

Geometrically articulated Bio-receptive concrete facades

p5 presentation

26/06/2020

Kazi Fahriba Mustafa | 4842960 | TU Delft 2019-20

Author	Kazi Fahriba Mustafa				
Student Number	4842960				
Studio	Sustainable Design Graduation Studio				
Track	Building Technology				
Mentors	Dr. Alejandro Prieto Hoces Dr. Marc Ottele				
External examiner	Dr.ir. E.H. Gramsbergen				
Partner	Byldis				

CONTENTS 1. Background

- 2. Design development
- 3. Prototype making
- 4. Design Validation
- 5. Design guidelines
- 6. Production to Assembly
- 7. Visualization
- 8. Conclusion and discussion

1. Background

Concrete construction 8% of the total CO2 emissions worldwide

57% CO2 uptake by concrete structures

USA Pavilion - Milan Expo 2015 by Biber Architects

Ann Demeulemeester Shop in Seoul by Mass Studies

As defined by Guillitte in 1995

'The aptitude of a material (or any other inanimate object) to be colonised by one or several groups of living organisms without necessarily undergoing any biodeterioration.'

An alternative term to Bio-Receptivity is Bio-colonization (Cruz & Beckett, 2016)

'Surface growth of plants upon a material is known as biological colonization.'

As defined by Guillitte in 1995

'The aptitude of a material (or any other inanimate object) to be colonised by one or several groups of living organisms without necessarily undergoing any biodeterioration.'

An alternative term to Bio-Receptivity is Bio-colonization (Cruz & Beckett, 2016)

'Surface growth of plants upon a material is known as biological colonization.'

- a. Facade of San Telmo Museum Spain, 2011
- b. GRC limestone concrete panels UCL Bartlett, 2017

b

 $\rm CO_2$ reduction

Dust removal

Cooling effect

Self-sustaining

+

Low cost

+

 CO_2 reduction

Dust removal

Cooling effect

+

```
Self-sustaining
```

Low cost

Moss and algae on sculpture

Moss on brick wall

Problem statement

Despite the benefits of a Bio receptive façade, it is often viewed as a deteriorating factor in building envelopes. Hence, an ordered and systematic approach to moss growth could help change the perception of people and designers, promoting its widespread use.

Objectives

Create order & balance in moss growth

Test the role of geometry

Engineer an optimized facade system

Main research question

What is the role/impact of surface geometry on an engineered/systematic growth of mosses on concrete facade panels?

Sub research questions

Background Research:

- 1. What are mosses? What is the biological growth pattern of mosses?
- 2. What factors influence the growth of mosses on stony materials (mainly concrete)?

Design by Research:

- 3. What are the different geometry types and their possible applications in façade design?
- 4. How can geometry be used to engineer a selfsustaining moss growth system on concrete panels?

Validation of Design:

- 5. How to measure the workability of a geometrically articulated bio-receptive concrete façade?
- 6. What is the impact of the micro and macro elements of geometry on water relations of the surface?

Façade Engineering:

- 7. What is the most feasible production technique to make the designed geometries?
- 8. How to design an optimized façade panel to facilitate a simple and efficient installation process?

RESEARCH METHODOLOGY

 \bigcirc

Plant Biology- Moss

Types

Tortula muralis

Water essential

Photosynthesis

Cushion growth

laminar layer

- Prevent evaporative loss
- water storage

Grimma pulvinata

Fertilization

Material properties Environmental properties Adequate rainfall High porosity High surface and permeability roughness Ξ pH RH 70% ± 10-20 °C Low pH 8-10 Blast furnace slag cement Scattered sunlight Low wind

