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Chapter 1

Introduction

In recent years Deep Learning has brought advances to a number of fields including computer
vision, machine translation, natural language processing, and generative models. With more
data and larger models, more complex tasks could be tackled. Especially in the field of
computer vision the introduction of deep convolutional models has been ground-breaking.
For instance, the winner of ImageNet challenge has increased the classification accuracy
from 84.7% in 2012 (AlexNet [5]) to 97.8% in 2017 (SENet [4]). However, with the increase
in size of these models, the computational requirements also grew. Nowadays the state-
of-the-art (SOTA) networks require training on high performance computing clusters with
GPUs. Even at inference time the computational and memory requirements are significant.
This often makes them unsuitable to be deployed to computational-constrained hardware like
mobile and embedded devices.

Currently, this is solved by sending the input from the smaller devices to a model running
on remote servers with powerful GPUs which then compute and send back the results. How-
ever, this approach has some downsides. It introduces latency which can be a problem for
real-time applications and it raises privacy and security concerns, since it could be personal
data that is being sent back and forth.

There are many different strategies to try and reduce the requirements to run these mod-
els, without reducing their performance. In this thesis we focus on one of these strategies
called Binary Neural Networks (BNNs). In a standard neural network, the weights and in-
puts are real-valued numbers, often represented by 32-bit floats. In a binary neural network
these numbers are replaced by 1-bit numbers that can only represent +1 and −1. The advan-
tages of BNNs are twofold. First the amount of memory needed to run the model is reduced
by a factor of 32. Secondly, the computationally expensive multiplication and addition opera-
tions needed in standard networks can be performed using more efficient XNOR and bitcount
operations when only using binary values. With modern 64-bit CPU’s we can perform 64 of
these binary operations for every floating-point operation, making linear and convolutional
layers 64 times faster. Since often the first and last layers of the network still use real-valued
weights and inputs and between the binary layers some real-valued computations happen,
like batch normalization for example, the total speedup of the network is slightly lower than
that, but can be up to 58 times, depending on the exact network architecture [9].

Clearly, all of these benefits, only matter if the binary networks still provide good results.
It would seem that using only a single bit instead of a 32-bit float would degrade performance
a lot since the network can store much less information. In practice this does not seem to
necessarily be a problem. The first network with both binary weights and activations already
achieved similar performance to the real-valued counterpart on small datasets like CIFAR-10
and MNIST [2]. However, on the much more difficult Imagenet classification problem, the
performance dropped 29.2 percent point initially. However, a few years later with improved
optimization strategies and specialized architectures now the performance drop on Imagenet
is only 1.9 percent point. This is a reasonable trade off for the benefits that binary neural
networks bring.
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While the performance of BNNs keeps improving with new methods, the understanding
of the optimization process is still lacking. Binary neural networks, by default, can not
be optimized in the same way as real-valued networks. This is because gradient descent
relies on making small updates to the weights to slowly improve over time. With binary
weights this is not possible because the only option is to keep the same value or switch to
the other value at each update. To solve this and make binary networks compatible with the
standard optimization techniques, the concept of latent weights was introduced. This means
that each binary weight has a corresponding real-valued latent weight. This latent weight is
then updated by gradient descent using the gradient from the binary weight and the binary
weight is always calculated by taking the sign of the latent weight. This simple trick makes it
possible to keep training BNNs using all of the same optimization algorithms that are used for
real-valued neural networks. The results show that this works well in practice, but the concept
of latent weights has a few issues with it. On the one hand it is convenient to keep the same
optimizers with the same hyperparameters as for real-valued neural networks, but it ignores
the fact that these hyperparameters can have different effects on binary weights compared
to real-valued weights. Specifically the hyperparameters that influence the magnitude of the
latent weights have substantially different behaviour. This happens because the magnitude of
the latent weight no longer influences the corresponding binary weight, only the sign of the
latent weight matters.

This brings us to the main research question of this thesis: What is the role of weight-
magnitude hyperparameters in training binary neural networks. The hyperparameters we
specifically focused on are learning rate, learning rate decay, weight decay and weight ini-
tialization. We show that in the context of BNN optimization, SGD with momentum and
weight decay can be interpreted using a gradient filtering perspective. This perspective of-
fers a simplified setting with less hyperparameters to tune in total, while also giving a better
explanation to these hyperparameters.

The rest of this thesis is structured as follows: chapter 2 contains a scientific article named
“Understanding weight-magnitude hyperparameters in training binary networks”, describing
the main research that has been performed. Followed by that is supplement material, that
gives background information on the different topics of the main article. These topics are
deep learning in general, specific background on what binary neural networks are and how
they work, and lastly a small introduction in the field of Digital signal processing, specifically
on Infinite Impulse Response filters.

Chapter 2

Scientific Article
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ABSTRACT

Binary Neural Networks (BNNs) are compact and efficient by using binary
weights instead of real-valued weights. Current BNNs use latent real-valued
weights during training, where several training hyper-parameters are inherited
from real-valued networks. The interpretation of several of these hyperparame-
ters is based on the magnitude of the real-valued weights. For BNNs, however,
the magnitude of binary weights is not meaningful, and thus it is unclear what
these hyperparameters actually do. One example is weight-decay, which aims
to keep the magnitude of real-valued weights small. Other examples are latent
weight initialization, the learning rate, and learning rate decay, which influence
the magnitude of the real-valued weights. The magnitude is interpretable for real-
valued weights, but loses its meaning for binary weights. In this paper we offer
a new interpretation of these magnitude-based hyperparameters based on higher-
order gradient filtering during network optimization. Our analysis makes it pos-
sible to understand how magnitude-based hyperparameters influence the training
of binary networks which allows for new optimization filters specifically designed
for binary neural networks that are independent of their real-valued interpretation.
Moreover, our improved understanding reduces the number of hyperparameters,
which in turn eases the hyperparameter tuning effort which may lead to better
hyperparameter values for improved accuracy.

1 INTRODUCTION
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Figure 1: The magnitude for real-valued
and binary weights. Changes in the
real-valued weights change their mag-
nitude. For binary weights, however,
the magnitude will never change. Thus,
magnitude-based hyperparameters need
reinterpretation for binary weights.

A learnable weight of a Binary Neural Network (BNN) is
a single bit: −1 or +1. These binary weights are compact
to store and allow efficient execution. With suitable hard-
ware, BNNs can be deployed on tiny devices with limited
computational capacity, enabling important applications
on, for example, edge devices.

Training BNNs using gradient decent is difficult be-
cause of the discrete binary values. Thus, BNNs
are often optimized with so called ‘latent’, real-valued
weights (De Putter & Corporaal, 2022), which allow con-
tinuous optimization. These latent real-valued weights
can then be discretised to −1 or +1 by, e.g., taking the
positive or negative sign of the real value. Using real-
valued latent weights is the current practice in training
BNNs (Kim et al., 2021b; Liu et al., 2020; Martinez et al.,
2020).

Hyperparameters are important for training BNNs with
latent real-valued weights. The latent weights link to sev-
eral essential hyperparameters, such as their initialization,
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learning rate, learning rate decay, and weight decay. These hyperparameters are important for BNNs,
as shown for example in the strong baseline of Martinez et al. (2020), which improves BNN accu-
racy by better tuning these hyperparameters. Another example is the binary ReActNet of Liu et al.
(2020), where better tuning the latent weight hyperparameters improves results as reported by Liu
et al. (2021a). Tuning the hyperparameters for the latent weights is essential for good accuracy in
BNNs.

