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Abstract— In this paper, we propose a novel approach to
video captioning based on adversarial learning and long short-
term memory (LSTM). With this solution concept, we aim at
compensating for the deficiencies of LSTM-based video caption-
ing methods that generally show potential to effectively handle
temporal nature of video data when generating captions but also
typically suffer from exponential error accumulation. Specifically,
we adopt a standard generative adversarial network (GAN)
architecture, characterized by an interplay of two competing
processes: a "generator" that generates textual sentences given
the visual content of a video and a "discriminator" that controls
the accuracy of the generated sentences. The discriminator
acts as an "adversary" toward the generator, and with its
controlling mechanism, it helps the generator to become more
accurate. For the generator module, we take an existing video
captioning concept using LSTM network. For the discriminator,
we propose a novel realization specifically tuned for the video
captioning problem and taking both the sentences and video
features as input. This leads to our proposed LSTM–GAN system
architecture, for which we show experimentally to significantly
outperform the existing methods on standard public datasets.

Index Terms— Video captioning, adversarial training, LSTM.

I. INTRODUCTION

V IDEO captioning is referred to as the problem of gen-
erating a textual description for a given video content.

The interdisciplinary nature of this problem opens vast new
possibilities for interacting with video collections and there
has been increased research effort on this topic observable over
the past years [1]–[5]. This interdisciplinary nature, however,
also poses significant research challenges at the intersection
between the fields of natural language processing and com-
puter vision. Typically, these challenges have been pursued as
extrapolations of the solutions proposed earlier for image cap-
tioning [6]–[8]. These solutions perform classification in the
visual domain with the goal to generate salient regions, linking
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these regions with some predefined textual attributes and then
synthesize a sentence by completing a predefined generative
model using the recognized attribute [1], [3], [9]–[12].

Different from static pictures [13], [14], the content of
a video is significantly more rich and unlikely to be cap-
tured well by simply extrapolating the methods developed
for images. This richness comes mainly through the temporal
aspect of video content. And comparing to the retrieval and
annotation technology [15]–[18], the captioning task relies
more on narrowing the semantic gap between the visual and
textual information. In order to take this aspect into account,
Yao et al. [1] proposed a 3D Convolutional Neural Network
(3D-CNN) structure, applying convolution not only spatially,
but also temporally. However, 3D-CNN can only capture the
information over a short period of time due to the limit of the
convolution kernel size. Venugopalan et al. [3] implemented
a Long-Short Term Memory (LSTM) network, a variant of
a Recurrent Neural Network (RNNs), to model the global
temporal structure in an entire video snippet. However, this
method was shown to accumulate the grammatical errors
exponentially and to result in decreasing association among
the generated words with the increasing video length. Further-
more, the traditional caption generative models usually select
words with maximum probability, which typically results in a
rather monotonous set of generated sentences, like for instance
around the words “playing” and “doing”, both appearing rather
often in the common training data sets.

In order to eliminate this deficiency of LSTM, in this paper,
we propose a novel approach that expands the LSTM con-
cept towards an adversarial learning concept. As illustrated
in Fig. 1, this expansion involves adding a “discriminator”
module to the system architecture, which acts as an adversary
with respect to the sentence generator. While the generator
has the objective to make the generated sentences as close
to its existing generative model as possible, the discrimina-
tor has the objective to ensure that generated sentences are
reasonable and natural for people better understanding. This
interplay of two concurring processes has recently been intro-
duced as adversarial learning, with a Generative Adversarial
Network (GAN) [19]–[21] as a basic realization. Conse-
quently, we refer to our proposed approach as LSTM-GAN.
We will demonstrate that this expansion of the LSTM concept
will enable the video captioning process to improve the accu-
racy and diversity of generated captions and their robustness
to increasing video length.

Applying a GAN to the context of video caption-
ing is, however, not straightforward. A GAN is designed
for real-valued, but continuous data and may have difficulty
handling sequences of discrete words or tokens as mentioned
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Fig. 1. An illustration of the modular structure of the proposed video
captioning model characterizerd by an interplay of the generator G that
generates text sentences and the discriminator D (adversary) that verifies the
sentences. The optimization goal is that G deceives D, by generating sentences
that are not distinguishable from reference sentences.

in [22]. The reason lies in that the gradient of the loss from
the discriminator based on the output of the generator is used
to move the generator to slightly change the way the sentences
are generated. However, if the output of the generator consists
of discrete tokens, the slight change guidance by the discrim-
inator may not work because there may be no token in the
used dictionary to signal the desired level of change towards
the generator [20].

