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Life is Short, Art long, Opportunity fleeting, Experience deceitful, and Judgment difficult.

῾Ο βίος βραχύς, ἡ δὲ τέχνη µαϰρή, ὁ δὲ ϰαιρὸς ὀξύς, ἡ δὲ πεῖρα σφαλερή, ἡ δὲ ϰρίσις χαλεπή.

The Aphorisms of Hippocrates, 5th Century B.C.
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Summary

Web applications power almost every aspect of our digitalized society, from entertainment

to web shopping, vacation planning and booking, online games, communication, work,

and social interaction. However, building scalable and consistent Web applications in

modern cloud environments requires extensive and diverse expertise in multiple domains,

such as cloud computing, software development, distributed and database systems, and

domain knowledge. These requirements make the development of such applications

possible only by a few highly talented individuals that only large corporations can hire.

In this thesis, we aim at democratizing the development and maintenance of such cloud

applications by identifying and addressing three key challenges: i) programmability of

cloud applications; ii) high-performance serializable transactions with fault tolerance

guarantees; and iii) serverless semantics. To address those, we created Stateflow, a high-

level, object-oriented, easy-to-use programmingmodel that operates alongside Styx, a novel

deterministic dataflow engine that provides high-performance serializable transactions

and serverless semantics.

While investigating the challenge of democratizing scalable cloud applications, we dis-

covered that they closely resemble the principles behind the streaming dataflow execution

model. In Chapter 2, we highlight the similarities of streaming dataflow processing and the

current state-of-the-art event-driven microservice architectures and lay a path towards the

ideal cloud application runtime. To validate our hypothesis, we have created T-Statefun,

presented in Chapter 3, by adapting an existing dataflow system to support transactional

cloud applications. At the time, the best candidate appeared to be Apache Flink Statefun, a

stateful function as a service system (SFaaS), to which we added transactional support with

coordinator functions. With T-Statefun, we showed that a dataflow system can support

transactional cloud applications through a SFaaS API. Furthermore, its development helped

us identify two significant issues: i) it was challenging to program, especially after the addi-

tion of the coordinator functions; and ii) due to the disaggregation of state and processing

and an inefficient transactional protocol, T-Statefun was lacking in performance.

In this thesis, to address the programmability issue, in Chapter 4 we introduce Stateflow,

a user-friendly programming model where software developers code in the well-established

object-oriented programming style with zero boilerplate code, and Stateflow transforms it

into an intermediate representation based on stateful dataflow graphs. While experimenting

with Stateflow, we verified the inefficiencies detected in Chapter 3 regarding messaging

and state, or the lack of transactional support in the rest of Stateflow’s supported backends.

Thus, in Chapter 5, we present all the details behind the design of Styx, a distributed

streaming dataflow system that supports multi-partition deterministic transactions with

serializable isolation guarantees through a high-level, standard Python programming model

that obviates transaction failure management. Our design choices and novel algorithms

allow Styx to outperform the state-of-the-art systems by at least one order of magnitude in

all tested workloads regarding throughput.



xii Summary

Styx demonstrates that it is possible to build a high-performance SFaaS system that

provides transactional and fault-tolerance guarantees while offering an intuitive program-

ming model with minimal boilerplate. Building on this foundation, we extend Styx with the

ability to dynamically and efficiently adapt to varying workloads. To enable this, Chapter 6

explores how Styx can migrate state transactionally, a necessary capability for elasticity,

given that Styx maintains application state in-memory.

We conclude this thesis by summarizing the key findings and reflecting on the con-

tributions, critically examining the limitations of the proposed methods, and considering

their broader ethical and societal implications. Moreover, based on the insights we gained

from creating the Stateflow programming model and the Styx runtime, we lay out the new

challenges and future directions in the field.
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Samenvatting

Webapplicaties ondersteunen nagenoeg elk aspect van onze sterk gedigitaliseerde sa-

menleving: van entertainment en online winkelen tot vakantieplanning, videospellen,

communicatie, werk en sociale interactie. Ze spelen een cruciale rol in ons dagelijks le-

ven. Het bouwen van dergelijke applicaties in de moderne cloudomgeving vereist echter

diepgaande en diverse expertise in verschillende domeinen, zoals cloud computing, softwa-

reontwikkeling, gedistribueerde systemen, databasesystemen en domeinspecifieke kennis.

Deze vereisten maken de ontwikkeling van dergelijke applicaties enkel haalbaar voor een

beperkt aantal uiterst getalenteerde individuen of grote bedrijven die over de middelen

beschikken om dergelijk talent aan te trekken. In deze thesis beogen we de ontwikkeling

en het onderhoud van cloudapplicaties te democratiseren door drie belangrijke uitdagin-

gen te identificeren en aan te pakken: i) programmeerbaarheid van cloudapplicaties; ii)

hoog-performante, seriële transacties met fouttolerantie; en iii) serverless semantiek. Om

dit te bereiken hebben we Stateflow ontwikkeld, een hoog-niveau, objectgeoriënteerd

en gebruiksvriendelijk programmeermodel dat werkt naast Styx, een vernieuwende de-

terministische dataflow-engine die seriële transacties met hoge prestaties en serverless

semantiek ondersteunt.

Tijdens het onderzoeken van de uitdaging om schaalbare cloudapplicaties te demo-

cratiseren, ontdekten we dat deze nauw aansluiten bij de principes van het streaming

dataflow-uitvoeringsmodel. In Chapter 2, benadrukken we de overeenkomsten tussen

streaming dataflow-verwerking en de huidige state-of-the-art event-driven microservice-

architecturen. We schetsen een pad richting een ideale runtime voor cloudapplicaties. Om

onze hypothese te toetsen, hebben we T-Statefun ontwikkeld, zoals besproken in Chapter 3,

door een bestaand dataflowsysteem aan te passen om transactionele cloudapplicaties te

ondersteunen. Destijds leek Apache Flink Statefun — een Stateful Function as a Service

(SFaaS)-systeem — de beste kandidaat, waaraan we transactionele ondersteuning toevoeg-

den via coördinerende functies. Met T-Statefun toonden we aan dat een dataflowsysteem

transactionele cloudapplicaties kan ondersteunen via een SFaaS API. Daarnaast hielp de

ontwikkeling ervan ons twee belangrijke problemen te identificeren: i) het systeem was

moeilijk te programmeren, zeker na het toevoegen van de coördinerende functies; en

ii) vanwege de scheiding van toestand en verwerking en een inefficiënt transactioneel

protocol, presteerde T-Statefun ondermaats.

Om het programmeerprobleem aan te pakken, introduceren we in Chapter 4 Stateflow,

een gebruiksvriendelijk programmeermodel waarbij ontwikkelaars software schrijven in

een vertrouwde objectgeoriënteerde stijl, zonder enige boilerplate-code. Stateflow vertaalt

dit vervolgens naar een intermediaire representatie gebaseerd op toestandsgebaseerde

dataflow-grafen. Tijdens het experimenteren met Stateflow bevestigden we de inefficiënties

uit Chapter 3 met betrekking tot messaging, toestand en het gebrek aan transactionele

ondersteuning in de andere ondersteunde backends. Daarom presenteren we in Chapter 5

het ontwerp van Styx, een gedistribueerd dataflow-systeem dat multi-partitie determinis-
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tische transacties ondersteunt met seriële isolatiegaranties, via een hoog-niveau Python

programmeermodel dat het afhandelen van mislukte transacties overbodig maakt. Onze

ontwerpkeuzes en nieuwe algoritmes stelden Styx in staat om de meest geavanceerde

systemen van dat moment met minstens een orde van grootte te overtreffen qua doorvoer

in alle geteste workloads.

Styx toonde aan dat het mogelijk is om een hoog-performant SFaaS-systeem te bouwen

dat transactionele en fouttolerante garanties biedt, terwijl het een intuïtief programmeer-

model met minimale boilerplate behoudt. Voortbouwend op deze basis was de volgende

stap om Styx uit te breiden met de mogelijkheid om zich dynamisch en efficiënt aan te

passen aan wisselende workloads. In Chapter 6 verkennen we hoe Styx toestand trans-

actioneel kan migreren — een noodzakelijke eigenschap voor elasticiteit, aangezien Styx

applicatietoestand in het geheugen houdt.

Tot slot vatten we deze thesis samen door de belangrijkste bevindingen te bespreken en

kritisch te reflecteren op de bijdragen. We analyseren de beperkingen van de voorgestelde

methodes en overwegen hun bredere ethische en maatschappelijke implicaties. Tot slot

formuleren we, op basis van de inzichten die we opdeden tijdens de ontwikkeling van het

Stateflow-programmeermodel en de Styx-runtime, nieuwe uitdagingen en richtingen voor

toekomstig onderzoek in dit vakgebied.
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Περίληψη

Οι διαδιϰτυαϰές εφαρµογές υποστηρίζουν σχεδόν ϰάϑε πτυχή της έντονα ψηφιοποι-

ηµένης ϰοινωνίας µας, από την ψυχαγωγία ϰαι τις αγορές στο διαδίϰτυο, µέχρι τον

προγραµµατισµό ϰαι την ϰράτηση διαϰοπών, τα διαδιϰτυαϰά παιχνίδια, την επιϰοι-

νωνία, την εργασία ϰαι την ϰοινωνιϰή αλληλεπίδραση, παίζοντας ϰρίσιµο ρόλο στην

ϰαϑηµερινότητά µας. Ωστόσο, η ανάπτυξη τέτοιων εφαρµογών µεγάλης ϰλίµαϰας α-

παιτεί εϰτενή ϰαι πολυδιάστατη τεχνογνωσία σε πολλούς τοµείς, όπως το υπολογιστιϰό

νέφος, η ανάπτυξη λογισµιϰού, τα ϰατανεµηµένα συστήµατα ϰαι τα συστήµατα βάσεων

δεδοµένων, ϰαϑώς ϰαι εξειδίϰευση στον εϰάστοτε επιχειρησιαϰό τοµέα. Αυτές οι απαι-

τήσεις ϰαϑιστούν την ανάπτυξη τέτοιων εφαρµογών εφιϰτή µόνο από λίγα εξαιρετιϰά

ταλαντούχα άτοµα ή από µεγάλες εταιρείες που έχουν τη δυνατότητα να προσλάβουν

τέτοιο προσωπιϰό. Σε αυτή τη διδαϰτοριϰή διατριβή, στοχεύουµε στη δηµοϰρατιϰοπο-

ίηση της ανάπτυξης ϰαι της συντήρησης τέτοιων εφαρµογών στο νέφος, εντοπίζοντας

ϰαι επιλύοντας τρεις βασιϰές προϰλήσεις: i) την προγραµµατισιµότητα των εφαρµογών

νέφους, ii) τις υψηλής απόδοσης σειριοποιήσιµες συναλλαγές βάσεων δεδοµένων µε εγ-

γυήσεις ανοχής σε σφάλµατα, ϰαι iii) την εϰτέλεση των εφαρµογών σε αρχιτεϰτονιϰή

χωρίς διαϰοµιστή (serverless). Για να τις αντιµετωπίσουµε, δηµιουργήσαµε το Stateflo-

w, ένα υψηλού επιπέδου αφαίρεσης, αντιϰειµενοστρεφές, εύχρηστο προγραµµατιστιϰό

µοντέλο. Το προγραµµατιστιϰό µοντέλο επιτρέπει την ανάπτυξη εφαρµογών που εϰτελο-

ύνται από το Styx, µια ϰαινοτόµα ντετερµινιστιϰή µηχανή επεξεργασίας ροών δεδοµένων

που παρέχει συναλλαγές µε σειριοποιήσιµη εγγύηση απόδοσης.

Κατά τη µελέτη της πρόϰλησης της δηµοϰρατιϰοποίησης των εφαρµογών νέφους,

διαπιστώσαµε ότι αυτές ταιριάζουν στενά µε τις αρχές του µοντέλου εϰτέλεσης ροών

δεδοµένων (streaming dataflow). Στο Κεφάλαιο 2, επισηµαίνουµε τις οµοιότητες µεταξύ

της επεξεργασίας ροών δεδοµένων ϰαι των σύγχρονων αρχιτεϰτονιϰών µιϰροϋπηρεσι-

ών που βασίζονται σε γεγονότα (event-driven) ϰαι σϰιαγραφούµε το ιδανιϰό περιβάλλον

εϰτέλεσης για εφαρµογές νέφους. Για να επαληϑεύσουµε την υπόϑεσή µας, δηµιουργήσα-

µε το T-Statefun, όπως παρουσιάζεται στο Κεφάλαιο 3, προσαρµόζοντας ένα υπάρχον

σύστηµα επεξεργασίας ροών δεδοµένων ώστε να υποστηρίζει συναλλαϰτιϰές εφαρµογές

νέφους. Εϰείνη τη χρονιϰή περίοδο, το ϰαταλληλότερο σύστηµα φάνηϰε να είναι το Apa-

che Flink Statefun, ένα σύστηµα που προσοµοιάζει µια υπηρεσία εϰτέλεσης συναρτήσεων

µε δεδοµένα ϰατάστασης στο υπολογιστιϰό νέφος Stateful Function as a Service (SFaaS),

στο οποίο προσϑέσαµε υποστήριξη για συναλλαγές µέσω συντονιστιϰών συναρτήσεων

(coordinator functions). Με το T-Statefun, δείξαµε ότι ένα σύστηµα επεξεργασίας ρο-

ών δεδοµένων µπορεί να υποστηρίξει συναλλαϰτιϰές εφαρµογές νέφους µέσω ενός API

τύπου SFaaS. Επιπλέον, η ανάπτυξή του µας βοήϑησε να εντοπίσουµε δύο σηµαντιϰά

προβλήµατα: i) ήταν δύσϰολο στον προγραµµατισµό, ιδιαίτερα µετά την προσϑήϰη των

συντονιστιϰών συναρτήσεων, ϰαι ii) λόγω του διαχωρισµού ϰατάστασης ϰαι επεξεργα-

σίας ϰαι ενός µη αποδοτιϰού πρωτοϰόλλου συναλλαγών, το T-Statefun υστερούσε σε

απόδοση.
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Για την αντιµετώπιση του προβλήµατος προγραµµατισιµότητας, στο Κεφάλαιο 4

παρουσιάζουµε το Stateflow, ένα φιλιϰό προς τον χρήστη προγραµµατιστιϰό µοντέλο,

στο οποίο οι προγραµµατιστές λογισµιϰού γράφουν σε ϰαϑιερωµένο αντιϰειµενοστρεφές

στυλ προγραµµατισµού, χωρίς ϰαϑόλου boilerplate ϰώδιϰα, ενώ το Stateflow µετατρέπει

αυτόµατα τον ϰώδιϰα σε ενδιάµεση αναπαράσταση βασισµένη σε ροές δεδοµένων µε ϰα-

τάσταση. Κατά την πειραµατιϰή χρήση του Stateflow, επιβεβαιώσαµε τις αναποτελεσµα-

τιϰότητες που εντοπίστηϰαν στο Κεφάλαιο 3, αναφοριϰά µε τη διαχείριση µηνυµάτων,

την ϰατάσταση, ή την απουσία υποστήριξης συναλλαγών στα υπόλοιπα υποσυστήµατα

του Stateflow. ΄Ετσι, στο Κεφάλαιο 5 παρουσιάζουµε όλες τις λεπτοµέρειες του σχε-

διασµού του Styx, ενός ϰατανεµηµένου συστήµατος ροής δεδοµένων που υποστηρίζει

πολυ-ϰατατµηµένες, ντετερµινιστιϰές συναλλαγές µε εγγυήσεις σειριοποιήσιµης απο-

µόνωσης µέσω ενός υψηλού επιπέδου προγραµµατιστιϰού µοντέλου βασισµένου στην

Python, το οποίο απαλλάσσει τον προγραµµατιστή από τη διαχείριση αποτυχηµένων

συναλλαγών. Οι σχεδιαστιϰές µας επιλογές ϰαι οι ϰαινοτόµοι αλγόριϑµοι που ανα-

πτύξαµε, επέτρεψαν στο Styx να ξεπεράσει τα πιο προηγµένα συστήµατα της εποχής

του, τουλάχιστον ϰατά µία τάξη µεγέϑους υψηλότερη απόδοση σε όλες τις δοϰιµασµένες

περιπτώσεις φόρτου.

Το Styx απέδειξε ότι είναι εφιϰτή η ανάπτυξη ενός υψηλής απόδοσης SFaaS συ-

στήµατος που προσφέρει εγγυήσεις συναλλαϰτιϰότητας ϰαι ανοχής σε σφάλµατα, δια-

τηρώντας ταυτόχρονα ένα διαισϑητιϰό προγραµµατιστιϰό µοντέλο µε ελάχιστο απαιτο-

ύµενο σϰελετό ϰώδιϰα λογισµιϰού στην υλοποίηση των εφαρµογών. Βασιζόµενοι σε αυτό

το ϑεµέλιο, το επόµενο βήµα ήταν η επέϰταση του Styx µε τη δυνατότητα να προσαρµόζε-

ται δυναµιϰά ϰαι αποδοτιϰά σε µεταβαλλόµενα φορτία εργασίας. Για να το επιτύχουµε

αυτό, στο Κεφάλαιο 6 διερευνούµε πώς το Styx µπορεί να µεταφέρει την ϰατάσταση

µε συναλλαϰτιϰό τρόπο, µια αναγϰαία δυνατότητα για ελαστιϰότητα, δεδοµένου ότι το

Styx διατηρεί την ϰατάσταση των εφαρµογών στη µνήµη.

Ολοϰληρώνουµε αυτή τη διατριβή συνοψίζοντας τα βασιϰά ευρήµατα ϰαι αναλογι-

ζόµενοι τις συνεισφορές της, εξετάζοντας ϰριτιϰά τους περιορισµούς των προτεινόµενων

µεϑόδων ϰαι λαµβάνοντας υπόψη τις ευρύτερες ηϑιϰές ϰαι ϰοινωνιϰές τους επιπτώσεις.

Επιπλέον, βασισµένοι στις εµπειρίες µας από τη δηµιουργία του προγραµµατιστιϰού µο-

ντέλου Stateflow ϰαι της πλατφόρµας εϰτέλεσης Styx, σϰιαγραφούµε τις νέες προϰλήσεις

ϰαι τις µελλοντιϰές ϰατευϑύνσεις στον τοµέα.
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Introduction

The primary objective of this thesis is to democratize the development lifecycle of large-scale

cloud applications. At present, only very few people have expertise in cloud application

development, infrastructure, distributed systems, and data management combined. This thesis

argues that to enable anyone to code such applications, an easy-to-use distributed programming

model and a computing system to serve it are required.

This chapter introduces the fundamental concepts of contemporary large-scale cloud applica-

tions and summarizes the contributions of this thesis. Section 1.1 presents the transition from

on-premise servers to modern cloud offerings. Following that, Section 1.2 lays out the fundamen-

tals of scalable cloud applications, and Section 1.3 completes the fundamentals with a dive into

the different aspects of serverless technology and this thesis interpretation. Sections 1.4 to 1.7

highlight the main research questions, this thesis’s contributions, the publications included,

and a visual outline of the thesis document.
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R
apid technological advancements, driven by large-scale cloud applications such as

social networks, e-commerce platforms, multimedia streaming services, and AI-driven

tools, have fundamentally reshaped how we interact with digital services and data. These

applications handle massive volumes of data and requests, ensuring seamless user expe-

riences globally with high availability and minimal downtime. However, building and

maintaining such systems is an inherently complex task, often reserved for individuals

with extensive technical expertise or large corporations with significant resources.

One of the key challenges in developing these applications lies in their scale, where

reliability, performance, and scalability are critical factors. These systems must manage

thousands of concurrent users, integrate with diverse data sources, and perform under

unpredictable loads, all the while maintaining low latency and fault tolerance. As a result,

the design and development of these cloud-based applications demand specialized skills in

distributed systems, data management, cloud architectures, and scalable infrastructure.

Architecturally, the journey to this level of sophistication has been gradual but pro-

found. In the early days of software development, monolithic applications were the norm,

self-contained systems with tightly integrated components [1]. While monolithic archi-

tectures offered simplicity in development, they became difficult to scale and maintain

as applications grew. To address these limitations, the industry transitioned toward mi-

croservice architectures, where different functionalities are decoupled into independently

deployable services [2]. This architectural shift enabled teams to scale, update, and manage

services more efficiently.

At first sight, microservices appear to be the obvious step for replacing monolithic

applications and migrating to the cloud. However, microservices dismiss an important

advantage that monolithic applications enjoyed for almost five decades: state management,

failure management, and state consistency have been the responsibility of database systems.

Today’s microservice architectures depart from the amenities that were once provided

by database management systems (DBMSs) by integrating state management, service

messaging, and coordination with application logic. From the database community’s

point of view, the microservice architectural pattern resembles a situation long ago [3],

when developers implemented ad-hoc application-level transactions to ensure database

consistency.

For instance, in a shopping cart application, to complete a checkout, we first need to

ensure there is enough stock of the selected products, reserve them, then receive payment

before shipping the products. In the microservice paradigm, each service (Cart, Stock,

Payment) has its own API, database, and application logic, and communicates with other

services through API calls. The main issue with the microservice is that both atomicity

(i.e., update stock and get paid for an order, or cancel both actions) and state consistency

across workflow steps (i.e., the stock counts should reflect the successfully paid orders)

must be implemented in the application code.

Unsurprisingly, the easy-to-code Function-as-a-Service (FaaS) [4–6] paradigm em-

braces the same general architecture pattern as microservices: stateless application, stateful

database, and communication via messages or external storage. An orchestration layer on

top of FaaS allows composing more complex workflows to build service-oriented appli-

cations. However, workflow orchestrators solve only part of the problem. For atomicity

and consistency, developers adopt the SAGA pattern or the Two-Phase Commit (2PC) [7]
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Figure 1.1: Evolution of cloud computing abstractions and the human involvement required

protocol. For applications requiring transactional state consistency across services [2],

important challenges remain open, including data consistency across service calls and

exactly-once guarantees.

By studying these challenges, we identify that the event-driven microservice and

orchestrated FaaS architectures inherently form stateful streaming dataflow graphs with

partitioned state co-located with the application logic. In short, this architectural pattern

is the same as that followed by streaming dataflow systems such as Apache Flink [8] and

Spark Streaming [9]. However, modern dataflow systems are primarily built for streaming

analytics and do not have an API or important features like transactional support necessary

to create general-purpose cloud applications.

This thesis addresses these critical gaps by extending the Stateful Function-as-a-Service

(SFaaS) [10–15] paradigm with serializable transactional guarantees, local state manage-

ment with state migration for elasticity, and fault-tolerant execution. Our contributions

significantly simplify the development of scalable, consistent, and reliable cloud applica-

tions, democratizing access to sophisticated distributed system features without requiring

developers to manage underlying complexity explicitly.

1.1 From the Metal to the Clouds

Database and distributed systems have experienced significant shifts in deployment models

over the last decades, evolving from tightly coupled bare metal hardware/software to highly

abstracted cloud-based environments, as illustrated in Figure 1.1. Initially, web applica-

tions and database systems operated directly on physical servers, providing predictable

performance and resource allocation, but with limited scalability and significant opera-

tional overhead [16]. Administrators were tasked with manually managing infrastructure

components, dealing with hardware failures, and optimizing performance at the physical

level. This manual approach often led to downtime during maintenance and limited agility

in responding to evolving business requirements.

Virtual Machines (2000s). The introduction of Virtual Machines [17–19] (VMs), as an

Infrastructure-as-a-Service (IaaS) solution, marked a key transition. VMs abstract physical
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hardware, enabling multiple isolated operating systems and database instances to coexist on

a single physical host. Virtualization improved resource utilization, simplified infrastructure

management, and allowed easier scaling through VM replication and migration. Both on-

premise virtualization and cloud providers became commonplace, democratizing access

to flexible infrastructure and reducing administrative burdens. However, VMs introduced

new challenges, such as performance overhead due to hypervisor abstraction, complexities

in VM management, and slower startup times.

Containerization (2010s). The emergence of containerization technologies [20, 21], no-

tably Docker and Kubernetes, represented another substantial advancement. Containers

encapsulate applications and their dependencies in lightweight, portable units, reducing

overhead compared to VMs. The benefits of containerized environments are faster startup

times, simplified versioning, and streamlined deployment pipelines. Container orchestra-

tors such as Kubernetes further introduced automated scaling and self-healing capabilities.

Moreover, containers enhanced consistency across development, testing, and production

environments. These solutions are referred to as Containers-as-a-Service (CaaS).

Serverless (2020s). Most recently, serverless computing has transformed the landscape

by abstracting away infrastructure management entirely. Serverless architectures enable

database systems to scale dynamically and transparently, responding to demand fluctu-

ations without explicit provisioning of resources. Databases such as DynamoDB [22],

Aurora [23], or Firestore [24] exemplify this trend by automatically scaling compute and

storage independently. Furthermore, serverless computing reduces the barrier to entry for

developers and businesses by eliminating the need to manage the underlying infrastructure,

enabling a stronger focus on the application logic.

Regarding application logic, serverless computing promotes a shift towards a state-

less execution model, exemplified by Function-as-a-Service (FaaS) offerings such as AWS

Lambda [4], Azure Functions [6], or Google Cloud Functions [5]. In FaaS, developers break

down applications into fine-grained, event-driven functions that can be triggered by exter-

nal events such as HTTP requests or asynchronous messages. These functions are stateless,

with each invocation operating independently and relying on external storage to persist

state. This paradigm encourages modularity and fine-grained scalability, as each function

can be deployed and scaled independently. However, FaaS introduces new challenges in

managing state, coordinating execution across functions, and reasoning about correctness.

To overcome the limitations of FaaS, the Stateful Function-as-a-Service (SFaaS) paradigm

has emerged. SFaaS allows functions to maintain state across invocations, enabling richer

application semantics without compromising the benefits of serverless infrastructure. In

this model, functions can encapsulate state locally or access stateful abstractions through

tightly integrated state management systems. Examples include systems like Apache Flink

Statefun [25] and Azure Durable Functions [26], which provide mechanisms for long-lived

workflows, stateful coordination, and reliable function orchestration. By bridging the gap

between stateless scalability and stateful logic, SFaaSmakes a step towardmaking serverless

computing viable for general-purpose cloud applications. Furthermore, alongside SFaaS,

(Virtual) Actors [27] are a closely related paradigm that addresses the same core challenge:

enabling stateful, long-lived interactions in cloud applications while preserving the benefits

of serverless infrastructure. Both paradigms aim to abstract away the complexities of

distributed state management, fault tolerance, and scalability from the developer, allowing
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them to focus on business logic.

This Thesis. In this thesis, we extend SFaaS, the latest serverless paradigm, with serializable

transactional guarantees, local state support with state migration support for elasticity,

and fault tolerance (Chapters 4 to 6). Making SFaaS closer to being feature-complete for

scalable cloud applications.

1.2 Scalable Cloud Application Aspects

Building scalable cloud applications involves navigating the design space of system and

programmability tradeoffs. This section highlights key aspects that influence how modern

cloud applications are developed and operated at scale. We begin by examining cloud

runtimes and programming models, which define how developers express application logic

and how systems execute it across distributed infrastructure. We then discuss the impor-

tance of transactional guarantees for preserving application correctness. Next, we cover

high availability and fault tolerance mechanisms that ensure services remain responsive

and resilient despite failures. Finally, adaptivity is addressed, enabling systems to adjust to

workload changes and infrastructure constraints dynamically.

1.2.1 Cloud Runtimes & Programming Models

Programming models for distributed systems have been a long-standing subject of re-

search [28–32]. In the context of developing cloud applications, the programming model

and runtime abstraction greatly influence the design of the underlying system and vice

versa. At the moment of writing this thesis, the most common approach taken by software

engineers is the use of microservice frameworks (e.g., Java Spring [33], Python Flask [34]).

Alongside microservices lie some emerging programming models for cloud applications.

These are: i) Actors (e.g., Akka [35], Orleans [36]) and ii) Stateful Functions (e.g., Flink

Statefun [25], Azure Durable Functions [10]), all differing substantially in system design,

abstractions, and guarantees offered to developers.

Microservices. To reap the benefits of parallel processing and loose coupling, the preva-

lent approach is functionally partitioning the application logic and state into independent

components that communicate with each other via synchronous or asynchronous mes-

sages [37], called microservices. Microservice frameworks provide libraries and tooling

to help developers build microservices. Provided libraries might offer Object-Relational

Mapping for database interactions, service communication using REST or message passing,

and retrying/revoking features to ensure correctness. Each microservice built with such

frameworks often employs a multi-threaded application server. If a given microservice is

stateful, the paired database handles data consistency based on the configured isolation

level. However, on the level of a global microservice deployment, no consistency guarantees

can be given because the databases are separate, and the consistency guarantees of a single

distributed and consistent database cannot be used anymore; thus, the developers need to

implement them (e.g., ad-hoc transactions [38]), adding to their complexity.

Actors. The actor model is a programming model for concurrent and parallel computation

in distributed systems [39]. An actor models a sequential process that performs transforma-

tions on the local state based on incoming asynchronous messages. Actor systems achieve

concurrency by pipelining and dynamic actor creation [39]. Traditional actor frameworks
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allow developers to program systems using low-level primitives, such as actor IDs and

prescriptions of their physical locations.

Virtual actors [36] are an extension of the traditional actor model that provides location

transparency without forcing developers to deal with actor allocation/scheduling in a

cluster, life-cycle management, explicitly creating and tearing down actor instances, as well

as failure transparency. Virtual actors are implemented in popular distributed application

frameworks like Orleans [36] and Dapr [40].

Cloud Functions. With the emergence of serverless computing [41], a new cloud paradigm

called Function-as-a-Service (FaaS) [10, 42] rose in popularity. In FaaS, developers build

applications as a collection of functions. Function executions are triggered by external

events or invocations from other functions, allowing for function workflow compositions.

Initially, FaaS offerings targeted workloads with small to moderate I/O and communica-

tion, demotivating offering data models and consistency guarantees on operations within

a single function or cutting across functions [11, 13].

Due to these limitations, there has been increasing interest in extending the FaaS

paradigm to applications that require frequent state access with some consistency guar-

antees, called Stateful-FaaS (SFaaS) [11–13, 15, 43]. In SFaaS, developers write programs

based on composing functions and enjoy a key-value interface to access the application

state. Apart from the shared state interface, the programming, execution, and deployment

model resembles Virtual Actors.

Stateful Dataflows. The dataflow model prescribes that an application is represented as a

data flow graph. That involves decomposing programs into independent processing units.

Organized as Directed Acyclic Graphs (DAGs), processing units (nodes) exchange data via

message streams (edges). Dataflows have been mainly applied as the programming model

for analytical batch and stream processing systems like Spark [44] and Flink [8]. In these

systems, processing units are framed as operators that perform either stateful (e.g., joins,

aggregates) or stateless (e.g., map, filter) operations. Message streams can be partitioned

and assigned to different concurrent operator instances. Stateful operators typically do not

share state, preventing concurrency issues and enhancing parallelism.

However, the dataflow model has two main issues regarding its use for transactional

cloud applications. First, dataflow systems are typically programmed using functional

programming-style dataflow APIs, requiring developers to rewrite cloud applications to

align with the event-driven dataflow model. While many cloud applications can be adapted

to this paradigm, doing so demands significant developer training and effort. Second,

implementing transactions on top of dataflows, namely transactions that span multiple

services with serializable guarantees, is not trivial [14, 43, 45, 46].

This Thesis. In this thesis, we utilize the dataflow execution model, address the transac-

tionality issues (Chapters 3 and 5), and provide a stateful entity domain-specific language

for ease of programming that is close to the Virtual Actor programming model (Chapter 4).

1.2.2 Transactional Guarantees

While developing cloud applications, maintaining correctness is essential. In traditional

database settings, this usually refers to ACID transactional guarantees [1]. Atomicity

ensures that either all operations within a transaction succeed or have no effect on the
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Figure 1.2: Comparison between the two-phase commit and Saga transactional protocols in the checkout scenario

that spans three microservices (order, stock, and payment). Phases with state mutations are marked in red. In this

example, the two-phase commit requires four timeslots to commit, while the Saga only requires two.

state. Consistency guarantees that a transaction moves the database from one valid state to

another, preserving integrity constraints. Isolation ensures that concurrently executing

transactions do not interfere with each other. Durability ensures that once a transaction

commits, its effects are permanent, even in the case of system crashes.

While atomicity and durability are relatively straightforward, consistency and isolation

come in different flavors. Recently, researchers have argued for serializability [47, 48]. The

isolation levels offered by post-NoSQL systems also reflect this notion, such as Google’s

Spanner [49] and, more recently, CockroachDB [50]. The primary argument for serializ-

ability is that, even in very complex distributed deployments, engineers can reason about

correctness in the presence of state inconsistencies [47, 48]. The standard way of guarantee-

ing serializability in a distributed setting is the two-phase commit protocol [1] (illustrated

in Figure 1.2a). In the first phase, the transaction manager prepares based on a deadlock

detection mechanism (i.e., wait-die or wound-wait) and locks the requested keys or returns

a failure. Once all parties acknowledge they hold the locks, the transaction can commit

and unlock the keys.

The counterargument against serializability is the difficulty of providing such a strong

guarantee and maintaining high performance, especially when long-running transactions

are present in the workload. The most prominent technique for eventual consistency

without isolation is the Saga pattern, as shown in Figure 1.2b. A Saga decomposes a

transaction into a sequence of local transactions (steps), each performed by a different

service or process. If one of the local steps fails, the system executes compensating actions
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to undo the preceding successful steps. This approach allows for coordination without

distributed locking [51, 52] or global consensus [53, 54].

As cloud applications grow in scale and complexity, the need for strong guarantees

around data correctness becomes increasingly pronounced. However, it is currently ob-

served that a significant number of developers overlook the need for transactions and

attempt to create custom solutions [38, 47] called Ad Hoc transactions, which are developer-

coordinated sequences of database operations embedded in application code rather than

expressed using traditional database transactions or ORM invariant validations. Ad hoc

transactions attempt to simulate isolation through manual concurrency control, often with

partial correctness and performance trade-offs.

This Thesis. The facts mentioned above strengthen our argument for democratizing

scalable cloud applications and the need for a simple programming model [55] (Chap-

ter 4) and Styx [15] that guarantees serializable ACID transactions without any developer

involvement (Chapter 5).

1.2.3 High Availability & Fault Tolerance

Two critical requirements for reliable systems are high-availability and fault tolerance [1, 56,

57], particularly for mission-critical applications such as telecommunications, financial ser-

vices, transportation, and healthcare. These systems are expected to operate continuously

with near-zero downtime. A typical service-level agreement (SLA) that cloud providers

offer software engineers specifies 5 minutes or less of unavailability per year, corresponding

to the so-called "five nines" (99.999%) of availability.

To narrow the scope, we will focus on higher-level techniques that database or dis-

tributed systems employ to give such guarantees. For high availability, the primary mecha-

nism is replication (i.e., maintaining copies of the database across multiple nodes or data

centers). In practice, most systems implement failover mechanisms; for example, automatic

switching to a standby replica when the active/primary node fails. Moreover, load balancing

incoming requests and partitioning/sharding the database state help distribute the load

more evenly so that more nodes share the load at peak times.