In this paper we investigate the latent weight hyperparameters used in a BNN: initialization, learning
rate, learning rate decay, and weight decay. All these hyperparameters influence the magnitude of
the latent weights. Yet, in a BNN, the binary weights are −1 or +1, and as illustrated in Figure 1,
always have a constant magnitude and the magnitude-based hyperparameters lose their meaning. We
draw inspiration from the seminal work of Helwegen et al. (2019), who reinterpret latent weights
from an inertia perspective and state that latent weights do not exist. Thus, the magnitude of latent
weights also does not exist. Here, we investigate what latent weight-magnitude hyperparameters
mean for a BNN, how they relate to each other, and what justification they have. We make the
following contributions: 1. A gradient filtering perspective on latent weight hyperparameters; 2.
Through the filtering perspective offer a clear understanding of magnitude-based hyperparameters;
3. A justification of which magnitude-based hyperparameters to use; 4. Offer a simplified setting,
with fewer hyperparameters to tune, achieving similar accuracy as current, more complex methods.

2 RELATED WORK

Latent weights in BNNs. By tying each binary weight to a latent real-valued weight, continu-
ous optimization approaches can be used to optimize binary weights. Some methods minimize the
quantization error between a latent weight and its binary variant (Rastegari et al., 2016; Bulat &
Tzimiropoulos, 2019). Others focus on gradient approximation (Liu et al., 2018; Lee et al., 2021;
Zhang et al., 2022), or on reviving dead weights (Xu et al., 2021; Liu et al., 2021b) or a loss-aware
binarization (Hou et al., 2017; Kim et al., 2021a). These works directly apply traditional optimiza-
tion techniques inspired by real-valued network such as weight decay, learning rate and its decay,
and optimizers. The summary of De Putter & Corporaal (2022) gives a good overview of these
training techniques in BNNs. Recently, some papers (Liu et al., 2021a; Martinez et al., 2020; Hu
et al., 2022) noticed that the interpretation of these optimization techniques does not align with the
binary weights of a BNNs (Lin et al., 2017; 2020). Here, we aim to shed light on why, by explicitly
analyzing latent weight-magnitude hyperparameters in a BNN.

Optimization by gradient filtering. Gradient filtering is a common approach used to tackle the
noisy gradient updates caused by minibatch sampling. Seminal algorithms including Momen-
tum (Sutskever et al., 2013) and Adam (Kingma & Ba, 2015) which use a first order infinite impulse
response filter (IIR), i.e. exponential moving average (EMA) to smooth noisy gradients. In binary
network optimization, Bop (Helwegen et al., 2019) and its extension (Suarez-Ramirez et al., 2021)
introduce a threshold to compare with the smoothed gradient by EMA to determine whether to flip
a binary weight. In our paper, we build on second order gradient filtering techniques to reinterpret
the hyperparameters that influence the latent weight updates.

Latent weight magnitudes. Several techniques exploit the magnitude of the latent weights during
BNN optimization. Latent weights clipping is proposed in (Courbariaux et al., 2015) and followed
by its extensions (Alizadeh et al., 2018; Hubara et al., 2016) to clip the latent weights within a [−1, 1]
interval to prevent the magnitude of latent weights from growing too large. Gradient clipping (Cai
et al., 2017; Courbariaux et al., 2015; Qin et al., 2020) stops gradient flow if the magnitude of latent
weight is too large. Work on latent weight scaling (Chen et al., 2021; Qin et al., 2020) standard-
izes the latent weights to a pre-defined magnitude. Here, we analyze the role of the latent weight
magnitudes on BNN optimization.

Two step training. Excellent results are achieved by a two-step training strategy (Liu et al., 2021a;
2020) that in the first step trains the network from scratch using only binarizing activations with
weight decay, and then in the second step they fine-tune by training without weight decay. Our
method reinterprets the meaning of the magnitude based weight decay hyperparameter in optimizing
BNNs from a filtering perspective, and we can achieve on similar performance as two step training
with a simpler setting, using just a single step.
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3 A GRADIENT FILTERING ANALYSIS OF LATENT WEIGHT-MAGNITUDE
HYPERPARAMETERS

In this section we will show our derivation of our filtering based BNN optimizer. We start the
analysis in a BNN with latent weights, as they have shown great results in practice, but convert it
to an equivalent latent-weight free setting, as in Helwegen et al. (2019). To do this we need to start
in a magnitude invariant setting, which means that no gradient-clipping, latent-weight clipping or
scaling based on the channel-wise mean of the latent-weights is used.

BNN setup. We use Stochastic Gradient Descent (SGD) with weight decay and momentum as a
starting point, as this is a commonly used setting, see Rastegari et al. (2016), Liu et al. (2018), Qin
et al. (2020). Our setup is as follows:

w0 = init(), (1)
mi = (1− γ)mi−1 + γ∇θi , (2)
wi = wi−1 − βiϵ(mi + λwi−1), (3)
θi = sign(wi), (4)

sign(x) =





−1, if x < 0;

+1, if x > 0;

random{−1,+1} otherwise.
(5)

Here, wi is a latent weight at iteration i which is initialized at w0. θi is a binary weight, ϵ is the
learning rate, βi is the learning rate decay factor from a decay scheduler, λ is the weight decay
factor, γ is the momentum exponentially moving average discount factor, ∇θi is the gradient over
the binary weight and random{−1,+1} is a uniformly randomly sampled -1 or +1.

We then convert to the latent-weight free setting of Helwegen et al. (2019) where latent weights are
interpreted as accumulating negative gradients. We introduce gi = −wi, which allows working with
gradients instead of with latent weights. We can then write Eq 3 as follows

gi = gi−1 + βiϵ(mi − λgi−1). (6)

Latent weight initialization. To investigate latent weight initialization we unroll the the recursion
in Eq 6 by writing it out as a summation:

gi = (1− βiϵλ)gi−1 + βiϵmi, (7)

= g0 + ϵ
i∑

r=0

(1− βrϵλ)
i−rβrmi. (8)

The term g0 in Eq 8, takes the role of the latent weight initialization. Since there no longer is a
latent-weight, it no longer makes sense to use real-valued weight initialization techniques (Glorot
& Bengio, 2010; He et al., 2015). Instead, g0 can be initialized according to other gradient filtering
techniques such as Momentum (Sutskever et al., 2013) and Adam (Kingma & Ba, 2015). We follow
these methods, and simply initialize g0 = 0. To prevent all binary weights to start at the same value,
we use the stochastic sign function in Eq 5 that randomly chooses a sign when the input is exactly 0.

Learning rate and weight decay. The learning rate ϵ appears in two places in Eq 8: once to the
left outside of the summation, and once inside the summation.

With g0 = 0, the leftmost ϵ can only scale the latent weight and will not influence outcome of the
sign in Eq 4 as

sign

(
ϵ

i∑

r=0

(1− βrϵλ)
i−rβrmi

)
= sign

(
i∑

r=0

(1− βrϵλ)
i−rβrmi

)
. (9)

Thus, when using a 0 initialization, the leftmost ϵ can be removed, or set to any arbitrary value
without influencing the training process.
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For the ϵ inside the summation of Eq 8, it appears together with the weight decay term λ. Thus,
there are two free hyperparameters that only control one factor, therefore one of them is redundant
and can use a single combined hyperparameter α = ϵλ. Instead of setting a value for the learning
rate ϵ, and setting a value for the weight decay λ, we now only have to set a single value for α.

