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Abstract

We have defined the infinity boxes in general dimensions, which are mathematical objects that allow
rays of light to continuously reflect. When the collision points of these rays are are positioned where
they would appear to the viewer (along the inititial ray), then the mirror pattern will be revealed.
These mirror patterns can be used to create mirror-tilings of two- and three-dimensional Euclidian
space. We have answered the question whether a curved infinity box can create patterns that are
nearly identical to exact tilings of Euclidian space. To obtain the answer, we set up the fundamental
theory of rays and infinity boxes, and computed the radii of the curved mirror faces that exhibit
certain properties. These properties are the alignmnent of internal angles, and the alignment of
image points in an infinity box. We have simulated infinity boxes in two- and three-dimensions to
visualise the patterns from these infinity boxes curved with these radii. Furthermore, we connected
the theory of infinity boxes the theory of dynamical billiards by stating that infinity boxes visualise
solutions of dynamical billiards. Lastly, we analysed the connection between the dodecahedron
infinity box, and concluded that curving the mirrors of the dodecahedron infinity box results in
a slight approximation of the interior of a stereographically projected 120-Cell. All the numerical
methods used to visualise infinity boxes have been thoroughly explained, and the computer program
that we created called MiRai, is available over the internet.
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1 Introduction

An Infinity Box, also known as an Infinity Mirror Box or Mirror Box, is a box made of mirrors
facing inward. When the mirrors are made transparent from the outside, a light can be cast inside.
This light will then keep reflecting inside the box until it dissipates or hits a non-reflective surface.
Infinity Boxes are commonly built for their visual aesthethic, but beneath their dazzling patterns
also lies an intricate mathematical pattern.

Figure 1.1: A cube infinity box with LED lighting to highlight edges [3].

This pattern that is created by 3D infinity boxes is tightly correlated to tilings of 3D space. However,
not all tilings are created from infinity boxes. It turns out that tilings created from infinity boxes,
what we call mirror-tilings, are a rare occurence in Euclidian space. A mirror-tiling is a tiling of
space where neighboring tiles are mirrored in their common surface, which are edges in 2D and faces
in 3D. The cube, as seen in 1.1, is one of the few shapes in 3D Euclidian space that is mirror-tiling.
As a result, we can see that the interior of its infinity box is effectively generating this tiling. We are
interested in researching the ways in which infinity boxes can generate such mirror-tilings. Questions
that we can ask ourselves are

1. Which 3D polyhedra or 2D polygons are mirror-tiling?
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2. If an infinity box pattern is not a mirror-tiling, can we find any structure or repetition in this
pattern?

3. Can curved infinity boxes give an illusion of a mirror-tiling in their pattern?

It turns out that point (1) is already know in 2D Euclidian space, as shown in a paper by Glenn
Harris [6]. For 3D space, a few mirror-tiling polyhedra are given in Figure 1.2. We will concern
ourselves with point (2) and (3), in particular. Part of our research is about defining infinity boxes
and measuring how well they can tile, the second part of our research continues on point (3). We
will analyse the behavior of infinity boxes when the mirrors become slightly curved. The reason for
turning to curved mirrors can be explained with pentagon, dodecahedron and 120-Cell.

Figure 1.2: The four shapes with connected infinity boxes in Euclidian space (up to scaling). From
left to right: Cube, Triangular Prism, Hexagonal Prism and Rhombic Dodecahedron. (Mathemat-
ica).

The pentagon, dodecahedron and 120-Cell are 2D, 3D and 4D objects respectively. Starting with
the 120 Cell, this is a four-dimensional object that consists of 120 dodecahedra that seamlessly
connected to each other. Moving down one dimension, the dodecahedron has 12 regular pentagons
as faces. Another dimension lower and we end up with a regular pentagon. We can not tile two-
dimensional Euclidian space with pentagons, neither can we tile three-dimensional Euclidian space
with dodecahedra. However, we note that the for all three objects, the corresponding vertices lie on
a sphere. The vertices of the pentagon lie on the 1-sphere (circle) S1, similarly, the vertices of the
dodecahedron lie on the 2-sphere S2 and the vertices of the 120-Cell lie on S3. One can use this
fact to tile the 2-sphere with curved pentagons by inflating the dodecahedron onto the 2-sphere. By
projecting this tiling of the sphere (spherical space) down to two-dimensional Euclidian space using
either a perspective projection or a stereographic projection, we will end up with a deformed tiling
of two-dimensional space using pentagons. See Figure 1.3.