Database systems use a plethora of mechanisms to maintain fault tolerance. Some

of them are: i) periodically capturing state to enable rollback and recovery after failures

(snapshotting/checkpointing [58]), ii) logging state mutations before applying them to

ensure durability (write-ahead logging[59]), iii) transaction mechanisms, as mentioned in

Section 1.2.2, iv) requiring agreement from a majority before committing operations in the

presence of replicas (quorum and voting [53, 54, 60, 61]).

This Thesis. The primary contribution of this thesis, Styx (Chapter 5), utilizes periodic

coordinated snapshots [58, 62] and a heartbeat failure detection mechanism for fault

tolerance. Furthermore, we use minimal write-ahead logging to maintain determinism

throughout the system. Although not directly addressed, high availability is straightforward

to implement using async replication, as discussed in Section 7.3.

1.2.4 Adaptivity

Adaptivity is a critical requirement for scalable cloud systems. As workloads evolve due to

user demand, temporal access patterns, or changes in system topology, systems must con-
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tinuously adapt to maintain performance and correctness. Adaptivity manifests in several

forms, most notably in the system’s ability to autoscale [63–66] and, in the case of stateful

systems (e.g., stream processing engines, databases, or stateful microservices/functions),

migrate state across machines [67–70].

Autoscaling. Adaptive systems offer autoscaling to automatically adjust the number of

compute instances based on workload metrics such as CPU usage, request latency, or

custom application-level signals. Autoscaling is relatively straightforward for stateless

systems by spawning or removing instances, whereas for stateful components, it requires

careful orchestration to ensure seamless continuity and consistency. For example, spawning

a new instance might require retrieving its state from a shared store or other replicas,

potentially introducing latency or consistency issues if not handled properly. Furthermore,

fine-grained function-level autoscaling in serverless systems must balance responsiveness

and the overhead of startup, warmup, or reconfiguration [71].

State Migration. To support adaptivity in stateful systems, state migration is essential. It

enables redistributing the application state across nodes, whether to balance load, scale up-

/down, or recover from failures. State migration often involves moving partitions/shards or

individual keys in data-intensive systems. Effective migration mechanisms must minimize

downtime, ensure no data loss, and avoid violating consistency or transactional guarantees.

This Thesis. Styx (Chapter 5) provides state migration functionality (Chapter 6) while

maintaining zero downtime, consistency, and transactional guarantees. Since autoscaling

is orthogonal, it is left as future work.

1.3 What is Serverless?

Serverless computing [72–77] represents a cloud computing paradigm characterized by

abstracting infrastructure management, automated scaling, and allowing granular, pay-per-

use billing. By shifting operational concerns away from developers, serverless computing

enables a simpler development model, more efficient resource utilization, and more flexible

economic practices. In Section 1.1, we discussed the implications of serverless for data

management and scalable cloud applications; this section explores the three dimensions of

serverless computing: the developer experience, underlying system considerations, and

associated economic trade-offs.

1.3.1 Developers’ Perspective

From the developers’ viewpoint, serverless computing significantly simplifies cloud appli-

cation development by abstracting away infrastructure concerns and allowing developers

to focus exclusively on business logic [72, 76]. Serverless applications are composed of

event-driven, stateless functions triggered by external events such as HTTP requests,

database updates, or messages. The complexity associated with resource provisioning,

container management, and scaling is entirely managed by cloud providers.

This paradigm dramatically reduces developers’ effort, facilitating rapid prototyping,

faster iteration, and shorter deployment cycles. Nevertheless, developers must adapt to

constraints intrinsic to serverless architectures, including function statelessness, ephemeral

execution environments, and runtime limitations [72, 75]. Despite these limitations, the

overall productivity gains and reduced operational complexity are considerable.
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Figure 1.3: In a typical scenario, operators provision machines based on the expected peak, which results in much

waste. With Serverless solutions, operators do not need to provision any machines, which matches actual load

and reduces waste.

1.3.2 Systems’ Considerations

Serverless computing demands sophisticated automation and efficient resource manage-

ment from the underlying execution systems. Cloud platforms dynamically allocate re-

sources and scale functions in response to changing demand with minimal intervention.

Elasticity is achieved through mechanisms such as rapid cold-start initialization, function

reuse, and fine-grained resource isolation across tenants [72, 76]. However, these properties

impose significant system challenges.

One critical challenge is mitigating cold-start latency, the delay experienced when ini-

tializing function execution engines, which significantly impacts performance for latency-

sensitive applications. Moreover, efficient state and data locality handling presents addi-

tional complexity, as functions must interact with external storage services due to inherent

statelessness [75, 76]. Another challenge is achieving predictable performance despite vari-

able, unpredictable workloads, which require sophisticated scheduling and orchestration

strategies.

1.3.3 Economics

Serverless computing introduces a fundamental shift in cloud economics by aligning

resource costs directly with consumption. Unlike traditional Infrastructure-as-a-Service

(IaaS) or Platform-as-a-Service (PaaS) models, where developers pre-allocate resources and

bear the costs of idle infrastructure, serverless charges only for the execution time and

resources actively utilized by applications [72, 76].

This fine-grained billing model significantly reduces intermittent or unpredictable

workload costs, enabling efficient resource utilization without upfront capital commit-

ments. Consequently, organizations can experiment, iterate, and innovate more freely

without the economic risk associated with resource over-provisioning [75]. Thus, server-

less democratizes access to cloud-scale computing, benefiting smaller teams, startups, or

applications with highly variable usage patterns.

However, this consumption-based model may become economically unfavorable for

sustained or predictable workloads. Traditional reserved resourcemodelsmay offer superior

cost efficiency in scenarios with constant or highly predictable resource usage. Therefore,

enterprises must evaluate workload characteristics carefully to determine the optimal

economic strategy when adopting serverless computing [75, 76].
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1.3.4 This Thesis Interpretation

This thesis primarily focuses on the developer’s perspective, adding transactional guaran-

tees, fault tolerance, stateful functions, and determinism. Our approach provides lower

latency, higher throughput, and stronger consistency guarantees while maintaining ease

of use. We explore elasticity with state migration mechanisms, and although critical to

serverless adoption, we leave the economics out of scope.

1.4 Main Research Questions

In this thesis, the primary research question is to investigate the possibility of creating a

system and framework with an easy-to-use programming model that allows non-expert

developers to write complex cloud applications free of concurrency or machine failure

considerations while maintaining high performance.

To that end, we have split this into five research questions:

RQ-1: What would be the optimal substrate for a system serving complex cloud

applications?

In Chapter 2, we answer RQ-1 by first laying out the path towards the ideal cloud runtime

from a software developer’s perspective. Furthermore, pointing out the similarities between

modern cloud architectures (i.e., event-driven microservices) and stateful dataflow graphs.

To test our deduction, we proceed with the following research question.

RQ-2: Is it possible to use an existing SFaaS dataflow system for this purpose? If so,

what are the limitations?

To answer RQ-2, as shown in Chapter 3, we first attempted to use Flink-Statefun [25], a

well-established SFaaS system, and add all the required transaction orchestration. Although

it outperformed the state-of-the-art, it had a few limitations. The serializable protocol

suffered from low throughput in high-contention scenarios because of its implemented

deadlock-prevention mechanism. The architecture of Flink-Statefun transfers the state to

remote processing workers instead of processing it within the stream processor, increasing

latency. Also, its API had a lot of boilerplate code, making it difficult for non-expert

developers. Leading to the third research question:

RQ-3: Can we design a domain-specific language that runs on top of all stream pro-

cessing systems, providing a simple, easy-to-use object-oriented API?

AnsweringRQ-3 is essential for the democratization of the development of large-scale cloud

applications. In Chapter 4, we present Stateflow, a programming model and intermediate

representation (IR) that compiles imperative, transactional object-oriented applications

into distributed dataflow graphs and executes them on existing dataflow systems. Instead

of designing an external Domain-Specific Language (DSL) for our needs, we opted for

an internal DSL embedded in Python, which is already popular for cloud programming

and is easy to use. Specifically, a given Python program is first compiled into an IR, an

enriched stateful dataflow graph independent of the target execution engine. The choice of

execution engine is entirely independent of the application layer, which allows switching
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to different ones with no changes to the application code. However, all current systems

had limitations, leading to poor performance, and our fourth research question:

RQ-4: Can we build a system that enables developers to write transactional, data-

intensive cloud applications without requiring expertise in distributed systems?

To that end, in Chapter 5, we showcase how we built Styx, a novel dataflow-based runtime

for SFaaS that ensures exactly-once execution while enabling arbitrary function orchestra-

tions with end-to-end serializability guarantees, leveraging concepts from deterministic

databases to avoid costly 2PCs. Our work stems from two critical observations. First,

modern streaming dataflow systems such as Apache Flink [8] guarantee exactly once

processing [8, 78, 79] by hiding failures from their developers. However, they cannot be

used to execute cloud applications such as microservices, let alone guarantee transactional

SFaaS orchestrations. Second, deterministic database protocols [80, 81] that can avoid

expensive 2PC invocations have not been designed for complex function orchestrations

and call-graphs. Thus, they are not directly applicable to the needs of SFaaS. While Styx

solved the high-performance requirements, it is not flexible resource-wise, leading to the

fifth and final research question:

RQ-5: Can we give Styx elasticity properties, such as state migration, allowing it to

become serverless?

Much work has been carried out in dynamic reconfiguration [82–84] and state migra-

tion [67–69] of streaming dataflow systems over the last few years. These advancements

are necessary for providing serverless elasticity in the case of state and compute collocation

and enable dataflow graphs as an execution model for serverless stateful cloud applications,

which is presented in Chapter 6.

1.5 Contributions

The main contributions of this thesis, alongside their open-source code artifacts, are

summarized as follows:

1. We characterize cloud application runtimes and lay a path toward the "ideal" run-

time in the modern setting. We deduce that the modern event-driven microservice

paradigm closely matches the fundamentals of dataflow engines and argue that a

dataflow engine can serve as one. (Chapter 2)

2. To validate our deduction from Chapter 2, we explore the possibility of adapting

an existing SFaaS system, Apache Flink Statefun, to the cloud application runtime

requirements. To that end, we implemented coordinator functions that provide trans-

actional support within Apache Flink Statefun with varying consistency guarantees.

Our new system is called T-Statefun
1
and outperforms the current state-of-the-art

transactional SFaaS systems by an order of magnitude. It has also distributed OLTP

databases by at least 1.5x. (Chapter 3)

3. In Chapter 3, we addressed all the functional requirements of a dataflow runtime that

serves scalable cloud applications. Next, we created an easy-to-use domain-specific

1https://github.com/delftdata/flink-statefun-transactions

https://github.com/delftdata/flink-statefun-transactions


1.6 Thesis Origins

1

13

language called Stateflow
2
. Stateflow takes object-oriented code, where an object

is a stateful entity, and transforms it into the dataflow execution model. We have

proven the ease of integration of Stateflow with existing dataflow systems and the

minimal overhead it adds to those. (Chapter 4)

4. We created a new distributed dataflow engine, Styx
3
, that serves as a runtime for

scalable cloud applications. Based on lessons learned from Chapters 3 and 4, we

ensure that the state is local to the dataflow operator and allows for direct addressing

of operators since other systems had to go through the ingress if they wanted to re-

spond to another operator. These design changes required a few algorithmic changes

and optimizations that enabled Styx to outperform the T-Statefun (Chapter 3) and the

state of the art by an order of magnitude while providing serializable transactional

guarantees and coarse-grained fault tolerance. (Chapter 5)

5. We extended Styx with state-of-the-art state migration capabilities, a step towards

Styx becoming elastic, leading to it becoming serverless. Our experiments show min-

imal impact of the migrating actions on Styx’s throughput and latency. (Chapter 6)

1.6 Thesis Origins

The main body of the thesis consists of five main chapters based on the research papers

listed below:

Chapter 2 is based on the following publication:

� K. Psarakis, G. Christodoulou, M. Fragkoulis, and A. Katsifodimos. Transactional Cloud

Applications Go with the (Data)Flow, CIDR’25 [46].

Chapter 3 is based on the following publications:

�34
M. de Heus, K. Psarakis, M. Fragkoulis, and A. Katsifodimos. Distributed transactions

on serverless stateful functions, ACM DEBS’21 [43].

� M. de Heus, K. Psarakis, M. Fragkoulis, and A. Katsifodimos. Transactions Across

Serverless Functions Leveraging Stateful Dataflows. In Elsevier’s Information Systems,

Volume 108, September 2022 [14].

Chapter 4 is based on the following publications:

� K. Psarakis, W. Zorgdrager, M. Fragkoulis, G. Salvaneschi, and A. Katsifodimos.

Stateful Entities: Object-oriented Cloud Applications as Distributed Dataflows (Abstr.),

CIDR’23 [85].

� K. Psarakis, W. Zorgdrager, M. Fragkoulis, G. Salvaneschi, and A. Katsifodimos.

Stateful Entities: Object-oriented Cloud Applications as Distributed Dataflows (Vision),

2https://github.com/delftdata/stateflow
3https://github.com/delftdata/styx
4
The trophy icon indicates that the paper won the best paper award

https://github.com/delftdata/stateflow
https://github.com/delftdata/styx
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EDBT’24 [55].

Chapter 5 is based on the following publication:

� K. Psarakis, G. Christodoulou, G. Siachamis, M. Fragkoulis, and A. Katsifodimos. Styx:

Transactional Stateful Functions on Streaming Dataflows, ACM SIGMOD’25 [15].

� K. Psarakis, O. Mraz, G. Christodoulou, G. Siachamis, M. Fragkoulis, and A. Katsifodi-

mos. Styx in Action: Transactional Cloud Applications Made Easy (Demo), VLDB’25 [86].

Chapter 6 is based on the following publication:

� K. Psarakis, G. Christodoulou, G. Siachamis, M. Fragkoulis, and A. Katsifodimos. State

Migration in Styx: Towards Serverless Transactional Functions (Under Review).

Additionally, this dissertation benefits from the following research papers:

� R. Laigner, G. Christodoulou, K. Psarakis, A. Katsifodimos, Y. Zhou. Transactional Cloud

Applications: Status Quo, Challenges, and Opportunities (Tutorial), ACM SIGMOD’25 [87].

� G. Siachamis, K. Psarakis, M. Fragkoulis, A. van Deursen, P. Carbone, A. Katsifodi-

mos. CheckMate: Evaluating Checkpointing Protocols for Streaming Dataflows, IEEE

ICDE’24 [62].

� G. Siachamis, G. Christodoulou, K. Psarakis, M. Fragkoulis, A. van Deursen and A.

Katsifodimos. Evaluating Stream Processing Autoscalers, ACM DEBS’24 [66].
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1.7 Visual Outline
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Figure 1.4: Visual outline of this thesis with the chapters and main ideas put into them.
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2
Transactional Cloud Applications

Go with the Data(Flow)

Traditional monolithic applications are migrated to the cloud, typically using a microservice-

like architecture. Although this migration offers significant benefits, such as scalability and

development agility, it also leaves behind the transactional guarantees that database systems

have provided to monolithic applications for decades. In the cloud era, developers build

transactional, fault-tolerant distributed applications by explicitly implementing transaction

protocols at the application level.

This chapter presents the main argument of this thesis and outlines our approach: the principles

underlying the streaming dataflow execution model and deterministic transactional protocols

provide a powerful and suitable substrate for executing transactional cloud applications.

Parts of this chapter have been published in:

� K. Psarakis, G. Christodoulou, M. Fragkoulis, and A. Katsifodimos. Transactional Cloud Applications Go with the

(Data)Flow, CIDR’25 [46].
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O
ver the last decades, enterprises have migrated applications such as order management

systems, banking systems, game-backend services, and supply chain management to

the cloud. The transition from monolithic applications follows an architectural pattern that

favors a stateless application layer supported by a stateful database layer. All the stateless

and stateful components communicate with each other via REST calls or message queues.

Microservice architectures are well-known instances of this pattern.

At first sight, microservices are an obvious candidate for replacing monolithic appli-

cations and migrating to the cloud. Microservices offer code modularity, scalability, and

development agility. However, microservices lose an important advantage that monolithic

applications enjoyed for almost five decades: state management, failure management, and

state consistency were the responsibility of database systems. Today’s microservice archi-

tectures depart from these DBMS amenities by intermingling state management, service

messaging, and coordination with application logic [88]. From the database community’s

point of view, the microservice architectural pattern resembles the situation described long

ago [3], when developers implemented ad hoc application-level transactions to ensure

database consistency. Worse, managing communication and state in a distributed cloud

environment increases complexity.

For instance, in a shopping cart application, to complete a checkout, we first need to

ensure there is enough stock of the selected products and then receive payment before

shipping the products. In the microservice paradigm, each service (Cart, Stock, Payment)

has its own API, database, and application logic, and communicates with other services

through API calls. The main issue with microservices is that both atomicity (i.e., update

stock and get paid for an order, or cancel both actions) and state consistency across

workflows (i.e., the stock counts should reflect the successfully paid orders) must be

implemented in application code. Similarly, Function-as-a-Service (FaaS) follows the same

general architecture pattern as microservices: a stateless application, an external database,

and message-based communication. An orchestration layer on top of FaaS enables the

composition of complex workflows to build service-oriented applications.

However, orchestrators [26, 89, 90] solve only part of the problem, namely the atomicity

of a workflow’s execution. Moreover, achieving atomicity typically requires developers to

handcraft compensating actions to roll back changes correctly using the SAGA pattern [91].

To address these concerns, a line of research [12, 13] proposes FaaS systems for workflow

orchestration with transactional guarantees at the expense of performance and high-level

programming primitives. For applications requiring low-latency transaction execution and

state consistency across services [2], important challenges remain open.

In this chapter, we first identify the limitations and shortcomings of microservice-like

architectures for implementing transactional applications and then motivate the need for

dedicated runtimes to support transactional cloud applications. We argue that to remove

transaction- and failure-handling code from the application level, we need to address com-

plex orchestration, service calls, and state management in a holistic manner at the system

level, i.e., via a dedicated runtime. During the last few years, we have been developing

a runtime for transactional applications called Styx (Chapter 5) [15]. Styx automatically

partitions state, parallelizes function execution, and enables arbitrary transactional work-

flows with low latency. Most importantly, Styx’s programming model (Chapter 4) [55]

allows for application development that resembles a single-node application/monolith
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Figure 2.1: In monolithic applications, developers focused on application logic while a transactional database

handled state management and failure recovery. In distributed cloud applications, development involves more

challenges (e.g., failures, exactly-once messaging, and orchestration for atomicity and scalability). The ideal

runtime should offer the same state consistency and ease of programming as monoliths, with improved scalability,

without developer involvement.

while transparently handling the serializable execution of massively parallel workflows in

the cloud.

Ourwork is in linewith recent research, such asOrleans [27], DBOS [92], Hydroflow [93],

and SSMSs [94]. Contrary to these systems, our work adopts the streaming dataflow ex-

ecution model while exposing an object-oriented/actor-like programming model on top

[55] and guarantees serializability across services.

To summarize, in this chapter, we make the following contributions:

• We analyze the shortcomings of modern cloud applications by exemplifying issues

with current architectures and requirements for future systems (Section 2.1).

• We provide arguments on the suitability of the stateful streaming dataflow paradigm

for transactional cloud applications (Section 2.2).

• We introduce a novel approach that combines ideas from deterministic databases,

dataflow systems, and serverless architectures (Section 2.3).

2.1 From Monoliths to Microservices

As illustrated in Figure 2.1, developers in monolithic architectures were primarily responsi-

ble for the application logic. At the same time, with the adoption of microservices, they

need to deal with messaging and failures (Section 2.1.1), state management and orches-

tration (Section 2.1.2), and scaling techniques (Section 2.1.3). Interestingly, in Figure 2.2,

we observe that these aspects are not orthogonal. The conversion to a partitioned, event-

driven architecture (Figure 2.2b to Figure 2.2c) requires state migration, coordination, and

fault-tolerance.

Figure 2.2 depicts the process of breaking down a monolithic application (Figure 2.2a)

into three microservices, each with its own database (Figure 2.2b). In the microservice

architecture, direct access to a single database and DBMS-based transactions are no longer

possible. Instead, the microservices split functionality and maintain their own database.

Each service’s database is partitioned to scale out, as shown in (Figure 2.2c). REST API

calls are also transformed into messages that asynchronously trigger those calls.
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Figure 2.2: Three-step process of converting a monolith to a scalable, low-latency service architecture.

Microservices Implement Dataflows. A critical observation is that the architecture

depicted in Figure 2.2c closely resembles a streaming dataflow graph with the partitioned

state co-located with the application logic. While we elaborate on this in Section 2.2.2, in

short, this architectural pattern is the same pattern that is followed by streaming dataflow

systems such as Apache Flink [8] and Spark Streaming [95].

2.1.1 Messaging, Idempotency & Consistency

Traditional monoliths achieved workflow execution atomicity (e.g., a shopping cart check-

out) by combining state mutations across subsystems (cart, payment, stock) in a single

transaction. If the transaction fails, the database rolls back to the previous state, and the

application retries the checkout.

Idempotency in Services. To achieve the same effect, a stateful service or function must

be idempotent, meaning that calling the service multiple times should have the same effect

on the global state of an application as calling it exactly once. Considering that various

issues can arise [96] when two services communicate (such as network failures, rescaling,

or service restarts), currently ensuring idempotency works as follows: the sender service

generates an idempotency-key
1
that is persisted in the state of the sender, right before the

call is performed. Suppose the sender sends a message twice (e.g., because of an intermittent

network issue or a failure). In that case, the idempotency-key must be recognized and safely

ignored by the receiving service. It is important to note here that idempotency cannot be

achieved without persisting the idempotency-key to durable storage (e.g., a database) in

the same local transaction as the one that mutates the state of the receiver. At the moment,

idempotency-keys are managed by the developers, adding to the complexity of developing

cloud applications.

2.1.2 Transactions & Orchestration

Serializability in Services. Multiple works advocate that serializable guarantees are

preferred [47, 48]. This is also reflected in the offered isolation levels of post-NoSQL

systems such as Google’s Spanner [49] and, more recently, CockroachDB [50], which all

provide serializability. Serializability has been highly important in monolithic applications,

but in distributed service deployments, it is virtually impossible to reason about correctness

in the presence of state inconsistencies [48]. Transactional service architectures must

1https://datatracker.ietf.org/doc/html/draft-idempotency-header-00

https://datatracker.ietf.org/doc/html/draft-idempotency-header-00
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address message delivery guarantees.

SAGAs and Two-Phase Commit. Popular solutions to this challenge, known for years,

involve the Saga pattern and two-phase commit protocols orchestrated by a transaction

coordinator implementing XA transactions [52]. However, both of them present signif-

icant drawbacks. Implementing the Saga pattern involves managing the execution of

compensating actions to reverse the partial state effects of a failed workflow while the

offered consistency level is eventual. Alternatively, 2PC protocols coupled with two-phase

locking provide atomicity and isolation at the expense of blocking the progress of service

orchestrations involved in a transaction. We need a new way to architect cloud applications

with support for transactional workflows that span multiple components of an application.

Orchestrators. Currently, several commercial orchestrators are available for executing

SAGAs. Those orchestrators ensure atomicity only: they make sure that a given sequence of

service calls eventually comes to completion. While we do see the value of orchestrators for

analytics applications (e.g., as Apache Airflow [97], AWS Step Functions [90]), orchestrators

are not suitable for transactional applications, as they are all oblivious of the state of the

functions/services that they are orchestrating.

2.1.3 Application (Re-)Scaling

Scaling microservices requires scaling the stateless business logic and the state management

system that serves the stateless part of an application. Scaling stateless services is relatively

straightforward: one needs to rescale the application logic instance, assuming that the

database behind the stateless instance can handle the new load. However, when optimizing

for latency, the database is partitioned and preferably co-located with the application

logic. In that case, rescaling an application becomes a hurdle: the database has to migrate

state and possibly keep replicas. Soon enough, application developers re-implement some

version of database state migration and rescaling [98] protocol.

While current FaaS cloud offerings do allow for stateless functions to scale on demand,

they still provide no transaction management primitives that take into account service

orchestrations and state consistency issues during the rescaling process. An ideal runtime

should be able to perform the rescaling of applications without forcing operations teams

and developers to perform rescaling by hand while keeping the state across services

transactionally consistent.

2.2 Streaming Dataflows to the Rescue

In this section, we highlight the key aspects and advantages of streaming dataflow systems

design and argue that they can be extended to encapsulate the primitives required for

executing transactional cloud applications consistently and efficiently. Moreover, we

argue that combining deterministic databases and dataflow systems can create a runtime

that ensures atomicity, consistency, and scalability. Finally, we show how deterministic

databases can be extended for SFaaS, where transaction boundaries are unknown, unlike

online transaction processing (OLTP).
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2.2.1 Dataflows as an Architectural Abstraction

Stateful dataflows are the execution model implemented by virtually all modern stream

processors [99]. Streaming systems owe their wide adoption in the last decade to a set of

key system design aspects: exactly-once processing, consistent fault tolerance, co-location

of state and compute, and data-parallel scale-out architecture. We elaborate on these

characteristics below.

Exactly-once Processing. Message-delivery guarantees are fundamentally hard to deal

with in the general case, with the root of the problem being the well-known Byzantine

Generals problem. However, in the closed world of dataflow systems, exactly-once pro-

cessing is possible [8, 78]. In principle, to achieve exactly-once processing, the processing

layer records the outcome of each message’s state effects, the networking layer ensures

message delivery in FIFO order, and the fault tolerance layer guarantees that no message

that is already reflected in the state will be processed again. Note that the guarantee

of exactly-once processing significantly simplifies programming. The APIs of popular

streaming dataflow systems, such as Apache Flink, require no error management code (e.g.,

message retries or duplicate elimination with idempotency-keys).

Fault Tolerance. Exactly-once processing extends to the system’s fault tolerance ap-

proach. The two can be gracefully combined using Chandy-Lamport’s distributed snapshot

protocol [58] adapted for streaming systems [62, 78]. The approach involves periodically

circulating special messages called checkpoint markers into the streaming dataflow system,

instructing its operators to snapshot their state. Because checkpoint markers coexist with

common data-related messages on the same channel, they enforce a global order that cre-

ates a consistent cut of the system’s state. In case of a failure, the system can automatically

roll back to the latest checkpoint of its distributed state and resume processing from that

point, assuming the input is delivered from a replayable source, such as Apache Kafka [100].

This fault tolerance approach ensures that the system’s state remains consistent under

failures.

Co-location of State with Compute. Streaming dataflow systems have demonstrated

their capacity to process millions of events per second [8]. One main design decision

that enables this level of sustainable performance is that the system’s operators maintain

the state of their computations in their local memory space. The state is periodically

snapshotted to persistent storage, securing the progress of continuous computations against

failures. Notably, this coarse-grained approach bears a low overhead to the system’s regular

operation.

Data-parallel Scale-out Architecture. Continuing from the previous point, the system’s

architecture enables high-throughput at scale. Each operator in the logical dataflow graph

is instantiated as several operator instances deployed in distributed nodes. Each instance

holds a partition of the operator’s state, enabling input data to be distributed and processed

in parallel across instances.

2.2.2 Dataflows for Transactional Applications

The aforementioned advantages of streaming dataflow systems do not apply to transactional

cloud applications. To begin with, typical transactional workloads in the cloud manifest

as workflows of functions that arbitrarily call one another. This computation pattern
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is markedly different from analytics functions that populate the operators of streaming

systems. Second, streaming dataflow systems lack support for transactions as prescribed

in the database literature [3]. Finally, the development of workflows of functions entails

a programming model that can convey transactional semantics, form workflows, and

support custom business logic. This programming model departs from the typical way of

programming stream-processing jobs as chained functional transformations.

Dataflows for Arbitrary-Workflow Execution. The prime use case for dataflow systems

nowadays is streaming analytics, which typically involves executing a chain of standalone

functions. By comparison, transactional cloud applications involve arbitrary workflows of

functions calling each other. To enable the execution of arbitrary workflows in a dataflow

system, we connect operators at the system level such that an operator can directly invoke

a computation in another operator. In addition, we allow such nested computations to

be executed in parallel. Finally, we devised an approach for identifying the transaction

boundaries of a workflow, which we briefly describe next.

Deterministic transactions. Deterministic transactional protocols have two properties

that make them coexist harmoniously with dataflow systems. First, given a set of sequenced

transactions, a deterministic database [80, 101] will reach the same final state with serializ-

able guarantees despite node failures and possible concurrency issues. This property is

essential because it allows a deterministic transactional protocol to align with a dataflow

system without changing the stream processor’s checkpointing mechanism.

Second, unlike 2PC, which requires rollbacks in case of failures, deterministic database

protocols [80, 81] are "forward-only": once the locking order [80] or read/write set [81] of a

batch of transactions has been determined, the transactions will be executed and reflected

on the database state, without the need to rollback changes. This alignment between

deterministic databases and the dataflow execution model is the primary motivation to

support a deterministic transaction protocol on top of a dataflow system.

Still, supporting deterministic transactions in a streaming dataflow system is not

trivial and poses two main challenges that we address in our prototype system presented

in Section 2.3. The first challenge is determining transaction boundaries. This is not

required in deterministic databases, where each transaction is encapsulated in a single-

threaded function that can execute remote reads and writes across partitions [80, 81]. In

SFaaS, however, arbitrary function calls to remote partitions are common because they

enable developers to leverage both the separation-of-concerns principle widely applied in

microservice architectures [2] and code modularity. Therefore, to determine the boundaries

of a transactional workflow, we introduce an accounting scheme for function calls nested

within a workflow. The scheme, which also supports calls to remote operators and cycles,

signals the termination of a workflow’s execution once all function calls complete.

The second challenge is deciding when to commit to durable storage and reply to users.

Traditionally, a transactional system can respond to a client only when 𝑖) the requested

transaction has been committed to a persistent, durable state or 𝑖𝑖) the write-ahead log is

flushed and replicated. Within the scope of a dataflow system, this would require completing

a snapshot, leading to prohibitive latency. However, a deterministic transactional protocol

executes an agreed-upon sequence of transactions among the workers; after a failure, the

system would run the same transactions with exactly the same effects. This determinism

allows for early commit replies: the client can receive a reply before a persistent snapshot
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is stored.

Programming Models. Currently, dataflow systems are only programmable through

functional-programming style dataflow APIs: a given cloud application needs to be rewrit-

ten by developers to match the event-driven dataflow paradigm. Although it is possible to

rewrite many applications in this paradigm, it takes a considerable amount of programmer

training and effort to do so. Therefore, we have introduced an object-oriented programming

abstraction that encapsulates functions into actor-like entities. We present the program-

ming model as a whole in Section 2.3.1. We argue that this programming model is suitable

for developing transactional cloud applications like microservices.

2.3 The Stateflow/Styx Approach

Styx (Chapter 5) [15] is a transactional distributed dataflow system that executes workflows

of stateful functions with serializable guarantees. Styx adopts Stateflow (Chapter 4) [55] as

a higher-level programming abstraction, enabling users to code in a pure object-oriented

style without state management or fault tolerance considerations. In this section, we briefly

describe the programming model (Section 2.3.1) and underlying system (Section 2.3.2).

2.3.1 Programming Model

The Stateflow/Styx framework provides developers with two levels of abstraction: a high-

level actor-like programming interface based on Stateflow [55] and a lower-level dataflow

API [15].

High-level. Users can code transactional cloud applications in Python object-oriented

code where an entity is an object with a unique key and class functions that mutate the

entity’s state (similar to actor programming). Additionally, when an entity calls a function

of another entity, Stateflow automatically creates an edge in the dataflow graph. We

describe Stateflow’s workings and how it uses continuation-passing style programming to

transform calls between different entities into a distributed dataflow graph in [55].

Low-level. Styx follows the operator API of dataflow systems (e.g., Apache Flink [8]). In

Styx, a streaming operator can hold multiple entities based on a partitioning scheme, on

functions that act upon the operator as a whole (allowing range queries), or on the entities

themselves (allowing point queries). To communicate across operators, developers can call

remote operator functions using Styx’s API.

2.3.2 The Styx Runtime

Styx employs a typical worker/coordinator architecture. It is complemented by a messaging

system, such as Apache Kafka, that propagates input to Styx, including the replay of

unprocessed messages following a failure. The coordinator’s responsibilities are to deploy

a user-defined dataflow graph to the workers, monitor the cluster’s health while collecting

useful metrics, and trigger the fault tolerance pipeline in case of failure.

Theworkers are responsible for a subset of the dataflow graph’s operator state partitions,

which are 1-to-1 aligned with the partitions of the replayable input source, say Apache

Kafka. First, each worker ingests client requests through Kafka and sequences them

(Styx uses a non-replicated sequencer partitioned per worker). Then it receives a batch

of transactions from the sequencer and executes them as coroutines on a single CPU to
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improve efficiency. To execute transactions deterministically, Styx extends a deterministic

transactional protocol similar to Calvin [80] and Aria [81]. Determinism is required by the

dataflow snapshotting mechanism to guarantee the same state mutations after a replay in

case of failure. Transactions are executed in parallel across workers, and nested function

calls are transparently scheduled for execution by local or remote operators. Finally, Styx’s

acknowledgment-sharing scheme signals the end of a transaction’s execution.

Fault Tolerance. To recover from failures, Styx relies on a replayable input source to

perform deterministic message replay based on recorded offsets. This design ensures that

the sequencer will re-create the same transaction sequence post-recovery and enables early

replies (before the state commits to durable storage). Finally, Styx utilizes a blob store to

persist incremental snapshots of worker states.

2.4 Related Work

Our system shares motivation with projects such as Hydroflow [93] and DBOS [92]. DBOS

takes a DB-centric approach, where functions can be translated into stored procedures

within a database (co-location of state and processing) or on the server, where state needs

to be transferred, and workflows form a database transaction with ACID guarantees.

Hydroflow, at its present state, does not support transactional end-to-end workflows and

focuses primarily on cloud-native stream processing for analytics. Cloudburst [11] provides

causal consistency guarantees within a single Directed Acyclic Graph (DAG) workflow.

Netherite [102] offers exactly-once execution guarantees and a high-level programming

model, though it does not ensure transactional serializability across functions. Orleans [27]

introduces virtual actors decoupling applications from the underlying architecture, but

does not guarantee exactly-once message delivery. Finally, transactional SFaaS paradigms

with serializability guarantees (Beldi [13], Boki [12], and T-Statefun [43]) do support

transactional end-to-end workflows but suffer from poor performance and fail to decouple

user code from their transactional primitives.
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3
T-Statefun: Adapting Existing

Approaches for Transactional

Stateful Functions

Chapters 1 and 2 introduced the motivation for supporting general-purpose cloud applications

with strong consistency guarantees. This chapter investigates whether an open-source platform

can be adapted to support transactions in stateful cloud functions.

