𝑑𝜇(𝑦) (2.10)

is called Fredholm integral equation of the first kind, where 𝜇 is a finite Borel measure.

The problem is to solve the unknown function 𝑔 in a known Hilbert space 𝐻 from the integral equation.
Since for compact 𝑆 and finite Borel measure 𝜇, 𝒞(𝑆2, 𝜇 ⊗ 𝜇) ⊆ 𝐿2(𝑆2, 𝜇 ⊗ 𝜇), the Fredholm integral
equation of the first kind is featured by a Hilbert-Schmidt integral operator 𝑇𝑘 ∶ 𝐻 ↦ 𝐿2(𝑆, 𝜇). We
represent the Equation (2.10) by

𝑇𝑘(𝑔) = 𝑓.

The statement below the singular value decomposition theorem for compact operators (Theorem 2.8)
claimed that the integral equation can be solved from the singular value decomposition of the compact
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linear operator 𝐴. In fact, for any 𝑔 ∈ 𝐿2(𝑆, 𝜇), there exists a singular system (𝜎𝑖 , 𝜙𝑖 , 𝜙̃𝑖)𝑖≥1 with nonzero
singular values, such that

𝑓 = 𝑇𝑘(𝑔) =∑
𝑖≥1
𝜎𝑖 ⟨𝑔, 𝜙𝑖⟩ 𝜙̃𝑖 . (2.11)

Taking inner product with 𝜙̃𝑖 on the both side of Equation (2.11), we get

⟨𝑓, 𝜙̃𝑖⟩ = 𝜎𝑖 ⟨𝑔, 𝜙𝑖⟩ .

This gives the coefficients of 𝑔 under orthogonal basis (𝜙𝑖)𝑖≥1

⟨𝑔, 𝜙𝑖⟩ =
⟨𝑓, 𝜙̃𝑖⟩
𝜎𝑖

.

So the unknown function 𝑔 has a solution

𝑔 =∑
𝑖≥1

⟨𝑓, 𝜙̃𝑖⟩
𝜎𝑖

𝜙𝑖 . (2.12)

Formally, the solution (2.12) exists only when the coefficients belongs to 𝑙2(𝑆), i.e. the linear space of
all square summable vectors. This is given by the Picard’s theorem.

Theorem 2.9 (Picard’s theorem)
Let 𝐴 ∶ 𝐻1 ↦ 𝐻2 be a compact linear operator with singular system (𝜎𝑖 , 𝜙𝑖 , 𝜙̃𝑖). The equation

𝑇𝑘(𝑔) = 𝑓, 𝑔 ∈ 𝐻1

is solvable if and only if 𝑓 belongs to the orthogonal complement 𝑁(𝑇∗𝑘)⊥ and satisfies

∑
𝑖≥1

| ⟨𝑓, 𝜙̃𝑖⟩ |2
𝜎2𝑖

< ∞.

In this case a solution is given by

𝑔 =∑
𝑖≥1

⟨𝑓, 𝜙̃𝑖⟩
𝜎𝑖

𝜙𝑖 .

2.4. Reproducing kernel Hilbert space
In this part, we set 𝕂 to be the set of all real numbers. We denote the inner product on 𝐻 by ⟨⋅, ⋅⟩𝐻 and
the inner product of Euclidean spaces by ⟨⋅, ⋅⟩. The Subsection 2.4.1 about the basic definitions and
theorems of reproducing kernel Hilbert spaces are collected from [38] and [2].

2.4.1. Basic definitions and theorems
This subsection starts from the definition of RKHS and proves that the reproducing kernels are equiv-
alent to kernel functions by introducing the feature maps on 𝐻 and the Moore-Aronszajn theorem.
The properties of kernel functions provide the reproducing kernels with symmetry and positive semi-
definiteness, which are useful for the applications of RKHS.

Definition 2.11 (Reproducing kernel Hilbert space (RKHS))
A Hilbert space 𝐻 of functions 𝑓 ∶ 𝑆 ↦ 𝕂 is a reproducing kernel Hilbert space if all linear functionals
𝑇𝑥 ∶ 𝑇𝑥(𝑓) = 𝑓(𝑥), ∀𝑓 ∈ 𝐻, 𝑥 ∈ 𝑆, are bounded on 𝐻. The functional considered here is called the point
evaluation functional.

Example 2.9 (𝐻 ≅ 𝑙2)
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Consider the Hilbert space of functions from 𝑆 to 𝕂 with an orthonormal basis (𝑒𝑖)𝑖≥1.

𝐻 ∶= {𝑓 ∶ 𝑆 ↦ 𝕂|𝑓 =∑
𝑖≥1
𝑎𝑖𝑒𝑖 ,∑

𝑖≥1
|𝑎𝑖|2 < ∞}

is a RKHS isometrically isomorphic to 𝑙2.

Example 2.10 (Counter example 𝐿2(𝑆, 𝜇))
𝐿2(𝑆, 𝜇) is the set of the equivalent classes which contain functions agree almost everywhere. This
means any square integrable functions 𝑓1, 𝑓2 by measure 𝜇 on 𝑆, such that 𝑓1 = 𝑓2, 𝑎.𝑒., are considered
to be the same element in 𝐿2(𝑆, 𝜇), which is denoted by 𝑓. So, in 𝐿2(𝑆, 𝜇), the point evaluation functional
is not well-defined because there exists a subset of 𝑆 with zero measure such that the value of 𝑓 is
ambiguous. This makes 𝐿2(𝑆, 𝜇) never a RKHS if no point evaluation functional is able to be defined
on.

To introduce the function featuring a RKHS, we define the reproducing kernel functions.

Definition 2.12 (Reproducing kernel function)
Any function 𝑘(⋅, ⋅) ∶ 𝑆 × 𝑆 ↦ 𝕂 is called a reproducing kernel of 𝐻 if ∀𝑥 ∈ 𝑆, 𝑘(𝑥, ⋅) ∶ 𝑆 ↦ 𝕂 is an
element of 𝐻 satisfying the reproducing property

𝑓(𝑥) = ⟨𝑘(𝑥, ⋅), 𝑓⟩𝐻 . (2.13)

In RKHS, by virtue of reproducing property, norm convergence implies pointwise convergence.

Theorem 2.10 (Convergence in norm implies pointwise convergence)
Suppose a sequence (ℎ𝑖)𝑖≥1 converges to ℎ ∈ 𝐻 in the RKHS norm, then ∀𝑥 ∈ 𝑆, we have

lim
𝑖⟶∞

|ℎ𝑖(𝑥) − ℎ(𝑥)| = 0.

Proof:
By reproducing property (2.13) and Cauchy-Schwartz inequality,

lim
𝑖⟶∞

|ℎ𝑖(𝑥) − ℎ(𝑥)| = lim
𝑖⟶∞

| ⟨ℎ𝑖 − ℎ, 𝑘(𝑥, ⋅)⟩𝐻 | ≤ ‖ℎ𝑖 − ℎ‖𝐻‖𝑘(𝑥, ⋅)‖𝐻 .

□

Theorem 2.11 A Hilbert space 𝐻 of functions 𝑓 ∶ 𝑆 ↦ 𝕂 is a reproducing kernel Hilbert space if and
only if it has a reproducing kernel.

Proof:
If 𝐻 is a RKHS, then by Definition 2.11, ∀𝑥 ∈ 𝑆, all point evaluation functionals on it are bounded. For
a point evaluation functional 𝑇𝑥 ∶ 𝐻 ↦ 𝕂, by the Riesz representation theorem (Theorem 2.2), there
exists a unique representative function 𝑘𝑥 ∶ 𝑆 ↦ 𝕂 in 𝐻 such that

𝑇𝑥(𝑓) = ⟨𝑘𝑥 , 𝑓⟩𝐻 . (2.14)

We define a bivariate function 𝑘 ∶ 𝑆 × 𝑆 ↦ 𝕂 by 𝑘(𝑥, 𝑦) = ⟨𝑘𝑥 , 𝑘𝑦⟩𝐻, ∀𝑥, 𝑦 ∈ 𝑆. Applying the point
evaluation functional 𝑇𝑦 to 𝑘𝑥, by the symmetry of inner product, we have 𝑘𝑥(𝑦) = 𝑇𝑦(𝑘𝑥) = ⟨𝑘𝑥 , 𝑘𝑦⟩𝐻.
This implies 𝑘(𝑥, ⋅) = 𝑘𝑥 ∈ 𝐻. In addition, the reproducing property of 𝑘 is directly given by replacing
𝑘𝑥 by 𝑘(𝑥, ⋅) in (2.14). So, 𝑘 is a reproducing kernel of 𝐻.
If 𝐻 has a reproducing kernel 𝑘(⋅, ⋅) ∶ 𝑆 × 𝑆 ↦ 𝕂, its reproducing property implies it canonically corre-
sponds to a point evaluation functional 𝑇𝑥 ∶ 𝐻 ↦ 𝕂, ∀𝑥 ∈ 𝑆. ∀𝑓 ∈ 𝐻, |𝑇𝑥(𝑓)|=| ⟨𝑘𝑥 , 𝑓⟩𝐻 |≤ ‖𝑘𝑥‖𝐻‖𝑓‖𝐻 <
∞. This means 𝑇𝑥 is bounded with norm ‖𝑘𝑥‖𝐻 and hence 𝐻 is a RKHS.
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□
The following theorem shows the relationship between the reproducing kernel function and the or-
thonormal basis of the RKHS.

Theorem 2.12 ([36]Reproducing kernel expansion with orthonormal basis)
Let𝐻 be a RKHS over 𝑆 with a reproducing kernel function 𝑘(⋅, ⋅) ∶ 𝑆×𝑆 ↦ 𝕂. If (𝑒𝑖)𝑖≥1 is an orthonormal
basis of 𝐻, then ∀𝑥, 𝑥′ ∈ 𝑆

𝑘(𝑥, 𝑥′) =∑
𝑖≥1
𝑒𝑖(𝑥)𝑒𝑖(𝑥′),

where the convergence is absolute.

From the theorem, we also have that the function 𝑘(𝑥, ⋅) ∈ 𝐻 has expression

𝑘(𝑥, ⋅) =∑
𝑖≥1
𝑒𝑖(𝑥)𝑒𝑖 ,

which means it is a sum of basis functions 𝑒𝑖 ∶ 𝑆 ↦ 𝕂 scaled by (𝑒𝑖(𝑥))𝑖≥1.

Example 2.11 (Cont. Example 2.9)
Recall the orthonormal basis function (𝑒𝑖)𝑖≥1 of 𝐻 satisfies

⟨𝑒𝑖(⋅), 𝑒𝑗(⋅)⟩𝐻 = {
1, 𝑖 = 𝑗
0, 𝑖 ≠ 𝑗 . (2.15)

For RKHS isometrically isomorphic to 𝑙2, we can reproduce any function in 𝐻 by

𝑓(𝑥) = ⟨𝑘(𝑥, ⋅), 𝑓⟩𝐻 = ⟨∑
𝑖≥1
𝑒𝑖(𝑥)𝑒𝑖 ,∑

𝑖≥1
𝑎𝑖𝑒𝑖⟩

𝐻

=⏟
(2.15)

∑
𝑖≥1
𝑎𝑖𝑒𝑖(𝑥) = ⟨⃗⃗𝑒(𝑥), ⃗⃗⃗𝑎⟩ .

This means we can simplify the reproducing property of such RKHS by the inner product of Euclidean
spaces between ⃗⃗⃗𝑎 = (𝑎1, 𝑎2, ⋯ , 𝑎𝑛 , ⋯)𝑇 ∈ 𝑙2 and ⃗⃗𝑒(𝑥) = (𝑒1(𝑥), 𝑒2(𝑥),⋯ , 𝑒𝑛(𝑥),⋯)𝑇.

The reproducing kernel function has a strong relationship with the kernel functions. In fact, the idea of
the reproducing kernel function is equivalent to the kernel function under a RKHS background. We will
show this step by step starting from the kernel functions and feature maps.

Definition 2.13 (Kernel function)
The function 𝑘(⋅, ⋅) ∶ 𝑆 × 𝑆 ↦ 𝕂 is a kernel function if

1. 𝑘 is symmetric: 𝑘(𝑥, 𝑦) = 𝑘(𝑦, 𝑥), ∀𝑥, 𝑦 ∈ 𝑆.

2. 𝑘 is positive semi-definite1: The Gram matrix 𝐾 with entry 𝐾𝑖𝑗 = 𝑘(𝑥𝑖 , 𝑥𝑗), ∀𝑥1, ⋯ , 𝑥𝑛 ∈ 𝑆, is
positive semi-definite.

Definition 2.14 (Feature map)
Given a Hilbert space 𝐹, a feature map 𝜙 maps elements from 𝑆 to 𝐹. 𝐹 is also called a feature space.

The inner product of feature map directly leads to the positive semi-definiteness of the kernel functions.

Proposition 2.4 The function 𝑘(⋅, ⋅) ∶ 𝑆 × 𝑆 ↦ 𝕂 is a kernel function if there exists a feature map
𝜙 ∶ 𝑆 ↦ 𝐹 such that

𝑘(⋅, ⋅) = ⟨𝜙(⋅), 𝜙(⋅)⟩𝐹 .
1In some literatures positive semi-definite kernels are called positive definite kernels based on the theory of positive definite
functions.
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Proof:
Since the symmetry of 𝑘(⋅, ⋅) is a direct result of the symmetry of the inner product, we only show
that 𝑘(⋅, ⋅) is positive semi-definite. ∀𝛼 = (𝛼1, ⋯ , 𝛼𝑛)𝑇 ∈ 𝕂𝑛, given the Gram matrix 𝐾 with entry
𝐾𝑖𝑗 = 𝑘(𝑥𝑖 , 𝑥𝑗), ∀𝑥1, ⋯ , 𝑥𝑛 ∈ 𝑆,

𝛼𝑇𝐾𝛼 =
𝑛

∑
𝑖=1

𝑛

∑
𝑗=1
𝛼𝑖𝛼𝑗𝑘(𝑥𝑖 , 𝑥𝑗)

=
𝑛

∑
𝑖=1

𝑛

∑
𝑗=1
𝛼𝑖𝛼𝑗 ⟨𝜙(𝑥𝑖), 𝜙(𝑥𝑗)⟩𝐹

= ⟨
𝑛

∑
𝑖=1
𝛼𝑖𝜙(𝑥𝑖),

𝑛

∑
𝑖=1
𝛼𝑖𝜙(𝑥𝑖)⟩

𝐹

= ‖
𝑛

∑
𝑖=1
𝛼𝑖𝜙(𝑥𝑖)‖2𝐹

≥ 0.

□
So, any kernel functions can be represented by the inner product of feature maps on a Hilbert space.
Given the inner product defined on the Hilbert space, one can find the feature map corresponding to
the kernel function.

Example 2.12 (Common kernel functions and corresponding feature maps)
The polynomial kernels and Gaussian radial basis function (RBF) kernel are widely used in machine
learning especially in support vector machine (SVM), kernel ridge regression and nonlinear modeling
tasks [43, 5], which are given by

• Polynomial kernel: 𝑘𝑝(𝑥, 𝑦) = (⟨𝑥, 𝑦⟩ + 𝑐)𝑑, where 𝑥, 𝑦 ∈ 𝑆, 𝑐 ∈ 𝕂 and 𝑑 ∈ ℕ+.
• Gaussian radial basis function (RBF) kernel: 𝑘𝐺(𝑥, 𝑦) = exp{−𝛾‖𝑥 − 𝑦‖22}, where 𝑥, 𝑦 ∈ 𝑆 and
𝛾 ∈ 𝕂+.

The feature map of a polynomial kernel depends on the order 𝑑 and the dimension of 𝑆. For example
when dim(𝑆) = 𝑑 = 2 and 𝑐 = 0,

𝑘𝑝(𝑥, 𝑦) = (𝑥1𝑦1 + 𝑥2𝑦2)2 = 𝑥21𝑦21 + 𝑥22𝑦22 + 2𝑥1𝑥2𝑦1𝑦2
= (𝑥21 , 𝑥22 , √2𝑥1𝑥2)(𝑦21 , 𝑦22 , √2𝑦1𝑦2)𝑇
= (𝑥21 , 𝑥22 , 𝑥1𝑥2, 𝑥1𝑥2)(𝑦21 , 𝑦22 , 𝑦1𝑦2, 𝑦1𝑦2)𝑇 .

This means the feature map and corresponding feature space are not uniquely determined. In fact, we
find 𝜙𝑝 ∶ 𝜙𝑝(𝑥) = (𝑥21 , 𝑥22 , √2𝑥1𝑥2) implying a feature space 𝐹𝑝 ⊆ 𝕂3, or 𝜙̃𝑝 ∶ 𝜙̃𝑝(𝑥) = (𝑥21 , 𝑥22 , 𝑥1𝑥2, 𝑥1𝑥2)
implying a feature space 𝐹̃𝑝 ⊆ 𝕂4.
The feature map of the Gaussian RBF kernel depends on the basis function and Taylor expansion of
exponential function. In fact,

𝑘𝐺(𝑥, 𝑦) = exp{−𝛾‖𝑥 − 𝑦‖22}
= exp{2𝛾 ⟨𝑥, 𝑦⟩} ⋅ exp{−𝛾‖𝑥‖22} ⋅ exp{−𝛾‖𝑦‖22}

=
∞

∑
𝑛=0

(2𝛾)𝑛
𝑛! (⟨exp{−𝛾‖𝑥‖22}𝑥, exp{−𝛾‖𝑦‖22}𝑦⟩)𝑛 .



2.4. Reproducing kernel Hilbert space 23

The feature map 𝜙𝐺 of 𝑘𝐺 doesn’t have an explicit form unless the dimension of 𝑆 is 1. In this case,

𝜙𝐺 ∶ 𝜙𝐺(𝑥) = [1,√4𝛾2
2 𝑥

2𝑒−𝛾𝑥2 , ⋯ , √ (2𝛾)𝑛
𝑛! 𝑥

𝑛𝑒−𝛾𝑥2 , ⋯] implying an infinite dimensional feature space

𝐹𝐺 ⊆ 𝑙2. For general situation, Steinwart et.al [36] gave the structure of the RKHS of Gaussian RBF
kernel where the feature map is subsequently discussed.

If the Hilbert space is a RKHS, then the reproducing kernel is just a kernel function, which means it can
also be represented by the inner product of feature maps. This is shown in the following proposition.

Proposition 2.5 Every reproducing kernel function is a kernel function.

Proof:
Suppose 𝑘(⋅, ⋅) ∶ 𝑆×𝑆 ↦ 𝕂 is the reproducing kernel function of RKHS𝐻. By Definition 2.12, 𝑘(𝑥, ⋅) ∈ 𝐻.
Then there exists a feature map 𝜙 ∶ 𝑆 ↦ 𝐻 such that ∀𝑥 ∈ 𝑆, 𝜙(𝑥) = 𝑘(𝑥, ⋅). ∀𝑦 ∈ 𝑆, we have

𝑘(𝑥, 𝑦) = ⟨𝑘(𝑥, ⋅), 𝑘(𝑦, ⋅)⟩𝐻 (reproducing property (2.13), 𝑘(𝑥, ⋅) ∈ 𝐻)
= ⟨𝜙(𝑥), 𝜙(𝑦)⟩𝐻 .

□
This proposition is crucial for showing the uniqueness of reproducing kernel given a RKHS.

Theorem 2.13 (Uniqueness of reproducing kernel)
A RKHS uniquely determines its reproducing kernel function.

Proof:
Suppose 𝑘1(⋅, ⋅) and 𝑘2(⋅, ⋅) are the reproducing kernel functions of RKHS 𝐻. By Definition 2.12, ∀𝑥 ∈ 𝑆,
𝑘1(𝑥, ⋅) ∈ 𝐻 and 𝑘2(𝑥, ⋅) ∈ 𝐻. By Proposition 2.5, 𝑘1(⋅, ⋅) and 𝑘2(⋅, ⋅) are symmetric. By reproducing
property (2.13), ∀𝑥, 𝑦 ∈ 𝑆, we have

𝑘1(𝑥, 𝑦) = ⟨𝑘1(𝑥, ⋅), 𝑘2(𝑦, ⋅)⟩𝐻 = 𝑘2(𝑥, 𝑦).

This means 𝑘1 = 𝑘2 everywhere on 𝑆 × 𝑆.
□

Recall in Example 2.12 a kernel may not uniquely determines the feature map and the feature space.
However, it is able to uniquely determine a RKHS by the following theorem.

Theorem 2.14 ([12]Moore-Aronszajn theorem)
Suppose 𝑘 ∶ 𝑆 × 𝑆 ↦ 𝕂 is a kernel function. Then there is a unique Hilbert space of functions on 𝑆 for
which 𝑘 is a reproducing kernel.

Proof:
Given a kernel function 𝑘, for 𝑛 ∈ ℕ+, arbitrarily choosing points 𝑥1, 𝑥2⋯ , 𝑥𝑛 ∈ 𝑆, we consider the linear
span of 𝑘(𝑥1, ⋅), 𝑘(𝑥2, ⋅)⋯ , 𝑘(𝑥𝑛 , ⋅).
The elements in the linear span have representation 𝑓 = ∑𝑛𝑖=1 𝛼𝑖𝑘(𝑥𝑖 , ⋅), 𝛼𝑖 ∈ 𝕂. Denote the closure of
the linear span by

𝐻 = {𝑓 ∶ 𝑓 =
𝑛

∑
𝑖=1
𝛼𝑖𝑘(𝑥𝑖 , ⋅), 𝑥𝑖 ∈ 𝑆, 𝛼𝑖 ∈ 𝕂, 𝑛 ∈ ℕ+}.

∀𝑓, 𝑔 ∈ 𝐻, ∀𝑚 ∈ ℕ, the representations are given by

𝑓 =
𝑛

∑
𝑖=1
𝛼𝑖𝑘(𝑥𝑖 , ⋅), 𝑔 =

𝑚

∑
𝑖=1
𝛽𝑖𝑘(𝑦𝑖 , ⋅).
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The inner product ⟨⋅, ⋅⟩𝐻 here is defined by ⟨𝑓, 𝑔⟩𝐻 = ∑
𝑛
𝑖 ∑

𝑚
𝑗=1 𝛼𝑖𝛽𝑗𝑘(𝑥𝑖 , 𝑦𝑗), which is verified by its sym-

metry, linearity and positive definiteness. The symmetry is a direct result of the symmetric kernel
function and the linearity is derived from the linear representations of the functions. For the positive
definiteness, since the positive semi-definiteness is shown in the proof of Proposition 2.4, we only need
to show ⟨𝑓, 𝑓⟩𝐻 = 0 ⟹𝑓(𝑥) = 0, ∀𝑥 ∈ 𝑆. In fact, ∀𝑥 ∈ 𝑆,

|𝑓(𝑥)|2 = |
𝑛

∑
𝑖=1
𝛼𝑖𝑘(𝑥𝑖 , 𝑥)|2

= ⟨𝑓(⋅), 𝑘(𝑥, ⋅)⟩2𝐻 (2.16)
≤ ⟨𝑓, 𝑓⟩𝐻⏝⎵⏟⎵⏝

0

⟨𝑘(𝑥, ⋅), 𝑘(𝑥, ⋅)⟩𝐻 (Cauchy-Schwartz inequality)

= 0.

The Equation (2.16) shows that the kernel function satisfies the reproducing property (2.13). This
means 𝑘 is the reproducing kernel of 𝐻.
To verify the uniqueness of 𝐻, we suppose there exists a Hilbert space 𝐻0 such that 𝐻 ⊆ 𝐻0 and 𝑘 is its
reproducing kernel. Since 𝐻 is a closed subspace of 𝐻0, 𝐻0 = 𝐻⊕𝐻⊥. For any 𝑓 ∈ 𝐻0, 𝑓 = 𝑓𝐻 + 𝑓𝐻⊥ ,
where 𝑓𝐻 ∈ 𝐻 and 𝑓𝐻⊥ ∈ 𝐻⊥. From the fact that 𝑘 is the reproducing kernel in both 𝐻 and 𝐻0, we have

𝑓(𝑥) = ⟨𝑘(𝑥, ⋅), 𝑓⟩𝐻0 = ⟨𝑘(𝑥, ⋅), 𝑓𝐻⟩𝐻0 + ⟨𝑘(𝑥, ⋅), 𝑓𝐻⊥⟩𝐻0
= ⟨𝑘(𝑥, ⋅), 𝑓𝐻⟩𝐻0 (𝑘 ∈ 𝐻)
= 𝑓𝐻(𝑥).

This means ∀𝑓 ∈ 𝐻0, 𝑓 = 𝑓𝐻 and thus 𝐻 = 𝐻0.
□

Example 2.13 (Cont. Example 2.12)
By Moore-Aronszajn theorem, the RKHSs induced by polynomial kernel 𝑘𝑝(𝑥, 𝑦) = ⟨𝑥, 𝑦⟩

2 and Gaus-
sian RBF kernel 𝑘𝐺 = exp{−𝛾|𝑥 − 𝑦|2} are given by2

𝐻𝑝 = {𝑓 ∶
𝑛

∑
𝑖=1
𝛼𝑖𝑘𝑝(𝑥𝑖 , ⋅), 𝛼𝑖 ∈ 𝕂, 𝑛 ∈ ℕ+}, 𝑘𝑝(𝑥, ⋅) = (𝑥21 , √2𝑥1𝑥2, 𝑥22)(⋅)

𝐻𝐺 = {𝑔 ∶
𝑛

∑
𝑖=1
𝛽𝑖𝑘𝐺(𝑥𝑖 , ⋅), 𝛽𝑖 ∈ 𝕂, 𝑛 ∈ ℕ+}, 𝑘𝐺(𝑥, ⋅) = (√

(2𝛾)𝑛
𝑛! 𝑥𝑛 exp{−𝛾𝑥2})

𝑛≥0

(⋅).

For any 𝑓 ∈ 𝐻𝑝, 𝑔 ∈ 𝐻𝐺, 𝑦 ∈ 𝕂2, 𝑧 ∈ 𝕂,

𝑓(𝑦) = ⟨𝑘𝑝(𝑦, ⋅), 𝑓⟩𝐻𝑝 =
𝑛

∑
𝑖=1
𝛼𝑖𝑘𝑝(𝑥𝑖 , 𝑦) =

𝑛

∑
𝑖=1
𝛼𝑖 ⟨𝜙𝑝(𝑥𝑖), 𝜙𝑝(𝑦)⟩

2 =
𝑛

∑
𝑖=1
𝛼𝑖(𝑥2𝑖1𝑦21 + 𝑥2𝑖2𝑦22 + 2𝑥𝑖1𝑥𝑖2𝑦1𝑦2)

𝑔(𝑧) = ⟨𝑘𝐺(𝑧, ⋅), 𝑔⟩𝐻𝐺 =
𝑛

∑
𝑖=1
𝛽𝑖𝑘𝐺(𝑥𝑖 , 𝑧) =

𝑛

∑
𝑖=1
𝛽𝑖 ⟨𝜙𝐺(𝑥𝑖), 𝜙𝐺(𝑧)⟩

2 =
𝑛

∑
𝑖=1
𝛽𝑖 exp{−𝛾|𝑥𝑖 − 𝑧|2}.

Hence, 𝑓 matches a unique scalar vector ∑𝑛𝑖=1 𝛼𝑖(𝑥2𝑖1, 𝑥2𝑖2, √2𝑥𝑖1𝑥𝑖2)𝑇 ∈ 𝐹𝑝 and 𝑔 matches a unique

scalar vector ∑𝑛𝑖=1 𝛽𝑖 (√
(2𝛾)𝑛
𝑛! 𝑥

𝑛
𝑖 exp{−𝛾𝑥2𝑖 })

𝑛≥0
∈ 𝐹𝐺. This implies that 𝐻𝑝 ≅ 𝐹𝑝 and 𝐻𝐺 ≅ 𝐹𝐺 and

⟨⋅, ⋅⟩𝐻𝑝 ≡ ⟨⋅, ⋅⟩𝐻𝐺 ≡ ⟨⋅, ⋅⟩.
2Here 𝑥𝑖 ∈ 𝕂2 for 𝑘𝑝 and 𝑥𝑖 ∈ 𝕂 for 𝑘𝐺.
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2.4.2. Continuous functions approximation
In this part, we introduce the idea of universal kernel that is decisive for finding a RKHS to approximate
the space of all continuous functions on a compact subset of ℝ𝑛.

Lemma 2.1 (Continuous kernel)
Given a kernel 𝑘(⋅, ⋅) ∶ 𝑆 × 𝑆 ↦ ℝ and its induced RKHS 𝐻. 𝑘 is continuous if its corresponding feature
map 𝜙 ∶ 𝑆 ↦ 𝐻 is continuous.

Proof:
The continuity of 𝜙 implies 𝜙(⋅) is a continuous function in 𝐻. By the virtue of the compactness of 𝑆,
∀𝑥, 𝑦 ∈ 𝑆, 𝜙(𝑥) and 𝜙(𝑦) are bounded.

|𝑘(𝑥, 𝑦) − 𝑘(𝑥′, 𝑦′)| ≤ |𝑘(𝑥, 𝑦) − 𝑘(𝑥′, 𝑦) + 𝑘(𝑥′, 𝑦) − 𝑘(𝑥′, 𝑦′)|
≤ | ⟨𝜙(𝑥) − 𝜙(𝑥′), 𝜙(𝑦)⟩𝐻 | + | ⟨𝜙(𝑥′), 𝜙(𝑦) − 𝜙(𝑦′)⟩𝐻 | (Proposition 2.4)
≤ ‖𝜙(𝑦)‖𝐻‖𝜙(𝑥) − 𝜙(𝑥′)‖𝐻 + ‖𝜙(𝑥′)‖𝐻‖𝜙(𝑦) − 𝜙(𝑦′)‖𝐻 . (Cauchy-Schwartz)

By the boundedness and continuity of 𝜙(⋅), we have the continuity of kernel function 𝑘(⋅, ⋅).
□

Definition 2.15 ([37]Universal kernel)
A continuous kernel 𝑘(⋅, ⋅) ∶ 𝑆 × 𝑆 ↦ ℝ is universal if the space of functions 𝐻 induced by it is dense in
the space of all bounded continuous functions on 𝑆.

Given a universal kernel acting on 𝑆×𝑆, by Theorem 2.14, one can construct a RKHS with the universal
kernel as its reproducing kernel. The universality makes sure that for any function 𝑔 ∈ 𝒞(𝑆), for any
𝜖 > 0, there always exists a function 𝑓 in this RKHS such that

‖𝑓 − 𝑔‖∞ ≤ 𝜖.

We denote the space of all continuous functions on a compact subset 𝑆 of 𝕂𝑛 by 𝒞(𝑆) and the space
of all bounded continuous functions on 𝕂𝕟 by 𝒞0(𝕂𝕟).
It is only possible for the RKHS generated by a universal kernel to be dense in spaces whose element
functions have infinite infinity norm. The reason is that for any RKHS element 𝑓,

|𝑓(𝑋)| = | ⟨𝑓, 𝑘(𝑥, ⋅)⟩𝐻 | ≤ ‖𝑓‖𝐻√𝑘(𝑋, 𝑋) < ∞,

which implies ‖𝑓‖∞ < ∞.
Therefore, since the infinity norm of functions in 𝒞(𝑆) and 𝒞0(𝕂) are all finite, 𝒞(𝑆) and 𝒞0(𝕂) can be
well approximated by the RKHS generated by an universal kernel acting on the corresponding sets.
Steinwart [37] shows that kernels are universal on any compact subset of certain sets, if they can
be expressed by Taylor expandable infinitely differentiable functions or Fourier expandable continuous
functions. This further extends to the universality of the Gaussian RBF kernel, infinite polynomial kernel,
stronger regularized Fourier kernel and weaker regularized Fourier kernel. One can check Corollary
10 and 11 as well as Example 1 to 4 in [37] for details.

2.4.3. Kernel embedding of mean and cross-covariance
Based on the results from [33] and [35], this part aims at finding methods to compute the expectations
and covariances of RKHS functions without distributions of random variables but only with inner product
between RKHS functions.
Let 𝐷 be a compact subset of𝕂𝑛. Suppose 𝑘(⋅, ⋅) ∶ 𝑆×𝑆 ↦ 𝕂 and 𝑙(⋅, ⋅) ∶ 𝐷×𝐷 ↦ 𝕂 are kernel functions
with induced RKHS 𝐻 and 𝐹 respectively. Denote the corresponding feature maps3 of the two kernel
functions by 𝜙 ∶ 𝑆 ↦ 𝐻and 𝜓 ∶ 𝐷 ↦ 𝐹. Let 𝑋 and 𝑌 be random variables defined on 𝑆 and 𝐷 separately
with marginal distribution 𝑃𝑋 and 𝑃𝑌.
3Recall the trick used in the proof of Proposition 2.5 that one can choose the feature map 𝜙(𝑥) uniquely corresponding to a
RKHS function 𝑘(𝑥, ⋅).
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Definition 2.16 (Mean value operator)
The mean value operator is a linear operator 𝑇𝑋 ∶ 𝐻 ↦ 𝕂 such that ∀ℎ ∈ 𝐻

𝑇𝑋(ℎ) ∶= 𝐸𝑋[ℎ(𝑋)] = ∫
𝑆
ℎ(𝑥)𝑑𝑃𝑋 .

The empirical operator is similarly defined.

Definition 2.17 (Empirical mean value operator)
The empirical mean value operator is a linear operator 𝑇𝑋 ∶ 𝐻 ↦ 𝕂 such that ∀ℎ ∈ 𝐻

𝑇𝑋(ℎ) ∶= ℎ(𝑋) =
1
𝑛

𝑛

∑
𝑖=1
ℎ(𝑋𝑖),

where 𝑋1, ⋯ , 𝑋𝑛 are i.i.d from 𝑃𝑋.

The following lemma shows that the mean value operator uniquely corresponds to a function in 𝐻.

Lemma 2.2 (Boundedness of the mean value operator)
If 𝐸𝑋[√𝑘(𝑋, 𝑋)] < ∞, the mean value operator 𝑇𝑋 is a bounded linear functional and thus corresponds
to a unique element in 𝐻.