In order to overcome this problem, we propose a embedding
layer which can transform the discrete outputs into a consec-
utive representation [23]. Besides that, since the outputs of
our generative model are a sequence, ordinary discriminative
model, consisted of several fully connected layers, has a poor
ability for classifying the sequence-sentence. For solving this
problem, we propose a new realization of the discriminative
model. Specifically, we replace the fully connected layer,
as originally proposed in [19], with a novel convolutional
structure, previously proposed by Zhang et al. [25], Kim [26],
and Collobert et al. [27]. Our discriminative model consists
of convolutional layer, max-pooling layer and fully connected
layer. The convolutional layer will produce local features
and retain the local coherence around each word of the
sequence-sentence. After max-pooling layer, the most impor-
tant information of the sentence will be effectively extracted.
Those informations are denoted by a fixed length of vector.
Additionally, we also introduce a multimodal input for the
discriminative model. We sent not only the sentence to the
discriminative module but also the video feature generated
from our first LSTM layer (Encoder) of generative module.
The novel methods for incorporating the original inputs with
the video feature will help to generate more relevant discrip-
tions about the input video. This method has been confirmed
to be effective by our experiment.

To our knowledge, we are the first to propose the method
for generating video description via advesarial learning. The
remainder of this paper is organized as follows. In Section II,
we review the existing work related to the problem of video
captioning and position our proposed solution with respect
to it. Section III presents our proposed LSTM-GAN video
captioning model. The model is evaluated experimentally
in Section IV where we compare our approach with the
relevant existing methods on four public datasets: MSVD,
MSR-VTT, M-VAD and MSR-VTT. This comparison revealed
that our approach significantly outperforms the existing

methods on these datasets, which justifies our methodological
and algorithmic design choices. Section V concludes the paper
by a discussion of the obtained video captioning performance
and pointers to future work on this topic.

II. RELATED WORK

A. Video Captioning

Generating a textual description for a given video con-
tent, also called video captioning, has been showing increas-
ingly strong potential in computer vision. The primary
challenges of this research lie in two aspects: adequately
extracting the information from the video sequences and
generating grammar-correct sentences easy for the human
to understand. The early research for generating video
descriptions mainly focused on extracting useful information
e.g., object, attribute, and preposition, from given video con-
tent. Krishnamoorthy et al. [27] aim at generating more precise
words to describe the objects in the video. Their method
includes a content planning stage and a surface realization
stage. In their work, object detection and activity recognition
modular are used to extract the related words about the video
and then it applies a template-based approach to generate sen-
tences. Reference [28] is another work about using template-
based approach. Different from [27], the biggest contribution
of this paper is building a hierarchical semantic model to
classify different words. Besides, this model can even detect
unseen verbs with the help of knowledge mining from web-
scale textual corpora. No doubt that the performances of those
methods are limited by the accuracy of the detection of the
word and the robustness of the template. In order to overcome
the problem abovementioned, some novel approaches based on
RNNs [28]–[35] are proposed with the development of deep
learning. Different from the template-based approach in [27],
Pan et al. [10] take advantage of the CNN architecture to get
the representation of every frame and then applies an average
pooling operation to those frame presentations. For generating
video description of the inputted video, they take advantage
of the RNNs architecture to produce sequence output with an
end-to-end training pattern. What’s more, it is noteworthy that
they innovatively embed the sentence and the video content
into a feature with a uniform dimension. And by measuring
the feature diversity of the embedded sentences and input
videos, they get the value of relevance loss between these
two features. By minimizing this loss, the semantic gap will
become narrowed. With the popularization of Convolutional
Neural Network for an impressive performance in feature
extraction, generating the description for a video has made
great breakthroughs. Pan et al. [10] used both 2D CNN and
3D CNN to process video clips and average pooling operation
to process over all the clips to generate a single Dv -dimension
vector which will be used to generate descriptions for video.
But all the abovementioned methods could not work well for a
short video clip containing multi-event. Yu et al. [36] proposed
an attention model which use an attention mechanism to select
the most important video features and has yielded impressive
performance in multi-event videos.

The combination of CNN and LSTM architecture has
become the mainstream form for video captioning research
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Fig. 2. We propose LSTM-GAN incorporating a joint LSTMs with adversarial learning. Our model consists of generative model and discriminative model.
The generative model tries to generate a sentence for the video as accurately as possible, but the discriminative model tries to distinguish whether the input
sentences is from reference sentence or generated sentences. The orange input sentences for discriminative model represent the reference sentences, otherwise
badly constructed sentences or uncorrelated sentences generated by generative model. MP in the figure denotes the max-pooling.

which also demonstrated a excellent performance. Both fea-
ture extraction and words generation methods are important
for the quality of description for the input video. Although
the LSTM scheme has proved promising performance for
handling the temporal nature of video data in the temporal
process, the LSTM scheme critical deficiency is shown to
accumulate the grammatical errors exponentially and may
result in decreasing association among the generated words
with the increasing video length. Based on the problem,
we consider if there is a structure that can discriminate whether
the generated descriptions are reasonable and relevant to the
video. Inspired by the generative adversarial network firstly
for generating an image, we proposed our model LSTM-GAN
incorporating a joint LSTMs with adversarial learning. This
model consists of a generative model and discriminative
model. The generative model is used for encoding the video
clips and generates sentences, while the discriminative model
is trying to distinguish whether the input sentences are from
reference sentence or generated sentences (as in Fig. 2).

