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THE DISTRIBUTICN OF HYDRODYNAMIC MASS

AND DAMPING OF AN OSCILLATING SHIPFORM

IN SHALLOW WATER

W. Beukelman, J. Gerritsum

Introduction

The depth of water has an important influ-

ence on the vertical and horizontal motions of a

ship in waves, in particular when the waterdepth is

sraller than two and a half times the draught of the

vessel.

In shallow water the keel clearance depends

to a large extent on the combined effects of trim,

sinkage and the vertical displacement of the ship's

hull as a result of the ship notions in waves. Keel

clearance is of interest to ship owners and port

authorities, because of the ircreasing draught of

large cargo ships and the corresponding smaller

waterdepthidraught ratio's. The safety and manoeuvr-

ability cf a ship are influenced by the amount of

keel clearance and the cost of dredging depends tc a

large extent on the allowable minimum keel clearance

of the largest ships considered.

A detailed knowledge of the vertical motions

of a ship due to waves in shallow water will be of

interest to assist in solving such problems.

From a technical point of view strip theorY

methods to calculate ship motions due to waves in

deep water have proved to give satisfactory results.

Except fcr the rolling motions, viscous effects are

not impertant in strip theory calculations, but an

accurate determination of 2-dimensional damping and

added mass of ship-like cross sections is necessary,

as shown earlier 1.1] .

In the case of shallow water the use of strip

theory calculations is not obvious, because a much

larger influence of viscosity can be expected when

the keel clearance is small: In addition, the flow

conditions near the bow and the stern will differ

to a large extent from the two-dimensional flow

assumption, as used in the strip theory.

The present investigation concerns the comm

parison of the distribution of hydrodynamic mass
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and damping, as measured on a segmented sMT, model

In shallow water, with corresponding calculated re

sults using a strip theory method which takes the

finite waterdepth into account.

It should be noted that in these calculati-

ons no viscosity effects have been included.

In view of the comparison with calculations

the physical model has been restrained from sink-

age and trim, which would occur in the case of a

free floating model. In addition to the heavinn and

pitching motions also fnrced horizontal motions in

the sway and yaw mode have been carried out.

The experiments included the effects of

fonvard speed, frequency of oscilliation and water-

depth. A ranpe of frequencies have been chosen to

cover wave frequencies of interest for ship resoon-

ses.

The use of a segmented ship model enables

the determination of the sectional values of damp-

ing and added mass. This technique has been used

earlier for an analogous investigation of the deeo

water case El) .

See appendix I.

The calculations have been carried out with

a corputer program developed by H.Keil (3) .

In this calculation the hydrodynamic r,ass

and damping for 2-dimensional ship- like cross sec-

tions are computed with potential flow theory,

using a source and a linear combination of multi-

pole potentials, which satisfy the boundary con-

ditions at the free surface, the bottom, and the

contour of the cross section. A Lewis transformati

on has been used to penerate ship-like cross sec-

tions.

The model.

The forced oscillation experiments have

been carried out with a 2.3 meter rpdel of the Six-

ty Series. The main particulars are given in Table

1. The sare model has been used earlier for the ara

logous tests in deep water [1,2] . The model has

been divided in seven segments each of which was

separately connected to strong beam by means of a

strain gauge dynamometer.
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Table 1,

Length between perpendiculars
Lpp

2.258 m

Length on the water line LwL 2.296 m.

Beam B 0,322 m

Draught T 0.129 m

Volume of displacement 'V 0,0657m3

Blockcoefficient
CB

0.700

Waterpl ane area AwL 0 572 m2

Longitudinal moment of inertia I 1685m2
of waterplane

LCB forward of L/2
PP

LCF aft of L /2
PP

Table 2a. Heave The various oscillation amplitudes cover a

. Fn = 0.1 and 0.2

Table 2b. Pitch

. Fn = 0.1 and 0.2.

x Fn = 0.2 only

Table 2c. Sway and yaw

. Fn 0, 1 and 0.2
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These dynamometers measured vertical or hori-

zontal forces only.

The test set up for vertical motions is given

in Figure 1, A similar system has been used for the

horizontal motions, see Figure 2.

The instrumentation allowed the determination

of in-phase and quadrature components of the verti-

cal or horizontal forces on each of the seven seg-

ments when they perform forced harmonic motions with

a given amplitude and frequency.

It has been shown earlier that the influence

of the gaps between segments can be neglected. [2]
.

Test condi tions.

certain range, depending on the mode of motion, to

study the occurrence of non-linearities,

The test conditions are summarized in Table 2.

These conditions include the waterdepth-

draught ratio h/T, the oscillator amplitude r, the

frequency of oscillation w and the forward speed,

expressed as the Froude number Fn.