Since the edges in Figure 1.3 are curved, we have reasons to believe that we can achieve a similar
tiling like 1.3 by considering a pentagonal infinity box with curved mirrors instead. In 2D spherical
space, straight lines are replaced by circles. Any point moving in one direction will eventually be
back at its same position. What would happen to a ray of light that is cast inside spherical space?
The ray would follow the trajectory of a circle. If we we’re to make an infinity box in spherical
space, then we could generate a tiling of curved pentagons in spherical space. However, we wish to
analyse the tilings of Euclidian infinity boxes. So instead of curving the rays, which we can not do
in Euclidian space, we curve the mirrors.
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Figure 1.3: A dodecahedron that is stereographically projected face-centered to two-dimensional
Euclidian space. This result in a tiling of two-dimensional space with deformed pentagons [14].

The example that we have given here for the pentagon and dodecahedron can be repeated in the
same fashion for the dodecahedron and the 120-Cell. The dodecahedron now assumes the role of
the pentagon. Again, we can project the 120 dodecahedra from the 120-Cell down to 3D space, and
we would end up with a tiling of 3D space with deformed dodecahedra. This is shown in Figure
1.4. We are not restricted to the dodecahedron and 120-Cell either. Other 4D polytopes such as the
8-Cell, 16-Cell, 24-Cell or 600-Cell can also be projected to 3D to create (deformed) tilings.

The primary purpose of this paper will be to define infinity boxes mathematically and subsequently
simulate them on a computer. In addition, we relate infinity boxes to earlier literature and math-
ematics and explain the potential use of infinity boxes to solve problems related to other fields of
mathematics. The paper is broadly divided in three sections:

1. A brief overview of related results from other fields of mathematics.

2. The formal definition of infinity boxes and analytical results related curved infinity boxes.

3. The numerical simulation of infinity boxes and explanation of the used rendering techniques.
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Figure 1.4: Projection from S3 to R3 of the 120-cell. The tiling of dodecahedra created by this
projection is what motivates us to use dodecahedron infinity boxes with curved mirrors [11].
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2 Literature Related To Infinity Boxes

Literature on infinity boxes in particular is scarce, but infinity boxes can be seen as a branch of
physical optics problems and dynamic billiard systems. Much research has already been performed
in these fields. In this chapter we briefly mention topics that have a strong relation to infinity
boxes.

2.1 Dynamical Billiards

Dynamical billiards are dynamical systems in which a particle with no friction is moving and re-
flecting against walls in all directions, which we will call a table. These systems derive their name
for the game of billiards, where a ball must be struck on a rectangular pool table. The trajectory
that the ball on this table follows, is an intricate pattern that depends on the shape of the table.
For rectangular billiards, the trajectory remains reasonable predictable using that laws of reflection.
However, the field of dynamical billiards concerns itself with particles reflecting on tables of varying
shapes.

Questions that the theory of dynamical billiards concerns itself with are:

1. Does every polygonal billiard admit a cyclic trajectory?

2. Can every other position be reached when releasing the particle from a specific position?

Question (1) has been frequently approached in literature. A polygonal billiard is a billiard system
set on a two-dimensional table shaped like a polygon. For acute triangles, this problem is called
Fagnano’s Problem and has been solved Giovanni Fagnano himself. See the book by Heinrich Dörrie
[4] for a proof.

Theorem 1 (Giovanni Fagnano, Fagnano Trajectory). Given an acute triangle. Then there exists
a periodic trajectory inside the triangle.

The problem for cyclic trajectory has also been studied for other arbitrarily shaped tables. Howard
Masur solved the problem in 1986 for rational polygon tables [8]. A rational polygon is a polygon
whose edges are all rational numbers.

Theorem 2 (Howard Masur, 1986, Rational Billiard Trajectories). For any rational billiard table
there is a dense set of directions each with a periodic trajectory.

How can we relate dynamical billiards to infinity boxes? Both systems follow the same principles
of a ray reflecting inside a closed surface. During our numerical simulations in Chapter 5, we will
encounter patterns called ”tunnels” in infinity boxes that repeat to infinity. These tunnels correspond
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to rays of light that never collide with a vertex (and therefore do not come to a halt). These visual
tunnels will be periodic trajectories. This means that for infinity boxes constructed from acute
triangles or rational polygons, we will always be able to find a tunnel that repeats to infinity by
applying the above theorems.