Before building a custom system from scratch, we sought to understand whether existing open-

source platforms could be adapted to meet our goals. In this chapter, we present T-Statefun,

our extension to Apache Flink StateFun, a Stateful Function-as-a-Service (SFaaS) platform

built atop a stream processing engine that already offers exactly-once processing guarantees.

T-Statefun introduces two complementary models for transactional coordination across stateful

functions: the Saga pattern for eventual consistency and two-phase commit (2PC) for seri-

alizability. By implementing both on StateFun’s dataflow runtime, we explored how far a

general-purpose streaming engine can be stretched to support transactional workflows typically

required in microservices and cloud-native applications.

Finally, the limitations we observed with T-Statefun informed the design of our system, Styx

(Chapter 5). Thus, this chapter serves as both a feasibility study and a key design probe.

This chapter is based on the following research paper and its extended journal version:

� 3 M. de Heus, K. Psarakis, M. Fragkoulis, and A. Katsifodimos. Distributed transactions on serverless stateful

functions, DEBS ’21 [43].

� M. de Heus, K. Psarakis, M. Fragkoulis, and A. Katsifodimos. Transactions Across Serverless Functions Leveraging

Stateful Dataflows. In Elsevier’s Information Systems, Volume 108, September 2022 [14].
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T
he idea of democratizing distributed systems programming is not new. Approaches

such as Distributed ML [103] and Erlang [104] aim to simplify the programming and

deployment of distributed applications. Erlang [104] first introduced the actor model,

which Akka [105] implemented later in Scala, offering a low-level programming model.

Following that, Virtual Actors [27, 36] try to abstract away the low-level primitives.

Serverless computing [106] is a cloud computing execution model promising to simplify

the programming, deployment, and operation of scalable cloud applications. In the server-

less model, developer teams upload their code written in a high-level API, and the cloud

platform handles application deployment and operations. Serverless computing aims to

substantially increase cloud adoption by addressing the status quo in the cloud landscape,

where developer teams need to possess skills in distributed systems, data management,

and the internals of cloud execution models to use the cloud effectively.

Function-as-a-Service &Messaging. The most prominent serverless offering is Function-

as-a-Service (FaaS), in which users write functions, and cloud providers automate deploy-

ment and operation. However, FaaS offerings lack support for state management and

the ability to execute transactional workflows across multiple functions [75, 107], which

are needed by general-purpose cloud applications. In addition, none of the current FaaS

approaches offers message-delivery guarantees, failing to support exactly-once processing:

the ability of a function to mutate its state exactly once per incoming message.

When a system does not guarantee exactly-once processing, the burden of debugging

and handling system errors (e.g., machine failures, network partitions, or stragglers) falls

on developers [108]. These developers then have to “pollute” their business logic with

extra consistency checks, state rollbacks, timeouts, or recovery mechanisms, for example.

[109]. The result is that the majority of the application code is not comprised of business

logic but error checking, management, and mitigation [2]. Sooner or later, programming

distributed systems at the application level leads to problems with state consistency, bugs,

and eventually significant service outages.

Message-delivery guarantees are fundamentally hard to handle in the general case, with

the root of the problem being the well-known Byzantine Generals Problem [110]. However,

in the closed world of dataflow systems, exactly-once processing is possible[8, 78, 79] as in

stateful dataflows, the system has full control over both messaging and state management.

Apache Flink’s StateFun [25] is, to the best of our knowledge, the first approach to build

a FaaS execution engine on top of a streaming dataflow system offering exactly-once

processing guarantees even under complex failure scenarios. However, StateFun’s approach

can also be implemented on top of other dataflow systems [8, 9, 111–113].

Such dataflow systems can execute stateful functions as follows: incoming events

represent function execution requests routed to continuous stateful operators that execute

the corresponding functions. With proper, consistent fault tolerance mechanisms [78, 79],

state-of-the-art stream processing systems operate at high throughput and low latency. At

the same time, they guarantee the correctness of execution even in the presence of failures.

As we show in this paper, this set of properties can support transactions with minimal

involvement from application developers.

Transactional SFaaS. Although there is ongoing work on supporting stateful FaaS (SFaaS)

applications that mutate state transactionally, across functions, remains an open problem.

The only approach addressing distributed transactions in an SFaaS setting is Beldi [13],
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which provides fault-tolerant ACID transactions on stateful workflows across functions

by logging the functions’ operations to a serverless cloud database. Cloudburst [11] with

HydroCache [114] provides causal consistency on function workflows forming a DAG

by leveraging Anna [115], a key-value store with conflict resolution policies in place.

Cloudburst does not provide isolation between DAG workflows.

In contrast with the aforementioned approaches, developer teams in the microservices

and cloud applications landscape go to extreme lengths when they need to implement

transactional workflows across the boundaries of a single service or function. The most

common approach adopted is the Saga pattern [91]. The Saga pattern separates a transaction

into sub-transactions that proceed independently with the benefit of improved performance,

but at the risk of having to undo or compensate the changes of successful sub-transactions

when at least one of the involved sub-transactions fails. In addition, compensating actions

can be challenging when concurrent changes are applied to the state because Sagas do not

require any means of isolation. For this reason, state consistency needs to be dealt with

at the application level. On the other hand, applications that prioritize consistency over

performance implement distributed transactions using the two-phase commit protocol.

Two-phase commit (TPC) [1] offers ACID, serializable transactions, but imposes blocking

operations across functions participating in a transaction, which penalizes performance in

return for strict atomicity.

In this chapter, we draw inspiration from best practices in developing microservices and

cloud applications and offer developers a programming model that supports both Sagas and

distributed transactions with two-phase commit. Our implementation for authoring work-

flows across stateful functions in FaaS with transactional guarantees is publicly available

on GitHub
1
. We implement the two approaches on an open-source stateful FaaS system,

Apache Flink [8] StateFun [25], and call our extension T-Statefun.

In summary, this chapter makes the following contributions:

• We argue for implementing transactional workflows on a stateful dataflow engine

and outline its advantages.

• We propose a programming model for transactional workflows across stateful server-

less functions.

• We implement the two main approaches used by cloud application practitioners to

achieve transactional guarantees: two-phase commit and Saga workflows.

• We evaluate two transactional schemes using an extended version of the YCSB

benchmark on a cloud infrastructure.

• We compare against the state-of-the-art academic SFaaS proposal that supports seri-

alizable transactions and one of the most popular transactional distributed database

systems.

1https://github.com/delftdata/flink-statefun-transactions

https://github.com/delftdata/flink-statefun-transactions


3

30 3 T-Statefun: Adapting Existing Approaches for Transactional Stateful Functions

3.1 Transactions on Streaming Dataflows

Serverless platforms come in different flavors. One breed of SFaaS systems (e.g., Apache

Flink StateFun and [107]) is built on top of a stateful streaming dataflow engine. This

architecture bears important implications for supporting transactions because of how

distribution, state management, and fault tolerance work.

Network communication between distributed components in a typical streaming

dataflow engine is implemented via FIFO network channels that guarantee exactly-once

processing and preserve delivery order. In a serverless FaaS system, this characteristic

obviates the need to handle lost messages and implement retry logic concerning function

invocations in transactional workflows. Messaging errors and retries are a significant

source of friction and development effort at the application level, and those are offered by

the underlying dataflow system.

State management in state-of-the-art streaming systems achieves exactly-once pro-

cessing guarantees by taking consistent snapshots of the system’s distributed state period-

ically [78]. The snapshots capture a globally consistent state of the system at a specific

point in time and are used to recover the system’s state upon failure. Exactly-once means

that the changes brought by each function execution instance are recorded in the system’s

state exactly once, even in the face of failures. For transactions, this capability is essential

because fault recovery of transactions can piggyback on the underlying fault tolerance

mechanism with zero effort and knowledge by the application. Given that a big part of

code and effort is spent on failure handling, fault tolerance, and virtual resiliency [116]

provided at the system level can play a significant role.

Furthermore, unlike traditional streaming queries, where the computations are fully en-

capsulated within the system’s operators, it is common to have nondeterministic side effects

(typically calls to external services or remote key-value stores) in microservices and cloud

applications. However, the traditional fault tolerance mechanisms of streaming dataflow

systems were not designed to support non-determinism prevalent in general-purpose

applications. Thus, the consistency of applications and the integrity of transactions are at

risk when transactions involve nondeterministic operations. Extending the fault tolerance

approach of streaming dataflow systems to support nondeterministic computations [79] is

an important step towards opening their adoption for executing general-purpose appli-

cations. Recent work [11, 93] also recognizes the dataflow model as a key enabler for the

SFaaS systems of the future.

In short, we believe that stateful streaming dataflows and the associated research that

has been proposed so far[117–119] can alleviate the burden of building rich stateful and

transactional applications on top of streaming dataflows. This paper presents a step in this

direction.

3.2 Preliminaries

In this section, we first present our transactional model (Section 3.2). Then, in Section 3.2,

we describe the functionality and internals of Apache Flink StateFun, which forms the

backbone of our proposed solution. Lastly, in Section 3.2, we list the requirements that an

SFaaS system should satisfy in order to be considered as a backend for our work.
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Figure 3.1: Flink StateFun Cluster Architecture

Transaction Model

In the context of this work, a transaction is an atomic execution of a set of stateful function

invocations. More specifically, the transactional model introduced in this paper considers

transactions defined up-front. This is referred to as single-shot [120] or one-shot [121]

transactions in prior works. We follow the definition of H-Store’s [121] one-shot transactions,

which states that the output of a function (query) cannot be used as input to subsequent

functions (queries) in the same transaction. Since the output of functions is not used

by subsequent ones, the execution of functions involved in a transactional workflow is

independent of one another. This simplifies coordination of the transaction across the

system while still providing a practical model for transactions. Widely used database

services, such as Amazon’s DynamoDB [122], support one-shot transactions [120]. In

an SFaaS system, one-shot transactions provide a significant advantage: functions can

implement arbitrary business logic in a general-purpose programming language such as

Java or Python instead of being limited to the API supported by a specific database, such as

DynamoDB. Thus, this advantage translates to considerable flexibility in the programming

model.

Apache Flink StateFun

Apache Flink StateFun
2
offers an abstraction and runtime for users to implement stateful

cloud functions. A stateful function implemented by user code is referred to as a function

type and describes the state it holds. Multiple instances based on the same function type can

exist in parallel and are identified by an ID. Each of these function instances encapsulates

its own state and can be uniquely addressed by its type and ID. Function instances can be

invoked from other function instances or through ingress points such as Kafka. Function

instances can have four different controlled side effects: (1) state updates, (2) function

invocations, (3) delayed function invocations, (4) egress messages (for example, Kafka).

StateFun supports end-to-end exactly-once guarantees from ingress to egress, including

any state updates.

2https://flink.apache.org/stateful-functions.html

https://flink.apache.org/stateful-functions.html
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Figure 3.2: Original communication flow of Flink Statefun

Architecture. In Figure 3.1 we present the general system architecture of Apache Flink

StateFun. The interface with the system is based on the ingress/egress pattern (e.g., in-

gest/produce Kafka messages). The Apache Flink StateFun cluster lies at the core of the

system, consisting of multiple workers that manage both messaging and partitioned state,

enabling stateless remote functions. However, this means the state must be transferred

along with the request to each specific function for processing. After processing, both

the response and the new state are returned to the StateFun cluster. This architecture’s

primary benefit is that since StateFun manages both messaging and state exactly-once

semantics is easier to achieve than other architectures.

Embedded vs. Remote Functions. Functions can be deployed both inside the StateFun

workers (referred to as embedded functions) and outside the StateFun cluster (co-located

and remote functions). Embedded functions are simply an abstraction on top of stateful

streaming operators in Flink, therefore providing exactly-once and fault-tolerance guar-

antees. StateFun allows dynamic communication between these streaming operators by

introducing a cycle in the streaming graph. The co-located and remote functions are

entirely stateless because the state is persisted within StateFun. This paper focuses on

remote functions as these can leverage existing FaaS services such as AWS Lambda to

auto-scale the compute layer. Figure 3.2 shows how remote functions work. Each function

instance is represented by an embedded stateful function in the StateFun cluster. This

standardized embedded function is responsible for managing the state of the function

instance and communicating with the remote function, which may be deployed anywhere.

The persisted data in the embedded stateful function with the communication pattern for

remote functions are shown in Figure 3.2.

Function Invocations as Dataflow Messages. Invocations that are sent to a function

instance arrive in a queue, as shown in step 1 of Figure 3.2. If the embedded stateful

function is ready to process the next invocation, it pulls a message (invocation parameters)

from the queue (step 2). When no invocation is being executed at the remote function, the

remote function is called. However, if the remote function is busy with a previous function

call, the current invocation message is appended to the next batch. Batching is used as an

optimization in order to avoid multiple remote calls to external functions at the expense of

latency (see Section 3.6.1). Batches are also used to preserve the invocation order and the

order of state access (the batch must wait until the state updates caused by the previous

batch have been applied), thus ensuring linearizability at the function instance level.

In step 3, the stateless remote function is called through a Protobuf interface that
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contains both the (keyed) state required for the remote function to operate and the invoca-

tion parameters of the function. The stateless remote function can execute the (batch of)

invocations and will be ready to return the updated state back to the Flink worker that

made the call. In step 4, the response of the stateless remote function is appended to the

queue of incoming messages to the function. The response includes any side effects caused

by the invocation(s), including updates to the user-defined state.

When the response from the stateless function is processed (step 5), the side effects

caused by the invocation(s) are applied to the state of the embedded function, updating the

managed state in the embedded stateful function. If any invocations are batched, the next

batch of invocations is sent to the remote stateless function, and the batch is truncated.

When there are no batched invocations, the in-flight status is cleared. Finally, any outgoing

function invocations are sent to the queues of their respective function instances, and

egress messages are sent to their respective egresses (step 6).

Assumptions & Requirements

As we describe in the next section, our coordinator functions rely on an underlying SFaaS

system for bookkeeping the state of ongoing transactions and reliable messaging. To allow

this, the underlying system should satisfy two requirements.

Exactly-once Processing Guarantees. Firstly, all communication must be reliable and

executed with exactly-once processing guarantees. Thus, we require that the underlying

system be fault-tolerant [8] to ensure transaction atomicity in the event of a failure. This

also means the state is durable across snapshots/checkpoints, even in the event of failures.

If we can rely on exactly-once processing guarantees, message replay, and error handling, a

significant part of transaction coordination can be simplified. Flink StateFun does guarantee

exactly-once processing.

Linearizable Operations. The second requirement is that the operations for any specific

function instance should be linearizable, meaning that there is a well-defined order in which

operations are performed on the instance and the state it encapsulates. Accordingly, a

function invocation will always have the correct state of the function instance to implement

transactions. Since Flink StateFun’s function instances use a single replica of the state

per function instance and a single process executes function invocations for that function

instance in a sequential FIFO manner, this ensures linearizable operations per function

instance.

3.3 Coordinator Functions & the T-Statefun API

In this section, we introduce the concept of stateful coordinator functions and provide

an overview of our approach. Our approach is based on the simple observation that

since an underlying SFaaS system provides exactly-once processing and message delivery

guarantees, conceptually, it would be much simpler to implement a transaction coordinator

as a regular, stateful function. With this in mind, we opted for implementing a transaction

API on top of stateful functions, which we present in Table 3.1. Notably, further work is

required to raise the transaction abstractions at an even higher level [107, 118] as syntactic

sugar.

A stateful coordinator function is a stateful function that preserves state about the
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Function Description

Shared coordinator function methods

send_on_success(type, id, message) Sends a message to another function instance if the transaction is successful

send_after_on_success(delay, type, id, message) Sends a delayed message if the transaction is successful

send_egress_on_success(type, egress_message) Sends a message to an egress if the transaction is successful

send_on_failure(type, id, message) Sends a message to another function instance if the transaction failed

send_after_on_failure(delay, type, id, message) Sends a delayed message if the transaction failed

send_egress_on_failure(type, egress_message) Sends a message to an egress if the transaction failed

Two-phase commit function methods

tpc_invocation(type, id, message) Add a function invocation to the transaction

send_on_retryable(type, id, message) Sends a message if the transaction aborted because of a deadlock

send_after_on_retryable(delay, type, id, message) Sends a delayed message if the transaction aborted because of a deadlock

send_egress_on_retryable(type, egress_message) Sends a message to an egress if the transaction aborted because of a deadlock

Sagas function methods

saga_invocation_pair(type, id, message, compensating_message) Add a pair of a message and a compensating message to the transaction

Ordinary functions

FunctionInvocationException Raised to fail the function invocation

Table 3.1: Coordinator functions’ Python API.

1 def serializable_transfer(context, message: Transfer):
2 subtract_credit = SubtractCreditMessage(amount=message.amount)
3 context.tpc_invocation("account_function",
4 message.debtor,
5 subtract_credit)
6

7 add_credit = AddCreditMessage(amount=message.amount)
8 context.tpc_invocation("account_function",
9 message.creditor,
10 add_credit)

Example 3.1: Two-phase commit coordinator function.

execution of a given transaction. Coordinator functions have the ability to force other

function instances to abort or compensate for the changes they applied.

API Overview. Our coordinator function implements two transaction coordination pat-

terns: two-phase commit and Sagas [91]. A complete example of a coordinator function

for two-phase commit and Saga is shown in Listings 3.1 and 3.2, respectively. In short, to

coordinate a two-phase commit transaction, the user needs to invoke function instances

via tpc_invocation, while for a Saga, an invocation pair is expected, which consists of the

normal transaction invocation and the corresponding compensation invocation to be sent to

the same function instance. A Saga invocation pair can be called with saga_invocation_pair.

An important difference between the behavior of the two schemes is that a failure in a

Saga workflow will incur a compensating function call.

Two-Phase Commit. The serializable_transfer function of Example 3.1 receives a context

(the underlying context of StateFun as we have extended it to support transactions) and a

message. The message is of type Transfer, and it contains three fields: the amount of money

transferred, the creditor, and the debtor. The amount mentioned in the message must be

subtracted from the debtor and transferred to the creditor. To this end, assuming that there

is a function type registered in the system as account_function, as per the original StateFun

API, we need to construct an object containing the parameters for the account_function and

push that message to the transaction coordinator. This is done in lines 5-7: we give the TPC

coordinator the function type to invoke, alongside the ID of the debtor to form the address
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1 def sagas_transfer(context, message: Transfer):
2 subtract_credit = SubtractCreditMessage(amount=message.amount)
3 add_credit = AddCreditMessage(amount=message.amount)
4 context.saga_invocation_pair("account_function",
5 message.debtor,
6 subtract_credit,
7 add_credit)
8 context.saga_invocation_pair("account_function",
9 message.creditor,
10 add_credit,
11 subtract_credit)

Example 3.2: Saga coordinator function.

of the function instance, and the SubtractCreditMessage, which is going to be given to that

function as a parameter. Subsequently, we do the same for the creditor: we construct an

AddCreditMessage, and we pass it over to the function type account_function. In short, the

transaction coordinator function instance will make sure that the two function instances

are invoked with serializable guarantees. It does this by coordinating a two-phase commit

protocol across the function instances with locking to ensure isolation. More details on

these aspects are given in Section 3.4.

Sagas. Similarly to two-phase commit, our API offers the ability to specify Sagas: as

seen in Example 3.2, the saga_invocation_pair function in line 6 will receive the target

function name, the ID of the debtor as well as two messages: the subtract_credit and its

compensating action add_credit. If there is a failure during the execution of subtract_credit,

our Sagas transaction coordinator will execute the compensating action add_credit, which

will put back the original credit to the debtor’s account. The details on how Sagas are

executed are given in Section 3.4.

Extensions to Regular Functions. To allow the execution of a transaction by the two

types of coordinator functions across any arbitrary function instances, some extensions to

regular functions are required. First, functions that can partake in a coordinated transaction

need to be able to fail explicitly. After a failure is communicated to a coordinator function,

it results in a transaction rollback. Currently, there is no notion of failing an invocation

in Flink StateFun; the function invocation may simply perform no side effects. To allow

explicit failure, a field containing these details is added to the protocol between StateFun

and the remotely deployed functions. From the API perspective, a function failure can be

triggered by throwing an exception. The failure of a function can be roughly compared

to integrity constraint violations based on the state encapsulated in a function instance

in traditional database terms. Second, any batching mechanism needs to be changed.

TPC coordinator functions ensure isolated transactions. This means that any function

invocation that is part of such a transaction may not be batched between other function

invocations. Third, appropriate locking should be implemented on the level of function

instances to ensure the isolation of serializable transactions based on two-phase commit

coordinator functions. Finally, the function instances should transparently communicate

with the coordinator functions so as not to burden developers with this task.
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3.4 Transactional Workflows

In this section, we present our Python API in more detail, and we present the implemen-

tation for transactional workflows across stateful serverless functions on Apache Flink

StateFun (T-Statefun). Our implementation consists of coordinator functions that enforce

either a distributed serializable transaction with a two-phase commit or a Saga workflow

as a transaction without isolation.

3.4.1 Coordinator Functions

Coordinator Functions orchestrate transactional workflows across ordinary Stateful func-

tions. To achieve this, coordinator functions encapsulate the state of active transactional

workflows that they are in charge of, but hold no state of the participating function ex-

ecutions or custom user-defined state. A coordinator function can be invoked simply

by its name (uniquely identified by a type internally) and an ID generated randomly at

initialization time. Then an input message will arrive at the coordinator’s input queue. If

the coordinator function is involved in an ongoing transaction, the message will be queued

until the workflow that is executing completes. The coordinator functions’ Python API is

listed in Table 3.1.

Figure 3.3 shows the common communication flow between a coordinator function

and regular function instances. Specializations of this communication for two-phase

commit and Saga workflows are described in Section 3.4.2 and Section 3.4.3 respectively.

Messages that are not always sent in both cases are annotated with a *. Figure 3.3 shows

the enriched internal structure for regular function instances compared to Figure 3.2. These

are the extensions that we implement for regular functions so that they can participate in

transactional workflows.

3.4.2 Saga Coordination

The programming model of the Saga coordinator function is shown in Example 3.2 through

an example. Table 3.1 presents the API. In Sagas, the developer is responsible for defining

pairs of function invocations so that the invocation of the second function compensates for

the one of the first function [91]. Additionally, the Saga coordinator function can define

side effects (e.g., outgoing egress messages) based on the transaction’s completion scenarios

(success or failure). The function invocations composing a Saga are executed in parallel in

the current implementation. In the following, we describe the messages specifically for

Sagas seen in Figure 3.3.

Initialization & Remote Coordinator Function Call. First, a message is sent to the

coordinator function to initialize a transaction (step 1). The message is taken from the

queue to initialize the transaction (step 2). Then, the remote Saga coordinator function

is called with the incoming message (step 3). The remote function returns the definition

of the Saga workflow to its embedded counterpart (step 4). This includes the function

invocations involved in the transaction and their compensating invocations, as well as the

side effects to perform on success or failure.

Processing the Remote Coordinator Function’s Result. When the embedded function

processes the result of the remote function (step 5), a random transaction ID is generated,

and a map is created holding the addresses of function instances and the result of their
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Figure 3.3: Communication flow for transactions in T-Statefun.

execution (at this stage, those are initialized as null values). It follows that only one

invocation per function instance can be involved in a particular workflow. If multiple

invocations of a single function instance are required, this can be solved at the application

level by allowing a single message, which combines multiple function invocations, to be

sent to the function instance.

InvokingRegular Functions. In step 6, each of the participating regular (non-coordinator)

function instances receives a function invocation in its input queue. All the invocations are

sent simultaneously, and the function instances can do the work in parallel. These function

invocations are distinguishable as function invocations that belong to a Saga workflow.

Each Saga function invocation is fetched from the queue, and it is either directly sent to the

remote function or batched with other invocations for efficiency (step 7). Because Sagas do

not require isolation, a function invocation can be batched with other invocations. Then, it

is sent to the regular remote function (step 8). After processing it, the function’s response is

added to the queue of its stateful embedded representation in StateFun (step 9). When the

response of the stateless remote function is processed in the embedded stateful function at

step 10, the indices in the in-flight function invocation metadata and the new list added to

the Protobuf interface, i.e., the regular function extensions, are used to identify the result

status of the Saga function invocations and the corresponding coordinator’s addresses. If

the function invocation fails, no side effects of the function are performed. After this, this

function can continue processing other function invocations.

Saga Success vs Compensation. Based on the success status of the Saga function invo-

cation, a success or failure message is sent to the coordinator function (step 11). When

the embedded coordinator function processes the success status of each function invo-

cation, the map is updated with either a success or failure status (step 12). If a function

instance fails, any function instances that successfully executed their function invocation

are messaged with their respective compensating actions (step 13), and the side effects

in case of a failure are performed (steps 14, 15, 16). The coordinator function has to wait

until the result of all function invocations is received before it is done. In case any of

the function invocations fails, the coordinator function sends the compensating messages

to all function instances that successfully processed their invocation. Note that there is

no need to send compensating invocations to function instances that failed since those

function instances have applied no side effects. The compensating messages are processed

as regular messages and are only required when any of the function invocations fail. This

means that the performance of a Saga workflow will be worse if it is likely to fail, as this

will require extra messaging and processing, up to double. As a matter of fact, this is the

trade-off offered by optimistic transaction approaches like Sagas.
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3.4.3 Two-phase Commit Coordination

In Example 3.1, we presented the programming model for a two-phase commit coordinator

function; Table 3.1 shows the available functions of the two-phase commit API. Similar to

Saga coordinator functions, two-phase commit coordinator functions can also define side

effects to execute for any completion scenario. Beyond successful and failed completion,

two-phase commit transactions can also be completed as “retryable”. This occurs when the

transaction is aborted due to a deadlock. In the following, we describe the workflow of the

two-phase commit as seen in Figure 3.3. Note that the initialization of the workflow, i.e.,

steps 1-5, is the same as in Sagas. Thus, we do not detail it here.

PREPARE & Two-phase Locking Growing Phase. Each involved function instance is

messaged with its respective function invocation in step 6. This message is identifiable as a

PREPARE message of the two-phase commit protocol. When a two-phase commit function

invocation arrives at the embedded stateful regular function, and a batch of invocations

for this function is currently in-flight, this two-phase commit function invocation is not

batched with other invocations. Instead, the two-phase commit function invocations split

batches and send them to the remote function in isolation, as shown in Figure 3.3. This

practice increases the complexity of the batching mechanism, as it now requires a queue of

batches rather than an append-only batch as shown in Figure 3.2.

Invoking Regular Remote Functions. When the message (and current state) is processed

and sent to the remote function in steps 7 and 8, the transaction ID and the address of the

two-phase commit coordinator function are stored in the details of the in-flight batch of

invocations. The lock on the function instance is also set at this point. The response from

the stateless remote function includes the function invocation status and any side effects

(step 9). Suppose a FunctionInvocationException is thrown at the stateless remote function.

In that case, the response of the remote function is discarded, a response to the coordinator

function instance is sent to notify it that the invocation failed, and the regular function

instance’s lock is removed, as it knows the transaction will be aborted. If the function

invocation is successful, the lock is kept, and a success response is sent to the coordinator

function instance. The state effects are then stored as staged side effects in the function

instance (step 10). Any other messages that arrive while the function instance is locked are

put in the queued batches.

ABORT & Two-phase Locking Shrinking Phase Upon Failure. The message at step

11 notifies the two-phase commit coordinator function instance whether the function

invocation succeeded. If the two-phase commit function instance receives the message

that a function invocation failed (step 12), it immediately sends an ABORT message to all

other function instances and performs the appropriate side effects (step 13), and calls the

two-phase lock shrinking phase. After this, the two-phase commit function is done.

COMMIT & Two-phase Locking Shrinking Phase. If the two-phase commit function

instance receives the message that a function invocation was successful, it updates the

map it keeps of all involved function instances. If all function instances succeed, it sends

COMMIT messages to all involved function instances and publishes the appropriate side

effects (i.e., applies the changes to the embedded function state).

COMMIT/ABORT & Two-phase locking Shrinking Phase. When a function instance

receives a COMMIT message (step 14), it executes its staged side effects, releases the lock
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and continues processing the next request. When a function instance receives an ABORT

message, it discards its staged changes, releases the lock, and continues processing. Note

that a function could also receive the ABORT message while the PREPARE message is still

in the queue or in-flight. In this case, the PREPARE message is discarded. Messages 15 and

16 are never sent for two-phase commit transactions.

Deadlock Detection. Due to the use of locks, the two-phase commit protocol is susceptible

to deadlocks. A deadlock can happen when two or more different two-phase commit

transactions wait on the locks on function instances that are held by other transactions. To

deal with deadlocks, we have implemented a deadlock detection mechanism, which we

describe below. All participants in the two-phase commit transaction can be partitioned

across different machines, and the state of active transactions is encapsulated in different

coordinator function instances. Thus, we do not want transactions to rely on any centralized

component for handling deadlocks. We implemented the Chandy-Misra-Haas algorithm

[123] that provides a simple way to detect deadlocks in a distributed manner, without

dependence on a single global coordinator. Whenever a deadlock is detected in a transaction,

it immediately completes as a retryable transaction and sends abort messages to all involved

function instances. Upon receiving a retryable result status, a two-phase commit regular

function may send itself a delayed invocation with the same initial message (and possibly

a counter attached) to perform a retry. This is left to the developer so that the system

remains flexible across various use cases.

3.5 The Transactional Guarantees of T-Statefun

Our approach offers serializable transactions by virtue of using the two-phase locking

protocol. Under certain transactional scenarios, which we discuss in this section, our

approach can achieve strict serializability, where the processing of transactions happens in

the same order that the transactions have reached the system. In order to achieve strict

serializability, our approach would require extensions. In the following, we explain various

design decisions or changes that need to occur in our system to support different flavors of

serializability.

Single-partition Transactions. A single-threaded operator instance executes every oper-

ation on the state of a given partition. Thus, single-partition transactions are guaranteed

to be processed in a serial manner. This also follows that single-partition transactions will

be guaranteed strict serializability even when executed in a distributed fashion. Moreover,

transactions that operate on different partitions are going to scale horizontally.

Multi-partition Transactions. In the general case, a transaction in our approach can

access multiple functions, mutate multiple state partitions, or both. Since two-phase locking

is used, the system can enforce serializability across multiple functions and data partitions

of the same function. In addition, our approach does not guard against changes in the order

of transaction executions. For example, induced by transaction aborts due to a deadlock or

system failures, transactions may be resubmitted for execution.

Strict Serializability. Our approach features three core advantages that provide important

foundations for achieving strict serializability. First, since we support one-shot transactions,

the system is aware of the keys that will be touched from a transaction prior to its execution.

Furthermore, these one-shot transactions can be arranged prior to their execution in a
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specific serial order – that order can be set to be the order of arrival, thus guaranteeing

strict serializability. Second, Apache Flink, which executes our transactions, recovers from

a failure by falling back to the latest completed checkpoint and re-processes input requests

following the checkpoint. This strategy allows us to reconstruct the exact same state as

prior to the failure under the assumption of deterministic computations. Finally, data-

parallel processing in disjoint state partitions allows us to execute concurrent transactions

in a parallel manner and without the need for concurrency control.

Relation to Deterministic Databases. Interestingly, the three aforementioned charac-

teristics of our approach resemble design choices opted by deterministic databases [101,

124, 125], which achieve strict serializability: the concurrent processing of a specific set of

transactions across a distributed system is guaranteed to result in one, single runtime state.

Furthermore, one could draw inspiration from deterministic databases for advancing

its transactional model in two ways. First, transactions on dataflow systems would benefit

from an input transaction log for pre-determining the order of transactions in a way that

would not introduce aborts during execution, essentially implementing a protocol like

Calvin [124]. Second, one could leverage a determinism service [79] to wrap nondeter-

ministic computations, which would cause its state to diverge when recovering from a

failure. Essentially, pre-ordering a batch of transactions and ensuring deterministic trans-

action processing would help dataflow-based transactional FaaS systems guarantee strict

serializability.

3.6 Experimental Evaluation

In this section, we describe in detail our experimental evaluation methodology. For the

lack of a benchmark aimed at SFaaS, we opted for an extension of the Yahoo! Cloud

Serving Benchmark (YCSB)[126] benchmark. Furthermore, we go through the experimental

evaluation of our system, which is split into six experiments with the following goals.

i) Determine the overhead that function coordination introduced to StateFun (Section 3.6.1).

ii) Compare between the two transaction protocols with/out rollback operations (Sec-

tion 3.6.2).

iii) Evaluate the system’s scalability (Section 3.6.3).

iv) Perform a microbenchmark with a fixed number of machines and a variable number

of keys and proportions of transfer operations (Section 3.6.4).

v) Compare against the CockroachDB with Kafka clients deployment (Section 3.6.5).

vi) Compare against Beldi (Section 3.6.5).

Regarding resources used, for (i, ii, iv, v), we used three 4-CPU StateFun workers/Cock-

roachDB nodes, and for (iii), each worker had 2 CPUs. In (v), we kept the default settings,

meaning that CockroachDB replicates data three times for fault tolerance and high availabil-

ity. For (vi), we allowed AWS and DynamoDB to autoscale while measuring the maximum

concurrency reached by AWS Lambda.
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Figure 3.4: StateFun Benchmark Design

Benchmark Workload

In YCSB, the first step is to insert records into the system with a unique ID and several

task-specific fields. After the data insertion stage, the benchmark performs operations on

the initialized state. YCSB defines read and write operations as part of their core workloads.

Because this work’s main contribution is distributed transactions across stateful function

instances, we added a new operation based on an extension introduced in [127]. This

operation is called a transfer, and it atomically subtracts balance from one account and adds

this to another, meaning that records also include a numeric balance field. These additions

mean that the workloads can consist of the following three operations:

read Reads the state associated with a single key and outputs it to the egress.

write Updates a field associated with a key and outputs a success message to the egress.

transfer Requires two keys and a specified amount, subtracts the amount from the balance

of one key, and adds it to the other. Depending on the transaction result, the output is

either a success or failure message to the egress.

Across experiments, we vary the proportion of each operation in the resulting work-

loads. In YCSB, the user selects the probability distribution of the operations’ record IDs.

In this work, we assume uniform key distributions. The added benefit is that the number

of requests for a single key can be increased transparently by decreasing the system’s total

number of records. Finally, YCSB allows variations in the number of fields and the size of

the values associated with each field. In this evaluation process, all records have ten fields

containing a random string of 128 bits and a single integer field. A StateFun application

is implemented with the following two functions to support the operations defined in

Section 3.6:

– Account Function. This is a regular function containing the record state for each key.

It processes messages to read the state, updates the fields, and subtracts or adds balance as

part of a transaction. It throws an exception and rolls back the transaction if the key does

not exist or if there is an insufficient balance to subtract the transaction amount.

– Transfer Function. The transfer function is a transactional/coordinator function that

takes a message consisting of two different keys and an amount. That message represents a

transaction consisting of two function invocations, one to each function key. This function

is implemented with both the two-phase commit and the Saga API.