It should be noted that the distance between

the two oscillator rods (see Figure 1) is one meter.

Consequently for the pitch and the yaw modes a 0.01

meter oscillation amplitude corresponds to a 1.146

degree motion amplitude. The dimensionless frequency

covers a range of

w (E.71 = 1.9 - 5.8 for pitch and heave, and:

w fE7= 1.9 - 4.8 for sway and yaw.

Experimental resul ts

For each of the considered modes of motion

the in-phase and quadrature components of the excit-

ing forces has been determined. * These components

have been elaborated to the hydrodynamic mass and

hydrodynamic damping coefficient of each segment,

taking into account the amplitude and frequency of

the harmonic motion.

The following expressions have been used in

this respect (see Appendix 1).

Heave:

(PV aZZ)i + + cZZ z -
dze

-
eZ9

6 -g e =
Z9

= Fzsin(wt+Ez)

Pitch:

(I+aee )4
+bee6+cPee-d i-eOZ - g82z =TT 9Z

= Mesin(wt+Ee)

. = 4,6,8,10,12 rad/s

r

(M)

h/T

2.40 1.80 1.50 1,20 1,15

1 0,005

. . . .
. 0, alo

. 0.020

. . . . 0,030

w = 4,6,8,10,12 rad/s

r

(M)
h/T

2.40 1.80 1.50 1.20 1,15

0.005

'
0.010

. . 0,015

w = 4,6,8,9,10 rad/s

r

(M)

h/T

2,4 1.8 1.5 1,2 1.15

- ' 0.010

- , . 0,00

. 0,030

0,011 ni

0,038 m



Sway:

+ ayy)Y + byyi - dy*W - ey*i = Fy sin(wt+cy)

Yaw:

-dY Y-e*
=Msin(wt+m ) (1)*Y *

For the individual segments the following

equations result:

Heave:

+ c z
zz Fz sin(wt+cz)

Pitch:

(0,
Xi + dze)e

+ e e +
Ze gzee = - Fesin(wt+ce)

Sway:

(. + 40Y + = ry'sin(wt+40 )

Yaw:

(ovaxi + cl,*(*); + - F;sin(wt+c;) (2)

In these equations a refers to hydrodynamic

mass, b is the hydrodynamic damping coefficient and

c is a restoring force- or Moment coefficient.

The coefficients d, e and g are .the corre-

sponding cross coupling coefficients. The position of

a segment is denoted by X. and values of the coef-

ficients of segments are indicated by the asterix

In Appendix 1 the data reduction of the re-

sults obtained from the oscillator experiments is

treated in some detail.

The coefficients a, b, d and e have been ob-

tained by integration over the length of the model of

the results of the segments.

In the Fig.3 to 26 the experimental values of

hydrodynamic mass, damping and cross coupling coef-

ficients are given for pitch, heave, yaw and sway as

a function of the frequency of oscillation w and the

relative waterdepth h/T.

Two forwards speeds corresponding to En = 0.1

and Fn = 0.2 have been considered.

In general the experiments indicate a rather

good linearity with regard to the amplitudes of mo-

tion, except some minor non-linearities at the small-

est waterdepth.

Mass and damping coefficients of heave and

pitch increase with decreasing waterdepth for all

considered frequencies, in particular for h/T < 1.5.

For the lateral motions, sway and yaw, the

hydrodynamic mass coefficients decrease with decreas-

ing waterdepth, whereas the damping coefficients de-

crease slightly or are almost independent of water-

depth.

'00)i '004'

(pV + a )z + b z
zz zz

11 - 3

The distribution of the hydrodynamic mass and

damping along the length of the model is given in the

Figures 3 to 18 for heave, pitch, sway and yaw, as a

function of frequency, waterdepth and forward speed.

The distribution of the hydrodynamic mass, expressed

as a percentage of the total hydrodynamic mass,is not

greatly influenced by the waterdepth, but for the

distribution of the damping coefficients a signifi-

cant shift of larger damping values towards the fore

body of the shipmoliel mi-th decreasing waterdepth is

observed.

For low frequencies of oscillation, combined

with low forwards speeds wall effects or oscillation

in the models own wave-system could have influenced

the measurements. This could explain sore of the ir-

regularities in case of the lowest speed En = O. 1. and

frequencies equal or below w = 6 rad/s. In all other

cases wall effects do not seem to have influenced the

experimental results.

Calculated hydrodynamic mass and damping

The measured mass and damping values have been

compared with the corresponding . calculated values,

according to the numerical procedure as given by Keil

(3) This concerns the coefficients a, b, d and e

for the four considered modes of motion, as well as

the distribution of these quantities along the length

of the model.

