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ABSTRACT: An understanding of how cells respond to perturbation is essential for
biological applications; however, most approaches for profiling cellular response are
limited in scope to pre-established targets. Global analysis of molecular mechanism
will advance our understanding of the complex networks constituting cellular
perturbation and lead to advancements in areas, such as infectious disease patho-
genesis, developmental biology, pathophysiology, pharmacology, and toxicology. We
have developed a high-throughput multiomics platform for comprehensive, de novo
characterization of cellular mechanisms of action. Platform validation using cisplatin
as a test compound demonstrates quantification of over 10 000 unique, significant
molecular changes in less than 30 days. These data provide excellent coverage of
known cisplatin-induced molecular changes and previously unrecognized insights
into cisplatin resistance. This proof-of-principle study demonstrates the value of
this platform as a resource to understand complex cellular responses in a high-
throughput manner.

KEYWORDS: cisplatin, drug discovery, high-throughput, mechanism of action, omics

■ INTRODUCTION

Comprehensive analysis of cellular responses at the molecular
level facilitates a rich understanding of the complexity and
dynamic nature of cellular pathways. While initial studies of
cellular exposure to exogenous compounds often explain a
primary mechanism of action (MOA), many of these complex-
ities and secondary MOAs are not understood or even anticipated
until several years after early discoveries. This is exemplified by the
identification of thalidomide’s target of toxicity 50 years after
observance of the teratogenic properties.1 Even therapeutic

compounds designed for specific targets, for example statins,
often induce multifaceted effects.2 Thus, there is a need to expand
upon the way we evaluate cellular response to perturbations.
Conversely, drug development strategies largely focus on the

interaction of a drug candidate with a single molecular target,
assuming that optimization of affinity to a target produces the
most effective outcomes. Preclinical research has been optimized,
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automated, and structured to generate drug candidates at
increasingly rapid rates; yet, the failure rate remains high. Recent
estimates suggest that as few as one in ten developed drug
candidates succeed.3−5 Factors leading to failure include safety
concerns and effects that are difficult to predict with targeted
assays.3,5 These undesirable side effects may not manifest until
late stages of clinical trials, after investing billions of dollars into
a lead compound.6,7

A decline in research and development efficiency for the
development of new drugs is well-documented.8−10 One con-
tributing factor to those failures is that current technologies do
not provide a systems-level evaluation of the candidate drug.11

In contrast, it has been noted that drug development was more
effective in the era when animals (e.g., systems) were primarily
used in the initial stages of development,8 emphasizing the trade-
offs in using a reductionist approach to drug development. Clearly,
there is an urgent need to fundamentally change the way we
analyze cellular responses and evaluate potential therapeutic drugs
and threatening toxins. A comprehensive approach to under-
standing cellular response to drug candidates can contribute to
both the efficacy and safety of the final product, elucidate pathways
of adaptive tolerance and resistance, and highlight possible
polypharmacological applications. Additionally, a complete
understanding of the molecular landscape allows for the screening
of pre-existing mutations that dispose patients to therapeutic
failure.
To understand a multifaceted cellular response up front

requires exhaustive molecular profiling, a task well-suited to
omics approaches. The prevailing dogma for these technologies
is that they are not applicable to programs requiring high-
throughput results.12,13 However, recent advances in the tech-
nologies used for transcriptomics, proteomics, andmetabolomics
provide unprecedented molecular specificity and speed while
maintaining high standards for data quality. Integration of these
technologies facilitates a cohesive analysis of cellular response,
and increases in analytical efficiency coupled with modern
computational capabilities make it feasible to rapidly obtain com-
prehensive data of a compound’s MOA. Of equal importance,
this approach enables the discovery of cellular processes outside

of targeted pathways, providing molecular information and
insight into complex cellular responses.
Here, we describe an integrated analytical and computational

approach that empirically derives a global MOA for a compound
in less than 30 days. We demonstrate proof-of-principle for
this technology platform using cisplatin, a well-established
DNA damage-inducing chemotherapeutic. Research over the past
20 years establishes a few dozen compounds implicated in
cisplatin’s primary MOA. In 30 days, this platform quantified over
10 000 unique molecular changes, including 55% of the species in
an expanded canonical network. Importantly, the data captured
novel pathways that may inform clinical observations of cisplatin
resistance. A driving aim for this technology is to move beyond the
limits of targeted analyses informed by established pathways and to
provide a technology for the accelerated understanding of MOA.

■ EXPERIMENTAL PROCEDURES

Cell Culture

A549 cells were cultured in DMEM or stable isotope labeling with
amino acids in cell culture (SILAC) DMEM (Thermo Scientific)
and treated with 50 μM cisplatin (Tocris Bioscience) or ddH2O.