Figure 3.4 depicts the architecture of the system under test. The benchmark pub-

lishes the workload to a Kafka cluster. StateFun reads from Kafka as ingress, invokes the
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Figure 3.5: Maximum throughput for the original StateFun vs. StateFun with coordinator functions.

appropriate functions, and then publishes the result to a Kafka topic as an egress. For

CockroachDB (v21.1.7), Kafka clients read from the relevant topics and submit queries to

the non-geo-replicated database.

Although CockroachDB and Kafka can provide exactly-once semantics individually,

because the state (CockroachDB) and messaging (Kafka clients) are not managed by a

single entity and do not share a single checkpointing mechanism, this deployment offers

at-least-once semantics. More specifically, clients that consume Kafka queues that deliver

transaction-initiating events need to pull an event from a Kafka topic, submit a query to

CockroachDB, and acknowledge the transaction’s execution back to Kafka. However, in

the event of a client (or database) failure, the transaction may be executed, but the message

to the queue may never be acknowledged. Not having returned the acknowledgment to

Kafka, the client will re-execute the same transaction after recovery. In general, unless the

transactions come with application-specific idempotence keys, the system by itself cannot

enforce exactly-once processing guarantees, falling back to at-least-once guarantees.

Our StateFun-based implementation and the CockroachDB deployment are deployed on

SurfSara
3
, an HPC cloud with instances with up to 80-vCPUs. For our experiments, we used

a two-VM Kubernetes cluster to simplify the deployment and management of the system’s

separate components with enough vCPUs to support the system’s configuration under test.

Beldi was deployed on AWS. All components shown in Figure 3.4 can be horizontally scaled

as necessary. Additionally, we give the Kafka cluster and the clients enough resources to

ensure that they can handle the load: when a bottleneck appears, it can be attributed to

the system performing the application logic, i.e., the StateFun cluster, CockroachDB, or

Beldi’s API.

Evaluation metrics

We evaluate the systems based on two metrics. First, the throughput is either at max or

stable (80%), showing the number of workload operations the system can handle per second,

and the latency, showing the time it takes to process an operation.

The maximum throughput of each workload and system configuration is found by

3https://userinfo.surfsara.nl/systems/hpc-cloud

https://userinfo.surfsara.nl/systems/hpc-cloud
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Figure 3.6: Graphs comparing latencies of original StateFun (OS) and StateFun with coordinator functions (CF) at

different throughputs for read-only and write-only workloads.

steadily increasing the input throughput created by the benchmark clients in Kafka until

the StateFun cluster/CockroachDB can no longer consistently handle the load, as measured

by the system’s output throughput in Kafka. At some point, the output throughput starts

fluctuating, and we define this value as the maximum throughput for the configuration. In

the comparison with Beldi, we could not measure it this way since it will always rescale to

accommodate the new load. So our approach in this matter is to take the 80% throughput

of the StateFun configuration and run Beldi with the same input throughput.

We use the Kafka event time for the ingress and egress events of operations to measure

their end-to-end latency. Since latency is always dependent on the throughput, in our

experiments, we set the throughput to 80% of the maximum throughput to allow consistent

operation of the system under test and measure the latency accurately. When compar-

ing latencies, the different throughput rates at which the latency is measured should be

considered.

3.6.1 Coordination Overhead

In the first experiment, the performance of StateFun with coordinator functions is compared

against the original on non-transactional workloads to see how much computational

overhead the coordination logic has added. In Figure 3.5, we show themaximum throughput

achieved by the two systems for a varying number of keys. While in Figure 3.6, we show the
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Figure 3.7: Maximum throughput for workloads with increasing proportions of transfer operations in the workload

different latencies for the systems across read and write workloads at different throughputs

and numbers of keys.

Throughput. The first observation we can make is that there is a 20% decrease in through-

put in the case of 100 keys that plateaus to 10% as the number of keys increases. The

decreased performance is because the batching mechanism is more complex than the

original append-only approach by enforcing isolated function invocations as part of a

two-phase commit transaction. In addition, the coordinator functions keep track of trans-

action progress, which incurs some overhead. Another observation is that there is no

noticeable throughput difference between workloads with only read or write operations.

The reason behind this behavior is that, in StateFun, both operations need to access the

remote function, making the communication layer the bottleneck.

Latency. The latencies in Figure 3.6 are approximately 20% higher for our version of

StateFun for read workloads. However, as the number of keys increases, the difference

becomes smaller, towards 7%. This decrease in performance is due to the additional logic

required for function coordination. Another interesting observation is the indifference in

performance for write workloads. The reason is that StateFun batches every read operation

before serialization, adding up over time for larger batches. In contrast, only the last version

needs to be serialized for writes. Additionally, serialization happens at the remote function

for both types of operations, explaining why it does not affect throughput, but it does affect

latency. Finally, we consider the introduced overhead as a reasonably low price to pay for

having full-fledged transaction execution primitives added to the system.

3.6.2 Sagas vs Two-Phase Commit

The second experiment shows a performance comparison between the two implemented

transaction protocols, their impact on the maximum throughput in perfect conditions

(Figure 3.7), and with failures, measuring the impact of locking for the two-phase commit

(Figure 3.8) and of rollbacks (Figure 3.9) for the Saga protocols. In these experiments, we set

a certain proportion of the workload to be transfer operations, and the remaining proportion

is equally shared between read and write operations. In our case, each transfer operation

causes three remote function invocations (coordinator function and one function per

account holder taking part in the transfer). When evaluating two-phase commit functions,

we do not include messages sent to detect deadlocks in the total number of invocations.
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Keys Transfer Deadlocks /

proportion transfer ops

100 0.25 9/12014 (0.07%)

0.5 27/24107 (0.11%)

0.75 82/35875 (0.22%)

5000 0.25 0/60121

0.5 0/120089

0.75 0/179794

(c) Frequency of deadlocks

Figure 3.8: Details of locking behavior for a workload for 100 and 5000 keys with various proportions of transfers

without rollbacks. The boxplots show the 5th and 95th percentiles.
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Figure 3.9: Throughput with different proportions of rolled back transfer operations for workloads with 50% and

100% transfer operations

Therefore, the indicator should be considered a lower bound on the actual number of

messages. Finally, we used a uniform key access distribution for these experiments. At the

same time, in some real-world scenarios, this can be skewed (e.g., lots of transactions on

very active accounts vs. a long tail of inactive ones).

Figure 3.7 plots the achieved throughput against the absolute number of transfer opera-

tions in the workload with a varying number of keys, given that the benchmark provided

the accounts enough balance to ensure all transactions succeeded. It also displays indica-

tors for the absolute amount of total internal function invocations, considering additional

internal invocations required for transactions, and the absolute amount of total remote

function invocations. We observe that Sagas perform much better than two-phase commit

for a few keys (100 and 2000). This happens for two reasons: i) Sagas can still benefit from

the batching mechanism of StateFun since they do not require isolation, and ii) the locking

in two-phase commit severely limits the throughput. However, it is also interesting that

two-phase commit performs comparably to Sagas for a higher number of keys (5000-10000)

even though it provides much stronger guarantees. This is because there is less contention

on a single function, decreasing the effect of locking, while batching provides no benefits,

as also shown in Figure 3.5. A second observation from Figure 3.7 is that the total function

invocations still drop when the proportion of transactions increases. This is because the
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Figure 3.10: Maximum throughput for the system with 5000 keys for different numbers of StateFun workers for

workloads with different proportions of transfer operations

total function invocations account for the additional messaging required to coordinate

transactions, leading to the overall throughput of workloads with a high proportion of

transfer operations being relatively low.

Locking Overhead. In Figure 3.8, we measure the behavior of locking and deadlocks

that accompany the two-phase commit protocol. The lock duration is measured between

the point in time where the function instance sends the response to the prepare message

and when it either receives a commit or abort message, sending the next batch to the

remote function. In Figure 3.8a, we see little to no difference in the median across the

different workloads, but when the proportion of transfer operations is higher, the higher

percentiles increase significantly. Next, we want to measure the deadlock frequency, and

Figure 3.8c shows the number of deadlocks against the total number of transfer operations

in the workload. As expected, there are no deadlocks in workloads with 5000 keys, since

contention is low. For 100 keys, we observe an increasing number of deadlocks while the

proportion of transfer operations increases. However, the percentage of deadlocks across

all transfer operations is still small. Finally, Figure 3.8b shows the time it takes to detect a

deadlock, i.e., perform the Chandy-Misra-Haas algorithm. We observe that the median of

the time this takes is similar across all workloads, and it also shows that as the amount of

transfer operations increases, so do the higher percentile times.

Rollback Overhead. Figure 3.9 shows the maximum throughput for workloads with 50%

and 100% transfer operationswhere different proportions of transfer operations fail for Sagas

and two-phase commit coordinator functions. As expected, when using two-phase commit,

a rollback does not increase the load in the system because the coordinator function needs

to send a second message either way. Again, nothing out of the ordinary happened as the

proportion of transfer operations to be rolled back increased. The throughput decreased as

the protocol required additional compensating messages to be sent in the system. However,

with 5000 keys, the difference is small at 50% transfer operations: 8% when going from 25

to 75% rollbacks and increasing to 18% with 100% transfer operations. This is larger than

the 100-key case that can still leverage the batching mechanism of StateFun and limit the

performance drop to 10% in the worst case. Still, no matter the decrease in performance

due to the compensating actions of the Saga protocol, it remains 20% faster than two-phase

commit in the worst-case scenario of 5000 keys and 75% rollbacks.
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Figure 3.11: Graph comparing latencies for Sagas and two-phase commit coordinator function for different keys

and transaction proportions in the workload at 80% of the respective maximum throughputs

3.6.3 Scalability Comparison

In the last experiment, we evaluated the scalability of the proposed system with coordinator

functions. In Figure 3.10 we display the maximum throughput for both two-phase commit

and Sagas at different amounts of StateFun workers and different transaction proportions

in the workload. For Sagas, the scalability from 1 to 5 workers is close to 90% throughout

for all workloads. For two-phase commit, the scalability from 1 to 5 workers starts at 87%

at 10% transfer operations and drops to 75% at 100% transfer operations.

The reason for the low decrease in scalability on both protocols is that as the number

of workers increases, more traffic needs to go over the network. In the Sagas’ case, the

efficiency does not decrease across all workloads for the same reasons as expressed in

Section 3.6.2. Namely, the system can still utilize batching, no locking is required, and

the number of messages is two times lower than the two-phase commit protocol when

all transactions succeed. On the other hand, the 8% decrease in scalability in two-phase
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Figure 3.12: Comparing the maximum throughput of CockroachDB and Flink StateFun for workloads with

different proportions of transfer operations (the remaining operations are read or update operations with equal

probability). Both systems are deployed with 3 instances, each with 4 CPUs.

commit from 10% to 100% transfer operations is due to the protocol’s requirements for locks,

more messages, and the inability to use batching. Considering all the impending factors, it

still achieves decent efficiency with strong consistency guarantees in fully transactional

workloads.

3.6.4 Microbenchmark

As a final experiment, we conduct a microbenchmark on the system. At first, we keep the

number of resources fixed, and then for every transfer proportion and number of keys,

we measure the throughput at 80% load and the corresponding latency. By the results

presented in Figure 3.11 we can see that for a use case with a low number of keys, the

Sagas beat by a large margin the two-phase commit protocol in both throughput, with

more than a 650% increase in performance, and latency that is at least two times lower. The

contention becomes less of a problem for a larger number of keys. We observe a smaller

difference between the two protocols at around 40% on average for throughput and a stable

difference in latency around 20%. To conclude, Sagas seems to be the obvious choice for a

few keys or high contention, if the business logic permits it. In any other case, the choice

is mainly about the consistency guarantee requirements since the difference is not that

significant.

3.6.5 Comparison Against the State-of-the-Art

CockroachDB. We compare the performance of StateFun against a production-grade

distributed database, CockroachDB, in terms of throughput and latency. Due to the funda-

mental differences between the two systems, this is merely a reference comparison. In this

experimental setting, the input requests consist of a varying proportion of transactional

and non-transactional requests. We signify transactional requests as transfer operations

and non-transactional requests as non-transfer operations.

As Figure 3.12 shows, CockroachDB outperforms StateFun in terms of throughput by

a constant factor when transactions are evoked on a small number of unique keys. In

addition, this experiment configuration examines the performance of the two systems
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100 keys

Operations StateFun CockroachDB

median 95th %tile median 95th %tile

Transfer (0.1) 297 787 48 86

Non-transfer 96 591 47 79

Transfer (0.5) 173 577 22 72

Non-transfer 89 441 17 68

Transfer (1.0) 226 615 41 114

5000 keys

Operations StateFun CockroachDB

median 95th %tile median 95th %tile

Transfer (0.1) 178 308 36 113

Non-transfer 55 150 21 107

Transfer (0.5) 156 278 21 64

Non-transfer 62 129 11 62

Transfer (1.0) 146 240 43 78

Table 3.2: Latency compared for StateFun and CockroachDB, each system was run at 80% of the maximum

throughput measured as shown in figure 3.12

when there is high lock contention since subsequent transactions on the same key have

to wait for previous ones to complete. Notably, the performance difference in terms of

throughput remains the same while the proportion of transactions in the input request set

increases from 0.1 to 0.5 to 1. When there are many keys (e.g., 5000), StateFun outperforms

CockroachDB. In fact, for a small proportion of transactions (0.1), StateFun achieves four

times more throughput. As the number of transactions grows, the performance difference

shrinks. These results can be explained by a more sophisticated or aggressive batching

mechanism that enables StateFun to efficiently batch non-transactional requests. When

there are many non-transactional requests, the effect of batching provides a significant

performance advantage, which is shrinking as the number of non-transactional requests

becomes smaller.

On the other hand, CockroachDB is superior in terms of latency performance as

Table 3.2 depicts. Both median latency and latency at the 95th percentile are roughly six

times better on average than StateFun’s in all configurations. This result can be explained

because CockroachDB is run with default settings, and there is no batching implemented at

the application level. This contributes to lower throughput, but it also favors lower latency.

On the other hand, StateFun can inherently apply batching at several points in the system,

such as when i) it sends a request to a remote function, ii) fetches requests from Kafka, and

iii) produces responses to Kafka.

In summary, CockroachDB seems more suitable for handling skewed transactional

workloads, although the performance improvement against StateFun is constant in terms of

throughput. Thus, a potential superiority based on the locking mechanism of CockroachDB

is capped and does not result in a scalable advantage. Furthermore, CockroachDB replicates

data three times, leading to additional overhead but providing the capacity to serve requests

even in the case of node failures. On the other hand, StateFun provides no replication and

needs to recover from a checkpoint following a node failure. On the other hand, StateFun

can leverage its sophisticated batching mechanism to drive significantly better throughput

for workloads containing a modest number of transactions. Notably, while CockroachDB

supports full transactional SQL and StateFun supports only one-shot functions, due to

the simplicity of the workload, the feature set should not have a significant impact on
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100 keys

Operations Throughput StateFun Beldi

CPU median 95th %tile Max. concurrency median 95th %tile

Transfer (0.1) 1.5K 80 298 723 128 49 739

Non-transfer 99 572 83 693

Transfer (1.0) 0.16K 80 223 532 182 91 724

5000 keys

Operations Throughput StateFun Beldi

CPU median 95th %tile Max. concurrency median 95th %tile

Transfer (0.1) 8K 80 184 287 1000* 123 174

Non-transfer 52 184 50 77

Transfer (1.0) 1.2K 80 146 273 902 114 847

Table 3.3: Comparison between latencies of Beldi and StateFun (*experiment is throttled and runs at a lower

throughput ≈ 4K, i.e., experiment lasted longer)

performance. In addition, the executed workloads allow for less locking and more batching.

Finally, CockroachDB demonstrates reliably low latency in all configurations, roughly six

times lower than StateFun.

Beldi. We also compare StateFun with a stateful function as a service library and runtime,

Beldi, which runs on AWS Lambda and uses DynamoDB as backend storage for transactions.

Because of the intricacies of the serverless environment and the restricted way it can be

configured, we limit our comparison to latency performance, given a fixed amount of

throughput requests, since we have limited visibility to the number of resources used by

Beldi. AWS only exposes the concurrency level of the Lambda functions and allows for the

restriction of that to a maximum number. In Figure 3.3, max concurrency refers to the max

concurrency utilized by AWS Lambdas. Max concurrency was fairly stable throughout each

experiment. Notably, there is no information regarding the specification of the underlying

hardware that is used.

Furthermore, even latency performance does not provide a fair comparison because

Beldi only measures latency from when a request’s execution starts until the time it

completes, without considering the amount of time spent for routing and waiting in an

input queue before the request’s execution begins. Consequently, a performance throttle

in Beldi due to excess load will not show in the measured latency. We try to compensate

for this by measuring the experiment’s completion time and estimating Beldi’s actual

throughput. On the other hand, we run StateFun in an IaaS cloud infrastructure where

we provide it with a specific amount of computational resources and measure latency

end-to-end. The disparity between the two infrastructures and experimental settings limits

the insights that can be extracted.

Figure 3.3 shows the experimental results, from which we draw two notable observa-

tions regarding latency. For non-transfer operations, regardless of the number of keys,

StateFun and Beldi achieve the same level of low-latency performance. Beldi demonstrates

2-3 times superior performance in terms of median latency for transfer operations, while

tail latency at the 95th percentile suggests no important differences between the two sys-

tems. In Beldi, latency only captures delays that are internal to the system, which may be

owed to lock contention inside Beldi, communication stalls between Lambda functions and

DynamoDB, as well as queuing in DynamoDB. Unfortunately, it is impossible to pinpoint

the exact factors and their merit in the observed tail latency.
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Lastly, an important factor in the experiments is that Beldi is let free to auto-scale

up to 1000 concurrently executing functions. This aggressive availability of resources far

exceeds the 80 CPUs given to the remote functions executing on StateFun. Interestingly,

when the number of unique keys is large, meaning that lock contention is low, this level

of concurrency is not adequate to accommodate the input throughput of 8K requests per

second. In this case, AWS Lambdas used all the available concurrency, and the execution

of requests was throttled, waiting for CPUs to become available. Given the experiment’s

duration, we approximated the level of throughput achieved by Beldi at 4K requests

per second. Note that Beldi’s latency remains unaffected since it does not account for

external delays, such as queuing. On the other hand, we observe that when the number of

unique keys is small, meaning that lock contention is high, Beldi is quite efficient. It used

more concurrency than what was available to StateFun, but at the same overall level of

magnitude. Beldi’s efficiency is probably owed to juggling between requests that can be

executed immediately and others that should be put to sleep until they can get hold of the

lock they require to proceed.

Finally, the observed performance of Beldi does not account for garbage collection.

Beldi features a garbage collector to shrink its transaction log periodically, but the garbage

collector does not need to run during the presented experiments because their duration

is too short. In general, however, the garbage collector is expected to add overhead not

represented in our set of experiments.

3.7 Related Work

SFaaS Systems. SFaaS has been a very active area in both research and the open-source

community. From the research community, the most relevant work is Beldi [13], which, like

AFT[128], builds on top of Amazon’s AWS Lambda to add fault tolerance and transaction

support, allowing for more complex state management. Their principal difference is that

Beldi’s execution environment is completely serverless, while AFT relies on external

servers for transaction support. To make that happen, Beldi uses atomic logging, extending

Olive [129], to ensure fault tolerance for read and write operations, with garbage collection

to manage the logs’ growth. Regarding transactions, Beldi supports a variant of the two-

phase commit protocol, enforcing strong consistency guarantees with wait-die deadlock

prevention. Cloudburst with Hydrocache [114] provides causal consistency guarantees

within the same DAG workflow backed by Anna [115], a key-value state backend. Another

promising SFaaS system, FAASM[130], supports direct memory access between functions

while maintaining isolation and speeds up initialization times compared to containers. At

the time of writing, FAASM does not provide transactional support. Finally, the two most

prominent open-source SFaaS projects are Cloudstate
4
, based on stateful actors, and Apache

Flink StateFun, which is presented in detail in Section 3.2. In Cloudstate, communication

is allowed between different actors within the same cluster and between user-defined

functions over gRPC with at-least-once processing guarantees.

Transactional Programming Model. The most notable difference among these systems

in terms of programming model is state access. Both StateFun and Cloudstate encap-

sulate state within a specific function instance. In contrast, Cloudburst and Beldi allow

4https://cloudstate.io/

https://cloudstate.io/
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any function access to any state stored in Anna or DynamoDB, respectively. Regarding

transactions, only Beldi offers a programming model where the developer writes two

markers (begin/end_tx), and every function invocation in between will execute as part

of a transaction. Our contribution is a programming model that supports transactions on

StateFun with the choice of strong or relaxed consistency guarantees.

Stream Processing Transactions. Furthermore, transactions on top of stream processing

systems have received some attention in the literature. In [131], the authors introduce

a transactional model over both data streams and traditional tabular data. Following a

similar model, in [132], the authors add guarantees for snapshot isolation and consistency

across partitioned state. Then TSpoon [133], an extension of FlowDB [119]), proposes a

data management system built on top of a stream processor that supports transactions,

giving the option of both strong and weak transactional guarantees and queryable state.

Our work focuses on transactional workflows between generic stateful functions executed

on a serverless dataflow system.

Distributed Databases. The mentioned stream processing systems share the same main

goal as distributed databases [49, 50, 121, 134–136], that is, how to scale to multiple ma-

chines while providing serializable transactional guarantees. This is an old problem in

database research. The R* system [134] was one of the first to try the two-phase com-

mit protocol with distributed deadlock detection. Then, more recent approaches like

H-store [121] showed that distributed database solutions could provide both very high

performance and transactional guarantees when transactions touch a single partition. Cur-

rently, research in distributed databases revolves around globally distributed databases with

Spanner [49] introducing serializable transactions using a timestamp mechanism across all

locations/machines based on atomic clocks. Furthermore, approaches like Carousel [135]

and SLOG [136] improve globally distributed database transactions. Carousel enhances

transaction execution by minimizing network usage, while SLOG offers a fine-grained

transaction protocol based on the proximity between the data and the client. Finally, Cock-

roachDB [50] provides serializable globally distributed transactions without a complicated

time mechanism.

Benchmarks. The large variety of use cases and systems makes them difficult to compare

using a standardized benchmark. The related benchmarks that could be used to evaluate

SFaaS systems are the Yahoo! Cloud Serving Benchmark (YCSB)[126] and the DeathStar-

Bench [137]. Given that StateFun is based on Flink, which is a stream processing system, a

stream processing benchmark [138] would be another alternative. However, its workloads

are not representative of those executed by an SFaaS system. In addition, we did not con-

sider TPC-C [139] because it was created to test relational database management systems,

including transactions, and requires many additional features not present in SFaaS. We

ultimately chose to develop and use an extension of YCSB [127] that introduced explainable

transactional workloads, allowing for an easier interpretation of the results.

3.8 Discussion & Open Problems

Programming Models for the Cloud. Although the stateful dataflow model has been

very successful as an execution model, it has not been leveraged thus far as an intermediate

representation. Historically, MapReduce/Hadoop [140] and Dryad [30] were first proposed
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as a means of authoring and executing distributed data-parallel applications using high-

level language constructs, such as Java functions and LINQ [141] respectively. Many

systems have followed that execution model subsequently, including streaming dataflow

systems such as Apache Storm [142], Flink [8], Naiad [143]. However, none of these systems

could execute general-purpose cloud applications; their programming model focuses on

distributed collection processing and adopts a functional programming API.‘

Dataflows forCloudApplications. Webelieve that abstractions such as stateful functions

can play the role of a high-level programming model for dataflow engines and have a

high impact on cloud programming. The current approach to programming in the cloud

is to either use domain-specific languages (DSLs) such as Bloom [29], Hilda[31], and

Erlang [104], or as libraries within mainstream languages like Akka [105], Spring Boot

(spring.io). The main observation here is that the developer either has to learn a new

domain-specific language or use libraries that leak implementation details into the business

logic. Very close to the spirit of this work are virtual actors, and Orleans [27, 36] from

which Apache Flink’s StateFun drew inspiration. However, Orleans requires a specialized

runtime and does not offer exactly-once function execution. As we show in this paper,

implementing very complex protocols (with lots of corner cases) can be simpler since

we benefit from the state management and exactly-once guarantees of modern dataflow

systems. Since dataflow systems are well understood, scalable, and consistent nowadays,

we believe they will play a critical role in the future of cloud execution engines.

Future Dataflow Systems. However promising they can be, dataflow engines still suffer

from several issues. Stream processors such as Apache Flink [8], or Jet [113] have been

designed for continuous operation on high-throughput streams. However, stateful functions

have very different workload characteristics. For instance, lots of cloud applications may

have to call external services – a source of non-determinism [79], and functions calling

other functions, expecting return values, introduce cycles in the dataflow graph. Current

dataflow systems either do not support cycles or support a few special cases of cycles.

This is because cycles can cause deadlocks and various other issues [78, 144] that need

to be dealt with. Finally, in this paper, we introduced transactions at the function level

without having to touch the core of Apache Flink’s dataflow engine. However, proper

implementation of transactions would require the dataflow system itself to be aware of

transaction boundaries (e.g., commit, prepare) and incorporate transaction processing into

its fault-tolerance protocol. We think that more research needs to be performed to get

dataflow systems fully capable of leveraging their potential.

3.9 Conclusions

In this chapter, we tackle the problem of supporting transactional workflows across cloud

applications on a serverless platform. This problem is notorious in the microservices and

cloud applications landscape. In addition to that, we introduced a programming model and

corresponding implementation for authoring workflows across stateful serverless functions

with configurable transactional guarantees. Developers can opt for a distributed transaction

across functions with strict atomicity and consistency guarantees or a Saga workflow that

provides eventual atomicity and consistency. These complementary alternatives faithfully

represent the requirements of real-world use cases. We described our implementation on

spring.io
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top of Apache Flink StateFun, and evaluated our implementation on an extended version

of the YCSB benchmark that we developed in terms of a) throughput and latency overhead

against the original StateFun, b) performance efficiency between distributed transactions

and Saga workflows, and c) scalability. We found that our transactional workflows add

affordable overhead to the system around 10%, Sagas significantly outperform distributed

transactions on a scale of 15% – 34% depending on the amount of ongoing transactional

workflows in the system, and scalability manifests a factor of 90% for Sagas compared to

75% – 87% for two-phase commit. Furthermore, our comparison against a serverless SFaaS

runtime showed that our work could achieve higher throughput, but it also incurs higher

latency. Finally, we compared against a popular distributed database, CockroachDB, which

achieved better performance in high contention scenarios and in terms of latency. Notably,

our work achieved better results in sparse key distributions, while it provides exactly-once

processing semantics compared to our deployment of Kafka with a CockroachDB backend

at-least-once semantics.
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4
Stateflow: a Domain-Specific

Language for General-Purpose

Cloud Applications

Chapter 3 examined how transactional guarantees can be integrated into existing stateful

function-as-a-service platforms, focusing on extending Apache Flink Statefun. While this

approach demonstrated the feasibility of augmenting runtime environments with strong con-

sistency guarantees, it did not address the equally important challenge of programmability.

Cloud developers continue to face significant complexity when translating high-level applica-

tion logic into distributed execution semantics. In this chapter, we turn our attention to this

challenge.

We introduce Stateflow, a domain-specific language and compiler pipeline that enables devel-

opers to author general-purpose cloud applications using familiar object-oriented constructs.

Stateflow compiles such programs into a dataflow intermediate representation that is portable

across multiple execution backends. This chapter details the design of the programming model,

its compilation strategy, and the execution guarantees it preserves, thereby advancing the

thesis’s objective of democratizing cloud applications.

This chapter is based on the following work:

� K. Psarakis, W. Zorgdrager, M. Fragkoulis, G. Salvaneschi, and A. Katsifodimos. Stateful Entities: Object-oriented

Cloud Applications as Distributed Dataflows, EDBT’24 (vision) and CIDR’23 (abstract) [55].
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O
rganizations nowadays enjoy reduced costs and higher reliability, but cloud developers

still struggle to manage infrastructure abstractions that leak through in the application

layer. As a result, managing application components, such as service invocation, messaging,

and state management, requires much more effort than developing the application’s busi-

ness logic [47]. Worse, moving a cloud application between cloud providers is prohibitive

due to significant differences in the underlying systems.

While there are multiple approaches for distributed application programming (e.g.,

Bloom [29], Hilda [31], Cloudburst [11], AWS Lambda, Azure Durable Functions, and

Orleans [27, 36]), in practice developers mainly use libraries of popular general purpose

languages such as Spring Boot in Java, and Flask in Python.

None of these approaches offers processing guarantees, failing to support exactly-once

processing: the ability of a system to reflect the changes of a message to the state exactly

once. Instead, they offer at-most- or at-least-once processing semantics. Programmers then

have to “pollute” their business logic with consistency checks, state rollbacks, timeouts,

retries, and idempotency[2, 109].

We argue that no matter how we approach cloud programming, unless an execution

engine can offer exactly-once processing guarantees so that it can be assumed at the level

of the programming model, we will never remove the burden of distributed systems aspects

from programmers. To the best of our knowledge, the only systems able to guarantee

exactly-once message processing [78, 79] at the time of writing are batch [30, 140, 145]

and streaming [8, 142, 143] dataflow systems. However, their programming model follows

the paradigm of functional dataflow APIs, which are cumbersome to use and require

training and heavy rewrites of the typical imperative code that developers prefer to use for

expressing application logic.

For these reasons, we argue that the dataflow model should be used as a low-level

intermediate representation (IR) for the modeling and executing distributed applications,

but not as a programmer-facing model. Technically, one of the main challenges in adopt-

ing a dataflow-based IR is that the dataflow model is functional, with immutable values

propagating across operators that typically do not share a global state. Hence, adopting

a dataflow-based IR entails translating (arbitrary) imperative code into a functional style.

Compiler research has systematically explored only the opposite direction: to compile code

in functional programming languages into a representation that is executable on impera-

tive architectures – like modern microprocessors. Yet, the translation from imperative to

functional or dataflow programming remains largely unexplored.

This chapter presents a prototypical programming model and an IR that compiles

imperative, transactional object-oriented applications into distributed dataflow graphs and

executes them on existing dataflow systems. Instead of designing an external Domain-

Specific Language (DSL) for our needs, we opted for an internal DSL embedded in Python -

a popular language for cloud programming. Specifically, a given Python program is first

compiled into an IR, an enriched stateful dataflow graph independent of the target execution

engine. That dataflow graph can then be compiled and deployed to various distributed

systems. The current set of supported systems includes Apache Flink Statefun [25] and Styx

(Chapter 5). The choice of a runtime system is entirely independent of the application layer,

which allows switching to different runtime systems with no changes to the application

code.
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@entity
class Item:

def __init__(self, item_name: str, price: int):
self.item_id: str = item_id
self.stock: int = 0
self.price: int = price

def __key__(self):
return self.item_id

def price(self) -> int:
return self.item_id

def update_stock(self, amount: int) -> bool:
self.stock += amount
return stock>=0

@entity
class User:

def __init__(self, username: str):
self.username: str = username
self.balance: int = 1

def __key__(self):
return self.username

@transactional
def buy_item(self, amount: int, item: Item) -> bool:

total_price: int = amount * item.price()

if self.balance < total_price:
return False

# Decrease the stock.
available: bool = item.update_stock(-amount)

if not available:
item.update_stock(amount)
return False 

self.balance -= total_price
return True

Figure 4.1: Two stateful entities: User and Item. The content of imperative functions is split into multiple functions

that access the common state of a given entity. Those functions are then encoded into a stateful dataflow that

can be executed in a distributed streaming dataflow engine. As a result, 𝑖) imperative code is executed in an

event-based manner without the need to block, and 𝑖𝑖) the code retains exactly-once processing guarantees

without the need for programmers to write failure-handling code such as state management, call retries or

idempotency.

The contributions of this chapter go as follows:

• To the best of our knowledge, this is the first work to propose compiling and executing

imperative programs into distributed, stateful streaming dataflows.

• We present a compiler pipeline that analyzes an object-oriented application and

transforms it into an IR tailored to stateful dataflow systems.

• We describe an IR for cloud applications and how that IR translates to a dataflow

execution graph, targeting various distributed systems, thereby making cloud appli-

cations portable across different systems and infrastructures.

• We compare Stateflow, a novel transactional dataflow system, against Apache Flink

Statefun and demonstrate the limitations of existing dataflow systems, motivating

further research. Our experimental evaluation shows that Stateflow incurs low

latency in the YCSB+T [127] workload.

The proposed programming model presented in this chapter can be found at:

https://github.com/delftdata/stateflow.

4.1 From Imperative Code to Dataflows

Historically, imperative programming and functional programming have evolved in par-

allel: imperative as a direct codification of (operational) computational models (e.g., Von

Neumann architecture, Turing machines) and functional inspired by mathematical abstrac-

tions (e.g., lambda calculus, program denotation). While functional programming has been

embraced by several languages (e.g., Haskell [146], ML [147]), imperative programming

has taken the scene, with most mainstream languages featuring object-oriented (mutable)

abstractions. Over the last few years, imperative languages like Java and Python, which sup-

port various domain-specific packages, e.g., networking, statistics, numeric computation,

etc., have become extremely popular among non-expert programmers.

https://github.com/delftdata/stateflow
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Figure 4.2: Logical dataflow graph of five entities, focusing on the User entity found in Figure 4.1.

Yet, the benefits of functional programming have been known for a while. Most notably,

functional code is often embarrassingly parallelizable because of the lack of side effects

and mutability. Developers working with imperative languages – let alone non-expert

developers – can hardly access this feature.

4.1.1 Approach Overview

The main principle behind our compiler pipeline is that developers simply annotate Python

classes with@stateflow, and the system automatically analyzes and transforms these classes

into an intermediate representation, which is then transformed into stateful dataflow graphs,

ready to be deployed on a dataflow system. Similar to (Virtual) Actors [36, 105], entities

can make calls to methods of other entities. Figure 4.1 depicts two sample entities: User

and Item. Details of the programming model are provided in Section 4.1.2.

In the first pass of an Abstract Syntax Tree (AST) static analysis, we extract the class’s

variables (i.e., instance attributes referenced with self ), the names of each method, and

all respective types indicated by the programmer (Section 4.1.2). In the second round of

analysis, classes that interact with each other are identified to create a function call graph

(Section 4.1.3). Then, the call graph is analyzed to identify calls to other functions (possibly

residing in a remote machine), at which point functions have to be split, composing the

final dataflow (Section 4.1.4).

This dataflow graph, enriched with the compiled classes, execution plans, and all

metadata obtained from static analysis, comprises the intermediate representation (Sec-

tion 4.1.5). Finally, that intermediate representation can be translated, deployed, and

executed in different target systems (Section 4.2).
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4.1.2 Programming Model & Limitations

Expressiveness. Our programming model allows programmers to specify simple, object-

oriented Python programs. Classes can have references to other classes and call their

functions. We term an instance of such a class as a stateful entity. The Stateflow compiler

currently can analyze conditionals, for-loops that iterate through Python lists, as well as

general while loops.