While the theorems mentioned in this section only apply to two-dimensional billiards we have reasons
to believe that similar results can be formulated for higher-dimensional billiards. This is because
we will encounter tunnels in three-dimensional infinity boxes as well. To conclude, we can pose that
infinity boxes are means to visualise the trajectories of dynamical billiards. This means that infinity
box can be applied to gain insight in problems related to dynamical billiards.

Problem (2) brings us to the illumination problem.

2.2 The Illumination Problem

The illumination problem is related to dynamical billiards in that they are both problems set on a
”table” with a particle reflecting on the interior. It is Ernst Strauss who first proposed the problem
in 1950. The illumination problem is formulated as follows:

Given a billiard system. Is there a pair of points on the table through which no trajectory passes?

This is equivalent to asking if there is any spot on the table that can not be illuminated by a light
source at another spot. This problem, like the problem of periodic trajectories, has been studied in
the past. In 1958, Roger Penrose used ellipses to create an unilluminable room. This room is shown
in Figure 2.1.

The same problem has been solved for polygonal rooms by George Tokarsky in 1995 [12], who also
provided an unilluminable room but now without curved mirrors. This solution is shown in Figure
2.2.

How can we relate the illumination problem to infinity boxes? For infinity boxes, we cast rays from
a single point in two -or three-dimensional space. We turn infinity boxes to illumination problems
by placing a target in the infinity box, and asking ourselves whether there a point in the infinity
box from which we can not see this target in the reflections. In this way, we will have a solved
the illumination problem with infinity boxes if the target point (pink dot) does not show up in any
reflection of the infinity box.
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Figure 2.1: The Penrose Unilluminable Room is a shape that where there exists a point from which
a light source can not light another part of the room through reflections. The top two images show
the illumination when a light source is positioned in one of the pockets near the sides. The bottom
two images show the illumination when a light is positioned outside of these pockets. Xinzhong
(Tom) Chen [1].

2.3 Mirror-Tiling Polygons

A final note on earlier literature is about the mirror-tiling polygons of two dimensions. In a paper by
Glenn Haris [6] has been shown which polygons tile the plane with reflections. We cite the theorem
here.

Theorem 3 (Glenn Harris, Mirror-Tiling Polygons). The class of polygons that tile the plane with
reflections is

• The regular hexagon (angles 2π
6 ).

• The regular rectangle (angles 2π
4 ).

• The regular triangle (angles 2π
3 ).

• The rhombus with angles 2π
3 , π

6 ,
2π
3 , π

6 .

• The kite with angles 2π
3 , π

2 ,
π
2 ,

π
3 .

• The triangle with angles 2π
3 , π

6 ,
π
6 .

• The triangle with angles π
2 ,

π
3 ,

π
6 .

• The triangle with angles π
2 ,

π
4 ,

π
4 .

See Section 5.2.5 for the infinity boxes made with several of these special polygons.
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Figure 2.2: The Tokarsky Unilluminable Room is a polygonal shape where there exist pairs of two
points that do not illuminate each other [5]. Every pair of points marked in pink can not illuminate
each other.

We have now briefly discussed related literature for infinity boxes. We conclude that the topic of
dynamical billiards and illumination is very much related to infinity boxes. We will now begin by
formally introducing infinity boxes, rays and means to curve infinity boxes.
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3 Formal Infinity Boxes

3.1 Rays

In order to analyse the patterns created by infinity boxes, it is necessary to efficiently reflect and
collide with mirror surfaces using direct mathematical formulas. This will allow our simulator MiRai
to run without delay (real-time) when changing parameters. This chapter provides the foundation
for that raytracing theory.

We begin with the definition and notation of a ray and a mirror, which are simply lines and planes
respectively.

Definition 3.1.1 (Ray). A ray po⃗, d⃗q P Rn ˆ Sn´1 in Euclidian space is given by the equation

x⃗ptq “ o⃗ ` td⃗, t ě 0. (3.1)

Given a ray, we need to be able to compute its new direction as it gets reflected from a mirror
surface. We will define mirrors and vector reflections.