The results are shown in the Figures 3 to 26.

In the strip theory the added mass and damping

values at zero speed of advance are used to compose

the coefficients of the equations of motion. The ex-

pressions for the sectional coefficients for heave

and pitch as derived in [4] are given in Appendix 2

together with an analogous extension for sway and

yaw.

Two versions of the strip theory have been

used.

Version 1 leads to the ordinary strip theory

method, which lackt some of the symmetry relations

in the damping cross coupling coefficients.

Version 2 includes these additional terms. In

general the calculated results according to both

versions agree rather well except for the sectional

Values- of the coefficients near the ends of the ship

form

For the integrated values of mass and damp-

ing the differences between version 1 and 2 may be

neglected.

For zero forward speed the calculated values

of added mass and damping are presented in table 3

for heave and sway, the different frequencies and

the waterdepth- draught ratios considered.



Table 3.

Calculated added mass and damping for heave and sway at zero speed

HEAVE Fn =

The calculated hydrodynamic mass for vertical

motions agrees very well with the experimental valu-

es for the ship on forward speed. For the damping

coefficients the agreement at the lower relative wa-

ter depths and higher frequencies is less satisfac-

tory, which might be due to viscous influence. The

same phenomena though less pronounced is found for

the case of deep water [1, 2] .

This applies also to the horizontal motions,

sway and yaw, although the differences for damping

are somewilat smaller than for the vertical motions.

A reasonable agreement is found for the dis-

tribution of mass and damping along the length of

the shipmodel, except in those cases where wall ef-

fect could have influenced the experimental results,

as discussed above.

Conclusions.

The results of this detailed coeparison of

measured and calculated mass and damping values for

vertical and horizontal motions indicate that strip

theory methods, using potential theory to determine
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hydrodynamic mass and damping can be of value for

the calculation of ship response due to waves in

shallow water, at least for engineering purposes.

A limited number of model experiments to de-

termine the amplitude response of heave and pitch in

shallow water and the comparison with calculated

motions confirm this conclusion to a certain extent

for the vertical motions [5] , see Figure 27 a+b.
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' 1/s

h/T = 2.40 h/T . 1.80 h/T . 1.50 h/T = 1.20 h/T 1.15

a
zz

b
zz

a
zz

b
zz

a
zz

b
zz

a
zz

b
zz

a
zz

b
zz

4 46.6 399.1 58.6 464.8 78.5 514.3 149.4 583.7 183.1 598.0

6 50.2 317.7 6e.4 378.7 82.2 427.7 152.8 498.7 186.5 513.5

8 57.5 208.4 69.4 261.9 88.7 309.3 158.6 381.4 192.1 396.5

9 62.4 155.1 74.2 200.5 93.3 244.3 162.6 314.4 196.0 329.2

10 67.6 111.0 79.6 145.2 98.5 182.3 167.2 246.4 2005 260.4-

12 76.3 55.0 89.8 69.2 109.1 88.1 177.8 127.6 210.9 136.8

1/s

h/T = 2.40 h/T . 1.80 h/T = 1.50 h/T = 1.20 h/T = 1.15

a
YY

b
YY

a
YY

b
YY

a
YY

b
YY

a
YY

b
YY

a
YY

b
YY

4 78.7 188.4 73.1 259.3 66.3 323.0 50.0 428.5 45.0 453.5

6 53.2 364.9 43.6 386.9 36.2 412.9 24.9 463.0 22.3 475.5

8 24.8 450.5 21.8 435.6 18.5 434.1 13.5 450.8 12.3 455.4

9 15.6 433.4 14.6 422.8 13.1 419.4 10. 4 430.7 9.7 432.1

10 10.5 396.2 10 2 392.4 9.6 391.5 8.5 402.8 8.1 400.1-

12 7.7 313.2 7.6 314.2 7.5 317.2 7.7 331.8 7.8 303.9

SWAY En =



Nomenclature.

waterplane area

added mass and added mass moment of inertia

on speed, subscript for amplitude
beam

damping coefficient on speed

blockcoefficient
restoring force coefficient
cross-coupling coefficient for added mass
cross-coupling coefficient for damping
forceexerted by oscillator
Froude number

restoring moment coefficient,
acceleration due to gravity
water depth

mass moment of inertia

lingitudinal moment of inertia of waterplane
length of model

distance between oscillator legs ( 1.1m)
moment exerted by oscillator
added mass for zero speed

damping for zero speed

arplitude of oscillation
draught of model

time

forward speed of model
x,y,z right hand coordinate system
Y sway displacement

heave displacement

phase angle between force or moment and motion
pitch angle
density of water
yaw angle

circular frequency of oscillation
volume of displacement of model

instantaneous wave elevation

Superscripts:

asterix for value of segment
indication for sectional values of
hydrodynamic coefficients
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Appendix I.