Limitations. Stateflow requires static type hints for the input/output of stateful entity

functions and ensures the existence of those hints via a static pass over the analyzed classes.

Moreover, the functions cannot be recursive. Another assumption that Stateflow makes

is that each entity contains a key() function. This key() function is used by a routing and

translation mechanism to partition and distribute the load among parallel instances of that

entity within a cluster. Furthermore, the key of a stateful entity cannot change throughout

that entity’s lifetime. Finally, the entities’ state needs to be serializable, i.e., connections

to databases, local pipes, and other non-serializable constructs are not allowed and will

eventually generate a runtime error.

Running Example. Figure 4.1 contains the code for a User and an Item entities. Note that

since Item is a stateful entity, a call to item.update_stock(...) is a remote function call. Both

User and the Item entities are partitioned across the cluster nodes, using the given entity’s

key function.

4.1.3 From Entities to Dataflow Operators

Each Python class translates to an operator (also called a vertex) in the dataflow graph.

In a dataflow graph, an operator cannot be "called" directly, like a function of an object.

Instead, an event has to enter the dataflow and reach the operator holding the code of that

entity (e.g., the User class) as well as the actual state of the entities that instantiate the class

(e.g., the balance and username of the User in Figure 4.1).

Specifically, each dataflow operator can execute all functions of a given entity, and the

triggering function depends on the incoming event. Since operators can be partitioned

across multiple cluster nodes, each partition stores a set of stateful entities indexed by

their unique key. When an entity’s function is invoked, the entity’s state is retrieved from

the local operator state. Then, the function is executed using the arguments found in the

incoming event that triggered the call, as well as the state of the entity at the moment that

the function is called.

Example. A User operator as seen in Figure 4.2, is partitioned on username. Upon

invocation of a function of the User entity, an event is sent to the dataflow graph’s input

queues. The incoming event is partitioned on username by an ingress router. Via the

dataflow graph, the event ends up at the operator storing the state for that specific User.

The system then reconstructs the User object using the operator’s code and the function’s

state and executes the function. Finally, the function return value is encoded in an outgoing

event forwarded to the egress router. This egress router determines if the event can be sent

back to the client (caller outside the system, such as an HTTP endpoint) or if it needs to

loop back into the dataflow to call another function.

The Need for Function Splitting. For simple functions that do not call other remote

functions, both the translation to dataflows and the execution are straightforward. However,
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if the function User.buy_item calls the (remote) function item.update_stock whose state lies

on a different partition, the situation becomes more complicated. Note that a streaming

dataflow should never stop and wait for a remote function to complete and return before

moving on with processing the next event. Instead, it must “suspend” the execution of, e.g.,

buy_item of Figure 4.1, right at the spot that the remote function item.price() is called until

the remote function is executed. An event comes back to the User operator with a return

value.

To do this, we adopt a technique to transform the imperative functions into the continua-

tion passing style (CPS) [148]. More specifically, we propose an approach to split a function

definition into multiple ones (Section 4.1.4) at the AST level as depicted (approximately) in

Figure 4.1.

4.1.4 From Imperative Functions to Dataflows

References to Remote Functions. After the first round of static analysis, the compiler

identifies if a function definition has references to a remote stateful entity using Python

type annotations. These functions may require function splitting. The algorithm traverses

the statements of a function definition, and the function is split either when a remote call

occurs or on a control-flow structure. For example, the following buy_item calls the remote

function item.update_stock:

1 def buy_item(self, amount: int, item: Item):
2 total_price: int = amount ∗ item.price
3 is_removed: bool = item.update_stock(amount)
4 return total_price

This function is split at the assign statement on line 3 and results in two new function

definitions:

1 def buy_item_0(self, amount: int, item: Item):
2 total_price: int = amount ∗ item.price
3 update_stock_arg = amount
4 return total_price, {"_type": "InvokeMethod",
5 "args": [update_stock_arg], ..}
6

7 def buy_item_1(self, total_price, update_stock_return):
8 is_removed: bool = update_stock_return
9 return total_price

The buy_item_0 function defines the first part of the original function and evaluates

the arguments for the remote call. The buy_item_1 function assumes the remote call

item.update_stock has been executed, and its return variable is passed as an argument.

In general, each function that was split takes as arguments the variables it references in

its body and returns the variables it defines. For example, since buy_item_0 defines the

variable total_price, its value is returned from the function. Next, since buy_item_1 uses

total_price, it is defined as a parameter.

Control Flow. The compiler also needs to split functions when encountering remote

function calls within control flow constructs like if -statements or for-loops. In short, an

if -statement is split into three new definitions: one that evaluates its condition, one that

evaluates the ‘true’ path, and one that evaluates the ‘false’ path. Similarly, a for-loop is

also split into three new definitions: one that evaluates the iterable, one that evaluates the

for-body path, and one that evaluates the code path after the loop. The function splitting
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algorithm is recursively applied to the statements inside the for path and inside the true

and false path of the if -statement.

4.1.5 Intermediate Representation

Our intermediate representation is a stateful dataflow graph enriched with a number of

aspects. After the static analysis, each dataflow operator is enriched with the entity/method

names that it can run, their input/return types, as well as their method body. After splitting

functions, we also need to build what we term a state machine. For every split function

(Section 4.1.4), we maintain an execution graph that tracks the execution stage of a given

stateful entity’s function invocation.

Essentially, the process of deriving the state machine consists of unrolling the control

flow graph of the program. Conceptually, the translation to a state machine is possible

by deriving a finite program representation. To this end, we 𝑖) do not allow unbounded

recursion, and we 𝑖𝑖) keep track of the current iteration for loop control structures by

enriching the state machine with the additional state. When invoking a function that

was split, the state machine is inserted into the function-calling event. As the event

flows through the system, the execution graph is traversed, and the proper functions are

called. The execution graph stores intermediate results – the return values of the invoked

functions.

4.2 Supported Dataflow System Runtimes

Stateful entities can be deployed as dataflow graphs to streaming dataflow systems, offering

exactly-once fault-tolerance guarantees.

Flink’s Statefun. The IR is translated to a streaming dataflow graph that, for example,

Apache Flink can execute. In that case, a Kafka source pushes events to the ingress router,

which is a map operator performing a keyBy operation to route an event to the correct

stateful map operator instance where function execution will take place. Each execution’s

output is forwarded to the egress router, which forwards outputs to a Kafka sink.

We use Kafka to re-insert an event into the streaming dataflow, thereby avoiding

cyclic dataflows, which are not supported by most streaming systems. Notably, our system

implements all the logic required for routing and execution in this process. On the downside,

when an event reenters a dataflow to reach the next function block of a split function,

race conditions attributed to events coming from non-split functions could lead to state

inconsistencies due to other events changing the same function’s state in the meantime.

Time tracking with watermarks, support for cyclic dataflows, and locking could solve these

problems. Since the IR is well-aligned with Statefun’s dataflow, only simple translation

and mapping are required when using the Statefun runtime.

Styx: a Transactional Dataflow System. Existing dataflow systems cannot execute multi-

partition transactions. To this end, we built Styx, a prototype dataflow system in Python.

Styx treats each function – and the state effects it creates via calls to other functions – as a

transaction with ACID guarantees. We achieve consistency by implementing an extension

of Aria [81], a deterministic transaction protocol. The dataflow system is built to allow for

dataflow cycles used in function-to-function communication and leverages co-routines for

optimal resource utilization. For fault-tolerance, Styx implements the consistent snapshots
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protocol [58, 78], which has been adopted by many streaming dataflow systems [8, 9, 149]

alongside a replayable source as an ingress, allowing Styx to rollback messages and restore

the snapshot upon failure. Although still a prototype, Styx is already able to execute

transactional workloads (YCSB-T [127] and partly TPC-C) with promising performance

(Section 4.3).

Local. A Styx dataflow graph can execute all its components in a local environment. The

only difference is that the state is kept in a local HashMap data structure instead of a state

management backend. Local execution allows developers to debug, unit test, and validate

a Stateflow program as they would do for an arbitrary application. Afterward, they can

deploy the program to one of the supported runtime systems.

4.3 Preliminary Experiments

For the experiments of this section, we opted for running Apache Flink Statefun against

Styx (Section 4.2).

Workload. We are using workloads A and B from the original YCSB benchmark [126]. A

is update-heavy – 50% reads 50% updates, and B is ready-heavy – 95% reads 5% updates.

In addition, we use the transactional workload T from YCSB+T [127], which atomically

transfers an amount from one entity’s bank account to another (2 reads and 2 writes). For

the throughput test, we defined a mixed workload M (45% reads 45% updates 10% transfers).

For the latency tests, we use Zipfian and uniform key distributions.

Setup. We conducted all the experiments on 14 CPUs: 4 for the Kafka cluster, 6 for the

systems, and 4 for the benchmark clients. For Statefun, we gave half of the resources to the

Flink cluster and the other to the remote functions. Styx requires a single core coordinator,

and the rest are used for its workers.

Baseline. In Styx, we execute complex business logic resulting in state operations. YCSB is

a benchmark that supports simple inserts, deletes, and updates, not complete executions of

transactions across multiple function calls. It is, therefore, expected that Stateflow, since it

executes function calls and application logic, would have a larger overhead than key-value

stores. Styx is not a key-value store; instead, it is a stateful function-as-a-service compiler

(Stateflow) and runtime that allows programmers to author object-oriented Python code.

Latency. In the first experiment, we measured the end-to-end latency of all the YCSB

workloads against the integrated backend systems with both Zipfian and uniform key

distributions at a low rate of 100RPS. As seen in Figure 4.3 both systems perform well with

low latencies across all workloads and distributions. Some interesting observations go

as follows. First, Statefun performs the same in both the A and B workloads and in both

Zipfian and uniform distributions. This happens because Statefun does not use locking,

allowing for concurrent access (but also inconsistency). Additionally, since all functions

must run in an external Python runtime, the cost of reads and writes is the same due

to network costs. We also observe that Styx outperforms Statefun because it allows for

internal function-to-function communication and does not require roundtrips to Kafka.

Note that Styx additionally supports transactional workloads with higher latency than

the rest. Still, if we consider that a transfer operation is 2 read and 2 write operations, the

transactional overhead of the system is minimal. Finally, we did not run Statefun against
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Figure 4.3: Average latency at the 99th percentile, in YCSB (100 RPS) with both Zipfian and uniform key

distributions.

transactional workloads since it offers no transaction support.

Throughput. In the second experiment, we gradually increase the input throughput and

measure the end-to-end latency. This time, we use the mixed workload that we defined, M

(45% reads, 45% updates, 10% transfers). In Figure 4.4, we observe consistent results with

the latency experiment up until the point where the difference in efficiency appears. The

reason for this is that Styx is using more execution cores since it bundles execution, state,

and messaging. In contrast, the Statefun deployment uses half its CPUs for messaging and

state within the Apache Flink cluster and the other half for execution in a remote stateless

function runtime. In the current experiments, this balanced deployment was the optimal

one in terms of resource utilization.

System Overhead. Finally, we also measured the overhead that program translation

(function splits, instrumentation, etc.) incurs as part of the complete runtime (not depicted

for the sake of space preservation). We created a synthetic workload that varied different

state sizes from 50 to 200 KB. For each event, we measured the duration of different

runtime components. Some components, like object construction, are attributed to program

transformation overhead, whereas others, like state storage, are attributed to the runtime.

In short, function splitting/instrumentation is only responsible for less than 1% of the total

overhead.

Conclusion. The experimental evaluation demonstrates the potential of dataflows as

an intermediate representation and execution target for scalable cloud applications. In

short, these preliminary experiments show that we can translate imperative programs that

hide all the aspects of distributed systems and error management from programmers and

still achieve high performance. That said, the experiments also uncover the limitations of

dataflow systems and implementation issues that we address in the following section.
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Figure 4.4: Average and 99th percentile latency for the M workload, with increasing input throughput.

4.4 Open Problems & Opportunities

The ability to query the global state of a dataflow processor, as well as perform transactional

state updates on its state, can transform a dataflow processor into a full-fledged, distributed

database system. The envisioned system will be capable of executing Turing-complete

“stored procedures” (such as the entity functions in the case of this chapter) that are

distributed and partitioned and can perform function-to-function calls with exactly-once

guarantees. This is the ultimate goal of this work.

In this section, we discuss several opportunities emerging mainly from transactional

workloads with low-latency requirements and outline future research directions to enable

the adoption of dataflow systems for executing general cloud applications.

Program Analysis. The dataflow model is essentially a finite state machine where nodes

are the functions from the original (Turing-complete) program and arcs indicate event flow.

In the case of loops, events also carry information about the previous iterations of the loop

(e.g., the variables that are read and written in the loop body and the loop condition clause).

This information handles loops correctly (Section 4.1.5). For method calls, if a method is

mapped to a single state, it would be problematic to determine where to return after a call

if, in the codebase, there are multiple calls that have different return points. We map each

method call into a transition to a state that is specific for that call. This means that calls to

the same method may result in a different state in the automata, ensuring that each state

has the correct return point as the next. This approach requires to unroll the program,

expanding each potential method call that may occur at runtime into a different state.

Following this approach, recursive functions would result in a state for each recursive

step. Since unbounded recursion would result in infinite automata, we prohibit recursion.

Yet, from a compiler perspective, since a program can be CPS-transformed, recursion can

be translated into loops via tail-call elimination [150], which could potentially affect the

dataflow engine’s performance.

In addition, in what is traditionally referred to as dataflow languages (e.g., Esterel [151],

Lucid [152]), the computation is driven by data propagation – just like in streaming

dataflows. However, the expressivity of such languages has been intentionally limited to

enable efficient execution (automatic) verification techniques. While in this work, we aim

to target Turing-complete Python programs, the trade-off between expressivity, efficiency,

and automatic verification is yet to be researched in the future.
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Transactions. Current dataflow systems guarantee the consistency of single-event effects

on a given state key. To support transactional executions across stateful entities, we

could employ single-shot transactions[121] or, like in our prototypical dataflow system

(Section 4.2), borrow ideas from deterministic databases[81, 101, 124] for minimizing the

coordination of transactions. In practice, a large percentage of transactions can be expressed

as single-shot transactions [120]; very popular databases such as Amazon’s DynamoDB

[122] and VoltDB [153] support single-shot transactions. These ideas can define how a

programming model can support patterns adopted by practitioners in recent years, starting

with SAGAs [91] and Try-Confirm-Cancel [96].

Exactly-once, Latency & External Systems. Exactly-once guarantees can incur high la-

tency: the outputs of a dataflow only become visible after an epoch terminates successfully[78].

Epoch intervals cannot be too small because they would incur a high overhead. However,

one can leverage causal recovery [154] and determinants [79] alongside replayable sinks

to minimize the latency within each epoch. The replayable sinks are required to be able

to retrieve determinants. However, at the border of a system, i.e., when a message leaves

the dataflow graph and is sent to an external system, replayable sinks may be hard to

assume. In that case, one should use more traditional techniques for deduplication (e.g.,

the standard idempotence keys used in the HTTP protocol). Under certain assumptions

(deterministic computations, persistent/replayable request queues, etc.), such idempotence

keys can be generated automatically. However, this will not be the case for a generic dis-

tributed application, which will have to generate, keep track of, check, and recycle unique

identifiers to enforce the delivery of its output exactly-once. These issues have not been

studied enough in the context of distributed databases or models for cloud programming.

Querying Stateful Entities. In previous work [155], we have shown that querying the

global state of a dataflow processor can be not only efficient but can also come with certain

correctness guarantees. Some work on querying actors has already been done in the context

of Orleans [156]. However, querying (e.g., with SQL) a set of entities still poses a number

of challenges, especially with respect to the tradeoff between the freshness and consistency

of query results. To this end, we could borrow ideas from RAMP (read-atomic) transactions

[157] that match well the execution model of transactions and read operations in stateful

entities.

4.5 Related Work

The idea of democratizing distributed systems programming is not new. For instance,

in [93], the authors mention that a combination of dataflows and reactivity would provide

a good execution model for cloud applications. In this work, we share the same belief and

build a prototype towards that direction.

Programming models. In the past, approaches like Distributed ML [103], Smalltalk [158],

and Erlang [104] aimed at simplifying the programming and deployment of distributed

applications. Many of those ideas, including the Actor model, can be reused and extended

today. Erlang implemented a flavor of the actor model. Akka [105] offers a low-level

programming model for actors. Closest to our work is the Virtual Actors model introduced

by Orleans [27, 36], which aims at simplifying Cloud programming and even supports

some form of transactions [159]. However, Orleans requires a specialized runtime system



4

66 4 Stateflow: a Domain-Specific Language for General-Purpose Cloud Applications

for virtual actors, which does not support exactly-once messaging and does not compile its

actors into stateful dataflows.

Imperative programming to Dataflows. The idea of translating imperative code to

dataflow is not new. In the database community, there has been work on detecting impera-

tive parts of general applications that can be converted into SQL queries (e.g.,[160]) but also

for automatic parallelization of imperative code in multi-core systems. For instance, the

work by Gupta and Sohi [161] compiles sequential imperative code to dataflow programs

and executes them in parallel. Our work draws inspiration from both these lines of work

and extends them by considering the partitioning of state and other considerations that we

outline in Section 4.4.

Stateful Functions. A new breed of systems marketed as stateful functions, such as

Cloudburst [11], Lightbend’s Cloudstate.io, and Apache Flink’s Statefun.io [43], as

well as our early prototype in Scala [107], also aim at abstracting away the details of

deployment and scalability. However, none of those compiles general-purpose object-

oriented code into dataflows.

4.6 Conclusions

In this chapter, we argue that if we want to hide failures from the top-level programming

models of Cloud applications, exactly-once guarantees should become first-class citizens.

While dataflow systems can provide such guarantees, their programming model makes the

development of general Cloud applications cumbersome. To this end, we have developed a

compiler pipeline that statically analyzes an object-oriented Python application to create

an intermediate representation in the form of a dataflow graph and then submits that

dataflow graph to existing dataflow systems. Leveraging dataflow systems’ exactly-once

guarantees can essentially hide all Cloud failures from programmers with low overhead:

our preliminary experimental evaluation demonstrates that function splitting and program

transformation incur less than 1% overhead and the YCSB+T benchmark, with low-latency

execution.

Current Status. Despite the encouraging results, lots of problems remain open, specifi-

cally in the area of transaction execution, programming models, program analysis, and

dataflow engines for general cloud applications. Our work currently focuses primarily

on 𝑖) strengthening the formal underpinnings of program transformation to dataflows, 𝑖𝑖)

extending the programming model with different transactional paradigms, and 𝑖𝑖𝑖) further

developing Styx, our novel transactional dataflow system.

Cloudstate.io
Statefun.io
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5
Styx: a Transactional

Dataflow-Based Runtime for

Stateful Functions as a Service

The previous chapter (Chapter 4) introduced Stateflow, a high-level programming model for

cloud applications that compiles object-oriented Python code into distributed dataflows. While

Stateflow simplifies application development and abstracts away failures and transactions, it

surfaces a set of core runtime requirements to support its execution model—namely, the need

for efficient, fault-tolerant, and transactional orchestration of stateful functions.

This chapter presents Styx, a distributed runtime system purpose-built to meet these require-

ments. Styx implements a novel transactional execution protocol over a streaming dataflow

engine, enabling exactly-once semantics and serializable transactions across arbitrary function

calls. By integrating deterministic execution, co-located state and compute, and an efficient

acknowledgment mechanism, Styx addresses the key limitations identified in existing serverless

platforms and transactional SFaaS systems, as discovered in Chapter 3.

The chapter introduces the architecture, programming model, and execution protocol of Styx

and evaluates its performance across a range of benchmarks. We conclude the chapter with a

demonstration that showcases the system in action, highlighting its ease of use, scalability,

and fault tolerance.

� K. Psarakis, G. Christodoulou, G. Siachamis, M. Fragkoulis, and A. Katsifodimos. Styx: Transactional Stateful

Functions on Streaming Dataflows, SIGMOD’25 [15].

� K. Psarakis, O. Mraz, G. Christodoulou, G. Siachamis, M. Fragkoulis, and A. Katsifodimos. Styx in Action:

Transactional Cloud Applications Made Easy (Demo), VLDB’25 [86].
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Figure 5.1: Styx outperforms the SotA by at least one order of magnitude in transactional workloads (Section 5.7).

The figure shows median (bar)/99p (whisker) latency and throughput. For the latency plot, the input throughput

is 2000 transactions per second (TPS), and for the throughput plot, we report the throughput that the systems

achieve at subsecond latency.

D
espite the commercial offerings of the Functions-as-a-Service (FaaS) cloud service

model, its suitability for low-latency stateful applications with strict consistency

requirements, such as payment processing, reservation systems, inventory keeping, and

low-latency business workflows, is quite limited. The reason behind this unsuitability is

that current FaaS solutions are stateless, relying on external, fault-tolerant data stores

(blob stores or databases) for state management. In addition, while multiple frameworks

can perform workflow execution (e.g., AWS Step Functions [90], Azure Logic Apps [162]),

they do not provide primitives for transactional execution of such applications. As a result,

distributed applications (e.g., microservice architectures) suffer from serious consistency

issues when the responsibility of transaction execution is left to developers [2, 47].

In line with recent research [11–13, 43, 163, 164], we agree that for FaaS offerings to

become mainstream, they should include state management support for stateful functions

according to the Stateful Functions-as-a-Service (SFaaS) paradigm. In addition, we argue

that a suitable runtime for executing workflows of stateful functions should also provide 𝑖)

end-to-end serializable transactional guarantees across multiple functions, 𝑖𝑖) low-latency

and high-throughput execution, and 𝑖𝑖𝑖) a high-level programming model, devoid of low-

level primitives for locking and transaction coordination. To the best of our knowledge, no

existing approach addresses all these requirements together.

The state-of-the-art transactional SFaaSwith serializable guarantees, Boki [12], Beldi [13],

and T-Statefun [43] do support transactional end-to-end workflows but induce high commit

latency and low throughput. The main reason behind their inefficiency is the separation

of state storage and function logic, as well as the use of locking and Two-Phase Commit

(2PC) [1] to coordinate and ensure the atomicity of cross-function transactions.

This paper proposes Styx, a novel dataflow-based runtime for SFaaS. Styx ensures that

each transaction’s state mutations will be reflected once in the system’s state, even under

failures, retries, or other potential disruptions (known as exactly-once processing). Addi-

tionally, Styx can execute arbitrary function orchestrations with end-to-end serializability

guarantees, leveraging concepts from deterministic databases to avoid costly 2PCs.

Our work stems from two important observations. First, modern streaming dataflow

systems such as Apache Flink [8] guarantee exactly-once processing[8, 78, 79] by trans-
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parently handling failures. A limitation of those streaming systems is that they cannot

execute general cloud applications such as microservices or guarantee transactional SFaaS

orchestrations. Second, deterministic database protocols[80, 81] that can avoid expensive

2PC invocations have not been designed for complex function orchestrations and arbitrary

call-graphs. For the needs of transactional SFaaS, Styx leverages a deterministic transac-

tional protocol, enabling early commit replies to clients (i.e., before a snapshot is committed

to persistent storage).

Our work is in line with recent proposals in the area, such as DBOS [92], Hydro [93],

and SSMSs [94]. Contrary to these systems, our work adopts the streaming dataflow

execution model and guarantees serializability across functions. As shown in Figure 5.1,

Styx achieves one order of magnitude lower median latency, two orders of magnitude

lower 99p latency at 2000 transactions/sec, and one order of magnitude higher throughput

compared to state-of-the-art (SotA) serializable SFaaS systems [12, 13, 43].

In short, this paper makes the following contributions:

– Styx combines deterministic transactions with dataflows and overcomes the challenges

that arise from this design choice (Section 5.1).

– Styx enables high-level SFaaS programming models that abstract away transaction and

failure management code (Section 5.2). Styx does so, by guaranteeing exactly-once process-

ing (Section 5.3) and transactional serializability across arbitrary function calls (Section 5.4

and Section 5.5).

– Styx extends the concept of deterministic databases to support arbitrary workflows

of stateful functions, contributing a novel acknowledgment scheme (Section 5.4.3) to

track function completion efficiently, as well as a function-execution caching mechanism

(Section 5.5.3) to speed up function re-executions.

– Styx’s deterministic execution enables early commit replies: transactions can be reported

as committed, even before a snapshot of executed transactions is committed to durable

storage (Section 5.5.4).

– Styx outperforms the state-of-the-art [12, 13, 43] by at least one order of magnitude

higher throughput in all tested workloads while achieving lower latency and near-linear

scalability (Section 5.7).

Styx is available at: https://github.com/delftdata/styx

5.1 Motivation

In this section, we analyze the specifics of streaming dataflow systems design and argue that

they can be extended to encapsulate the primitives required for consistently and efficiently

executing workflows of stateful functions. Our work is based on a key observation: the

architecture of high-performance cloud services closely resembles a parallel dataflow graph,

where the state is partitioned and co-located with the application logic [46]. Additionally, as

we detail in Section 5.1.2, there is a synergy between deterministic transactions and dataflow

systems. Such a combination can offer state consistency and ease of programming as

monolithic solutions did in the past, while improving scalability and eliminating developer

involvement. Finally, we show how deterministic transactions can be extended for SFaaS,

where transaction boundaries are unknown, unlike online transaction processing (OLTP).

https://github.com/delftdata/styx
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5.1.1 Dataflows for Stateful Functions

Stateful dataflows are the execution model implemented by virtually all modern stream

processors [8, 143, 165]. Besides being a great fit for parallel, data-intensive computations,

stateful dataflows are the primary abstraction supporting workflow managers such as

Apache Airflow [97], AWS Step Functions [90], and Azure’s Durable Functions[10]. In the

following, we present the primary motivation behind using stateful dataflows to build a

suitable runtime for orchestrating general-purpose cloud applications.

Exactly-once Processing. Message-delivery guarantees are fundamentally hard to deal

with in the general case, with the root of the problem being the well-known Byzantine

Generals problem [110]. However, in the closed world of dataflow systems, exactly-once

processing is possible [8, 78, 79]. As a matter of fact, the APIs of popular streaming dataflow

systems, such as Apache Flink, require no error management code (e.g., message retries or

duplicate elimination with idempotency IDs).

Co-Location of State and Function. The primary reason streaming dataflow systems

can sustain millions of events per second [8, 113] is that their state is partitioned across

operators that operate on local state. While the structure of current Cloud offerings

favors the disaggregation of storage and computation, we argue that co-locating state

and computation is the primary vehicle for high performance and can also be adopted by

modern SFaaS runtimes, as opposed to using external databases for state storage.

Coarse-Grained Fault Tolerance. To ensure atomicity at the level of workflow execu-

tion, existing SFaaS systems perform fine-grained fault tolerance [12, 13]; each function

execution is logged and persisted in a shared log before the next function is called. This

requires a round-trip to the logging mechanism for each function call, which adds signifi-

cant latency to function execution. Instead of logging each function execution, streaming

dataflow systems [58, 62, 78] opt for a coarse-grained fault tolerance mechanism based on

asynchronous snapshots, reducing this overhead.

5.1.2 Determinism & Transactions

Given a set of database partitions and a set of transactions, a deterministic database[101, 124]

will end up in the same final state despite node failures and possible concurrency issues.

Traditional database systems offer serializable guarantees, allowing multiple transactions

to execute concurrently, ensuring that the database state will be equivalent to the state of

one serial transaction execution. Deterministic databases guarantee not only serializability

but also that a given set of transactions will have exactly the same effect on the database

state despite transaction re-execution. This guarantee has important implications [101]

that have not been leveraged by SFaaS systems thus far.

Deterministic Transactions on Streaming Dataflows. Unlike 2PC, which requires

rollbacks in case of failures, deterministic database protocols [80, 81] are "forward-only":

once the locking order [80] or read/write set [81] of a batch of transactions has been

determined, the transactions are going to be executed and reflected on the database state,

without the need to rollback changes. This notion is in line with how dataflow systems

operate: events flow through the dataflow graph, from sources to sinks, without stalls for

coordination. This match between deterministic databases and the dataflow execution

model is the primary motivation behind Styx’s design choice to implement a deterministic
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transaction protocol on top of a dataflow system.

5.1.3 Challenges

Despite their success and widespread applicability, dataflow systems need to undergo

multiple changes before they can be used for transactional stateful functions. In the

following, we list challenges and open problems tackled in this work.

Programming Models. Dataflow systems at the moment are only programmable through

functional programming-style dataflow APIs: a given cloud application has to be rewritten

by programmers to match the event-driven dataflow paradigm. Although it is possible to

rewrite many applications in this paradigm, it takes a considerable amount of programmer

training and effort. We argue that dataflow systems would benefit from object-oriented or

actor-like programming abstractions in order to be adopted for general cloud applications,

such as microservices.

Support for Transactions. Transactions in the context of streaming dataflow systems

typically refer to processing a set of input elements and their state updates with ACID

guarantees [45]. Despite progress, critical challenges remain open, such as the performance

overhead incurred by multi-partition transactions, as well as the need to block flows of data

for locking and message re-ordering. In this work, we argue that in order to implement

transactions in a streaming dataflow system, we need to "keep the data moving" [166]

by avoiding disruptions in the natural flow of data while tightly integrating transaction

processing into the system’s state management and fault tolerance protocols.

Deterministic OLTP and SFaaS. OLTP databases that use deterministic protocols like

Calvin [80, 81, 167] either require each transaction’s read/write set a priori or are extended

to discover the read-write sets of a transaction by first executing it. Additionally, in both

scenarios, deterministic protocols assume that a transaction is executed as a single-threaded

function that can perform remote reads and writes from other partitions. In the case of

SFaaS, arbitrary function calls enable programmers to take advantage of both the separation

of concerns principle, which is widely applied in microservice architectures [2], as well as

code modularity. Although deterministic database systems have been proven to perform

exceptionally well [101], designing and implementing a deterministic transactional protocol

for arbitrary workflows of stateful functions is non-trivial. Specifically, arbitrary function

calls create complex call-graphs that need to be tracked in order to establish a transaction’s

boundaries before committing.

Dataflows for Arbitrary-Workflow Execution. The prime use case for dataflow systems

nowadays is streaming analytics. However, general-purpose cloud applications have

different workload requirements. Functions calling other functions and receiving responses

introduce cycles in the dataflow graph. Such cycles can cause deadlocks and need to be

dealt with [144].

In this work, we tackle these challenges and propose a dataflow system tailored to the needs

of stateful functions with built-in support for deterministic transactions and a high-level

programming model.
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1 from styx import Operator
2 from deathstar.operators import Hotel, Flight
3

4 reservation_operator = Operator(’reservation’, n_partitions=4)
5

6 @reservation_operator.register
7 async def make_reservation(context, flight_id, htl_id, usr_id):
8

9 context.call_async(operator=Hotel,
10 function_name=’reserve_hotel’,
11 key=htl_id)
12 context.call_async(operator=Flight,
13 function_name=’reserve_flight’,
14 key=flight_id)
15

16 reservation = {"fid":flight_id, "hid":htl_id, "uid":usr_id}
17 await context.state.put(reservation)
18

19 return "Reservation Successful"

Figure 5.2: Deathstar’s [137] Hotel/Flight reservation in Styx. From lines 9-14, the 𝑟𝑒𝑠𝑒𝑟𝑣𝑒_ℎ𝑜𝑡𝑒𝑙 and

𝑟𝑒𝑠𝑒𝑟𝑣𝑒_𝑓 𝑙𝑖𝑔ℎ𝑡 functions are invoked asynchronously. Finally, in lines 16-17, the reservation information is

stored. In Styx, the transactional and fault tolerance logic are handled internally.

5.2 Programming Model

The programming model of Styx is based on Python and comprises operators that encap-

sulate partitioned mutable state and functions that operate on that. An example of the

programming model of Styx is depicted in Figure 5.2.

5.2.1 Programming Model Notions

Stateful Entities. Similar to objects in object-oriented programming, entities in

Styx are responsible for maintaining and mutating their own state. Moreover, when

a given entity needs to update the state of another entity, it can do so via a function call.

Each entity bears a unique and immutable key, similar to Actor references in Akka [35],

with the difference that entity keys are application-dependent and contain no information

related to their physical location. The dataflow runtime engine (Section 5.3) uses that key

to route function calls to the right operator that accommodates that specific entity.

Functions. functions can mutate the state of an entity. By convention, the context
is the first parameter of each function call. Functions are allowed to call other functions

directly, and Styx supports both synchronous and asynchronous function calls. For instance,

in lines 9-11 of Figure 5.2, the instantiated reservation entity will call asynchronously the

function ’reserve_hotel’ of an entity with key ’hotel_id’ attached to the Hotel operator.

Similarly, one can make a synchronous call that blocks waiting for results. In this case, Styx

will block execution until the call returns. Depending on the use case, a mix of synchronous

and asynchronous calls can be used. Asynchronous function calls, however, allow for

further optimizations that Styx applies whenever possible, as we describe in Section 5.4

and Section 5.5.

Operators. Each entity directly maps to a dataflow operator (also called a vertex) in the

dataflow graph. When an event enters the dataflow graph, it reaches the operator holding
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the function code of the given entity as well as the state of that entity. In short, a dataflow

operator can execute all functions of a given entity and store the state of that entity. Since

operators can be partitioned across multiple cluster nodes, each partition stores a set of

stateful entities indexed by their unique key. When an entity’s function is invoked (via

an incoming event), the entity’s state is retrieved from the local operator state. Then, the

function is executed using the arguments found in the incoming event that triggered the

call.

State & Namespacing. As mentioned before, each entity has access only to its own state.

In Styx, the state is namespaced with respect to the entity it belongs to. For instance, a

given key "hotel53" within the operator Hotel is represented as: entities://Hotel/hotel53.

This way, a reference to a given key of a state object is unique and can be determined at

runtime when operators are partitioned across workers. Programmers can store or retrieve

state through the context object by invoking context.put() or get() (e.g., in Section 5.2.1

of Figure 5.2). Styx’s context is similar to the context object used in other systems such as

Flink Statefun, AWS Lambda, and Azure Durable Functions.

Transactions. A transaction in Styx begins with a client request. The functions that are

part of the transaction form a workflow that executes with serializable guarantees. Styx’s

programming model allows transaction aborts by raising an uncaught exception. In the

example of Figure 5.2, if a hotel entity does not have enough availability when calling the

’reserve_hotel’ function, the ’make_reservation’ transaction should be aborted, alongside

potential state mutations that the ’reserve_flight’ has made to a flight entity. In that case,

the programmer has to raise an exception as follows:

1 ...
2 # Check if there are enough rooms available in the hotel
3 if available_rooms <= 0:
4 raise NotEnoughSpace(f’No rooms in hotel: {context.key}’)
5 ...

The exception is caught by Styx, which automatically triggers the abort/rollback se-

quence of the transaction where the exception occurred and sends the user-defined excep-

tion message as a reply.

Exactly-once Function Calling.

Styx offers exactly-once processing guarantees: it reflects the state changes of a function

call execution exactly-once. Thus, programmers do not need to “pollute” their application

logic with consistency checks, state rollbacks, timeouts, retries, and idempotency [2, 109].