Definition 3.1.2 (Mirror). A mirror pc⃗, n⃗q P Rn ˆ Sn´1 is given by all points x⃗ P Rn that satisfy

xx⃗, n⃗y “ xc⃗, n⃗y. (3.2)

We will now define the mirroring of a vector in a normal.

Definition 3.1.3 (Vector Mirroring). Given a normal n⃗ P Sn´1. The vector mirroring x⃗˚ of
x⃗ P Rn is given by

x⃗˚ “ x⃗ ´ 2n⃗xx⃗, n⃗y. (3.3)

This definition of mirroring only provides the mirrored vector relative to the origin. For mirrors
with a position we define the affine mirroring.

Definition 3.1.4 (Affine Mirroring). Given a mirror pc⃗, n⃗q P Rn ˆ Sn´1. The affine mirroring
x⃗˚A of the point x⃗ P Rn in the mirror is given by

x⃗˚A “ c⃗ ` px⃗ ´ c⃗q˚ (3.4)
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Here, a subscript of ˚A indicates affine mirroring in the mirror pc⃗, n⃗q, and a subscript of ˚ indicates
vector mirroring in the normal n⃗.

Be careful to not confuse affine mirroring with vector mirroring. We will use affine mirroring with
subscript ˚A when mirroring a point in Euclidian space in a mirror, and vector mirroring with
subscript ˚ when mirroring a direction vector in a normal. Before we move to the Unfolding Theorem,
we first show that a mirroring operation (both affine and regular)

Lemma 3.1.1 (Mirror Inverse). Given a mirror pc⃗, n⃗q P Rn ˆ Sn´1. Then for all points x⃗ P Rn,
x⃗˚˚ “ x⃗ “ x⃗˚A˚A.

Proof. We first prove the result for vector mirroring.

x⃗˚˚ “ x⃗˚ ´ 2n⃗xx⃗˚, n⃗y

“ x⃗ ´ 2n⃗xx⃗, n⃗y ´ 2n⃗xx⃗ ´ 2n⃗xx⃗, n⃗y, n⃗y

“ x⃗ ´ 4n⃗xx⃗, n⃗y ` 4n⃗xx⃗, n⃗y

“ x⃗.

Now, for affine mirroring we have

x⃗˚A˚A “ c⃗ ` px⃗˚A ´ c⃗q˚

“ c⃗ ` pc⃗ ` px⃗ ´ c⃗q˚ ´ c⃗q˚

“ c⃗ ` px⃗ ´ c⃗q˚˚

“ x⃗.

This completes the proof.

Note that a reflection of an incoming vector (pointing towards the surface) off the surface is
equivalent to mirroring that vector in the surface. So Definition 3.1.3 can be used for reflection and
mirror. This is also clarified in Figure 3.1.
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n⃗x⃗ ´x⃗˚

´n⃗x⃗˚ ´x⃗

c⃗

Figure 3.1: Mirroring and reflections of a vector x⃗ around a normal n⃗. When a vector points in the
same direction as the normal, the result is a mirroring. If the vector points away from the normal
(like ´x⃗), then the result is a reflection.

3.2 The Unfolding Theorem

An important result, that is inuitively obvious, is the fact that undoing successive mirrorings on
collision points for rays, results in a point that lies on the initial ray o⃗0 ` td⃗0. This is similar to
”unfolding” a piece of paper. See Figure 3.2. This result justifies the numerical simulations that we
use to visualise 2D infinity boxes. We can find the position where a mirror point would appear to
a viewer by simply taking the total travelled distance t of the ray until that point and computing
o⃗ ` td⃗.

Theorem 4 (Unfolding Theorem). Given a sequence of rays po⃗i, d⃗iq for i “ 0, . . . , N where ray i`1

is a reflection of ray i in the mirror pc⃗i, n⃗iq given by the relation po⃗i`1, d⃗i`1q “ po⃗i ` Φid⃗i, pd⃗iq˚i
.

Then for all λ P R

po⃗N ` λd⃗N q˚AN´1¨¨¨˚A1
“ o⃗0 `

˜

λ `

N´1
ÿ

j“0

Φj

¸

d⃗0 (3.5)

Here, x⃗˚AN´1¨¨¨˚A1
indicates applying successive affine mirroring operations starting with mirror

N ´ 1.