Exploring order and balance in nature

Symmetry

Waves/dunes

Trees/Fractals

Cracks

Tessellations

- Spots/strips
- Foam/bubbles

Methods to create surface motifs

- Repetition
- Pattern
- Rhythm

Random rhythm

Regular rhythm

Flowing rhythm

Progessive rhythm

Exploring order and balance in nature

Symmetry

Chaos/meanders

Waves/dunes

Trees/Fractals Cra

Cracks

Tessellations

Spots/strips

Methods to create surface motifs

- Repetition
- Pattern
- Rhythm

Random rhythm R

Regular rhythm Alte

Flowing rhythm

Progessive rhythm

Spatial deformations

Geometry on facade design

1 Microalgae biofilm formation and growth (Huang et al., 2018)

Case studies on geometry influenced Bio-receptivity

2 Computational Seeding of Bio-receptive Materials Marcos Cruz & Richard Beckett, 2016

3 Concrete as a multifunctional material Ottele et al., 2010

Experimentation

Moss slurry preparation

Application

Outcome

Field survey

- Trail growth
- Imbalance in growth
- Cushion growth
- Deep penetration
- Affinity to rough surfaces
- Shaded and moist areas
- Dependent on material property

2. Design development

MICROCLIMATE

- Water retention
- Indirect sunlight
- Wind buffer
- Nutrient accumulation

DIRECT ROUTE for growth

- Slow water movement
- Rainwater channeling
- Cushion growth
- Anchorage

PRODUCTION FEASIBILITY

且 员工员 Production process

MATRIX OF GEOMETRIES

Geometric features applied in alternating rhythm

Geometric features applied in random rhythm

Features	Geometry (rhythm)	Level	Panel 1 (alternating)	Panel 2 (flowing)	Panel 3 (regular)	Panel 4 (random)	Panel 5 (n/a)	Panel 6 (n/a)
Slow water movement	Continuous obstacles	Macro geometry	~	~	~			
	Discontinuous obstacles					~		
	Along the flow		~	~		~		
	Against the flow				~			
Cushion growth	Macro depth		~	~				
	Radial form		~					
Water retention & Anchorage facility	Micro depth	Micro geometry	~	~	~	~		✓
Nutrient accumulation	Deep Micro depth				✓			\checkmark
Channel water to growth areas	Height and texture variation	Macro+ Micro geometry	~	~	~	~		

Installation

3. Prototype making

Step 1: Material testing for CNC milling of molds

Step 2: CNC milling of final foam molds

Step 3: Coating applied on molds

designed panels

plain panel

sand-layered panel

For 1 m3 of concrete:

Material	Specification	Amount (in 1m3)
CEM III/B 32.5 N	75% slag	300 kg
Dry sand	0-4mm	740 kg
Yellow jura gravels	5-8mm	1142 kg
Water		180 liters

1 tile (350 x 250 x 40)mm = 3.25 litres

Step 1: Weighing

Step 2: Mixing

Step 3: Pouring

Step 4: Vibration

Step 5: Setting

Step 6: Demolding

Panel 1

Panel 2

Panel 3

Two sets (12 nos.) Each weigh 7.5-8 kg Size: 350 x 250 x 40 mm

Panel 4

Panel 5

4. Design validation

- Moss growing experiment
- Water relations experiment
- CFD simulations
MOSS GROWING EXPERIMENT

The setup

Tropical green house

Saxicolous moss Moss slurry

White fungus growth

Location: TU Delft Tropical Green house Tempertare: 20 - 24°C Humidity: 65-85% Watering: Rainwater 2-3 times daily Growth period: 12-weeks Placement: 1st 6 weeks horizontal 2nd 6 weeks upright

WATER RELATIONS EXPERIMENT

The setup

spraying time: 30sec spraying amount: 150ml (coloured water)

WATER RELATIONS EXPERIMENT

The process

Initial preparation:

Sanding

Oven drying

The measurements:

Relative humidity

Weight

Temperature

Measurements taken:

2mins, 10mins and 20mins after spraying.