B. GAN in Natural Language Processing

Generative Adversarial Networks (GAN), introduced by
Goodfellow et al. [19], has achieved promising success in
generating realistic synthetic real-valued data. On account of
impressive performance, GAN has been widely applicated in

computer vision (CV) and natural language processing (NLP).
Original Generative Adversarial Networks consist of genera-
tive model and discriminative model. The generative model
tries to produce data, which is to mix the spurious with
the genuine. While the discriminative model learns to deter-
mine whether the data is from genuine distribution or not.
Typical applications can be found in, for instance, image
synthesis [22] where discrete data with normal distribution
are used to generate realistic images. Besides showing the
excellent performances in the image processing, GAN struc-
tures also work well in natural language processing recently.
Li et al. [37] proposed a dialog generation method using
Adversarial reinforce model. They adopted policy gradient
training method to encourage the generator to generate utter-
ances that are indistinguishable from human-generated dialogs.
Later, Press et al. [38] presented a text generating model with
RNNs for both generator and discriminator. Different from
policy gradient training in [37], this work applied curriculum
learning, as a result, it vastly improves the quality of generated
sequences. For captioning research, Dai et al. [39] firstly
presented an image captioning method, which can generate
sentences much more closely to what human saying than
original caption models.

In summary, our work presents the first effort to incorporate
the GAN with the video caption model. Our model can
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overcome the aforementioned problem and the performance of
our model is also excellent through our experimental results.

III. LSTM-GAN FOR VIDEO CAPTIONING

Fig. 2 depicts our LSTM-GAN architecture which consists
of a generator G, and a discriminator D. The generator G uses
an encoder-decoder architecture to generate descriptions for
relevant videos under the umbrella of incorporating a CNN
architecture as the discriminator D which is for evaluating
whether the generated sentences reasonable or not. Specifi-
cally, we begin this section by introducing the fundamental
Long Short-Term Memory Networks (LSTM) and Generative
Adversarial Network (GAN) model briefly. In the remainder of
the module, we elaborate on the algorithm’s theory and design
choices underlying the proposed framework in more detail.

A. Long Short-Term Memory Networks

Traditional RNNs [40], [41] is designed to learn complex
temporal dynamics by mapping the input sequences to a
sequence of hidden states and then generating outputs via the
following recurrence equations as Eq. 1:

ht = ψ(Wh xt + Uhht−1 + bh),

ot = ψ(Uhht + bo), (1)

where the Wh , Uh denote the weight matrices and b denotes
the bias, ψ is an element-wise non-linear function, such as
RELU or hyperbolic tangent. xt is the input, ht ∈ R

M is
the hidden state with M hidden units, ot is the output at
time t. The traditional RNNs have proven successful in text
generation and speech recognition. But it is difficult to handle
well about long-range temporal dependencies videos because
of the exploding and vanishing gradient problem. The LSTM
network proposed by Hochreiter and Schmidhuber [41] has
demonstrated to be able to effectively prevent the gradient van-
ishing and explosion problems [41] during back-propagation
through time (BPTT) [42]. This is because it incorporates
memory units, which facilitate the network to learn long-range
temporal dependencies, to forget previously hidden states and
to update them given new information. More specifically,
as illustrated in Fig. 3 and implemented in our framework,
LSTM incorporates several control gates and a memory cell.
Let xt , ct and ht represent the input, cell memory and hidden
control states at each time t respectively. Given a sequence
of inputs (x1, . . . , xT ), the LSTM will compute the hidden
control sequence (h1, . . . , hT ) and the cell memory sequence
(c1, . . . , cT ). Formally, this process can be described by the
following set of equations:

it = σ(Wi [ht−1, xt ] + bi ),

ft = σ(W f [ht−1, xt ] + b f ),

ot = σ(Wo[ht−1, xt ] + bo),

gt = ϕ(Wg[ht−1, xt ] + bg),

ct = ft � ct−1 + it � gt ,

ht = ot � tanh(ct ). (2)

Fig. 3. A diagram of a basic LSTM memory cell used in our paper, where
the input gate, forget gate and output gate represents by it , gt , ot respectively.

Here, � stands for element-wise product and W j -like matrices
are the LSTM weight parameters. Additionally, σ and ϕ denote
the sigmoid and hyperbolic non-linear functions respectively.

B. Generative Adversarial Networks

In a nutshell, a GAN-based learning approach [19] involves
simultaneous training of two network models, generator G and
discriminator D. In the field of image super-resolution, image
generation, image to image translation, Neuro-Linguistic Pro-
gramming, GAN has made great contributions [43]–[46].
Through the interplay of the two learning processes, the G
and D models facilitate each other interactively to individually
reach their goals. The generator G tries to generate real data
given a noize z∼Pnoise(z), while the discriminator D ∈ [0, 1]
aims at classifing the real data x∼pdata(x) and the fake data
G(z)∼PG (z) generated from G. More specifically, the gen-
erator G also learns to generate samples from the generator
distribution PG by transforming a noise data z∼Pnoise(z) into
a sample Gz (z will be replaced with input video to generate
corresponding descriptions in our later experiments). Similarly,
the goal of D is to distinguish between samples from the true
data distribution Pdata and the generator’s distribution PG as
accurate as possible. After a period of competition between
the two processes, the two network models will achieve some
degree of balance with the optimal discriminator being D(x) =
Pdata(x)/(Pdata(x)+PG(z)) and with the generator being able
to generate data which are difficult for the discriminator D to
distinguish whether from training data or synthetic data. This
“game” is steered towards convergence by the optimization
criteria expressed through loss functions, designed for both
G and D. We define the following loss functions LG and L D :