Proof:
For any ℎ ∈ 𝐻,

|𝑇𝑋(ℎ)| = |𝐸𝑋[ℎ(𝑋)]| ≤ 𝐸𝑋[|ℎ(𝑋)|] (Jensen’s inequality 2.18)
= 𝐸𝑋[| ⟨ℎ, 𝜙(𝑋)⟩𝐻 |] (Reproducing property (2.13))
≤ 𝐸𝑋[√𝑘(𝑋, 𝑋)]‖ℎ‖𝐻 < ∞ (Cauchy-Schwartz & Reproducing property)

This implies ‖𝑇𝑋‖ℒ(𝐻,𝕂) is bounded by 𝐸𝑋[√𝑘(𝑋, 𝑋)]. By Riesz representation theorem 2.2, 𝑇𝑋 canoni-
cally corresponds to a unique function in 𝐻, which we denote by 𝜇𝑋. This gives

𝑇𝑋(ℎ) = ⟨ℎ, 𝜇𝑋⟩𝐻 . (2.17)

□
We can similarly show that the empirical mean value operator 𝑇𝑋 uniquely corresponds to a function
𝜇𝑋 ∈ 𝐻 under assumption 1

𝑛 ∑
𝑛
𝑖=1√𝑘(𝑥𝑖 , 𝑥𝑖) < ∞, with i.i.d. 𝑥1 = 𝑥1, ⋯ , 𝑋𝑁 = 𝑥𝑛 from 𝑃𝑋, which satisfies

𝑇𝑋(ℎ) = ⟨ℎ, 𝜇𝑋⟩𝐻 .

The lemma implies that if the mean value operator exists, one can find the expectation of a RKHS
function by the RKHS inner product between the function and 𝜇𝑋 directly. This shows that 𝜇𝑋 plays the
similar role of distribution 𝑃𝑋 in computing expectations of RKHS functions. Hence, it is important to
find the explicit form of 𝜇𝑋 and 𝜇𝑋 as elements in 𝐻.

Proposition 2.6 ((Empirical) mean embedding)
The explicit forms of 𝜇𝑋 and 𝜇𝑋 as elements in 𝐻 are given by 𝜇𝑋 = 𝐸𝑋[𝜙(𝑋)] and 𝜇𝑋 =

1
𝑛 ∑

𝑛
𝑖=1 𝜙(𝑋𝑖).

Proof:
By reproducing property (2.13), ∀ℎ ∈ 𝐻,

𝐸𝑋[ℎ(𝑋)] = 𝐸𝑋[⟨ℎ, 𝜙(𝑋)⟩𝐻] = ⟨ℎ, 𝐸𝑋[𝜙(𝑋)]⟩𝐻 .
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By (2.17), this further implies
𝜇𝑋 = 𝐸𝑋[𝜙(𝑋)]. (2.18)

Similarly, the explicit form of 𝜇𝑋 is given by

𝜇𝑋 =
1
𝑛

𝑛

∑
𝑖=1
𝜙(𝑋𝑖). (2.19)

□
Hence, for any ℎ ∈ 𝐻, its expectation or empirical mean relative to random variable 𝑋 can be calculated
by 𝐸𝑋[ℎ(𝑋)] = ⟨ℎ, 𝜇𝑋⟩𝐻 and ℎ(𝑋) = ⟨ℎ, 𝜇𝑋⟩𝐻.
The process (2.18) and (2.19) are called the (empirical) mean embedding of the distribution 𝑃𝑋, where
the distribution 𝑃𝑋 is mapped to the feature space 𝐻 as the expectation or empirical mean of the RKHS
function 𝜙(𝑋) = 𝑘(𝑋, ⋅).
The mean embedding 𝜇𝑋 and its empirical form 𝜇𝑋 share good properties. Altun and Smola [1] showed
that the convergence speed in RKHS norm is 𝒪𝑝(𝑛−

1
2 ), which is given by the following theorem.

Theorem 2.15 (√𝑛-consistency of mean embedding)
If 𝐸𝑋[𝑘(𝑋, 𝑋)] < ∞ and 1

𝑛 ∑
𝑛
𝑖=1 𝑘(𝑥𝑖 , 𝑥𝑖) < ∞, the mean value operator and corresponding empirical

mean value operator admit mean embeddings. Moreover,

‖𝜇𝑋 − 𝜇𝑋‖𝐻 = 𝒪𝑝(𝑛−
1
2 ).

Proof:
By Jensen’s inequality and concavity of square root,

𝐸𝑋[√𝑘(𝑋, 𝑋)] ≤ √𝐸𝑋[𝑘(𝑋, 𝑋)] < ∞, and
1
𝑛

𝑛

∑
𝑖=1
√𝑘(𝑥𝑖 , 𝑥𝑖) ≤ √

1
𝑛

𝑛

∑
𝑖=1
𝑘(𝑥𝑖 , 𝑥𝑖) < ∞.

Hence the mean embedding and empirical embedding exist by Lemma 2.2.

𝐸𝑋 [|𝜇𝑋 − 𝜇𝑋‖𝐻] ≤ (𝐸𝑋 [‖𝜇𝑋 − 𝜇𝑋‖2𝐻])
1
2 (Jensen’s inequality)

= 1
𝑛 (𝐸𝑋 [‖

𝑛

∑
𝑖=1
(𝜙(𝑋𝑖) − 𝜇𝑋)‖

2

𝐻
])

1
2

= 1
𝑛(

𝑛

∑
𝑖=1
𝐸𝑋𝑖 [‖𝜙(𝑋𝑖) − 𝜇𝑋‖

2

𝐻
]

+
𝑛

∑
𝑖≠𝑗
𝐸𝑋𝑖 ,𝑋𝑗 [⟨𝜙(𝑋𝑖) − 𝜇𝑋 , 𝜙(𝑋𝑗) − 𝜇𝑋⟩𝐻]

⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝
Vanishes by 𝑋1⋯𝑋𝑛 i.i.d

)
1
2

(2.20)

= 1
𝑛 (𝑛𝐸𝑋 [‖𝜙(𝑋) − 𝜇𝑋‖

2

𝐻
])

1
2

(𝑋1⋯𝑋𝑛 i.i.d)

= 𝑛−
1
2√𝐸𝑋[𝑘(𝑋, 𝑋)] − ‖𝜇𝑋‖2𝐻 = 𝒪(𝑛−

1
2 ). (Reproducing property)

For any ℎ ∈ 𝐻, by (2.18) we have

𝐸𝑋 [⟨ℎ, 𝜙(𝑋) − 𝜇𝑋⟩𝐻] = ⟨ℎ, 𝐸𝑋[𝜙(𝑋)]⟩𝐻 − ⟨ℎ, 𝜇𝑋⟩𝐻 = 𝐸𝑋[ℎ(𝑋)] − 𝐸𝑋[ℎ(𝑋)] = 0.
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For (2.20), since 𝑋1, ⋯ , 𝑋𝑛 are i.i.d. samples from 𝑃𝑋, we have
𝑛

∑
𝑖≠𝑗
𝐸𝑋𝑖 ,𝑋𝑗 [⟨𝜙(𝑋𝑖) − 𝜇𝑋 , 𝜙(𝑋𝑗) − 𝜇𝑋⟩𝐻] =

𝑛

∑
𝑖≠𝑗
𝐸𝑋𝑖 [𝐸𝑋𝑗 [⟨𝜙(𝑋𝑖) − 𝜇𝑋 , 𝜙(𝑋𝑗) − 𝜇𝑋⟩𝐻]⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝

Vanishes by choosing ℎ=𝜙(𝑋𝑖)−𝜇𝑋

] = 0.

□
Moreover, when the kernel 𝑘 is universal, the map from 𝑃𝑋 to 𝜇𝑋 is injective. This means if the mean
embedding of two random variables are the same then their distribution are identical. The injectivity of
the map is derived from a classic result in probability theory that for any two Borel probability measures
𝑃 and 𝑄 defined on metric space (𝑆, 𝑑), 𝑃 = 𝑄 if and only if 𝐸𝐴[𝑓(𝐴)] = 𝐸𝐵[𝑓(𝐵)] for any 𝑓 ∈ 𝒞(𝑆),
where 𝐴 ∼ 𝑃 and 𝐵 ∼ 𝑄[13].
A brief proof is given as follows. Assume 𝜇𝐴 = 𝜇𝐵. By the fact that the RKHS induced by 𝑘 is dense in
𝒞(𝑆), we suppose ∀𝜖 > 0, ∃𝑔 ∈ 𝐻 such that ‖𝑓 − 𝑔‖∞ < 𝜖. Then
|𝐸𝑃[𝑓(𝐴)] − 𝐸𝑄[𝑓(𝐵)]| < |𝐸𝑃[𝑓(𝐴)] − 𝐸𝑃[𝑔(𝐴)]|⏝⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏝

≤𝜖
+ |𝐸𝑃[𝑔(𝐴)] − 𝐸𝑄[𝑔(𝐵)]|⏝⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏝

⟨𝑔,𝜇𝐴−𝜇𝐵⟩𝐻=0

+ |𝐸𝑄[𝑔(𝐵)] − 𝐸𝑄[𝑓(𝐵)]|⏝⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏝
≤𝜖

≤ 2𝜖.

Before introducing the cross-covariance operators, we define the tensor product space.

Definition 2.18 ([26]Tensor product & tensor product space)
Given two linear spaces 𝑉1 and 𝑉2 over 𝕂, the tensor product space denoted by 𝑉1 ⊗ 𝑉2 is the linear
span of set {𝑣1⊗𝑣2 ∶ 𝑣1 ∈ 𝑉1, 𝑣2 ∈ 𝑉2}, where⊗ can be any operation satisfying bilinearity rules

1. 𝑐(𝑣1⊗𝑣2) = (𝑐𝑣1) ⊗ 𝑣2 = 𝑣1⊗ (𝑐𝑣2), ∀𝑐 ∈ 𝕂;
2. 𝑣1⊗ (𝑣2 + 𝑣) = 𝑣1⊗𝑣2 + 𝑣1⊗𝑣, ∀𝑣 ∈ 𝑉2;
3. (𝑣′ + 𝑣1) ⊗ 𝑣2 = 𝑣′⊗𝑣2 + 𝑣1⊗𝑣2, ∀𝑣′ ∈ 𝑉1.

Example 2.14 (Tensor product on finite spaces)
If 𝑉1 = 𝕂𝑛 and 𝑉2 = 𝕂𝑚, then ∀𝑣1 ∈ 𝑉1, ∀𝑣2 ∈ 𝑉2, we have 𝑣1 ⊗ 𝑣2 = 𝑣1𝑣𝑇2 ∈ 𝕂𝑛×𝑚 and 𝑣2 ⊗ 𝑣1 =
𝑣2𝑣𝑇1 ∈ 𝕂𝑚×𝑛. The tensor product here is matrix multiplication. When 𝑛 = 𝑚 = 1, the tensor product
degenerates to multiplication between scalars.

Example 2.15 (Tensor product feature space)
𝐹⊗𝐻 is a tensor product space with a tensor product given by the rank-one operator (2.1). This tensor
product space is a Hilbert space of rank-one operators from 𝐻 to 𝐹, which is equipped with Hilbert-
Schmidt inner product ⟨⋅, ⋅⟩𝐻𝑆(𝐻,𝐹) and is complete relative to the induced norm ‖ ⋅ ‖𝐻𝑆(𝐻,𝐹). Moreover,
𝐹 ⊗ 𝐻 is a RKHS with reproducing kernel 𝑘𝑙. The corresponding feature map from 𝐷 × 𝑆 to 𝐹 ⊗ 𝐻 is
𝜓⊗𝜙.

We can generalize the mean embedding to the situation on tensor product feature space 𝐹⊗𝐻 where
the joint distribution 𝑃𝑋𝑌 is mapped to this feature space.

Definition 2.19 (Cross-covariance operator)
The cross-covariance operator is a linear operator 𝐶𝑜𝑣𝑋𝑌 ∶ 𝐹 ⊗ 𝐻 ↦ 𝕂 such that ∀𝑓 ⊗ ℎ ∈ 𝐹 ⊗𝐻,

𝐶𝑜𝑣𝑋𝑌(𝑓 ⊗ ℎ) ∶= 𝐸𝑋𝑌[(𝑓(𝑌) − 𝐸𝑌[𝑓(𝑌)])(ℎ(𝑋) − 𝐸𝑋[ℎ(𝑋)])]. (2.21)

The empirical form is similarly defined.

Definition 2.20 (Empirical cross-covariance operator)
The empirical cross-covariance operator is a linear operator 𝐶𝑜𝑣𝑋𝑌 ∶ 𝐹 ⊗ 𝐻 ↦ 𝕂 such that ∀𝑓 ⊗ ℎ ∈
𝐹 ⊗𝐻,

𝐶𝑜𝑣𝑋𝑌(𝑓 ⊗ ℎ) ∶= 1
𝑛

𝑛

∑
𝑖=1
[(𝑓(𝑌𝑖) − 𝑓(𝑌))(ℎ(𝑋𝑖) − ℎ(𝑋))], (2.22)

where (𝑋1, 𝑌1),⋯ , (𝑋𝑛 , 𝑌𝑛) are i.i.d from 𝑃𝑋 × 𝑃𝑌.
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Like Lemma 2.2, we have the following lemma showing that the cross-covariance operator uniquely
corresponds to an element in 𝐹 ⊗𝐻.

Lemma 2.3 (Boundedness of cross-covariance operator)
If 𝐸𝑋𝑌[√𝑘(𝑋, 𝑋)𝑙(𝑌, 𝑌)] < ∞, 𝐸𝑋[√𝑘(𝑋, 𝑋)] < ∞ and 𝐸𝑌[√𝑘(𝑌, 𝑌)] < ∞, the cross-covariance operator
𝐶𝑜𝑣𝑋𝑌 is a bounded linear functional and thus corresponds to a unique element in 𝐹 ⊗𝐻.

Proof:

|𝐶𝑜𝑣𝑋𝑌(𝑓 ⊗ ℎ)| = |𝐸𝑋𝑌[(𝑓(𝑌) − 𝐸𝑌[𝑓(𝑌)])(ℎ(𝑋) − 𝐸𝑋[ℎ(𝑋)])]|
≤ |𝐸𝑋𝑌[𝑓(𝑌)ℎ(𝑋)]| + |𝐸𝑋[ℎ(𝑋)]𝐸𝑌[𝑓(𝑌)]|,

where

|𝐸𝑋𝑌[𝑓(𝑌)ℎ(𝑋)]| = |𝐸𝑋𝑌[⟨𝑓, 𝜓(𝑌)⟩𝐹 ⟨ℎ, 𝜙(𝑋)⟩𝐻]|
≤ 𝐸𝑋𝑌[| ⟨𝑓, 𝜓(𝑌)⟩𝐹 ⟨ℎ, 𝜙(𝑋)⟩𝐻 |] (Jensen’s ineq.)
≤ ‖𝑓‖𝐹‖ℎ‖𝐻𝐸𝑋𝑌[√𝑘(𝑋, 𝑋)𝑙(𝑌, 𝑌)] < ∞. (Cauchy-Schwartz)

Since 𝐸𝑋[√𝑘(𝑋, 𝑋)] < ∞ and 𝐸𝑌[√𝑘(𝑌, 𝑌)] < ∞ imply the existence of mean embeddings 𝜇𝑋 and 𝜇𝑌,
by Cauchy-Schwartz inequality and reproducing property,

𝐸𝑋[ℎ(𝑋)]𝐸𝑌[𝑓(𝑌)] ≤ ‖𝜇𝑋‖𝐻‖ℎ‖𝐻‖𝜇𝑌‖𝐹‖𝑓‖𝐹 < ∞.

Hence ‖𝐶𝑜𝑣𝑋𝑌‖ℒ(𝐹⊗𝐻,𝕂) is bounded. By Riesz representation theorem, there exists a unique element
in 𝐹 ⊗𝐻 denoted by 𝐶𝑋𝑌 such that

𝐶𝑜𝑣𝑋𝑌(𝑓 ⊗ ℎ) = ⟨𝐶𝑋𝑌 , 𝑓 ⊗ ℎ⟩𝐻𝑆(𝐻,𝐹) .

□
We can similarly show that the empirical cross-covariance operator uniquely corresponds to an element
in 𝐹⊗𝐻 under assumptions 1

𝑛 ∑
𝑛
𝑖=1√𝑘(𝑥𝑖 , 𝑥𝑖)𝑙(𝑦𝑖 , 𝑦𝑖) < ∞,

1
𝑛 ∑

𝑛
𝑖=1√𝑘(𝑥𝑖 , 𝑥𝑖) < ∞ and 1

𝑛 ∑
𝑛
𝑖=1√𝑙(𝑦𝑖 , 𝑦𝑖) <

∞, which satisfies
𝐶𝑜𝑣𝑋𝑌(𝑓 ⊗ ℎ) = ⟨𝐶𝑋𝑌 , 𝑓 ⊗ ℎ⟩𝐻𝑆(𝐻,𝐹) .

Since 𝐶𝑋𝑌 and 𝐶𝑋𝑌 are all elements in 𝐻𝑆(𝐻, 𝐹), they are Hilbert-Schmidt operators. This can be proved
by the definition of Hilbert-Schmidt operators.

Proposition 2.7 (Hilbert-Schmidt equivalence)
If 𝐸𝑋𝑌[𝑘(𝑋, 𝑋)𝑙(𝑌, 𝑌)] < ∞, 𝐸𝑋[𝑘(𝑋, 𝑋)] < ∞ and 𝐸𝑌[𝑙(𝑌, 𝑌)] < ∞, then 𝐶𝑋𝑌 ∶ 𝐻 ↦ 𝐹 is a Hilbert-Schmidt
operator in 𝐻𝑆(𝐻, 𝐹).

Proof:
Suppose (ℎ𝑖)𝑖≥1 is an orthonormal basis of 𝐻. Then,

‖𝐶𝑋𝑌‖2𝐻𝑆 =
∞

∑
𝑖=1
‖𝐶𝑋𝑌(ℎ𝑖)‖2𝐹

=
∞

∑
𝑖=1
‖𝐸[(ℎ𝑖(𝑋) − 𝐸[ℎ𝑖(𝑋)])(𝜓(𝑌) − 𝜇𝑌)]‖2𝐹

≤
∞

∑
𝑖=1
‖𝐸[ℎ𝑖(𝑋)𝜓(𝑌)]‖2𝐹

⏝⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏝
𝐼1

+
∞

∑
𝑖=1
‖𝐸[ℎ𝑖(𝑋)]𝜇𝑌‖2𝐹

⏝⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏝
𝐼2

+2
∞

∑
𝑖=1
| ⟨𝐸[ℎ𝑖(𝑋)𝜓(𝑌)], 𝐸[ℎ𝑖(𝑋)]𝜇𝑌⟩𝐹 |

⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝
𝐼3

.
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For 𝐼2,

𝐼2 ∶ =
∞

∑
𝑖=1
𝐸2[⟨𝜙(𝑋), ℎ𝑖⟩𝐻]‖𝜇𝑌‖2𝐹 ≤ 𝐸[

∞

∑
𝑖=1
⟨𝜙(𝑋), ℎ𝑖⟩

2
𝐻]‖𝜇𝑌‖2𝐹 (Jensen’s inequality)

= 𝐸[‖𝜙(𝑋)‖2𝐻]‖𝜇𝑌‖2𝐹 (Parseval’s identity)
= 𝐸[𝑘(𝑋, 𝑋)]‖𝜇𝑌‖2𝐹 < ∞.

For 𝐼1,

𝐼1 ∶ =
∞

∑
𝑖=1
‖𝐸[⟨𝜙(𝑋), ℎ𝑖⟩𝐻 𝜓(𝑌)]‖2𝐹 ≤

∞

∑
𝑖=1
𝐸[‖ ⟨𝜙(𝑋), ℎ𝑖⟩𝐻 𝜓(𝑌)‖2𝐹] (Jensen’s inequality)

= 𝐸[
∞

∑
𝑖=1
⟨𝜙(𝑋), ℎ𝑖⟩

2
𝐻 ‖𝜓(𝑌)‖2𝐹] = 𝐸[‖𝜙(𝑋)‖2𝐻 ⟨𝜓(𝑌), 𝜓(𝑌)⟩𝐹] (Parseval’s identity)

= 𝐸[𝑘(𝑋, 𝑋)𝑙(𝑌, 𝑌)] < ∞.

For 𝐼3,

𝐼3 ∶ = 2
∞

∑
𝑖=1
| ⟨𝐸[ℎ𝑖(𝑋)𝜓(𝑌)], 𝐸[ℎ𝑖(𝑋)]𝜇𝑌⟩𝐹 | ≤ 2

∞

∑
𝑖=1
‖𝐸[ℎ𝑖(𝑋)𝜓(𝑌)]‖𝐹‖𝐸[ℎ𝑖(𝑋)]𝜇𝑌‖𝐹

≤
∞

∑
𝑖=1
(𝐸‖ℎ𝑖(𝑋)𝜓(𝑌)‖𝐹 + 𝐸‖ℎ𝑖(𝑋)𝜇𝑌‖)2 (2𝑎𝑏 ≤ (𝑎 + 𝑏)2)

≤
∞

∑
𝑖=1
(𝐸[| ⟨ℎ𝑖 , 𝜙(𝑋)⟩𝐻 |(‖𝜓(𝑌)‖𝐹 + ‖𝜇𝑌‖𝐹)])2

≤ 𝐸[
∞

∑
𝑖=1
⟨ℎ𝑖 , 𝜙(𝑋)⟩

2
𝐻 (‖𝜓(𝑌)‖𝐹 + ‖𝜇𝑌‖𝐹)2] (Jensen’s inequality)

= 𝐸[‖𝜙(𝑋)‖2𝐻(‖𝜓(𝑌)‖𝐹 + ‖𝜇𝑌‖𝐹)2] (Parseval’s identity)
= 𝐸[‖𝜙(𝑋)‖2𝐻‖𝜓(𝑌)‖2𝐹] + 𝐸[‖𝜙(𝑋)‖2𝐻]‖𝜇𝑌‖2𝐹 + 2𝐸[𝜙(𝑋)‖2𝐻‖𝜓(𝑌)‖𝐹]‖𝜇𝑌‖𝐹
≤ 𝐸[𝑘(𝑋, 𝑋)𝑙(𝑌, 𝑌)] + 𝐸[𝑘(𝑋, 𝑋)]‖𝜇𝑌‖2𝐹 + 2(𝐸[‖𝜙(𝑋)‖2𝐻])

1
2 (𝐸‖𝜙(𝑋)‖2𝐻‖𝜓(𝑌)‖2𝐹)

1
2 ‖𝜇𝑌‖𝐹⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝

By Hölder’s inequality

= 𝐸[𝑘(𝑋, 𝑋)𝑙(𝑌, 𝑌)] + 𝐸[𝑘(𝑋, 𝑋)]‖𝜇𝑌‖2𝐹 + 2‖𝜇𝑌‖𝐹√𝐸[𝑘(𝑋, 𝑋)]𝐸[𝑘(𝑋, 𝑋)𝑙(𝑌, 𝑌)] < ∞.

Hence, the operator 𝐶𝑋𝑌 ∶ 𝐻 ↦ 𝐹 is a Hilbert-Schmidt operator in 𝐻𝑆(𝐻, 𝐹).
□

The proof for the empirical version is the same as the above, where the assumption is replaced by
1
𝑛 ∑

𝑛
𝑖=1 𝑘(𝑥𝑖 , 𝑥𝑖)𝑙(𝑦𝑖 , 𝑦𝑖) < ∞,

1
𝑛 ∑

𝑛
𝑖=1 𝑘(𝑥𝑖 , 𝑥𝑖) < ∞ and 1

𝑛 ∑
𝑛
𝑖=1 𝑙(𝑦𝑖 , 𝑦𝑖) < ∞. By Example 2.3, the opera-

tor 𝐶𝑋𝑌 and 𝐶𝑋𝑌 are compact.
So, we can apply useful properties of Hilbert-Schmidt operators to analyze the operators 𝐶𝑋𝑌 and 𝐶𝑋𝑌.
In fact, by Proposition 2.3, replacing 𝐿 ∈ 𝐻𝑆(𝐻, 𝐹) by 𝑓 ⊗ ℎ, we have that they satisfy

𝐶𝑜𝑣𝑋𝑌(𝑓 ⊗ ℎ) = ⟨𝐶𝑋𝑌 , 𝑓 ⊗ ℎ⟩𝐻𝑆 = ⟨𝑓, 𝐶𝑋𝑌(ℎ)⟩𝐹 = 𝐸𝑋𝑌[(ℎ(𝑋) − 𝐸𝑋[ℎ(𝑋)])(𝑓(𝑌) − 𝐸𝑌[𝑓(𝑌)])] (2.23)

𝐶𝑜𝑣𝑋𝑌(𝑓 ⊗ ℎ) = ⟨𝐶𝑋𝑌 , 𝑓 ⊗ ℎ⟩𝐻𝑆 = ⟨𝑓, 𝐶𝑋𝑌(ℎ)⟩𝐻 =
1
𝑛

𝑛

∑
𝑖=1
[(𝑓(𝑌𝑖) − 𝑓(𝑌))(ℎ(𝑋𝑖) − ℎ(𝑋))]. (2.24)

This makes it possible to define the operators 𝐶𝑋𝑌 ∶ 𝐻 ↦ 𝐹 and 𝐶𝑋𝑌 ∶ 𝐻 ↦ 𝐹 that is in consistent with
the definition of (empirical) cross-covariance operators.
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Definition 2.21 (Riesz representative operator of cross-covariance operator)
The Riesz representative of cross-covariance operator 𝐶𝑜𝑣𝑋𝑌 in 𝐹⊗𝐻 is the linear operator 𝐶𝑋𝑌 ∶ 𝐻 ↦ 𝐹
such that ∀ℎ ∈ 𝐻,

𝐶𝑋𝑌(ℎ) ∶= 𝐸𝑋𝑌[(𝜓(𝑌) − 𝜇𝑌)(ℎ(𝑋) − 𝐸[ℎ(𝑋)])].

Definition 2.22 (Riesz representative operator of empirical cross-covariance operator)
The Riesz representative of empirical cross-covariance operator 𝐶𝑜𝑣𝑋𝑌 in 𝐹⊗𝐻 is the linear operator
𝐶𝑋𝑌 ∶ 𝐻 ↦ 𝐹 such that ∀ℎ ∈ 𝐻,

𝐶𝑋𝑌(ℎ) ∶=
1
𝑛

𝑛

∑
𝑖=1
[(𝜓(𝑌𝑖) − 𝜇𝑌)(ℎ(𝑋𝑖) − ℎ(𝑋))].

Then by reproducing property and linearity of expectation, the right most two equations of (2.23) and
(2.24) hold naturally by the definitions above.
To find the explicit forms of 𝐶𝑋𝑌 and 𝐶𝑋𝑌 as elements of 𝐻𝑆(𝐻, 𝐹), we can use (2.9). This gives the
following proposition.

Proposition 2.8 ((Empirical) cross-covariance embedding)
The explicit forms of 𝐶𝑋𝑌 and 𝐶𝑋𝑌 as elements in 𝐻𝑆(𝐻, 𝐹) are given by

𝐶𝑋𝑌 = 𝐸𝑋𝑌[(𝜓(𝑌) − 𝜇𝑌) ⊗ (𝜙(𝑋) − 𝜇𝑋)] and 𝐶𝑋𝑌 =
1
𝑛

𝑛

∑
𝑖=1
[(𝜓(𝑌𝑖) − 𝜇𝑌) ⊗ (𝜙(𝑋𝑖) − 𝜇𝑋)].

Proof:
For any 𝑓 ⊗ ℎ ∈ 𝐻𝑆(𝐻, 𝐹),

⟨𝐶𝑋𝑌 , 𝑓 ⊗ ℎ⟩𝐻𝑆(𝐻,𝐹) = 𝐸𝑋𝑌[(𝑓(𝑌) − 𝐸𝑌[𝑓(𝑌)])(ℎ(𝑋) − 𝐸𝑋[ℎ(𝑋)])]
= 𝐸𝑋𝑌[⟨𝑓, 𝜓(𝑌) − 𝜇𝑌⟩𝐹 ⟨ℎ, 𝜙(𝑋) − 𝜇𝑋⟩𝐻]
= 𝐸𝑋𝑌[⟨𝑓 ⊗ ℎ, (𝜓(𝑌) − 𝜇𝑌) ⊗ (𝜙(𝑋) − 𝜇𝑋)⟩𝐻𝑆(𝐻,𝐹)]
= ⟨𝐸𝑋𝑌[(𝜓(𝑌) − 𝜇𝑌) ⊗ (𝜙(𝑋) − 𝜇𝑋)], 𝑓 ⊗ ℎ⟩𝐻𝑆(𝐻,𝐹) .

Hence, we have the explicit form of 𝐶𝑋𝑌 in 𝐻𝑆(𝐻, 𝐹) as

𝐶𝑋𝑌 = 𝐸𝑋𝑌[(𝜓(𝑌) − 𝜇𝑌) ⊗ (𝜙(𝑋) − 𝜇𝑋)]. (2.25)

Similarly, the explicit form of 𝐶𝑋𝑌 in 𝐻𝑆(𝐻, 𝐹) is given by

𝐶𝑋𝑌 =
1
𝑛

𝑛

∑
𝑖=1
[(𝜓(𝑌𝑖) − 𝜇𝑌) ⊗ (𝜙(𝑋𝑖) − 𝜇𝑋)]. (2.26)

□
Like the mean embedding, (2.25) and (2.26) are called (empirical) cross-covariance embedding or
(empirical) mean embedding of joint distribution 𝑃𝑋𝑌.

Proposition 2.9 (Adjoint operators of 𝐶𝑋𝑌 and 𝐶𝑋𝑌)
The adjoint operators of 𝐶𝑋𝑌 and 𝐶𝑋𝑌 are 𝐶𝑌𝑋 and 𝐶𝑌𝑋 respectively. Furthermore, if 𝐻 = 𝐹, when 𝑋 and
𝑌 are random variables on the same measurable space with identical distributions, the operators 𝐶𝑋𝑌
and 𝐶𝑋𝑌 are self-adjoint.

Proof:
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By definition of cross-covariance and its empirical version, we have

𝐶𝑜𝑣𝑌𝑋(ℎ ⊗ 𝑓) = ⟨𝐶𝑌𝑋 , ℎ ⊗ 𝑓⟩𝐻𝑆 = ⟨ℎ, 𝐶𝑌𝑋(𝑓)⟩𝐻 = 𝐸𝑌𝑋[(𝑓(𝑌) − 𝐸𝑌[𝑓(𝑌)])(ℎ(𝑋) − 𝐸𝑋[ℎ(𝑋)])] (2.27)

𝐶𝑜𝑣𝑌𝑋(ℎ ⊗ 𝑓) = ⟨𝐶𝑌𝑋 , ℎ ⊗ 𝑓⟩𝐻𝑆 = ⟨ℎ, 𝐶𝑌𝑋(𝑓)⟩𝐻 =
1
𝑛

𝑛

∑
𝑖=1
[(𝑓(𝑌) − 𝑓(𝑌))(ℎ(𝑋𝑖) − ℎ(𝑋))]. (2.28)

Noticing that the right most sides of (2.23) and (2.27) are equivalent, we can immediately have

⟨𝑓, 𝐶𝑋𝑌(ℎ)⟩𝐹 = ⟨ℎ, 𝐶𝑌𝑋(𝑓)⟩𝐻 .

This shows that the adjoint operator of 𝐶𝑋𝑌 ∶ 𝐻 ↦ 𝐹 is 𝐶𝑌𝑋 ∶ 𝐹 ↦ 𝐻. When 𝐻 = 𝐹, 𝑆 = 𝐷 and 𝑃𝑋 = 𝑃𝑌,
the operator 𝐶𝑋𝑌 is self-adjoint. Similarly, by (2.24) and (2.28), the adjoint operator of 𝐶𝑋𝑌 ∶ 𝐻 ↦ 𝐹 is
𝐶𝑌𝑋 ∶ 𝐹 ↦ 𝐻. When 𝐻 = 𝐹, 𝑆 = 𝐷 and 𝑃𝑋 = 𝑃𝑌, the operator 𝐶𝑋𝑌 is self-adjoint.

□
Moreover, self-adjoint operator 𝐶𝑋𝑋 and its empirical version 𝐶𝑋𝑋 are positive semi-definite.

Proposition 2.10 (Positive semi-definiteness)
The self-adjoint operators 𝐶𝑋𝑋 and 𝐶𝑋𝑋 are positive semi-definite operators.

Proof:
For any ℎ ∈ 𝐻,

⟨ℎ, 𝐶𝑋𝑋(ℎ)⟩𝐻 = 𝐸𝑋[(ℎ(𝑋) − 𝐸[ℎ(𝑋)])2] ≥ 0

⟨ℎ, 𝐶𝑋𝑋(ℎ)⟩𝐻 =
1
𝑛

𝑛

∑
𝑖=1
(ℎ(𝑋𝑖) − ℎ(𝑋))2 ≥ 0.

□
Following the √𝑛-consistency of mean embeddings, we can subsequently find the √𝑛-consistency of
cross-covariance embeddings.

Theorem 2.16 (√𝑛-consistency of cross-covariance embedding)
If𝐸𝑋[𝑘(𝑋, 𝑋)], 𝐸𝑌[𝑘(𝑌, 𝑌)], 𝐸𝑋𝑌[𝑘(𝑥, 𝑥)𝑙(𝑦, 𝑦)],

1
𝑛 ∑

𝑛
𝑖=1 𝑘(𝑥𝑖 , 𝑥𝑖),

1
𝑛 ∑

𝑛
𝑖=1 𝑙(𝑦𝑖 , 𝑦𝑖) and

1
𝑛 ∑

𝑛
𝑖=1 𝑘(𝑥𝑖 , 𝑥𝑖)𝑙(𝑦𝑖 , 𝑦𝑖)

are all finite, the cross-covariance operator and corresponding empirical cross-covariance operator ad-
mit cross-covariance embeddings. Moreover,

‖𝐶𝑋𝑌 − 𝐶𝑋𝑌‖𝐻𝑆(𝐻,𝐹) = 𝒪𝑝(𝑛−
1
2 ).

Proof:
By Jensen’s inequality and concavity of square root, the finiteness of the second moment of a random
variable induces the finiteness of its first moment. Hence, the cross-covariance embeddings exist by
Lemma 2.3.
Suppose (ℎ𝑖)𝑖≥1 is an orthonormal basis of 𝐻. Denote the average of ℎ𝑖 under i.i.d sample 𝑥1, ⋯ , 𝑥𝑛 by
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ℎ𝑖.