We detail this capability in Section 5.6.
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Figure 5.3: Stateful-Function execution in Styx. In each worker, one coroutine manages the sequencing of incoming

transactions, while another coroutine handles their processing. In this example, transaction (make_reservation)

consists of two functions: reserve_hotel and reserve_flight. A function can access local state (reserve_hotel) but

also perform remote calls to different partitions (reserve_flight). This remote call uses the partitioner to locate the

correct worker storing that partition.

5.3 Styx’s Architecture

In this section, we describe the components (Figure 5.3) and the main design decisions of

Styx.

5.3.1 Components

Coordinator. The coordinator manages and monitors Styx’s workers, as well as the

runtime state of the cluster (transactional metadata, dataflow state, partition locations, etc.).

It also performs scheduling and health monitoring. Styx monitors the cluster’s health using

a heartbeat mechanism and initiates the fault-tolerance mechanism (Section 5.6) once a

worker fails.

Worker. As depicted in Figure 5.3, the worker is the primary component of Styx, processing

transactions, receiving or sending remote function calls, and managing state.

The worker consists of two primary coroutines. The first coroutine ingests messages

for its assigned partitions from a durable queue and sequences them. The second coroutine

receives a set of sequenced transactions and initiates the transaction processing. By utilizing

the coroutine execution model, Styx increases its efficiency since the most significant

latency factor is waiting for network or state-access calls. Coroutines allow for single-

threaded concurrent execution, switching between coroutines when one gets suspended

during a network call, allowing others to make progress. Once the network call is completed,

the suspended coroutine resumes processing.
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Figure 5.4: The transaction execution pipeline in Styx is divided into 4 parts. First, each external request (𝑅𝑖) is

sequenced as a transaction and is assigned a unique ID. Afterward, the transactions execute their application

logic, accessing local keys and performing remote function calls. While a transaction executes, Styx tracks its

accessed keys ([𝑅/𝑊]𝑖) and incrementally constructs its call-graph. Subsequently, Styx commits the transactions

that do not participate in unresolved conflicts without having to perform locking. For example, we observe that

workers 𝑊1 and 𝑊2 are capable to commit 𝐶1 = 𝐶2 = {𝑇1} while 𝑇1 interacts with the same keys as 𝑇2; although

it has the lowest id. In the final part, we commit all the transactions by resolving the conflicts with a lock-based

mechanism (𝐶2 = {𝑇2,𝑇3}), 𝐶3 = {𝑇3}).

Partitioning Stateful Entities Across Workers. Styx makes use of the entities’ key

to distribute those entities and their state across a number of workers. By default, each

worker is assigned a set of keys using hash partitioning.

Input/Output Queue. For fault tolerance, Styx assumes a persistent input queue from

which it receives requests from external systems (e.g., from a REST gateway API). Styx

requires the input queue to be able to deterministically replay messages based on an offset

when a failure occurs. As we detail in Section 5.6, the replayable input queue is necessary

for Styx to produce the same sequence of transactions after the recovery is complete and

to enable early commit-replies (Section 5.5.4). In the same way, Styx sends the result of a

given transaction to an output queue from which an external system (e.g., the same REST

gateway API) can receive it. Currently, Styx leverages Apache Kafka [100].

Durable Snapshot Store. Alongside the replayable queue, durable storage is necessary

for storing the workers’ snapshots. Currently, Styx uses Minio, an open-source S3 clone, to

store the incremental snapshots as binary data files.

5.3.2 Transaction Execution Pipeline

Styx employs an epoch-based transactional protocol that concurrently executes a batch

of transactions in each epoch. A transaction may include multiple functions that, during

runtime, form a call-graph of function invocations. Each function may mutate its entity’s

state, and the effects of function invocations are committed to the system state in a trans-

actional manner. In Figure 5.3, once make_reservation enters the system, it is persisted

and replicated by the input queue. Then, a worker ingests the call into its local sequencer

that assigns a Transaction ID (TID) and processes all the encapsulated function calls as a

single transaction. In the make_reservation case, the transaction consists of two functions:

reserve_hotel and reserve_flight. For this example, let us assume that reserve_hotel is a

local function call and reserve_flight runs on a remote worker. reserve_hotel will execute

locally in an asynchronous fashion using coroutines and apply state changes. In contrast,

reserve_flight will execute asynchronously on a remote worker, applying changes to the

remote state.
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Figure 5.5: Example of TID assignment in Styx with three sequencers. Their identifiers {1,2,3} lead to the following

sequences: 𝑆1 = {1,4, ..., 𝑘}, 𝑆2 = {2,5, ...,𝑚}, 𝑆3 = {3,6, ...,𝑛} following the formula expressed in Equation (5.1).

5.4 Sequencing & Function Execution

The deterministic execution of functions with serializable guarantees requires a sequencing

step that assigns a transaction ID (TID), which, in combination with the read/write (RW)

sets, can be used for conflict resolution (Section 5.5). The challenge we tackle in this

section is determining the boundaries of transactions (i.e., when a transaction’s execution

starts and finishes), which emerges from the execution of arbitrary function call-graphs

Section 5.4.3.

5.4.1 Transaction Sequencing

In this section, we discuss the sequencing mechanism ( 1 ) of Styx. Deterministic databases

ensure the serializable execution of transactions by forming a global sequence. In Calvin [80],

the authors propose a partitioned sequencer that retrieves the global sequence by commu-

nicating across all partitions, performing a deterministic round-robin.

Eliminating Sequencer Synchronization. Instead of the original sequencer of Calvin

that sends (𝑛2) messages for the deterministic round-robin, Styx adopts a method similar

to the one followed by Mencius [168], allowing Styx to acquire a global sequence without

any communication between the sequencers ((1)). This is achieved by having each

sequencer assign unique transaction identifiers (TIDs) as follows:

𝑇 𝐼𝐷𝑠𝑖𝑑,𝑙𝑐 = 𝑠𝑖𝑑 + (𝑙𝑐 ∗ 𝑛_𝑠𝑒𝑞) (5.1)

where 𝑠𝑖𝑑 ∈ ℕ1 is the sequencer id assigned by the Styx coordinator in the registration

phase, 𝑙𝑐 ∈ ℕ0 is a local counter of each sequencer specifying how many TIDs it has

assigned thus far and 𝑛_𝑠𝑒𝑞 ∈ ℕ1 is the total number of sequencers in the Styx cluster. In

the example of Figure 5.4, the sequencers of the three workers will sequence 𝑅1, 𝑅2 and

𝑅3 to 𝑇1, 𝑇3 and 𝑇2 respectively. Figure 5.5 illustrates how those TIDs are generated in

parallel. Note that, conceptually, Styx implements a partitioned sequencer where the global

sequence 𝑆 = {𝑆1 ∪𝑆2 ∪⋯∪𝑆𝑛} is the union of all partitioned sequences.
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Mitigating Sequence Imbalance. In case a single sequencer 𝑆1 receives more traffic than

the other sequencers, its local counter (𝑙𝑐1) will increase more than the local counter of

the rest of the sequencers. As a result, in the next epoch, sequencer 𝑆1 would produce

larger TIDs than the rest of the sequencers. This means that new transactions arriving at a

less busy sequencer will receive higher priority for execution: transactions with higher

TID receive less priority in our transactional protocol. In case of high contention in the

workload, this would increase latencies for the busy (𝑆1) worker node. To avoid this, at

the end of an epoch, the coordinator calculates the maximum 𝑙𝑐 (𝑚𝑎𝑥(𝑙𝑐1, 𝑙𝑐2,… , 𝑙𝑐𝑛)) and

communicates it to all workers so that they can adjust their local counter re-balancing

sequences in every epoch. Balancing the workers’ transaction priorities reduces the 99th

percentile latency.

Replication and Logging. There is no need to replicate and log the sequence within Styx

since the input is logged and replicated within the replayable queue. In case of failure, after

transaction replay, the sequencers will produce the exact same sequence (section 5.6.2).

5.4.2 Call-Graph Discovery

After sequencing, Styx needs to execute the sequenced transactions and determine their

call-graphs and RW sets ( 2 ). To this end, the function execution runtime ingests a given

sequence of transactions to process in a given epoch. The number of transactions per epoch

is either set by a polling interval or by a configurable maximum number of transactions

that can run per epoch (by default, 1000 transactions per epoch). We have chosen an

epoch-based approach since processing the incoming transactions in batches increases

throughput.

Styx’s runtime executes all the sequenced transactions on a snapshot of the data to

discover the read/write sets. Transactions that span multiple workers will implicitly change

the read/write sets of the remote workers via function calls. There is an additional issue

related to discovering the RW set of a transaction: before the functions execute, the call-

graph of the transaction is unknown. This is an issue because the protocol requires all

transactions to be completed before proceeding to the next phase. To tackle this problem,

Styx proposes a function acknowledgment scheme, which is explained in more detail in

Section 5.4.3.

After this phase, all the stateful functions that comprise transactions will have finished

execution, and the RW sets will be known. In Figure 5.4, transactions 𝑇1, 𝑇2, and 𝑇3 will

execute and create the following RW sets: 𝑊𝑜𝑟𝑘𝑒𝑟1 → {𝑘1 ∶ 𝑇1},𝑊𝑜𝑟𝑘𝑒𝑟2 → {𝑘2 ∶ 𝑇1,𝑇2

and 𝑘8 ∶ 𝑇2,𝑇3} and𝑊𝑜𝑟𝑘𝑒𝑟3 → {𝑘3 ∶ 𝑇3}.

5.4.3 Function Execution Acknowledgment

In the SFaaS paradigm, the call-graph formed by a transaction is unknown; functions could

be coded by different developer teams and can form complex call-graphs. This uncertainty

complicates determining when a transaction has completed processing, which is essential

because phase 3 can only start after all transactions have finished processing. To that

end, each asynchronous function call of a given transaction is assigned an ack_share. A

given function knows how many shares to create by counting the number of asynchronous

function calls during its runtime. The caller function then sends the respective acknowl-

edgment shares to the downstream functions. For instance, in Figure 5.6, the transaction
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Intermediate call Terminal call Function call Ack. share return

Root function

Function call Function callFunction call
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Figure 5.6: Asynchronous function call chains. A given root function call may invoke other functions throughout

its execution. The original acknowledgment (3/3) splits into parts as the function execution proceeds, and each

function receives its own ack-share. For instance, in this function execution, the root function calls three other

functions, thus splitting the ack-share into three equal parts. The same applies to subsequent calls, where the

caller further splits their ack-share. The sum of ack-shares of terminal (blue) calls (i.e., function calls that do not

perform further calls) adds to exactly 3/3, which allows the root function to report the completion of execution.

entry-point (root of the tree) calls three remote functions, splitting the ack_share into

three parts (3 x 1/3). The left-most function invokes only one other function and passes

to it its complete ack_share (1/3). The middle function does not call any functions, so it

returns the share to the root function when it completes execution, and the right-most

function calls two other functions, splitting its share (1/3) to 2 x 1/6. After all the function

calls are complete, the root function should have collected all the shares. When the sum

of the received shares adds to 1, the root/entry-point function can safely deduce that the

execution of the complete transaction is complete.

This design is devised for two reasons: i) if every participating function just sent an

ack when it is done, the root would not know how many acks to expect to decide whether

the entire execution has finished, and ii) if we used floats instead of fractions, we could

stumble upon a challenge related to adding floating point numbers. For instance, if we

consider floating-point numbers in the example mentioned above of the three function

calls, the sum of all shares would not equal 1, but 0.99, since each share contributes 0.33.

Subsequently, we cannot accurately round inexact division numbers; therefore, Styx uses

fraction mathematics instead.

A solution close to the ack_share is distributed futures [169]. However, it would not

work in the SFaaS context as it either requires information about the entire call-graph for

it to work asynchronously, or it would need to create a chain of futures that would make it

synchronous. Hence, it would introduce high latency for our use case.

5.5 Committing Transactions

After completing an epoch’s call-graph discovery, Styx needs to determine which transac-

tions will commit and which will abort based on the transactions’ Read/Write (RW) sets

and TIDs. To this end, this section presents two different commit phases: 𝑖) an optimistic

lock-free phase that commits only the non-conflicting transactions, and 𝑖𝑖) a lock-based

phase that only commits the transactions that were not able to commit in the first phase.

The lock-based commit phase commits all conflicting transactions by acquiring locks in a

TID-ordered sequence. To make the second phase faster, we have devised a caching scheme

that can reuse the already discovered call-graph to avoid re-executing long function chains
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Figure 5.7: If no function caching is performed (left), the transaction execution will execute a deep call-graph;

the messages will be sent sequentially and be equal to the number of function calls (5) in addition to the acks

(2). Styx’s function caching optimization (right) will lead to a concurrent function execution in the lock-based

commit phase, between 𝑡0 and 𝑡1, and send only five acks asynchronously.

whenever possible (section 5.5.3).

5.5.1 Lock-free Commit Phase

In case of conflict (i.e., a transaction 𝑡 writes a key that another transaction 𝑡
′
also reads

or writes on), similarly to [81], only the transaction with the lowest transaction ID will

succeed to commit ( 3 ). The transactions that have not been committed are put in a queue

to be executed in the next phase 4 (maintaining their previously assigned ID).

In addition, workers (𝑊 ) send their local conflicts to every other worker through

the coordinator (2 ∗ |𝑊 | messages): this way, every worker retains a global view of all

the aborted/rescheduled transactions and can decide, locally, which transactions can be

committed. Finally, note that transactions can also abort, not because of conflicts, but due

to application logic causes (e.g., by throwing an exception). In that case, Styx removes the

related entries from the read/write sets to reduce possible conflicts further.

In this phase, all the transactions that have not been part of a conflict apply their writes

to the state, commit, and reply to the clients. In the example shown in Figure 5.4, only 𝑇1

can commit in𝑊1 and𝑊2 due to conflicts in the RW sets of𝑊2 regarding 𝑇2 and 𝑇3; more

specifically, at keys 𝑘2 and 𝑘8.

5.5.2 Lock-based Commit Phase

In the previous phase, 3 , only transactions without conflicts can be committed. We now

explain how Styx deals with transactions that have not been committed in a given epoch

due to conflicts ( 4 ). First, Styx acquires locks in a given sequence ordered by transaction

ID. Then, it reruns all transactions concurrently since all the read/write sets are known and

commits them. However, if a transaction’s read/write set changes in this phase, Styx aborts

the transaction and recomputes its read/write set in the next epoch. Now, in Figure 5.4,𝑊2

can sequentially acquire locks for 𝑇2 and 𝑇3, leading to their commits in𝑊2 and𝑊3.

5.5.3 Call-Graph Caching

As depicted in Figure 5.4, the lock-based commit phase 4 is used to execute any transactions

that did not commit during the lock-free commit phase 3 . By the time the lock-based
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commit phase starts, the state of the database may have changed since the lock-free commit.

As a result, function invocations need to be re-executed to account for the data updates.

On the left part of Figure 5.7, we depict such a function invocation. At time 𝑡0, F1 is

invoked, which in turn invokes two function chains: 𝐹1 → 𝐹2 → 𝐹4 → 𝐹6 and 𝐹1 → 𝐹3 → 𝐹5.

Once the two function chains finish their execution (on time 𝑡4 and 𝑡3 respectively), they

can acknowledge their termination to the root call 𝐹1.

Potential for Caching. During our early experiments, we noticed cases where 𝐹1 is

invoked and the parameters with which it calls 𝐹2 (and in turn the invocations across the

𝐹1 → ... → 𝐹6 call chain) do not change. The same applied to the RW set of those function

invocations; the RW sets remained unchanged. Since Styx tracks those call parameters

as well as the functions’ RW sets, it can cache input parameters during the lock-free

commit phase and reuse them during the lock-based commit, avoiding long sequential

re-executions along the call chains. This case is depicted on the right part of Figure 5.7:

the function-call chain does not need to be invoked in a sequential manner from 𝐹1 all

the way to 𝐹6, leading to high latency. Instead, the individual workers can re-invoke

those function calls locally and concurrently. As a result, all functions can execute in

parallel and save on latency and network overhead (𝑡4 − 𝑡1 in Figure 5.7). Furthermore,

caching does not require user input, is transparent to the API, and does not depend on

the synchronous or asynchronous specification. Nonetheless, synchronous calls can be

automatically transformed into asynchronous ones under certain conditions [55, 170].

Conditions for Parallel Function Re-invocation. Intuitively, if the parameters with

which, e.g., 𝐹2 is called, and the RW set of 𝐹2 remains the same, we can safely assume that

function 𝐹2 can be invoked concurrently without having to be invoked sequentially by 𝐹1.

If those functions are successfully completed and acknowledge their completion to the

root function 𝐹1, it means that the transaction can be committed. To the contrary, if the

RW set of any of the functions 𝐹1−𝐹6 changes, or the parameters of any of the functions

along the call chains change, the transaction must be fully re-executed. In that case, Styx

will have to reschedule that transaction in the next epoch.

5.5.4 Early Commit Replies via Determinism

Implementing Styx as a fully deterministic dataflow system offers a set of advantages

involving the ability to communicate transaction commits to external systems (e.g., the

client), even before the state snapshots are persisted to durable storage. A traditional

transactional system can respond to the client only when 𝑖) the requested transaction

has been committed to a persistent, durable state or 𝑖𝑖) the write-ahead log is flushed and

replicated. In Styx’s case, that would mean when an asynchronous snapshot completes

(i.e., is persisted to durable storage such as S3), leading to high latency.

Since Styx implements a deterministic transactional protocol that executes an agreed-

upon sequence of transactions among the workers, after a failure, the system would run

the same transactions with exactly the same effects. This determinism enables Styx to

give early commit replies: the client can receive the reply even before a persistent snapshot

is stored. The assumption here is that the input queue, persisting the client requests, will

provide Styx’s sequencers with the requests in the same order after replay, a guarantee

that is typically provided by most modern message brokers. Performing state mutations
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and message passing before persistence has also been explored in DARQ’s speculative

execution [171].

5.6 Fault Tolerance

Styx implements a coarse-grained fault tolerance mechanism. Instead of logging each

function execution, it adopts a variant of existing checkpointing mechanisms used in

streaming dataflow systems [58, 78, 79]. Styx asynchronously snapshots state and stores it

in a replicated fault-tolerant blob store (e.g., Minio / S3), enabling low-latency function

execution. We describe Styx’s fault tolerance mechanism below.

5.6.1 Incremental Snapshots & Recovery

The snapshotting mechanism of Styx resembles the approach of many streaming systems[9,

78, 113, 149], that extend the seminal Chandy-Lamport snapshots [58]. Modern stream

processing systems checkpoint their state by receiving snapshot barriers at regular time

intervals (epochs) decided by the coordinator. In contrast, Styx leverages an important

observation: workers do not need to wait for a barrier to enter the system to take a snapshot,

since the natural barrier in a transactional epoch-based system like Styx is at the end of a

transaction epoch.

Snapshotting. To this end, instead of taking snapshots periodically by propagatingmarkers

across the system’s operators, Styx aligns snapshots with the completion of transaction

epochs to take a consistent cut of the system’s distributed state, including the state of

the latest committed transactions, the offsets of the message broker, and the sequencer

counters (𝑙𝑐). The minimal information included in the snapshot is 𝑂(𝑁 +𝑐) where 𝑁 is

the number of updates affecting the delta map, and 𝑐 is the fixed number of integers stored

for the Kafka offsets and the sequencer variables.

When the snapshot interval triggers, Styx makes a copy of the current state changes

to a parallel thread and persists incremental snapshots asynchronously, allowing Styx to

continue processing incoming transactions while the snapshot operation is performed in

the background. The snapshotting procedure is described in Algorithm 1.

Recovery. In case of a system failure, Styx 𝑖) rolls back to the epoch of the latest com-

pleted snapshot, 𝑖𝑖) loads the snapshotted state, 𝑖𝑖𝑖) rolls back the replayable source’s topic

partitions (that are aligned with the Styx operator partitions) to the offsets at the time of

the snapshot, 𝑖𝑣) loads the sequencer counters, and finally, 𝑣) verifies that the cluster is

healthy before executing a new epoch. The recovery procedure is described in Algorithm

2.

Incremental Snapshots & Compaction. Each snapshot stores a collection of state

changes in the form of delta maps. A delta map is a hash table that tracks the changes in

a worker’s state in a given snapshot interval. When a snapshot is taken, only the delta

map containing the state changes of the current interval is snapshotted. To avoid tracking

changes across delta maps, Styx periodically performs compactions where the deltas are

merged in the background, as shown in Figure 5.8. The cost of compacting is equivalent to

the cost of merging two hashmaps with the same key-spaces (𝑂(𝑁)). The total cost will

be 𝑂(𝑀 ∗ 𝑁), with 𝑀 denoting the number of deltamaps we need to compact.
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Algorithm 1: Snapshotting Mechanism

Result: Compacted Snapshot stored in durable storage

Input :𝛿: Delta changes, 𝑂𝑖𝑛𝑝𝑢𝑡 : Input offset, 𝑂𝑜𝑢𝑡𝑝𝑢𝑡 : Output offset, 𝐸𝑐𝑜𝑢𝑛𝑡 : Epoch count, 𝑆𝐸𝑄𝑐𝑜𝑢𝑛𝑡 :

Sequence count

Output : : Compacted snapshot

1 if snapshotInterval then

2 state← 𝛿 ⊳ Prepare data and metadata for snapshot
3 metadata← {𝑂𝑖𝑛𝑝𝑢𝑡 ,𝑂𝑜𝑢𝑡𝑝𝑢𝑡 ,𝐸𝑐𝑜𝑢𝑛𝑡 , 𝑆𝐸𝑄𝑐𝑜𝑢𝑛𝑡 }

4 𝛿
← serialize(state, metadata)

5 store 𝛿

6 inform coordinator

7 end

8 if compactionInterval then

9  ←∅

10 foreach 𝛿
do

11  ← compact( ,𝛿
) ⊳ Compact delta snapshots

12 end

13 end

Algorithm 2: Recovery Mechanism

Result: Recovered state from durable storage, possible duplicate messages

Input :  : Latest compacted snapshot,

𝛿
: Incremental (delta) snapshots,

𝑂
𝑙𝑎𝑠𝑡

𝑜𝑢𝑡𝑝𝑢𝑡
: Offset of last output,

Output : : Set of possible duplicate messages, 𝑠𝑡𝑎𝑡𝑒
𝑠
: Snapshotted state, 𝑂

𝑠

𝑖𝑛𝑝𝑢𝑡
: Snapshotted input

offset, 𝑂
𝑠

𝑜𝑢𝑡𝑝𝑢𝑡
: Snapshotted output offset, 𝐸

𝑠

𝑐𝑜𝑢𝑛𝑡
: Snapshotted epoch count, 𝑆𝐸𝑄

𝑠

𝑐𝑜𝑢𝑛𝑡
:

Snapshotted sequencer count

1 if 𝛿
≠ ∅ then

2  ← compact( ,𝛿
) ⊳ Compact delta snapshots, if any

3 end

4 𝑠𝑡𝑎𝑡𝑒
𝑠
,𝑂

𝑠

𝑖𝑛𝑝𝑢𝑡
,𝑂

𝑠

𝑜𝑢𝑡𝑝𝑢𝑡
,𝐸

𝑠

𝑐𝑜𝑢𝑛𝑡
, 𝑆𝐸𝑄

𝑠

𝑐𝑜𝑢𝑛𝑡
← deserialize  ′

⊳ Extract persisted state
5 𝑅 ← {𝑚 ∣ 𝑂

𝑠

output
≤ 𝑚 ≤ 𝑂

𝑙𝑎𝑠𝑡

output
} ⊳ Possible duplicates (Section 5.6.4)

5.6.2 Sequencer Recovery

To guarantee determinism, upon recovery, Styx ’s sequencer needs to generate identical

sequences as the ones generated between the latest snapshot and failure. The recovery

protocol of the sequencer operates as follows: At first, during the snapshot, we store

the local counter of each sequencer partition (𝑙𝑐) with its ID (𝑠𝑖𝑑) and the epoch counter.

Additionally, at the start of each epoch, Styx logs the number of transactions contained

in that epoch, denoted as epoch size. Logging the epoch sizes is needed due to Styx ’s

varying epoch sizes and the sequencer rebalancing scheme (section 5.4.1). After failure, the

recovered sequencer partitions are initialized with the snapshot’s 𝑙𝑐 and 𝑠𝑖𝑑. Afterward,

each partition retrieves from its log all the sizes of all epochs executed since the last snapshot.

Finally, after recovery, the sequencer matches the epoch sizes to the ones recorded by the

log, leading to the same global sequence observed before failure.
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Figure 5.8: Incremental snapshots with Delta Maps in Styx.

5.6.3 Exactly-Once Processing

At first, the durable input queue, which acts as a replayable source, allows Styx to replay

requests after failures. By rolling back the queue partitions (aligned with system operator

partitions) to the respective offsets as recorded in the latest snapshot, Styx can reprocess

only the transactions whose state changes are not reflected yet in the snapshot. Transactions

committed and early-commit replies stored in the egress can be deduplicated (Section 5.6.4).

Styx runs each transaction to its completion in a single epoch. A given transaction can

execute a large call-graph of functions that can affect the state. If a failure takes place, a

transaction’s state effects are restored to the latest snapshot, and the complete transaction is

re-executed. As a result, no special attention is required to ensure that remote function calls

are executed exactly-once, except for resetting all TCP channels between Styx’s workers

after recovery.

Lemma 1 The state mutations of committed transactions in Styx are reflected exactly-once,

even upon failure.

Proof 1 Let 𝑆𝑡 denote the state of the system at time 𝑡. 𝑄𝑡 = {𝑟1,… , 𝑟𝑛} denotes the durable

input queue at time 𝑡 that holds all requests 𝑟𝑖 to be processed. We assume that the input queue

operates as FIFO and requests 𝑟𝑖 are deterministic. Each 𝑟𝑖 will be sequenced as a transaction

𝑇𝑖 = {𝑢𝑝𝑑𝑙 , 𝑓 𝑢𝑛𝑐𝑚} by a deterministic sequencer, where 𝑢𝑝𝑑𝑙 are the state updates and 𝑓 𝑢𝑛𝑐𝑚

are the function calls of the transaction. We assume that 𝑢𝑝𝑑𝑙 happens atomically and 𝑓 𝑢𝑛𝑐𝑚

are also reflected once, given the use of a reliable communication protocol. Given the same

initial state 𝑆 and input from 𝑄, it always produces the same state transition 𝑆 → 𝑆
′
,which

means 𝑆
′

𝑡+1
= 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑆𝑡 ,𝑄𝑡). The execution of a transaction 𝑇𝑖 is deterministic.

At any time 𝑡, the state of the system 𝑆𝑡 reflects all transactions in 𝑄𝑡 that have been

fully executed and committed. Accordingly, the state 𝑆𝑡 ignores partially executed or in-

progress transactions in 𝑄𝑡 . We denote the latest durable snapshot taken up to time 𝑡, as

Snapshot(𝑆𝑡 , 𝑖,𝑛) where 𝑛 corresponds to the offsets of the first request 𝑟𝑖, and last request 𝑟𝑛 of

the input queue to be processed up to time 𝑡. Upon failure, a subset of 𝑄𝑡 , 𝑄
𝑠𝑢𝑐𝑐𝑒𝑠𝑠

𝑡
= {𝑟1,… , 𝑟𝑘}

will contain successfully committed transactions and a subset 𝑄
𝑓 𝑎𝑖𝑙

𝑡
= {𝑟𝑘+1,… , 𝑟𝑛} will contain

aborted transactions such that 𝑄𝑡 = 𝑄
𝑠𝑢𝑐𝑐𝑒𝑠𝑠

𝑡
+𝑄

𝑓 𝑎𝑖𝑙

𝑡
. In order to recover from a failure,

𝑄𝑡 is rolled back to 𝑆𝑡 from Snapshot(𝑆𝑡 , 𝑖,𝑛) as we persist the offsets of our input queue.

Transactions in 𝑄𝑡 are replayed in the original order from offset 𝑖 to offset 𝑛 of our input queue.

This is ensured by the FIFO queue and the deterministic sequencer. After processing the input
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transactions, 𝑄
𝑠𝑢𝑐𝑐𝑒𝑠𝑠

𝑡
includes requests already reflected in Snapshot(𝑆𝑡), and 𝑄

𝑓 𝑎𝑖𝑙

𝑡
includes

pending requests. Since Snapshot(𝑆𝑡) reflects 𝑄
𝑠𝑢𝑐𝑐𝑒𝑠𝑠

𝑡
and 𝑄𝑡 = 𝑄

𝑠𝑢𝑐𝑐𝑒𝑠𝑠

𝑡
+𝑄

𝑓 𝑎𝑖𝑙

𝑡
, the replay

and processing ensure: 𝑆
′′

𝑡+1
= 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑆𝑡 ,𝑄

𝑓 𝑎𝑖𝑙

𝑡
) = 𝑆

′

𝑡+1
. Thus, the effects of all transactions

will be reflected in the state exactly-once, even after failure.

5.6.4 Exactly-Once Output

A common challenge in the fault tolerance of streaming systems is that of the exactly

once output [99, 172] in the presence of failures, which is hard to solve for low-latency

use cases. For example, in Apache Flink’s [8] exactly-once output configuration, clients

can only retrieve responses after those are persisted in a snapshot or a transactional sink.

This arrangement is sufficient for streaming analytics but not for low-latency transactional

workloads, as discussed previously in Section 5.5.4.

To solve that, during recovery, Styx: 𝑖) reads the last offset of the egress topic, 𝑖𝑖) com-

pares it with the output offset persisted in the snapshot, determining for which transactions

the clients have already received replies, 𝑖𝑖𝑖) retrieves the TIDs attached in those replies,

and 𝑖𝑣) does not send a reply again to the egress topic for those transactions. Note that this

deduplication strategy is based on the fact that TIDs have been assigned deterministically.

5.6.5 Addressing Non-Deterministic Functions

As discussed in Section 5.6.1, Styx’s recovery mechanism is based on deterministic replay.

To this end, Styx requires that the functions authored by developers are also deterministic,

i.e., replaying the same function multiple times, using the same inputs and database

state, should yield the same results. However, one can achieve determinism even in the

presence of non-deterministic logic inside functions, such as randomness (e.g., random

numbers/sampling) or calls to external systems (e.g., calling an external database or API).

Styx can follow the approach of existing systems (e.g., Temporal [173], Clonos [79]). In the

following, we explain how this can be achieved.

Randomness. To retain determinism in the case of randomness, Styx can use an external

fault tolerant write-ahead log (WAL) to log the random number along with the TID. Thus, in

the case of failure and replay, Styx can use the logged random number, essentially making

the function call deterministic during replay.

Calls to External Systems. As illustrated in Figure 5.9, an interaction with an external

system needs to consider three critical points to maintain determinism. Styx assumes that

the external system supports idempotency [174], meaning that if a call is made twice with

the same idempotency key, the effects on the external system’s state and its return value

will remain the same. In 1 Styx needs to log the idempotency key and the TID in the

WAL before calling the external system. If the external system produces a response ( 2 ),

Styx can store it in the WAL and retrieve it from there in case of replay. Finally, when Styx

completes a snapshot ( 3 ), it can also clear the WAL for garbage collection since the prior

entries are not needed.

Finally, Styx could mask those operations behind an API that exposes the following func-

tionality, such as system_x.random for randomnumber generation and system_x.call_external

for external system calls.
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Figure 5.9: External system call critical points and Styx.

5.7 Evaluation

We evaluate Styx by answering the following questions:

– (Section 5.7.2) How does Styx compare to State-of-the-Art serializable transactional

SFaaS systems?

– (Section 5.7.2) How does Styx perform under skewed workload?

– (Section 5.7.3) How well does Styx scale?

– (Section 5.7.4) Does the snapshotting mechanism affect performance?

5.7.1 Setup

Systems Under Test. In the evaluation, we include SFaaS systems that provide serializable

transactional guarantees. Those are:

Beldi [13]/Boki [12]. Both systems use a variant of two-phase commit and Nightcore [163]

as their function runtime and store their data in DynamoDB. Additionally, Boki is deployed

with the latest improvements of Halfmoon [175].

T-Statefun [43]. T-Statefun maintains the state and the coordination of the two-phase

commit protocol within an Apache Flink cluster and ships the relevant state to remote

stateless functions for execution. For fault tolerance, it relies on a RocksDB state backend

that performs incremental snapshots.

Styx. Styx is implemented in Python 3.12 and uses coroutines to enable asynchronous

concurrent execution. Apache Kafka is used as an ingress/egress and Minio/S3 [176] as

a remote persistent store for Styx’s incremental snapshots. Finally, Styx is a standalone

containerized system that works on top of Docker and Kubernetes for ease of deployment.

Workloads/Benchmarks. Table 5.1 summarizes the three workloads used in the experi-

ments.

YSCB-T [127]. We use a variant of YCSB-T [127] where each transaction consists of two

reads and two writes. The concrete scenario is as follows: First, we create 10.000 bank

accounts (keys) and perform transactions in which a debtor attempts to transfer credit

to a creditor. This transfer is subject to a check on whether the debtor has sufficient

credit to fulfill the payment. If not, a rollback needs to be performed. The selection of a

relatively small number of keys is deliberate: we want to assess the systems’ ability to
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Scenario #keys Function Calls Transactions %

YCSB-T 10k 2 100%

Deathstar Movie 2k 9-10 0%

Deathstar Travel 2k 3 0.5%

TPC-C 1m-100m 8 / 20-50 100%

Table 5.1: Workload characteristics.

sustain transactions under high contention. In addition, for the experiment depicted in

Figure 5.11 (skewed distribution), we select the debtor key based on a uniform distribution

and the creditor based on a Zipfian distribution, where we can vary the level of contention

by modifying the Zipfian coefficient.

Deathstar [137].We employ Deathstar [137], as adapted to SFaaS workloads by the authors

of Beldi [13]. It consists of two workloads: 𝑖) the Movie workload implements a movie

review service where users write reviews about movies. 𝑖𝑖) the Travel workload imple-

ments a travel reservation service where users search for hotels and flights, sort them by

price/distance/rate, find recommendations, and transactionally reserve hotel rooms and

flights. Both Deathstar workloads follow a uniform distribution. Note that T-Statefun could

not run in this set of experiments since it does not support range queries.

TPC-C [139]. The prime transactional benchmark targeting OLTP systems is TPC-C [139].

In our evaluation, we used the NewOrder and Payment transactions and had to rewrite

them in the SFaaS paradigm, splitting the NewOrder transaction into 20-50 function calls

(one call per item) and the Payment transaction into 8 function calls. TPC-C scales in

size/partitions by increasing the number of warehouses represented in the benchmark.

While a single warehouse represents a skewed workload (all transactions will hit the same

warehouse), increasing the number of warehouses decreases the contention, allowing for

higher throughput and lower latency. Note that the TPC-C experiments do not include

Beldi, Boki, or T-Statefun because they do not support them.