Proof. Using induction on N , starting from N “ 1. We perform the affine mirroring of o⃗1 in the
first mirror po⃗1, d⃗0, n⃗0q. Note that the mirror center is given by o⃗1 “ o⃗0 ` Φ0d⃗0. We get

po⃗1 ` λd⃗1q˚A0 “ o⃗1 ` po⃗1 ` λd⃗1 ´ o⃗1q˚0

“ o⃗1 ` λpd⃗1q˚0

“ o⃗0 ` Φ0d⃗0 ` λd⃗0

“ o⃗0 ` pλ ` Φ0qd⃗0

13



o⃗0

d⃗0

po⃗2q˚A1

pd⃗1q˚1

po⃗2 ` λd⃗2q˚A2˚A1

o⃗1
d⃗1

o⃗2

λd⃗2

Figure 3.2: The Unfolding Theorem identity asserts that all points po⃗1, o⃗2`λd⃗2q along the trajectory

of a ray lie on the ray’s initial trajectory o⃗ ` td⃗. This result is used to visualise image points for
infinity boxes in 2D.

Now we assume that the induction hypothesis holds up until N . We consider the collision point
o⃗N`1 and mirror it in all mirrors up until that point to obtain

po⃗N`1 ` λd⃗N`1q˚AN ¨¨¨˚A1
“ ppo⃗N`1 ` po⃗N`1 ` λd⃗N`1 ´ o⃗N`1qq˚AN´1¨¨¨˚A1

“ ppo⃗N`1 ` λpd⃗N`1q˚N
qq˚AN´1¨¨¨˚A1

“ po⃗N ` ΦN d⃗N ` λd⃗N q˚AN´1¨¨¨˚A1

“ po⃗N ` pλ ` ΦN qd⃗N q˚AN´1¨¨¨˚A1

I.H
“ o⃗0 `

˜

λ `

N
ÿ

j“0

Φj

¸

d⃗0

This completes the proof.
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3.3 The Infinity Box

In order to work with infinity boxes in R2 and R3 we need a consistent definition for infinity boxes.
This definition is given below.

Definition 3.3.1 (Infinity Box). An infinity box in Rn is a set F Ă Rn that satisfies

• F – Sn´1 (F is a topological sphere).

• 0⃗ P InteriorpF q.

• The normal n⃗px⃗q : F Ñ Sn´1 is a piecewise-continuous function in x⃗.

This definition ensures that the infinity box is a closed shape from which a ray can not escape.
We require only piece-wise continuity such that infinity boxes with flat faces also fall under this
definition.

We provide the general definition to lay a foundation for more specialised definitions of infinity boxes.
Throughout this Chapter, we will mostly be working with flat-faced infinity boxes with vertices on
the unit sphere. We begin with defining the notion of a ”flat” infinity box.

Definition 3.3.2 (Flat Infinity Box). An infinity box F Ă Rn is called flat if the normal function
n⃗px⃗q : F Ñ Sn´1 is piecewise-constant in x⃗ on polytopes Pi in n ´ 1 dimensions.

Every such polytope is called a face Pi for i “ 0, . . . , N with N P N.

We want each set Pi to be an affine space of dimension n ´ 1 such that there exists a single mirror
normal that we can use for mirror reflections. See Figure 3.3 for an example of a flat and an
arbitrarily shaped infinity box in R2.

n⃗
n⃗

Figure 3.3: A flat pentagon (Left) and smooth curve (Right) infinity box in R2.

Our next definition further specializes the definition of a flat infinity box to those which have vertices
on the unit sphere. These are what we called ”spherical flat” infinity boxes.

Definition 3.3.3 (Spherical Flat Infinity Box). A flat infinity box is called spherical flat if all
vertices on the faces Pi, i “ 0, . . . , N lie on the unit sphere.

Note that a consequence of having all polytope faces Pi on the unit sphere is that the line λn⃗i with
n⃗i P Sn´1 the normal of the polytope, is equidistant to all vertices of Pi. A sphere centered on a
line along the normal passes through all vertices.

In R2, the definition of the spherical flat infinity box can be simplified. Spherical flat infinity boxes
are called ”circular flat” in R2. The vertices lie on the unit circle.
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Definition 3.3.4 (Circular Flat Infinity Box). An infinity box F Ă R2 is called circular flat if for
all vertices v⃗i with i “ 1..n in the union of Pj we have

v⃗i “

ˆ

cospαiq

sinpαiq

˙

, i “ 1, . . . , n. (3.6)

With αi P r0, 2πq. In addition, the infinity box is said to be N-Regular if αi “ 2π
N for all i “ 1, . . . , n.