LG = − 1

m

m∑

i=1

log(1 − D(G(z(i)))),

LD = − 1

m

m∑

i=1

[log(D(xi ))+ (log(1 − D(G(z(i)))))], (3)
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where {z(1), . . . , z(m)} are a mini-batch of m noise samples by
random initialization and {x (1), . . . , x (m)} are a mini-batch of
m samples from true data distribution pdata(x).

C. Problem Definition

Consider a video V including a sequence of n sample frames
where V = {v1, v2, . . . , vn}, with associated caption S where
S = {w1, w2, . . . , wm} consisting of m words. Let vi ∈ R

Dv

and w j ∈ R
Dw denote the Dv -dimensional visual presentations

of the i-th frame in video V and the Dw-dimensional textual
features of the j-th word in sentence S, respectively. In our
work, our goal is to maximize the conditional probability of
an output sequence (w1, . . . , wm) given an input sequence
(v1, . . . , vn). The conditional probabilities over the sentences
can be defined as follows:

p(s|v) = p(w1, . . . , wm |v1, . . . , vn). (4)

This problem is similar to the problem of machine transla-
tion in natural language processing, where a sequence of words
serves as input into a generative model that outputs a sequence
of words as the translation result. What is different from
aforementioned is that, in our work, we replace the textual
input by our video frames and look forward to a sequence of
caption as output. What is more, we not only expect to get the
relevant description of the input videos but also to make the
sentences natural and reasonable for people to understand.

D. Proposed Solution

For the sake of overcoming the above-mentioned problem,
in this section, we devise our model to generate video descrip-
tion under the umbrella of an adversarial system. Specifically,
our overall framework consists of a generative model G and
discriminative model D. The generative model G, similar
to sequence-to-sequence models [47], defines the policy that
generates a sequence of the relevant description given a short
video. The discriminative model D is a binary classifier that
takes a sequence of sentences {s, y} as input and outputs
a label D(S) ∈ [0, 1] indicating whether the sentence is
natural, reasonable and grammatical correct. In particular,
several variants of our designed model are utilized to compare
with other methods. We now elaborate on the implementation
of our designed architecture.

1) Objective Function: In order to achieve faster conver-
gence of the objective, we firstly pre-training the genera-
tive model G and the discriminative model D, respectively.
For G, similar to sequence-to-sequence models [47], our
goal is to estimate the conditional probability p(S|V ) where
V = (v1, v2, . . . , vt ) is an input sequence consisting of a sam-
ple of frames and S = (w1, w2, . . . , wt1) is the corresponding
output sequence as a descriptive texture for the input video.
t and t1 represents the length of the video and the input
sentence respectively. As sequence-to-sequence models [3],
we conclude the follow objective function:

p(S|V ) = p(w1, w2, . . . , wt1 |v1, v2, . . . , vt )

=
t1∏

i=1

p(wi |V , w1, . . . , wi−1). (5)

From Equation (5) for our model with θ and output
sequence S = (w1, w2, . . . , wt1), we could get the optimal
θ with the follow formula:

θ∗ = arg max
θ

t∑

i=1

log p(wt |hn+t−1, w1, . . . , wt−1; θ). (6)

where hn+t−1 denotes the hidden state at time step n + t − 1
which will be introduced detaily in the next section. For D, our
primary purpose is to train a classifier which can be used for
sentence encoding and mapping the input sentence to an output
D(S) ∈ [0, 1] representing the probability of S is from the
ground-truth captions, rather than from adversarial generator.
The objective function of D for pre-training can be formalized
into a cross-entropy loss as follow:

LD(Y , D(S)) = − 1

m

m∑

i=1

[(Yi ) log(D(Si ))

+ (1 − (Yi )(log(1 − D(Si )))]. (7)

where m denote the number of examples in a batch,
Yi and D(Si )) represent the real label and predicted value
of discriminator respectively.

Hence, when we train our overall framework called
LSTM-GAN, the whole training procedure for the
LSTM-GAN is same as in Fig. 2. We aim at minimizing the
log likelihood formulated as follows:

minimizing : L(S|V ) = Es∼P(s),v∼P(v)[log P(S|V )]
+ Es∼P(s)[log(1 − D(G(S)))]. (8)

2) Generative Model: As mentioned before, We use a joint
recurrent neural networks, also called encoder-decoder LSTM
similar to sequence-to-sequence models [47], as the generative
model. The encoder architecture is used to encode the video
features into a fixed dimension vector. While the decoder
architecture decodes the vector into natural sentences. To begin
with, we adopt VGG16 [48] as the CNN architecture to map
the sequence frames V = (v1, v2, . . . , vt ) into a feature matrix
Wv ∈ R

Dd×Dt = (wD1, . . . , wDt ). Dd and Dt denote the
dimensions of a feature vector and the number of frames,
respectively. Particularly, the encoder LSTM net, referred
to as “encoder”, maps the input embedding presentations
wD1, . . . , wDt , namely features matrix, into a sequence of
hidden states h1, h2, . . . , ht mentioned in previous section by
using the update function as eq. (2) recursively.