Learning rate decay. To see the role of the learning rate decay βi, we use Eq 9 to freely scale the
sum with any value, and we can scale it with α, as

gi = α
i∑

r=0

(1− βrα)
i−rβrmi, (10)

which allows us to write it as an exponential moving average (EMA) as
gi = (1− βiα)gi−1 + βiαmi. (11)

This shows that for BNNs under magnitude invariant conditions, SGD with weight decay is little
more than a simple exponential moving average. This gives a magnitude-free justification for using
weight decay since its actual role is to act as the discount factor in an EMA. Note that it is not longer
possible to set α to 0 since then there are no updates anymore, but setting to a small (10−20) number
will essentially work the same. Now, the learning rate decay directly scales the α, so from now on
we will refer to it as α decay. The meaning of α is now clear, as in the EMA it controls how much to
take the previous output into account relative to the new input. This essentially determines how far
back in time past gradients are taken into account which is similar to the window size of a sliding
window average.

Momentum. Now adding back the momentum term of Eq 2 in the original setup yields
mi = (1− γ)mi−1 + γ∇θi , (12)
gi = (1− βiα)gi−1 + βiαmi, (13)
θi = −sign(gi). (14)

We see here that SGD with weight decay and momentum is equivalent to smoothing the gradient
twice with an EMA filter.

Latent weight optimization as a second order linear infinite impulse response filter. EMAs
are a specific type of linear Infinite Impulse Response (IIR) Filter (Proakis, 2001). Linear filters
are filters that compute an output based on a linear combination of current and past inputs and past
outputs. The general definition is given as a difference equation:

yt =
1

a0
(b0xt + b1xt−1 + ...+ bPxt−P − a1yt−1 − a2yt−2 − ...− aP yt−Q), (15)

where t is the time step, yt are the outputs, xt are the inputs, ai and bi are the filter coefficients and
P and Q are the maximum of iterations the filter looks back at the inputs and outputs to compute
the current output. The maximum of P and Q defines the order of the filter. An EMA only looks at
the previous output and the current input, so is therefore a first order IIR filter. Expressing an EMA
as a filter looks as follows:

yt = (1− α)yt−1 + αxt =
1

a0
(b0xt − b1 · xt−1 − a1yt−1), b =

[
α
0

]
, a =

[
1

α− 1

]
. (16)

In our optimizer we have a cascade of two EMAs applied in series to the same signal. Two cascaded
linear filters can also be represented by a filter with the order being the sum of the orders of the
original filters. To get the new a and b vectors the original ones are convolved with each other. In
our case this gives:

b =

[
γ
0

]
⋆

[
α
0

]
=

[
αγ
0
0

]
, a =

[
1

γ − 1

]
⋆

[
1

α− 1

]
=

[
1

(α− 1) + (γ − 1)
(α− 1) · (γ − 1)

]
, (17)

when applied to our gradient filtering setting in Eq 13 gives the difference equation:
gi = βiαγ∇θi − (βiα+ γ − 2)gi−1 − (βiα− 1)(γ − 1)gi−2. (18)

This shows that in a magnitude invariant setting, SGD with weight decay and momentum is equiva-
lent to a 2nd order linear IIR filter. You can also see that α and γ have the same function. When not
using α decay, it would be possible to swap the values for α and γ, without effecting anything. This
filtering perspective opens up new methods of analysis for optimizers.
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Figure 2: Gradients and filtered gradients using a first and second order filter for a single epoch of
training on CIFAR-10. For better visualisation, the filter outputs are scaled up to a similar range as
the unfiltered gradients. It can be seen that the unfiltered gradients are noisy and that the filtered
outputs are smoother. The second order filter reduces the noise even further compared to the first
order filter.
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(a) Varying learning rates, constant init.
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(b) Vary init, constant learning rate (ϵ=1.0).

Figure 3: In the magnitude independent setting, scaling the learning rate has the exact same effect
on the flipping ratio as scaling the initial latent-weights by the inverse.

4 EXPERIMENTS

We empirically validate our analysis on CIFAR-10, using the BiRealNet-20 architecture. Unless
mentioned otherwise the networks were optimized using SGD for both the real-valued and binary
parameters with as hyperparameters: learning rate=0.1, momentum with γ = (1 − 0.9), weight
decay=10−4, batch size=256 and cosine learning rate decay and cosine alpha decay. In our analysis
we use the weight flip ratio at every update or the FF ratio (Liu et al. (2021a)).

IFF =
|sign(wt+1)− sign(wt)|1

2
FFratio =

∑L
l=1

∑
w∈Wl

IFF

Ntotal
(19)

where wt is a latent weight at time t, L the number of layers, Wl the weights in layer l, and N the
total number of weights.

1st order vs 2nd order We visually compare filter orders by sampling real gradients from a single
binary weight trained on CIFAR-10 in Figure 2. For the same α, a 1st order filter is more noisy than
a 2nd order filter. This may cause the binary weight to oscillate, even though the larger trend is that
it should just flip once. To reduce these oscillations with a 1st order filter requires a smaller alpha.
This, however, causes other problems because α determines the window size of past gradients and
with a smaller α many more gradients are used. This means that it takes much longer for a trend in
the gradients to effect the binary weight. Instead, the 2nd order filter has for both benefits: it can
filter out high frequency noise while reacting quicker to changing trends.
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Figure 5: Flipping rate and accuracy for comparing alpha decay vs no alpha decay. When using
cosine alpha decay the FF ratio goes towards zero over time while without decay, the flipping will
continue, causing the network to not fully converge leading to reduced accuracy.

Learning rate vs initialization In Figure 3 we show the BNN bit flipping ratio with re-
spect to the learning rate and the initialization. Multiplying the learning rate with a cer-
tain factor a has the same effect as multiplying the initial weights with the inverse of a:
sign

(
w0 − aϵ

∑i
r=0(1− βrϵλ)

i−rβrmi

)
= sign

(
1
aw0 −

∑i
r=0(1− βrϵλ)

i−rβrmi

)
, because

the magnitude of a term inside a sign function does not matter. The larger learning rates in Fig-
ure 3(a) and the smaller initialization values in Figure 3(b) are invariant to scaling and have similar
flipping ratios. The smaller learning rates and larger initializations do not reach the same flipping
ratios, because the initialization vs learning rate ratio is insufficient to update the binary weights. For
sufficiently large initialization vs learning rate ratios it means that scaling both the learning rate and
the initial latent-weights has no effect on training, but also that scaling the learning rate or scaling
the initial latent-weights with the inverse is identical: as seen by comparing the two plots in Figure 3.

Evaluating learning rate and magnitude invariance with 0 initialization We evaluate SGD in
the standard magnitude dependent setting with clipping and scaling vs a magnitude independent
setting with initializing the latent-weights to zero. To keep the effect of weight decay constant, we
scale the weight decay factor inversely with the learning rate. The results in Figure 4 show that
when using the standard setting the learning rate has to be carefully balanced. When the learning
rate is too small the updates are too small relative to the initial weights, and the network does not
properly learn. When the learning rate is too large, then the latent-weights will hit the clipping region
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Figure 6: FF ratio and accuracy for varying alphas. BNNs are sensitive to alpha, similar to how
they are sensitive to weight decay, because it has a big influence on the FF ratio, which really affects
performance. A too high FF ratio leads to noisy training and poor results in the first half of training,
while not having enough time to converge to a good result in the second half. On the other hand,
a too low FF ratio leads to quick convergence to a good result in the first half of training, but then
improves little in the second half.

and will stop updating. When switching to the magnitude invariant setting, however, the clipping
problem is solved, because there no longer is a clipping function applied on the gradients. However,
the problem of a too small learning rate is enhanced, because the magnitudes of the gradients are
smaller when not using the scaling factor and the accuracy drops significantly for small learning
rates. When initializing to zero this problem disappears, because there is no initial weight to hinder
training and all learning rates perform equally.

Alpha To show the role of α from equation 18 we trained multiple networks with only different
weight decay factors. The results in Figure 6 show that alpha has a lot of influence on the training
process. Too big values lead to too many binary weight flips every update, which hinders the network
from learning. To small and the network converges to quickly to a specific local minima, which hurts
the end result. The optimum is choosing something in between that allows for steady improvement
during training and seems to be a trade off between exploration and exploitation of the search space.