Resources. For Beldi/Boki, T-Statefun and Styx, we assigned a total of 112 CPUs with 2GBs

of RAM per CPU, matching what is presented in the original Boki paper [12]. Additionally,

throughout all the evaluation scenarios, the data fit in memory across all systems. Unless

stated otherwise, Styx and T-Statefun are configured to perform incremental snapshots

every 10 seconds. All external systems, i.e., DynamoDB (Beldi, Boki), Minio, and Kafka

(Styx, T-Statefun), are configured with three replicas for fault tolerance.

External Systems. Boki and Beldi use a fully managed DynamoDB instance at AWS, which

does not state the amount of resources it occupies and is in addition to the 112 CPUs

assigned to Boki and Beldi. Similarly, the resources assigned to Minio/S3 (Styx and T-

Statefun) are not accounted for.

Metrics. Our goal is to observe systems’ behavior, measured by their latency, while varying

the input throughput.

Input throughput represents the number of transactions submitted per second to the system

under test. As the input throughput increases during an experiment, we expect the latency

of individual transactions to increase until aborts start to manifest due to contention or

high load.

Latency represents the time interval between submitting a transaction and the reported
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Figure 5.10: Evaluation in different scenarios. T-Statefun does not support range queries required by the Deathstar

workloads. TPC-C is only supported by Styx.

time when the transaction is committed/aborted. In Styx and T-Statefun, the latency timer

starts when a transaction is submitted in the input queue (Kafka) and stops when the

system reports the transaction as committed/aborted in the output queue. Similarly, in

Beldi and Boki, the latency is the time since the input gateway has received a transaction

and the time that the gateway reports that the transaction has been committed/aborted.

5.7.2 Latency vs. Throughput

We first study the latency-throughput tradeoff of all systems. We retain the resources given

to the systems constant (112 CPUs) while progressively increasing the input throughput. We

measure the transaction latency. As depicted in Figure 5.10, Styx outperforms its baseline

systems by at least an order of magnitude. Specifically, in YCSB-T (Figure 5.10a), Styx

achieves a performance improvement of ~20x in terms of throughput against T-Statefun,

which ranks second. In addition, Styx outperforms Boki by ~30x in Deathstar’s travel

reservation workload (Figure 5.10b) and by ~35x in Deathstar’s movie review Figure 5.10c)

workload. Finally, in the TPC-C benchmark (Figure 5.10d), which requires a large number

of function calls per transaction (20-50), we observe that Styx’s performance improves as

we increase the input throughput for different numbers of warehouses, reaching up to 3K

TPS with sub-second 99
th
percentile latency (100 warehouses).

Aborts & Throughput. Beldi and Boki follow a no-wait-die concurrency control approach,

which leads to a significant amount of aborts as the throughput increases. Styx and

T-Statefun do not use such a transaction abort mechanism. Instead, they execute all

transactions to completion. This difference in handling transactions under high load makes

the latencies across systems hard to compare. For this reason, in Figure 5.11, we plot the

results of Styx and T-Statefun and present the performance of Beldi and Boki in a separate

table (Table 5.2), alongside their abort rates.
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Figure 5.11: Latency evaluation for varying levels of contention (0.0 - 0.999) with YCSB-T (skewed). We ran Styx

with two different input throughput variations to show clearly its behavior under contention. Note that Styx and

T-Statefun execute all transactions to completion (abort%=0).

0.0 0.2 0.4 0.6 0.8 0.9 0.99 0.999

Beldi Abort % 47.93 45.54 44.31 47.28 52.40 56.06 61.62 60.70

CMT TPS 104 108 111 105 95 76 76 78

Boki Abort % 48.77 48.23 49.54 51.82 61.29 68.50 74.47 70.71

CMT TPS 359 362 353 337 271 220 179 205

Table 5.2: Evaluation of Boki and Beldi for varying levels of contention with YCSB-T. We report the abort ratio

and committed transactions rate, and omit latency since the systems do not execute all transactions to completion.

Both run at their maximum sustainable throughput.

We observe the following: 𝑖) at the highest level of contention (𝑍𝑖𝑝𝑓 𝑖𝑎𝑛 at 0.999) Styx

achieves at least 2000 TPS, outperforming the rest by ~5-10x in terms of effective throughput,

𝑖𝑖) both Beldi and Boki (that run at their maximum sustainable throughput) abort more

transactions as the level of contention increases (~40-70%), which significantly impacts

their effectiveness as shown in Table 5.2, and 𝑖𝑖𝑖) Styx shows an increase in latency only in

high levels of contention (𝑍𝑖𝑝𝑓 𝑖𝑎𝑛 > 0.99) while executing at ~4x higher throughput than

the rest.

Runtime Breakdown. In Table 5.3, we show where the systems under test spend their

processing time. We use YCSB-T for this purpose since it is the only benchmark supported

by all the systems (Section 5.7.1). We measured the median latency while all the systems

were running at 100 TPS for 60 seconds and averaged the proportions of function execution,

networking, and state access across all committed transactions. The key observations are:

𝑖) Styx’s co-location of processing and state led to minimal state access latency, and 𝑖𝑖)

Styx’s asynchronous networking allows for lower network latency.

Takeaway. The rather large performance advantages of Styx across all experiments

are enabled by the following three properties and design choices: 𝑖) the co-location of

processing and state with efficient networking as shown in Table 5.3, contrary to the

other systems that have to transfer the state to their function execution engines; 𝑖𝑖) the

asynchronous snapshots with delta maps for fault tolerance compared to the replication of

Beldi/Boki and the LSM-tree-based incremental snapshots of T-Statefun; 𝑖𝑖𝑖) the efficient

transaction execution protocol employed in Styx compared to the two-phase commit used

by Styx’s competition.
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System Function Execution Networking State Access

Styx 0.34ms - 2.2% 14.33ms - 95.6% 0.32ms - 2.2%

Boki 1.1ms - 3.3% 16.1ms - 49% 15.68ms - 47.7%

T-Statefun 2.76ms - 2.2% 92.12ms - 74.3% 29.11ms - 23.5%

Beldi 1.01ms - 0.7% 56.58ms - 38.4% 89.57ms - 60.9%

Table 5.3: Performance breakdown of all systems. (median latency - percentage from the total)
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Figure 5.12: Scalability of Styx on YCSB-T with varying percentages of multi-partition transactions.

5.7.3 Scalability

In this experiment, we test the scalability of Styx by increasing the number of Styx workers.

Each worker is assigned 1 CPU and a state of 1 million keys. We measure the maximum

throughput on YCSB-T. The goal is to calculate the speedup of operations as the input

throughput and number of workers scale together. In addition, we control the percentage of

multi-partition transactions in the workload, i.e., transactions that span across workers. In

Figure 5.12, we observe that in all settings, Styx retains near-linear scalability. Finally, Styx

displays the expected behavior as the number of multi-partition transactions increases.

5.7.4 Fault-Tolerance Evaluation

Effect of Snapshots. In Figure 5.13, we depict the impact of the asynchronous incremental

snapshots on Styx’s performance. In both figures, we mark when a snapshot starts and ends.

The state includes 1 million keys, and we use a 1-second snapshot interval. Styx is deployed

with four 1-CPU workers, and the input transaction arrival rate is fixed to 3K YCSB-T

TPS. In Figure 5.13a, we observe that during a snapshot operation, Styx shows virtually no

performance degradation in throughput. In Figure 5.13b, we observe a minor increase in the

end-to-end latency in some snapshots. The reason for that is the concurrent snapshotting

thread, which competes with the transaction execution thread during snapshotting. At the

same time, it also has to block the transaction execution thread momentarily to copy the

corresponding operator’s state delta.

Recovery Time. In Figure 5.14, we evaluate the recovery process of Styx with the same

parameters as in Figure 5.13. We reboot a Styx worker at ~13.5 seconds. It takes Styx’s

coordinator roughly a second to detect the failure. Then, after the reboot, the coordinator

re-registers the worker and notifies all workers to load the last complete snapshot, merge

any uncompacted deltas, and use the message broker offsets of that snapshot. The recovery

time is also observed in the latency (Figure 5.14b) that is ~2.5 seconds (time to detect the
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Figure 5.13: Impact of Styx’s snapshotting on performance
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Figure 5.14: Styx’s behavior during recovery.

failure in addition to the time to complete recovery). In terms of throughput (Figure 5.14a),

we observe Styx working on its maximum throughput after recovery completes to keep up

with the backlog and the input throughput.

Effect of Large State Snapshots. In Figure 5.15, we test the incremental snapshotting

mechanism against a larger state of 20 GB from TPC-C using a bigger Styx deployment

of 100 1-CPU workers at 10-second checkpoint intervals. From 0 to the 750-second mark,

Styx is importing the dataset. Since there are no small deltas (importing is an append-

only operation), snapshotting is more expensive than the normal workload execution,

where only the deltas are stored in the snapshots. The increase in latency at ~550 seconds

corresponds to the loading of the largest tables (Stock and Order-Line) in the system. After

loading the data and starting the transactional workload at 1000 TPS, we observe a drop in

latency due to fewer state changes within the delta maps.
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Figure 5.15: Behaviour of incremental snapshots on Styx with ~20GB TPC-C state.

5.8 Related Work

Transactional SFaaS. SFaaS has received considerable research attention and open-source

work. Transactional support with fault tolerance guarantees (that popularized DBMS

systems) is necessary to widen the adoption of SFaaS. Existing systems fall into two cate-

gories: i) those that focus on transactional serializability and ii) those that provide eventual

consistency. The first category includes Beldi [13], Boki [12], and T-Statefun [43]. Beldi

implements linked distributed atomic affinity logging on DynamoDB to guarantee serializ-

able transactions among AWS Lambda functions with a variant of the two-phase commit

protocol. Boki extends Beldi by adding transaction pipeline improvements regarding the

locking mechanism and workflow re-execution. In turn, Halfmoon [175] extends Boki with

an optimal logging implementation. T-Statefun [43] also uses two-phase commit with coor-

dinator functions to support serializability on top of Apache Flink’s Statefun. For eventually

consistent transactions, T-Statefun implements the Sagas pattern. Cloudburst [11] also

provides causal consistency guarantees within a DAG workflow. Proposed more recently,

Netherite[102] offers exactly-once guarantees and a high-level programming model for

Microsoft’s Durable Functions[10], but it does not guarantee transactional serializability

across functions. Unum [177] needs to be paired with Beldi or Boki to ensure end-to-end

exactly-once and transactional guarantees.

Dataflow Systems. Support for fault-tolerant execution in the cloud with exactly-once

guarantees [78, 117] is one of the main drivers behind the wide adoption of modern dataflow

systems. However, they lack a general and developer-friendly programming model with

support for transactions and a natural way to program function-to-function calls. Closer

to the spirit of Styx are Ciel [178] and Noria [82]. Ciel proposes a language and runtime

for distributed fault-tolerant computations that can execute control flow. Noria solves

the view maintenance problem via a dataflow architecture that can propagate updates to

clients quickly, targeting web-based, read-heavy computations. However, neither of the

two provides a transactional model for workflows of functions like Styx.

Transactional Protocols. Besides Aria [81] that inspired the protocol we created for Styx

Section 5.3, two other protocols fit the requirement of no a priori read/write set knowledge:

Starry [179] and Lotus [167]. Starry targets replicated databases with a semi-leader protocol

formulti-master transaction processing. At the same time, Lotus [167] focuses on improving

the performance of multi-partition workloads using a new methodology called run-to-

completion-single-thread (RCST). Styx makes orthogonal contributions to these works and
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could adopt multiple ideas from them in the future.

5.9 Future Work

Elasticity in Dataflow Systems. Extensive work has been carried out in dynamic recon-

figuration [82–84] and state migration [67–69] of streaming dataflow systems over the last

few years. These advancements are necessary for providing serverless elasticity in the case

of state and compute collocation to leverage dataflows as an execution model for serverless

stateful cloud applications, which is a future goal of Styx.

Replication for High Availability. In the Styx architecture, replication is only ap-

plied in the snapshot store and the Input/Output queues to ensure fault tolerance. For

high-availability, Styx could adopt replication mechanisms from deterministic databases.

Specifically, the design of deterministic transaction protocols, such as Calvin [80], features

state replicas that require no explicit synchronization. First, the sequencer replicas need

to agree on the order of execution. After that, the deterministic sequencing algorithm

guarantees that the resulting state will be the same across partition/worker replicas by all

replicas executing state updates in the same order.

Non-Deterministic Functions on Streaming Dataflows. In its current version, Styx

requires application logic to be deterministic, similar to OLTP [121, 153], where stored

procedures are required to be deterministic since they run independently on different

replicas. The same determinism requirement applies to SFaaS [12, 43] systems. However,

real-world applications may encapsulate logic that makes the outcome of their execution

non-deterministic. Examples of non-deterministic operations are calls to external systems

and using random number generators or time-related activities. That said, we have a plan

for supporting non-deterministic functions in Styx, as discussed in Section 5.6.5.

5.10 Conclusion

This paper presented Styx, a distributed streaming dataflow system that supports multi-

partition transactions with serializable isolation guarantees through a high-level, standard

Python programming model that obviates transaction failure management, such as retries

and rollbacks. Styx follows the deterministic database paradigm while implementing

a streaming dataflow execution model with exactly-once processing guarantees. Styx

outperforms the state-of-the-art by at least one order of magnitude in all tested workloads

regarding throughput.

5.11 Styx in Action

In this chapter, we introduced Styx [15], a dataflow-based runtime designed for transac-

tional cloud applications built on the aforementioned principles. Styx ensures that each

transaction’s state mutations are reflected in the system’s state exactly-once, even under

failures, retries, or other potential disruptions. Additionally, it supports arbitrary function

orchestrations with end-to-end serializability by leveraging a deterministic database pro-

tocol, eliminating the need for expensive two-phase commits. Our approach is inspired

by two key observations [46]. First, modern streaming dataflow systems such as Apache

Flink [8] guarantee exactly-once processing by transparently handling failures. However,
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import logging

from decimal import Decimal

from http import HTTPStatus

from flask import Flask, jsonify

from databases.cassandra import CassandraDatabase

from databases.postgres import PostgresDatabase

import os

LOGGER = logging.getLogger()

LOGGER.setLevel('DEBUG')

handler = logging.StreamHandler()

handler.setFormatter(logging.Formatter(

"%(asctime)s [%(levelname)s] %(name)s: %(message)s"))

LOGGER.addHandler(handler)

app = Flask("payment-service")

@app.route('/', methods=['GET'])

def root():

return jsonify({'message': 'check success'}), 200

@app.route('/payment/pay/<uuid:user_id>/<uuid:order_id>/<amount>', methods=['POST'])

def pay_order(user_id, order_id, amount):

amount = float(amount)

LOGGER.info("Trying to pay order %s", order_id)

try:

success = database.subtract_credit(user_id, Decimal(amount))

if success:

database.add_payment(order_id, True, Decimal(amount))

return jsonify({'message': 'Order paid'}), HTTPStatus.OK

else:

database.add_payment(order_id, False, Decimal(amount))

return jsonify({'message': 'Not enough credit'}), HTTPStatus.BAD_REQUEST

except RuntimeError:

return jsonify({'message': 'failure'}), HTTPStatus.INTERNAL_SERVER_ERROR

@app.route('/payment/cancel/<uuid:user_id>/<uuid:order_id>', methods=['POST'])

def cancel_payment(user_id, order_id):

LOGGER.info("Canceling payment for %s by %s", order_id, user_id)

try:

success_cancel, amount = database.cancel_payment(order_id)

if success_cancel:

success_add = database.add_credit(user_id, amount[0])

if success_add:

return jsonify({'message': 'Order cancelled'}), HTTPStatus.OK

else:

return jsonify({'message': 'User not found'}), HTTPStatus.NOT_FOUND

return jsonify({'message': 'Payment not found'}), HTTPStatus.NOT_FOUND

except RuntimeError:

return jsonify({'message': 'failure'}), HTTPStatus.INTERNAL_SERVER_ERROR

@app.route('/payment/status/<uuid:order_id>', methods=['GET'])

def get_status(order_id):

LOGGER.info("Getting status of payment for order %s", order_id)

try:

success, status = database.get_status(order_id)

if not success:

return jsonify({'message': 'Payment not found'}), HTTPStatus.NOT_FOUND

else:

return jsonify({'paid': status}), HTTPStatus.OK

except RuntimeError:

return jsonify({'message': 'failure'}), HTTPStatus.INTERNAL_SERVER_ERROR

@app.route('/payment/add_funds/<uuid:user_id>/<amount>', methods=['POST'])

def add_funds(user_id, amount):

amount = float(amount)

LOGGER.info("Adding %s to credit for user %s", amount, user_id)

try:

success = database.add_credit(user_id, Decimal(amount))

if success:

return jsonify({'done': True}), HTTPStatus.OK

else:

return jsonify({'done': False}), HTTPStatus.BAD_REQUEST

except RuntimeError:

return jsonify({'message': 'failure'}), HTTPStatus.INTERNAL_SERVER_ERROR

@app.route('/payment/create_user', methods=['POST'])

def create_user():

LOGGER.info("Creating new user")

try:

user_id = database.create_user()

return jsonify({'user_id': user_id}), HTTPStatus.OK

except RuntimeError:

return jsonify({'message': 'failure'}), HTTPStatus.INTERNAL_SERVER_ERROR

@app.route('/payment/find_user/<uuid:user_id>', methods=['GET'])

def find_user(user_id):

LOGGER.info("Trying to find user %s", user_id)

try:

success, credit = database.find_user(user_id)

if success:

return jsonify({'user_id': user_id, 'credit': float(credit)}), HTTPStatus.OK

else:

return jsonify({'message': 'User not found'}), HTTPStatus.NOT_FOUND

except RuntimeError:

return jsonify({'message': 'failure'}), HTTPStatus.INTERNAL_SERVER_ERROR

if __name__ == "__main__":

DB = os.environ["DB"]

database = CassandraDatabase() if DB == "cassandra" else PostgresDatabase()

app.run(host='0.0.0.0')

import simplejson

from cassandra.cqlengine.columns import Decimal

from flask import Flask, jsonify, request

from databases.cassandra import CassandraDatabase

from databases.postgres import PostgresDatabase

import logging

import os

from uuid import uuid4, UUID

LOGGER = logging.getLogger()

LOGGER.setLevel('DEBUG')

handler = logging.StreamHandler()

handler.setFormatter(logging.Formatter(

"%(asctime)s [%(levelname)s] %(name)s: %(message)s"))

LOGGER.addHandler(handler)

app = Flask("stock-service")

@app.route('/', methods=['GET'])

def root():

return jsonify({'message': 'check success'}), 200

@app.route('/stock/item/create/<price>', methods=['POST'])

def create_item(price):

price = float(price)

itemid = uuid4()

LOGGER.info("Creating itemid %s", itemid)

try:

database.create_item(itemid, price)

return jsonify({'item_id': str(itemid)}), 201

except RuntimeError:

return jsonify({'message': 'failure'}), 500

@app.route('/stock/add/<uuid:itemid>/<int:number>', methods=['POST'])

def add_item(itemid: UUID, number: int):

LOGGER.info("Adding %s item %s", number, itemid)

try:

if database.add_item(itemid, number) != 404:

return jsonify({'message': 'success'}), 201

else:

return jsonify({'message': 'non-existent itemid'}), 404

except RuntimeError:

return jsonify({'message': 'failure'}), 500

@app.route('/stock/getall', methods=['GET'])

def get_all():

try:

result = database.get_all()

return jsonify({'message': result}), 201

except Exception as e:

return jsonify({'message': 'failure'}), 400

@app.route('/stock/find/<uuid:itemid>', methods=['GET'])

def find_item(itemid: UUID):

LOGGER.info("Finding information for itemid %s", itemid)

try:

item = database.get(itemid)

if item != None:

item['price'] = simplejson.dumps(item['price'])

return item, 200

else:

return jsonify({'message': 'non-existent itemid'}), 404

except RuntimeError:

return jsonify({'message': 'failure'}), 500

@app.route('/stock/subtract/multiple', methods=['POST'])

def subtract_multiple():

items = request.get_json()

code = database.subtract_multiple(items)

return jsonify({'message': 'success' if code == 201 else 'failure'}), code

@app.route('/stock/subtract/<uuid:itemid>/<int:number>', methods=['POST'])

def subtract_item(itemid: UUID, number: int):

LOGGER.info("Adding item %s to stock %s", number, itemid)

try:

response = database.subtract_item(itemid, number)

if response == 404:

return jsonify({'message': 'non-existent itemid'}), 404

elif response == 400:

return jsonify({'message': 'input number is larger than the stock!'}), 400

else:

return jsonify({'message': 'success'}), 201

except RuntimeError:

return jsonify({'message': 'failure'}), 500

if __name__ == "__main__":

DB = os.environ["DB"]

database = CassandraDatabase() if DB == "cassandra" else PostgresDatabase()

app.run(host='0.0.0.0')

from flask import Flask, jsonify

from databases.cassandra import CassandraDatabase

from databases.postgres import PostgresDatabase

import logging

from uuid import uuid4, UUID

import os

import requests

LOGGER = logging.getLogger()

LOGGER.setLevel('DEBUG')

handler = logging.StreamHandler()

handler.setFormatter(logging.Formatter(

"%(asctime)s [%(levelname)s] %(name)s: %(message)s"))

LOGGER.addHandler(handler)

app = Flask("order-service")

@app.route('/', methods=['GET'])

def root():

return jsonify({'message': 'check success'}), 200

@app.route('/orders/create/<uuid:userid>', methods=['POST'])

def create_order(userid: UUID):

orderid = uuid4()

LOGGER.info("Creating orderid %s", orderid)

try:

database.put(orderid, userid)

return jsonify({'order_id': str(orderid)}), 201

except RuntimeError:

return jsonify({'message': 'failure'}), 500

@app.route('/orders/remove/<uuid:orderid>', methods=['DELETE'])

def remove_order(orderid: UUID):

LOGGER.info("Removing orderid %s", orderid)

try:

if database.delete(orderid) != 404:

return jsonify({'message': 'success'}), 200

else:

return jsonify({'message': 'non-existent orderid'}), 404

except RuntimeError:

return jsonify({'message': 'failure'}), 500

@app.route('/orders/addItem/<uuid:orderid>/<uuid:itemid>', methods=['POST'])

def add_item(orderid: UUID, itemid: UUID):

LOGGER.info("Adding item %s to orderid %s", itemid, orderid)

try:

if database.update(orderid, itemid) != 404:

return jsonify({'message': 'success'}), 201

else:

return jsonify({'message': 'non-existent orderid'}), 404

except RuntimeError:

return jsonify({'message': 'failure'}), 500

@app.route('/orders/removeItem/<uuid:orderid>/<uuid:itemid>', methods=['DELETE'])

def remove_item(orderid: UUID, itemid: UUID):

LOGGER.info("Removing item %s from orderid %s", itemid, orderid)

try:

if database.remove_item(orderid, itemid) != 404:

return jsonify({'message': 'success'}), 200

else:

return jsonify({'message': 'non-existent orderid/itemid'}), 404

except RuntimeError:

return jsonify({'message': 'failure'}), 500

@app.route('/orders/find/<uuid:orderid>', methods=['GET'])

def find_order(orderid: UUID):

LOGGER.info("Finding information for orderid %s", orderid)

try:

# improves the performance in benchmarks

order = database.find_order(orderid)

if order == 404:

return jsonify({'message': 'non-existent orderid'}), 404

total_cost = 0

items = order['items'][0]

for item, amount in items.items():

stock_item = requests.get(f"{STOCK_SERVICE_URL}/stock/find/{item}")

total_cost += int(amount) * float(stock_item.json()['price'])

order['total_cost'] = total_cost

paid = requests.get(

f"{PAYMENT_SERVICE_URL}/payment/status/{orderid}")

if paid.status_code == 404:

order['paid'] = False

elif paid.status_code == 200:

order['paid'] = True

if order != 404:

return order, 200

except RuntimeError:

return jsonify({'message': 'failure'}), 500

@app.route('/orders/checkout/<uuid:orderid>', methods=['POST'])

def checkout(orderid: UUID):

LOGGER.info("Checking out orderid %s", orderid)

order_result, order_code = find_order(orderid)

if order_code == 404:

return jsonify({'message': 'non-existent orderid'}), 404

if order_code == 500:

return jsonify({'message': 'failure'}), 400

if order_code == 200 and not order_result['paid']:

# make payment

payment = requests.post(

f"{PAYMENT_SERVICE_URL}/payment/pay/{order_result['user_id']}/{orderid}/{ord

(a) Microservice implementation using the saga pattern (Red:

code to ensure atomicity and fault tolerance, Green: business

logic).

1 from styx import Operator, StatefulFunction

2 from shopping_cart.operators import stock , payment, cart

3 from shopping_cart.exceptions import NotEnoughCredit, NotEnoughStock

4

5 @stock.register

6 async def decrement_stock(ctx : StatefulFunction , amount: int ):

7 item_stock = ctx.get ()

8 item_stock −= amount

9 if item_stock < 0:

10 raise NotEnoughStock(f"Item: { ctx.key } does not have enough stock")

11 ctx.put ( item_stock)

12

13 @payment.register

14 def pay(ctx : StatefulFunction , amount: int ):

15 credit = ctx.get ()

16 credit −= amount

17 if credit < 0:

18 raise NotEnoughCredit(f"User: { ctx.key } does not have enough credit " )

19 ctx.put ( credit )

20

21 @cart.register

22 def checkout(ctx : StatefulFunction ):

23 items , user_id , total_price , paid = ctx.get ()

24 for item_id , qty in items :

25 ctx.call_async (operator=stock ,

26 function_name=’decrement_stock’,

27 key=item_id,

28 params=(qty, ))

29 ctx.call_async (operator=payment,

30 function_name=’pay’,

31 key=user_id,

32 params=( total_price , ))

33 paid = True

34 ctx.put (( items , user_id , total_price , paid ))

35 return "Checkout Successful "

(b) Checkout workflow in Styx.

Figure 5.16: Comparison between the microservice paradigm (figure 5.16a) and Styx (figure 5.16b).

these systems lack the capability to execute general cloud applications and do not support

transactional function orchestrations. Second, efficient transaction execution on top of

dataflow systems can be enabled through deterministic database protocols like Calvin [80]

or Aria [81] without the overhead of two-phase commits. Styx bridges this gap by inte-

grating a deterministic transactional protocol that allows early commit replies to clients,

improving responsiveness while maintaining consistency.

Demonstration Scenarios. To illustrate the capabilities of Styx, in our demonstration,

we focus on three scenarios. (1) We demonstrate the developer experience by showing

how application logic can be free of transaction management and failure handling code.

To this end, we have integrated a compiler for transforming object-oriented programs into

dataflows optimized for our runtime [55]. (2)We highlight the system’s deployment and

rescaling capabilities, demonstrating how these processes can be performed with minimal

overhead. (3)We showcase how Styx seamlessly recovers from worker failures without

affecting application performance. Additionally, the Styx UI provides live system metrics,

offering attendees real-time visibility into system operations.

5.11.1 Demonstration Overview

Scenario 1: Application Development

Figure 5.16 showcases the difference in developing a simplified shopping cart application

with three services (stock, payment, cart) between a traditional microservice implementa-

tion and Styx. Styx eliminates the boilerplate code needed to ensure ACID guarantees in the

microservice implementation and allows developers to focus solely on the core application
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Figure 5.17: Styx monitoring dashboards.

logic. Beyond accelerating development, Styx enhances maintainability and reduces the

likelihood of bugs by providing serializable transactions as a service. This results in cleaner,

more reliable code, ultimately achieving long-term software quality. Attendees can change

parts of the application code and submit applications to the Styx runtime.

Scenario 2: Deployment and Rescaling

Styx is designed for seamless deployment and rescaling. To facilitate real-time monitoring,

we have developed two dashboards. In the depicted scenario, we execute the YCSB-T

workload across four Styx workers at 10.000 transactions per second (TPS) following a

uniform distribution within one million keys.

Part 1: System Overview. Attendees will be able to assess system performance across all

Styx workers. The System Overview dashboard Figure 5.17 provides a high-level summary

of key system metrics:

• Resource Metrics (A): Displays the average CPU and memory utilization, as well

as ingress and egress network traffic across Styx workers.

• Performance Metrics (B): Visualizes transaction throughput per second, average

transaction latency, and abort rate. Under normal conditions, epoch latency (Styx

uses a deterministic epoch-based commit protocol) for the YCSB-T workload remains

below 250 ms (green-shaded region). At the same time, the abort rate fluctuates

based on the level of contention from 0% (no contention) to 100% (all transactions

within an epoch contain the same key at least once).

• Latency Breakdown (C): A pie chart categorizes transaction latency into distinct

components. Typically, the primary contributors to latency are the first optimistic

transaction execution (1st Run) with the call-graph discovery (Chain Acks), the

lock-based fallback commit mechanism (Fallback), and others like cross-worker

synchronization, write-ahead-logging (WAL), conflict resolution + commit, and the

asynchronous snapshots.

• Snapshot Latency (D): Time taken for a complete delta snapshot throughout the

deployment.

• Worker Health (E): The final panel tracks time since the last heartbeat. If this value

remains below 1000 ms (green-shaded), it confirms that all workers are healthy and

operational.
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• Reconfiguration (G1-3): At "19:19:30", we downscale the deployment from four

partitions to three, and we observe an increase in snapshot latency and ingress

network (data transferred across workers through S3), and finally a decrease in TPS

since we decreased the parallelism.

The demonstration attendees will be able to change the skew factors of the supported

workloads and perform updates to observe changes in the performance (latency, through-

put) of Styx applications in real time.

Part 2: Worker Specific. With a global view of the system’s health in mind, attendees can

drill down into the performance of individual workers using theWorker Specific dashboard.

This dashboard mirrors the system overview but focuses on a selected Styx worker. A drop-

down menu (F) allows attendees to choose a specific worker, enabling direct comparison

with the overall system metrics. By analyzing the worker-specific metrics, attendees can

quickly pinpoint anomalies. If a single worker exhibits significantly higher transactional

latency or reduced throughput compared to the others, it may indicate an overloaded or

unhealthy state.

Scenario 3: Fault Tolerance

The final scenario showcases Styx’s ability to handle failures efficiently. During the demon-

stration, attendees can manually terminate a Styx worker to observe how the system

detects the failure and triggers its recovery process.

Part 1: System Overview. The system overview dashboard provides a real-time visual

indicator of worker failures. When a Styx worker stops responding, the Time Since Last

Heartbeat metric (panel E) spikes, signaling the loss of communication. This event is

accompanied by a sharp increase in transactional latency and a temporary dip in throughput

until the system fully recovers. Once the operators assigned to the dead worker are

rescheduled to a new or existing worker, Styx begins handling the delayed transactions,

and these metrics gradually return to their normal ranges.

Part 2: Worker Specific. Using the worker-specific dashboard, attendees can further

investigate the failed worker’s behavior. The impact of the failure is more pronounced

here. Transaction latency and throughput fluctuations become more drastic, and for a brief

period, the failed worker will stop reporting metrics entirely. Once the recovery process is

completed, these values stabilize, confirming that the system has successfully recovered.

This scenario demonstrates Styx’s resilience and self-healing mechanisms, ensuring system

reliability even in the event of failures.
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6
State Migration in Styx: Towards

Serverless Transactional Functions

Chapter 5 laid the foundation for Styx as a transactional dataflow engine for Serverless

Functions-as-a-Service (SFaaS), achieving strong guarantees and performance with minimal

developer effort. However, the vision of serverless is not fulfilled by programmability and

transactionality alone. True serverless systems must also offer operational transparency: the

ability to scale up and down dynamically, adapt to varying loads, and reassign resources

autonomously, while preserving fault tolerance and correctness. To achieve this, Styx must

evolve beyond its current static deployment model and embrace elastic state management. This

transition demands a robust state migration mechanism that preserves Styx’s transactional

semantics and exactly-once guarantees even under dynamic reconfiguration. This chapter

takes on this challenge by introducing the design and implementation of state migration in

Styx, marking a critical step toward fully serverless transactional functions.

Parts of this chapter are under review:

� K. Psarakis, G. Christodoulou, G. Siachamis, M. Fragkoulis, and A. Katsifodimos. State Migration in Styx: Towards

Serverless Transactional Functions (Under Review).
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D
evelopment-wise, Styx internals are already transparent to the developer, making it,

in that sense, ‘serverless’ since they do not require any transactional or fault-tolerance

code to be written by the developer. The next challenge is to make its operational aspects,

such as resource utilization, transparent. The first step toward this is implementing a state

migration mechanism. In the meantime, Styx continues to evolve towards a serverless

system. In this chapter, we propose an extension to Styx, which adds state migration

capabilities. For Styx, which collocates state and processing, state migration is the corner-

stone of its elasticity mechanism that enables a serverless offering. Now, Styx’s state can

be assigned to and moved between workers at key-set granularity. Key movement can

occur in two ways: either on demand for transactions that need direct access to keys or

asynchronously for non-accessed keys.

This chapter makes the following contributions:

– Styx is elastic and can migrate state with near-zero downtime while maintaining high-

throughput and low-latency (Section 6.1).

– Styx’s tailored state migration approach outperforms the stop and restart baseline in

scale-up and scale-down scenarios by having 4x less downtime and keeps the transactions

to sub-second latencies mid-migration.(Section 6.4).

6.1 State Migration in Styx

Implementing transactions on top of dataflows, the architectural core of stream processing

engines (SPEs), adds additional challenges to state migration support in Styx. Methods that

strictly target SPEs for state migration [67–69] do not apply to our use case since they

do not manage transactional semantics. On the other hand, state migration methods for

transactional databases [70, 98, 180] are tightly coupled to the traditional OLTP database

architecture. They cannot be directly applied to a dataflow engine such as Styx. Therefore,

Styx requires a new tailor-made approach that maintains transactionality and adapts well

to its exactly-once execution and snapshotting mechanisms.

The most straightforward approach for migrating state in any system is Stop-and-

Restart (S&R), where the system will stop processing incoming requests, shuffle the data

to their new assignments, and restart processing. More sophisticated approaches often

adopt some of the following mechanisms to migrate state: 𝑖) maintain state replicas across

workers to minimize the amount of data in need of migration [68, 69, 180], 𝑖𝑖) on-demand

migration that only sends the data once a worker requires them and [67, 70], 𝑖𝑖𝑖) async

migration to transfer data during idle time to progress a migration asynchronously [70, 180].

In Styx, we implement two state migration approaches: a version of S&R tailored to

Styx that serves as our baseline method and an approach denoted as Online Migration

(OM), which combines elements of migration approaches (𝑖) and (𝑖𝑖), matching the current

state-of-the-art.

In this section, we will first present an overview of state migration in Styx, specify the

migration stages (triggering, handling, and resumption of processing), and the changes

we made to Styx to support them. Then, we will elaborate on the S&R and OM methods

and discuss how we maintain fault-tolerance, determinism, end-to-end exactly-once, and

serializability during state migration. In essence, in this work, we aim to extend Styx by

adding elasticity, which is the first and most crucial step for Styx to be serverless.
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Overview of Changes for State Migration

To support transactional state migration, we extend Styx’s base core runtime. This section

outlines the architectural modifications required to enable this capability. We assume

that migration is initiated by an external client or Styx’s coordinator based on metrics

such as load imbalance or resource utilization. The migration triggering policy, including

autoscaling heuristics and monitoring, is considered orthogonal and left as future work.