We will now turn our attention to our primary object of investigation: curved infinity boxes. Since
infinity boxes can be curved in a myriad of different ways, we will consider only curving using spheres
and circles. This brings us to the next section.

3.4 Spherical Infinity Boxes

We will define a continuous transformation from a spherical flat infinity box to a curved infinity box
by replacing each face Pi with a section of a sphere. The center of the sphere will be varied with a
parameter named λ along the normal of the face. and is given by

c⃗ipλq “ λn⃗i, λ P R. (3.7)

Note we can choose λ per face as well, but our definitions will use the same λ for all faces.

By the definition of spherical flat infinity boxes, we know that this sphere center c⃗i will pass through
the center of the face Pi (since its vertices lie on the unit sphere). In addition we know that each
vertex of the face has an equal distance to c⃗i. Let v⃗i be such a vertex on the face Pi. Then, we set
the radius of the sphere equal to

ripλq “ ∥v⃗i ´ c⃗ipλq∥, (3.8)

The sphere will pass through all vertices of the face Pi for all λ. In order to now continuously
transform points on the face Pi to the sphere defined above, we simply project the points of the face
onto the sphere from the origin.

Definition 3.4.1 (Spherical Infinity Boxes). Given a spherical flat infinity box F Ă Rn. The induced
spherical infinity box given by SλpF q Ă Rn is defined as

SλpF q “ p⃗pF q (3.9)

Here, p⃗px⃗q “ spx⃗qx⃗ : F Ñ Rn must be a continuous function. The scaling factor spx⃗q for a point
x⃗ P HullpPiq on the face Pi with normal n⃗i and a vertex v⃗i must satisfy

∥spx⃗qx⃗ ´ λn⃗i∥ “ ∥v⃗i ´ λn⃗i∥, λ P R8. (3.10)

Since this condition will have two solutions because we are projecting on a sphere, we take spx⃗q ą 1
if λ ď 0 and spx⃗q ă 1 if λ ą 0. This corresponds to projecting on the outer part and inner part of
the sphere respectively.

λ is called the curving parameter. A value λ for which p⃗px⃗q becomes discontinuous is called a
critical curving parameter. If λ “ 8, then SλpF q is simply the flat-faced infinity box F .
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See Figure 3.4 for a visual explanation of spherical infinity boxes.

x⃗

spx⃗qx⃗
x⃗1

x⃗2

c⃗i

x⃗

spx⃗qx⃗

x⃗1

x⃗2

c⃗i

Figure 3.4: Spherical (Left) and Hyperbolic (Right) Infinity Box construction through projection
from a flat pentagon infinity box in R2. A poiint x⃗ is projected onto the sphere passing through its
face by means of scaling with sx⃗.

3.5 Curving Parameter For Desired Internal Angle

Now that we have defined the spherical infinity boxes, we want to compute values of λ that result
in infinity boxes with special properties. In this section we will derive the curving parameter λ for
which an infinity box SλpF q has an internal angle between two faces β P r0, 2πs that we can freely
choose.

Before we can compute such a formula for λ, we must first derive a formula for the ”angle” between
two intersecting spheres. It should come intuitively that two intersecting spheres in R3 have the
same angle between their normals anywhere on the intersection surface. We will begin computing
this angle in the form of a dot product for an arbitrary pair of hyperspheres.

To bring the concept of ”angles” to higher dimensions, we realize that angles between vectors are
equivalent to inner products. We will state without proof a common result from linear algebra.

Proposition 1 (Angle Between Two Vectors). The angle α P r0, πs between two vectors a⃗, b⃗ P Rn

is given by

cospαq “
x⃗a, b⃗y

∥a⃗∥∥⃗b∥
(3.11)

We will work with inner products over angles in our results for dimensions higher than R2. We will
now provide the preliminary result for the dot product between normals on the intersection surface
of spheres. We will call this dot product the ”Sphere Inner Product”.
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Theorem 5 (Sphere Inner Product). Given two intersecting spheres pc⃗1, r1q, pc⃗2, r2q P Rn ˆ Rą0.
The inner product between any two normals n⃗1, n⃗2 P Sn´1 on the intersection between both spheres
is called the Sphere Inner Product S‚ and is given by

S‚pc⃗1, r1; c⃗2, r2q “ xn⃗1, n⃗2y “
r21 ` r22 ´ ∥c⃗1 ´ c⃗2∥2

2r1r2
(3.12)

Proof. Let x⃗ lie on both spheres. Starting from the normals we have

xn⃗1, n⃗2y “

B

x⃗ ´ c⃗1
r1

,
x⃗ ´ c⃗2
r2

F

“
1

r1r2

´

xx⃗, x⃗y ´ xx⃗, c⃗1 ` c⃗2y ` xc⃗1, c⃗2y

¯

.