Alpha decay Keeping the concept of learning rate decay and transforming it to alpha decay is
important. For proper convergence the FF ratio should go down towards zero. To achieve this, the
alpha decays over time to force the network to converge. This happens because βi from equation
18 starts at 1 at the start of training and over the epochs decreases towards 0. The specific way this
happens is determined by the alpha decay schedule. Figure 5 shows this in practice, one network
has been trained with cosine alpha decay and one without any alpha decay. With and without alpha
decay both seem to perform well at the start of training, however, the variant without alpha decay
plateaus at the end of training while the BNN with alpha decay converges better and continues
improving, leading to a better end result.

Equivalent interpretation Here we empirically validate that the SGD setting using latent weights
in Eq 3 is equivalent to our gradient filtering interpretation in Eq 18 that no longer uses latent
weights. We compare both settings with matching hyperparameters in Figure 7 which shows that
these settings are empirically equivalent.

4.1 COMPARISON WITH SOTA METHODS

CIFAR-10: We train all networks for 400 epochs. As data augmentation we use padding of 4
pixels, followed by a 32x32 crop and random horizontal flip. All experiments are performed with
Bi-RealNet-20 with the architecture meant for the CIFAR datasets as described in He et al. (2016).
For the real-valued parameters and latent-weights when used, we use SGD with a learning rate of
0.1 with cosine decay, momentum of 0.9 and on the non-BN parameters a weight decay of 10−4.
When using our optimizer we used an alpha of 10−3 with cosine decay and a gamma of 10−1. The
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Figure 7: Flipping rate and accuracy for SGD with latent weights in Eq 3 and our gradient-filtering
optimizer without latent weights in Eq 18. The methods are empirically equivalent.

results can be seen in Table 1. We outperform SGD with standard settings on the same architecture,
but only match performance of IR-Net. We also trained Bi-RealNet-20 with the BABW two step
training strategy from Liu et al. (2021a) and see that we get close in perfomance with only one step
using our optimizer.

Table 1: Comparison with state-of-the-art on CIFAR-10. The ⋆ denotes that we re-ran these experiments
ourselves.

Method Training Strategy
Bit-width

(W/A)
Top-1

Acc(%)

FP 32/32 91.7

DoReFa-Net (Zhou et al., 2016)

One step

1/1 79.3
DSQ (Gong et al., 2019) 1/1 84.1
IR-Net (Qin et al., 2020) 1/1 86.5
Bi-Real⋆ (Liu et al., 2018) 1/1 85.0
Bi-Real + Our optimizer 1/1 86.5

Bi-Real⋆ (Liu et al., 2018) Two step 1/1 86.7

Imagenet: We base our settings for training on Liu et al. (2021a). We train for 600K iterations
with a batch size of 510. For the real-valued parameters we use Adam with a learning rate of 0.0025
with linear learning rate decay. For the binary parameters we use our 2nd order filtering optimizer
with α = 10−5, which we decay linearly and γ = 10−1. Since we no longer use latent-weights, we
also do not use two-step training to pre-train the latent-weights.

As can be seen in Table 2, ReActNet-A with our optimizer improves upon the state-of-the-art for one
step training. It also performs comparable to the state-of-the-art for two step training, by improving
0.3% over ReActNet-A, but still falling 0.8% short of AdamBNN, while only needing one step for
training and using slightly less OPs because no channel-wise scaling factor is used.

5 DISCUSSION AND LIMITATIONS

One limitation of our work is that we do not achieve “superior performance” in terms of accuracy.
Our approach merely matches the state of the art results. Note, however, that our goal is to provide
insight into how SGD and its hyperparameters behave. We also ended up with an optimizer with
less hyperparameters, that also have a better explanation in the context of BNN optimization leading
to simpler, more elegant methods.
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Table 2: Comparison with state-of-the-art on Imagenet

Method Training Strategy
BOPs

(×109)
FLOPs
(×108)

OPs
(×108)

Top-1
Acc(%)

Top-5
Acc(%)

CI-BCNN (Wang et al., 2019)

One step

– – 1.63 59.9 84.2
Binary MobileNet (Phan et al., 2020b) – – 1.54 60.9 82.6
MoBiNet (Phan et al., 2020a) – – 0.52 54.4 77.5
EL (Hu et al., 2022) – – – 56.4 –
MeliusNet29 (Bethge et al., 2020) 5.47 1.29 2.14 65.8 –
ReActNet-A + Our optimizer 4.82 0.07 0.82 69.7 88.9

StrongBaseline (Martinez et al., 2020)

Two step

1.68 1.54 1.63 60.9 83.0
Real-to-Binary (Martinez et al., 2020) 1.68 1.56 1.83 65.4 86.2
ReActNet-A (Liu et al., 2020) 4.82 0.12 0.87 69.4 88.6
ReActNet-A-AdamBNN (Liu et al., 2021a) 4.82 0.12 0.87 70.5 89.1

Another perceived limitation is that our new proposed optimizer can be projected back to a specific
setting within the current SGD with latent-weights interpretation. Thus, our analysis might not be
needed. While it is true that latent-weights can also be use, we argue that there is no disadvantage
to switching to the filtering perspective, because the options are the same, but the benefit is that
the hyperparameters make more sense. The option to project back to latent-weights also works the
other way around and for those who already have a well tuned SGD optimizer could use it to make
it easier to switch to our filtering perspective.

Its also true that our method cannot use common techniques based on the magnitude such as weight
clipping or gradient clipping. Yet, we do not really think these techniques are necessary. We see
such methods as heuristics to reduce the bit flipping ratio over time, which helps with convergence.
However, in our setting, this can also be done using a good α decay schedule without reverting to
such heuristics, making the optimization less complex.

We did not yet have the opportunity to test the filtering-based optimizer on more architectures, with
only having tested Bi-RealNet on CIFAR-10 and ReActnet-A on Imagenet. However, since our
optimizer is equivalent to a specific setting of SGD, we would argue that architectures that have
been trained with SGD will probably also work well with our optimizer. This is also a reason why
we chose to use ReActNet-A, since it was trained using Adam in both in the original paper (Liu
et al., 2020) and in Liu et al. (2021a). The latter specifically argues that Adam works better for
optimizing BNNs, but we suspect that the advantages of Adam are diminished because the adaptive
learning rate might work the same way in the magnitude invariant setting. However, more research
would be needed to be sure.

5.1 ETHICS STATEMENT

We believe that this research does not bring up major new potential ethical concerns besides any
concerns that might already exist for BNNs. Our work makes training BNNs easier, which might
increase their use in practice.

5.2 REPRODUCIBILITY STATEMENT

We will release all our code to simplifying the reproducibility of our experiments. Two important
things for better reproducing our results rely on the GPUs and the dataloader. The reproduction of
our ImageNet experiments is not trivial. First, as the teacher-student model is used in our ImageNet
experiments, it will occupy much GPU memory. We trained on 3 NVIDIA A40 GPUs, each A40 has
48 GB of GPU memory, with a batch size of 170 per GPU for as much as ten days. Second, for faster
training on ImageNet, we used NVIDIA DALI dataloader to fetch the data into GPUs for the image
pre-processing. This dataloader could effect training as it uses a slightly different image resizing
algorithm than the standard PyTorch dataloader. To keep results consistent with other methods, we
do the inference with the standard PyTorch dataloader.
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Chapter 3

Supplement Materials

3.1 Deep Learning

This section will give an short introduction on deep learning. Deep learning is a specific
subset of methods within machine learning. Before deep learning, the strategy was often to
first do feature extraction on the input using hand-made algorithms. Deep learning is based
on deep neural networks, which means that there are many layers in the network, where the
first layers are then responsible for learning the features. This eliminates the need for specific
domain knowledge which is needed to extract good features. Because the features are learned
during training, it learns to extract features that maximise performance. The first part of this
section explains what a neural network is and how it works. To make the neural networks
learn it needs an optimization algorithm, also called optimizers, the second part explains
more about how these work and what different kinds of optimizers there are.