Frequency of experiment:

Day 1, Day 3, Day 7

Initial weight loss

Highest Panel 1

Panel 4

Panel 2

Lowest Panel 5

Panel 3 🗸 Panel 6

Reasons:

Fragility of the designed patterns Breaking of corners/parts Internal moisture evaporation

Weight gain in relation to initial weight

Weight gain in relation to initial weight

WATER RELATIONS EXPERIMENT

Results for change in weight

Initial weight loss

Highest Panel 1

Panel 4

Panel 2

Lowest Panel 5 Panel 3 ✓

Panel 6

Reasons:

Fragility of the designed patterns Breaking of corners/parts Internal moisture evaporation

Highest Panel 6 Range (39-44g) 🗸

Lowest Panel 2 Range (5-7g)

Panel 3- Maximum fluctuation Panel 2- Minimum fluctuation

Exception: Panel 5 high water absorption

Weight lost at 20 mins after spraying

Highest Panel 3 Range (2-8g)

Lowest Panel 2 Range (1-2.5g) 🗸

Panel 3- Maximum fluctuation Panel 2- Lowest weight loss

Note: Panel 6 high weight gain

WATER RELATIONS EXPERIMENT

Weight gain at 2 mins after spraying

Highest Panel 6 Range (39-44g) 🗸

Lowest Panel 2 Range (5-7g)

Panel 3- Maximum fluctuation Panel 2- Minimum fluctuation

Exception: Panel 5 high water absorption

Ridge Alcove

Points of measurement

Alcove moisture after 2 min

Highest Panel 3 Rg. (RH 26.8 - 61.2%) Lowest Panel 5 (RH 23 - 30%)

Alcove moisture after 20 min

Highest Panel 3	Rg. (RH 34.3 - 58.4%) 🗸	Deep micro- grooves
Lowest Panel 1	(RH 17.3 - 29.6%)	Shallow micro-
		grooves

Highest loss in surface mositure: Panel 6

Ridge moisture after 2 min

Highest Panel 6 Rg. (RH 33.5 - 55.6%) Lowest Panel 4 (RH 20.7 - 29%)

Ridge moisture after 20 min

			Against the flow
Highest Panel 3	Rg. (RH 29 - 43.5%)		macro-grooves
Lowest Panel 2	(RH 11 - 29.5%)	\checkmark	Wider and higher macro-grooves
			macro grooves

Highest loss in ridge moisture: Panel 6 &

WATER RELATIONS EXPERIMENT

Observations

Visual analysis

Panel 1

Minimum distinction between growth and no growth areas

Panel 2 Clear distinction between growth and no growth areas

Panel 3 No distinction between growth and no growth areas

Panel 4

Clear distinction on surface texture

Panel 5 No flow obstruction

Panel 6 No directed growth

Panel 3:

- Higher surface moisture
- Increased ridge moisture

Panel 6:

- Higher surface moisture
- High absorption capacity
- Quick drying

Results

Highest velocity in flow domain

Highest velocity in grooves

5 mm

Results

STAGE 4 & STAGE 5

Highest velocity in grooves

5 mm

Summary

Groove velocity in relation to height for an inlet velocity of 5m/s

A summary table for the vertex formation in different groove types

Inlet velocity	Groove type	w/h	Low speed	High speed	Water retention	Wash away	No vertex		For 1.5mm groove height 🗌
			•	1.5 mm					Shallow $w/h > 2$
	Type 1	1.33							Congested w/h <2
	Type 2	1.33							
	Type 2.1	2.67							
	Туре З	2						V	For 3mm groove height
	Type 3.1	4							• •
	Type 3.2	1.33							Shallow w/h > 1.33
				3 mm					Too Deep w/h <1
5 m/s	Type 2a	0.67						1	
	Type 2.1a	1.33						✓	
	Туре За	2						◆ + -	For 5mm groove height
	Type 3.1a	3.33						1	Shallow w/h > 1
	Type 3.2a	1							, _
				5mm		-			
	Type 2.1b	0.8						← i	
	Type 2.1bw	1							
	Type 2.1bwx	1.5							
	Type 2.1b	0.8							
2 m/s	Type 2.1bw	1							Groove height 🕴 🕇
	Type 2.1bwx	1.5							Weight(w)/Height (h) ↓ ~ 1
	Type 2.1b	0.8							
9 m/s	Type 2.1bw	1							
	Type 2.1bwx	1.5							For ideal vertex formation