Screening

Cell viability and apoptosis were assessed by CellTiter Glo
(Promega) and ApoONE (Promega) kits, respectively. Molecular
changes were screened using a matrix-assisted laser desorption−
ionization Fourier-transform ion cyclotron resonance (MALDI-
FTICR) MS platform.

Multiomics Analysis

Samples were analyzed for transcriptome changes by RNA
sequencing at the Genomics Services Lab, HudsonAlpha, for
proteome changes by label-free, SILAC, and phospho-enriched
SILAC liquid chromatography−tandem mass spectrometry (LC−
MS/MS), and metabolome changes by ultraperformance liquid
chromatography−ion mobility mass spectrometry (UPLC−
IM-MS) and data-independent acquisition (MSE) using both
hydrophilic-interaction liquid chromatography and reverse-
phase liquid chromatography.

Figure 1.Multiomics platform forMOA construction. The 30 day procedure has three distinct phases: dose screen (days 0−3), discovery and validation
(days 4−25), and mechanism construction (days 26−30). Phase 1 incorporates cell viability and molecular screens to establish protocols for the
discovery phase. Phase 2 integrates proteomics, metabolomics, and transcriptomics to determine molecular changes correlated with compound dose.
In Phase 3, network analysis of all statistically significant changes drives construction of a comprehensive MOA.
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Computational Analysis and Data Mining

Data from all platforms were integrated and parsed for sig-
nificantly changed, unique species. We developed an analysis
pipeline (manuscript in preparation) implemented in the Python

programming language as part of the PySB modeling frame-
work.14 Bioservices15 was used to download pathways from the
KEGG database16 that contain any proteins from a list of seed
species. These pathways were combined to form a unified

Figure 2. Phase 1: dose screening (days 0−3). (A) Two different stages of the screening are illustrated. The phenotypic screens evaluate physiological
changes to narrow the dose to a small number of responsive conditions. The molecular screen focuses these possibilities to the optimal conditions. The
green boxes represent theoretical dose ranges. (B) This cartoon conceptualizes our approach to determine optimal dosing conditions. The green box
highlights the ideal target dose range, one that stimulates the greatest molecular response while maintaining a tolerable level of cell viability. (C,D)
Phenotypic screening results for cisplatin at 24 h show (C) relative caspase activation (ApoONE) and (D) cell viability (CellTiter Glo). The green boxes
demonstrate effective responses. (E) Qualitative evaluation of the cell viability at 24 h confirms an optimal dose range. Green, live cells; red, dead cells.
Note that brightness was enhanced by 60% for all lower panels to improve visibility of the red pixels. (F)MALDI FTICRMS spectra from a 6 h exposure
illustrate molecular differences in control (top, black) and 50 μM cisplatin-treated samples (bottom, green). The inset highlights differences in the
molecular signatures of the control and treated samples within a selected m/z region (see asterisks). (G) This graph summarizes the results of the
molecular screen. The green box indicates the selected dose for Phase 2 discovery experiments.
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network based on common protein species. To examine the
species-to-species interactions in our data networks, we used the
open source systems biology platform Cytoscape,17 the
QIAGEN IPA network analysis tool, and annotated litera-
ture.

■ RESULTS AND DISCUSSION
This study validates a multiomics platform designed to assess
the comprehensive MOA of exogenous compounds in 30 days.
We considered selection of cell type, exposure methods, and
analytical modalities by evaluating stability, reproducibility,
utility, and feasibility within 30 days. For this study, we used
A549 cells; however, our platform is amenable to various
adherent and suspension cell lines. The sponsoring agency
selected cisplatin as the test compound and revealed its identity
on the first day of the 30 day period.
Figure 1 graphically illustrates the three phases of our

procedure: (1) molecular screening (days 0−3), (2) discovery
analytics (days 4−25), and (3) mechanism construction (days
26−30). Phase 1 screens a wide range of cisplatin dose and
exposure times to establish the treatment protocol for discovery
experiments. This preliminary screen deduces dosing conditions
that provide relevant data for the MOA, allowing the application
of this protocol to uncharacterized compounds. During Phase 2,
transcriptomics, proteomics, and metabolomics determine
changes in molecular expression correlated with exposure to
the compound. In Phase 3, data integration and analysis drive
mechanism construction.