According to the above description, we make it clear that the
last status ht as the presentations of the whole video, generated
from “encoder”, will be sent to the decoder LSTM which is
referred to as “decoder”. Specifically, given the ht (in our
Fig. (2) marked as ht−1 for straightforward) and a correspond-
ing sentence S also referred to textual description in Fig. 1,
encoded with one-hot vectors (1-of-N encoding, where N is the
size of the vocabulary), our decoder LSTM is conditioned step
by step on the t th word and on the previous ht−1, and is trained
to produce the next word of the description for input video.
We commit ourselves to minimize objective function as eq. (5)
to generate an excellent performance generative model. The
probability of those words is modeled via a softmax function
applied on the output of the decoder. As we know, those
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words should be in an one-hot format which not only are high
dimensionality but also are discrete and discontinuous. Passing
those words with a one-hot format to the D (Discriminator)
will make it difficult to pass the gradient update. Although
score function based algorithms, such as REINFORCE [49]
obtains unbiased gradient estimation for discrete variables by
using Monte Carlo estimation. However, the variance of the
gradient estimation could be large [50]. In order to cope with
this problem, we adopt a soft-argmax function similar to the
one proposed in [24]:

wt−1 = εwe (softmax �V ht−1 � L� ,We). (9)

Here, We ∈ R
Z×C is a word embedding matrix (to be learned)

which is similar to the GloVe [51] and transforms the one-hot
encoding of words to a dense lower dimensional embedding,
C is the dimension of the embedded word (1024 in our
experiments) and Z is the size of vocabulary in our training
data. V is the set of parameters and encodes the ht−1 to a
vector. wt−1 represents the generated word of LSTM at t th

step. L is a big enough integer which would make the vector
of softmax �V ht−1 � L� closes to a one-hot form. Each value
of it is constrained to be either approximately 0 or 1 which
can help the wt−1 more close to We[t − 1] (suppose the value
at the t − 1 position is the largest of V ht−1) and also help
the word embedding to be more smooth and speed up the loss
function to convergence. ε denotes a function that maps the
decoder output space to a word space.

3) Discriminative Model: In the discriminator D, our pri-
mary purpose is to maximize the probability of assigning
the correct label to both training sentences and generated
sentences from G. As well konwn, deep discriminative models
such as deep neural network (DNN) [52], convolutional neural
network (CNN) [25] and recurrent convolutional neural net-
work (RCNN) [53] have shown an impressive performance
in complicated sequence classification tasks. In our paper,
referring to [54] which has recently been shown of great
performance in text classification using CNN, we choose the
CNN as our discriminator.

As illustrated in Fig. 2, our discriminator consists of a
convolution layer and a max-pooling operation, which can
capture the most useful local features produced by the con-
volutional layers [25], [26], [54], over the entire sentence for
each feature map. The input sentences to our discriminator
contain both the ground-truth sentences as the true label (also
called textual description in Fig. 1) and generated sentences
generated by our generator as the false label. For convenience,
we fix the length of input sentences by adopting the length
of longest sentence in a mini-batch (padded 0 when nec-
essary). A sentence of length T is represented as a matrix
Xd ∈ R

C×T = (xd1, . . . , xdT ) by concatenating the word
embeddings as columns, where T is the length of sentence
and C is the dimension of a word. Then a kernel Wc ∈ R

C×l

applies a convolution operation to a window size of T words to
produce a feature map as one of the representations of the input
sentence. The specific process like Fig. 4 could be formulated
as follow:

Out = f (X ∗ Wc + b) ∈ R
T −l+1. (10)

Fig. 4. The convolution process of input sentence in discriminative model.

where f(·) is a nonlinear activation function (in our experi-
ments, we use the RELU), b ∈ R

T −l+1 is the bias vector and *
represents the convolution operator. We then apply a max-over-
time pooling operation over the generated feature maps and
take its maximum value, �Out = max{Out1, . . . , OutT −l+1}.
As proved by Collobert et al. [26], the max-pooling oper-
ation can not only help capture the most important feature
by effectively filtering out less informative compositions of
words, but also guarantees that the extracted features are
independent of the length of the input sentence. To be more
persuasive, we conduct a contrast experiment using max-
pooling and mean-pooling respectively on discriminator. The
accuracy of classification with max-pooling improves over the
mean-pooling by 1.8% which proves that max-pooling have
a better capacity to classify the sentences. The dataset for
classification consists of the ground-truth of corresponding
video and the false sentences generated from the generator.