To eliminate the term with x⃗, we rewrite the equation for x⃗ to lie on the sphere c⃗ with radius r,

∥x⃗ ´ c⃗∥ “ r

xx⃗ ´ c⃗, x⃗ ´ c⃗y “ r2

xx⃗, x⃗y ´ 2xx⃗, c⃗y ` xc⃗, c⃗y “ r2.

This results in
xx⃗, x⃗y “ r2 ´ xc⃗, c⃗y ` 2xx⃗, c⃗y

Since we must use the fact that x⃗ lies on both spheres, we average the above equality for both
spheres. This yields

xx⃗, x⃗y “
r21 ` r22 ´ xc⃗1, c⃗1y ´ xc⃗2, c⃗2y

2
` xx⃗, c⃗1 ` c⃗2y.

Substituting this back in the inner product of the normals and multiplying by 2{2 results in

1

2r1r2

´

r21 ` r22 ´
`

xc⃗1, c⃗1y ´ 2xc⃗1, c⃗2y ` xc⃗2, c⃗2y
˘

¯

.

Now we can recognize the inner term in brackets as simply the inner product xc⃗1 ´ c⃗2, c⃗1 ´ c⃗2y “

∥c⃗1 ´ c⃗2∥2, resulting in the formula

r21 ` r22 ´ ∥c⃗1 ´ c⃗2∥2

2r1r2
.

This simple geometric result allows us to directly compute the angle between two intersecting spheres
in Rn. If we now take two neighboring faces P1 and P2 of a spherical flat infinity box and insert the
formulas for the spheres passing through them, pc⃗pλq1, r1q, pc⃗pλq2, r2q, then we can solve for λ such
that S‚ “ p with p our desired inner product between the normals. We present the main result of
this section.
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Theorem 6 (Curving Parameter For Sphere Inner Product). Given two faces P1, P2 Ă Rn with

normals n⃗1, n⃗2 P Sn´1 and a common vertex N⃗ P P1 X P2 satisfying xN⃗ , n⃗1y “ xN⃗ , n⃗2y ą 0 for all
λ P R.

Given two spheres pλn⃗1, rq, pλn⃗2, rq P Rn ˆ Rą0 with common radius r “ ∥N⃗ ´ λn⃗1∥. Then, the
curving parameter λ for which S‚pλn⃗1, r;λn⃗2, rq “ p is given by

λS˘pN⃗ , n⃗1, n⃗2; pq “
qxN⃗ , n⃗1y ˘

?
q

b

p ´ xn⃗1, n⃗2y ` qxN⃗ , n⃗1y2

xn⃗1, n⃗2y ´ p
P R. (3.13)

Here q “ 1 ´ p with |p| ď 1. A lower bound for p is given by the critical angle p˚

p˚ “
xn⃗1, n⃗2y ´ xN⃗ , n⃗1y2

1 ´ xN⃗ , n⃗1y2
ď p. (3.14)

The value λ˚
S “ λS˘pN⃗ , n⃗1, n⃗2; p

˚q is the critical curving parameter. It is given by

λ˚
S “

1

xN⃗ , n⃗1y
“ 2λ0. (3.15)

Here, λ0 is an additional solution (apart from λ “ 8) that satisfies p “ xn⃗1, n⃗2y. Finally, we have
that λS´ P r0, λ˚

Ss and λS` P p´8, 0s Y rλ˚
S ,8q.

Proof. We will begin by inserting the spheres in the expression for S‚.

S‚pc⃗1, r; c⃗2, rq “
r2 ` r2 ´ ∥c⃗1 ´ c⃗2∥2

2rr

“ 1 ´
∥c⃗1 ´ c⃗2∥2

2r2
.