‖𝐶𝑋𝑌 − 𝐶𝑋𝑌‖2𝐻𝑆(𝐻,𝐹) =
∞

∑
𝑖=1
‖(𝐶𝑋𝑌 − 𝐶𝑋𝑌)(ℎ𝑖)‖2𝐹

=
∞

∑
𝑖=1
‖𝐸[(ℎ𝑖(𝑋) − 𝐸[ℎ𝑖(𝑋)](𝜓(𝑌) − 𝜇𝑌)] −

1
𝑛

𝑛

∑
𝑗=1
(ℎ𝑖(𝑥𝑗) − ℎ𝑖)(𝜓(𝑦𝑗) − 𝜇𝑌)]‖2𝐹

=
∞

∑
𝑖=1
‖𝐸[ℎ𝑖(𝑋)𝜓(𝑌)] − 𝐸[ℎ𝑖(𝑋)]𝜇𝑌 −

1
𝑛

𝑛

∑
𝑗=1
ℎ𝑖(𝑥𝑗)𝜓(𝑦𝑗) + ℎ𝑖𝜇𝑌‖2𝐹

=
∞

∑
𝑖=1
‖𝐸[ℎ𝑖(𝑋)𝜓(𝑌)] − 𝐸[ℎ𝑖(𝑋)]𝜇𝑌 − ℎ𝑖𝜇𝑌 + ℎ𝑖𝜇𝑌 −

1
𝑛

𝑛

∑
𝑗=1
ℎ𝑖(𝑥𝑗)𝜓(𝑦𝑗) + ℎ𝑖𝜇𝑌‖2𝐹

≤
∞

∑
𝑖=1
‖1𝑛

𝑛

∑
𝑗=1
ℎ𝑖(𝑥𝑗)𝜓(𝑦𝑗) − 𝐸[ℎ𝑖(𝑋)𝜓(𝑌)]‖2𝐹

⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝
𝐿1

+
∞

∑
𝑖=1
‖ℎ𝑖𝜇𝑌 − 𝐸[ℎ𝑖(𝑋)]𝜇𝑌‖2𝐹

⏝⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏝
𝐿2

+
∞

∑
𝑖=1
‖ℎ𝑖𝜇𝑌 − ℎ𝑖𝜇𝑌‖2𝐹

⏝⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏝
𝐿3

+𝐿4,

where 𝐿4 is given by

𝐿4 ∶ = 2
∞

∑
𝑖=1
| ⟨1𝑛

𝑛

∑
𝑗=1
ℎ𝑖(𝑥𝑗)𝜓(𝑦𝑗) − 𝐸[ℎ𝑖(𝑋)𝜓(𝑌)], ℎ𝑖𝜇𝑌 − 𝐸[ℎ𝑖(𝑋)]𝜇𝑌⟩

𝐹

| + 2
∞

∑
𝑖=1
| ⟨ℎ𝑖𝜇𝑌 − 𝐸[ℎ𝑖(𝑋)]𝜇𝑌 , ℎ𝑖𝜇𝑌 − ℎ𝑖𝜇𝑌⟩

𝐹
|

+ 2
∞

∑
𝑖=1
| ⟨1𝑛

𝑛

∑
𝑗=1
ℎ𝑖(𝑥𝑗)𝜓(𝑦𝑗) − 𝐸[ℎ𝑖(𝑋)𝜓(𝑌)], ℎ𝑖𝜇𝑌 − ℎ𝑖𝜇𝑌⟩

𝐹

|.

For 𝐿2,

𝐿2 ∶ =
∞

∑
𝑖=1
‖ℎ𝑖𝜇𝑌 − 𝐸[ℎ𝑖(𝑋)]𝜇𝑌‖2𝐹 = ‖𝜇𝑌‖2𝐹

∞

∑
𝑖=1
| 1𝑛

𝑛

∑
𝑗=1
⟨𝜙(𝑥𝑗), ℎ𝑖⟩𝐻 − 𝐸[⟨𝜙(𝑋), ℎ𝑖⟩𝐻]|

2

= ‖𝜇𝑌‖2𝐹
∞

∑
𝑖=1
| ⟨1𝑛

𝑛

∑
𝑗=1
𝜙(𝑥𝑗) − 𝐸[𝜙(𝑋)], ℎ𝑖⟩

𝐻

|
2
= ‖𝜇𝑌‖2𝐹‖𝜇𝑋 − 𝜇𝑋‖2𝐻 . (Parseval’s identity)

For 𝐿3, also by Parseval’s identity,

𝐿3 ∶=
∞

∑
𝑖=1
| ⟨1𝑛

𝑛

∑
𝑗=1
𝜙(𝑥𝑗), ℎ𝑖⟩

𝐻

|
2
‖𝜇𝑌 − 𝜇𝑌‖2𝐹 = ‖𝜇𝑋‖2𝐻‖𝜇𝑌 − 𝜇𝑌‖2𝐹 .

By Theorem 2.15, the √𝑛-consistency of mean embedding, we know 𝐿2 and 𝐿3 are 𝒪𝑝(𝑛−1) as 𝑛 goes
to infinity.
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For 𝐿1,

𝐸[𝐿1] ∶ =
∞

∑
𝑖=1
𝐸𝑥1 ,⋯,𝑥𝑛 ,𝑦1 ,⋯,𝑦𝑛‖

1
𝑛

𝑛

∑
𝑗=1
ℎ𝑖(𝑥𝑗)𝜓(𝑦𝑗) − 𝐸[ℎ𝑖(𝑋)𝜓(𝑌)]‖

2

𝐹

=
∞

∑
𝑖=1

1
𝑛2𝐸𝑥1 ,⋯,𝑥𝑛 ,𝑦1 ,⋯,𝑦𝑛‖

𝑛

∑
𝑗=1
[ℎ𝑖(𝑥𝑗)𝜓(𝑦𝑗) − 𝐸[ℎ𝑖(𝑋)𝜓(𝑌)]] ‖

2

𝐹

=
∞

∑
𝑖=1

1
𝑛2𝐸𝑥1 ,⋯,𝑥𝑛 ,𝑦1 ,⋯,𝑦𝑛

𝑛

∑
𝑗=1
‖ℎ𝑖(𝑥𝑗)𝜓(𝑦𝑗) − 𝐸[ℎ𝑖(𝑋)𝜓(𝑌)]‖

2

𝐹

+
∞

∑
𝑖=1

1
𝑛2

𝑛

∑
𝑗≠𝑘

𝐸𝑥1 ,⋯,𝑥𝑛 ,𝑦1 ,⋯,𝑦𝑛 ⟨ℎ𝑖(𝑥𝑗)𝜓(𝑦𝑗) − 𝐸[ℎ𝑖(𝑋)𝜓(𝑌)], ℎ𝑖(𝑥𝑘)𝜓(𝑦𝑘) − 𝐸[ℎ𝑖(𝑋)𝜓(𝑌)]⟩𝐹
⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝

Vanishes by (𝑥𝑖 , 𝑦𝑖) i.i.d

=
∞

∑
𝑖=1

1
𝑛𝐸𝑋𝑌‖ℎ𝑖(𝑋)𝜓(𝑌) − 𝐸[ℎ𝑖(𝑋)𝜓(𝑌)]‖

2

𝐹
((𝑥𝑖 , 𝑦𝑖) i.i.d)

= 1
𝑛𝐸𝑋𝑌

∞

∑
𝑖=1
‖(𝜓(𝑌) − 𝜇𝑌) ⊗ (𝜙(𝑋) − 𝜇𝑋)(ℎ𝑖)‖

2

𝐹

= 1
𝑛𝐸𝑋𝑌‖(𝜓(𝑌) − 𝜇𝑌) ⊗ (𝜙(𝑋) − 𝜇𝑋)‖2𝐻𝑆(𝐻,𝐹)

= 1
𝑛𝐸𝑋𝑌 [‖𝜓(𝑌) − 𝜇𝑌‖

2
𝐹‖𝜙(𝑋) − 𝜇𝑋‖2𝐻]

= 1
𝑛 𝐸𝑋𝑌 [(𝑙(𝑌, 𝑌) − 2𝜇𝑌 + ‖𝜇𝑌‖

2
𝐹) (𝑘(𝑋, 𝑋) − 2𝜇𝑋 + ‖𝜇𝑋‖2𝐻)]⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝

Finite by assumption

.

This means 𝐿1 = 𝒪𝑝(𝑛−1).
At last, for 𝐿4, notice that the three sums of the absolute value of inner products have the same structure.
This means we can use the same trick to bound the three terms. In fact, for the first sum,

2
∞

∑
𝑖=1
| ⟨1𝑛

𝑛

∑
𝑗=1
ℎ𝑖(𝑥𝑗)𝜓(𝑦𝑗) − 𝐸[ℎ𝑖(𝑋)𝜓(𝑌)], ℎ𝑖𝜇𝑌 − 𝐸[ℎ𝑖(𝑋)]𝜇𝑌⟩

𝐹

|

≤2
∞

∑
𝑖=1
‖1𝑛

𝑛

∑
𝑗=1
ℎ𝑖(𝑥𝑗)𝜓(𝑦𝑗) − 𝐸[ℎ𝑖(𝑋)𝜓(𝑌)]‖𝐹‖ℎ𝑖𝜇𝑌 − 𝐸[ℎ𝑖(𝑋)]𝜇𝑌‖𝐹

≤
∞

∑
𝑖=1
‖1𝑛

𝑛

∑
𝑗=1
ℎ𝑖(𝑥𝑗)𝜓(𝑦𝑗) − 𝐸[ℎ𝑖(𝑋)𝜓(𝑌)]‖2𝐹 +

∞

∑
𝑖=1
‖ℎ𝑖𝜇𝑌 − 𝐸[ℎ𝑖(𝑋)]𝜇𝑌‖2𝐹 , (2𝑎𝑏 ≤ 𝑎2 + 𝑏2)

which is exactly 𝐿1 + 𝐿2. Hence, following the same trick and combining the convergence rates of 𝐿1,
𝐿2 and 𝐿3, we can have that the convergence rate of 𝐿4 is 𝒪𝑝(𝑛−1). Combining the convergence rates
of 𝐿1, 𝐿2, 𝐿3 and 𝐿4, we have

‖𝐶𝑋𝑌 − 𝐶𝑋𝑌‖𝐻𝑆(𝐻,𝐹) = 𝒪𝑝(𝑛−
1
2 ).

□

Remark about the cross-covariance without centering When applying cross-covariance opera-
tors in kernel embeddings in RKHS, people often ignore the centering of the feature maps [35, 15]. We
define the cross-covariance operators without centering 𝐶𝑜𝑣𝑋𝑌 and its empirical version ̃̂𝐶𝑜𝑣𝑋𝑌 by re-
moving the terms 𝐸𝑌[𝑓(𝑌)], 𝐸𝑋[ℎ(𝑋)] in (2.21) and 𝑓(𝑌), ℎ(𝑋) in (2.22). In other words, ∀𝑓 ∈ 𝐹, ℎ ∈ 𝐻,
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and (𝑋𝑖 , 𝑌𝑖)1≤𝑖≤𝑛 i.i.d. from 𝑃𝑋𝑌, we define the cross-covariance operator and its empirical version by
linear operators from 𝐹 ⊗𝐻 ↦ 𝕂 such that

𝐶𝑜𝑣𝑋𝑌(𝑓 ⊗ ℎ) ∶ = 𝐸𝑋𝑌[𝑓(𝑌)ℎ(𝑋)]

̃̂𝐶𝑜𝑣𝑋𝑌 ∶ =
1
𝑛

𝑛

∑
𝑖=1
𝑓(𝑌𝑖)ℎ(𝑋𝑖).

Their Hilbert-Schmidt Riesz representatives in 𝐻𝑆(𝐻, 𝐹) of cross-covariance operators without center-
ing are given by

𝐶𝑋𝑌(ℎ) ∶ = 𝐸𝑋𝑌[ℎ(𝑋)𝜓(𝑌)] (2.29)

̃̂𝐶𝑋𝑌(ℎ) ∶ =
1
𝑛

𝑛

∑
𝑖=1
ℎ(𝑋𝑖)𝜓(𝑌𝑖). (2.30)

And their explicit forms in 𝐻𝑆(𝐻, 𝐹) as well as the cross-covariance embeddings without centering are

𝐶𝑋𝑌 ∶ = 𝐸𝑋𝑌[𝜓(𝑌) ⊗ 𝜙(𝑋)]

̃̂𝐶𝑋𝑌 ∶ =
1
𝑛

𝑛

∑
𝑖=1
𝜓(𝑌𝑖) ⊗ 𝜙(𝑋𝑖).

These operators share the same properties as the ones with centering because the proofs given pre-
viously for the theorems and propositions about the centered operators have already implied this. For
example, in the proof of Theorem 2.16, the rate of convergence of 𝐿1 is just the rate of convergence of
̃̂𝐶𝑋𝑌 to 𝐶𝑋𝑌 in squared Hilbert-Schmidt norm, which is 𝒪𝑝(𝑛−1) as same as the centered case.

2.5. Quadratic mean differentiability
This section aims at introducing the quadratic mean differentiability which is important in the existence
for score functions and Fisher information of parametric models. QMD is also used to explain the
construction of paths for semiparametric models in Chapter 3. The following definition and theorem
are based on the Theorem 7.2 in Chapter 7 of [41].

Definition 2.23 (Quadratic mean differentiability (QMD))
A parametric model 𝒫 = {𝑃𝜃 , 𝜃 ∈ Θ ⊆ ℝ} possessing density 𝑝𝜃 with respect to measure 𝜇 is differen-
tiable in quadratic mean at 𝜃0 if there exists a measurable function 𝑔 ∶ 𝜒 ↦ ℝ such that as 𝜃 → 𝜃0,

∫[√𝑝𝜃 −√𝑝𝜃0 −
1
2(𝜃 − 𝜃0)𝑔√𝑝𝜃0]

2
𝑑𝜇 = 𝑜(|𝜃 − 𝜃0|2). (2.31)

For parametric models, quadratic mean differentiability (QMD) is a weaker condition for first order dif-
ferentiability of 𝑝 (or √𝑝) which is a part of Cramér-Rao regularity condition

√𝑝𝜃 −√𝑝𝜃0 −
1
2(𝜃 − 𝜃0)𝑔√𝑝𝜃 = 𝑜(|𝜃 − 𝜃0|

2), as 𝜃 → 𝜃0.

However it is enough for the existence of both score functions and Fisher information.

Theorem 2.17 For a QMD parametric model 𝒫 = {𝑃𝜃 , 𝜃 ∈ Θ ⊆ ℝ}, 𝐸[𝑔] = 0 and ℐ(𝜃) = 𝐸[𝑔2] exists.

Proof:
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We denote √𝑝𝜃−√𝑝𝜃0−
1
2(𝜃−𝜃0)𝑔√𝑝𝜃0 by 𝑓(𝜃; 𝜃0). Then Equation (2.31) is given by ‖𝑓(𝜃; 𝜃0)‖

2
𝐿2(𝜇) =

𝑜(|𝜃 − 𝜃0|2).
‖√𝑝𝜃 −√𝑝𝜃0‖2𝐿2(𝜇)

=‖𝑓(𝜃; 𝜃0) +
1
2(𝜃 − 𝜃0)𝑔√𝑝𝜃0‖

2
𝐿2(𝜇)

=‖𝑓(𝜃; 𝜃0)‖2𝐿2(𝜇) + ‖
1
2(𝜃 − 𝜃0)𝑔√𝑝𝜃0‖

2
𝐿2(𝜇) + ⟨𝑓(𝜃; 𝜃0),

1
2(𝜃 − 𝜃0)𝑔√𝑝𝜃0⟩𝐿2(𝜇)

≤‖𝑓(𝜃; 𝜃0)‖2𝐿2(𝜇) + ‖
1
2(𝜃 − 𝜃0)𝑔√𝑝𝜃0‖

2
𝐿2(𝜇) + ‖𝑓(𝜃; 𝜃0)‖𝐿2(𝜇)‖

1
2(𝜃 − 𝜃0)𝑔√𝑝𝜃0‖𝐿2(𝜇) (Cauchy-Schwartz)

=𝑜(|𝜃 − 𝜃0|2) + 𝑂(|𝜃 − 𝜃0|2) + 𝑜(|𝜃 − 𝜃0|2)
=𝑂(|𝜃 − 𝜃0|2).
Hence, by Equation (2.31), as 𝜃 → 𝜃0, we have two sequences converging in 𝐿2(𝜇) norm, which are
√𝑝𝜃 → √𝑝𝜃0 and

√𝑝𝜃−√𝑝𝜃0
𝜃−𝜃0

→ 1
2𝑔√𝑝𝜃0 . After rearranging 𝐸[𝑔] to an inner product of the two convergent

sequences, we can find it’s just a zero. In fact,

𝐸[𝑔] = ∫𝑔𝑝𝜃0𝑑𝜇

= ∫(12𝑔√𝑝𝜃) (2√𝑝𝜃) 𝑑𝜇

= lim
𝜃→𝜃0

∫
(√𝑝𝜃 −√𝑝𝜃0)

𝜃 − 𝜃0
(√𝑝𝜃 +√𝑝𝜃0) 𝑑𝜇 (continuity of inner product)

= lim
𝜃→𝜃0

1
𝜃 − 𝜃0

∫𝑝𝜃 − 𝑝𝜃0𝑑𝜇

= lim
𝜃→𝜃0

1
𝜃 − 𝜃0

(1 − 1) (𝑝𝜃0 and 𝑝𝜃 are all densities)

= 0.

Define random variable𝑊𝜃 = 2
1

(𝜃−𝜃0)2
(√ 𝑝𝜃

𝑝𝜃0
(𝑋) − 1). Since 𝑝𝜃0 is a density, we know 𝑃𝑟 {𝑝𝜃0 = 0} =

0. This means𝑊𝜃 is well defined with probability 1. The expectation of𝑊𝜃 exists by Cauchy-Schwartz
that ⟨√𝑝𝜃 , √𝑝𝜃0⟩ ≤ ‖√𝑝𝜃‖2𝐿2(𝜇)‖√𝑝𝜃0‖

2
𝐿2(𝜇) = 1.

As 𝜃 → 𝜃0,

𝐸[𝑊𝜃] = ∫2
1

(𝜃 − 𝜃0)2
(√

𝑝𝜃
𝑝𝜃0

− 1)𝑝𝜃0𝑑𝜇

= 2 1
(𝜃 − 𝜃0)2

(∫√𝑝𝜃√𝑝𝜃0𝑑𝜇 − 1)

= − 1
(𝜃 − 𝜃0)2

∫(√𝑝𝜃 −√𝑝𝜃0)
2
𝑑𝜇

→ −∫ 14𝑔
2𝑝𝜃0𝑑𝜇

= −14𝐸[𝑔
2].

Hence 𝐸[𝑔2] exists as −4𝐸[𝑊𝜃].
□

2.6. Expected risk minimization
Expected risk minimization (ERM) is a fundamental concept in statistical learning theory. It refers to the
process of choosing a predictive model that minimizes the expected loss (or risk) over the distribution
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of all possible data. In this section, we introduce the ERM problem and derive its minimizer under a
square loss function.
Suppose (𝑥, 𝑦) ∈ 𝒳 × 𝒴 is the input-output pair and 𝑃(𝑋, 𝑌) is the unknown true data distribution. The
hypothesis class ℋ contains all the model 𝒳 ↦ 𝒴 that can be used in the learning algorithm. After
determining the loss function 𝑙(⋅, ⋅), the expected risk under the model 𝑓 ∈ ℋ is the average loss over
the true data distribution which is given by

𝑅(𝑓) = 𝐸𝑋,𝑌[𝑙(𝑌, 𝑓(𝑋))]. (2.32)

The ERM problem is defined by

𝑚𝑖𝑛𝑓∈ℋ𝑅(𝑓) = 𝐸𝑋,𝑌[𝑙(𝑌, 𝑓(𝑋))]. (2.33)

The following theorem determines the minimizer for ERM problem (2.33) with square loss.

Theorem 2.18 (Expected risk minimization)
The solution to the ERM problem (2.33) with square loss 𝑙(𝑦, 𝑦′) = 1

2 |𝑦 − 𝑦
′|2, ∀𝑦, 𝑦′ ∈ 𝒴 is 𝑓∗(𝑋) ∶=

𝐸[𝑌|𝑋].

Proof:
Since the goal of ERM is to find the optimal model 𝑓∗ ∈ ℋ that minimizes the expected risk 𝑅(𝑓) (2.32)
for every input 𝑥, noticing that by the tower property of conditional expectation,

𝑅(𝑓) = 𝐸𝑋,𝑌[𝑙(𝑌, 𝑓(𝑋))]
= 𝐸𝑋𝐸𝑋,𝑌[𝑙(𝑌, 𝑓(𝑋))|𝑋],

we know that in order to minimize 𝑅(𝑓), we need to find the minimizer for
𝐸𝑋,𝑌[𝑙(𝑌, 𝑓(𝑋))|𝑋]. (2.34)

With square loss, Equation (2.34) is

𝐸𝑋,𝑌[𝑙(𝑌, 𝑓(𝑋))|𝑋] =
1
2𝐸𝑋,𝑌[(𝑌 − 𝑓(𝑋))

2|𝑋]

= 1
2𝐸𝑋,𝑌[(𝑌 − 𝐸[𝑌|𝑋] + 𝐸[𝑌|𝑋] − 𝑓(𝑋))

2|𝑋]

= 1
2 {𝐸𝑋,𝑌[(𝑌 − 𝐸[𝑌|𝑋])

2|𝑋] + 𝐸𝑋,𝑌[(𝑌 − 𝐸[𝑌|𝑋])(𝐸[𝑌|𝑋] − 𝑓(𝑋))|𝑋] + 𝐸𝑋,𝑌[(𝐸[𝑌|𝑋] − 𝑓(𝑋))2|𝑋]}

= 1
2𝐸𝑋,𝑌[(𝑌 − 𝐸[𝑌|𝑋])

2|𝑋] + 12(𝐸[𝑌|𝑋] − 𝑓(𝑋)) 𝐸𝑋,𝑌[(𝑌 − 𝐸[𝑌|𝑋])|𝑋]⏝⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏝
0

+12𝐸𝑋,𝑌[(𝐸[𝑌|𝑋] − 𝑓(𝑋))
2|𝑋].

(2.35)

We find the minimizer for 𝐸𝑋,𝑌[(𝐸[𝑌|𝑋]−𝑓(𝑋))2|𝑋] because it is the only term relevant to 𝑓 in Equation
(2.35). Since the square function is convex with respect to 𝑓, there exists a minimizer. At the minimum
point 𝑓 = 𝑓∗, by the first-order condition

𝜕
𝜕𝑓(𝑋)|𝑓=𝑓∗

1
2𝐸𝑋,𝑌[(𝐸[𝑌|𝑋] − 𝑓(𝑋))

2|𝑋] = 𝐸𝑋,𝑌[𝑓∗(𝑋) − 𝐸[𝑌|𝑋]|𝑋]

= 𝑓∗(𝑋) − 𝐸[𝑌|𝑋]
= 0,

we have that 𝑓∗(𝑋) = 𝐸[𝑌|𝑋] is a minimizer for the expected risk 𝑅(𝑓). Choosing 𝑓(𝑋) ∶= 𝐸[𝑌|𝑋]
is a necessary condition for the expected risk 𝑅(𝑓) (2.32) to be the minimum because applying the
first-order necessary condition directly to 𝑅(𝑓) with square loss also produce a set of minimizers
{𝑓 ∶ 𝑓 = argmin𝑓∈ℋ𝑅(𝑓)} such that any model 𝑓 within the set satisfies 𝐸[𝑓(𝑋)] = 𝐸[𝑌]. However,
the purpose for ERM requires a pointwise minimizer for every input 𝑥 but not the minimizer on the
average scale. Hence 𝑓∗(𝑋) ∶= 𝐸[𝑌|𝑋] is the only solution.

□
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2.7. Results from convex analysis
This section is introduced to give a short overview of some results from convex analysis. The critical
parts include the Fenchel duality and the interchange for minimization and integration, which are used
in Chapter 4. The reference includes chapter 11 and 14 of [28] and chapter 7 of [30].
Denote the set of expanded real numbers by ℝ = ℝ∪{−∞}∪{+∞}. Let (Ω,𝒜) be a measurable space
and ⟨⋅, ⋅⟩ be the inner product on ℝ𝑛.

2.7.1. Basic definitions
In this subsection, basic definitions about properness, subdifferential, semicontinuity, convexity and
concavity are given.

Definition 2.24 (Proper functions)
A function 𝑓 ∶ ℝ𝑛 ↦ ℝ is proper if its domain

dom𝑓 ∶= {𝑥 ∈ ℝ𝑛 ∶ 𝑓(𝑥) < +∞}

is nonempty and 𝑓(𝑥) > −∞, ∀𝑥 ∈ ℝ𝑛.

Proper functions can be seen as functions which are always larger than −∞ and with at least one point
such that the value is finite. For improper functions, we have 𝑓(𝑥) = +∞,∀𝑥 ∈ ℝ𝑛 by its empty domain
and 𝑓(𝑥) = −∞,∀𝑥 ∈ ℝ𝑛 since there is no point in ℝ𝑛 to make it larger than −∞.

Definition 2.25 (Subdifferential)
The subdifferential of a function 𝑓 ∶ ℝ𝑛 ↦ ℝ at 𝑥0 ∈ ℝ𝑛 is the set of all subgradients of 𝑓 at 𝑥0, denoted
by 𝜕𝑓(𝑥0), where the subgradients of 𝑓 at 𝑥0 is a vector 𝑧 ∈ ℝ𝑛 such that

𝑓(𝑥) − 𝑓(𝑥0) ≥ ⟨𝑧, 𝑥 − 𝑥0⟩ , ∀𝑥 ∈ ℝ𝑛 . (2.36)

The corresponding subdifferential mapping 𝜕𝑓 is set-valued map whose graph gph𝜕𝑓 is defined by

gph𝜕𝑓 = {(𝑥, 𝑔) ∈ ℝ𝑛 × ℝ𝑛 ∶ 𝑔 ∈ 𝜕𝑓(𝑥)} .

The subdifferential is a closed convex subset of ℝ𝑛. If a function 𝑓 is differentiable at 𝑥0, then its subdif-
ferential at 𝑥0 is just {∇𝑓(𝑥0)}. If it is nondifferentiable at 𝑥0, then 𝜕𝑓(𝑥0) contains multiple subgradients.
Moreover, if 𝑓 is subdifferential at 𝑥0, then 𝑓 is proper by Equation (2.36).

Example 2.16 (Subdifferential of the absolute value)

The subdifferential 𝜕𝑓(𝑥) of the function 𝑓(𝑥) = |𝑥| defined on ℝ is given by 𝜕𝑓(𝑥) = {
{−1} , 𝑥 < 0,
{1} , 𝑥 > 0,

[−1, 1], 𝑥 = 0.
The graph of the subdifferential mapping is

gph𝜕𝑓 = {(𝑥, −1) ∶ 𝑥 < 0} ∪ {(𝑥, 1) ∶ 𝑥 > 0} ∪ {(0, 𝑔) ∶ 𝑔 ∈ [−1, 1]} .

Definition 2.26 (Semicontinuity)
At a point 𝑥0 ∈ ℝ𝑛, a function 𝑓 ∶ ℝ𝑛 ↦ ℝ is

• lower semicontinuous, if 𝑓(𝑥0) ≤ lim inf𝑥→𝑥0 𝑓(𝑥);
• upper semicontinuous, if 𝑓(𝑥0) ≥ limsup𝑥→𝑥0 𝑓(𝑥).

If 𝑓 is lower (upper) semicontinuous at every point in ℝ𝑛 then it is a lower (upper) semicontinuous
function.

From the definition of semicontinuity, we know any continuous function is both lower semicontinuous
and upper semicontinuous everywhere.
Below we give an example for semicontinuous functions to better illustrate the semicontinuity.
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Example 2.17 (Semicontinuous functions)

Function 𝑓(𝑥) = {
−1, 𝑥 ≤ 0
1, 𝑥 > 0 is lower semicontinuous at 𝑥 = 0 because ∀𝜖 > 0, ∃𝛿 = 𝜖 such that

∀|𝑥| < 𝛿, 𝑓(𝑥)−𝑓(0) > −𝜖, which means 𝑓(0) ≤ lim inf𝑥→0 𝑓(𝑥). Similarly, function 𝑓(𝑥) = {
−1, 𝑥 < 0
1, 𝑥 ≥ 0

is upper semicontinuous at 𝑥 = 0 because ∀𝜖 > 0, ∃𝛿 = 𝜖 such that ∀|𝑥| < 𝛿, 𝑓(𝑥) − 𝑓(0) < 𝜖.

Definition 2.27 (Convexity, concavity)
A function 𝑓 ∶ ℝ𝑛 ↦ ℝ is

• convex, if ∀𝑥1, 𝑥2 ∈ ℝ𝑛, ∀𝜆 ∈ (0, 1), 𝜆𝑓(𝑥1) + (1 − 𝜆)𝑓(𝑥2) ≥ 𝑓(𝜆𝑥1 + (1 − 𝜆)𝑥2);
• concave, if ∀𝑥1, 𝑥2 ∈ ℝ𝑛, ∀𝜆 ∈ (0, 1), 𝜆𝑓(𝑥1) + (1 − 𝜆)𝑓(𝑥2) ≤ 𝑓(𝜆𝑥1 + (1 − 𝜆)𝑥2).

When the equality doesn’t hold anywhere on ℝ𝑛, the convexity and concavity are strict.

Example 2.18 (Jensen’s inequality)
Suppose 𝑋 is a random variable. Given a function 𝜙 ∶ ℝ ↦ ℝ differentiable at point 𝑥 = 𝐸[𝑋], we have

• 𝜙(𝐸[𝑋]) ≤ 𝐸[𝜙(𝑋)], if 𝜙 is convex;

• 𝜙(𝐸[𝑋]) ≥ 𝐸[𝜙(𝑋)], if 𝜙 is concave.

Proof:
Only the convex case is shown here because the proof of the two cases are similar. The convexity and
differentiability at point 𝑥 = 𝐸[𝑋] implies that ∀𝜆 ∈ [0, 1], at 𝑥0 ∈ 𝑆,

𝜆𝜙(𝑥) + (1 − 𝜆)𝜙(𝐸[𝑋]) ≥ 𝜙(𝜆𝑥 + (1 − 𝜆)𝐸[𝑋])

𝜙(𝑥) − 𝜙(𝐸[𝑋]) ≥ 1
𝜆 (𝜙(𝜆𝑥 + (1 − 𝜆)𝐸[𝑋]) − 𝜙(𝐸[𝑋]))

𝜙(𝑥) − 𝜙(𝐸[𝑋]) ≥ 1
𝜆
𝜙(𝜆𝑥 − 𝜆𝐸[𝑋] + 𝐸[𝑋]) − 𝜙(𝐸[𝑋])

𝜆𝑥 − 𝜆𝐸[𝑋] (𝜆𝑥 − 𝜆𝐸[𝑋])

𝜙(𝑥) − 𝜙(𝐸[𝑋]) ≥ 𝜙(𝜆(𝑥 − 𝐸[𝑋]) + 𝐸[𝑋]) − 𝜙(𝐸[𝑋])
𝜆(𝑥 − 𝐸[𝑋]) (𝑥 − 𝐸[𝑋]).

As 𝜆 ↓ 0, we have

𝜙(𝑥) − 𝜙(𝐸[𝑋]) ≥ lim
𝜆↓0

𝜙(𝜆(𝑥 − 𝐸[𝑋]) + 𝐸[𝑋]) − 𝜙(𝐸[𝑋])
𝜆(𝑥 − 𝐸[𝑋]) (𝑥 − 𝐸[𝑋])

𝜙(𝑥) − 𝜙(𝐸[𝑋]) ≥ 𝜙′(𝐸[𝑋])(𝑥 − 𝐸[𝑋])
𝜙(𝐸[𝑋]) ≤ 𝜙(𝑥) − 𝜙′(𝐸[𝑋])(𝑥 − 𝐸[𝑋]). (2.37)

Next is to compute the expectations relative to 𝑋 on the both sides of (2.37).

𝜙(𝐸[𝑋]) ≤ 𝐸[𝜙(𝑋)] − 𝜙′(𝐸[𝑋])(𝐸[𝑋] − 𝐸[𝑋])
𝜙(𝐸[𝑋]) ≤ 𝐸[𝜙(𝑋)].

□

2.7.2. Fenchel duality
This subsection introduces the Fenchel duality that is derived from the Fenchel-Moreau theorem and
the definition of conjugate functions.

Definition 2.28 (Conjugate function)
Let 𝑓 ∶ ℝ𝑛 ↦ ℝ be a real valued function. The conjugate function of 𝑓 is given by

𝑓∗(𝑧) ∶= sup
𝑥∈ℝ𝑛

{⟨𝑧, 𝑥⟩ − 𝑓(𝑥)} . (2.38)
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Example 2.19 (Conjugate of the square loss)
The square loss function 𝑙 ∶ ℝ × ℝ ↦ ℝ is given by 𝑙(𝑥, 𝑦) = 𝑐(𝑥 − 𝑦)2, where 𝑐 ∈ (0, 1]. Denote 𝑙(𝑥, ⋅)
by 𝑙𝑥(⋅) for a fixed 𝑥. The conjugate function 𝑙∗𝑥(𝑦) = 𝑥𝑦 +

𝑦2
4𝑐 .

Proof:
By definition 2.28, the conjugate function of 𝑙𝑥 is

𝑙∗𝑥(𝑦) ∶=max
𝑡∈ℝ

{𝑦𝑡 − 𝑙𝑥(𝑡)} .

Since 𝑦𝑡 − 𝑙𝑥(𝑡) = −𝑐𝑡2 + (2𝑐𝑥 + 𝑦)𝑡 − 𝑐𝑥2 is a convex parabola with respect to 𝑡, it has a global
maximum point 𝑡 = 𝑥 + 𝑦

2𝑐 and a corresponding global maximum 𝑥𝑦 + 𝑦2
4𝑐 . This gives the conjugate

function 𝑙∗𝑥.
□

The following theorem is important for defining the Fenchel duality.

Theorem 2.19 (Fenchel-Moreau)
Let 𝑓 ∶ ℝ𝑛 ↦ ℝ be a proper and convex function, then 𝑓∗∗ = lsc𝑓, where lsc𝑓 is the largest lower
semicontinuous function less or equal to 𝑓.

For a function 𝑓 ∶ ℝ𝑛 ↦ ℝ, from Equation (2.38), it’s clear that

𝑓∗(𝑧) ≥ ⟨𝑧, 𝑥⟩ − 𝑓(𝑥),

which also gives
𝑓(𝑥) ≥ ⟨𝑥, 𝑧⟩ − 𝑓∗(𝑧).

The last inequality implies 𝑓 ≥ 𝑓∗∗. The following theorem gives the condition for the equality to hold.

Theorem 2.20 (Fenchel duality)
Given a function 𝑓 ∶ ℝ𝑛 ↦ ℝ, 𝑓 = 𝑓∗∗ holds if 𝑓 is proper, lower semicontinuous and convex. (𝑓, 𝑓∗) is
called the Fenchel duality in which 𝑓 and 𝑓∗ are dual to each other.

The proof of the theorem is a direct result of Fenchel-Moreau theorem 2.19 by adding the assumption
that 𝑓 is lower semicontinuous.