Conclusion

5. Design guidelines

RE-EVALUATION OF ORDERED SYSTEM IN MOSS GROWTH

OBSTACLE DIRECTION	GROOVE DEPTH	+ AVG.WEIGHT GAIN (%) (at 20 min)	WEIGHT LOSS (%) (from 2 - 20 min)	ALCOVE MOISTURE (RH %) (at 20 min)	ALCOVE MOISTURE LOSS (%) (from 2 - 20 min)	RIDGE MOISTURE (RH %) (at 20 min)	RIDGE MOISTURE LOSS (%) (from 2 - 20 min)	MOSS GROWTH (week 12)	REMARKS + -
PANEL 1	along the flow macro www.uput.com micro	+0.06	-0.04	24.4	 ↓ -4 	23.1	-4.4 ↓		 cushion growth with macro depth moderate growth low absorption & retention low micro depth
PANEL 2	along the flow macro www.com	+0.07	-0.03	26.1	 ↓ -4.8 	19.7	↓ -7.1		 wider & deeper macro depth lower ridge moisture good growth low absorption & retention low micro depth
PANEL 3	against the flow	+0.28	-0.07	44.6	 -3.4 	▲ ▲ ▲ 36.1	+6.1		 moderate micro depth higher alcove moisture high ridge moisture lesser growth area low growth
PANEL 4	along the flow macro voooppooooo micro	+0.08	-0.03	25.9	 -4.4 	22.6	ℓ ↓ -3		- low absorption & retention - low macro & micro depth - low and random growth
PANEL 5	no obstacle	+0.39	(-0.03	25.1	 ↓ -1 	25.1	 ↓ -1 		- high absorption - quick drying - no growth
PANEL 6	random	+0.55	(↓ -0.04	3 0.2	▲ ↓ -16.1	3 0.2	▲ ↓ -16.1		- high absorption - low and random growth

Features	Geometry (rhythm)	Level	Panel 1 (alternating)	Panel 2 (flowing)	Panel 3 (regular)	Panel 4 (random)	Panel 5 (n/a)	Panel 6 (n/a)
	Continuous obstacles		~	~	\checkmark			
Slow water	Discontinuous obstacles					\checkmark		
movement	Along the flow	Macro	~	~		\checkmark		
	Against the flow	geometry			\checkmark			
	Macro depth		~	~				
Cushion growth	Radial form		~					
Water retention & Anchorage facility	Micro depth	Micro geometry	~	~	\checkmark	\checkmark		\checkmark
Nutrient accumulation	Deep Micro depth				\checkmark			✓
Channel water to growth areas	Height and texture variation	Macro+ Micro geometry	~	✓	✓	\checkmark		

CHOOSEN PANELS		MACRO GEOMETRY/ OBSTACLE DIRECTION	MACRO DEPTH	MICRO DEPTH	
		Along the flow Continuous obstacles -direct water to growth	W=30-50mm H=10-15mm I H/W=0.2~0.3 Higher, wider, smoother ridges -quick drying of ridges	shallow micro-grooves 1-1.5mm depth	
		areas	-direct growth areas		
	x∕vv∕v acro + micro	Against the flow	W=20mm H=10 mm I H/W=0.5 Higher, wider, smoother ridges	deep micro-grooves 3mm depth	
PANEL 3		-cannot direct water to growth areas	-high moisture in ridges -limited growth area	-water circulation -vertex created	
ma	acro	Along the flow Continuous obstacles	W=40mm H=7 mm I H/W=0.15 Iow, thin ridges	shallow micro-grooves 1-1.5mm depth	
PANEL 1 mie	cro	-direct water to growth areas	-shallow ridges -limit directed growth	-no water circulation	

	MACRO GEOMETRY/ OBSTACLE DIRECTION	MACRO DEPTH	MICRO DEPTH
GENERAL GUIDELINES	Along the flow Continuous obstacles (flowing/alternating rhythm)	H<= 20mm W H/W=0.2~0.3 Higher, wider, smoother ridges	verified with CFD simulation M deep micro-grooves 5mm depth wx/h= 0.8 wy/wx= 0.4

6. Production to assembly

CNC milling vs 3D printing:

Туре	Method	Remarks + -
CNC milling	Substractive manufacturing	 high precision variety material smooth finish
3D printing Fused diffusion modeling(FDM) - Industrial	Additive manufacturing	 less precise limited work volume layer imprints high post processing

Step 1: CNC milling of sample design

Polyurethane rubber:

2. Demolding

Step 2: Casting of negative elastic mold

Advantages:

- Reusable about 100 times
- No shrinkage
- Good abrasion resistance
- High strength
- Economic

Step 3: Demolding of negative elastic mold Resuable over 100 times

Step 4: Embedded metal clip

Step 5: Casting of concrete panel

THE MANUFACTURING PROCESS

Step 6: Demolding of concrete panel

Grit blasting

Washing

Acidification

Bush Hammering

Sanding/Chiseling (sand+gravel layer)

WASH (SURFACE RETARDER)

Negative process (N)

Step 4 - Demolding of the concrete

Step 2 - Casting of concrete

Step 3 - Setting time 24hrs, more than 48hrs may require sandblasting.

Step 5 - High pressure water wash

Note: Affect of surface retarder on the Bio-receptive character of concrete.

	Designed bio-receptive panel (euro)	Plain concrete panel (unpolished) (euro)
Concrete mix cost	6.0	6.0
Wooden frame	3.2	3.2
CNC milling cost	0.8	
Polyurethane rubber mold	2.83	
Casting time (labour wage)	87.5 (2.5 hr)	52.5 (1.5 hr)
Estimated total cost for a (1x1x0.04m) panel	~100 euro	~62 euro

Wooden frame

CNC milled sample

Polyurethane mold

Cost can be reduced through mass production:

Multiple elastic mold

- production time
- per hr labour cost
- miscellaneous factory cost

Panel size:

- Weight limitations
- Production limitations

- Erection feasibility and access
- Stress limitations

Handling weight per person = 25kg (elbow height)

Actual Panel sizes:

1m x 0.5m x 0.04m (35kg) or 1m x 0.6m x 0.04mm (42kg)

Panel arrangement for a 3m x 3m wall area:

Packing and Transportation:

Max. load carried 18-20 tons (20,000kg) Max. number of panels per trip 450 (approx.)

Maintenance:

Panels require periodic inspection once every 6 months:

- Remove any unhealthy moss patches
- Re-inoculate with moss spores
- Remove external surface contaninants

Note:

Drought longer than 3 months external watering required Suitable for mild temperate to tropical climates

Concrete cladding on steel frame structure

Concrete cladding on structural concrete wall

Window edge detail (plan view)

Base detail (plan view)

Heavy weight Panel length ±100cm

Medium weight Panel length ±70cm

Light weight Panel length ±50cm

7. Visualization

Type A (IDEAL estimated 100% coverage)

Groove depth, H=20mm Groove width, W = 60-85mm H/W=0.2~0.3

Type B (Scale up:1.5 estimated 70% coverage)

Groove depth, H=30mm Groove width, W = 85-120mm H/W=0.2~0.3

Depth > 20mm wind barrier hamper spores dispersal

Type C (Scale up:2 no ordered growth)

Groove depth, H=15mm Groove width, W= 125-160mm H/W=0.09~0.12

Width $> \sim$ a flattened surface, random moss coverage

Example 1 **Type A** Example 2 **Type A**

Example 1 **Type B** Example 2 **Type B**

8. Conclusion and discussion

A self-sustaining system:

MICRO LEVEL GEOMETRY

MACRO LEVEL GEOMETRY

An ordered and balanced growth:

Natural rough/grit blasted

Micro-grooves only

Micro & macro-geometry

NO ORDER & BALANCE

ORDER & BALANCE

Flowing rhythm

Alternating rhythm

An optimized facade system:

- simple designs
- resuable molds
- mass production
- efficient installation method

Limitations:

- Testing in natural environment
- Testing of the modified panels

DISCUSSION

Future recommendations

- Assign into parametric platform
- Quantify through environmental parameters
- Bio-receptive quality of other materials.

THANK YOU

Kazi Fahriba Mustafa | 4842960 | TU Delft 2019-20