To enable correct and efficient state movement, Styx introduces the following system-level

changes:

Partition-level State and Metadata. To make state movement more flexible, operator

state and Kafka offsets are tracked at a finer granularity, specifically, on a per-partition

basis. Without considering state movement, offsets, and state were maintained per operator,

which made it impossible to distinguish between multiple partitions of the same operator

on a single worker. The finer-grained tracking enables selective state migration without

relying on hashing to determine a key’s partition or requiring complete operator-level

checkpoints.

Shadow Partitions. Message arrival from Kafka is not guaranteed to be aligned with

Styx’s internal reconfiguration. To handle this potential misalignment, Styx keeps shadow

partitions temporarily, forwarding out-of-partition transactions to the correct partition. In

that way, Styx ensures correctness without requiring global input suspension. This issue

is particularly evident when down-scaling, where partitions are removed. For instance,

when a client issues a down-scale migration action, triggering repartition, other clients can

potentially keep sending transactions to Styx based on the previous partitioning scheme.

This leads to transactions arriving in an outdated partition that no longer exists. Keeping

old partitions as shadow partitions, responsible only for forwarding such transactions

without any state mutation responsibilities, is essential for Styx to preserve exactly-once

processing guarantees.

Global Offset Restoration. A rerouting mechanism is required, not only during down-

scaling involving the shadow partitions but as a part of the general migration solution.

Its role is twofold: 𝑖) to detect incoming transactions from the input queue, routed to

an outdated partition due to client partitioning misalignment, and 𝑖𝑖) reroute them to

the correct partition. Following our previous example, a transaction can be routed to an

outdated partition until all of Styx’s clients update their routing table and align with the

new partitioning scheme. To maintain exactly-once processing and output, it is essential

to restore the input/output queue offsets, as they might get updated in at most two places

(previous and new partitioning). This ensures that no records are skipped or reprocessed

during migration in case of failure.

Blocking Actions Minimization. To ensure low latency even in the presence of large

data transfers during migration, we had to make the two following adjustments to Styx

𝑖) add compression to large messages and 𝑖𝑖) streaming asynchronous snapshots. First,

Styx enforces compression using the Zstandard compression algorithm [181] for messages

larger than a configurable size (by default set to 1MB). Second, regarding the snapshot

mechanism in Styx, Styx now spawns a background thread that receives state deltas in a

streaming fashion to prevent blocking if the delta becomes large (i.e., under heavy load,

the involved subset of keys is significantly large). In the previous version, Styx would
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Algorithm 3: Stop and Restart

Input :𝑃𝑤 : Current partitions assigned to a worker, 𝐻
𝑛𝑒𝑤

𝑤𝑖
: New hash function per partition, 𝐾 : Keys,

𝑤𝑖𝑑 : Worker id, 𝑂𝑖𝑛: Input offset, 𝑂𝑜𝑢𝑡 : Output offset, 𝐸𝑐𝑜𝑢𝑛𝑡 : Epoch count, 𝑆𝐸𝑄𝑐𝑜𝑢𝑛𝑡 :

Sequence count

Output :𝐺: new Dataflow Graph

1 foreach 𝑤𝑖 ∈ 𝑤𝑜𝑟𝑘𝑒𝑟𝑠 do

2 𝑃
𝑛𝑒𝑤

←∅ ⊳ Snapshotted partitions
3 foreach 𝑃𝑤𝑖

∈ 𝑃𝑤 do

4 foreach (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒) ∈ 𝑃𝑤𝑖
do

5 𝑛𝑒𝑤𝑝 ←𝐻
𝑛𝑒𝑤

𝑤𝑖
(𝑘𝑒𝑦)

6 𝑃
𝑛𝑒𝑤

𝑛𝑒𝑤𝑝
← 𝑃

𝑛𝑒𝑤

𝑛𝑒𝑤𝑝
∪ (𝑘𝑒𝑦,𝑣𝑎𝑙𝑢𝑒)

7 end

8 end

9 Store 𝑃
𝑛𝑒𝑤

to persistent storage

10 𝑚𝑒𝑡𝑎𝑛𝑒𝑤 ← {𝑂𝑖𝑛,𝑂𝑜𝑢𝑡 ,𝐸𝑐𝑜𝑢𝑛𝑡 , 𝑆𝐸𝑄𝑐𝑜𝑢𝑛𝑡 }

11 Send 𝑚𝑒𝑡𝑎𝑛𝑒𝑤 to Coordinator

12 end

13 𝐺← NewDataflowGraph(())

14 foreach 𝑤𝑖 ∈ 𝑤𝑜𝑟𝑘𝑒𝑟𝑠 do

15 𝑠𝑢𝑏𝐺𝑤𝑖
← AssignSubgraph((𝐺,𝑤𝑖))

16 Receive 𝑚𝑒𝑡𝑎𝑛𝑒𝑤 from Coordinator

17 𝑂𝑖𝑛,𝑂𝑜𝑢𝑡 ,𝐸𝑐𝑜𝑢𝑛𝑡 , 𝑆𝐸𝑄𝑐𝑜𝑢𝑛𝑡 ←𝑚𝑒𝑡𝑎𝑛𝑒𝑤

18 end

19 foreach 𝑤𝑖 ∈ 𝑤𝑜𝑟𝑘𝑒𝑟𝑠 do

20 foreach 𝑃
𝑛𝑒𝑤

𝑖
∈ 𝑃

𝑛𝑒𝑤
do

21 𝑃𝑖 ← 𝑃
𝑛𝑒𝑤

𝑖
⊳ Restore partitions

22 end

23 end

accumulate the entire delta and then send it to the background thread, leading to significant

latency spikes that are now resolved.

Composite Key Partitioning. In its current version, Styx also supports composite key

partitioning to enhance data locality. Keys can be grouped by logical attributes (e.g.,

warehouse_id in TPC-C that is a prefix in all table primary keys other than the item),

allowing transactions to access colocated partitions. During migration, Styx leverages this

structure to colocate groups of related keys to the same worker. This optimization reduces

cross-worker communication and improves transaction commit latency.

These design extensions allow Styx to support both synchronous (stop-and-restart) and

asynchronous (online)migration strategieswithout violating transactional or fault tolerance

guarantees while maintaining low latency during reconfiguration.

6.2 State Migration Methods

6.2.1 Stop & Restart

Stop-and-Restart (S&R) is the most straightforward migration strategy that we could

implement on top of Styx. It suspends execution, performs state migration, and resumes

computation with updated routing. Styx implements an optimal variant of S&R tailored to

its transactional runtime. In Algorithm 3, we detail S&R where, at first, for each worker
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1 2 3 4Call-Graph Discovery Lock-free commit Lock-based commitSequencing

Async MigrationOn-demand Migration1 2

Figure 6.1: Alignment of epoch phases with online state migration. In phase 2 transactions determine their

call-graphs, and therefore, the associated keys need to be migrated immediately. Contrarily, in 3 and 4 keys

can be migrated asynchronously without interfering with the transactional protocol.

Algorithm 4: Online Migration

Input :𝑃𝑤 : Current partitions assigned to a worker, 𝐻
𝑛𝑒𝑤

𝑖
: New hash function per partition, 𝐾 : Keys,

𝑤𝑖𝑑 : Worker id, 𝑂𝑖𝑛: Input offset, 𝑂𝑜𝑢𝑡 : Output offset, 𝐸𝑐𝑜𝑢𝑛𝑡 : Epoch count, 𝑆𝐸𝑄𝑐𝑜𝑢𝑛𝑡 :

Sequence count

Output :𝐺: new Dataflow Graph

1 foreach 𝑤𝑖 ∈ 𝑤𝑜𝑟𝑘𝑒𝑟𝑠 do

2 foreach 𝑃𝑖 ∈ 𝑃𝑤 do

3 foreach 𝑘𝑒𝑦 ∈ 𝑃𝑖 do

4 𝑛𝑒𝑤𝑝 ←𝐻
𝑛𝑒𝑤

𝑖
(𝑘𝑒𝑦)

5 𝑃
𝑛𝑒𝑤

𝑛𝑒𝑤𝑝
← 𝑃

𝑛𝑒𝑤

𝑛𝑒𝑤𝑝
∪ (𝑘𝑒𝑦)

6 end

7 end

8 𝑚𝑒𝑡𝑎𝑐𝑢𝑟 ← {𝑂𝑖𝑛,𝑂𝑜𝑢𝑡 ,𝐸𝑐𝑜𝑢𝑛𝑡 , 𝑆𝐸𝑄𝑐𝑜𝑢𝑛𝑡 , 𝑃
𝑛𝑒𝑤

𝑖
}

9 Send 𝑚𝑒𝑡𝑎𝑐𝑢𝑟 to Coordinator

10 end

11 𝐺← NewDataflowGraph(())

12 foreach 𝑤𝑖 ∈ 𝑤𝑜𝑟𝑘𝑒𝑟𝑠 do

13 Receive 𝑚𝑒𝑡𝑎𝑛𝑒𝑤 from Coordinator

14 𝑂𝑖𝑛,𝑂𝑜𝑢𝑡 ,𝐸𝑐𝑜𝑢𝑛𝑡 , 𝑆𝐸𝑄𝑐𝑜𝑢𝑛𝑡 , 𝑃
𝑛𝑒𝑤

𝑖
←𝑚𝑒𝑡𝑎𝑛𝑒𝑤

15 𝑠𝑢𝑏𝐺𝑤𝑖
← AssignSubgraph((𝐺,𝑤𝑖))

16 end

(𝑤𝑖) and all the partitions assigned to them (𝑃𝑤𝑖
) Styx rehashes all the keys of that partition

based on the new partitioning using its hash function (𝐻
𝑛𝑒𝑤

𝑤𝑖
) and adds them alongside

their values to the new partitions (𝑃𝑛𝑒𝑤). Once a worker finishes the hashing step, the

new partitions are stored as a snapshot of the persistent storage. Then, each worker sends

their metadata (input/output offsets, sequencer count, and epoch count) to the coordinator,

concluding the ‘Stop’ step. To ‘Restart’ Styx based on the new partitioning, each worker is

assigned its part from the graph and receives the updated metadata from the coordinator.

Finally, the worker loads the new partitions from the previously rehashed snapshot stored

in persistent storage.

While simple, robust, and independent from the transactional protocol, S&R incurs

downtime due to the rehashing, storing, and loading of the data. This violates availability,

making it more suitable for planned migration settings than Styx’s serverless requirements.

6.2.2 Online

To support online, near-zero-downtime migration, Styx introduces an online method

adapted to its transactional model. In contrast to S&R, the online method performs migra-
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Figure 6.2: State distribution before and after migration request, which removes 𝑤𝑜𝑟𝑘𝑒𝑟4. After migration, we

see the example of a transaction (𝑇1 =

{

𝑘1, 𝑘5

}

). 𝑇1 interacting with keys 𝑘1 and 𝑘5, meaning that while 𝑘1 is

already in-place, 𝑘5 needs to be migrated on-demand as migration phase 1 suggests in Figure 6.1. The rest of

the keys, assuming that there is no other transaction interacting with them, can be migrated asynchronously in

the migration phase 2 .

tion in an on-demand and asynchronous manner, allowing the system to remain available

throughout. Styx leverages its transactional epoch protocol to piggyback migration steps

on normal processing cycles. As shown in Figure 6.1, keys accessed during Phase 2 are

migrated synchronously and on-demand to ensure consistency. Other keys, if idle, are

migrated asynchronously during subsequent phases using worker idle time and batch-

ing mechanisms in phases 3 and 4 . This asynchronous migration is essential for the

migration to complete, which is necessary for the fault tolerance mechanism to be reacti-

vated (snapshots are switched off mid-migration as per the SotA approaches to maintain

consistent snapshots).

In Algorithm 4, we detail the Online Migration method where, similar to S&R, for

each worker (𝑤𝑖) and all the partitions assigned to them (𝑃𝑤𝑖
) Styx rehashes all the keys

of that partition based on the new partitioning using its hash function (𝐻
𝑛𝑒𝑤

𝑖
). The core

difference is that it does not add the values and creates a routing table of where the keys

are located and their destination (𝑃
𝑛𝑒𝑤

). Once a worker finishes the hashing step, it sends

this information alongside its metadata (input/output offsets, sequencer count, and epoch

count) to the coordinator. Finally, the worker loads the new routing tables and metadata

and performs migration alongside the transactional protocol using the on-demand ( 1 )
and asynchronous ( 2 ) mechanisms as displayed in Figures 6.1 and 6.2. In Figure 6.2, we

display how a down-scaling action with repartitioning is performed in Styx while going

from 4 to 3 workers and visualize the on-demand and asynchronous migration.
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6.3 Maintaining Guarantees

Both state migration approaches need to preserve Styx correctness guarantees, namely: 𝑖)

exactly-once processing, 𝑖𝑖) determinism, 𝑖𝑖𝑖) serializable transactional guarantees and, 𝑖𝑣)

exactly-once output. For the S&R method, maintaining correctness is straightforward since

it stops execution, shuffles the data, and restarts. It does not affect any of the already-in-

place mechanisms of Styx detailed in Section 5.6. Thus, in this subsection, we will primarily

explain how the Online Migration method operates while preserving Styx’s correctness

guarantees.

Styx maintains deterministic execution and guarantees serializability throughout on-

line migration. When a transaction requires access to a key located on another worker

(triggering On-Demand Migration), the worker blocks execution until that key is received.

This procedure is safe, as Styx’s single-process coroutine approach ensures that no other

transaction on the same worker can simultaneously request the same key. Transactions can

only operate on fully available and up-to-date keys, and migrations are aligned with epochs

to ensure consistency. Additionally, the asynchronous phase of Online Migration is only

performed after the call-graph of all transactions within the epoch has been discovered. At

that point, all the requested key transfers of the on-demand migration phase are guaranteed

to have been completed. Moreover, fault tolerance remains unaffected; if a failure occurs,

Styx will recover from the latest snapshot and restart the migration without compromising

correctness. For the same reason, exactly-once processing and output remain unaffected

by the migration mechanism.

Finally, the only critical point to be addressed in both the S&R and Online migration

methods is out-of-partition events due to client-server partitioning misalignment. In Sec-

tion 6.1, we explained the two new mechanisms of Styx that address this issue, namely

Shadow Partitions and centralized offset restoration. Shadow partitions are used temporar-

ily to reroute out-of-partition transactions from Kafka, ensuring that the correct worker

and partition process the incoming transaction. To fully address this issue, the Kafka offset

progress that might be affected by two different workers is restored by the coordinator

before being stored in a snapshot. This coordination ensures exactly-once processing in

the case of failure during state migration.

6.4 State Migration Experiments on Styx

In this section, we evaluate the state migrationmechanism of Styx in sustainable throughput

for scaling up and down while repartitioning the entire state. The repartitioning operation

involves considerable data movement since Styx’s partitioner is hash-based.

Setup

Styx executes in Python 3.13 and contains the optimizations mentioned in Section 6.1.

Workload. The workloads used in our experiments follows the SotA transactional ap-

proaches [70, 180], which are the YCSB and TPC-C benchmarks. In this experiment section,

all tables are partitioned into 16 parts.

YSCB [126]. The Yahoo! Cloud Serving Benchmark is a suite of workloads designed to

represent large-scale, commonly developed web services. In our experiments, we use two

YCSB datasets: a smaller dataset with 1 million records (1GB) for small-state experiments
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Figure 6.3: Stop and Restart (S&R) and Online Migration for big State (10GB) Scale Down in both TPC-C and

YCSB: Latency (top row) and Throughput (bottom row).
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Figure 6.4: Small State 1GB Scale Down: Latency (top row) and Throughput (bottom row).

and a larger one with 10 million records (10GB). Each record consists of a primary key

and 10 columns containing 100-byte randomly generated strings. We follow the workload

configuration from [70], which includes two transaction types: 15% of operations perform a

single-record update, while the remaining 85% perform a single-record read. It is important

to note that YCSB differs from the YCSB-T variant used in Section 5.7.

TPC-C. We follow the exact spec of TPC-C as in Section 5.7.1 and generate two datasets, a

small one (10 warehouses, 1GB) and a larger one (100 warehouses, 10GB) for our experi-

ments in this section.

Metrics. In all the migration experiments, we measure input/output throughput, mean

latency, and the migration interval.

Input/Output Throughput. In addition to input throughput as mentioned in Section 5.7.1,

we also display the output throughput, which is the number of transaction responses Styx

produces per second. During migration, we expect 𝑖) the input throughput to remain stable

since we do not pause the clients and 𝑖𝑖) the output throughput to drop.

Mean Latency. For the state migration experiments, latency is defined in the same way as

in Section 5.7.1. The only deviation from our previous latency reporting is that in line

with prior work, [67, 70, 182], we report mean latency instead of the 99th percentile (P99).

This decision is motivated by the observation that, during migration, the system enters

a transitional phase in which latency spikes are the norm. While P99 latency metrics

effectively capture worst-case performance under steady-state conditions, they tend to

produce inflated values during migration, which can obscure a clear understanding of
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Figure 6.5: Big State 10 GB Scale Up: Latency (top row) and Throughput (bottom row).
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Figure 6.6: Small State 1GB Scale Up: Latency (top row) and Throughput (bottom row).

system behavior. In this context, mean latency provides a more informative measure of the

overall impact of migration on transaction performance.

Migration Interval. An important migration-only metric is the migration interval, or how

long the migration process takes. To show this, we plot the beginning and the end migration

timestamps in all experiments.

Results

We have run YCSB and TPC-C workloads in scale-up and down scenarios with big and

small state sizes.

Scale-Down. In the scale-down scenario, we go from 16 Styx 1-CPU workers down to 12

in addition to repartitioning the state to the same number of partitions. In Figure 6.3, we

observe that the S&R method in both YCSB and TPC-C is affected by very high latency

(tens of seconds), and 14-second downtime in YCSB and 43-second downtime in TPC-C

while migrating and repartitioning 10 GB of data. The Online method displays a minor

latency hike related to the rehash operation at the beginning of the migration phase in

both workloads that do not exceed 10 seconds, and minimal downtime that is close to 5

seconds in YCSB and 10 seconds in TPC-C. In YCSB, both in small and large state, the

migration takes around the same time with a minor advantage to the S&R method. On the

contrary, on TPC-C, the Online method takes twice as much since TPC-C contains more

keys that need to be transferred, and the async migration is configured to 5 thousand keys

per transactional epoch.

In Figure 6.4 with the smaller state, we observe the same trends, but the migration
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impact is much smaller.

Scale-Up. In the scale-up scenario, we go from 12 Styx 1-CPU workers up to 16 in addition

to repartitioning the state to the same number of partitions. In Figures 6.5 and 6.6 that

display the big and small state scale-up experiments; we observe similar behavior to the

scale-down experiments, which is to be expected since both migration methods are agnostic

to scale-up/down semantics. The only difference is that migration takes longer since 16

threads perform the initial rehashing phase in the scale-down and 12 in the scale-up.

Takeaways. In general, the Online migration method outperforms in all the critical

performance indicators such as 𝑖) downtime, where the Online migration is at least 4x

faster than stop and restart, 𝑖𝑖) the peak mean latency does not go above 10 seconds, and

once the hashes are computed and Styx catches up to the input, the transactions instantly

drop to sub-second latencies. It is important to note that the only metric that the Online

method falls behind is the migration time, where its importance lies in the fact that the

fault tolerance mechanism is switched off during migration, and the rollback window in

the case of failure is larger.

6.5 Related Work

State Migration. Squall [70] performs live state migration in transactional systems by

locking involved partitions using a dedicated special transaction. It supports on-demand

data movement but relies on DBMS-level deadlock handling and assumes range partitioning

for optimizations. Clay [98] incrementally migrates frequently co-accessed keys using a

cost model to balance data movement and transaction performance during the migration.

Albatross [183] focuses on migrating state in shared storage systems by incrementally

copying in-memory cache and active transaction state. To maintain consistency, Albatross

relies on two-phase commit. Meces [67] supports fine-grained, on-demand state migra-

tion targeting stream processing systems using markers. While ensuring exactly-once

semantics, transactions are out-of-scope. Rhino [68] targets query reconfiguration on

stream processing systems, maintaining state replicas and utilizing virtual nodes without

transaction support.

Autoscaling. Other works targeted dynamic reconfiguration in SPEs. DS2 [83] is a control-

based autoscaling solution that uses arrival and processing rates of operators to determine

when scaling is needed. It focuses on dynamic reconfiguration for SPEs, scaling all operators

in a single step by leveraging the topology of the streaming query. To achieve this, the

optimal degree of parallelism per operator is calculated progressively. Dhalion [84] is a

control-based framework that uses a backpressure mechanism for rate control. It monitors

backpressure signals such as load skew and slow instances to detect resource contention,

which triggers scaling actions. DRS [184] is a queuing-theory-based autoscaler designed to

capture the impact of provisioned resources. It models operator behavior using queuing

theory models under steady-state assumptions, offering a more structured framework for

latency estimation than relying on backpressure or arrival rates. Lastly, the Horizontal Pod

Autoscaler (HPA)[185] is the default autoscaling solution shipped with Kubernetes. HPA

scales horizontally a deployment aiming at matching user-provided target values based

on an observed metric, which can be user-defined (e.g., average CPU/memory utilization).

However, Styx does not address factors that trigger autoscaling and is left for future work.
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7
Discussion & Conclusion

I
n this thesis, we investigated the problem space of transactional cloud applications. While

a few systems have tackled parts of this space, each with its advantages and limitations,

significant challenges remain. We identified five key research gaps that motivated our work:

𝑖) the lack of a principled abstraction and substrate for transactional cloud applications, 𝑖𝑖)

the limitations of prior systems that hindered their suitability as general-purpose runtimes,

𝑖𝑖𝑖) the difficulty of developing correct and scalable transactional applications, 𝑖𝑣) the

challenge of achieving high performance while ensuring strong transactional and fault-

tolerance guarantees, and 𝑣) the need for efficient and adaptive execution under dynamic

workloads. In this chapter, we first summarize the main findings and contributions of this

thesis in light of the research gaps identified. We then reflect on the broader implications

of our work and discuss avenues for future research that build upon the foundations laid

in this thesis.

7.1 Main Findings

Dataflows as a Substrate for Transactional Cloud Applications

In Chapter 2, we presented our reasoning behind the selection of a dataflow engine as a

suitable substrate for transactional cloud applications, considering the following research

question:

RQ-1: What would be the optimal substrate for a system serving complex cloud

applications?

To answer RQ-1, we analyzed the requirements of modern cloud applications from a

developer’s perspective and observed that event-driven microservices share structural

similarities with stateful dataflow graphs. This led us to propose dataflow engines as

a promising foundation for cloud runtimes, due to their ability to model asynchronous

communication, stateful processing, and parallelism. This theoretical foundation guided

the practical investigations in subsequent chapters.
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The Limitations of Prior Approaches

To verify our reasoning, in Chapter 3 we enhanced Apache Flink Statefun, an existing

SFaaS system, with transactional guarantees and named it T-Statefun. This was led by the

following research question:

RQ-2: Is it possible to use an existing SFaaS dataflow system for this purpose? If so,

what are the limitations?

T-Statefun answered RQ-2 and demonstrated that it is indeed feasible to retrofit a stream

processing system with transactional capabilities. However, our findings revealed key

limitations. Although T-Statefun outperformed existing SFaaS systems, its serializable

protocol showed poor scalability under high-contention workloads, and its reliance on

remote state access increased latency. Additionally, the system’s API complexity made it

difficult for non-expert developers to use it effectively, underscoring the need for better

programmability.

Difficulty in Programming

In Chapter 4, we tackled the programmability issue by introducing Stateflow, a domain-

specific language embedded in Python that allows developers to write object-oriented

cloud applications using familiar imperative constructs. This work addressed the following

research question:

RQ-3: Can we design a domain-specific language that works on top of all stream

processing systems, creating a simple and easy-to-use object-oriented API?

To answer RQ-3, we designed Stateflow as a DSL that compiles Python programs into a

dataflow intermediate representation (IR). This abstraction decoupled application logic

from the underlying execution engine, enabling the abstraction to be seamlessly compiled

against different stream processors. By focusing on Python, we reduced the entry barrier

for developers, enabling them to build complex transactional workflows without having to

reason about concurrency or distributed systems internals.

Simple Highly Performant Transactional Cloud Applications

In Chapter 5, we addressed the limitations in performance and flexibility of existing systems

by designing and building Styx, a high-performance distributed dataflow runtime tailored

to transactional SFaaS. The following research question drove this work:

RQ-4: Can we build a system that enables developers to write transactional, data-

intensive cloud applications without requiring expertise in distributed systems?

To answer RQ-4, we developed Styx, a streaming runtime that natively supports Stateflow

applications with end-to-end transactional serializability and exactly-once guarantees.

Styx achieved high throughput and low latency by applying forward-only deterministic

transaction processing and avoiding expensive two-phase commits. It executed arbitrary

orchestrations of function calls while preserving consistency and leveraging the dataflow

execution model to enable parallelism and fault-tolerance. This work demonstrated that

transactional guarantees and performance do not have to be mutually exclusive in cloud

application runtimes.
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Adaptivity and Efficiency

Finally, in Chapter 6, we explored the dynamic scalability of Styx by incorporating elasticity

and adaptivity, guided by the following research question:

RQ-5: Can we give Styx elasticity properties, such as state migration, allowing it to

become serverless?

To address RQ-5, we extended Styx with a state migration mechanism that enables live

relocation of operator state while preserving correctness. We adapted techniques from

prior work on stream processor reconfiguration to work within the context of transactional

function orchestrations. Our approach enabled Styx to scale applications elastically and

recover from load imbalance without downtime, paving the way for a serverless execution

model that supports long-lived, stateful cloud applications with fine-grained resource

management.

7.2 Limitations

Despite the contributions of this thesis, there are some limitations we would like to address.

High Availability. As discussed in chapter 5, Styx is designed to recover efficiently from

failures using deterministic execution, input message replay, and periodic snapshotting.

This enables rapid fault recovery and preserves exactly-once semantics. However, Styx

does not yet support high-availability (HA) deployments, where failover is instantaneous,

and downtime is imperceptible to users. In its current form, when a failure occurs, affected

operators must restore state from durable storage and replay input logs, introducing

recovery latency. Achieving high availability would require mechanisms such as active-

standby replication, where each operator has a replica that receives the same input stream

and maintains an up-to-date state. Upon failure, the replica could take over immediately,

avoiding the need to reload the state from disk and replay messages.

Looser Coupling with the Replayable Message Queue. Styx currently assumes that

input streams are ingested via Apache Kafka, which serves as both the ingress and egress

mechanism and one of two durability layers. Kafka’s strong ordering guarantees and

replayability simplify Styx’s fault tolerance model, enabling deterministic recovery through

message replay. However, this design also introduces a tight coupling between Styx and

Kafka’s delivery semantics, potentially limiting deployment flexibility and preventing

seamless integration with other messaging systems. In particular, Styx assumes that

input queues are partitioned in a way that aligns with its internal parallelism, facilitating

efficient sequencing and deterministic execution. These assumptions are made mainly for

performance and simplicity, but they are not strictly necessary for correctness. Lifting

these assumptions would require rethinking how causal order, partition alignment, and

exactly-once semantics are enforced across input queues. Overall, while the current Kafka-

centric design benefits from maturity and robustness, enabling broader compatibility with

elastic or serverless ingress layers would increase Styx’s deployment portability and make

it more suitable for diverse cloud environments.

Analytical Queries. Styx is purpose-built for transactional workloads that require low

latency, fine-grained updates, and strong consistency guarantees. It does not currently

support analytical queries or Hybrid Transactional and Analytical Processing (HTAP)
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workloads, which aim to unify real-time decision-making with historical insight. This

limits Styx’s applicability in scenarios where the latest transactional state must be queried

or analyzed in conjunction with larger historical datasets, for instance, in fraud detection,

personalized recommendations, or operational dashboards. Supporting HTAP workloads

in a system like Styx is a non-trivial task. A key challenge lies in balancing the freshness

of analytical results with the latency and throughput of transactional processing. Styx

could explore integration with analytical backends or log-based data lake ingestion to

expose transactional state externally, while maintaining its streaming semantics. Another

approach could be the introduction of read-only views with bounded staleness guarantees

or side-channel query engines that operate on compacted snapshots. Designing such hybrid

execution models while preserving Styx’s exactly-once guarantees, deterministic behavior,

and low overhead remains a direction for future work. However, it is beyond the scope of

this thesis.

Limited Adaptivity Capabilities. Although Styx supports elasticity through manual

operator scaling and state migration, it currently lacks fully automated autoscaling mech-

anisms that are a requirement of modern serverless platforms. Users must manually

provision and assign workers, and the system does not yet include dynamic operator

placement, load-aware partitioning, or resource-aware scaling. Consequently, Styx cannot

automatically respond to changes in workload intensity, nor can it scale to zero during pe-

riods of inactivity. This limits its ability to provide cost-efficient and responsive execution,

especially in cloud-native and pay-as-you-go settings [186].

Nonetheless, the architectural choices in Styx, particularly its modular operator model,

logical dataflow execution, and separation between control and data planes, lay a promis-

ing foundation for implementing adaptive, serverless behavior. For example, operator

placement decisions could be informed by runtime statistics or predictive models, while

idle operators could be garbage-collected and rehydrated using persisted state. These

enhancements would move Styx toward a fully serverless execution model, where resource

management becomes transparent, and users can focus entirely on application logic.

Exploring these capabilities remains outside the scope of this thesis but represents

a direction for future research. Integrating reactive scaling policies would enable Styx

to support workloads with highly variable demands, thereby creating a general-purpose,

transactional serverless dataflow engine.

Long-Running Transactions. Styx currently assumes that transactions are short-lived

and bounded in both time and size. As a result, it does not support long-running transactions

that can potentially span multiple input epochs. Because the system employs epoch-based

processing with coordination barriers, a single long-running transaction can delay the

entire epoch’s progression, resulting in increased latency and reduced system throughput.

This limitation reflects a broader tension between isolation and liveness in distributed

systems. Supporting long-running transactions with strict serializability often requires

locking or coordination mechanisms that severely impact performance and availability. In

response to this, alternative models such as SAGAs have been proposed [91], which decom-

pose a long transaction into a series of smaller, compensatable steps. These approaches

trade strong consistency guarantees for better scalability and resilience, particularly in

cloud-native applications [96].

For many real-world applications, strict isolation may not be necessary. For exam-
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ple, external API calls, human-in-the-loop workflows, or machine learning-based fraud

detection can take seconds or even minutes to complete. In these cases, developers may

prefer looser guarantees (e.g., eventual consistency, compensation mechanisms) to maintain

responsiveness. Enabling support for such workloads would require a redesign of Styx’s

execution model, likely through relaxed isolation semantics, compensation patterns, or

asynchronous orchestration techniques, which remains an open area for future exploration.

Styx Core Written in Python. Python enables rapid prototyping and lowers the barrier

to entry for building distributed systems like Styx. However, it lacks low-level control

over memory management, task scheduling, and high-performance networking. These

limitations restrict the ability to fine-tune execution performance and concurrency behavior,

especially in production environments. While the architectural principles and abstractions

of Styx are language-agnostic, implementing the runtime in a systems programming

language like Rust or C++ could significantly improve throughput and latency. Languages

like Rust, in particular, offer compile-time guarantees that help prevent entire classes of

concurrency-related bugs, making it a promising candidate for future reimplementation of

the core dataflow engine.

Moreover, user applications in Styx do not need to be written in the same language as

the runtime. With the growing maturity of WebAssembly (WASM), it becomes feasible to

support applications authored in multiple languages that compile to a common execution

target. This could expand Styx’s reach by decoupling the user-facing API from the runtime

implementation, paving the way for a multi-language, safer, andmore performant execution

model.

7.3 Future Directions

In this section, based on the insights and experience we gained from developing Stateflow

and Styx, presented in this thesis, we identified open challenges regarding Stateflow/Styx

and the field in general. Guided by these, we briefly discuss potential future directions.

Styx

Auto-Scaling. Future work could implement autoscaling mechanisms that adjust operator

parallelism in response to workload characteristics. This includes both horizontal scaling

(adding/removing workers) and shuffling based on key-based access patterns, ideally

without requiring user intervention or manual tuning.

Fault-Tolerant State Migration. State migration in existing systems is often performed

with fault tolerance mechanisms temporarily disabled, limiting their applicability in highly

available environments. A promising direction is the inception of new online, fault-tolerant

migration techniques that enable state transfer between workers without pausing or

compromising fault tolerance. Moreover, such approaches could open the door to stacked

migrations, where new migration plans can be initiated before prior ones have fully

completed, enabling faster and more adaptive reconfiguration.

Analytical Workloads for Styx. Expanding Styx to support analytical workloads would

bridge the gap between real-time transactional processing and decision-making, enabling a

unified platform for Hybrid Transactional and Analytical Processing (HTAP). This integra-
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tion is essential for modern cloud-native applications, which increasingly require the ability

to react to operational events with strict transactional guarantees while simultaneously

supporting low-latency analytical queries on fresh data.

Achieving HTAP in Styx would involve several system-level enhancements. First,

introducing a columnar storage engine alongside the existing row or entity-based execution

model would allow Styx to store and scan large volumes of historical data efficiently.

Integrating HTAP capabilities also imposes new challenges on resource management and

migration. For instance, state migration mechanisms must account for analytical query

locality—migrating not only hot keys but also analytical materializations or summary data

to where they are most needed. This reinforces the need for lightweight, non-disruptive

online migration protocols, which preserve both fault tolerance and query consistency.

Protocol for Long-Running Transactions. Currently, the transactional protocol sup-

ported in Styx is epoch-based, meaning that new transactions cannot begin until all trans-

actions in an epoch are completed. A long-running transaction would prevent an epoch

from completing, resulting in significantly increased latency in all subsequent epochs. To

support long-running interactions, future work could explore a specialized protocol for

managing either multi-epoch or long-running transactions. This might include compensa-

tion mechanisms, sagas, or distributed coordination strategies that maintain serializability

without blocking progress.

Stateflow

Complete Domain-Specific Language for Cloud Applications. While Stateflow

demonstrates the viability of a Python-embedded DSL for cloud dataflows, future work

could formalize a standalone domain-specific language that captures application semantics

declaratively. Such a language would provide static analysis, performance optimization,

and correctness guarantees that exceed what Python currently offers.

Benchmarks

Benchmark for Transactional Cloud Applications. It is essential to have benchmarks

that accurately represent real-world applications to improve existing systems and optimize

new ones. However, the community lacks standardized benchmarks for evaluating transac-

tional cloud-native applications. Designing a representative benchmark suite, including

realistic workloads, SLAs, and cloud deployment models, would help contextualize systems

like Styx and facilitate meaningful comparisons across architectures.
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