Example 2.20 (Fenchel duality of the square loss)
Here we continue the discussion about the square loss function 𝑙𝑥(⋅) introduced in Example 2.19. Since
𝑙𝑥(⋅) is continuous, it is a lower semicontinuous function. It is also clear that it is proper and convex.
Hence 𝑙𝑥(𝑦) = 𝑙∗∗𝑥 (𝑦) everywhere on ℝ by Theorem 2.20, which gives a Fenchel duality (𝑙𝑥 , 𝑙∗𝑥).

For a Fenchel duality (𝑓, 𝑓∗), we have the following result.

Proposition 2.11 (Conjugate extreme point)
Given a Fenchel duality (𝑓, 𝑓∗), 𝑧∗ ∈ 𝜕𝑓(𝑥∗) if and only if 𝑥∗ ∈ 𝜕𝑓∗(𝑧∗).

Proof:
By the definition of conjugate function, at the points 𝑧∗ and 𝑥∗,

𝑓∗(𝑧∗) = sup
𝑥∈ℝ𝑛

{⟨𝑥, 𝑧∗⟩ − 𝑓(𝑥)} ,

𝑓(𝑥∗) = sup
𝑧∈ℝ𝑛

{⟨𝑧, 𝑥∗⟩ − 𝑓∗(𝑧)} . (𝑓 = 𝑓∗∗)
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The functions considered should satisfy the first order condition at extreme points 𝑥∗ and 𝑧∗. This gives

𝜕
𝜕𝑥 |𝑥=𝑥∗ (⟨𝑥, 𝑧

∗⟩ − 𝑓(𝑥)) = 0 ⇔ 𝑧∗ = ∇𝑓(𝑥∗),
𝜕
𝜕𝑧 |𝑧=𝑧∗ (⟨𝑧, 𝑥

∗⟩ − 𝑓∗(𝑧)) = 0 ⇔ 𝑥∗ = ∇𝑓∗(𝑧∗).

From the definition of subdifferential 2.25, it is clear that 𝑥∗ ∈ 𝜕𝑓∗(𝑧∗) and 𝑧∗ ∈ 𝜕𝑓(𝑥∗) at the same
time.

□
An application of this proposition is that given a Fenchel duality (𝑓, 𝑓∗), if we have some point 𝑥 ∈ 𝜕𝑓(𝑢),
then immediately 𝑢 ∈ 𝜕𝑓∗(𝑥).

2.7.3. Interchange of minimization and integration
The interchange of minimization and integral is an useful result in extremal problems related to inte-
grals. In this subsection, important ideas including normal integrands and decomposable spaces are
introduced for the final interchangeability theorem. Moreover, Proposition 2.12 (subgradient character-
ization of convex normality) is given to provide a method to identify the normality of any proper, lower
semicontinuous and convex function.

Definition 2.29 (Epigraph)
The epigraph of a function 𝑓 ∶ ℝ𝑛 ↦ ℝ is the set of points lying on or above the graph of 𝑓:

epi𝑓 ∶= {(𝑥, 𝛼) ∈ ℝ𝑛+1 ∶ 𝑓(𝑥) ≤ 𝛼} .

For a bivariate function 𝑓 ∶ Ω × ℝ𝑛 ↦ ℝ, its epigraphical mapping 𝑆𝑓 is defined by

𝑆𝑓(𝑥) ∶= epi𝑓(𝑥, ⋅) = {(⋅, 𝛼) ∈ ℝ𝑛+1 ∶ 𝑓(𝑥, ⋅) ≤ 𝛼} .

The closedness of epigraph is related to the lower semicontinuity. In fact, function 𝑓 ∶ ℝ𝑛 ↦ ℝ is lower
continuous if and only if its epigraph is a closed subset of ℝ𝑛.

Definition 2.30 (Normal integrand)
A function 𝑓 ∶ Ω × ℝ𝑛 ↦ ℝ is a normal integrand if its epigraphical mapping 𝑆𝑓 ∶ Ω ↦ ℝ𝑛 × ℝ is
closed-valued 4 and measurable.

Proposition 2.12 (Subgradient characterization of convex normality)
Let 𝑓 ∶ Ω × ℝ𝑛 ↦ ℝ be such that 𝑓(𝑥, ⋅) is a proper, lower semicontinuous and convex function with
respect to ⋅ ∈ ℝ𝑛 for any 𝑥 ∈ Ω. Then 𝑓 is a normal integrand if and only if the following hold:

1. the mapping 𝑥 ↦ gph𝜕𝑓(𝑥, ⋅) is measurable;

2. there is a measurable function 𝑢 ∶ Ω ↦ ℝ𝑛 such that 𝜕𝑓(𝑥, 𝑢(𝑥)) ≠ ∅ for all 𝑥 ∈ Ω and the function
𝑥 ↦ 𝑓(𝑥, 𝑢(𝑥)) is measurable.

Theorem 2.21 (Conjugate integrands)
Given a normal integrand 𝑓 ∶ Ω × ℝ𝑛 ↦ ℝ, the conjugate 𝑓∗(⋅) ∶= 𝑓∗(𝜔, ⋅) and biconjugate 𝑓∗∗(⋅) ∶
𝑓∗∗(𝜔, ⋅) are normal integrands.

Example 2.21 (Normality of the square loss)
The square loss function 𝑙𝑥 ∶ ℝ ↦ ℝ and its conjugate function 𝑙∗𝑥 introduced in Example 2.19 and 2.20
are normal integrands.
4A set-valued mapping with a closed image.
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Proof:
Since 𝑙𝑥(𝑦) is differentiable everywhere on ℝ, the subdifferential is 𝜕𝑙𝑥(𝑦) =

𝜕
𝜕𝑦 𝑙𝑥(𝑦) = 2(𝑦 − 𝑥). The

graph of the subdifferential mapping is

gph𝜕𝑙𝑥 = {(𝑦, 2𝑦 − 2𝑥) ∶ 𝑦 ∈ ℝ} .

The set-valued mapping 𝑥 ↦ gph𝜕𝑙𝑥 corresponds to a continuous function 𝑔𝑦(𝑥) ∶= 2𝑦 − 2𝑥 which is
measurable.
As for the second condition, we choose 𝑢 ∶ ℝ ↦ ℝ by 𝑢(𝑥) = 𝑥. Then ∀𝑥 ∈ ℝ, 𝜕𝑙𝑥(𝑢(𝑥)) = {0} ≠ ∅
because 𝑙𝑥(𝑢(𝑥)) = 0. The function 𝑥 ↦ 𝑙𝑥(𝑢(𝑥)) = 0 is a constant function and thus is measurable.
By Theorem 2.21, the conjugate 𝑙∗𝑥 is also a normal integrand.

□

Definition 2.31 (Decomposable space)
Given a measurable space (Ω,𝒜), a space 𝒰 of measurable functions 𝑢 ∶ Ω ↦ ℝ𝑛 is decomposable
relative to a measure 𝜇 on𝒜 if any 𝑢0 ∈ 𝒰 and any 𝐴 ∈ 𝒜 with 𝜇(𝐴) < ∞, any bounded and measurable

𝑢1 ∈ 𝒰, function 𝑢 ∶ 𝑢(𝑥) = {
𝑢0(𝑥), 𝑥 ∈ Ω − 𝐴,
𝑢1(𝑥), 𝑥 ∈ 𝐴,

is in 𝒰.

The definition means one can “glue” functions in 𝒰 together on measurable sets and still stay inside
𝒰. The decomposable spaces should always be linear spaces containing all bounded measurable
functions that vanish outside some sets with finite measures. Examples of the decomposable spaces
include spaces of all measurable functions fromΩ toℝ𝑛 and spaces of all equivalent classes of functions
from Ω to ℝ𝑛 with finite 𝐿𝑝 norm with respect to measure 𝜇.

Theorem 2.22 (Interchange of minimization and integration)
Let 𝑋 be a random variable on the measurable space (Ω,𝒜) with a 𝜎-finite measure 𝜇 on 𝒜. Let 𝒰 be
a space of measurable functions from Ω to ℝ𝑛 that is decomposable relative to 𝜇. Let 𝑓 ∶ Ω × ℝ𝑛 ↦ ℝ
be a normal integrand. Then the minimization of integral of 𝑓 over 𝒰 can be reduced to pointwise
minimization if the integral is finite, i.e.

inf
𝑢(⋅)∈𝒰

∫
Ω
𝑓(𝑥, 𝑢(𝑥))𝑑𝜇(𝑥) = ∫

Ω
inf
𝑢∈ℝ𝑛

𝑓(𝑥, 𝑢)𝑑𝜇(𝑥).

The interchange of minimization and integration guarantees that if the common infimum are finite and
reachable, the optimal function 𝑢∗(⋅) ∈ argmin𝑢(⋅)∈𝒰 ∫Ω 𝑓(𝑥, 𝑢(𝑥))𝑑𝜇(𝑥) satisfies

𝑢∗(𝑥) = argmin
𝑢∈ℝ𝑛

𝑓(𝑥, 𝑢),

almost everywhere on Ω by 𝜇. In fact, if 𝜇({𝑥 ∈ Ω ∶ 𝑓(𝑥, 𝑢∗(𝑥)) > inf𝑢∈ℝ𝑛 𝑓(𝑥, 𝑢)}) > 0, we have

∫
Ω
𝑓(𝑥, 𝑢∗(𝑥))𝑑𝜇(𝑥) > ∫

Ω
inf
𝑢∈ℝ𝑛

𝑓(𝑥, 𝑢)𝑑𝜇(𝑥)

= inf
𝑢(⋅)∈𝒰

∫
Ω
𝑓(𝑥, 𝑢(𝑥))𝑑𝜇(𝑥).

This contradicts the fact that 𝑢∗(⋅) ∈ argmin𝑢(⋅)∈𝒰 ∫Ω 𝑓(𝑥, 𝑢(𝑥))𝑑𝜇(𝑥).

2.8. Fréchet derivative
The Fréchet derivative is a generalization of the derivative to infinite-dimensional spaces, such as
Hilbert or Banach spaces.
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Definition 2.32 ([3]Fréchet derivative)
Let 𝑓 ∶ 𝐴 ↦ ℝ be a functional defined on Banach space 𝐴. 𝑓 is Fréchet differentiable at 𝑢, if the Fréchet
derivative of 𝑓 at a point 𝑢 ∈ 𝐴 exists as a bounded linear operator 𝐷𝑓𝑢 ∶ 𝐴 ↦ ℝ such that ∀ℎ ∈ 𝐴,

lim
𝑡→0

𝑓(𝑢 + 𝑡ℎ) − 𝑓(𝑢)
𝑡 = 𝐷𝑓𝑢(ℎ).

The Fréchet derivative matches the definition of the derivative of simple real functions. In fact, if 𝑓 is a
real function from ℝ to ℝ, its derivative at 𝑢 ∈ ℝ satisfies

lim
𝑡→0

𝑓(𝑢 + 𝑡ℎ) − 𝑓(𝑢)
𝑡 = 𝐷𝑓𝑢(ℎ) ∶= 𝑓′(𝑢)ℎ,

which is just as defined by the Fréchet derivative.
If 𝐴 is a Hilbert space, then by Riesz representation theorem 2.2, the Fréchet derivative 𝐷𝑓𝑢 ∶ 𝐴 ↦ ℝ
uniquely corresponds to an element in𝐻. Hence in the Hilbert space background, the Fréchet derivative
refers to its Riesz representative but not the operator.
Below we give an example of the Fréchet derivative of a function acting on an infinite dimensional
Hilbert space 𝐻 equipped with a inner product ⟨⋅, ⋅⟩𝐻.

Example 2.22 (Fréchet derivative of inner product)
The Fréchet derivative of the inner product ⟨⋅, ⋅⟩𝐻 at (𝑔(𝑢), 𝑓(𝑢)), where 𝑔 and 𝑓 are Fréchet differen-
tiable operators from 𝐻 to 𝐻, is given by 𝐷𝑔∗𝑢(𝑓(𝑢)) + 𝐷𝑓∗𝑢 (𝑔(𝑢)).

Proof:
By definition 2.32, ∀ℎ ∈ 𝐻, the Fréchet derivative of the inner product at (𝑔(𝑢), 𝑓(𝑢)) is given by

𝐷𝐼𝑢(ℎ) = lim
𝑡→0

⟨𝑔(𝑢 + 𝑡ℎ), 𝑓(𝑢 + 𝑡ℎ)⟩𝐻 − ⟨𝑔(𝑢), 𝑓(𝑢)⟩𝐻
𝑡

= lim
𝑡→0

⟨𝑔(𝑢 + 𝑡ℎ), 𝑓(𝑢 + 𝑡ℎ) − 𝑓(𝑢)⟩𝐻
𝑡 + lim

𝑡→0
⟨𝑔(𝑢 + 𝑡ℎ) − 𝑔(𝑢), 𝑓(𝑢)⟩𝐻

= ⟨𝑔(𝑢), 𝐷𝑓𝑢(ℎ)⟩𝐻 + ⟨𝐷𝑔𝑢(ℎ), 𝑓(𝑢)⟩𝐻 . (2.39)

Denote the adjoint operators by 𝐷𝑔∗𝑢 and 𝐷𝑓∗𝑢 . Then by Definition of adjoint operators 2.6

⟨𝑔(𝑢), 𝐷𝑓𝑢(ℎ)⟩𝐻 = ⟨𝐷𝑓∗𝑢 (𝑔(𝑢)), ℎ⟩𝐻
⟨𝐷𝑔𝑢(ℎ), 𝑓(𝑢)⟩𝐻 = ⟨𝐷𝑔∗𝑢(𝑓(𝑢)), ℎ⟩𝐻 .

Hence (2.39) is equivalent to
⟨𝐷𝑔∗𝑢(𝑓(𝑢)) + 𝐷𝑓∗𝑢 (𝑔(𝑢)), ℎ⟩𝐻 .

By Riesz representation theorem 2.2, 𝐷𝑔∗𝑢(𝑓(𝑢)) +𝐷𝑓∗𝑢 (𝑔(𝑢)) is the unique Hilbert space element that
𝐷𝐼𝑢 corresponds to.

□
When 𝑓 and 𝑔 are linear operators, from Definition 2.32, it is clear that 𝐷𝑔𝑢 ∶= 𝑔 and 𝐷𝑓𝑢 ∶= 𝑓. In this
situation, the Riesz representative of Fréchet derivative 𝐷𝐼𝑢 shown in Example 2.22 is given by

𝑔∗(𝑓(𝑢)) + 𝑓∗(𝑔(𝑢)). (2.40)



3
Semiparametric information theory

Suppose there are some observed samples of a random variable 𝑋1, ⋯ , 𝑋𝑛 from a distribution 𝑃 belong-
ing to a set of probability measures 𝒫 on the measurable space (Ω,𝒜). Now the task is to estimate the
value 𝜓(𝑃) where the functional satisfies 𝜓 ∶ 𝒫 ↦ ℝ. If the set 𝒫 takes the form 𝒫 = {𝑃𝜃 , 𝜃 ∈ Θ}, i.e. for
a finite dimensional parameter 𝜃 in the distribution of 𝑋, the Fisher information is needed to measure
the information that the observed samples carry about the unknown parameter 𝜃, and the Cramér-Rao
bound determines the minimal variance for estimating the parameter 𝜓(𝑃).

Definition 3.1 (Fisher information)
For a one-dimensional parametric model 𝑃𝜃 with density 𝑝𝜃, the Fisher information of 𝜃 ∈ Θ ⊆ ℝ is

ℐ(𝜃) = 𝐸𝜃[𝑠(𝜃, 𝑋)2],

where 𝑠(𝜃, 𝑋) = 𝜕
𝜕𝜃 log𝑝𝜃(𝑋) is the score function.

Definition 3.2 (Cramér-Rao bound)
Given the unknown parameter 𝜃 in the one-dimensional parametric model 𝑃𝜃 and the one-dimensional
parameter 𝜓(𝜃) to be estimated, the Cramér-Rao bound is given by

[𝜓′(𝜃)]2
ℐ(𝜃)

To extend the idea of information like Fisher information and Cramér-Rao bound to semiparametric
models, i.e. models that include both unknown finite dimensional parameters and infinite dimensional
parameters (or functions), we can restrict the model 𝒫 to any of its one-dimensional (sufficient in most
situations) smooth parametric submodels with shape 𝒫0 = {𝑃𝜃 ∶ 𝜃 ∈ Θ} and find the Fisher information.
Since the information of the whole model 𝒫 is no larger than the infimum of all the Fisher informa-
tion derived from its parametric submodels, the information of the semiparametric model 𝒫 should be
defined as this infimum [41].
The idea naturally leads to the construction of submodels. For any one-dimensional parametric model,
the QMD (Definition 2.23) suffices for determining the score function and making sure the existence
of Fisher information as shown in Theorem 2.17. Under this condition, if there exists a measurable
function 𝑔 ∶ Ω ↦ ℝ which is the derivative in square mean of root density then it is the score function.
This helps constructing the demanded one-dimensional parametric submodels from measurable func-
tion 𝑔. Now we consider maps 𝑡 ↦ 𝑃𝑡 from the right half neighborhood of 0: [0, 𝜖) ⊆ [0,∞) to 𝒫
choosing 𝑃0 as the ”true” distribution of the observations. The submodels {𝑃𝑡 ∈ 𝒫|0 ≤ 𝑡 < 𝜖} should be
quadratic mean differentiable at 𝑡 = 0+ with score function 𝑔, i.e. it satisfies Equation (3.1).

∫[𝑑𝑃
1
2
𝑡 − 𝑑𝑃

1
2

𝑡 − 12𝑔𝑑𝑃
1
2 ]

2

= 𝑜(1), as 𝑡 ↓ 0. (3.1)

44
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This means usually the submodels {𝑃𝑡 ∈ 𝒫|0 ≤ 𝑡 < 𝜖} are constructed in the way such that for any 𝑥
[41],

𝑔(𝑥) = 𝜕
𝜕𝑡 |𝑡=0 log𝑑𝑃𝑡(𝑥).

3.1. Tangent sets, influence functions and information
The tangent set of a model 𝒫 is defined on the basis of the score functions of its submodels.

Definition 3.3 (Tangent set)
The tangent set 𝒫̇𝑃 of the model 𝒫 at 𝑃 consists of score functions 𝑔 of all its parametric submodels
{𝑃𝑡 ∈ 𝒫|0 ≤ 𝑡 < 𝜖} passing through 𝑃 when 𝑡 = 0. The score function 𝑔 satisfies Equation 3.1.

Since score functions satisfy 𝐸[𝑔2] = ∫𝑔2𝑑𝑃 < ∞, the tangent set is a subset of 𝐿2(𝑃).
Before introducing influence functions, we will first restrict the range of parametric submodels to those
that are differentiable after being mapped by the functional 𝜓.

Definition 3.4 (Differentiable functional)
Functional 𝜓 ∶ 𝒫 ↦ ℝ is said to be differentiable at 𝑃 relative to a given tangent set 𝒫̇𝑃 if there exists
a continuous linear map ̇𝜓𝑃 ∶ 𝐿2(𝑃) ↦ ℝ such that for every 𝑔 ∈ 𝒫̇𝑃, there is a submodel 𝑃𝑡 with score
function 𝑔,

lim
𝑡↓0

𝜓(𝑃𝑡) − 𝜓(𝑃)
𝑡 = 𝜓̇𝑃(𝑔).

Denote the closed linear span of the tangent set 𝒫̇𝑃 as lin𝒫̇𝑃, which is a closed subspace of 𝐿2(𝑃).
Although 𝜓̇𝑃 is defined on the whole space 𝐿2(𝑃), since 𝑔 ∈ 𝒫̇𝑃 ⊂ lin𝒫̇𝑃, by the Riesz representation
theorem for Hilbert space (Theorem 2.2), there exists a Riesz representative function 𝜓̃𝑃 uniquely
defined in lin𝒫̇𝑃.

𝜓̇𝑃(𝑔) = ⟨𝜓̃𝑃 , 𝑔⟩𝑃 = ∫𝜓̃𝑃𝑔𝑑𝑃. (3.2)

The uniquely defined function 𝜓̃𝑃 is called the efficient influence function of 𝜓.

Definition 3.5 (Efficient influence function)
Among all the influence function of 𝜓 under model 𝒫, there exists a unique one belonging to lin𝒫̇𝑃 which
is called the efficient influence function.

Since usually lin𝒫̇𝑃 ⫋ 𝐿2(𝑃), the efficient influence function should be the projection of other functions
in 𝐿2(𝑃) onto lin𝒫̇𝑃. Those functions are called influence functions and are not uniquely defined by the
submodel 𝒫 and 𝑔.
Now we can define the minimal asymptotic variance for estimating 𝜓(𝑝) in semiparametric models just
like the Cramér-Rao bound in parametric models. Notice that for any one-dimensional parametric sub-
model 𝑃𝑡 of the whole model 𝒫, its Fisher information is 𝐸[𝑔2]. The Cramér-Rao bound for estimating
𝜓(𝑃𝑡) at 𝑡 = 0 is given by

[𝜓′(𝑃𝑡)|𝑡=0]2
𝐸[𝑔2] =

⟨𝜓̃𝑃 , 𝑔⟩
2
𝑃

⟨𝑔, 𝑔⟩𝑃
(3.3)

When choosing the supremum of Equation 3.3 over all elements in the closed linear span of the tangent
set, we get the lower bound of the asymptotic variance for estimating 𝜓(𝑃). In fact, this lower bound is
just the variance of the efficient influence function.

Lemma 3.1 (Efficiency bound)
Suppose that the functional 𝜓 ∶ 𝒫 ↦ ℝ is differentiable at 𝑃 relative to the tangent set 𝒫̇𝑃. Then

sup
𝑔∈lin𝒫̇𝑃

⟨𝜓̃𝑃 , 𝑔⟩
2
𝑃

⟨𝑔, 𝑔⟩𝑃
= 𝐸𝑃[ ̃𝜓2𝑃].
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Proof:
The definition of efficient influence function states that 𝜓̃𝑃 ∈ lin𝒫̇𝑃. By the Cauchy-Schwartz inequality,
𝐸[𝜓̃𝑃𝑔]2 ≤ 𝐸[𝜓̃2𝑃]𝐸[𝑔2], with equality if 𝑔 = 𝜓̃𝑝, which directly leads to the equation.

□

3.2. Efficiency bound for ATE
As shown by Lemma 3.1, the efficiency bound for ATE determines the minimal asymptotic variance
that the estimator of ATE can achieve. Before finding the efficiency bound, we need the efficient influ-
ence function for ATE. Hence, in this section, we introduce the efficient influence function in the basic
counterfactual framework and then the attempt to find the efficient influence function in the proximal
counterfactual framework.

3.2.1. In basic framework
The average treatment effect in the basic counterfactual model is given by 𝜒 = 𝐸𝐿𝐸[𝑌1 −𝑌0|𝐿], whose
efficient estimators are restricted by efficient influence function and efficieny bound of it. To determine
a lower bound of the variance for the efficient estimators, we firstly consider the semiparametric model
to be investigated. Notice that the joint density of the observations (𝑌 = (𝟙𝐴=1𝑌1, 𝟙𝐴=0𝑌0), 𝐴, 𝐿) is given
by

𝑓(𝑌, 𝐴, 𝐿) = [𝑓0(𝑌|𝐿)]1−𝐴[𝑓1(𝑌|𝐿)]𝐴[1 − 𝑓(1|𝐿)]1−𝐴[𝑓(1|𝐿)]𝐴𝑓𝐿(𝐿),
where 𝑓𝑎 is the marginal density for 𝑌𝑎, 𝑓(𝑎|𝐿) is the propensity score under 𝐴 = 𝑎 and 𝑓𝐿 is the
marginal density for confounder 𝐿. The nonparametric model should satisfies Assumption 1.2 and 1.3
with unknown segments 𝑓0, 𝑓1, 𝑓(1|𝐿) and 𝑓𝐿.

Theorem 3.1 ([42] Efficient influence function and efficiency bound)
Denote the conditional average outcome 𝐸[𝑌𝑎|𝐿] as 𝜇𝑎. The efficient influence function 𝜓̃ of the aver-
age treatment effect identification formula 𝜒 = 𝐸𝐿𝐸[𝑌1 − 𝑌0|𝐿] is given by

𝜓̃ = 𝟙𝐴=1
𝑓(1|𝐿)(𝑌

1 − 𝜇1) − 𝟙𝐴=0
𝑓(0|𝐿)(𝑌

0 − 𝜇0) + 𝜇1 − 𝜇0 − 𝜒. (3.4)

The corresponding semiparametric local efficiency bound of 𝜒 equals 𝐸[𝜓̃2].

Proof:
We consider the parametric submodel passing through true density 𝑓(𝑌, 𝐴, 𝐿) when 𝑡 = 0.

𝑓𝑡(𝑌, 𝐴, 𝐿) = [𝑓0𝑡 (𝑌|𝐿)]1−𝐴[𝑓1𝑡 (𝑌|𝐿)]𝐴[1 − 𝑓𝑡(1|𝐿)]1−𝐴[𝑓𝑡(1|𝐿)]𝐴𝑓𝐿𝑡 (𝐿),

where the form of paths are set as follows to make sure the submodel is a density.

𝑓𝑡(1|𝐿) = 𝑓(1|𝐿) + 𝑡𝜙(𝐿), where − 𝑓(1|𝐿) < 𝑡𝜙(𝐿) < 𝑓(0|𝐿),
𝑓𝑎𝑡 (𝑌|𝐿) = (1 + 𝑡𝜌𝑎(𝑌|𝐿))𝑓𝑎(𝑌|𝐿), 𝑎 ∈ {0, 1} , where 𝐸[𝜌𝑎(𝑌|𝐿)|𝐿] = 0,
𝑓𝐿𝑡 (𝐿) = (1 + 𝑡𝛾(𝐿))𝑓𝐿(𝐿), where 𝐸[𝛾(𝐿)] = 0.

The score function of the submodel is

𝑔(𝑌, 𝐴, 𝐿) = 𝜕
𝜕𝑡 |𝑡=0𝑙𝑜𝑔𝑓𝑡(𝑌, 𝐴, 𝐿) = 𝟙𝐴=0𝜌

0(𝑌|𝐿) + 𝟙𝐴=1𝜌1(𝑌|𝐿) +
𝟙𝐴=1 − 𝑓(1|𝐿)
𝑓(1|𝐿)𝑓(0|𝐿) 𝜙(𝐿) + 𝛾(𝐿).
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As defined by equation (3.2), the influence function 𝜓̃ of 𝜒 under the whole model satisfies

𝜕𝜒𝑡
𝜕𝑡 |𝑡=0 =

𝜕
𝜕𝑡 |𝑡=0∫𝑦(𝑓

1
𝑡 (𝑦|𝑙) − 𝑓0𝑡 (𝑦|𝑙))𝑓𝐿𝑡 (𝑙)𝑑𝜇(𝑦, 𝑙)

= ∫𝑦 [𝑓1(𝑦|𝑙)(𝜌1(𝑦|𝑙) + 𝛾(𝑙)) − 𝑓0(𝑦|𝑙)(𝜌0(𝑦|𝑙) + 𝛾(𝑙))] 𝑓𝐿(𝑙)𝑑𝜇(𝑦, 𝑙)

= ∫𝑦𝑓1(𝑦|𝑙)(𝜌1(𝑦|𝑙) + 𝛾(𝑙))𝑓𝐿(𝑙)𝑑𝜇(𝑦, 𝑙)
⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝

𝐼1

− ∫𝑦𝑓0(𝑦|𝑙)(𝜌0(𝑦|𝑙) + 𝛾(𝑙))𝑓𝐿(𝑙)𝑑𝜇(𝑦, 𝑙)
⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝

𝐼2

.

Notice that

𝜓̃ = { 𝟙𝐴=1𝑓(1|𝐿)(𝑌
1 − 𝜇1) + 𝜇1 − 𝐸[𝑌1]} − { 𝟙𝐴=0𝑓(0|𝐿)(𝑌

0 − 𝜇0) + 𝜇0 − 𝐸[𝑌0]} ∶= 𝜓̃1 − 𝜓̃0.

If we show 𝐼𝑎 = 𝐸[𝜓̃𝑎𝑔], for 𝑎 ∈ {0, 1}, then 𝜓̃ is indeed an influence function of 𝜒. In fact,

𝐸[𝜓̃𝑎𝑔] = 𝐸 {[𝟙𝐴=𝑎(𝑌
𝑎 − 𝜇𝑎)

𝑓(𝐴 = 𝑎|𝐿) + 𝜇𝑎 − 𝐸[𝑌𝑎]] [𝟙𝐴=0𝜌0(𝑌|𝐿) + 𝟙𝐴=1𝜌1(𝑌|𝐿) +
𝟙𝐴=1 − 𝑓(1|𝐿)
𝑓(1|𝐿)𝑓(0|𝐿) 𝜙(𝐿) + 𝛾(𝐿)]}

= 𝐸 {[𝟙𝐴=𝑎(𝑌
𝑎 − 𝜇𝑎)

𝑓(𝐴 = 𝑎|𝐿) + 𝜇𝑎] [𝟙𝐴=0𝜌0(𝑌|𝐿) + 𝟙𝐴=1𝜌1(𝑌|𝐿) +
𝟙𝐴=1 − 𝑓(1|𝐿)
𝑓(1|𝐿)𝑓(0|𝐿) 𝜙(𝐿) + 𝛾(𝐿)]}

= 𝐸 [𝟙𝐴=𝑎(𝑌
𝑎 − 𝜇𝑎)

𝑓(𝐴 = 𝑎|𝐿) 𝜌𝑎(𝑌|𝐿)]
⏝⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⏝

𝐸1

+𝐸 [𝟙𝐴=𝑎(𝑌
𝑎 − 𝜇𝑎)

𝑓(𝐴 = 𝑎|𝐿) 𝛾(𝐿)]
⏝⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏝

𝐸2

+𝐸 [𝟙𝐴=𝑎(𝑌
𝑎 − 𝜇𝑎)

𝑓(𝐴 = 𝑎|𝐿)
𝟙𝐴=1 − 𝑓(1|𝐿)
𝑓(1|𝐿)𝑓(0|𝐿) 𝜙(𝐿)]⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝
𝐸3

+ 𝐸 [𝜇𝑎[𝟙𝐴=0𝜌0(𝑌|𝐿) + 𝟙𝐴=1𝜌1(𝑌|𝐿)]]⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝
𝐸4

+𝐸 [𝜇𝑎 𝟙𝐴=1 − 𝑓(1|𝐿)𝑓(1|𝐿)𝑓(0|𝐿) 𝜙(𝐿)]⏝⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏝
𝐸5

+𝐸 [𝜇𝑎𝛾(𝐿)]⏝⎵⎵⏟⎵⎵⏝
𝐸6

.

To find the result of the six expectations, we write them as the repetitive expectation conditional on
𝐿: 𝐸𝐿𝐸[⋅|𝐿]. 𝐸2 and 𝐸3 are zeros because they are multiplied by a common term 𝐸[𝑌𝑎 − 𝜇𝑎|𝐿] =
0. 𝐸4 is a zero because 𝐸[𝜌𝑎(𝑌|𝐿)|𝐿] = 0, for 𝑎 ∈ {0, 1}. 𝐸5 is a zero because it is multiplied by
𝐸[𝟙𝐴=1−𝑓(1|𝐿)|𝐿] = 0. Thus, by conditional exchangeability, the inner product of 𝜓̃𝑎 and 𝑔 is equivalent
to

𝐸 [𝟙𝐴=𝑎(𝑌
𝑎 − 𝜇𝑎)

𝑓(𝐴 = 𝑎|𝐿) 𝜌𝑎(𝑌|𝐿)] + 𝐸 [𝜇𝑎𝛾(𝐿)]

= 𝐸𝐿𝐸 {
1

𝑓(𝐴 = 𝑎|𝐿)𝐸[𝟙𝐴=𝑎|𝐿]𝐸[(𝑌
𝑎 − 𝜇𝑎)𝜌𝑎(𝑌|𝐿)|𝐿]} + 𝐸 [𝜇𝑎𝛾(𝐿)]

= 𝐸𝐿𝐸[𝑌𝑎𝜌𝑎(𝑌|𝐿)|𝐿] − 𝐸𝐿 [𝜇𝑎𝐸[𝜌𝑎(𝑌|𝐿)|𝐿]] + 𝐸 [𝜇𝑎𝛾(𝐿)]
= 𝐸𝐿[𝑌𝑎𝜌𝑎(𝑌|𝐿)|𝐿] + 𝐸[𝜇𝑎𝛾(𝐿)]
= 𝐼𝑎 .

This means 𝜓̃ is an influence function of 𝜒. Notice that 𝜓̃ is also a score function of a parametric model
passing through the true density at 𝑡 = 0 which chooses

𝜙(𝐿) = 0,

𝜌𝑎(𝑌|𝐿) = (−1)1−𝑎 𝑌𝑎 − 𝜇𝑎
𝑓(𝐴 = 𝑎|𝐿) ,

𝛾(𝐿) = 𝜇1 − 𝜇0 − 𝜒.

So, 𝜓̃ belongs to the closed linear span of the tangent set and thus is the efficient influence function of
𝜒. Its efficiency bound is given by 𝐸[𝜓̃2].

□
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3.2.2. In proximal framework
To determine the information, we need the model to be considered in proximal framework.

Definition 3.6 (Proximal framework model)
The whole model 𝒫𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑙 in proximal framework is composed by all joint densities of (𝑈, 𝑍, 𝑋,𝑊, 𝐴, 𝑌)
complying the factorization rule of random variables based on Assumption 1.4, i.e.

𝑝(𝑈, 𝑋, 𝑍,𝑊, 𝐴, 𝑌) = 𝑝(𝑈)𝑝(𝑋|𝑈)𝑝(𝑍|𝑈, 𝑋)𝑝(𝑊|𝑈, 𝑋)𝑝(𝐴|𝑍, 𝑈, 𝑋)𝑝(𝑌|𝑈, 𝑋, 𝐴,𝑊), (3.5)

where

𝑝(𝐴|𝑍, 𝑈, 𝑋) = [𝑓𝐴(1|𝑍, 𝑈, 𝑋)]𝐴[1 − 𝑓𝐴(1|𝑍, 𝑈, 𝑋)]1−𝐴
𝑝(𝑌|𝑈, 𝑋, 𝐴,𝑊) = [𝑓𝑌1(𝑦|𝑈, 𝑋,𝑊)]𝐴[𝑓𝑌0(𝑦|𝑈, 𝑋,𝑊)]1−𝐴.

Under the existence of the two bridge functions and the completeness assumptions such that the stan-
dardization formulae holds, the efficient influence function and efficiency bound of average treatment
effect 𝜒 can be determined to test the efficiency of any estimators of 𝜒.