Experimental determination of mass and damp-
ing with a segmented model.

For the four modes of motions considered the hydro-
dynamic coefficients of the segments are determined
after substitution of the in-phase and quadrature
component of the measured sectional force into the
equation of motion of the segment (2).
In this way it can be shown that for:

Heave:

Pitch:

Sway:

Yaw:

a -
zz

C za - Fz cosez

zaw

.
g 6* ze a + F8 COSE

e .d
pV .ze w' 1* ea *

-Fe sin Ee
eze -

0aw

07

whereovxi ma.isthe ss moment of the segment
which centre is located at a distance x. from the
centre of rotation. za,ea,ya and aare the amplitudes
of the related motions.

The coefficients of the segments divided by the
length of the segment give the mean hydrodynamic
cross-section coefficients. Assuming that the distri-
bution of the cross-sectional values of the hydrody-
namic coefficients are continuous curves these dis-

Awl
a

Cb

e

F.

Fn

9



to be obtained as follows for:

Heave: a = Ea
zz zz

b = Eb*
zz zz

de =Ze d = Ea x.
eZ zz

e = Ee
ze ze

Sway: a = Ea Yaw: a = Ed x.YY YY Y*

b = Eb*
YY YY

b = Ee x.
Y*

d = Ed*
Yg 4

eyq, = Ee e =
Ebyo YYx

Similar relations are used for the sectional

values of the calculated coefficients as denoted in

appendix 2.

Appendix 2.

Expressions according to version 1 and ver-

sion 2 of the strip theory for the hydrodynamic

mass-, damping- and cross coupling coefficients.

The expressions for the sectional values of

the hydrodynamic coefficients are derived from app-

endix 1 in Ell] and may be written for the motions

considered as follows:

Heave:

V dN']
azz = m + [--5

dx

dm'
b' = N' - V -azz

*
bee = Eeze x.

eeZ = Ebzz x.

d = Ea x.
YY

r V V2 dm'd' = m'x + 1.2.1 -T N,---2 -za
w dx

2
e'e = N'x - 2Vm' - V dm'x - Vz dx

b' = N'x2 - 2Vm'x - V dm x2
_y_22 dN'xee

dx

d' = m'x +{V dN'
ez x

w dx

dm'
e'z = Nix - V ---x
e dx

Yaw:

dm'Pitch:
a68

= Ed x b' = N' - V
YY

d'

in which:

b'

V2 dm' dN'= m'x + [2] .H4(--7 N' - + x

dx w dx

dm dtqe' = N'x - 2Vm' - V
'

x -[-j
V2 l

dx
.2 dx

2 V V2 dm' V dN'a' =m1x-4-2.7pCx ---6 x + dx*0 w' dx .2 dx

, dm' 2
2

dN'= Nix2 - 2Vm x -V --x - --2 xg4,

w dx

V dN'=m'x +[ x0 2
w dx

dm'
e' = N'x - V ---x
*Y dx

m' = sectional damping
for zero speed

N' = sectional mass

V = forward speed

= frequency of oscillation

= sectional added mass

= sectional damping
t. on

= sectional mass coupling coefficient speed

= sectional damping coupling coefficient

x = longitudinal

Y = sway

z = heave
direction

e = pitch

* = yaw

xl Version 1 = coefficients excluding terms be-

tween brackets

Version 2 = coefficients including terms be-
tween brackets

From the expressions for the sectional coef-

ficients the following relations may be derived:

= d' x
OP 4

= e' x
44 4

= a' x
YY

= b' x
*Y YY
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ee

ea

d'
eZ

9x
ze

x
ze

= a' x
zz

b' x
zz

Pitch:

, 2
a'e = m x
e

V
+ 2-2 N'x V2 dm'

w2 dx

V dN '
x2

dx

tributions can be determined from the seven mean
Sway:

cross-section values.
m'

The hydrodynamic coefficients of the whole model are
dx

dN'

:2 dx

dN1dx



In appendix 1 the same relations are used for
the measured values to obtain the not directly mea-

sured coefficients.
The values of the hydrodynamic mass-,damping-

and cross coupling coefficients for the whole model

are obtained by _integration of the sectional values
over the model-length.

N. Beukelman

J. Gerritsma

Ship Hydromechanics Laboratory

Delft University of Technology
Delft
The Netherlands
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Figure 2: Horizontal oscillator.
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