3.1.1 Neural Networks

The neural networks used in deep learning are specifically artificial neural networks. This is
because they were originally inspired by actual biological neurons, although since then this
relationship with real-life neurons has decreased over time. Neural networks consist of layers
of neurons, where each layer gets inputs from the previous layer and passes the outputs on
to the next layer. The output of each neuron in the layer is equal to a weighted sum over
its inputs, followed by some non-linear operation, called the activation function. Originally
the inputs of each neuron were all the outputs of the previous layer, these networks were
therefore called fully-connected neural networks. The way a network calculates its output is
by giving the input to the first layer, which calculates its output, which is again the input for
the next layer. This continues through all the layers until the overall output of the network is
calculated by the final layer. This process is called forward propagation. The weights for the
weighted sum are called the parameters of the neural network and these are the values that
are being optimized during training. The way this works is using training examples. These
examples are input-output pairs that describe the problem and are used to teach the network
what output it should generate for a certain input. At first the weights are randomly initialized,
so the outputs will be very different from the target outputs. To update the weights first a loss
function is used to calculate how far off the network was. A popular example of this is mean
squared error, where the error is the difference between the output and the target output.
The goal is then to minimize this loss. Since there is no closed-form solution to compute the
weights for which the loss is minimal, this needs to happen iteratively. To do this the gradient
over the loss function with respect to the weights can be calculated. Because of the way these
networks are structured, the gradients can be efficiently calculated layer by layer, using the
chain rule. It starts at the back of the network were the loss is calculated and the gradient than
propagates backward through the network, which is called back-propagation. The gradients
over the weights can then be used in a process called gradient descent to find a local minimum
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for the loss function. This learning process is then repeated for a fixed number of steps or
until the network no longer improves. To confirm that the resulting network also works well
for data that it has not seen yet, a set of input-output pairs that were not used during training,
is used to validate the performance.

3.1.2 Optimizers

A very important aspect of deep learning are the optimization algorithms, often just referred
to as optimizers, since these actually update the weights and are what makes the network
learn. These algorithms are based on the gradient descent algorithm. In this subsection we
will explain what gradient descent is and its shortcomings which the other optimizers try to
solve.

Gradient descent Gradient descent is an optimization algorithm that tries to find local
minima of differentiable functions. It works by iteratively updating an input. First an initial
input or guess is given, then the derivative over the function is computed with respect to this
input. This gradient is then used to take small step in the opposite direction to get a new input
which, if the step is small enough, will lead to a smaller output. This process is then repeated
until the algorithm has converged. This looks as follows:

xt+1 = xt − ηδF(xt) (3.1)

Here x is the input, η is a scaling factor that determines the size of the update step and is
often called the learning rate and F is the function that is being optimized.

This algorithm can be applied to optimizing neural networks. This works by creating
a loss function that is used as the function that is being minimized. This loss is computed
between the outputs of the network of an input dataset and the corresponding ground-truth
outputs in the dataset. This can for example be the mean squared error (MSE) which is
defined as:

MSE =
1
n

n

∑
i=1

(Yi − Ŷi)
2 (3.2)

So in this case Yi are the outputs generated by the network and Ŷi are the ground-truth
labels in the dataset.

The input of the gradient descent algorithm are the weights of the neural network. So
the derivative with respect to the weights of the loss function is calculated and is used to
update the weights. Again, this process is repeated for a fixed number of iterations or until
the algorithm has converged. In this setting the function looks as follows:

wi
t = wi

t−1 − η∇wi
t−1

(3.3)

Where wi
t is the weight with index i at time step t, from here on we omit the index for

clarity. ∇wi
t−1

is the gradient over the loss function with respect to the weight w at time
step t. The learning rate is still η and is a very important parameter for gradient descent.
If its too small it means that all the steps the algorithm takes are small and it could mean
that the minimum is never reached. If its too big it means that the optimizer may overshoot
the minimum and actually end up worse at every update, which also means a minimum is
never reached. To get good results the learning rate needs to be somewhere at a sweet spot in
between.
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Gradient descent is a very powerful concept that can be applied to many problems, but
this vanilla version of the algorithm has a few problems that make it unsuitable for use in
deep learning. The main problem is that compute the gradient and do an update step the
network has to be evaluated on the entire dataset, but still only small steps can be taken for
the algorithm to work. This is very slow, especially since deep learning works by using large
amounts of data. There will also be many similar items in the dataset which mean that a lot
of redundant computation is happening.

The second big problem is that gradient descent finds local minima. For convex functions
this is not a problem, since there is only one minimum, which is the global minimum. How-
ever, the loss functions used in deep learning are non-convex and very noisy. This means that
there are many local minima, many of which are not good solutions to the problem. Gradi-
ent descent will often converge to the minimum located in the valley where the optimization
starts, so the end result is strongly influenced by the initial randomly generated weights.

Stochastic gradient descent Both of these problems can be solved with stochastic gradient
descent (SGD). Instead of calculating the loss for the entire dataset at once, it will calculate
the loss for each element in the dataset one by one and each time calculate the corresponding
gradient and parameter updates. This means that the algorithm runs much faster, since there
are many more updates to the parameters compared to only updating them each epoch. Since
the loss is also calculated with different training examples every time, the loss landscape
also is different every time. This makes it possible for the algorithm to escape local minima,
because the locations of these minima changes.

A disadvantage of this method is that using only a single training example is that the
gradients and therefore the training process can become very noisy. At every update the
training algorithm could think that the minimum is somewhere else, which can make the
updates go back and forth without actually making progress. To reduce the noise, what is
actually mostly used is in practice mini-batch gradient descent. This means that instead of
a single training sample, a mini-batch of multiple training samples is used. A larger sample
size reduces the randomness and therefore also reduces the noise.

Momentum Another method to reduce the effect of negative effect of noisy gradients is to
use momentum. This means that instead of using only the gradient of the current batch, a
history of past gradients is used. This history is calculated by using an exponential moving
average (EMA). An EMA is a specific version of an Infinite Impulse Response filter (Section
3.3). It is not desirable to calculate the average over all past gradients, because the older the
gradient is the less relevant it is right now. That is why a moving average is used, which
means that the average is mostly based on more recent inputs. A simple example of a moving
average is a sliding windows moving average, which is calculated by simple calculating the
average over a window of the last n inputs. This is not suitable for the use case of gradients,
because there is a gradient for every weight in the neural networks, which would mean that
for each weight in the network the n past gradients would need to be remembered, which
costs a lot of memory for these large deep neural networks. This is where the exponential
moving average comes in. Instead looking at past inputs, it looks at the previous output. It is
calculated as follows: yi = (1 − γ) · yi−1 + γxi, where yi is the current output, yi−1 is the
previous output, xi is the current input and (1− γ) is the discount factor. The discount factor
determines how much past inputs weigh versus the current input. A high discount factor
means that the moving average more quickly “forgets" past inputs, while a low discount
factor means past values have an influence that lasts longer. The advantage of this is that
only one value needs to be remembered which is the previous output and this saves memory.
The exponential part is that the effect of previous inputs decays exponentially, because at
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every step the previous inputs are multiplied with (1 − γ). The optimization algorithm can
then be described as:

mt = (1 − γ)mt−1 + γ∇wt−1 (3.4)

wt = wt−1 − ηmt (3.5)

Using this smoothed gradient instead of the original gradient means that the signal is
more consistent and means the optimizer is less likely to focus to much on noise that is not
beneficial reaching a good performance.