Lemma 3.2 ([45] Influence function)
If there exists a submodel in 𝒫𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑙 that supports the existence of bridge function ℎ and 𝑞, the
average treatment effect identification formula 𝜒 = 𝐸[ℎ(𝑊, 𝐴 = 1, 𝑋)−ℎ(𝑊, 𝐴 = 0, 𝑋)] has an influence
function

𝜓̃ = (−1)1−𝐴𝑞(𝑍, 𝐴, 𝑋)[𝑌 − ℎ(𝑊, 𝐴, 𝑋)] + ℎ(𝑊, 1, 𝑋) − ℎ(𝑊, 0, 𝑋) − 𝜒. (3.6)

Proof:
Denote 𝒪 = (𝑊, 𝑌, 𝑍, 𝐴, 𝑋), we write the joint density of 𝒪 to be 𝑓(𝒪), and the score function to be
𝑆. Suppose 𝑓𝑡 is an one-dimensional parametric submodel of the whole model 𝒫𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑙 defined in
Definition 3.6. The model 𝒫𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑙 has the property in consistent with the Picard’s condition (1.3) and
(1.6) for the existence of the bridge functions, and satisfies completeness assumption 1.5 and 1.6.
As defined by Equation (3.2), the influence function 𝜓̃ of 𝜒 under the whole model satisfies

𝜕𝜒𝑡
𝜕𝑡 |𝑡=0 =< 𝜓̃, 𝑆𝑡(𝒪) > |𝑡=0 = 𝐸[𝜓̃𝑆(𝒪)].

Define ℎ𝑡(Δ) ∶= ℎ𝑡(𝑤, 1, 𝑥) − ℎ𝑡(𝑤, 0, 𝑥). By chain rule, the derivative equals to
𝜕𝜒𝑡
𝜕𝑡 |𝑡=0 =

𝜕
𝜕𝑡 |𝑡=0∫ℎ𝑡(Δ)𝑑𝐹𝑡(𝑤, 𝑥)

= ∫ℎ(Δ) 𝜕𝜕𝑡 |𝑡=0𝑓𝑡(𝑤, 𝑥)𝑑𝜇(𝑤, 𝑥)⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝
𝐼1

+ ∫ 𝜕
𝜕𝑡 |𝑡=0ℎ𝑡(Δ)𝑑𝐹(𝑤, 𝑥)⏝⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏝

𝐼2

.

Part (i): To show 𝐼1 = 𝐸[(ℎ(Δ) − 𝜒)𝑆(𝒪)].

𝐼1 = ∫ℎ(Δ) [
𝜕
𝜕𝑡 |𝑡=0𝑙𝑜𝑔𝑓𝑡(𝑤, 𝑥)] 𝑓𝑡(𝑤, 𝑥)𝑑𝜇(𝑤, 𝑥)

= 𝐸[ℎ(Δ)𝑆(𝑊, 𝑋)]
= 𝐸[ℎ(Δ)𝑆(𝒪) − 𝑆(𝑍, 𝑌, 𝐴|𝑊, 𝑋)]
= 𝐸[ℎ(Δ)𝑆(𝒪)] − 𝐸[ℎ(Δ)𝑆(𝑍, 𝑌, 𝐴|𝑊, 𝑋)] (3.7)

The second expectation in the last row is 0 because the expectation of any score function is 0:

𝐸[ℎ(Δ)𝑆(𝑍, 𝑌, 𝐴|𝑊, 𝑋)] = ∫ℎ(Δ)𝑆(𝑧, 𝑦, 𝑎|𝑤, 𝑥)𝑓(𝑧, 𝑦, 𝑎, 𝑤, 𝑥)𝑑𝜇(𝒪)

= ∫ℎ(Δ) {∫𝑆(𝑧, 𝑦, 𝑎|𝑤, 𝑥)𝑓(𝑧, 𝑦, 𝑎|𝑤, 𝑥)𝑑𝜇(𝑧, 𝑦, 𝑎)} 𝑓(𝑤, 𝑥)𝑑𝜇(𝑤, 𝑥)

= 𝐸𝑊,𝑋[ℎ(Δ)𝐸𝑍,𝑌,𝐴[𝑆(𝑍, 𝑌, 𝐴|𝑊, 𝑋)|𝑊, 𝑋]]
= 𝐸𝑊,𝑋[ℎ(Δ) ⋅ 0].
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The desire result is obtained by adding a 0 term 𝐸[−𝜒𝑆(𝒪)] on the equation (3.7).
Part (ii): To show 𝐼2 = 𝐸[(−1)1−𝐴𝑞(𝑍, 𝐴, 𝑋)𝜖𝑆(𝒪)], where 𝜖 = 𝑌 − ℎ(𝑊, 𝐴, 𝑋).
We temporarily denote 𝜕

𝜕𝑡 |𝑡=0ℎ𝑡(𝑤, 𝐴 = 𝑎, 𝑥) as 𝑑ℎ(𝑎) to avoid chaos.

𝐼2 = ∫
𝜕
𝜕𝑡 |𝑡=0ℎ𝑡(Δ)𝑑𝐹(𝑤, 𝑥)

= ∫𝑑ℎ(1)𝑓(𝑤, 𝑥)𝑑𝜇(𝑤, 𝑥) − ∫𝑑ℎ(0)𝑓(𝑤, 𝑥)𝑑𝜇(𝑤, 𝑥)

= ∫{ ∑
𝑎∈{0,1}

(−1)1−𝑎𝑑ℎ(𝑎) 1
𝑓(𝐴 = 𝑎|𝑤, 𝑥)𝑓(𝐴 = 𝑎|𝑤, 𝑥)} 𝑓(𝑤, 𝑥)𝑑𝜇(𝑤, 𝑥)

= ∫𝐸𝐴[
(−1)1−𝐴
𝑓(𝐴|𝑤, 𝑥)𝑑ℎ(𝐴)|𝑊 = 𝑤, 𝑋 = 𝑥]𝑓(𝑤, 𝑥)𝑑𝜇(𝑤, 𝑥)

= 𝐸𝑊,𝑋𝐸𝐴[
(−1)1−𝐴
𝑓(𝐴|𝑤, 𝑥)𝑑ℎ(𝐴)|𝑊, 𝑋]

= 𝐸 [ (−1)
1−𝐴

𝑓(𝐴|𝑊, 𝑋)
𝜕
𝜕𝑡 |𝑡=0ℎ𝑡(𝑊, 𝐴 = 𝑎, 𝑋)]

= 𝐸𝑊,𝐴,𝑋𝐸 [
(−1)1−𝐴
𝑓(𝐴|𝑊, 𝑋)

𝜕
𝜕𝑡 |𝑡=0ℎ𝑡(𝑊, 𝐴 = 𝑎, 𝑋)|𝑊, 𝐴, 𝑋] .

The bridge function 𝑞(𝑍, 𝐴 = 𝑎, 𝑋) given in lemma 1.2 implies the last row equals:

𝐸𝑊,𝐴,𝑋𝐸 [(−1)1−𝐴𝐸 [𝑞(𝑍, 𝐴, 𝑋)|𝑊, 𝐴, 𝑋]
𝜕
𝜕𝑡 |𝑡=0ℎ𝑡(𝑊, 𝐴 = 𝑎, 𝑋)|𝑊, 𝐴, 𝑋]

=𝐸𝑊,𝐴,𝑋𝐸𝑊,𝐴,𝑋 [𝐸 [(−1)1−𝐴𝑞(𝑍, 𝐴, 𝑋)
𝜕
𝜕𝑡 |𝑡=0ℎ𝑡(𝑊, 𝐴 = 𝑎, 𝑋)|𝑊, 𝐴, 𝑋] |𝑊, 𝐴, 𝑋]

=𝐸 [(−1)1−𝐴𝑞(𝑍, 𝐴, 𝑋) 𝜕𝜕𝑡 |𝑡=0ℎ𝑡(𝑊, 𝐴 = 𝑎, 𝑋)]

=𝐸𝑍,𝐴,𝑋 [(−1)1−𝐴𝑞(𝑍, 𝐴, 𝑋)𝐸 [
𝜕
𝜕𝑡 |𝑡=0ℎ𝑡(𝑊, 𝐴 = 𝑎, 𝑋)|𝑍, 𝐴, 𝑋]] . (3.8)

Recall the outcome confounding standardization formula (1.2), on the submodel, we have
𝜕
𝜕𝑡 |𝑡=0𝐸𝑡[𝑌 − ℎ𝑡(𝑊, 𝐴, 𝑋)|𝑍, 𝐴, 𝑋] = 0

∫ 𝜕
𝜕𝑡 |𝑡=0[(𝑦 − ℎ𝑡(𝑤, 𝐴, 𝑋))𝑓𝑡(𝑤, 𝑦|𝑍, 𝐴, 𝑋)]𝑑𝜇(𝑤, 𝑦) = 0.

Let 𝜖 = 𝑌 − ℎ(𝑊, 𝐴, 𝑋), by the chain rule, we have

𝐸[𝜖𝑆(𝑊, 𝑌|𝑍, 𝐴, 𝑋)|𝑍, 𝐴, 𝑋] = 𝐸[ 𝜕𝜕𝑡 |𝑡=0ℎ𝑡(𝑊, 𝐴, 𝑋)|𝑍, 𝐴, 𝑋]. (3.9)

Applying equation (3.9) to (3.8), we get

𝐼2 = 𝐸 [(−1)1−𝐴𝑞(𝑍, 𝐴, 𝑋)𝜖𝑆(𝑊, 𝑌|𝑍, 𝐴, 𝑋)]
= 𝐸 [(−1)1−𝐴𝑞(𝑍, 𝐴, 𝑋)𝜖(𝑆(𝒪 − 𝑆(𝑍, 𝐴, 𝑋)))]
= 𝐸 [(−1)1−𝐴𝑞(𝑍, 𝐴, 𝑋)𝜖𝑆(𝒪)] − 𝐸 [(−1)1−𝐴𝑞(𝑍, 𝐴, 𝑋)𝜖𝑆(𝑍, 𝐴, 𝑋)] .

The second expectation in the last row is 0 because

𝐸 [(−1)1−𝐴𝑞(𝑍, 𝐴, 𝑋)𝜖𝑆(𝑍, 𝐴, 𝑋)]
=𝐸𝑍,𝐴,𝑋 [(−1)1−𝐴𝑞(𝑍, 𝐴, 𝑋)𝑆(𝑍, 𝐴, 𝑋) ⋅ 𝐸 [𝜖|𝑍, 𝐴, 𝑋]]
=𝐸𝑍,𝐴,𝑋 [(−1)1−𝐴𝑞(𝑍, 𝐴, 𝑋)𝑆(𝑍, 𝐴, 𝑋) ⋅ 𝐸 [𝑌 − ℎ(𝑊, 𝐴, 𝑋)|𝑍, 𝐴, 𝑋]]
=𝐸𝑍,𝐴,𝑋 [(−1)1−𝐴𝑞(𝑍, 𝐴, 𝑋)𝑆(𝑍, 𝐴, 𝑋) ⋅ 0] . (formula (1.2))
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Combining the results from part(i) and (ii), we have

𝐸[𝜓̃𝑆(𝒪)] = 𝐸 [((−1)1−𝐴𝑞(𝑍, 𝐴, 𝑋)𝜖 + ℎ(Δ) − 𝜒)𝑆(𝒪)] ,

which means that the influence function 𝜓̃ is just

(−1)1−𝐴𝑞(𝑍, 𝐴, 𝑋)[𝑌 − ℎ(𝑊, 𝐴, 𝑋)] + ℎ(𝑊, 1, 𝑋) − ℎ(𝑊, 0, 𝑋) − 𝜒.

□
Although the influence function is not enough for determining the efficiency bound, it still plays an
important role in the proximal framework. First of all, its double robustness means it is consistent to
zero whenever one of the bridge function exists, which provides a possibility of being a score function
of some submodel. Moreover, it inspired ideas of estimating bridge functions for example the result
given by Ghassami et al. [16] who also gave a method to estimate the influence function (3.6) and
proposed its asymptotic normality.
However, the efficiency of the influence function is not an easy task to determine, since it is difficult to
find a submodel whose tangent space includes the influence function (3.6). Cui et al. [45] tried to give
The efficiency of the influence function (3.6) under a surjectivity assumption of conditional expectation
operator through the following theorem.

Theorem 3.2 ([45] Efficiency bound)
The influence function (3.6) is the efficient influence function, if the conditional expectation operators
𝑇 ∶ 𝐿2(𝑃(𝑊,𝐴,𝑋)) ↦ 𝐿2(𝑃(𝑍,𝐴,𝑋)) and its adjoint 𝑇∗ ∶ 𝐿2(𝑃(𝑍,𝐴,𝑋)) ↦ 𝐿2(𝑃(𝑊,𝐴,𝑋)) are surjective. The corre-
sponding semiparametric local efficiency bound of 𝜒 is 𝐸[𝜓̃2].

Proof:
Recall the tangent space of the whole model 𝒫𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑙 (Definition 3.6) is given by the closed linear
span of Λ1 + Λ2, where

Λ1 ∶= {𝑆(𝑍, 𝐴, 𝑋) ∶ 𝑆(𝑍, 𝐴, 𝑋) ∈ 𝐿2(𝑃(𝑍,𝐴,𝑋)), 𝐸[𝑆(𝑍, 𝐴, 𝑋)] = 0} ,
Λ2 ∶= {𝑆(𝑌,𝑊|𝑍, 𝐴, 𝑋) ∶ 𝑆(𝑌,𝑊|𝑍, 𝐴, 𝑋) ∈ 𝐿2(𝑃(𝑍,𝐴,𝑋))⊥, 𝐸[𝑆(𝑌,𝑊|𝑍, 𝐴, 𝑋)] = 0,

𝐸[𝜖𝑆(𝑌,𝑊|𝑍, 𝐴, 𝑋)|𝑍, 𝐴, 𝑋] ∈ Range(𝑇)} .

The requirement 𝐸[𝜖𝑆(𝑌,𝑊|𝑍, 𝐴, 𝑋)|𝑍, 𝐴, 𝑋] ∈ Range(𝑇) is a direct result of the existence of the outcome
confounding bridge function ℎ, given by Equation (3.9).
Notice that Equation (3.6) can be decomposed into two parts with zero mean:

(−1)1−𝐴𝑞(𝑍, 𝐴, 𝑋)[𝑌 − ℎ(𝑊, 𝐴, 𝑋)] + ℎ(𝑊, 1, 𝑋) − ℎ(𝑊, 0, 𝑋) − 𝜒
=𝐸[ℎ(Δ) − 𝜒|𝑍, 𝐴, 𝑋]⏝⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏝

𝐼1

+ℎ(Δ) − 𝜒 − 𝐸[ℎ(Δ) − 𝜒|𝑍, 𝐴, 𝑋] + (−1)1−𝐴𝑞(𝑍, 𝐴, 𝑋)𝜖⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝
𝐼2

.

Since ℎ(Δ) − 𝜒 ∈ 𝐿2(𝑃(𝑊,𝐴,𝑋)), by the surjectivity of 𝑇, it is clear that 𝐼1 ∈ Λ1.
As for 𝐼2, since 𝐸𝑌,𝑊[𝐼2|𝑍, 𝐴, 𝑋] = 0, we have 𝐸𝒪[𝐼2 ⋅𝑔] = 0, ∀𝑔 ∈ 𝐿2(𝑃(𝑍,𝐴,𝑋)) and thus 𝐼2 ∈ 𝐿2(𝑃(𝑍,𝐴,𝑋))⊥.
Noticing that 𝐸𝑌[𝜖𝐼2|𝑊, 𝑍, 𝐴, 𝑋] ∈ 𝐿2(𝑃(𝑊,𝐴,𝑋)) for fixed 𝑍, by the surjectivity of 𝑇, we have 𝐸[𝜖𝐼2|𝑍, 𝐴, 𝑋] =
𝐸𝑊𝐸𝑌[𝜖𝐼2|𝑊, 𝑍, 𝐴, 𝑋] = 𝑇(𝐸𝑌[𝜖𝐼2|𝑊, 𝑍, 𝐴, 𝑋]) ∈ Range(𝑇). This means 𝐼2 ∈ Λ2.
Hence the influence function (3.6) is efficient.

□
Kallus et al.[19] generalized the efficiency bound based on the Theorem 3.2 to their generalized average
causal effect although they didn’t avoid the surjectivity assumption of the two conditional expectation
operators.
The surjectivity assumption in Theorem 3.2 for the conditional expectation operators implies, by The-
orem 2.3, 𝑇 and 𝑇∗ are also injective and have closed range. This is equivalent to the statement that
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𝑇 is bijective, which restricts the question to a trivial situation when the existence of bridge functions
holds automatically. However it is rarely the case in the real problems.
Considering only the surjectivity of 𝑇 is needed during the proof, even though dropping the assumption
of the surjectivity of 𝑇∗, we still find the assumption extremely narrows the opportunity to apply the
theorem. Typically, the range of 𝑇 should be strictly smaller than 𝐿2(𝑃(𝑍,𝐴,𝑋)), i.e.

Range(𝑇) = {𝐸[𝑓(𝑊, 𝐴, 𝑋)|𝑍, 𝐴, 𝑋] ∶ ∀𝑓 ∈ 𝐿2(𝑊, 𝐴, 𝑋)} ⊊ 𝐿2(𝑃(𝑍,𝐴,𝑋)).

With the surjectivity of 𝑇, we have

Range(𝑇) = {𝐸[𝑓(𝑊, 𝐴, 𝑋)|𝑍, 𝐴, 𝑋] ∶ ∀𝑓 ∈ 𝐿2(𝑊, 𝐴, 𝑋)} = 𝐿2(𝑃(𝑍,𝐴,𝑋)).

This happens only when 𝑊 is rich enough to explain 𝑍, for example when 𝑍 and 𝑊 are identically
distributed conditional on 𝑈 and 𝑋, while in real cases it is usually impossible to acquire information of
one of the proxies from another.



4
Estimating the treatment confounding

bridge function

Identification of the ATE in the proximal framework depends on the existence of the bridge functions
while the Picard’s conditions determining the existence are difficult to verify. This makes it a though
task to calculate the ATE directly from the bridge functions. In this chapter, we focus on estimating
the treatment confounding bridge function through the Fredholm integral equation of the first kind (1.5),
which is given by

1
𝑓(𝑎|𝑊, 𝑋) = 𝐸[𝟙𝐴=𝑎𝑞(𝑍, 𝑎, 𝑋)|𝑊, 𝐴 = 𝑎, 𝑋] (4.1)

To achieve this, one requires the true data generating function 𝑓(𝑎|𝑊, 𝑋) which is usually hard to get
when confounder 𝑈 is unknown. An approach is to find out the transformed integral equation problem
that is irrelevant to 𝑓(𝑎|𝑊, 𝑋) so that a straightforward method for estimating the treatment confounding
bridge function is produced. In fact, by the tower property of conditional expectation, integral problem
(4.1) is equivalent to

1
𝑓(𝑎|𝑊, 𝑋) = 𝐸[𝟙𝐴=𝑎𝑞(𝑍, 𝑎, 𝑋)|𝑊, 𝐴 = 𝑎, 𝑋]

1 = 𝐸[𝟙𝐴=𝑎𝑞(𝑍, 𝑎, 𝑋)|𝑊, 𝐴 = 𝑎, 𝑋]𝑓(𝑎|𝑊, 𝑋)
1 = 𝐸𝐴[𝐸𝑍[𝟙𝐴=𝑎𝑞(𝑍, 𝑎, 𝑋)|𝑊, 𝐴, 𝑋]|𝑊, 𝑋]
1 = 𝐸𝑍𝐴[𝟙𝐴=𝑎𝑞(𝑍, 𝑎, 𝑋)|𝑊, 𝑋].

Since the treatment confounding bridge function under different treatments are different, we denote
𝑞(𝑍, 𝑎, 𝑋) by 𝑞𝑎 to discriminate between the two functions. If the solution exists, suppose 𝑞⋆𝑎 is the true
treatment confounding bridge function under treatment 𝐴 = 𝑎. Then it solves

𝐸𝑍𝐴[𝟙𝐴=𝑎𝑞𝑎(𝑍, 𝑎, 𝑋)|𝑊, 𝑋] = 1. (4.2)

Estimating 𝑞⋆𝑎 will produce the estimator of treatment confounding bridge function under treatment 𝐴 =
𝑎.
Suppose confounders 𝑋,𝑊, 𝑍 are random variables over polished subspaces of ℝ which we denote by
𝒳,𝒲 and 𝒵 respectively. Let 𝐴 be a binary random variable over set 𝒜 = {0, 1}.

4.1. Transformed problems and a kernel embedded solution
The dual kernel embedding method was proposed by Dai et al.[9] to solve problems of learning from
conditional distributions. These problems can be seen as solving the function connecting the condi-
tional distribution to the target values. The method transforms the equation of conditional expectation
to a kernel embedded minimax problem by a series of reformulations, including ERM reformulation,

52
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minimax problem reformulation through Fenchel duality and interchange of minimization and integra-
tion, and finally the kernel embeddings of means and cross-covariances. The method is based on the
definition of universal kernels that any bounded continuous function can be well approximated by a
function belonging to the RKHS induced by the universal kernel. Hence the kernel embedded solution
approximates the original bounded continuous function arbitrarily well.
After Dai et al., Muandet et al.[25] applied the dual kernel embedding method to the instrumental vari-
able problems and found a closed form solution of the causal function in instrumental variable regres-
sion. The instrumental variable regression stands for the inverse problem

𝐸[𝑌|𝑍] = 𝐸[𝑓(𝑋)|𝑍], (4.3)

where 𝑋, 𝑌, 𝑍 are faithful to graphical model 4.1. Suppose the influence mechanism from 𝑋 to 𝑌 is
𝑌 = 𝑓(𝑋)+ 𝜖, where 𝑓 complies an unknown model and 𝜖 is the noise from 𝑒. If we want to identify the
truemechanism 𝑓∗ when 𝐸[𝜖] = 0 and the only known information is 𝐸[𝑌|𝑋], we can’t solve the influence
from 𝐸[𝑌|𝑋] = 𝑓(𝑋). The reason is that from the graphical model, we have 𝐸[𝑒|𝑋] ≠ 𝐸[𝑒] which implies
𝐸[𝜖|𝑋] ≠ 𝐸[𝜖] = 0. This means the influence we found from 𝐸[𝑌|𝑋] = 𝑓(𝑋) will always include the
noise from 𝑒. To get rid off this noise, by 𝑒 ⊥ 𝑍, we know 𝐸[𝑒|𝑍] = 𝐸[𝑒] and thus 𝐸[𝜖|𝑍] = 𝐸[𝜖] = 0.
This makes the influence solved from (4.3) will only reflect the causality from 𝑋 to 𝑌. Hence, people
refer to 𝑍 by the instrumental variable.

𝑍 𝑋 𝑌

𝑒

Figure 4.1: A DAG for instrumental variable scenario

By virtue of the similarity of the integral equation determining the existence of the treatment confounding
bridge function and the instrumental variable regression, we apply the dual kernel method to find a
kernel embedded 𝑞𝑎.
We start with the ERM reformulation of (4.2).

Lemma 4.1 (ERM reformulation)
The true solution 𝑞⋆𝑎(𝑍, 𝑎, 𝑋) for integral equation (4.2) solves the expected risk minimization problem
with square loss for 1-dim data 𝑙(𝑥, 𝑦) = 1

2(𝑥 − 𝑦)
2

min
𝑞𝑎∈𝐿2(𝑃(𝑍,𝐴,𝑋|𝑊,𝑋))

𝐸𝑊,𝑋[𝑙(1, 𝐸𝑍𝐴[𝟙𝐴=𝑎𝑞𝑎(𝑍, 𝑎, 𝑋)|𝑊, 𝑋])]. (4.4)

Proof:
First we consider the solution ℎ⋆ ∈ 𝐿2(𝑃(𝑊,𝑋)) for minimizing the mean square error

𝐸𝑊,𝑋[
1
2(1 − ℎ(𝑊, 𝑋))

2] (4.5)

By Theorem 2.18, the expected risk (4.5) has the minimizer ℎ⋆(𝑊, 𝑋) ∶= 1. It is clear that ℎ⋆(𝑊, 𝑋) =
𝐸𝑍[𝟙𝐴=𝑎𝑞⋆𝑎(𝑍, 𝑎, 𝑋)|𝑊, 𝑋] by Equation (4.2). Hence the true solution 𝑞⋆𝑎(𝑍, 𝑎, 𝑋) for integral equation (4.2)
solves the ERM problem.

□
Next comes the minimax problem reformulation of ERM reformulation (4.4).

Lemma 4.2 (Minimax problem reformulation)
The ERM form (4.4) of integral equation (4.2) is equivalent to a minimax problem

min
𝑞𝑎∈𝐿2(𝑃(𝑍,𝐴,𝑋|𝑊,𝑋))

max
𝑢(⋅,⋅)∈ℳ(𝑊,𝑋)

𝐸𝑍,𝑊,𝐴,𝑋[(𝟙𝐴=𝑎𝑞𝑎(𝑍, 𝑎, 𝑋) − 1)𝑢(𝑊, 𝑋)] −
1
2𝐸𝑊,𝑋[𝑢

2(𝑊, 𝑋)], (4.6)

whereℳ(𝑊,𝑋) is the space of all measurable functions from𝒲×𝒳 ↦ ℝ.
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Proof:
For simplicity, we denote the square loss function 𝑙(𝑥, 𝑦) by 𝑙𝑥(𝑦).

min
𝑞𝑎∈𝐿2(𝑃(𝑍,𝐴,𝑋|𝑊,𝑋))

𝐸𝑊,𝑋[𝑙1(𝐸𝑍𝐴[𝟙𝐴=𝑎𝑞𝑎(𝑍, 𝑎, 𝑋)|𝑊, 𝑋])]

= min
𝑞𝑎∈𝐿2(𝑃(𝑍,𝐴,𝑋|𝑊,𝑋))

𝐸𝑊,𝑋[max
𝑢∈ℝ

{𝑢𝐸𝑍𝐴[𝟙𝐴=𝑎𝑞𝑎(𝑍, 𝑎, 𝑋)|𝑊, 𝑋] − 𝑙∗1(𝑢)}] (4.7)

= min
𝑞𝑎∈𝐿2(𝑃(𝑍,𝐴,𝑋|𝑊,𝑋))

𝐸𝑊,𝑋[max
𝑢∈ℝ

{𝑢𝐸𝑍𝐴[𝟙𝐴=𝑎𝑞𝑎(𝑍, 𝑎, 𝑋)|𝑊, 𝑋] − 𝑢 −
1
2𝑢

2}] (4.8)

= min
𝑞𝑎∈𝐿2(𝑃(𝑍,𝐴,𝑋|𝑊,𝑋))

max
𝑢(⋅,⋅)∈ℳ(𝑊,𝑋)

𝐸𝑊,𝑋[𝑢(𝑊, 𝑋)𝐸𝑍𝐴[𝟙𝐴=𝑎𝑞𝑎(𝑍, 𝑎, 𝑋)|𝑊, 𝑋] − 𝑢(𝑊, 𝑋) −
1
2𝑢

2(𝑊, 𝑋)]

= min
𝑞𝑎∈𝐿2(𝑃(𝑍,𝐴,𝑋|𝑊,𝑋))

max
𝑢(⋅,⋅)∈ℳ(𝑊,𝑋)

𝐸𝑍,𝑊,𝐴,𝑋[(𝟙𝐴=𝑎𝑞𝑎(𝑍, 𝑎, 𝑋) − 1)𝑢(𝑊, 𝑋)] −
1
2𝐸𝑊,𝑋[𝑢

2(𝑊, 𝑋)].

In Example 2.20, it is shown that (𝑙∗1, 𝑙1) are dual to each other. Since the supremumoverℝ is achievable
by maximum, (4.4) can be transferred to (4.7), a minimum problem with a maximum inside, by 𝑙1 = 𝑙∗∗1 .
Substituting 𝑙∗1 by the result with 𝑐 =

1
2 in Example 2.19, one can get the equivalent expression (4.8).

By Example 2.21, 𝑙∗1 is a normal integrands. And it is easy to show that 𝑙∗1(𝑢) plus a linear term of 𝑢 is
still normal. As defined thatℳ(𝑊,𝑋) contains all measurable function from𝒲×𝒳 ↦ ℝ,ℳ(𝑊,𝑋) is a
decomposable space by Definition 2.31. Hence after applying Theorem 2.22 to the negative function
of the normal integrand 1

2𝑢
2 − 𝑢(𝐸𝑍𝐴[𝟙𝐴=𝑎𝑞𝑎(𝑍, 𝑎, 𝑋)|𝑊, 𝑋] − 1), we interchange the maximum and the

expectation from finding the maximum over 𝑅 to the function spaceℳ(𝑊,𝑋). This gives the equivalent
problem (4.6), which is a minimax problem.

□
To remain consistent with the terminology used by Dai et al. [9], we will continue to refer to 𝑢(𝑊, 𝑋) as
the dual function. Below we give two important properties of the optimal dual function 𝑢∗(𝑊, 𝑋).

Proposition 4.1 (Uniqueness)
The optimal dual function 𝑢∗ is uniquely defined by the derivative of the square loss function 𝑙1(⋅) at
𝐸𝑍𝐴[𝟙𝐴=𝑎𝑞𝑎(𝑍, 𝑎, 𝑋)|𝑊, 𝑋], which is 𝑢∗(𝑊, 𝑋) = 𝐸𝑍𝐴[𝟙𝐴=𝑎𝑞𝑎(𝑍, 𝑎, 𝑋)|𝑊, 𝑋] − 1.

Proof:
By Theorem 2.22, since the maximum is finite, the optimal function 𝑢∗ satisfies

𝑢∗(𝑊, 𝑋) = argmax
𝑢∈ℝ

{𝑢𝐸𝑍𝐴[𝟙𝐴=𝑎𝑞𝑎(𝑍, 𝑎, 𝑋)|𝑊, 𝑋] − 𝑙∗1(𝑢)} ,

everywhere on 𝒲 × 𝒳. Combining 𝐸𝑍𝐴[𝟙𝐴=𝑎𝑞𝑎(𝑍, 𝑎, 𝑋)|𝑊, 𝑋] ∈ 𝜕𝑙∗1(𝑢∗(𝑊, 𝑋)) implied by (4.7) and
Proposition 2.11, we have that the optimal dual function 𝑢∗ satisfies

𝑢∗(𝑊, 𝑋) ∈ 𝜕𝑙1(𝐸𝑍𝐴[𝟙𝐴=𝑎𝑞𝑎(𝑍, 𝑎, 𝑋)|𝑊, 𝑋]).

Since the square loss 𝑙1(⋅) is differentiable with derivative 𝑥 − 1 at point 𝑥, the optimal dual function is
uniquely defined by the derivative of 𝑙1(⋅) at𝐸𝑍𝐴[𝟙𝐴=𝑎𝑞𝑎(𝑍, 𝑎, 𝑋)|𝑊, 𝑋], which is𝐸𝑍𝐴[𝟙𝐴=𝑎𝑞𝑎(𝑍, 𝑎, 𝑋)|𝑊, 𝑋]−
1.

□

Proposition 4.2 (Bounded continuity)
The optimal dual function 𝑢∗(𝑊, 𝑋) is bounded continuous on𝒲×𝒳 if

• for 𝑎 ∈ 𝒜, 𝟙𝐴=𝑎𝑞𝑎(𝑍, 𝑎, 𝑋) is continuous in both 𝑍 and 𝑋 or at least continuous in 𝑍 for any 𝑋;

• the conditional density 𝑝(𝑍|𝑊, 𝑎, 𝑋) and conditional probability 𝑓(𝑎|𝑊, 𝑋) are continuous at any
(𝑊, 𝑋) ∈ 𝒲 ×𝒳.
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Proof:
The two continuity assumptions make sure 𝐸𝑍𝐴[𝟙𝐴=𝑎𝑞𝑎(𝑍, 𝑎, 𝑋)|𝑊, 𝑋] is a bounded continuous function
of (𝑊, 𝑋). Since the derivative of square loss 𝑙1(⋅) is continuous, combining the result in Proposition
4.1, we have the bounded continuity of the optimal dual function.

□
Proposition 4.1 and 4.2 show that the optimal dual function 𝑢∗(𝑊, 𝑋) is uniquely defined on the space
of all bounded continuous functions𝒲×𝒳 ↦ ℝ, which we denote by 𝒞0(𝑊, 𝑋).
To commence further transforms about the minimax problem (4.6), we need the following assumption.

Assumption 4.1 (Continuous treatment confounding bridge function)
The Picard’s condition for the existence of the treatment confounding bridge function (1.6) holds in a
way such that there exists at least one bounded continuous treatment confounding bridge function for
each treatment.

Since 𝒞0(𝑊, 𝑋) ⊆ ℳ(𝑊,𝑋) and 𝒞0(𝑍, 𝐴, 𝑋) ⊆ 𝐿2(𝑃(𝑍,𝐴,𝑋|𝑊,𝑋)) over any polished subspaces of ℝ, under
Assumption 4.1, we can restrict the minimax problem (4.6) to

min
𝑞𝑎∈𝒞0(𝑍,𝐴,𝑋)

max
𝑢∈𝒞0(𝑊,𝑋)

𝐸𝑍,𝑊,𝐴,𝑋[(𝟙𝐴=𝑎𝑞𝑎(𝑍, 𝑎, 𝑋) − 1)𝑢(𝑊, 𝑋)] −
1
2𝐸𝑊,𝑋[𝑢

2(𝑊, 𝑋)]. (4.9)

By the definition of universal kernels, the RKHS induced by a universal kernel is dense in the space of
bounded continuous functions. We can further restrict (4.9) to a minimax problem finding solutions in
RKHSs. This gives

min
𝑞𝑎∈𝐹

max
𝑢∈𝐻

𝐸𝑍,𝑊,𝐴,𝑋[(𝟙𝐴=𝑎𝑞𝑎(𝑍, 𝑎, 𝑋) − 1)𝑢(𝑊, 𝑋)] −
1
2𝐸𝑊,𝑋[𝑢

2(𝑊, 𝑋)]. (4.10)

Lemma 4.3 (Kernel embedded reformulation)
For any two universal kernels 𝑘 ∶ (𝒲 ×𝒳) × (𝒲 ×𝒳) ↦ ℝ and ̃𝑙 ∶ (𝒵 × {𝑎} ×𝒳) × (𝒵 × {𝑎} ×𝒳) ↦ ℝ,
we denote 𝐻, 𝐹̃ and 𝐹 by RKHSs induces by 𝑘, ̃𝑙 and 𝑙, where 𝑙 ∶ (𝒵 × 𝒜 ×𝒳) × (𝒵 ×𝒜 ×𝒳) ↦ ℝ is
defined by 𝑙((𝑍, 𝐴, 𝑋), (𝑍′, 𝐴′, 𝑋′)) ∶= 𝟙𝐴=𝑎𝟙𝐴′=𝑎 ̃𝑙((𝑍, 𝑎, 𝑋), (𝑍′, 𝑎, 𝑋′)). The corresponding feature maps
of 𝑘, ̃𝑙 and 𝑙 are given by 𝜙 ∶ 𝒲 × 𝒳 ↦ 𝐻, 𝜓̃ ∶ 𝒵 × {𝑎} × 𝒳 ↦ 𝐹̃ and 𝜓 ∶ 𝒵 × 𝒜 × 𝒳 ↦ 𝐹. Denote the
Hilbert-Schmidt Riesz representatives of (cross)-covariance operators by the operator 𝐶(𝑍𝐴𝑋)(𝑊𝑋) from
𝐹 to 𝐻 and the operator 𝐶(𝑊𝑋) from 𝐻 to 𝐻 respectively. Denote the mean embedding on 𝐻 by 𝜇(𝑊𝑋).
The kernel embedded form of (4.10) is given by

min
𝑞𝑎∈𝐹

max
𝑢∈𝐻

Γ(𝑞𝑎 , 𝑢), for Γ(𝑞𝑎 , 𝑢) ∶= ⟨𝐶(𝑍𝐴𝑋)(𝑊𝑋)𝑞𝑎 − 𝜇(𝑊𝑋) −
1
2𝐶(𝑊𝑋)𝑢, 𝑢⟩

𝐻
, (4.11)

where the operators 𝐶(𝑍𝐴𝑋)(𝑊𝑋) and 𝐶(𝑊𝑋) are not centered1.