The above process describes how the features are extracted
from CNN for the sentences. Although the present CNN
architecture process a impressive performance in complicated
sequence classification tasks. But in this paper, we devote to
generate the sentence that not only needs to be natural and
reasonable for people to understand but also can describe the
input video precisely. In order to overcome this difficulty,
we adopt a linear connection method which could integrate
the video feature and pooled feature from different kernels
into a new representation. Given a video feature F ∈ R

H

extracted from the last hidden layer in encoder of generator,
where H is the dimension of hidden layer, we concatenate
it with its corresponding textual feature �Out ∈ R

H1, where
H 1 is the dimension of �Out . We will get a synthetic feature
vector Fnew ∈ R

H+H1. We then pass Fnew to a fully connected
softmax layer to get the probability D(Xd ) ∈ [0, 1], an output
close to 1 indicates a bigger probability that X is drawn from
the real data distribution or not.

Previous literature [19], [55] has discussed the difficulty in
training GAN model using the gradient-based method. In order
to reduce the instability in training process, we initialize
the LSTM parameters for generator and CNN parameters
for discriminator by pre-training a standard encoder-decoder
LSTM model and a standard CNN classification model afore-
mentioned.
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E. Attention Mechanism

Attention structure is a kind of extension of LSTM. It has
been widely used in many previous jobs [6], [56], [57]. Rather
than compress an entire image into a static representation,
attention allows for salient features to dynamically come to the
forefront as needed. For example, when a captioning model
uses “a child is running on the ground” to describe a picture,
the attention model will focus on the area where the child
located in the picture when the model generate the word
“child”, while generating the word “ground”, the model will
focus on the ground in the picture.

In our model with attention, we use attention structure in
Generative Model when generating words. At each time step
t, the attention model accept the video’s visual information,
which is a n by d matrix, where “n” is the number of the
visual vectors and “d” is the dimension of visual vector. In the
attention structure, each visual vector is multipeld by different
weight α, which reflecting the importance of the corresponding
visual vector in that time step. After that, the vectors are added
together and become the input of LSTM unit to generate a
new word. For example, when generating the word “boy”,
the weight for visual vectors with boy’s information will be
larger; While generating the word “soccer”, the weight for
visual vectors with soccer’s information will be larger. The
visual information mentioned above are the output of hidden
layers of Encoder illustrated in Fig. 2 in our paper. The weight
α at timestamp t is the result of softmax for the combination
for hidden state at timestamp t-1 and the visual information.
For a video with n visual contexts C = c1, c2, . . . , cn ,
we have:

et,i = h�
t−1Ucci

αt,i = ex p(et,i)∑n
j=1 ex p(et, j)

(11)

where h�
t−1 is the transposed vector of hidden state at the last

time stamp, Uc is the mapping matrix and ci is i th of visual
vector.

In our model with attention, we use attention mechanism
for generating the description of the input video. At each
time step t, the attention unit accepts video visual information
vectors ct , which are the output of hidden layers of Encoder
structure illustrated in Fig. 2 in our paper. After the encoding
stage, we get the (c1, . . . , cn) where n denotes the num of
frames of input video.(problem definition use the a n, need
to check) As eq.12, the vectors are multiplied by different
weights in attention unit and these weights can determine
which frame of input video st should be concerned with
current time step. After that, the yt and the last hidden status
represent the new input for the next LSTM unit to generate
the new word. The weights mentioned above are calculated
dynamically and the sum of those weights is 1.

yt =
n∑

i=1

αt,i ci ,

n∑

i=1

αt,i = 1. (12)

And eq. 2 with attention can be written as follows:

i y, t = σ(Wi [ht−1, xt , yt ] + bi ),

fy, t = σ(W f [ht−1, xt , yt ] + b f ),

oy, t = σ(Wo[ht−1, xt , yt ] + bo),

gy, t = ϕ(Wg[ht−1, xt , yt ] + bg), (13)

IV. EXPERIMENTAL VALIDATION

In this section we describe the experimental validation of
our proposed video captioning approach in detail.

A. Datasets

To verify the impressive performance of our video cap-
tioning by abversarial training approach, we evaluate and
compare our experimental results on four large public datasets,
including MSVD [9], MSR-VTT [58], M-VAD [59] and
MPII-MD [60].

1) MSVD: MSVD dataset consists of 1970 short video
snippets downloaded from YouTube. Each video snippet is
annotated with around 40 textual descriptions collected via
crowdsourcing. This results in 80839 sentences. In our exper-
iments, we split the data into train, validation and test sets,
containing 1200, 100 and 670 videos snippets, respectively.

2) MSR-VTT: MSR-VTT is a new large-scale benchmark
video captioning dataset specially suitable for the video-to-text
translation task. This dataset was created by using 257 popular
queries from a commercial video search engine and by collect-
ing 118 videos for each query. Each video is annotated with
about 20 natural sentences provided by 1,327 crowdsourcing
workers. In total, MSR-VTT provides 10K web video clips
(41.2 hours) and 200K clip-sentence pairs, covering various
semantic categories and diverse visual content.