Phase 1: Preliminary Screening Determination of Relevant
Dose and Exposure Time

To make the analysis strategy applicable to uncharacterized
compounds, it does not rely on previous experimental data to
establish an exposure dose. We hypothesized that a preliminary
screening process (Figure 2) could select optimal treatment
conditions for Phase 2 omics experiments. Figure 2A illustrates
the two-stage screening protocol. First, a set of assays that

indicate physiological perturbations (e.g., cell viability, cell cycle
arrest, oxidative stress, etc.) narrows the possible dose range to a
small number of conditions. Second, mass spectrometry (MS)
analysis of proteome changes within this limited dose range leads
to the selection of a single dose condition for all subsequent
experiments. The optimal dose, conceptualized in Figure 2B,
elicits maximum molecular response while preserving >50% cell
viability.
During Stage 1 of the screening experiment, we monitored

dose-dependent caspase 3/7 activation (Figure 2C), ATP levels
(Figure 2D), and cell viability (Figure 2E). We analyzed 14 doses
(0.025−200 μM) for cisplatin exposure times of 10 m and 1, 6,
and 24 h, with some selected measurements at 48 and 96 h. On
the basis of the results obtained on day 1, the dose range of
20−100 μM was prepared for molecular screening.
For Stage 2, we developed a rapid proteome screen using

matrix-assisted laser desorption ionization (MALDI) MS to
evaluate the magnitude of the molecular response. This assay
determines changes in MS profiles at selected conditions com-
pared to the control, ensuring maximum opportunity to observe
significant molecular changes in the discovery phase. To
maximize throughput, we focused on profile changes rather
than identifications, avoiding the use of chromatography and
tandemMS. These results titrated the cisplatin dose used in later
experiments but were not used in the construction of the cisplatin
MOA.
Figure 2F shows representative mass spectra from this experi-

ment, a 6 h exposure of 50 μM cisplatin and a vehicle control.
Each peptidic profile contained >4000 unique mass-to-charge
(m/z) peaks to monitor for intensity changes across exposure
conditions. To determine which cisplatin dose induced the
greatest molecular change, we developed a quantitative, auto-
mated approach to determine a molecular variance score−a
metric that projects the high-dimensional variance between the
spectra of different experimental conditions to a lower-dimensional

Figure 3. Phase 2: discovery results (days 4−25). (A) Significantly changed proteins (determined based on gene symbol) and (B) identified (top) and
significantly changed (bottom) metabolites show the overlap across the modalities and time. For visual simplicity, 3 out of 4 time points are shown.
Abbreviations: LF, label-free; HILIC, hydrophilic liquid interaction chromatography; RP, reverse-phase chromatography. (C) Transcriptomic data
show the overlap of significantly changed transcripts across time. (D) A cross-platform comparison of unique, significantly changed species shows the
overlap between transcriptomics and proteomics.
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representation using a principle component analysis. These
details are in the supplemental methods.
Figure 2G shows the molecular variance score for each

cisplatin dose measured at 1 and 6 h. Only exposure times <24 h
were analyzed during the molecular screen to maintain an
efficient screening period (≤3 days). We observed an increase in
molecular variance with increasing cisplatin dose up to 50 μM;
greater doses did not show a correlated response. This instability
in the molecular variance score at doses >50 μM at 1 and 6 h
corresponds with the variation seen in the caspase activation
assay in the same dose range at 24 h (Figure 2C). In both the
physiological and molecular screen, 50 μM cisplatin elicits a
maximum response and maintains cell viability of >50%,
indicating an optimal dose of 50 μM cisplatin for discovery
experiments.
This screen-determined concentration compares with reports

of cisplatin-induced apoptosis and cytotoxicity; exposure doses
range from 3.3 to 1000 μM (Figure S1), and the IC50 for A549
cells is 18−64 μM.18,19 The molecular screen confirmed
cisplatin-induced toxicity is measurable at 50 μM and as early
as 1 h. These results support our hypothesis that a preliminary

screen can determine optimal treatment conditions for an
unknown compound, and they validate our established workflow.

Phase 2: A Multi-Omics Platform Capture of
Cisplatin-Induced Molecular Perturbations

During the discovery phase, we acquired comprehensive
molecular data from transcriptome, proteome, phosphopro-
teome, and metabolome measurements of A549 cells treated
with 50 μM cisplatin for 1, 6, 24, and 48 h. In total, we collected
254 470measurements (which represents approximately 10 s per
measurement). Of the 53 500 unique, individual species
detected, 13 483 were significantly changed (24%). Figures 3,
S2, and S3 and Table S1 show the data generated by these
modalities. Integration of data from these platforms facilitated
the de novo, time-resolved MOA construction described below.