Adam The last optimization algorithm we will discuss is Adam. The name Adam comes
from adaptive moment estimation. It still is based on batch-gradient descent and also uses
momentum, but it also introduces an adaptive learning rate, based on the magnitude of the
gradients. The idea behind is that it often happens that the magnitude of gradients for different
weights can be very different. This means that the optimizer takes big steps for some weights
while only taking small steps for others. This makes it difficult or sometimes even impossible
to find a good learning rate. By computing a second EMA, but this time not over the gradient
but over the squared gradient, the magnitude of the gradients for each weight can be estimated
by taking the square root of the average squared gradient. Together these EMAs look as
follows:

mt = β1mt−1 + (1 − β1)∇θt (3.6)

vt = β2vt−1 + (1 − β2)∇2
θt

(3.7)

Here the discount factor (1 − γ) has been replaced by β1 and β2 is the discount factor
for the so called second order momentum. The weight is then updated with:

wt = wt−1 − η
mt√

vt + ϵ
(3.8)

The epsilon here is a small value that is added to the denominator to prevent dividing by
zero.

3.2 Binary Neural Networks

This section will give some background information on what binary neural networks are
exactly. This is done by discussing two of the first works in the field: BinaryNet[2] and
XNOR-Net[9]. The methods and strategies proposed on these works are still used in more
recent works.

3.2.1 BinaryNet

While it was not strictly the first work on BNNs, the BinaryNet algorithm [2] is what marked
the real beginning of the binary neural network field and has been used a basis for training
BNNs every since. The main problem with BNNs was that the process of first training a
full precision network and only quantizing at the end of training does not work. This process
does work when quantizing 32-bit floats to 8-bit integers By strategically choosing which real
valued numbers are mapped to which integers, the difference in performance can stay small.
This is because the quantization error, which is the error between the real-valued weight and
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the quantized weight, stays relatively small. For binary neural networks this is not the case.
The only two options for weights are −1 and +1. When trying to minimize the quantization
error it is best to map all the positive numbers to +1 and all the negative numbers to −1.
This function is called the sign function, because it only looks at the sign of the number.

Sign(x) =

{
+1 if x ≥ 0,
−1 otherwise.

(3.9)

This will give a big quantization error. In practice this means when it is applied to a
real valued network, the difference between the real-valued and binary weights is so big,
the performance will drop to the same level as before training. The creators of BinaryNet
realized that what was necessary is for the binary neural network to be trained to be trained
directly so that the optimization process can take the binarization into account.

However, it is not possible by default to use standard neural network optimization tech-
niques. Neural networks are mostly optimized using different variation of gradient descent.
Gradient descent works by making many small incremental updates to real-valued weights.
This is not possible when using binary weights because they are discrete, so it is not possible
to make these small incremental updates. The only possibility is to keep the same value as
the previous step or invert it.

To get around this problem and make BNNs compatible with gradient descent algorithms,
latent weights were introduced. Each binary weight has its own real-valued latent-weight.
This weight can be incrementally updated. The training algorithm was then updated to op-
timize the latent weights but still function as a binary network. This works as follows. For
each binary weight in the network a corresponding latent weight is created. During the for-
ward pass a sign function is applied to the latent weights to generate the binary weights. The
sign function is used because this leads to the smallest quantization error between the latent
and binary weights. The binary weights are then used as normal in convolutional and linear
operations. During the backward pass first the gradients with respect to the binary weights
are calculated:

gb =
δL
δb

(3.10)

Where b is the binary weight, L is the loss and gb is the gradient with respect to the binary
weight. Then the gradient with respect to the latent weight can be calculated as follows using
the chain rule:

gw =
δL
δw

= gb · sign′(w) (3.11)

Where w is the latent weight and gw is the gradient with respect to the latent weight.
However, this introduces another problem. The derivative of the sign function is zero every-
where, except at zero where it is undefined. This means that the latent weights do not have
any proper gradients and without any proper gradients the latent weights can not be updated,
so training is not yet possible.

This is where the straight-through-estimator (STE) comes in. In its simplest form the
STE will simply pretend during back propagation that the binarization never happened, but
instead the identity function was applied. This means that it approximates the gradient of the
sign function with that of the identity function.
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gw = gb · sign′(w) ≈ gb · identity′(w) = gb · 1 = gb (3.12)

Now that the gradients can be calculated for the latent weights they can be updated. To
also get binary activations, the sign function is used as the non-linear activation function.
This again gives the same problem as with the weights, that the gradient is not propagated
through the sign function and in this case there would still be no gradients anywhere in the
network except in the last layer. The solution is again to use the Straight-through-estimator
to bypass the sign function on the backward pass. Then gradients can flow back through the
network again.

Now all the steps are there to be able to use gradient descent to train binary neural net-
works. They do add one last thing to the weight update step, which is weight clipping. After
the update all of the latent weights are clipped to lie within the range [-1, +1]. This makes
sure that the latent weights will not infinitely grow larger without actually influencing the
binary weight.

BinaryNet performed quite well on smaller datasets, on CIFAR-10 using the VGG-Small
architecture[10] it reached 91.7% accuracy which is only 2.1 percent-point less than the
93.8% accuracy its real-valued counterpart achieved. However, its ImageNet performance
showed a different picture. Where the real-valued AlexNet[6] reaches 57.1% top-1 accuracy
the BinaryNet version only reaches 27.9%. This is a drop of 29.2 percent-point, more than
halving the original performance. It was speculated that this performance degradation was
an inherent result of the binarization process because of the representational capabilities of
binary networks. However, lots of research since then has been spent on closing this gap
between real-valued and binary networks. The first step was taken by the introduction of
XNOR-Net, which to this day is still the foundation for most work on BNNs.

3.2.2 XNOR-Net

The contributions in this work are two-fold. The first is improving the representational ca-
pabilities of binary networks by introducing real-valued channel-wise scaling factors for the
outputs of the convolutional layers. The second is the reduce the loss of information flowing
through the network by reordering the structure of blocks in the network.

Scaling The authors argue for an approximation viewpoint of BNNs. The real-valued orig-
inal weights are approximated by binary weights such that: W ≈ B, where W ∈ Rc×w×h

and B ∈ {−1,+1}c×w×h are both convolutional filters. To improve approximation accuracy
and thus reduce the quantization error, a real-valued scaling factor α is introduced, so that the
approximation becomes: W ≈ αB. The optimal values for α and B can be found by solving:

J(B, α) = ||W − αB||2 (3.13)

α∗, B∗ = arg min
αB

J(B, α) (3.14)

The solution to this minimization problem is for the binary weights to still be calculated
by taking the sign of the latent weights B = sign(W) and for α to be the mean absolute
value of the latent weights, so α = 1

n ||Wl1||. Convolutions can then be approximated using
I ⊛ W ≈ (I ⊛ B)α, where I are the activations and ⊛ is the convolutional operator. Note
that the scaling factor is applied after the convolution to make sure the convolution can be
computed with the binary weights.