3) M-VAD and MPII-MD: Montreal Video Annotation
Dataset (M-VAD) and MPII Movie Description Corpus
(MPII-MD), are two datasets which contain Holly-wood movie
snippets with descriptions sourced from script data and audio
description. M-VAD contains about 49000 DVD movie snip-
pets extracted from 92 DVD movies. And MPII-MD is com-
posed of about 68000 movie snippets from 94 movies. Each
snippet is equipped with a single sentence from movie scripts
and DVS.

B. Evaluation Metrics and Baselines

Similar to traditional machine translation, the generated
descriptive sentences for the correlative video also can be
measured by comparing a set of reference sentences. Recently,
some common metrics in machine translation also are used for
evaluating visual captioning, i.e., BLEU [61],ROUGEL [62]
and METEOR [63]. ROUGE-L simply to compile statistics
the maximum matches of generated sentences and reference
sentences. BLEU-N (N = 1, 2, 3, 4) usually measures the
precision of N-gram matches. METEOR is used to measure
semantic matcher which is more robust for more consistent
with human’s judgment. In our experiment, for convenient
comparison and robust results, we adopt BLEU and METEOR
to evaluate our proposed approach following [5] and [66].
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We used the evaluation script provided by Chen et al. [66]
to compute scores on our datasets.

To empirically verify the merit of our LSTM-GAN models,
we compared the following state-of-the-art methods on the
four mentioned datasets.

• LSTM [11]: LSTM, incorporating CNN with RNN frame-
work, attempts to directly translate from video pixels to natural
language. The video representation is generated by performing
mean pooling over the frame features across the entire video.

• S2TV [3]: S2VT adopts a stack of two LSTMs for the
encoding and decoding of the inputs respectively and word
presentations are learnt jointly in a parallel manner. Besides
that, S2VT incorporates both RGB and optical flow inputs.

• LSTM-E [10]: LSTM-E integrates 2D CNN and 3D CNN
to extract video feature representation, and simultaneously
explores the learning of LSTM and visual-semantic embedding
for video captioning.

• TA [1]: TA combines the frame representation from
GoogleNet and video clip representation based on a 3D CNN
trained on hand-crafted descriptors. whats more, the model
add a weighted attention mechanism to dynamically attend
to specific temporal regions of the video while generating
sentence.

C. Experimental Setup

For video representation, we extract the video features
from VGG16 network. We take the output of the 4096-way
fc7 layer from VGG16 pre-trained on the ImageNet
ILSVRC12 dataset [10] as the input representation. Before
training the overall model LSTM-GAN, we first separately
pre-train the G and D to speed up the convergence of the
overall model. For the pre-training process of G, we set the
video features as the input of encoder and the corresponding
reference sentences as the output of the decoder. For the
pre-training process of D, we first collect both the reference
sentences and generated sentences from the output of G as the
training data. Following [24], we used a confusion training
strategy. In detail, we randomly swap two or three words to
construct tweaked counterpart sentences as negative samples.
Referring to the generated sentences from pre-traing G which
generates repeated word frequently about some specific words,
we also select those sentences including aforementioned word
to copy twice or three times as the incorrect sentence for D.
Besides that, we employ filter windows (l of Wc) of sizes
3, 4, 5 with 300 feature maps each, hence each sentence is
represented as a 900-dimensional vector. For ensuring the
correlation between generated description and input video,
we concatenate the video representation to the sentence vector
as a multi-modal input [5]. In this way, we can make D have
the ability to distinguish the sentences with grammar mistakes
from correct ones.

For the training process, we adopt the Stochastic Gradient
Descent (SGD) optimization function, for which we set the
momentum attribute to 0.9. We first set the learning rate as
0.001. When the loss became unstable and started to fluctuate
repeatedly, we decrease the learning rate to 0.0001 for follow-
up training. In order to avoid over-fitting, we set the dropout

TABLE I

METEOR AND BLEU4 SCORES OF OUR LSTM-GAN AND OTHER
EXISTING METHODS ON MSVD DATASET. ALL VALUES

ARE REPORTED AS PERCENTAGE

Fig. 5. Log-likelihood convergence performance of LSTM-GAN and LSTM,
denoted by orange and blue curve respectively. And before 2300 of iterative
times, there is a pre-training process.

ratio to 0.5 for all full-connected layers. In addition, we also
added the weight decay and set the value to 0.01. The bath-
size in our experiment is 128. If the memory capacity is large
enough, we can also set a bigger value. All experiments were
implemented in Theano, using a NVIDIA GTX1080 GPU with
8GB memory. The model was trained for about one day.

D. Performance Comparison

1) Performance on MSVD Dataset: Table I summarizes
the obtained results and Fig. 5 shows the log-likelihood
of the convergence performance when training the network.
Overall, the results on two evaluation metrics consistently
demonstrate that our proposed LSTM-GAN achieves better
performance than all the existing techniques including non-
attention models (LSTM, S2VT, LSTM-E) and attention-
based approaches (TA). Comparing to the two the metrics
of METEOR and BLEU@4, we note that our LSTM-GAN
method with attention achieved the best score of 30.4 and
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Fig. 6. Examples to demostrate the effectiveness of our model to generate much richer lexicon. We display the caption from ground-truth, LSTM-GAN(our
model), and LSTM model respectively. We can observe that our model can describe the event of the video appropriately and generate more representative
words like “sauce, frying, loaf”.