Phase 3: Mechanism Construction

Comparison of the Empirical Data to a Canonical
Cisplatin Mechanism. To evaluate our data set, we generated a
canonical MOA consisting of 33 species from a literature survey
of transcripts, proteins, and metabolites that change in a variety
of cell lines exposed to cisplatin for less than 48 h (Table S2).
Figure 4A shows the constructed canonical mechanism;

Figure 4. Phase 3: mechanism construction (days 26−30). (A) The cisplatin canonical MOA generated from a literature survey (green). (B) A vignette
of the intrinsic apoptosis pathway illustrates directional fold changes and detection status from the empirical data. Abbreviations: ERK, ERK1/2; ERKP,
ERK1 pThr202/pTyr204 and ERK2 pThr185/pTyr187; and p53P, p53 pSer392. (C) This workflow conceptualizes the reconstruction of networks
from seeding species. (D) An overlay of the ECN (green) and the DDN (blue) demonstrates the comprehensive nature of empirical mechanism
construction beyond the canonical mechanism.

Journal of Proteome Research Article

DOI: 10.1021/acs.jproteome.6b01004
J. Proteome Res. 2017, 16, 1364−1375

1368

http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.6b01004/suppl_file/pr6b01004_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.6b01004/suppl_file/pr6b01004_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.6b01004/suppl_file/pr6b01004_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.6b01004/suppl_file/pr6b01004_si_001.pdf
http://dx.doi.org/10.1021/acs.jproteome.6b01004


cisplatin-induced DNA damage initiates a cellular response that
ends in apoptosis. Our multiomics platform detected 97% of the
species in the canonical cisplatin MOA (all excepting Mdm2),
and 82% of these changed significantly (Table S2).
Figure 4B illustrates time-resolved data for an intrinsic

apoptosis pathway within the canonical mechanism. Phosphor-
ylation at Thr202 and Tyr204 activates ERK1; the homologous
motif on ERK2 is Thr185/Tyr187. Phosphorylated ERK1 and/
or ERK2 increased at each time point. Activated ERK can phos-
phorylate and activate p53 at multiple sites, including Ser392,20

which increased significantly in cisplatin-treated cells beginning
at 24 h. The literature shows that p53 binds DNA as a tetramer,
and phosphorylation at Ser392 enhances tetramer formation
10-fold.21 Additionally, Chk1 or Chk2 can phosphorylate p53 at

Ser313/Ser314. Our data show that p53 pSer313, pSer314,
pSer315, or a combination of all three increased significantly in
cisplatin-treated cells starting at 6 h. Phosphorylation at these
sites can activate BAX,22 consistent with increased detection of
the BAX transcript in cisplatin-treated cells at 24 h. In intrinsic
apoptosis, Bax conformational change in the mitochondrial
membrane contributes to cytoplasmic release of Cyt c (CYCS)
leading to assembly of the apoptosome, which includes APAF-1
and Casp-9, and subsequent Casp-3 activation.23 We observed
transcriptional upregulation in BAX, CYCS, APAF1, and CASP3
but not proteomic abundance changes for these species,
consistent with mediation of their MOA through conformational
changes, localizations, and cleavage events. Due to the central
role of Casp-9 in the caspase cascade,24 down-regulation of

Figure 5. Beyond the primary MOA. (A) The CUL4B/HUWE1 pathway (pink) can modulate the intrinsic apoptosis pathway (green). (B) Relative
caspase activation (top) and percent viability (ATP levels; bottom) of 50 μMcisplatin-treated cells compared to untreated cells. (C) Superimposition of
the ERN (red) and the DDN (blue) demonstrates capture of known and potentially novel resistance mechanisms. (D) ATP1A1 regulates Ncx1 activity
(orange), which can affect the regulation of apoptosis. (E) This pathway illustrates the estrogen-induced cisplatin resistance mechanism (teal). (F) The
STIP1 cascade (purple) initiates STIP-1 and PRNP interaction and endocytosis, which ultimately leads to phosphorylation of BAD and inhibition of
apoptosis.
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CASP9 at 24 h is consistent with a subpopulation of cells
initiating antiapoptotic pathways. By 48 h, none of the down-
stream apoptosis proteins changed significantly, suggesting that
surviving cells were not initiating apoptosis.
Comparison of the Empirical Data to Expanded

Mechanisms. Comparison of the measured data to the
literature-derived canonical MOA demonstrates agreement
both in the network and on a time-resolved basis. However,
the capture of 32 out of 33 species from >53 000 unique
measurements tests less than 0.1% of the collected data. Thus,
further validation of our approach required a strategy that
expands beyond the current literature.
We constructed networks by seeding with inputs based on

annotated biology, with expansion informed by curated pathways
from the Kyoto Encyclopedia of Gene and Genomes (KEGG),16

allowing us to validate our empirical findings against expected
outcomes (see the supplemental methods). The comprehensive
nature of multiomics data sets can surpass previously described
MOAs. Therefore, we hypothesized that seeding the empirically
captured data set would allow us tomove beyond these limits and
permit exploration of previously unknown but important cellular
and pharmacological events associated with the exposure
conditions. Figure 4C illustrates this concept. We developed
two networks to validate and interrogate our empirical data set:
the expanded canonical network (ECN), seeded with species
from the canonical mechanism (Table S2), and the data-driven
network (DDN), seeded with unique significantly changed
species from our empirical data, 11 061 species (Table S3).
The ECN contained 2560 unique species (Figure 4D and