Proof:
After restrict to the RKHSs, the expectation of dual function 𝑢 and the cross-covariance of 𝟙𝐴=𝑎𝑞𝑎 and
dual function 𝑢 can be represented bymean embedding (2.18) and cross-covariance embedding (2.25),
where the embeddings considered here are not centered.
First notice that 𝑞𝑎 ∈ 𝐹̃ ⋂𝐹, since by Moore-Aronszajn theorem 2.14, 𝑞𝑎 has a representation in 𝐹
which is given by

𝑞𝑎 =
𝑛

∑
𝑖=1
𝛼𝑖𝜓̃(𝑧𝑖 , 𝑎, 𝑥𝑖) =

𝑛

∑
𝑖=1
𝛼𝑖𝟙𝑎𝑖=𝑎𝜓̃(𝑧𝑖 , 𝑎, 𝑥𝑖) =

𝑛

∑
𝑖=1
𝛼𝑖𝜓(𝑧𝑖 , 𝑎𝑖 , 𝑥𝑖), where 𝑎1 = ⋯ = 𝑎𝑛 = 𝑎.

1Recall the remark about the cross-covariance without centering in Subsection 2.4.3, where the Hilbert-Schmidt Riesz represen-
tatives of not centered cross-covariance and its empirical version are defined by (2.29) and (2.30).
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This gives

𝐸𝑊𝑋[𝑢(𝑊, 𝑋)] = ⟨𝜇(𝑊𝑋), 𝑢⟩𝐻 ,

𝐸𝑍,𝑊,𝐴,𝑋[𝟙𝐴=𝑎𝑞𝑎(𝑍, 𝑎, 𝑋)𝑢(𝑊, 𝑋)] = 𝐸𝑍,𝑊,𝐴,𝑋 [𝟙𝐴=𝑎 ⟨𝑞𝑎 , 𝜓̃(𝑍, 𝑎, 𝑋)⟩𝐹̃ ⟨𝑢, 𝜙(𝑊, 𝑋)⟩𝐻]

= 𝐸𝑍,𝑊,𝐴,𝑋 [⟨𝑞𝑎 , 𝟙𝐴=𝑎𝜓̃(𝑍, 𝑎, 𝑋)⏝⎵⎵⎵⏟⎵⎵⎵⏝
𝜓(𝑍,𝐴,𝑋)

⟩𝐹 ⟨𝑢, 𝜙(𝑊, 𝑋)⟩𝐻]

= ⟨𝑞𝑎⊗𝑢,𝐸𝑍,𝑊,𝐴,𝑋[𝜓(𝑍, 𝐴, 𝑋) ⊗ 𝜙(𝑊,𝑋)]⟩𝐻𝑆(𝐻,𝐹)
= ⟨𝑞𝑎⊗𝑢, 𝐶(𝑊𝑋)(𝑍𝐴𝑋)⟩𝐻𝑆(𝐻,𝐹)
= ⟨𝑞𝑎 , 𝐶(𝑊𝑋)(𝑍𝐴𝑋)𝑢⟩𝐹
= ⟨𝐶(𝑍𝐴𝑋)(𝑊𝑋)𝑞𝑎 , 𝑢⟩𝐻 .

Hence the kernel embedded form of (4.10) is given by (4.11).
□

Notice that although the kernel embedded form (4.11) is concave relative to 𝑢 and convex about 𝑞𝑎,
the uniqueness of the saddle point does not hold since the convexity and concavity are not strict. If the
saddle point (𝑞∗𝑎 , 𝑢∗) exists, then by first order condition, it must satisfy

∇𝑞𝑎Γ|
(𝑞𝑎=𝑞∗𝑎 ,𝑢)

= 𝐶(𝑊𝑋)(𝑍𝐴𝑋)𝑢 = 0

∇𝑢Γ|
(𝑞𝑎 ,𝑢=𝑢∗)

= 𝐶(𝑍𝐴𝑋)(𝑊𝑋)𝑞𝑎 − 𝜇(𝑊𝑋) − 𝐶(𝑊𝑋)𝑢∗ = 0.

Hence the sufficient condition for the existence of saddle points is that

1. 𝑢 ∈ Null(𝐶(𝑊𝑋)(𝑍𝐴𝑋));

2. 𝐶(𝑊𝑋)𝑢∗ + 𝜇(𝑊𝑋) ∈ Range(𝐶(𝑍𝐴𝑋)(𝑊𝑋)).

Furthermore, to determine the uniqueness of the saddle point, it must be assumed that operators

𝐶𝑊𝑋 ∶ 𝐻 ↦ 𝐻 and 𝐶(𝑊𝑋)(𝑍𝐴𝑋)𝐶−1(𝑊𝑋)𝐶(𝑍𝐴𝑋)(𝑊𝑋) ∶ 𝐹 ↦ 𝐹

are invertible. However, by the Riesz-Schauder theorem 2.6, if the Hilbert space is infinite dimensional,
then 0 belongs to the spectrum of the compact operator. This means the compact operator like 𝐶𝑊𝑋
(Proposition 2.7 and Example 2.3) acting on an infinite dimensional Hilbert space can’t be boundedly
invertible. Hence the invertibility assumption restricts𝐻 and 𝐹 to be finite dimensional, which isn’t true in
general for RKHSs induced by universal kernels. So, the series of transforms from the original inverse
problem (4.2) to kernel embedded minimax problem (4.11) have not eliminated the ill-posedness of the
original problem but shifted it to an ill-posed problem that can be handled by regularization.
Hence, we seek to find the solution of the regularized form of kernel embedded minimax problem. It is
given by

min
𝑞𝑎∈𝐹

max
𝑢∈𝐻

Γ𝜆1 ,𝜆2(𝑞𝑎 , 𝑢), for Γ𝜆1 ,𝜆2(𝑞𝑎 , 𝑢) ∶= ⟨𝐶(𝑍𝐴𝑋)(𝑊𝑋)𝑞𝑎 − 𝜇(𝑊𝑋) −
1
2𝐶(𝑊𝑋)𝑢, 𝑢⟩

𝐻
−12𝜆1‖𝑢‖

2
𝐻+
1
2𝜆2‖𝑞𝑎‖

2
𝐹 ,

(4.12)
where 𝜆1 and 𝜆2 guarantee the bounded invertibility of 𝐶(𝑊𝑋)+𝜆1𝐼 and 𝐶(𝑊𝑋)(𝑍𝐴𝑋)(𝐶(𝑊𝑋)+𝜆1𝐼)−1𝐶(𝑍𝐴𝑋)(𝑊𝑋)+
𝜆2𝐼 with the identity operator 𝐼.
The regularization terms make the kernel embedded minimax problem strictly convex in 𝑞𝑎 and strictly
concave in 𝑢. This means there exists a unique saddle point with a closed-form expression.

Theorem 4.1 (Regularized kernel embedded reformulation)
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The regularized kernel embedded minimax problem min𝑞𝑎∈𝐹max𝑢∈𝐻 Γ𝜆1 ,𝜆2(𝑞𝑎 , 𝑢) (4.12) has a unique
saddle point (𝑞∗𝑎 , 𝑢∗) given by

𝑢∗ = (𝐶(𝑊𝑋) + 𝜆1𝐼)−1(𝐶(𝑍𝐴𝑋)(𝑊𝑋)𝑞𝑎 − 𝜇(𝑊𝑋))
𝑞∗𝑎 = (𝐶(𝑊𝑋)(𝑍𝐴𝑋)(𝐶(𝑊𝑋) + 𝜆1𝐼)−1𝐶(𝑍𝐴𝑋)(𝑊𝑋) + 𝜆2𝐼)−1𝐶(𝑊𝑋)(𝑍𝐴𝑋)(𝐶(𝑊𝑋) + 𝜆1𝐼)−1𝜇(𝑊𝑋).

Proof:
By Example 3.4.1 of [4], the saddle point of a minimax problem is unique only if the second deriva-
tives on the saddle point is negative definite relative to the maximizer and positive definite about the
minimizer. In (4.12), the uniqueness of the saddle point derives from the strict concavity relative to 𝑢
and strict convexity relative to 𝑞𝑎, which means the negative definiteness and positive definiteness of
second Fréchet derivative of 𝑢 and 𝑞𝑎.
The unique optimal kernel embedded dual function 𝑢∗ ∈ 𝐻 satisfies the first order condition of the
extreme value point. Combining the result (2.40) given by Example 2.22 and setting Fréchet derivative
relative to 𝑢 about Γ𝜆1 ,𝜆2(𝑞𝑎 , 𝑢) at (𝑞𝑎 , 𝑢 = 𝑢∗) to zero, by the self-adjointness of 𝐶(𝑊𝑋), we have

−12(𝐶(𝑊𝑋) + 𝜆1𝐼)𝑢
∗ + 𝐶(𝑍𝐴𝑋)(𝑊𝑋)𝑞𝑎 − 𝜇(𝑊𝑋) −

1
2(𝐶(𝑊𝑋) + 𝜆1𝐼)𝑢

∗ = 0
𝐶(𝑍𝐴𝑋)(𝑊𝑋)𝑞𝑎 − 𝜇(𝑊𝑋) = (𝐶(𝑊𝑋) + 𝜆1𝐼)𝑢∗.

This yields the optimal kernel embedded dual function 𝑢∗ ∈ 𝐻

𝑢∗ = (𝐶(𝑊𝑋) + 𝜆1𝐼)−1(𝐶(𝑍𝐴𝑋)(𝑊𝑋)𝑞𝑎 − 𝜇(𝑊𝑋)).

Putting back the 𝑢∗ to the original function (4.12), we have

min
𝑞𝑎∈𝐹

Γ𝜆1 ,𝜆2(𝑞𝑎 , 𝑢∗) ∶ = ⟨𝐶(𝑍𝐴𝑋)(𝑊𝑋)𝑞𝑎 − 𝜇(𝑊𝑋), (𝐶(𝑊𝑋) + 𝜆1𝐼)−1(𝐶(𝑍𝐴𝑋)(𝑊𝑋)𝑞𝑎 − 𝜇(𝑊𝑋))⟩𝐻

−⟨12𝐶(𝑊𝑋)(𝐶(𝑊𝑋) + 𝜆1𝐼)
−1(𝐶(𝑍𝐴𝑋)(𝑊𝑋)𝑞𝑎 − 𝜇(𝑊𝑋)), (𝐶(𝑊𝑋) + 𝜆1𝐼)−1(𝐶(𝑍𝐴𝑋)(𝑊𝑋)𝑞𝑎 − 𝜇(𝑊𝑋))⟩

𝐻

−⟨12𝜆1(𝐶(𝑊𝑋) + 𝜆1𝐼)
−1(𝐶(𝑍𝐴𝑋)(𝑊𝑋)𝑞𝑎 − 𝜇(𝑊𝑋)), (𝐶(𝑊𝑋) + 𝜆1𝐼)−1(𝐶(𝑍𝐴𝑋)(𝑊𝑋)𝑞𝑎 − 𝜇(𝑊𝑋))⟩

𝐻

+12𝜆2‖𝑞𝑎‖
2
𝐹 .

Notice that

𝐼 − 12𝐶(𝑊𝑋)(𝐶(𝑊𝑋) + 𝜆1𝐼)
−1 − 12𝜆1(𝐶(𝑊𝑋) + 𝜆1𝐼)

−1 = 𝐼 − 12(𝐶(𝑊𝑋) + 𝜆1𝐼)(𝐶(𝑊𝑋) + 𝜆1𝐼)
−1 = 1

2𝐼.

Hence, the minimization problem is equivalent to

min
𝑞𝑎∈𝐹

Γ𝜆1 ,𝜆2(𝑞𝑎 , 𝑢∗) ∶= ⟨
1
2(𝐶(𝑍𝐴𝑋)(𝑊𝑋)𝑞𝑎 − 𝜇(𝑊𝑋)), (𝐶(𝑊𝑋) + 𝜆1𝐼)

−1(𝐶(𝑍𝐴𝑋)(𝑊𝑋)𝑞𝑎 − 𝜇(𝑊𝑋))⟩
𝐻
+ 12𝜆2‖𝑞𝑎‖

2
𝐹 .

(4.13)
By the uniqueness of minimizer 𝑞∗𝑎, also combining the result (2.40) given by Example 2.22, we set the
Fréchet derivative of the Γ𝜆1 ,𝜆2(𝑞𝑎 , 𝑢∗) at point (𝑞𝑎 = 𝑞∗𝑎 , 𝑢) to be zero and get

1
2𝐶(𝑊𝑋)(𝑍𝐴𝑋)(𝐶(𝑊𝑋) + 𝜆1𝐼)

−1(𝐶(𝑍𝐴𝑋)(𝑊𝑋)𝑞∗𝑎 − 𝜇(𝑊𝑋))

+ 𝐶(𝑊𝑋)(𝑍𝐴𝑋)(𝐶(𝑊𝑋) + 𝜆1𝐼)−1
1
2(𝐶(𝑍𝐴𝑋)(𝑊𝑋)𝑞

∗
𝑎 − 𝜇(𝑊𝑋)) + 𝜆2𝑞∗𝑎 = 0

⟹ (𝐶(𝑊𝑋)(𝑍𝐴𝑋)(𝐶(𝑊𝑋) + 𝜆1𝐼)−1𝐶(𝑍𝐴𝑋)(𝑊𝑋) + 𝜆2𝐼)𝑞∗𝑎 = 𝐶(𝑍𝐴𝑋)(𝑊𝑋)(𝐶(𝑊𝑋) + 𝜆1𝐼)−1𝜇(𝑊𝑋).

This produces the optimal regularized kernel embedded solution 𝑞∗𝑎 ∈ 𝐹

𝑞∗𝑎 = (𝐶(𝑊𝑋)(𝑍𝐴𝑋)(𝐶(𝑊𝑋) + 𝜆1𝐼)−1𝐶(𝑍𝐴𝑋)(𝑊𝑋) + 𝜆2𝐼)−1𝐶(𝑊𝑋)(𝑍𝐴𝑋)(𝐶(𝑊𝑋) + 𝜆1𝐼)−1𝜇(𝑊𝑋). (4.14)
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□
By virtue of the definition of universal kernels, the RKHS induced by the universal kernel is dense in
the space of bounded continuous functions over a polished space. This means 𝑞∗𝑎 (4.14) approximates
to a bounded continuous function in 𝒞0(𝑍, 𝐴, 𝑋) arbitrarily well.

4.2. Convergence of the kernel embedded solution
If the original integral equation (4.2) has a bounded continuous solution, we claim that 𝑞∗𝑎 asymptotically
converges to a kernel embedded solution in 𝐹 as 𝜆2 goes to 0, and then, by the definition of universal
kernels, approximates the true bounded continuous solution. This true bounded continuous solution
should has the smallest 𝐿2 norm by the nature of Tikhonov regularization. We will prove the statement
by showing that finding the regularized kernel embedded minimizer 𝑞∗𝑎 ∈ 𝐹 is equivalent to solving
the ill-posed problem 𝐶(𝑍𝐴𝑋)(𝑊𝑋)𝑞𝑎 = 𝜇(𝑊𝑋) by Tikhonov regularization. We start by transforming the
original integral equation (4.2) into a kernel embedded ill-posed problem.

Lemma 4.4 (Kernel embedded form of the original problem)
If Assumption 4.1 holds, then there exists a RKHS solution of

𝐶(𝑍𝐴𝑋)(𝑊𝑋)𝑞𝑎 = 𝜇(𝑊𝑋)

that approximates the bounded continuous solution of (4.2) arbitrarily well.

Proof:
For any solution 𝑞𝑎 solving the original integral equation (4.2), for all 𝑔 ∈ 𝐻, we have

𝐸𝑊,𝑋,𝐴,𝑍[𝟙𝐴=𝑎𝑞𝑎(𝑍, 𝑎, 𝑋)𝑔(𝑊, 𝑋)] = 𝐸𝑊,𝑋𝐸𝐴,𝑍[𝟙𝐴=𝑎𝑞𝑎(𝑍, 𝑎, 𝑋)𝑔(𝑊, 𝑋)|𝑊, 𝑋]
= 𝐸𝑊,𝑋[𝑔(𝑊, 𝑋)𝐸𝐴,𝑍[𝟙𝐴=𝑎𝑞𝑎(𝑍, 𝑎, 𝑋)|𝑊, 𝑋]⏝⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏝

=1 by (4.2)
]

= 𝐸𝑊,𝑋[𝑔(𝑊, 𝑋)]. (4.15)

Hence, any solution of (4.2) must be a solution of (4.15). Moreover, if Assumption 4.1 holds, we can
restrict 𝑞𝑎 ∈ 𝐹 so as to find a RKHS function in 𝐹 that approximates a bounded continuous solution in
𝒞0(𝑍, 𝐴, 𝑋) arbitrarily well.
By kernel embeddings, the transformed equation is given by

⟨𝐶(𝑍𝐴𝑋)(𝑊𝑋)𝑞𝑎 , 𝑔⟩𝐻 = ⟨𝜇(𝑊𝑋), 𝑔⟩𝐻 ,

which implies that
𝐶(𝑍𝐴𝑋)(𝑊𝑋)𝑞𝑎 = 𝜇(𝑊𝑋). (4.16)

□

Lemma 4.5 (Equivalence of two ill-posed problems)
Assume 𝜆1 is a fixed positive number so that the operator 𝐶(𝑊𝑋) +𝜆1𝐼 is positive definite. The ill-posed
problem (4.16) is equivalent to the preconditioned ill-posed problem

𝐴𝜆1𝑞𝑎 = 𝜇𝜆1 , (4.17)

where 𝐴𝜆1 ∶= (𝐶(𝑊𝑋) + 𝜆1𝐼)
− 12𝐶(𝑍𝐴𝑋)(𝑊𝑋), and 𝜇𝜆1 ∶= (𝐶(𝑊𝑋) + 𝜆1𝐼)

− 12 𝜇(𝑊𝑋).

Proof:
Since the operator 𝐶(𝑊𝑋) + 𝜆1𝐼 is positive definite, it has a decomposition

𝐶(𝑊𝑋) + 𝜆1𝐼 = (𝐶(𝑊𝑋) + 𝜆1𝐼)
1
2 (𝐶(𝑊𝑋) + 𝜆1𝐼)

1
2 , (4.18)
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where (𝐶(𝑊𝑋)+𝜆1𝐼)
1
2 is also positive definite. Applying the invertible operator (𝐶(𝑊𝑋)+𝜆1𝐼)

1
2 on the left

of the both sides of (4.16), we get the preconditioned ill-posed problem (4.17). If exist, the solutions to
the two problems (4.16) and (4.17) are equivalent by the invertible operator.

□

Lemma 4.6 (Tikhonov regularization equivalence of minimization problem)
Assume 𝜆2 is a positive regularization parameter. The minimization problem (4.13) is the least square
problem finding the solution to the Tikhonov regularized problem of (4.17), which is given by

min
𝑞𝑎∈𝐹

1
2‖𝐴𝜆1𝑞𝑎 − 𝜇𝜆1‖

2
𝐻 +

1
2𝜆2‖𝑞𝑎‖

2
𝐹 .

Furthermore, the regularized kernel embedded solution 𝑞∗𝑎 (4.14) is just the Tikhonov regularized solu-
tion of (4.17).

Proof:
Based on the operator decomposition (4.18), the minimization relative to 𝑞𝑎 in the proof of Theorem
4.1 is given by

min
𝑞𝑎∈𝐹

Γ𝜆1 ,𝜆2(𝑞𝑎 , 𝑢∗) ∶ = ⟨
1
2(𝐶(𝑍𝐴𝑋)(𝑊𝑋)𝑞𝑎 − 𝜇(𝑊𝑋)), (𝐶(𝑊𝑋) + 𝜆1𝐼)

−1(𝐶(𝑍𝐴𝑋)(𝑊𝑋)𝑞𝑎 − 𝜇(𝑊𝑋))⟩
𝐻
+ 12𝜆2‖𝑞𝑎‖

2
𝐹

= 1
2‖(𝐶(𝑊𝑋) + 𝜆1𝐼)

− 12 (𝐶(𝑍𝐴𝑋)(𝑊𝑋)𝑞𝑎 − 𝜇(𝑊𝑋))‖2𝐻 +
1
2𝜆2‖𝑞𝑎‖

2
𝐹

= 1
2‖(𝐶(𝑊𝑋) + 𝜆1𝐼)

− 12𝐶(𝑍𝐴𝑋)(𝑊𝑋)𝑞𝑎 − (𝐶(𝑊𝑋) + 𝜆1𝐼)−
1
2 𝜇(𝑊𝑋)‖2𝐻 +

1
2𝜆2‖𝑞𝑎‖

2
𝐹

= 1
2‖𝐴𝜆1𝑞𝑎 − 𝜇𝜆1‖

2
𝐻 +

1
2𝜆2‖𝑞𝑎‖

2
𝐹 .

This the least square problem for finding the solution to the Tikhonov regularized problem of the precon-
ditioned ill-posed problem (4.17). We can verify the equivalence of 𝑞∗𝑎 and the least square minimizer.
In fact, by first order condition of the extreme values, we set the Fréchet derivative of Γ𝜆1 ,𝜆2 at the
minimizer to be 0 and get

𝜕Γ𝜆1 ,𝜆2
𝜕𝑞𝑎

= 𝐴∗𝜆1(𝐴𝜆1𝑞𝑎 − 𝜇𝜆1) + 𝜆2𝑞𝑎
= (𝐴∗𝜆1𝐴𝜆1 + 𝜆2𝐼)𝑞𝑎 − 𝐴

∗
𝜆1𝜇𝜆1 = 0.

This implies that the unique least square minimizer is given by

(𝐴∗𝜆1𝐴𝜆1 + 𝜆2𝐼)
−1𝐴∗𝜆1𝜇𝜆1

=(𝐶(𝑊𝑋)(𝑍𝐴𝑋)(𝐶(𝑊𝑋) + 𝜆1𝐼)−1𝐶(𝑍𝐴𝑋)(𝑊𝑋) + 𝜆2𝐼)−1𝐶(𝑊𝑋)(𝑍𝐴𝑋)(𝐶(𝑊𝑋) + 𝜆1𝐼)−1𝜇(𝑊𝑋),

which is exactly the regularized kernel embedded solution 𝑞∗𝑎 (4.14).
□

Many literatures have shown that under some source conditions, the Tikhonov regularized solution,
i.e. the minimizer of the least square problem converges to the minimum-norm solution of the ill-posed
problem with a convergence rate relevant to the perturbation of the noises from samples [7]. Since
we don’t have any prior knowledge about the sample noise, we will show the convergence by spectral
decompositions of the operators under the source condition that the true solution lies in the RKHS 𝐹.

Theorem 4.2 (Convergence of the regularized kernel embedded solution)
Given the positive regularization parameter 𝜆2, then as 𝜆2 ⟶ 0, the regularized kernel embedded
solution 𝑞∗𝑎 (4.14) converges to a solution of preconditioned ill-posed problem (4.17) contained in 𝐹,
which we denote by 𝑞†𝑎.
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Proof:
By spectral theorem (2.7) and (2.8), the compact operators 𝐴∗𝜆1𝐴𝜆1 +𝜆2𝐼 and 𝐴𝜆1 have spectral decom-
positions

𝐴∗𝜆1𝐴𝜆1 + 𝜆2𝐼 =∑
𝑖≥1
(𝜎2𝑖 + 𝜆2)𝑓𝑖⊗𝑓𝑖 (4.19)

𝐴𝜆1 =∑
𝑖≥1
𝜎𝑖ℎ𝑖⊗𝑓𝑖 , (4.20)

where the singular values (𝜎𝑖)𝑖≥1 of 𝐴𝜆1 with corresponding left and right eigenvectors (𝑓𝑖)𝑖≥1, (ℎ𝑖)𝑖≥1
forming the singular system of 𝐴𝜆1 , which is denoted by (𝜎𝑖 , ℎ𝑖 , 𝑓𝑖)𝑖≥1. Moreover, (𝑓𝑖)𝑖≥1 and (ℎ𝑖)𝑖≥1 form
orthonormal bases in 𝐹 and 𝐻 respectively.
In the proofs of previous lemmas and theorems, we have that the solution 𝑞†𝑎 and kernel embedded
solution 𝑞∗𝑎 satisfy

𝐴𝜆1𝑞
†
𝑎 = 𝜇𝜆1 (4.21)

(𝐴∗𝜆1𝐴𝜆1 + 𝜆2𝐼)𝑞
∗
𝑎 = 𝐴∗𝜆1𝜇𝜆1 , (4.22)

Replacing the operator 𝐴𝜆1 in (4.21) by its spectral decomposition (4.20), we have

𝜇𝜆1 =∑
𝑖≥1
𝜎𝑖(ℎ𝑖⊗𝑓𝑖)(𝑞†𝑎)

=
∞

∑
𝑖∶𝜎𝑖≠0

𝜎𝑖 ⟨𝑞†𝑎 , 𝑓𝑖⟩
𝐹
ℎ𝑖

⟹ ⟨ℎ𝑖 , 𝜇𝜆1⟩𝐻 = 𝜎𝑖 ⟨𝑞
†
𝑎 , 𝑓𝑖⟩

𝐹
⟨ℎ𝑖 , 𝜇𝜆1⟩𝐻

𝜎𝑖
= ⟨𝑞†𝑎 , 𝑓𝑖⟩

𝐹
.

Since 𝑞†𝑎 ∈ 𝐹, this implies that

𝑞†𝑎 =
∞

∑
𝑖∶𝜎𝑖≠0

⟨ℎ𝑖 , 𝜇𝜆1⟩𝐻
𝜎𝑖

𝑓𝑖 . (4.23)

Replacing the operator 𝐴∗𝜆1𝐴𝜆1 + 𝜆2𝐼 in (4.22) by its spectral decomposition (4.19), we have

𝐴∗𝜆1𝜇𝜆1 =∑
𝑖≥1
(𝜎2𝑖 + 𝜆2)(𝑓𝑖⊗𝑓𝑖)(𝑞∗𝑎)

=∑
𝑖≥1
(𝜎2𝑖 + 𝜆2) ⟨𝑓𝑖 , 𝑞∗𝑎⟩𝐹 𝑓𝑖

⟹ ⟨𝑓𝑖 , 𝐴∗𝜆1𝜇𝜆1⟩𝐹
= (𝜎2𝑖 + 𝜆2) ⟨𝑓𝑖 , 𝑞∗𝑎⟩𝐹

⟨𝐴𝜆1𝑓𝑖 , 𝜇𝜆1⟩𝐻 = (𝜎
2
𝑖 + 𝜆2) ⟨𝑓𝑖 , 𝑞∗𝑎⟩𝐹

⟨∑
𝑗≥1
𝜎𝑗(ℎ𝑗⊗𝑓𝑗)(𝑓𝑖), 𝜇𝜆1⟩

𝐻

= (𝜎2𝑖 + 𝜆2) ⟨𝑓𝑖 , 𝑞∗𝑎⟩𝐹

⟨𝜎𝑖ℎ𝑖 , 𝜇𝜆1⟩𝐻 = (𝜎
2
𝑖 + 𝜆2) ⟨𝑓𝑖 , 𝑞∗𝑎⟩𝐹

𝜎𝑖 ⟨ℎ𝑖 , 𝜇𝜆1⟩𝐻
𝜎2𝑖 + 𝜆2

= ⟨𝑓𝑖 , 𝑞∗𝑎⟩𝐹 .
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By the closed-form of 𝑞∗𝑎 (4.14), it is an element in 𝐹. So, its decomposition in 𝐹 is given by

𝑞∗𝑎 =∑
𝑖≥1

𝜎𝑖 ⟨ℎ𝑖 , 𝜇𝜆1⟩𝐻
𝜎2𝑖 + 𝜆2

𝑓𝑖 =
∞

∑
𝑖∶𝜎𝑖≠0

𝜎𝑖 ⟨ℎ𝑖 , 𝜇𝜆1⟩𝐻
𝜎2𝑖 + 𝜆2

𝑓𝑖 . (4.24)

Hence, as 𝜆2 ⟶ 0, the difference of the two solutions in RKHS norm is given by

‖𝑞∗𝑎 − 𝑞†𝑎‖𝐹 = ‖
∞

∑
𝑖∶𝜎𝑖≠0

𝜎𝑖 ⟨ℎ𝑖 , 𝜇𝜆1⟩𝐻
𝜎2𝑖 + 𝜆2

𝑓𝑖 −
∞

∑
𝑖∶𝜎𝑖≠0

⟨ℎ𝑖 , 𝜇𝜆1⟩𝐻
𝜎𝑖

𝑓𝑖‖
𝐹

= ‖
∞

∑
𝑖∶𝜎𝑖≠0

⟨ℎ𝑖 , 𝜇𝜆1⟩𝐻 𝑓𝑖(
𝜎𝑖

𝜎2𝑖 + 𝜆2
− 1
𝜎𝑖
)‖
𝐹

= ‖
∞

∑
𝑖∶𝜎𝑖≠0

⟨ℎ𝑖 , 𝜇𝜆1⟩𝐻 𝑓𝑖(
𝜆2

𝜎3𝑖 + 𝜆2𝜎𝑖
)‖
𝐹

= ‖
∞

∑
𝑖∶𝜎𝑖≠0

⟨ℎ𝑖 , 𝜇𝜆1⟩𝐻 𝑓𝑖(
1

𝜆−12 𝜎3𝑖 + 𝜎𝑖
)‖
𝐹

= √
∞

∑
𝑖∶𝜎𝑖≠0

⟨ℎ𝑖 , 𝜇𝜆1⟩
2
𝐻

(𝜆−12 𝜎3𝑖 + 𝜎𝑖)2
.

Denote the spectral expansion of 𝜇𝜆1 in 𝐻 by 𝜇𝜆1 = ∑𝑖≥1 𝑐𝑖ℎ𝑖, where ∑𝑖≥1 𝑐2𝑖 < ∞ by its finite square
RKHS norm. Then the difference of the two solutions in RKHS norm is upper bounded by

‖𝑞∗𝑎 − 𝑞†𝑎‖2𝐹 =
∞

∑
𝑖∶𝜎𝑖≠0

⟨ℎ𝑖 , 𝜇𝜆1⟩
2
𝐻

(𝜆−12 𝜎3𝑖 + 𝜎𝑖)2
=

∞

∑
𝑖∶𝜎𝑖≠0

𝑐2𝑖
𝜎2𝑖

1
(𝜆−12 𝜎𝑖 + 1)2

. (4.25)

Since 𝑞†𝑎 ∈ 𝐹 implies the finite square RKHS norm of 𝑞†𝑎, its decomposition in 𝐹 gives ∑∞𝑖∶𝜎𝑖≠0
𝑐2𝑖
𝜎2𝑖
< ∞.

Combining lim𝜆2⟶0
1

(𝜆−12 𝜎𝑖+1)2
= 0 and 0 < 𝑐2𝑖

𝜎2𝑖
1

(𝜆−12 𝜎𝑖+1)2
< 𝑐2𝑖

𝜎2𝑖
for any 𝑖 ∶ 𝜎𝑖 ≠ 0, we have (4.25)

asymptotically converges to 0 as 𝜆2 ⟶ 0.
□

To get the convergence rate of 𝑞∗𝑎 to 𝑞†𝑎 in RKHS norm, we need more assumptions on the decay of the
singular values of 𝐴𝜆1 . In fact, if singular values have polynomial decay 𝜎𝑖 ≍ 𝑖−𝑢 such that∑

∞
𝑖∶𝜎𝑖≠0

𝑐2𝑖
𝜎2𝑖
≤ 1

for some positive 𝑢, then ∑∞𝑖∶𝜎𝑖≠0
𝑐2𝑖
𝜎2𝑖

1
(𝜆−12 𝜎𝑖+1)2

≍ 𝜆((
2
𝑢−2)∧2)

2 .

The following corollary is an immediate result of the last step in the proof of Theorem 4.2.

Corollary 4.1 (Second moment convergence)
Given the positive regularization parameter 𝜆2, then as 𝜆2 ⟶ 0, the square of the difference between
regularized kernel embedded solution 𝑞∗𝑎 and the true solution 𝑞†𝑎 in RKHS norm converges to 0.