Chapter 3. Supplement Materials 21

FIGURE 3.1: This figure shows the original block structure of CNNs on the
left side, consisting of first a convolutional layer, then a batch normalization
layer, followed by the activation function and lastly an optional pooling layer.
The new structure on shown on the right. The block now starts with batch
normalization and the binary activation before the binary convolution and
then still the pooling layer as last, to prevent information loss when pooling

binary values. (Image taken from [9])

To be able to use the more efficient XNOR and bitcount operations for convolutions the
activations have to binarized as well. A similar strategy as with the weights was applied here.
Again to decrease the quantization error a real-valued scaling factor was introduced for the
activations. However, instead of one value per output channel there is one value for every
possible sub-tensor in the input with the same size as the weight filters. This is equivalent
to on scaling factor for every “pixel” in the output, so K ∈ Rwout×hout , where wout and hout
are the output width and height respectively. The scaling factors are calculated by taking the
average of each of these sub-tensors in the input. While for the weights the scaling factors can
be calculated during training and stay fixed afterwards, the inputs change each forwards pass
so the input scaling factors have to be recalculated each time. This does add some additional
overhead, but is still relatively small compared to the amount of operations for a convolution
operation, even if it is an efficient binary convolutions. However, because of this increased
overhead, while also in practice giving relatively little benefit over the weight-based scaling,
subsequent works, mostly use just the weight-based scaling factor.

Block structure The second contribution of XNOR-Net is a new block structure for the
layers in the network. The original BNN uses the same blocks as standard CNNs, which
means that the now binary activation function comes right before the pooling layer. However,
this causes a large loss of information. For example, when using the popular max-pooling on
the binarized values, almost all outputs will be equal to +1, since to be -1, all input values
need to be -1. The new block architecture is shown in 3.1.

Together these two contributions result in XNOR-Net reaching an accuracy of 44.2% on
Imagenet with the AlexNet architecture. This is an increase of 16.3 percent point over the
original BNN, closing the gap to the full-precision AlexNet to only 12.4 percent point. This
made binary networks a much more viable solution than was previously thought and sparked
the takeoff of the BNN field.

3.2.3 Efficiency

In this section we will discuss the efficiency aspect of binary neural networks. As shown
in the previous chapter, there still is some performance degradation compared to real valued
networks. A lot of works try to reduce this gap, but this is only worth the effort because the
resulting networks are actually more efficient. Where does this efficiency come from? Bi-
nary convolutions and binary matrix multiplications can be made more efficient because they
consist of many dot-products which can be computed using XNOR and bitcount operations
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Multiplication XNOR
input1 input2 output input1 input2 output
+1 +1 +1 1 1 1
+1 -1 -1 1 0 0
-1 +1 -1 0 1 0
-1 -1 +1 0 0 1

TABLE 3.1: This table shows the relationship between multiplying plus and
minus ones and the XNOR operation. You can see that representing +1 with
1 and -1 with 0, results in the XNOR operation exactly represents the original

multiplication.

when both the input and weights are binary values representing +1 and -1. This works as
follows, the dot product consists of two steps: multiplication and addition.

For the multiplication the output is always +1 if both inputs are the same and -1 if both
inputs are the opposite. For binary values the +1 is represented by a 1 and the -1 is represented
by a 0. So, the output of multiplying two binary inputs is the same as applying the XNOR
operation on their representations, because if the two inputs are the same the output will be
one, which maps to +1 and if both values are different the output will be 0 which maps to -1.

Additions can be performed using the bitcount operation. The bitcount operations basi-
cally does what the name implies. It takes n bits as inputs and gives as output the number of
bits that are 1 as n. n here is not the same answer to summing the actual +1/-1 weights, be-
cause the zeros are ignored. To get the actual sum s the amount of zeros need to be calculated
and subtracted from the answer which gives: s = c − (n − c) = 2c − n.

On modern 64-bit CPUs both the XNOR and bitcount operations can be performed for
64 bits at the same time, while for floating-point operations only one can be done at the same
time on a single core. This is were the often mentioned 64x speed improvement for BNNs
comes from. The exact speedup is however also very dependent on the hardware used. For
example, the total amount of operations that can be achieved on modern computers is often
bottle-necked by the speed by which the data can be loaded into the correct registers. So
while BNNs are definitely faster and more efficient for the hardware, there is no speedup
factor that always holds.

3.2.4 Improvements

This section discusses some of the works from the last few years that improve on the baseline
that has been set by XNOR-Net. The strategies to achieve these improvement can be divided
into three categories. These are: introducing real-valued scaling factors, improving the loss
function and reducing the gradient error.

Reducing Quantization Error The idea behind reducing the quantization error is that re-
ducing the error between the real-valued and binary convolution, also leads to a reduction in
the performance gap between the two. This is the idea behind the real-valued scaling factors
introduced in XNOR-Net.

Introducing real-valued scaling factors Since binary neural networks have a more limited
representational power, compared to real-valued networks, one popular method to improve
their performance is to introduce real-valued scaling factors. This is done so that the binary
convolutions can better approximate the real-valued ones and by doing it in strategic places,
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it only adds a small amount of extra operations even compared to the efficient binary convo-
lutions. The best and most used example of this is the analytically calculated scaling factor
from XNOR-Net[9], explained earlier, but later more techniques have been proposed

As a direct successor to XNOR-Net, XNOR-Net++ [1] was proposed. It argues that
the analytically calculated scaling factors for both the weights and the activations are quite
expensive to compute. For the activations this is relatively expensive because the scaling
factor needs to be calculated for every input and has thus to be performed on inference time.
In this work, a new method is proposed that merges both scaling factors into one new scaling
factor Γ, which is not analytically calculated but instead trained together with the weights via
backpropagation. This makes them more flexible, since they can be trained like any other
parameter and has the advantage no scaling factors need to be computed at inference time.
Four different ways to methods to construct Γ are proposed. The first one is a simple case
where there is a scaling factor for each channel in the output:

Γ = α, α ∈ Ro (3.15)

Where o is the number of output channels. Case 2 is a much more flexible option where
there is one scaling factor for each pixel in the output:

Γ = α, α ∈ Ro×hout×wout (3.16)

Where hout and wout are the height and width of the output respectively. This works
better than case 1 because it also can take statistics in the spatial dimensions into account.
However, since it is more flexible it can also lead to more overfitting. To reduce the flexibility
but still take the spatial dimensions into account, in case 3 and 4 are decompositions of case
2. In case 3 there is a decomposition into two terms: one for the spatial dimensions and one
for the output channel dimensions:

Γ = α ⊗ β, α ∈ Ro, β ∈ Rhout×wout (3.17)

This reduces the amount of trainable parameters from o × hout × wout to o + hout ×
wout, but actually increases the performance by 0.6 percent-point accuracy on Imagenet with
ResNet-18 compared to the second case. Then for the fourth case with the decomposition in
all dimensions:

Γ = α ⊗ β ⊗ γ, α ∈ Ro, β ∈ Rhout , γ ∈ Rwout (3.18)

This reduces the amount of parameters even further to o + hout +wout, but again increase
performance by 0.4 percent point compared to the third case.

This is similar to the approach proposed by Tang et al. [11]. They introduce a scal-
ing factor that is learned as well, but in a different way. They replace the standard ReLU
action function with the PReLU activation function. Where the ReLU function is fixed to
ReLU(x) = max(0, x), PReLU instead has an extra scaling factor for when x is smaller
than 0: PReLU(x) = max(0, x) + a · min(0, x).