Table S4). Our multiomics data set captured 1397 of these
(55%), of which 1229 changed significantly. The percentage of
unique species that changed significantly in the ECN, 88%, is
approximately 3.5 fold higher than the percentage of significantly
changed species in the empirical data set (Figure S4). This value
is also similar to the percent of significantly changed species
determined for the canonical mechanism, validating the primary
MOA on the scale of thousands of species and revealing the
relevance of the ECN to the cisplatinMOA. Still, the significantly
changed multiomics data contains 80% more species than the
ECN, providing the opportunity to investigate unexplored
pathways related to cisplatin treatment. We hypothesized that
these additional measurements revealed previously described
and novel off-target effects of cisplatin, including resistance
mechanisms.
The resulting DDN had 6386 species (Table S5). We

experimentally measured 2583 (40%) of these species, 2215 of
which were significantly changed. Similar to the ECN, 86% of
the detected species within the DDN changed significantly
(Figure S4). For the DDN, limitations to KEGG precluded
seeding with metabolomics data and limited the transcriptomic
and proteomic data to the 2215 species that were in KEGG
(Figure S5). Figure 4D shows the ECN and DDN, with a total of
2560 species (nodes) overlapping. The uncovered DDN region
represents intracellular responses not currently understood in
the context of cisplatin. As hypothesized, the empirical data set
provides the opportunity to explore novel secondary mecha-
nisms.

Beyond the Primary MOA: Capturing the Dynamic
Processes that Govern Cell Fate

To complement the DDN analysis and investigate the capability
of our platform to capture events outside of the primary MOA,
we threaded the empirical data through the Qiagen IPA causal

network analysis tool and analyzed for pathways present at
every time point. We selected the HUWE1 pathway25 for further
analysis because it appeared as one of the top five ranked hits at
every time point and was the top hit at 6 h. TheHUWE1 network
contained a number of empirically measured species that
revealed significant fold changes over time.
HUWE1 is an E3 ubiquitin ligase that modulates DNA damage

response and apoptosis pathways upon genotoxic stress.25

HUWE1 targets MCL-1, an antiapoptotic Bcl2 family member,
for ubiquitination and proteasomal degradation; this alleviates
MCL-1 repression of Bak and allows Bak to drive pore forma-
tion in the mitochondrial outer membrane (Figure 5A). Pore
formation induces the release of Cyt c into the cytosol and
initiates the caspase cascade. A recent publication shows that
up-regulation of CUL4B leads to increased degradation of
HUWE1 and subsequent stabilization of MCL-1, which inhibits
Bak by forming a heterodimer and ultimately steers the cell away
from apoptosis.26

We captured regulation of this pathway in a time-resolved
manner. The CUL4B C-terminal peptide increased at 1 h with a
concomitant significant change in HUWE1 phosphorylation.
At 6 h post-exposure CUL4B was unchanged, but we observed
evidence for a decrease in HUWE1 phosphorylated and unphos-
phorylated states. Analysis at 24 and 48 h revealed multiple
significant abundance changes for phosphorylated peptides of
HUWE1 in treated cells, indicating a dynamic regulation pro-
cess. Additionally, HUWE1 decreased in abundance at 48 h,
suggesting that a population of cells were resistant. Although we
did not observe MCL-1 at any time point, BAK1 increased at
24 h suggesting that a population of cells were committed to
apoptosis. The temporal nature of this pathway highlights the
dynamic processes at play in the cisplatin-exposed population,
with an apparent early up-regulation of pro-survival mechanisms,
a later commitment to apoptosis, and detection of an emerging
resistant population at 48 h.
Given the dynamic nature of the HUWE1 regulatory circuit,

we explored apoptosis and viability pathways using IPA and
compared these findings to the empirically derived kinetics of
caspase activation and viability. At each time point, IPA sorted
significantly changed species in the data set into apoptosis-
inhibiting or -activating categories based on their up-regulation
or down-regulation and correlation with known functions
(Figure S6). The total number of apoptotic proteins increased
up to 24 h and declined by 48 h (Figure S6A). However, the ratio
of activating to inhibiting molecules remained stable at each time
point (52−54%), revealing that not all molecular changes are
pro-apoptotic (Figure S6B). We observed similar results when
IPA sorted species into viability-inhibiting or -activating
categories. The total number of proteins in the viability pathway
increased up to 24 h and declined by 48 h, but the ratio of anti- to
pro-survival species remained constant (52−57%; Figures S6C
and S6D). These trends suggest a heterogeneous population of
cells engaged in the dynamic processes of committing to
apoptosis or survival.
Consistent with IPA analysis, the measured cellular responses