4.3. Empirical estimator and consistency
The empirical version of the regularized kernel embedded solution 𝑞∗𝑎 ∈ 𝐹 is given by

𝑞∗𝑎 = (𝐶(𝑊𝑋)(𝑍𝐴𝑋)(𝐶(𝑊𝑋) + 𝜆1𝐼)−1𝐶(𝑍𝐴𝑋)(𝑊𝑋) + 𝜆2𝐼)−1𝐶(𝑊𝑋)(𝑍𝐴𝑋)(𝐶(𝑊𝑋) + 𝜆1𝐼)−1𝜇(𝑊𝑋). (4.26)

LetΦ = (𝜙(𝑤1, 𝑥1),⋯ , 𝜙(𝑤𝑛 , 𝑥𝑛))𝑇,Ψ = (𝜓(𝑧1, 𝑎1, 𝑥1),⋯ , 𝜓(𝑧𝑛 , 𝑎𝑛 , 𝑥𝑛))𝑇 = (𝟙𝑎1=𝑎𝜓̃(𝑧1, 𝑎, 𝑥1),⋯ , 𝟙𝑎𝑛=𝑎𝜓̃(𝑧𝑛 , 𝑎, 𝑥𝑛))𝑇,
and Ψ𝑎 = (𝜓(𝑧1, 𝑎, 𝑥1),⋯ , 𝜓(𝑧𝑛 , 𝑎, 𝑥𝑛)). where (𝑤𝑖 , 𝑥𝑖 , 𝑎𝑖 , 𝑧𝑖)1≤𝑖≤𝑛 are i.i.d samples from 𝑃(𝑊,𝑋,𝐴,𝑍). Then
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without centering, the empirical mean embedding and empirical (cross)-covariance embeddings under
the samples are given by

𝐶(𝑊𝑋) =
1
𝑛

𝑛

∑
𝑖=1
𝜙(𝑤𝑖 , 𝑥𝑖) ⊗ 𝜙(𝑤𝑖 , 𝑥𝑖) =

1
𝑛Φ

𝑇Φ, 𝜇(𝑊𝑋) =
1
𝑛

𝑛

∑
𝑖=1
𝜙(𝑤𝑖 , 𝑥𝑖) =

1
𝑛𝟙

𝑇
𝑛Φ,

𝐶(𝑍𝐴𝑋)(𝑊𝑋) =
1
𝑛

𝑛

∑
𝑖=1
(𝟙𝑎𝑖=𝑎𝜓̃(𝑧𝑖 , 𝑎, 𝑥𝑖)) ⊗ 𝜙(𝑤𝑖 , 𝑥𝑖) =

1
𝑛

𝑛

∑
𝑖=1
𝜓(𝑧𝑖 , 𝑎𝑖 , 𝑥𝑖) ⊗ 𝜙(𝑤𝑖 , 𝑥𝑖) =

1
𝑛Ψ

𝑇Φ,

𝐶(𝑊𝑋)(𝑍𝐴𝑋) =
1
𝑛

𝑛

∑
𝑖=1
𝜙(𝑤𝑖 , 𝑥𝑖) ⊗ (𝟙𝑎𝑖=𝑎𝜓̃(𝑧𝑖 , 𝑎, 𝑥𝑖)) =

1
𝑛

𝑛

∑
𝑖=1
𝜙(𝑤𝑖 , 𝑥𝑖) ⊗ 𝜓(𝑧𝑖 , 𝑎𝑖 , 𝑥𝑖) =

1
𝑛Φ

𝑇Ψ.

Recall that in Section 2.4 we have shown the equivalence of kernels and reproducing kernels as well
as the uniqueness between a RKHS and its reproducing kernel. This means the kernels 𝑘(⋅, ⋅) =
⟨𝜙(⋅), 𝜙(⋅)⟩𝐻, 𝑙(⋅, ⋅) = ⟨𝜓(⋅), 𝜓(⋅)⟩𝐹 and the RKHSs 𝐻, 𝐹 uniquely determine each other. Since the
Moore-Aronszajn theorem 2.14 gives the form of elements consisting of the RKHSs induced by kernels,
we can subsequently acquire the expressions of 𝑞∗𝑎 ∈ 𝐹 and 𝑢∗ ∈ 𝐻, where 𝑞∗𝑎 is given by

𝑞∗𝑎 =
𝑛

∑
𝑖=1
𝛼𝑖𝜓(𝑧𝑖 , 𝑎, 𝑥𝑖) = Λ𝑇Ψ𝑎 , Λ = (𝛼1, ⋯ , 𝛼𝑛)𝑇 . (4.27)

In the empirical version, the coefficients should be represented by empirical embeddings. To get the
explicit expressions of 𝑞∗𝑎 = Λ̂𝑇Ψ𝑎, we have the following proposition.

Proposition 4.3 (Kernel representor of 𝑞∗𝑎)
Denote the Gram matrices and mixed Gram matrix of kernels 𝑘(⋅, ⋅) and 𝑙(⋅, ⋅) by 𝐾 = ΦΦ𝑇, 𝐿 = ΨΨ𝑇,
𝑀 = ΦΨ𝑇 and 𝑀𝑎 = ΦΨ𝑇𝑎 . Then the regularized kernel embedded solution 𝑞∗𝑎 ∈ 𝐹 has an kernel
representor 𝑞∗𝑎 = Λ̂𝑇Ψ𝑎, where the coefficient Λ̂ is given by

Λ̂ = (𝐾𝐿(𝐾 + 𝑛𝜆1𝐼𝑛)−1𝑀 + 𝑛𝜆2𝑀𝑎)−1𝐾(𝐾 + 𝑛𝜆1𝐼𝑛)−1𝑀𝟙𝑛 .

Proof:
Substituting the kernel embeddings by their matrices versions, the empirical version (4.26) satisfies

𝑞∗𝑎 = (
1
𝑛Φ

𝑇Ψ(1𝑛Φ
𝑇Φ+ 𝜆1)−1

1
𝑛Ψ

𝑇Φ+ 𝜆2)−1
1
𝑛Φ

𝑇Ψ(1𝑛Φ
𝑇Φ+ 𝜆1)−1

1
𝑛𝟙

𝑇
𝑛Φ

= (Φ𝑇Ψ(Φ𝑇Φ+ 𝑛𝜆1)−1Ψ𝑇Φ+ 𝑛𝜆2)−1Φ𝑇Ψ(Φ𝑇Φ+ 𝑛𝜆1)−1𝟙𝑇𝑛Φ.

Multiply the scalar term Φ𝑇Ψ(Φ𝑇Φ+ 𝑛𝜆1)−1Ψ𝑇Φ+ 𝑛𝜆2 on both sides and get2

(Φ𝑇Ψ(Φ𝑇Φ+ 𝑛𝜆1)−1Ψ𝑇Φ+ 𝑛𝜆2)𝑞∗𝑎 = Φ𝑇Ψ(Φ𝑇Φ+ 𝑛𝜆1)−1𝟙𝑇𝑛Φ
(Φ𝑇ΨΨ𝑇Φ(Φ𝑇Φ+ 𝑛𝜆1)−1 + 𝑛𝜆2)Ψ𝑇𝑎 Λ̂ = Φ𝑇Ψ𝟙𝑇𝑛Φ(Φ𝑇Φ+ 𝑛𝜆1)−1 (𝑞∗𝑎 = Λ̂𝑇Ψ𝑎)

Φ𝑇ΨΨ𝑇(ΦΦ𝑇 + 𝑛𝜆1𝐼𝑛)−1ΦΨ𝑇Λ̂ + 𝑛𝜆2Ψ𝑇𝑎 Λ̂ = Φ𝑇(ΦΦ𝑇 + 𝑛𝜆1𝐼𝑛)−1ΦΨ𝟙𝑇𝑛 . (identity (B.1))

After left multiplying Φ on the both sides, we get

ΦΦ𝑇ΨΨ𝑇(ΦΦ𝑇 + 𝑛𝜆1𝐼𝑛)−1ΦΨ𝑇Λ̂ + 𝑛𝜆2ΦΨ𝑇𝑎 Λ̂ = ΦΦ𝑇(ΦΦ𝑇 + 𝑛𝜆1𝐼𝑛)−1ΦΨ𝑇𝟙𝑛
(𝐾𝐿(𝐾 + 𝑛𝜆1𝐼𝑛)−1𝑀 + 𝑛𝜆2𝑀𝑎)Λ̂ = 𝐾(𝐾 + 𝑛𝜆1𝐼𝑛)−1𝑀𝟙𝑛 .

If 𝐾𝐿(𝐾 + 𝑛𝜆1𝐼𝑛)−1𝑀 + 𝑛𝜆2𝑀𝑎 is invertible, this gives the kernel embedded coefficient

Λ̂ = (𝐾𝐿(𝐾 + 𝑛𝜆1𝐼𝑛)−1𝑀 + 𝑛𝜆2𝑀𝑎)−1𝐾(𝐾 + 𝑛𝜆1𝐼𝑛)−1𝑀𝟙𝑛 .
2The underlined terms are scalars about to shift positions in the coming step.
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□
Since 𝐾𝐿(𝐾+𝑛𝜆1𝐼𝑛)−1𝑀+𝑛𝜆2𝑀𝑎 is not guaranteed to be invertible or well-posed by the sparsity of𝑀,
we can use the Tikhonov regularized solution instead, which is given by

Λ̂𝜆 ∶= (𝐶∗𝐶 + 𝜆𝐼)−1𝐶∗𝑏, (4.28)

where 𝐶 ∶= 𝐾𝐿(𝐾 + 𝑛𝜆1𝐼𝑛)−1𝑀 + 𝑛𝜆2𝑀𝑎, 𝑏 ∶= 𝐾(𝐾 + 𝑛𝜆1𝐼𝑛)−1𝑀𝟙𝑛. (4.28) converges to the minimum-
norm solution as 𝜆 ⟶ 0.

Theorem 4.3 (Asymptotic convergence of the empirical kernel embedded solution)
Suppose the universal kernel functions 𝑘(⋅, ⋅) and 𝑙(⋅, ⋅) are bounded. Given regularization parameter
𝜆1 which is a fixed positive number and 𝜆2 = 𝑛−𝛽 with 0 < 𝛽 < 1

4 , the empirical regularized kernel
embedded solution 𝑞∗𝑎 converges to the regularized kernel embedded solution 𝑞∗𝑎 of the regularized
task (4.12) in RKHS norm with a convergence rate of 𝒪𝑝(𝑛2𝛽−

1
2 ), i.e.

𝐸‖𝑞∗𝑎 − 𝑞∗𝑎‖𝐹 = 𝒪(𝑛2𝛽−
1
2 ).

Proof:
For simplicity, we continue to use the notations given by Muandet et al. [25],

𝐶𝜆1 = 𝐶(𝑊𝑋) + 𝜆1𝐼, 𝑅𝜆1 = 𝐶(𝑊𝑋)(𝑍𝐴𝑋)𝐶−1𝜆1 𝐶(𝑍𝐴𝑋)(𝑊𝑋),
𝐶𝜆1 = 𝐶(𝑊𝑋) + 𝜆1𝐼, 𝑅𝜆1 = 𝐶(𝑊𝑋)(𝑍𝐴𝑋)𝐶−1𝜆1 𝐶(𝑍𝐴𝑋)(𝑊𝑋).

Then the difference of 𝑞∗𝑎 and 𝑞∗𝑎 in RKHS norm is given by

𝐸‖𝑞∗𝑎 − 𝑞∗𝑎‖𝐹 = 𝐸‖(𝑅𝜆1 + 𝜆2𝐼)−1𝐶(𝑊𝑋)(𝑍𝐴𝑋)𝐶−1𝜆1 𝜇(𝑊𝑋) − (𝑅𝜆1 + 𝜆2𝐼)
−1𝐶(𝑊𝑋)(𝑍𝐴𝑋)𝐶−1𝜆1 𝜇(𝑊𝑋)‖𝐹

≤ 𝐸‖(𝑅𝜆1 + 𝜆2𝐼)−1𝐶(𝑊𝑋)(𝑍𝐴𝑋)𝐶−1𝜆1 𝜇(𝑊𝑋) − (𝑅𝜆1 + 𝜆2𝐼)
−1𝐶(𝑊𝑋)(𝑍𝐴𝑋)𝐶−1𝜆1 𝜇(𝑊𝑋)‖𝐹

+ 𝐸‖(𝑅𝜆1 + 𝜆2𝐼)−1𝐶(𝑊𝑋)(𝑍𝐴𝑋)𝐶−1𝜆1 𝜇(𝑊𝑋) − (𝑅𝜆1 + 𝜆2𝐼)
−1𝐶(𝑊𝑋)(𝑍𝐴𝑋)𝐶−1𝜆1 𝜇(𝑊𝑋)‖𝐹

=∶ 𝐸[𝑇1] + 𝐸[𝑇2].

Part i) Bounding 𝐸[𝑇1]:

𝐸[𝑇1] =𝐸 [‖(𝑅𝜆1 + 𝜆2𝐼)−1𝐶(𝑊𝑋)(𝑍𝐴𝑋)𝐶−1𝜆1 𝜇(𝑊𝑋) − (𝑅𝜆1 + 𝜆2𝐼)
−1𝐶(𝑊𝑋)(𝑍𝐴𝑋)𝐶−1𝜆1 𝜇(𝑊𝑋)‖𝐹]

≤𝐸 [‖𝐶(𝑊𝑋)(𝑍𝐴𝑋)𝐶−1𝜆1 𝜇(𝑊𝑋)‖𝐹‖(𝑅𝜆1 + 𝜆2𝐼)
−1 − (𝑅𝜆1 + 𝜆2𝐼)−1‖ℒ(𝐹)]

=𝐸 [‖𝐶(𝑊𝑋)(𝑍𝐴𝑋)𝐶−1𝜆1 𝜇(𝑊𝑋)‖𝐹‖(𝑅𝜆1 + 𝜆2𝐼)
−1(𝑅𝜆1 + 𝜆2𝐼)((𝑅𝜆1 + 𝜆2𝐼)−1 − (𝑅𝜆1 + 𝜆2𝐼)−1)‖ℒ(𝐹)]

=𝐸 [‖𝐶(𝑊𝑋)(𝑍𝐴𝑋)𝐶−1𝜆1 𝜇(𝑊𝑋)‖𝐹‖(𝑅𝜆1 + 𝜆2𝐼)
−1(𝑅𝜆1 − 𝑅𝜆1)(𝑅𝜆1 + 𝜆2𝐼)−1‖ℒ(𝐹)] (Identity (B.2))

≤𝐸[‖𝐶(𝑊𝑋)(𝑍𝐴𝑋)‖ℒ(𝐻,𝐹)‖𝜇(𝑊𝑋)‖𝐹‖𝐶−1𝜆1 ‖ℒ(𝐻)‖(𝑅𝜆1 + 𝜆2𝐼)
−1‖ℒ(𝐹)

⋅ ‖(𝑅𝜆1 + 𝜆2𝐼)−1‖ℒ(𝐹)‖𝑅𝜆1 − 𝑅𝜆1‖ℒ(𝐹)]. (4.29)

By the assumption that kernels are bounded, we know the reproducing property implies the feature
maps are bounded in RKHS norms. We denote the upper bound for 𝑘(⋅, ⋅) over (𝒲×𝒳)× (𝒲×𝒳) by
𝑡2𝜙 and the upper bound for 𝑙(⋅, ⋅) over (𝒵 ×𝒜 ×𝒳) × (𝒵 ×𝒜 ×𝒳) by 𝑡2𝜓. Then, the upper bounds for
the feature maps in RKHS norms are given by

‖𝜙(𝑊, 𝑋)‖𝐻 = √𝑘((𝑊, 𝑋), (𝑊, 𝑋)) ≤ 𝑡𝜙 , ∀(𝑊, 𝑋) ∈ (𝒲 ×𝒳),
‖𝜓(𝑍, 𝐴, 𝑋)‖𝐹 = √𝑙((𝑍, 𝐴, 𝑋), (𝑍, 𝐴, 𝑋)) ≤ 𝑡𝜓, ∀(𝑍, 𝐴, 𝑋) ∈ (𝒵 ×𝒜 ×𝒳).
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Hence

‖𝐶(𝑊𝑋)(𝑍𝐴𝑋)‖ℒ(𝐻,𝐹) = ‖𝐶(𝑊𝑋)(𝑍𝐴𝑋)‖𝐻𝑆(𝐻,𝐹) ≤
1
𝑛

𝑛

∑
𝑖=1
‖𝜙(𝑤𝑖 , 𝑥𝑖)‖𝐻‖𝜓(𝑧𝑖 , 𝑎𝑖 , 𝑥𝑖)‖𝐹 ≤ 𝑡𝜙𝑡𝜓,

‖𝐶(𝑊𝑋)(𝑍𝐴𝑋)‖ℒ(𝐻,𝐹) = ‖𝐸[𝜙(𝑊, 𝑋)⊗ 𝜓(𝑍, 𝐴, 𝑋)]‖𝐻𝑆(𝐻,𝐹) ≤ 𝐸‖𝜙(𝑊,𝑋)⊗ 𝜓(𝑍, 𝐴, 𝑋)‖𝐻𝑆(𝐻,𝐹)
= 𝐸 [‖𝜙(𝑊, 𝑋)‖𝐻‖𝜓(𝑍, 𝐴, 𝑋)‖𝐹] ≤ 𝑡𝜙𝑡𝜓,

‖𝜇(𝑊𝑋)‖𝐻 ≤
1
𝑛

𝑛

∑
𝑖=1
‖𝜙(𝑤𝑖 , 𝑥𝑖)‖𝐻 ≤ 𝑡𝜙 .

Next is to bound the operator norm of the inverse regularized operators. Recall by Theorem 2.5 the
norm of self-adjoint operator is chosen as the maximum between the absolute values of the infimum
of spectrum and maximum of spectrum. Since all the inverse operators considered here are positive
semi-definite by Proposition 2.10, their spectra are non-negative by Example 2.8. So, their operator
norms are just the the supremum of the spectrum.

‖𝐶−1𝜆1 ‖ℒ(𝐻) ≤
1

inf𝜆{𝜆 ∈ 𝜎(𝐶(𝑊𝑋) + 𝜆1𝐼)}
= 1
inf𝜆{𝜆 ∈ 𝜎(𝐶𝑊𝑋)} + 𝜆1

≤ 1
𝜆1
,

‖(𝑅𝜆1 + 𝜆2𝐼)−1‖ℒ(𝐹) ≤
1

inf𝜆{𝜆 ∈ 𝜎(𝑅𝜆1 + 𝜆2𝐼)}
= 1
inf𝜆{𝜆 ∈ 𝜎(𝑅𝜆1)} + 𝜆2

≤ 1
𝜆2
,

‖(𝑅𝜆1 + 𝜆2𝐼)−1‖ℒ(𝐹) ≤
1

inf𝜆{𝜆 ∈ 𝜎(𝑅𝜆1 + 𝜆2𝐼)}
= 1
inf𝜆{𝜆 ∈ 𝜎(𝑅𝜆1)} + 𝜆2

≤ 1
𝜆2
. (4.30)

Last, we have

‖𝑅𝜆1 − 𝑅𝜆1‖ℒ(𝐹) = ‖𝐶(𝑊𝑋)(𝑍𝐴𝑋)𝐶−1𝜆1 𝐶(𝑍𝐴𝑋)(𝑊𝑋) − 𝐶(𝑊𝑋)(𝑍𝐴𝑋)𝐶
−1
𝜆1 𝐶(𝑍𝐴𝑋)(𝑊𝑋)‖ℒ(𝐹)

≤ ‖𝐶(𝑊𝑋)(𝑍𝐴𝑋)𝐶−1𝜆1 𝐶(𝑍𝐴𝑋)(𝑊𝑋) − 𝐶(𝑊𝑋)(𝑍𝐴𝑋)𝐶
−1
𝜆1 𝐶(𝑍𝐴𝑋)(𝑊𝑋)‖ℒ(𝐹)

+ ‖𝐶(𝑊𝑋)(𝑍𝐴𝑋)𝐶−1𝜆1 𝐶(𝑍𝐴𝑋)(𝑊𝑋) − 𝐶(𝑊𝑋)(𝑍𝐴𝑋)𝐶
−1
𝜆1 𝐶(𝑍𝐴𝑋)(𝑊𝑋)‖ℒ(𝐹)

≤ ‖𝐶(𝑊𝑋)(𝑍𝐴𝑋)𝐶−1𝜆1 𝐶(𝑍𝐴𝑋)(𝑊𝑋) − 𝐶(𝑊𝑋)(𝑍𝐴𝑋)𝐶
−1
𝜆1 𝐶(𝑍𝐴𝑋)(𝑊𝑋)‖ℒ(𝐹)

+ ‖𝐶(𝑊𝑋)(𝑍𝐴𝑋)𝐶−1𝜆1 𝐶(𝑍𝐴𝑋)(𝑊𝑋) − 𝐶(𝑊𝑋)(𝑍𝐴𝑋)𝐶
−1
𝜆1 𝐶(𝑍𝐴𝑋)(𝑊𝑋)‖ℒ(𝐹)

+ ‖𝐶(𝑊𝑋)(𝑍𝐴𝑋)(𝐶−1𝜆1 − 𝐶
−1
𝜆1 )𝐶(𝑍𝐴𝑋)(𝑊𝑋)‖ℒ(𝐹). (4.31)

Notice that by matrix identity (B.2), we have

𝐶−1𝜆1 − 𝐶
−1
𝜆1 = 𝐶

−1
𝜆1 (𝐶𝜆1 − 𝐶𝜆1)𝐶

−1
𝜆1 = 𝐶

−1
𝜆1 (𝐶𝑊𝑋 − 𝐶𝑊𝑋)𝐶

−1
𝜆1 . (4.32)

Applying (4.32) to (4.31), we get

𝐸‖𝑅𝜆1 − 𝑅𝜆1‖ℒ(𝐹) ≤ 𝐸[‖𝐶(𝑊𝑋)(𝑍𝐴𝑋)‖ℒ(𝐻,𝐹)‖𝐶−1𝜆1 ‖ℒ(𝐻)‖𝐶(𝑍𝐴𝑋)(𝑊𝑋) − 𝐶(𝑍𝐴𝑋)(𝑊𝑋)‖𝐻𝑆(𝐹,𝐻)

+ ‖𝐶−1𝜆1 ‖ℒ(𝐻)‖𝐶(𝑍𝐴𝑋)(𝑊𝑋)‖ℒ(𝐹,𝐻)‖𝐶(𝑊𝑋)(𝑍𝐴𝑋) − 𝐶(𝑊𝑋)(𝑍𝐴𝑋)‖𝐻𝑆(𝐻,𝐹)

+ ‖𝐶(𝑊𝑋)(𝑍𝐴𝑋)‖ℒ(𝐻,𝐹)‖𝐶−1𝜆1 ‖ℒ(𝐻)‖𝐶
−1
𝜆1 ‖ℒ(𝐻)‖𝐶(𝑍𝐴𝑋)(𝑊𝑋)‖ℒ(𝐹,𝐻)‖𝐶𝑊𝑋 − 𝐶𝑊𝑋‖𝐻𝑆(𝐻)]

≤ 𝐸[
𝑡𝜙𝑡𝜓
𝜆1

‖𝐶(𝑍𝐴𝑋)(𝑊𝑋) − 𝐶(𝑍𝐴𝑋)(𝑊𝑋)‖𝐻𝑆(𝐹,𝐻) +
𝑡𝜙𝑡𝜓
𝜆1

‖𝐶(𝑊𝑋)(𝑍𝐴𝑋) − 𝐶(𝑊𝑋)(𝑍𝐴𝑋)‖𝐻𝑆(𝐻,𝐹)

+
𝑡2𝜙𝑡2𝜓
𝜆21

‖𝐶𝑊𝑋 − 𝐶𝑊𝑋‖𝐻𝑆(𝐻)]. (4.33)

By Theorem 2.16, the √𝑛-consistency of cross-covariance embedding, (4.33) is 𝒪( 1√𝑛 ). Hence, com-
bined with the upper bounds of other terms in (4.29), the convergence rate of 𝐸[𝑇1] is 𝒪(

1
𝜆22√𝑛

).
Part ii) Bounding 𝑇2:
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𝐸[𝑇2] = 𝐸‖(𝑅𝜆1 + 𝜆2𝐼)−1𝐶(𝑊𝑋)(𝑍𝐴𝑋)𝐶−1𝜆1 𝜇(𝑊𝑋) − (𝑅𝜆1 + 𝜆2𝐼)
−1𝐶(𝑊𝑋)(𝑍𝐴𝑋)𝐶−1𝜆1 𝜇(𝑊𝑋)‖𝐹

≤ 𝐸 [ 1𝜆2
‖𝐶(𝑊𝑋)(𝑍𝐴𝑋)𝐶−1𝜆1 𝜇(𝑊𝑋) − 𝐶(𝑊𝑋)(𝑍𝐴𝑋)𝐶

−1
𝜆1 𝜇(𝑊𝑋)‖𝐹] (By 4.30)

≤ 𝐸[ 1𝜆2
‖𝐶(𝑊𝑋)(𝑍𝐴𝑋)𝐶−1𝜆1 𝜇(𝑊𝑋) − 𝐶(𝑊𝑋)(𝑍𝐴𝑋)𝐶

−1
𝜆1 𝜇(𝑊𝑋)‖𝐹

+ 1
𝜆2
‖𝐶(𝑊𝑋)(𝑍𝐴𝑋)𝐶−1𝜆1 𝜇(𝑊𝑋) − 𝐶(𝑊𝑋)(𝑍𝐴𝑋)𝐶

−1
𝜆1 𝜇(𝑊𝑋)‖𝐹

+ 1
𝜆2
‖𝐶(𝑊𝑋)(𝑍𝐴𝑋)𝐶−1𝜆1 𝜇(𝑊𝑋) − 𝐶(𝑊𝑋)(𝑍𝐴𝑋)𝐶

−1
𝜆1 𝜇(𝑊𝑋)‖𝐹]

≤ 𝐸[ 1𝜆2
‖𝐶(𝑊𝑋)(𝑍𝐴𝑋) − 𝐶(𝑊𝑋)(𝑍𝐴𝑋)‖𝐻𝑆(𝐻,𝐹)‖𝐶−1𝜆1 ‖ℒ(𝐻)‖𝜇(𝑊𝑋)‖𝐹

+ 1
𝜆2
‖𝐶(𝑊𝑋)(𝑍𝐴𝑋)‖ℒ(𝐻,𝐹)‖𝐶−1𝜆1 ‖ℒ(𝐻)‖(𝐶(𝑊𝑋) − 𝐶(𝑊𝑋))‖𝐻𝑆(𝐻,𝐹)‖𝐶

−1
𝜆1 ‖ℒ(𝐻)‖𝜇(𝑊𝑋)‖𝐹 (By 4.32)

+ 1
𝜆2
‖𝐶(𝑊𝑋)(𝑍𝐴𝑋)‖ℒ(𝐻,𝐹)‖𝐶−1𝜆1 ‖ℒ(𝐻)‖𝜇(𝑊𝑋) − 𝜇(𝑊𝑋)‖𝐹]

≤ 𝐸[
𝑡𝜙
𝜆1𝜆2

‖𝐶(𝑊𝑋)(𝑍𝐴𝑋) − 𝐶(𝑊𝑋)(𝑍𝐴𝑋)‖𝐻𝑆(𝐻,𝐹) +
𝑡2𝜙𝑡𝜓
𝜆21𝜆2

‖(𝐶(𝑊𝑋) − 𝐶(𝑊𝑋))‖𝐻𝑆(𝐻,𝐹)

+
𝑡𝜙𝑡𝜓
𝜆1𝜆2

‖𝜇(𝑊𝑋) − 𝜇(𝑊𝑋)‖𝐹]. (4.34)

By Theorem 2.15 and 2.16, the √𝑛-consistency of mean embedding and cross-covariance embedding,
the convergence rate of 𝐸[𝑇2] is 𝒪(

1
𝜆2√𝑛

).
Part iii) Asymptotic convergence behavior of ‖𝑞∗𝑎 − 𝑞∗𝑎‖𝐹:
The convergence rates of 𝐸[𝑇1] and 𝐸[𝑇2] produce the convergence rate of ‖𝑞∗𝑎 −𝑞∗𝑎‖𝐹, which is given
by

𝒪𝑝(
1
√𝑛
( 1𝜆2

+ 1
𝜆22
)) = 𝒪𝑝(

1
𝜆22√𝑛

) = 𝒪𝑝(𝑛2𝛽−
1
2 ).

The asymptotic convergence behavior depends on the growth rate of 𝜆2 = 𝑛−𝛽. To make the expec-
tation of the difference between 𝑞∗𝑎 and 𝑞∗𝑎 in RKHS norm converges to 0 as 𝑛 goes to infinity, we
need

2𝛽 − 12 < 0 ⟹ 0 < 𝛽 < 1
4 .

□

Corollary 4.2 (Second moment convergence)
Suppose kernel functions 𝑘(⋅, ⋅) and 𝑙(⋅, ⋅) are bounded. Given regularization parameter 𝜆1 which is a
fixed positive number and 𝜆2 = 𝑛−𝛽 for 𝛽 ∈ (0, 1) such that 𝛽 < 1

4 , the second moment of the difference
between empirical regularized kernel embedded solution 𝑞∗𝑎 and regularized kernel embedded solution
𝑞∗𝑎 in RKHS norm converges to 0 as 𝑛 goes to ∞ with a convergence rate of 𝒪(𝑛4𝛽−1), i.e.

𝐸‖𝑞∗𝑎 − 𝑞∗𝑎‖2𝐹 = 𝒪(𝑛4𝛽−1).

Proof:
We continue to use the notations in the proof of Theorem 4.3. Then, by Hölder’s inequality, the second
moment of the difference in RKHS norm can be upper bounded by

𝐸‖𝑞∗𝑎 − 𝑞∗𝑎‖2𝐹 ≤ 𝐸[𝑇21 ] + 𝐸[𝑇22 ] + 𝐸[𝑇1𝑇2] ≤ 𝐸[𝑇21 ] + 𝐸[𝑇22 ] + √𝐸[𝑇21 ]𝐸[𝑇22 ]. (4.35)
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where

𝑇1 ∶= ‖(𝑅𝜆1 + 𝜆2𝐼)−1𝐶(𝑊𝑋)(𝑍𝐴𝑋)𝐶−1𝜆1 𝜇(𝑊𝑋) − (𝑅𝜆1 + 𝜆2𝐼)
−1𝐶(𝑊𝑋)(𝑍𝐴𝑋)𝐶−1𝜆1 𝜇(𝑊𝑋)‖𝐹

𝑇2 ∶= ‖(𝑅𝜆1 + 𝜆2𝐼)−1𝐶(𝑊𝑋)(𝑍𝐴𝑋)𝐶−1𝜆1 𝜇(𝑊𝑋) − (𝑅𝜆1 + 𝜆2𝐼)
−1𝐶(𝑊𝑋)(𝑍𝐴𝑋)𝐶−1𝜆1 𝜇(𝑊𝑋)‖𝐹 .

By (4.29), combined with the upper bounds of operator norms and empirical embedding norms, 𝐸[𝑇21 ]
can be upper bounded by

𝐸[𝑇21 ] ≤𝐸[‖𝐶(𝑊𝑋)(𝑍𝐴𝑋)‖2ℒ(𝐻,𝐹)‖𝜇(𝑊𝑋)‖2𝐹‖𝐶−1𝜆1 ‖
2
ℒ(𝐻)‖(𝑅𝜆1 + 𝜆2𝐼)−1‖2ℒ(𝐹)

⋅ ‖(𝑅𝜆1 + 𝜆2𝐼)−1‖2ℒ(𝐹)‖𝑅𝜆1 − 𝑅𝜆1‖2ℒ(𝐹)]

≤
𝑡4𝜙𝑡2𝜓
𝜆21𝜆42

𝐸‖𝑅𝜆1 − 𝑅𝜆1‖2ℒ(𝐹).

By (4.33) and Theorem 2.16, 𝐸‖𝑅𝜆1 − 𝑅𝜆1‖2ℒ(𝐹) has an upper bound

𝐸‖𝑅𝜆1 − 𝑅𝜆1‖2ℒ(𝐹) ≤ 𝐸[(
𝑡𝜙𝑡𝜓
𝜆1

‖𝐶(𝑍𝐴𝑋)(𝑊𝑋) − 𝐶(𝑍𝐴𝑋)(𝑊𝑋)‖𝐻𝑆(𝐹,𝐻) +
𝑡𝜙𝑡𝜓
𝜆1

‖𝐶(𝑊𝑋)(𝑍𝐴𝑋) − 𝐶(𝑊𝑋)(𝑍𝐴𝑋)‖𝐻𝑆(𝐻,𝐹)

+
𝑡2𝜙𝑡2𝜓
𝜆21

‖𝐶𝑊𝑋 − 𝐶𝑊𝑋‖𝐻𝑆(𝐻))
2
],

which has a convergence rate of 𝒪( 1𝑛 ) after expanded by Hölder’s inequality. Hence, we have that the
convergence rate of 𝐸[𝑇21 ] is 𝒪(

1
𝜆42𝑛
).

By (4.34), Theorem 2.15 and 2.16, we have the upper bound of 𝐸[𝑇22 ], which is given by

𝐸[𝑇22 ] ≤ 𝐸 [(
𝑡𝜙
𝜆1𝜆2

‖𝐶(𝑊𝑋)(𝑍𝐴𝑋) − 𝐶(𝑊𝑋)(𝑍𝐴𝑋)‖𝐻𝑆(𝐻,𝐹) +
𝑡2𝜙𝑡𝜓
𝜆21𝜆2

‖(𝐶(𝑊𝑋) − 𝐶(𝑊𝑋))‖𝐻𝑆(𝐻,𝐹) +
𝑡𝜙𝑡𝜓
𝜆1𝜆2

‖𝜇(𝑊𝑋) − 𝜇(𝑊𝑋)‖𝐹)
2
]

= 𝒪( 1𝜆22𝑛
).

combining the convergence rates of 𝐸[𝑇21 ] and 𝐸[𝑇22 ], by (4.35), we have that the second moment of
the difference in RKHS norm has a convergence rate of

𝒪( 1𝜆42𝑛
+ 1
𝜆22𝑛

+ 1
𝜆32𝑛

) = 𝒪( 1𝜆42𝑛
) = 𝒪(𝑛4𝛽−1).

When 𝛽 < 1
4 , the second moment of the difference in RKHS norm converges to 0 as 𝑛 goes to ∞.

□

4.4. Kernel embedded ATE estimator
In this section, we put forward an kernel embedded estimator for the ATE based on the treatment
confounding standardization formula (1.7) and PIPW estimator (1.9). which is given by

𝜒 = 𝐸[𝑌(𝟙𝐴=1𝑞⋆1(𝑍, 1, 𝑋) − 𝟙𝐴=0𝑞⋆0(𝑍, 0, 𝑋))], (4.36)

where 𝑞⋆1 and 𝑞⋆0 are the true treatment confounding bridge functions under treatment 𝑎 = 1 and 𝑎 = 0
respectively. In the previous sections, we have derived a consistent regularized kernel embedded
solution 𝑞∗𝑎 for

𝐸[𝟙𝐴=𝑎𝑞𝑎(𝑍, 𝑎, 𝑋)|𝑊, 𝑋] = 1,
which is able to approximate 𝑞⋆𝑎 if it is bounded continuous and has the smallest 𝐿2 norm among other
solutions.
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Definition 4.1 (Kernel embedded ATE estimator)
Under the i.i.d. observations (𝑦𝑖 , 𝑧𝑖 , 𝑎𝑖 , 𝑥𝑖)1≤𝑖≤𝑛, the kernel embedded ATE estimator is given by

𝜒 = 1
𝑛

𝑛

∑
𝑖=1
𝑦𝑖(𝟙𝑎𝑖=1𝑞∗1(𝑧𝑖 , 1, 𝑥𝑖) − 𝟙𝑎𝑖=0𝑞∗0(𝑧𝑖 , 0, 𝑥𝑖)). (4.37)

Theorem 4.4 (Consistency of the kernel embedded ATE estimator)
Assume 𝜆2 = 𝑛−𝛽 with 0 < 𝛽 < 1

4 and the following conditions are true.