42.9 respectively, outperforming all other methods. Table I
shows the experimental result compared to other methods.
By additionally incorporating attention mechanism to LSTM
model, LSTM-GAN leads to a performance boost, demon-
strating that adversarial training has the ability to improve the
performance of our caption model. Additionally, we notice
that our proposed LSTM-GAN (without attention) makes
also a relative improvement over S2VT (RGB) which has
a stack of two LSTMs layer one for encoding video and
the other for decoding. The result effectively indicates that
LSTM incorporating with adversarial training do benefit the
learning of video sentence generation. But we also notice
the method with the performance closest to this was S2VT
with optical flow feature. Good performance of S2VT (Optical
Flow) may be due to the usage of optical flow features, which
are important for depicting the motion information of object in
video. By incorporating with optical flow features, the model
may generate more relevant descriptions to the video. After
using attention mechanism to better handle the video features,
our LSTM-GAN model has both sentence correction capability
and feature processing capability. So that our LSTM-GAN
with attention model outperforms all other models, including
TA, which also incorporates with a weighted attention mecha-
nism. Fig. 6 provides some examples come from ground-truth,

TABLE II

METEOR SCORES OF OUR LSTM-GAN AND OTHER EXISTING

METHODS ON MSR-VTT DATASET. ALL VALUES

ARE REPORTED AS PERCENTAGE

LSTM-GAN (our model), and LSTM (without adversarial
training) respectively. we can notice that our LSTM-GAN
model can generate richer lexicon, which also is logically
correct and more relevant to the video.

2) Performance on MSR-VTT Dataset: Table II lists the
statistics and comparison in MSR-VTT datasets. We compare
our experimental results with the baseline SA-LSTM proposed
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TABLE III

METEOR SCORES OF OUR LSTM-GAN AND OTHER EXISTING
METHODS ON M-VAD AND MPII-MD DATASET. ALL VALUES

ARE REPORTED AS PERCENTAGE. (a) M-VAD
DATABESE. (b) MPII-MD DATABASE.

by Xu et al. [60] which achieve the attention mechanism
on MSR-VTT datasets. From the statistics in Table II, our
proposed approaches LSTM-GAN achieves 26.1 and 36.0 on
METEOR and B4 respectively which outperforms all other
methods based on different feature extraction approaches. But
we also notice that our LSTM-GAN model without attention
has the better score about METEOR but has poor performance
in B4 compared with the LSTM. The cause of the problem is
most likely our LSTM-GAN generates longer sentences which
cause the relatively lower score about B4. Actually, our model
with adversarial learning generates more words (in total about
2000 words for all test data) than the model without adversarial
learning. When added the attention mechanism which will help
to select most important and relevant information about the
video clips, our model outperforming all other methods. The
fact shows that, with the help of attention mechanism, our
LSTM-GAN can generate more reasonable descriptions for
videos although with a longer sequence output.

3) Performance on M-VAD and MPII-MD Dataset:
Table III lists the statistics and comparison in M-VAD and
MPII-MD datasets, which are both more challenging due
to the high diversity of visual and textual content. For
M-VAD dataset, we compare our experimental results with the
baseline TA [1] and LSTM [11]. From the first part of statistics
in Table III, our proposed approaches LSTM-GAN achieves
6.3 on METEOR, which improves over the TA by 2.0% and
over the LSTM by 0.2%. Comparing to our baseline model
(LSTM without GAN), our model improves over it from 5.9%
to 6.3%, proving the effectiveness of our proposed model.

For MPII-MD datasets, we achieve METEOR score
of 7.2%, outperforming all the existing methods including
SMT [60], LSTM [11], Visual-Labels [67] and S2VT [3].
Similar to the observations on MSVD, and MSR-VTT,
Our LSTM with GAN model exhibits better performance than
LSTM without for video captioning.

V. CONCLUSIONS

In this paper, we presented a first attempt to introduce the
concept of adversarial learning in solving the video capturing
problem. We believe that this concept has potential to sig-
nificantly improve the quality of the captions, which is due
to its ability to better control the capture generation process.
This control is in this case done by the discriminator module,
acting as an adversary to the caption generation module.
In addition to making the fundamental adversarial learning
framework based on the GAN paradigm suitable for dealing
with discrete generator outputs, with our novel realization of
the discriminator, we further improved the control mechanism.
This was achieved by making the input into the discriminator
multimodal. In this way, the sentences coming out of the
generator were not only validated for grammatical correctness,
but also for their relevance to the video content. The potential
of our LSTM-GAN framework to improve the quality and
diversity of captions was also demonstrated experimentally,
through an elaborate experimental study involving multiple
baseline approaches, four popular datasets, and two widely
used evaluation metrics. We believe that the performance
of LSTM-GAN could further be improved by relying on
Reinforcement Learning. Reinforcement Learning has proven
effective for tasks similar to video captioning, like for instance
dialog generation [20].
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