revealed maximal caspase activation at 24 h (Figure 5B). Both
IPA analysis and measured cellular data indicate that caspase
activation ceased after 48 h. Indeed, the viability data in Figure 5B
show a small population of cells (circa 20%) persisted to 96 h,
suggesting that these cells represent a cisplatin-resistant
population. This prompted us to determine if our platform had
captured known and novel resistance mechanisms. Such a
capability would provide an early indication of drug resistance
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mechanisms, off-target effects, or both - critical knowledge that
could improve clinical trial outcomes.

Construction of Cisplatin Resistance Mechanisms

To validate our capture of resistance mechanisms, we seeded an
expanded resistance network (ERN) using the same approach as
for the ECN.We identified six proteins in KEGG known to play a
role in cisplatin resistance (Table S6). Their expansion resulted
in the 1236 species ERN. Our empirical data contained 667
(54%) of these, 589 of which changed significantly (Table S6).
Thus, 88% of the empirically detected species in the ERN
changed significantly (Figure S4). Figure 5C shows the ERN
overlaid on the DDN. The significant overlap of matching nodes
validates the presence of known resistance pathways in our data
set, consistent with a putatively resistant population at 96 h.
Thus, we utilized the ERN to generate testable molecular
hypotheses for previously reported resistance proteins.
ATP1A1-Mediated Resistance. ATP1A1, a seed for the

ERN and a significantly changed species within our empirical
data set, regulates cisplatin uptake into cells and modulates
resistance when its expression is suppressed.27 Interestingly,
ATP1A1 also regulates activity of Ncx1.28 Abrogation of
ATP1A1 function concomitantly attenuates Ncx1 activity,
which perturbs the calcium signaling pathways of the cell, a
phenomenon associated with evasion of apoptosis and
implicated in cancer.29−32 Figure 5D shows the ATP1A1 and
Ncx1 pathway. ATP1A1 peptides decreased significantly at 6 and
24 h, consistent with enhanced resistance over time. Ncx1
antisense RNA increased at 1 h, with a significant decrease in the
Ncx1 transcript measured at 6 h. At 24 h, both theNcx1 antisense
RNA and the Ncx1 transcript decreased. Reduction of Ncx1
expression and function at these early time points may provide
escape avenues by perturbing downstream calcium signaling
pathways and disrupting the apoptotic circuit. Recently,
disruption of intracellular calcium signaling, tolerance of ER
stress, and reduced expression of a subunit of calcium-regulated
big potassium channels were implicated in cisplatin resist-
ance.33,34 Therefore, a better understanding of the pathways that
disrupt calcium homeostasis and calcium-regulated apoptotic
events is critical to further elucidate cisplatin resistance. Data
derived from our multiomics data set for ATP1A1 and Ncx1
present a potential mechanism.
Estrogen-Induced Cisplatin Resistance. Recently, estro-

gen was shown to mediate resistance to cisplatin-induced
apoptosis in A549 cells.35 Although this study highlighted the
importance of caspase attenuation in the mechanism, it did not
elucidate a detailed molecular process. The estrogen hormones
estrone (E1) and estradiol (E2) are synthesized from androgens
by aromatase and can also be interconverted by HSD17βs.36

Additionally, estrogen receptors ESR1 and ESR2 cooperate in
promoting early activation of ERK.37 Examination of the
estrogen-related pathways in our data set revealed a transient
metabolomic response to cisplatin-induced cyototoxic stress
that ultimately leads to a protein-based resistance mechanism.
Figure 5E demonstrates a network of events derived de novo
from measured molecular changes that potentially lead to
resistance through mTOR activation. In cisplatin-treated cells,
estrogen species transiently increased: E1 increased at 1 h, and
both E1 and E2 increased at 6 h but decreased by 24 h. HSD17β7
increased at 1 h and decreased at 6 h. The transcription factor
C/EBPβ, which is activated by cyclic AMP (cAMP)-dependent
protein kinase A (PKA),38 regulates HSD17β dehydrogenase
family members.39 At 24 h, we observed an increase in PKA and