1. Var(𝑌(𝟙𝐴=1𝑞†1 (𝑍, 1, 𝑋) − 𝟙𝐴=0𝑞†0(𝑍, 0, 𝑋))) < ∞;

2. 𝐸𝑍𝐴𝑋[(𝐸𝑌[|𝑌||𝑍, 𝐴, 𝑋])2] < ∞;

3. |𝑙(⋅, ⋅)| ≤ 𝑡2𝜓 everywhere on (𝒵 ×𝒜 ×𝒳) × (𝒵 ×𝒜 ×𝒳).

Then if the assumption 4.1 holds, under the distribution family satisfying the completeness assumption
1.5, the kernel embedded ATE estimator (4.37) is a consistent estimator of the ATE (4.36), i.e.

lim
𝑛⟶∞

𝐸|𝜒 − 𝜒| = 0.

Proof:
In the proof we will use the triangle inequality, Cauchy-Schwartz inequality, Hölder’s inequality, Jensen’s
inequality and the reproducing property for reproducing kernel functions without mentioning.
We consider the following expected difference.

𝐸|(1𝑛

𝑛

∑
𝑖=1
𝑦𝑖(𝟙𝑎𝑖=1𝑞∗1(𝑧𝑖 , 1, 𝑥𝑖) − 𝟙𝑎𝑖=0𝑞∗0(𝑧𝑖 , 0, 𝑥𝑖))) − (𝐸[𝑌(𝟙𝐴=1𝑞

†
1 (𝑍, 1, 𝑋) − 𝟙𝐴=0𝑞†0(𝑍, 0, 𝑋))]) |

≤𝐸|(1𝑛

𝑛

∑
𝑖=1
𝑦𝑖(𝟙𝑎𝑖=1𝑞∗1(𝑧𝑖 , 1, 𝑥𝑖) − 𝟙𝑎𝑖=0𝑞∗0(𝑧𝑖 , 0, 𝑥𝑖))) − (

1
𝑛

𝑛

∑
𝑖=1
𝑦𝑖(𝟙𝑎𝑖=1𝑞

†
1 (𝑧𝑖 , 1, 𝑥𝑖) − 𝟙𝑎𝑖=0𝑞

†
0(𝑧𝑖 , 0, 𝑥𝑖))) |

+ 𝐸|(1𝑛

𝑛

∑
𝑖=1
𝑦𝑖(𝟙𝑎𝑖=1𝑞

†
1 (𝑧𝑖 , 1, 𝑥𝑖) − 𝟙𝑎𝑖=0𝑞

†
0(𝑧𝑖 , 0, 𝑥𝑖))) − (𝐸[𝑌(𝟙𝐴=1𝑞†1 (𝑍, 1, 𝑋) − 𝟙𝐴=0𝑞†0(𝑍, 0, 𝑋))]) |

∶=𝑙1 + 𝑙2. (4.38)

Part i) Bounding 𝑙1:

𝑙1 ∶ = 𝐸|(
1
𝑛

𝑛

∑
𝑖=1
𝑦𝑖(𝟙𝑎𝑖=1𝑞∗1(𝑧𝑖 , 1, 𝑥𝑖) − 𝟙𝑎𝑖=0𝑞∗0(𝑧𝑖 , 0, 𝑥𝑖))) − (

1
𝑛

𝑛

∑
𝑖=1
𝑦𝑖(𝟙𝑎𝑖=1𝑞

†
1 (𝑧𝑖 , 1, 𝑥𝑖) − 𝟙𝑎𝑖=0𝑞

†
0(𝑧𝑖 , 0, 𝑥𝑖))) |

≤ 1
𝑛

𝑛

∑
𝑖=1
𝐸| (𝑦𝑖𝟙𝑎𝑖=1(𝑞∗1(𝑧𝑖 , 1, 𝑥𝑖) − 𝑞

†
1 (𝑧𝑖 , 1, 𝑥𝑖))) − (𝑦𝑖𝟙𝑎𝑖=0(𝑞∗0(𝑧𝑖 , 0, 𝑥𝑖) − 𝑞

†
0(𝑧𝑖 , 0, 𝑥𝑖))) |

= 𝐸| (𝑌𝟙𝐴=1(𝑞∗1(𝑍, 1, 𝑋) − 𝑞†1 (𝑍, 1, 𝑋))) − (𝑌𝟙𝐴=0(𝑞∗0(𝑍, 0, 𝑋) − 𝑞†0(𝑍, 0, 𝑋))) |

≤ 𝐸|𝑌𝟙𝐴=1(𝑞∗1(𝑍, 1, 𝑋) − 𝑞†1 (𝑍, 1, 𝑋))| + 𝐸|𝑌𝟙𝐴=0(𝑞∗0(𝑍, 0, 𝑋) − 𝑞†0(𝑍, 0, 𝑋))|.



4.5. A simple numerical test 68

Notice that

𝐸|𝑌𝟙𝐴=𝑎(𝑞∗𝑎(𝑍, 𝑎, 𝑋) − 𝑞†𝑎(𝑍, 𝑎, 𝑋))| =𝐸𝑍𝐴𝑋 [|𝟙𝐴=𝑎(𝑞∗𝑎(𝑍, 𝑎, 𝑋) − 𝑞†𝑎(𝑍, 𝑎, 𝑋))|𝐸𝑌[|𝑌||𝑍, 𝐴, 𝑋]]

=𝐸𝑍𝐴𝑋 [| ⟨𝑞∗𝑎 − 𝑞†𝑎 , 𝜓(𝑍, 𝐴, 𝑋)⟩
𝐹
|𝐸𝑌[|𝑌||𝑍, 𝐴, 𝑋]]

≤𝐸𝑍𝐴𝑋 [‖𝑞∗𝑎 − 𝑞†𝑎‖𝐹 ‖𝜓(𝑍, 𝐴, 𝑋)‖𝐹⏝⎵⎵⎵⏟⎵⎵⎵⏝
upper bounded by 𝑡𝜓

𝐸𝑌[|𝑌||𝑍, 𝐴, 𝑋]]

≤ (𝐸‖𝑞∗𝑎 − 𝑞†𝑎‖2𝐹)
1
2 (𝐸𝑍𝐴𝑋[(𝐸𝑌[|𝑌||𝑍, 𝐴, 𝑋])2])

1
2 𝑡𝜓⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝

<∞

. (4.39)

To bound (4.39), we need the upper bound of 𝐸‖𝑞∗𝑎 − 𝑞†𝑎‖2𝐹.

𝐸‖𝑞∗𝑎 − 𝑞†𝑎‖2𝐹 = 𝐸‖𝑞∗𝑎 − 𝑞∗𝑎 + 𝑞∗𝑎 − 𝑞†𝑎‖2𝐹
= 𝐸‖𝑞∗𝑎 − 𝑞∗𝑎‖2𝐹 + 𝐸‖𝑞∗𝑎 − 𝑞†𝑎‖2𝐹 + 2𝐸 [⟨𝑞∗𝑎 − 𝑞∗𝑎 , 𝑞∗𝑎 − 𝑞†𝑎⟩𝐹

]

≤ 𝐸‖𝑞∗𝑎 − 𝑞∗𝑎‖2𝐹 + 𝐸‖𝑞∗𝑎 − 𝑞†𝑎‖2𝐹 + 2𝐸 [‖𝑞∗𝑎 − 𝑞∗𝑎‖𝐹‖𝑞∗𝑎 − 𝑞†𝑎‖𝐹]

≤ 𝐸‖𝑞∗𝑎 − 𝑞∗𝑎‖2𝐹 + 𝐸‖𝑞∗𝑎 − 𝑞†𝑎‖2𝐹 + 2 (𝐸‖𝑞∗𝑎 − 𝑞∗𝑎‖2𝐹)
1
2 (𝐸‖𝑞∗𝑎 − 𝑞†𝑎‖2𝐹)

1
2 .

In fact, by Corollary 4.1 and 4.2, as 𝑛 ⟶ ∞, the three parts in the upper bound converges to 0, if
0 < 𝛽 < 1

4 . Hence, by (4.39), 𝑙1 asymptotically converges to 0 as 𝑛 ⟶ ∞.
Part ii) Bounding 𝑙2:
Since we have assumed the variance of 𝑌(𝟙𝐴=1𝑞†1 (𝑍, 1, 𝑋) − 𝟙𝐴=0𝑞†0(𝑍, 0, 𝑋)) is finite, 𝑙2 can be upper
bounded by

𝑙2 ∶ = 𝐸|(
1
𝑛

𝑛

∑
𝑖=1
𝑦𝑖(𝟙𝑎𝑖=1𝑞

†
1 (𝑧𝑖 , 1, 𝑥𝑖) − 𝟙𝑎𝑖=0𝑞

†
0(𝑧𝑖 , 0, 𝑥𝑖))) − (𝐸[𝑌(𝟙𝐴=1𝑞†1 (𝑍, 1, 𝑋) − 𝟙𝐴=0𝑞†0(𝑍, 0, 𝑋))]) |

≤ √Var(1𝑛

𝑛

∑
𝑖=1
𝑦𝑖(𝟙𝑎𝑖=1𝑞

†
1 (𝑧𝑖 , 1, 𝑥𝑖) − 𝟙𝑎𝑖=0𝑞

†
0(𝑧𝑖 , 0, 𝑥𝑖)))

= 1
√𝑛
√Var(𝑌(𝟙𝐴=1𝑞†1 (𝑍, 1, 𝑋) − 𝟙𝐴=0𝑞†0(𝑍, 0, 𝑋)))

= 𝒪(𝑛−
1
2 ).

Combining the asymptotic behaviors of 𝑙1 and 𝑙2, we have (4.38) converges to 0 as 𝑛 ⟶ ∞. By
the definition of universal kernel, 𝜒 should approximate the true ATE 𝜒 arbitrarily well. Hence, when
0 < 𝛽 < 1

4 , the kernel embedded ATE estimator 𝜒 is a consistent estimator of 𝜒.
□

4.5. A simple numerical test
In this section, we explain the numerical test of the kernel embedded ATE estimator (4.37) and analyze
its convergence behaviors in a simple trial.

Data generation The data generation scheme of the numerical test is based on the graphical model
1.2. We assume the data is sequentially generated as follows.
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𝑈 = 𝜖1
𝑋 = 0.5𝑈 + 𝜖2
𝑍 = 0.3𝑈 + 0.4𝑋 + 𝜖3
𝑊 = 0.6𝑈 + 0.3𝑋 + 𝜖4
𝐴 ∼ Bernoulli(𝑝), 𝑝 = 𝐸[𝟙0.3𝑈+0.5𝑋+0.7𝑍+𝜖5>0]
𝑌1 = 2 + 0.7𝑈 + 0.2𝑋 + 0.8𝑊 + 𝜖6
𝑌0 = 1 + 0.3𝑈 + 0.4𝑋 + 0.3𝑊 + 𝜖7
𝑌 = 𝟙𝐴=1𝑌1 + 𝟙𝐴=0𝑌0,

where 𝜖1, ⋯ , 𝜖7 are i.i.d. from𝒩(0, 1).
According to the model, since 𝐸[𝑈] = 𝐸[𝑋] = 𝐸[𝑊] = 0, the true ATE is given by

𝜒 = 𝐸[𝑌1 − 𝑌0] = 1.

Kernel function To compute the empirical regularized kernel embedded solution 𝑞∗𝑎 (4.27) by Propo-
sition 4.3, we choose the Gaussian RBF kernel to construct the RKHSs. The kernel is given by

𝑘((𝑊, 𝑋), (𝑊′, 𝑋′)) ∶= exp{−𝛾‖[𝑊𝑋] − [𝑊′𝑋′]‖2}
̃𝑙((𝑍, 𝑎, 𝑋), (𝑍′, 𝑎, 𝑋′)) ∶= exp{−𝛾‖[𝑍𝑋] − [𝑍′𝑋′]‖2}, ∀𝑎 ∈ {0, 1}

𝑙(((𝑍, 𝐴, 𝑋), (𝑍′, 𝐴′, 𝑋′))) ∶= 𝟙𝐴=𝑎𝟙𝐴′=𝑎 exp{−𝛾‖[𝑍𝑋] − [𝑍′𝑋′]‖2}, ∀𝑎 ∈ {0, 1},

where [⋅⋅] is a concatenated vector, i.e. ∀𝐴, 𝐵 ∈ ℝ𝑛, then [𝐴𝐵] = 𝐴⊕ 𝐵 ∈ ℝ2𝑛.
For any 𝑎 ∈ {0, 1}, we define the mixed Gram matrices 𝑀𝑎 of 𝑘 and ̃𝑙, and 𝑀 of 𝑘 and 𝑙 by matrices
whose entries are

𝑀𝑎(𝑖, 𝑗) ∶= exp{−𝛾‖[𝑤𝑖𝑥𝑖] − [𝑧𝑗𝑥𝑗]‖2}
𝑀(𝑖, 𝑗) ∶= 𝟙𝑎𝑗=𝑎 exp{−𝛾‖[𝑤𝑖𝑥𝑖] − [𝑧𝑗𝑥𝑗]‖2}.

The parameter 𝛾 represents the flexibility of the kernel, since low 𝛾 gives wide Gaussian curves implying
smoother basis functions, while large 𝛾 gives narrow Gaussian curves and captures fine detail easily
but require more care to avoid oscillations or instability.

Hyperparameter selection During the first few attempts, we find that the matrix 𝐾𝐿(𝐾+𝑛𝜆1𝐼𝑛)−1𝑀+
𝑛𝜆2𝑀𝑎 is usually ill-posed, which means its inverse is unstable. So, we turn to the Tikhonov regularized
solution of the kernel embedded coefficient Λ̂ (4.28). This leads to selection of 4 parameters: 𝜆1 ∈
(0,+∞), 𝛽 ∈ (0, 14), 𝜆 ∈ (0, +∞), 𝛾 ∈ (0, +∞). Since the spaces where the parameters lie in are
extremely large to find the optimal values, we choose some potentially optimal points and restrict the
searching area of the parameters within

𝜆1 ∈ {0.0001, 0.005, 0.001, 0.05, 0.01, 0.5, 0.4, 0.3, 0.2, 0.1}
𝛽 ∈ {0.00001, 0.0001, 0.001, 0.01, 0.1, 0.125, 0.15, 0.175, 0.2, 0.225}
𝜆 ∈ {0.0001, 0.005, 0.001, 0.05, 0.01, 0.5, 0.4, 0.3, 0.2, 0.1}
𝛾 ∈ {0.001, 0.05, 0.01, 0.5, 0.1, 1, 5, 50, 500, 1000}.

This still provides 10000 combinations. To decrease the training cost, we randomly choose 100 poten-
tial combinations from the 10000 options to select the optimal parameters. Furthermore, here 𝑅, the
number of repetitions in a single iteration, is set to 100, which is a relatively small value compared to
500 or above in general training tasks. Therefore, we believe when choosing the optimal parameters
from the whole parameter space and increasing 𝑅, the performance of the estimator will improve.
In a test with a fixed sample size 𝑛 = 2000, we find the optimal parameters in the randomly chosen
subset are

(𝜆1, 𝛽, 𝜆, 𝛾)𝜒=1 = (0.1, 0.01, 0.1, 0.001). (4.40)
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The mean absolute error (MAE) of the difference between 𝜒 and 𝜒 is given by 0.088 ± 0.008, which is
around 8.8% of the true ATE. However, when applying the optimal parameters (4.40) to a different data
generation scheme for example changing 𝑌1 = 2+0.7𝑈+0.2𝑋+0.8𝑊+𝜖6 to 𝑌1 = 20+0.7𝑈+0.2𝑋+
0.8𝑊 + 𝜖6 while remaining the others unchanged, we find the convergence behavior is bad. The MAE
for the new data generation scheme under the same setting is 10.447 ± 0.061, which is more than a
half of the true ATE 𝜒 = 19. When the parameter is replaced by

(𝜆1, 𝛽, 𝜆, 𝛾)𝜒=19 = (0.2, 0.225, 0.01, 0.001), (4.41)

the MAE decreases to 1.514 ± 0.153 which is around 8.0% to the true ATE. Hence, the behavior of the
estimator greatly depends on the choice of parameters. In addition, even a slight change in the data
generation scheme will lead to the change on the optimal parameters.

Test on convergence rate We conduct two simple experiments on the convergence of the ATE
estimator as sample size grows. The data generation processes are mentioned in the hyperparameter
selection with corresponding true ATE 1 and 19. We set the sample size to increase from 100 to 2000
with the interval of 50 between two adjacent points. And we fix the parameters by (4.40) for 𝜒 = 1 and
(4.41) for 𝜒 = 19.
The results are shown in Figure 4.2 and 4.3.

Figure 4.2: Curves of MAE when true ATE is 1 with
parameters (4.40).

Figure 4.3: Curves of MAE when true ATE is 19 with
parameters (4.41).

If we ignore the influence from the discrete sample sizes, the oscillations of the curves in both figures are
caused by the relatively low 𝑅, which result in large uncertainty in the estimation of the MAE.We believe
as 𝑅 goes larger, the curve will be smoother. That the lowest MAEs for the two cases keep above 0
also matches the bias brought by regularization parameters. Moreover, the result for 𝜒 = 19 shows
that the estimator maintains the lowest MAE when the sample size lies in the range from 1500 to 1750,
and loses its convergence when sample size continues to grow. The potential reason is that the fixed
regularization parameter 𝜆 can’t control the well-posedness of 𝐾𝐿(𝐾 + 𝑛𝜆1𝐼𝑛)−1𝑀 + 𝑛𝜆2𝑀𝑎 anymore
when the size of matrix is larger than a certain scale. Hence, we can conclude that the experiments
witness the consistency of our ATE estimator, although the regularization parameters bring uncertainty
as sample size keeps growing.



5
Discussion

Conclusion This thesis proposes a method to estimate the 𝑞-bridge function under nonparamet-
ric model in the proximal causal inference framework. The method depends on a series of problem
transformations and the existence of a bounded continuous solution. It starts from transforming the
original integral equation determining the existence of the 𝑞-bridge function to a new form without prior
knowledge of propensity score. Then it combines ERM reformulation, minimax problem reformulation
through the Fenchel duality and the interchange of minimization and integration, and finally the kernel
embedding of means and cross-covariances to acquire a kernel embedded minimax problem about the
dual function and 𝑞-bridge function. To get the unique kernel embedded solution, we applied Tikhonov
regularization to get a regularized kernel embedded solution 𝑞∗𝑎 belonging to the RKHS induced by a
universal kernel about 𝑍, 𝐴, 𝑋, which converges to the true kernel embedded solution 𝑞†𝑎 also lying in the
same RKHS. We find the convergence of 𝑞∗𝑎 to 𝑞†𝑎 in RKHS norm only depends on 𝜆2, the regulariza-
tion parameter of the RKHS norm of 𝑞-bridge function, but irrelevant to the penalty of the dual function.
To prove this convergence, we first transform the original equation problem with an idea similar to the
transformation (1.11), then give the kernel embedded version of the new equation problem to derive an
equality that 𝑞†𝑎 satisfies. And in the end we use spectral decompositions of compact operators to de-
compose both 𝑞∗𝑎 and 𝑞†𝑎. We also prove the consistency of the empirical regularized kernel embedded
solution 𝑞∗𝑎 to 𝑞∗𝑎 in RKHS norm. The corresponding convergence rate is 𝒪𝑝(

1
𝜆22√𝑛

). The proof mainly
depends on the √𝑛-consistency of (cross)-covariance embeddings and mean embeddings which are
shown in Chapter 2. At last, we propose an ATE estimator 𝜒 based on the PIPW estimator and show
the convergence of 𝜒 to 𝜒 in absolute difference when 𝜆2 = 𝑛−𝛽 with 0 < 𝛽 <

1
4 . The simple numerical

test also helps illustrate the consistency of the estimator 𝜒.

Future work Unlike the existing estimators of treatment confounding bridge function [16, 19], which
require both bridge functions to exist, our estimator only depends on the existence of the bounded
continuous treatment confounding bridge function and thus has potential to be applied to more real-life
scenarios. However, although the definition of the universal kernels guarantees the RKHS induced by
the universal kernel to be dense in the space of all bounded continuous functions, it is still a problem
to understand how well can the kernel embedded solution approximate the true bounded continuous
solution. This relies on more investigations on the literature about universal kernel in the future. More-
over, in the numerical test part, we only conducted an experiment about the new proposed estimator
on a toy case, which can’t truly reflect the power and deficiency of the estimator. Hence, we expect the
opportunity to apply the estimator to some real cases in the future.
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A
Gaussian model

In this part, we derive the distribution of 𝑈 conditional on 𝑍, 𝐴, 𝑋 and the distribution of 𝑈 conditional on
𝑊,𝐴, 𝑋 under Gaussian model in Example 1.2. For simplicity, we denote 𝑥𝑇𝐴𝑥 by ‖𝑥‖2𝐴 and 𝑥𝑇𝐴𝑦 by
⟨𝑥, 𝑦⟩𝐴.
Part (i): 𝑝(𝑈|𝑍, 𝐴 = 𝑎, 𝑋).

𝑝(𝑈|𝑍, 𝐴 = 𝑎, 𝑋) = 𝑝(𝑈, 𝑍, 𝑎, 𝑋)
𝑝(𝑍, 𝑎, 𝑋)

∝ 𝑝(𝑈, 𝑍, 𝑎, 𝑋)
= 𝒩(𝜇𝑈 , Σ𝑈)𝒩(𝜇𝑋 + 𝛾𝑋|𝑈𝑈, Σ𝑋)𝒩(𝜇𝑍 + 𝛾𝑍|𝑈𝑈 + 𝛾𝑍|𝑋𝑋, Σ𝑍)𝑓𝐴(𝑎|𝑈, 𝑍, 𝑋)

∝ exp {−12‖𝑈‖
2
Σ−1𝑈

− 12‖𝛾𝑋|𝑈𝑈‖
2
Σ−1𝑋

− 12‖𝛾𝑍|𝑈𝑈‖
2
Σ−1𝑍

+ 𝜇(𝑍, 𝑋)𝑇𝑈 + log 𝑓𝐴(𝑎|𝑈, 𝑍, 𝑋)} .

Hence, 𝑝(𝑈|𝑍, 𝐴 = 𝑎, 𝑋) is given by

𝑝(𝑈|𝑍, 𝐴 = 𝑎, 𝑋) = 𝐶(𝜃(𝑍, 𝑎, 𝑋)) exp {−12‖𝑈‖
2
Σ−1𝑈

− 12‖𝛾𝑍|𝑈𝑈‖
2
Σ−1𝑍

− 12‖𝛾𝑍|𝑈𝑈‖
2
Σ−1𝑍

+ 𝜇(𝑍, 𝑋)𝑇𝑈 + log 𝑓𝐴(𝑎|𝑈, 𝑍, 𝑋)} ,
(A.1)

where 𝐶(𝜃(𝑍, 𝑎, 𝑋)) is the normalizing term and

𝜇(𝑍, 𝑋) = Σ−1𝑈 𝜇𝑈 + (𝑋 − 𝜇𝑋)𝑇Σ−1𝑋 𝛾𝑋|𝑈 + (𝑍 − 𝜇𝑍 − 𝛾𝑍|𝑋)𝑇Σ−1𝑍 𝛾𝑍|𝑈 .

Part (ii): 𝑝(𝑈|𝑊, 𝐴 = 𝑎, 𝑋).

𝑝(𝑈|𝑊, 𝐴 = 𝑎, 𝑋) = 𝑝(𝑈,𝑊, 𝑎, 𝑋)
𝑝(𝑊, 𝑎, 𝑋)

∝ 𝑝(𝑈,𝑊, 𝑎, 𝑋)
= 𝑝(𝑊|𝑈, 𝑋)𝑝(𝑈, 𝑋, 𝑎)

= 𝑝(𝑊|𝑈, 𝑋)∫
ℝ𝑑3

𝑝(𝑈)𝑝(𝑋|𝑈)𝑝(𝑧|𝑈, 𝑋)𝑓𝐴(𝑎|𝑈, 𝑧, 𝑋)𝑑𝑧

= 𝑝(𝑊,𝑈, 𝑋)∫
ℝ𝑑3

𝑝(𝑧|𝑈, 𝑋)𝑓𝐴(𝑎|𝑈, 𝑧, 𝑋)𝑑𝑧.

𝑝(𝑊,𝑈, 𝑋) = 𝒩(𝜇𝑈 , Σ𝑈)𝒩(𝜇𝑋 + 𝛾𝑋|𝑈𝑈, Σ𝑋)𝒩(𝜇𝑊 + 𝛾𝑊|𝑈𝑈 + 𝛾𝑊|𝑋𝑋, Σ𝑊)

∝ exp {−12‖𝑈‖
2
Σ−1𝑈

− 12‖𝛾𝑋|𝑈𝑈‖
2
Σ−1𝑋

− 12‖𝛾𝑊|𝑈𝑈‖
2
Σ−1𝑊

+ 𝜇(𝑊,𝑋)𝑇𝑈} ,

where
𝜇(𝑊, 𝑋) = Σ−1𝑈 𝜇𝑈 + (𝑋 − 𝜇𝑋)𝑇Σ−1𝑋 𝛾𝑋|𝑈 + (𝑊 − 𝜇𝑊 − 𝛾𝑊|𝑋)𝑇Σ−1𝑊 𝛾𝑊|𝑈 .
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As for the integral part,

∫
ℝ𝑑3

𝑝(𝑧|𝑈, 𝑋)𝑓𝐴(𝑎|𝑧, 𝑋)𝑑𝑧 ∝ exp {−12‖𝛾𝑍|𝑈𝑈‖
2
Σ−1𝑍
} exp {log𝑇(𝑈)} ,

where

𝑇(𝑈) = ∫
ℝ𝑑3

exp {⟨𝑧 − 𝜇𝑍 − 𝛾𝑍|𝑋𝑋, 𝛾𝑍|𝑈𝑈⟩Σ−1𝑍 − 12‖𝑧 − 𝜇𝑍 − 𝛾𝑍|𝑋𝑋‖
2
Σ−1𝑍
} 𝑓𝐴(𝑎|𝑈, 𝑧, 𝑋)𝑑𝑧. (A.2)

The exponent in (A.2) is dominated by the quadratic term. As ‖𝑧‖2 → ∞, when 𝑎 = 1, logistic function
𝑓𝐴(1|𝑈, 𝑧, 𝑋) is close to 1. The integrand is the exponential function with a quadratic decreasing speed
that makes the integral convergent. When 𝑎 = 0, logistic function 𝑓𝐴(0|𝑈, 𝑧, 𝑋) ≤ exp{−‖𝜇𝐴 + 𝛾𝐴|𝑍𝑍 +
𝛾𝐴|𝑋𝑋 + 𝛾𝐴|𝑈𝑈‖2}, whose exponent is still linear in 𝑧. In this way, the integrand is controlled by an
exponential function decaying quadraticall, implying a convergence. Hence 𝑇(𝑈) < ∞.
From the above deduction, 𝑝(𝑈|𝑊, 𝑎, 𝑋) is given by

𝑝(𝑈|𝑊, 𝑎, 𝑋) = 𝐶(𝜃(𝑊, 𝑎, 𝑋)) exp { − 12‖𝑈‖
2
Σ−1𝑈

− 12‖𝛾𝑋|𝑈𝑈‖
2
Σ−1𝑋

− 12‖𝛾𝑊|𝑈𝑈‖
2
Σ−1𝑊

− 12‖𝛾𝑍|𝑈𝑈‖
2
Σ−1𝑍

+ 𝜇(𝑊,𝑋)𝑇𝑈 + log𝑇(𝑈)}, (A.3)

where 𝐶(𝜃(𝑊, 𝑎, 𝑋)) is the normalizing term.



B
Inequality and identities

In this part, we introduce the Cauchy-Schwartz inequality, the Parseval’s identity on Hilbert spaces and
the Hölder’s inequality. Some matrix identities are also included.
Let 𝐻 be a separable Hilbert space with countable orthonormal basis (𝑒𝑖)𝑖≥1. Denote the inner product
on 𝐻 by ⟨⋅, ⋅⟩𝐻.

Theorem B.1 (Cauchy-Schwartz inequality)
For any 𝑥, 𝑦 ∈ 𝐻, we have ⟨𝑥, 𝑦⟩𝐻 ≤ √⟨𝑥, 𝑥⟩𝐻 ⟨𝑦, 𝑦⟩𝐻. The equality holds if and only if 𝑥 = 𝜆𝑦, ∀𝜆 ∈ ℝ.

Proof:
Assume 𝑦 ≠ 0 and fix a 𝑘 = ⟨𝑥,𝑦⟩𝐻

⟨𝑦,𝑦⟩𝐻
.

0 ≤ ⟨𝑥 − 𝑘𝑦, 𝑥 − 𝑘𝑦⟩𝐻 = ⟨𝑥, 𝑥⟩𝐻 − 2𝑘 ⟨𝑥, 𝑦⟩𝐻 + 𝑘2 ⟨𝑦, 𝑦⟩𝐻

= ⟨𝑥, 𝑥⟩𝐻 − 2
⟨𝑥, 𝑦⟩𝐻
⟨𝑦, 𝑦⟩𝐻

⟨𝑥, 𝑦⟩𝐻 +
⟨𝑥, 𝑦⟩2𝐻
⟨𝑦, 𝑦⟩𝐻

.

Multiplying ⟨𝑦, 𝑦⟩𝐻 at both sides, we have

0 ≤ ⟨𝑥, 𝑥⟩𝐻 ⟨𝑦, 𝑦⟩𝐻 − ⟨𝑥, 𝑦⟩
2
𝐻

⟹ ⟨𝑥, 𝑦⟩𝐻 ≤ √⟨𝑥, 𝑥⟩𝐻 ⟨𝑦, 𝑦⟩𝐻 .

It is clear that the equality holds if and only if 𝑥 and 𝑦 are linearly dependent.
□

The Cauchy-Schwarz inequality is a fundamental result in linear algebra and functional analysis. It
plays a key role in the theory of Hilbert spaces because it’s used to prove the triangle inequality for
norms and ensures the continuity of the inner product. One can check section 3.1 of [26] for more
details.

Theorem B.2 ([26]Parseval’s identity)
For any 𝑥 ∈ 𝐻, the Parseval’s identity is given by

‖𝑥‖2𝐻 =∑
𝑖≥1
⟨𝑥, 𝑒𝑖⟩

2
𝐻 .

Proof:
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The orthonormality of the basis means that ⟨𝑒𝑖 , 𝑒𝑗⟩𝐻 = {
1, 𝑖 = 𝑗
0, 𝑖 ≠ 𝑗 . Under the orthonormal basis (𝑒𝑖)𝑖≥1,

element 𝑥 ∈ 𝐻 has the representation
𝑥 =∑

𝑖≥1
⟨𝑥, 𝑒𝑖⟩𝐻 𝑒𝑖 .

Hence,

‖𝑥‖2𝐻 = ⟨𝑥, 𝑥⟩𝐻 = ⟨∑
𝑖≥1
⟨𝑥, 𝑒𝑖⟩𝐻 𝑒𝑖 ,∑

𝑗≥1
⟨𝑥, 𝑒𝑗⟩𝐻 𝑒𝑗⟩

𝐻

=∑
𝑖≥1
⟨𝑥, 𝑒𝑖⟩𝐻 ⟨𝑒𝑖 ,∑

𝑗≥1
⟨𝑥, 𝑒𝑗⟩𝐻 𝑒𝑗⟩

𝐻

=∑
𝑖≥1
⟨𝑥, 𝑒𝑖⟩𝐻 ⟨𝑒𝑖 , ⟨𝑥, 𝑒𝑖⟩𝐻 𝑒𝑖⟩𝐻

=∑
𝑖≥1
⟨𝑥, 𝑒𝑖⟩

2
𝐻 .

□
The Parseval’s identity can be seen as the analog of the Pythagorean theorem on infinite dimensional
spaces. This means in infinite dimensions the norm squared is the sum of squared projections onto
the basis vectors.
Next we give the Hölder’s inequality without proof.

Theorem B.3 (Hölder’s inequality)
Let (Ω,𝒜, 𝜇) be a measurable space and let 𝑝, 𝑞 ∈ [1,∞] with 1

𝑝 +
1
𝑞 = 1. Then for all measurable

functions 𝑓 ∈ 𝐿𝑝(Ω, 𝜇) and 𝑔 ∈ 𝐿𝑞(Ω, 𝜇),

‖𝑓𝑔‖1 ≤ ‖𝑓‖𝑝‖𝑔‖𝑞 .

The equality holds when |𝑓|𝑝 and |𝑔|𝑞 are linearly independent almost everywhere on Ω, i.e. there
exists 𝛼, 𝛽 ∈ ℝ such that 𝛼|𝑓|𝑝 = 𝛽|𝑔|𝑞.

When 𝜇 generalizes to probability measure, the Hölder’s inequality is given by

𝐸[|𝑓𝑔|] ≤ (𝐸[|𝑓|𝑝])
1
𝑝 (𝐸[|𝑔|𝑞])

1
𝑞 .

At last we show two useful matrix identities.

Theorem B.4 (Matrix identities)
Assume 𝐴 ∈ ℝ𝑚×𝑛, 𝐵, 𝐶 ∈ ℝ𝑛×𝑛 and 𝑡 ∈ ℝ. The following identities hold

𝐴(𝐴𝑇𝐴 + 𝑡𝐼𝑛)−1 = (𝐴𝐴𝑇 + 𝑡𝐼𝑚)−1𝐴, (B.1)
𝐵(𝐵−1 − 𝐶−1) = (𝐶 − 𝐵)𝐶−1. (B.2)

Proof:
i) Identity 𝐴(𝐴𝑇𝐴 + 𝑡𝐼𝑛)−1 = (𝐴𝐴𝑇 + 𝑡𝐼𝑚)−1𝐴:
Multiplying 𝐴𝑇𝐴 + 𝑡𝐼𝑛 on the right on the both sides, we notice the LHS is 𝐴 and get the RHS

(𝐴𝐴𝑇 + 𝑡𝐼𝑚)−1𝐴(𝐴𝑇𝐴 + 𝑡𝐼𝑛) = (𝐴𝐴𝑇 + 𝑡𝐼𝑚)−1(𝐴𝐴𝑇𝐴 + 𝑡𝐴)
= (𝐴𝐴𝑇 + 𝑡𝐼𝑚)−1(𝐴𝐴𝑇 + 𝑡𝐼𝑚)𝐴 = 𝐴,
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which means the two sides are equivalent.
ii) Identity 𝐵(𝐵−1 − 𝐶−1) = (𝐶 − 𝐵)𝐶−1:
Since both sides can be simplified to 𝐼𝑛 − 𝐵𝐶−1, the identity holds.

□
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