A quite different method was introduced by Martinez et al.[8] They argue that the pre-
vious scaling factor are more limited, because even tough they are learnable parameters,
after training they are fixed. Instead, they propose a new method named data-driven chan-
nel re-scaling. This means that they take the activations into account and use that to do a
channel-wise scaling of the convolutional layer outputs. Figure 3.2 shows the used architec-
ture for this. This method is much more flexible than the previous ones, because it can adapt
to different inputs, while still only introducing few extra computations.
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FIGURE 3.2: This shows that architecture for a block in Real-to-Binary
Net[8]. The left-hand side shows the standard structure for BNNs and the
right-hand side shows the new gating function that computes the scaling fac-
tors. Here H, W C are the height, width and amount of channels of the input
respectively. To make the whole function more efficient it starts with global
average pooling to only keep the channel dimension. The first linear layer
than also scales down the amount of channels by a factor r to reduce the

amount of needed computation even further. (Image taken from [8])

Loss Functions

Another area of focus for improving the performance of BNNs is in the loss function that is
being used to train the networks. This is also what “Real-to-Binary Attention Matching” is
about, introduced as another contribution in Martinez et al.[8]. This consists of a student-
teacher model, where they train the student to match the output of the teacher, using the
error between the logits produced by both. This setup is also used in general student-teacher
training with full-precision neural networks. However, the novel part is that the architecture
of the teacher network matches the student as closely as possible, so that each block in the
student model has an accompanying block in the teacher model. At the end of each of these
blocks the error between the attention maps between the student and teacher is calculated
and added to the loss. These intermediary error signal help training the binary networks
by preventing signal degradation during propagation of gradients through the entire network
and makes sure that the output of the binary convolutions better matches the output of full-
precision networks.

There can be quite big differences between the activations of binary and real-valued net-
works, so the authors proposed a three step training strategy to minimize these differences.
First the student is still a real-valued network but with the structure of a binary network. In
the next step the trained student becomes the teacher and the new student now has binary
activations. In the last step the teacher is again the student from the previous step and now
the student has both binary weights and activations. This way at each step there is a smaller
difference between the student and teacher, which makes it easier for the student network to
match the outputs of the teacher.

A subsequent work called ReActNet [7] improves upon this idea, but argue that the stu-
dent does not necessarily need to exactly match the outputs of the teacher, but that the outputs
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of the student should match the distribution of the output of the teacher. They do this by giv-
ing a new loss function that is defined as the KL divergence between the softmax output of
the real-valued network and a binary network. They found that with this new loss they did
not need to match the output of every block in each of the networks, but only that of the final
output of the networks. This makes the training process easier and more flexible, because the
architecture of the teacher network does not necessarily need to match the architecture of the
student network.

3.2.5 Without Latent Weights

All the previously mentioned works on BNNs, build upon the concept of latent weights.
Helwegen et al. [3] are the first to provide a new perspective that is not based upon latent
weights. The perspective that is linked to using latent weights is to see the binary weights
that are computed are an approximation of the real-valued latent weights. They argue that
this perspective is problematic. After training a BNN, if you evaluate the network using
the latent weights instead of the binary weights, the resulting accuracy are worse than when
you would evaluate the binary weights. It therefore, does not make sense to say that binary
weights are approximating latent weights if they perform better than the thing that they are
approximating.

Instead the propose a new inertia-based view, where they give another explanation for
why training BNNs with real-valued latent weights work. They argue that the role of the
latent weights is twofold. The sign of the latent weight encodes the value for the binary
weight, while the magnitude of the latent weight is used as inertia for the network. It makes
sure that even if the gradient signal is noisy and keeps switching signs, the corresponding
binary weight remains more stable. If the magnitude of the latent weight is big, it takes a
larger and more consistent gradient in the opposite direction to flip the binary weight.

To make these different roles more explicit, they propose a new Binary Optimizer (BOP).
This optimizer does not optimize latent weights, but directly operates on the binary values.
The way this optimizer works is uses an exponential moving average over the gradients to
provide the inertia:

mt = (1 − γ)mt−1 + γgt = γ
t

∑
r=0

(1 − γ)t−rgr (3.19)

This is equivalent to the momentum term in SGD, but it has a different role, because it
replaces the latent weights to provide inertia. With an important detail being that this tracks
the gradient instead of the negative gradient like latent weights. Since an optimizer that works
directly can only choose to flip a weight or keep it the same, they make this explicit in the
way the binary weight is defined:

bt =

{
−bt−1, if |mt| ≥ τand sign(mt) = sign(bt−1)

bt−1, otherwise
(3.20)

Here bt is the binary weight at time step t and τ is a threshold. The way it works is
that binary weight should mostly have the opposite sign to the momentum term, so when
their signs are the same the binary weight will flip. Unless the magnitude of the momentum
term is below the threshold value. This threshold is introduced to prevent the binary weight
potentially flipping rapidly when the momentum term gets close to zero.

They show that with this new optimizer without latent weights they still can still get
competitive results compared to existing methods with latent weights.
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3.3 Filtering

The last important concept that is relevant to the scientific article is digital signal processing
(DSP). Digital signal processing is a large field that has a lot of applications, like speech
processing, video coding and image compression for example. We will, however, focus only
on a subset of DSP called digital filtering. A digital filter performs operations on digital
signals, which in turn are sampled, discrete-time signals. The goal often is to attenuate
certain frequencies from the signal. For example, audio signals can contain high frequency
noise, which is undesirable. To reduce this noise a digital filter can be used to attenuate the
high frequencies, while keeping the lower frequencies. Such a filter is called a low-pass filter,
because the low frequencies pass through the filter unchanged.

The specific filter that is relevant to our work is the exponential moving average men-
tioned in the previous sections and is a very simple example of a specific type of low-pass
filter, a linear Infinite Impulse Response Filter. This is important, because this means that
we can treat EMAs as digital filters which allows us to use DSP analysis techniques to better
understand them. The “infinite impulse response" part of the name comes from the fact if you
give an impulse input to the filter, then the effect of this impulse can be measured infinitely
in the response, or output, of the filter. It’s a linear filter because it is a linear combinations
of past and current inputs and past outputs. The general formulation looks as follows:

yt =
1
a0
(b0xt + b1xt−1 + ... + bPxt−P (3.21)

−a1yt−1 − a2yt−2 − ... − aPyt−Q), (3.22)

where t is the time step, yt are the outputs, xt are the inputs, ai and bi are the filter
coefficients and P and Q are the maximum of iterations the filter looks back at the inputs
and outputs to compute the current output. The maximum of P and Q defines the order of
the filter. Since an EMA only looks at the current input and the previous output, so at most
one step back, it is a first order filter. To show that an EMA is indeed an IIR filter we can
transform it into the general form, by choosing the correct a and b vectors:

a =

[
1

γ − 1

]
, b =

[
γ
0

]
(3.23)

yt =
1
a0
(b0xt − b1 · xt−1 − a1yt−1) (3.24)

=
1
1
(γxt − 0 · xt−1 − (γ − 1)yt−1) (3.25)

= (1 − γ)yt−1 + γxt (3.26)

Knowing this, we can perform frequency analysis on EMAs, to get more insight into
what effect the filter has on different frequencies. The most important question is often what
frequencies the filter attenuates and how much. Another quite relevant aspect is that filters
almost always introduce some delay between the inputs and outputs, even for frequencies that
are not filtered. See Figure 3.3 for an example of both of these for two EMAs with different
discount factors.
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(A) The amplitude of response for different frequen-
cies in decibels. When the amplitude is 0dB, it means
that the frequency passes through the filter not attenu-
ated. For every -3dB, it means that the magnitude of
the frequency in the output is half of the magnitude of
the frequency in the input. It can be seen for the EMA
with the smaller γ the range of frequencies that are at-
tenuated starts lower than that with the bigger γ. It also
clearly shows that EMAs are low-pass filters, since the
lower frequencies are untouched while the higher fre-

quencies are attenuated.
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(B) The delay that is introduced in the signal is called
group delay and is expressed in a number of samples,
or iterations in our case. This shows that the EMA that
filters more frequencies also introduces more delay in
the signal, a low-frequency signal that starts appear-
ing in the input signal at a certain iteration can take ten
thousand iterations before it shows in the output of the

EMA.

FIGURE 3.3: These figures show two different types of analysis for two
instances of an EMA with different discount factors γ
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