in HSD17β7 transcript. E2 binds to ESR1 and induces PKC-
mediated ERK phosphorylation and ERK-dependent mTOR
activation.40,41 We observed ERK phosphorylation at every time
point, with mTOR phosphorylation increased at 24 h.
Figure 5E also shows the interaction of STAT1 with ESR

leading to mTOR activation. STAT1 overexpression mediates
cisplatin resistance in ovarian cancer cell lines through an as yet
unexplained mechanism.42 Activated STAT1 induces the expres-
sion of ESR1, feeding into the above-described PKC-ERK
mediated activation of mTOR and leading to resistance. Taken
together, these data suggest that the STAT1 and estrogen-
mediated cisplatin resistance pathways are complementary and
that the key elements of the estrogen signaling pathway are
activated by 24 h, which may allow escape from cisplatin-induced
cytotoxicity by an unique ERK/mTOR axis.

Mining Novel Mechanisms of Cisplatin Resistance

Although the ERN guided identification of associated resistance
molecules, pathways outside of the ERN provide the opportunity
to discover resistance mechanisms de novo. To explore this, we
analyzed the top 20 most dynamically regulated proteins at each
time point for potential contribution tomechanisms of resistance
and sorted the data based on known links to proliferative capacity
or apoptosis.

STIP1 cascade

Figure 5F illustrates a network of events culminating in potential
apoptotic escape mechanisms derived de novo from analysis of
measured events in the multiomics data set. Based on a dynamic
change at 1 h, we identified stress-inducible protein 1 (STIP1) as
a putative resistance marker. The DDN associates STIP1 with
the prion protein PRNP,43 which links to the apoptotic activator
Bax. Additionally, STIP1 and PRNP associate with cAMP, and
activation of the ERK1/2 pathway requires PRNP and STIP1
endocytosis.44 STIP1 binds to PRNP to drive cell proliferation
via activation of theMEK/ERK and PI3K pathways. Collectively,
this implicates the PI3K, ERK1/2, and cAMP transduction path-
ways as downstreammodulators of the STIP1-PRNP interaction.
Unification of the synergistic activities of PI3K, ERK1/2, and

PKA culminating in BAD phosphorylation presents a novel
mechanism elucidated de novo from our empirical data. The
right side of Figure 5F illustrates the ERK-mediated signaling
events. As previously discussed, increased levels of activated ERK
1/2 were detected at every time point and likely contribute to
apoptosis. However, activated ERK can also contribute to
antiapoptotic pathways via phosphorylation of BAD, emphasiz-
ing its pleiotropic effects. The left side of Figure 5F shows PKA-
mediated signaling events. Transcription of catalytic subunits of
PKA changed dynamically, with PRKACA up-regulated and
PRKACB down-regulated at 24 h. Functionally, PKA is anchored
by binding the AKAP family of proteins, and in our data set,
AKAP13 levels as well as phosphorylation states were
dynamically regulated at every time point with overall levels up
significantly by 48 h. The center of Figure 5F displays PI3K-
mediated signaling events.
Within this pathway, we detected a number of significant

changes at 24−48 h that were consistent with proliferation in a
population of cells. The downstream targets of these pathways,
mTOR and BAD, also changed significantly at later time points.
Phosphorylated mTOR at pS1166 increased at 24 h. This
phosphorylation event was previously identified in response to
the pro-proliferative IGF stimulus,45 consistent with a role in
antiapoptotic signaling. Additionally, we detected increased
BAD phosphorylation at residues that prevent its binding to
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Bcl-xL/Bcl-2:46,47 pSer75 (mediated by ERK1/2) at 48 h and
pSer118 (mediated by PKA) at 24 h and at 48 h.
Further analysis of the species in these pathways provides

insight into cancer development and drug resistance. Over-
expression of PRNP in colorectal cancer cells enhances pro-
liferation and attenuates doxorubicin-induced apoptosis.48

Additionally, PRNP up-regulates the transcriptional activity of
β-catenin/TCF4, which inhibits apoptosis upon cisplatin
exposure.49,50 Increased levels of cAMP also confer protection
against cisplatin-induced DNA damage and apoptosis, likely
through PKA activity.51 STIP1 is a biomarker for many car-
cinomas, and it is most commonly associated with ovarian
cancers. Cell surface interaction of STIP1 and PRNP was first
identified as a neuroprotective event that rescued neurons
from apoptosis.52 Subsequently, it was determined that neuro-
protection is mediated by increasing protein synthesis via the
PI3K/mTOR signaling axis.53

In summary, PI3K, ERK1/2, and cAMP via PKA converge on
pro-apoptotic BAD and modulate its phosphorylation. Phos-
phorylated BAD does not bind and displace Bcl-xL or Bcl-2 from
Bak/Bax, preventing Bak/Bax-mediated apoptosis. PI3K and
PKA also stimulate mTOR, resulting in stabilization of MCL-1
and further inhibition of the apoptotic pathway by sequestration
of Bak.54,55 As a whole, the STIP1 cascade presented in Figure 5F
ultimately targets mTOR and BAD, disrupting both Bak and Bax
and protecting the cell from apoptosis through inhibition of pore
formation in the mitochondrial outer membrane.

Critical Insight

The pathways identified de novo by our 30 day platform inte-
grate with the canonical cisplatin-induced apoptotic pathway

generated from decades of research (Figure 6), suggesting that
these findings generate valuable testable hypotheses. These
analyses highlight only a few pathways represented in the data
set, and further analysis may yield additional hypotheses. This
integrated molecular view exemplifies the power of this 30 day
multiomics systems biology approach to global MOA analysis for
exogenous compounds.
By using network analysis, this platform captures pathways

without directly measuring all pathway members. For example,
although MCL-1 was not detected, the MCL-1 pathway was
identified as important in apoptosis. The MCL-1 pathway is
clinically relevant in resistance to Navitoclax, an experimental
Bcl2-family inhibitor that does not target MCL-1. Known mech-
anisms of resistance to Navitoclax directly depend on MCL-1
levels in cells.56 The current study suggests that systems level
analysis of chemotherapeutics has the potential to identify resis-
tance mechanisms and novel pathways controlling apoptosis.

Concluding Remarks and Perspective

The platform described herein utilizes multiomics technologies
for large-scale measurement of molecular events to generate a
comprehensive picture of the cellular response to an exogenous
compound. Using cisplatin, we demonstrate that this platform
can identify primary MOA and pathways important for side
effects and resistance. This platform provides several key
developments in MOA determination. First, a 3 day screening
platform determines relevant exposure and dose using MS to
determine the maximal molecular changes. Second, comprehen-
sive molecular data are collected within 2−3 weeks, including
PTMs and metabolomics. These data can generate a tunable
output of the final network or mechanism based on statistical

Figure 6. Integrated molecular response to cisplatin perturbation. The cisplatin canonical MOA (green) determined by multiple groups over a 20 year
span integrates with the empirically elucidated pathways: CUL4B/HUWE1 pathway (pink); ATP1A1 pathway (orange); STIP1 cascade (purple); and
estrogen resistance pathway (teal). Graying represents pathways only from the canonical. The comprehensive mechanism obtained in less than 30 days
captures possible resistance.
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confidence in empirical measurements. Finally, this platform
provides high-throughput, comprehensive MOA assessment.
Previous studies successfully identified compound MOA from
published data sets of transcriptional changes in response to
compounds.57,58 Our platform collects post-transcriptional and
post-translational data to capture MOA beyond gene regulation.
This technology platform determined the cisplatin MOA

beyond previous understanding and annotated interactions,
and it provides a framework with which to harness future
technological advancements for MOA analysis. However,
opportunities exist to enhance these capabilities. Parallel analysis
of multiple cell lines will allow MOA determination for various
tissue or cell types and provide potential for personalized
medicine. Addition of subcellular fractionation and imaging
approaches will facilitate detection of mechanistically important
translocation events (e.g., Bax, Cyt c). Integration of functional
and causal information with the omics data will also provide great
value to MOA analysis. Lastly, expansion of database annotation
and the tools for data analysis will advance exploration of these
multiomic data sets. As technology advances, our strategy will
incorporate these enhancements, and further improvements will
facilitate data acquisition over hundreds of time points, allowing
increased resolution of the empirical MOA and permitting
statistical tests of causality.
Apart from these enhancements, our analysis of cisplatin

demonstrates that data acquired with this platform provide
nearly complete confirmation of the primary MOA for cisplatin
cytotoxicity. Furthermore, the data contribute to a more com-
plete description of the biological processes potentially involved
in cisplatin resistance. Although these findings require further
validation, the results underscore how an integrated omics
approach drives the generation of testable hypotheses that
directly relate to global cellular responses.
The applications for this platform are diverse and span various

fields of study. Assessment of pharmaceutical compounds can
rapidly uncover MOA and potential off-target effects as well as
improve the selection of drug candidates likely to succeed. This
platform could promote rapid MOA assessment for unknown
compounds, environmental pollutants, and infectious agents.
Additionally, this approach is relevant to the investigation
of MOA leading to disease mechanism and developmental
abnormalities. Although our present study was performed on
monolayer monocultures, it is applicable to suspension cells as
well as three-dimensional tissue constructs and organs-on-
chips.59 With this range of applications, this platform is an
important resource for characterizing global profiles of the
biological processes resulting from cellular perturbations.
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