(3.16)

Then we first simplify the numerator. This results in

∥c⃗1 ´ c⃗2∥2 “ ∥λn⃗1 ´ λn⃗2∥2

“ λ2∥n⃗1 ´ n⃗2∥2

“ λ2pxn⃗1, n⃗1y ´ 2xn⃗1, n⃗2y ` xn⃗2, n⃗2yq

“ 2λ2p1 ´ xn⃗1, n⃗2yq.

(3.17)

In a similar fashion we can simplify the denominator,

r2 “ ∥N⃗ ´ λn⃗1∥2

“ xN⃗ ´ λn⃗1, N⃗ ´ λn⃗1y

“ xN⃗ , N⃗y ´ 2λxN⃗ , n⃗1y ` λ2xn⃗1, n⃗1y

“ 1 ` λ2 ´ 2λxN⃗ , n⃗1y.

(3.18)
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Note that using n⃗1 or n⃗2 in Equation 3.18 does not matter since xN⃗ , n⃗1y “ xN⃗ , n⃗2y. We substitute
these two equations back in Equation 3.16, which results in

S‚ “ 1 ´
λ2p1 ´ xn⃗1, n⃗2yq

1 ` λ2 ´ 2λxN⃗ , n⃗1y
. (3.19)

Rewriting this equation with p “ S‚ and q “ 1 ´ p yields

λ2p1 ´ xn⃗1, n⃗2yq

1 ` λ2 ´ 2λxN⃗ , n⃗1y
“ q

λ2pxn⃗1, n⃗2y ´ pq ´ 2qxN⃗ , n⃗1yλ ` q “ 0

(3.20)

In the case that xn⃗1, n⃗2y “ p, we obtain the special solution λ0.

λ0 “
1

2xN⃗ , n⃗1y
. (3.21)

This solution is related to the critical curving parameter as we shall see.

Now we recognize this as a quadratic equation in λ. If xn⃗1, n⃗2y “ p, then we have λ “ 8 We first
simplify the discriminant.

D “ p´2qxN⃗ , n⃗1yq2 ´ 4pxn⃗1, n⃗2y ´ pqq

D “ 4qpp ´ xn⃗1, n⃗2y ` qxN⃗ , n⃗1y2q.
(3.22)

Finally, solving the quadratic formula from Equation 3.20 with this discriminant results in

λ˘ “
2qxN⃗ , n⃗1y ˘

b

4qpp ´ xn⃗1, n⃗2y ` qxN⃗ , n⃗1y2q

2pxn⃗1, n⃗2y ´ pq

λ˘ “
qxN⃗ , n⃗1y ˘

?
q

b

p ´ xn⃗1, n⃗2y ` qxN⃗ , n⃗1y2

xn⃗1, n⃗2y ´ p
.

(3.23)

Which is exactly what we wanted to prove. For the condition on p, we rewrite what it means for
the terms under the square root to be positive. We already have |p| ď 1 so

?
q is real. The second

square root results in

0 ď p ´ xn⃗1, n⃗2y ` qxN⃗ , n⃗1y2

0 ď p ´ xn⃗1, n⃗2y ` p1 ´ pqxN⃗ , n⃗1y2

0 ď pp1 ´ xN⃗ , n⃗1y2q ´ xn⃗1, n⃗2y ` xN⃗ , n⃗1y2

p ě
xn⃗1, n⃗2y ´ xN⃗ , n⃗1y2

1 ´ xN⃗ , n⃗1y2
“ p˚.

(3.24)

If we compute the value of λ˚
S for p˚, then we end up with twice λ0.
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λ˚
S “

qxN⃗ , n⃗1y

xn⃗1, n⃗2y ´ p

“
qxN⃗ , n⃗1y

qxN⃗ , n⃗1y2

“
1

xN⃗ , n⃗1y
“ 2λ0.

(3.25)

The last thing we must prove is the parameter ranges of λS` and λS´. We start by showing under
which condition we have that

qxN⃗ , n⃗1y ˘
?
q

b

p ´ xn⃗1, n⃗2y ` qxN⃗ , n⃗1y2 ě 0 (3.26)

Clearly, since q ě 0 and xN⃗ , n⃗1y ą 0, for the
À

term we have that this will be true. Now we consider
the circumstances under which it holds for

Á

.

q2xN⃗ , n⃗1y2 ě qpp ´ xn⃗1, n⃗2y ` qxN⃗ , n⃗1y2q

qxN⃗ , n⃗1y2 ě p ´ xn⃗1, n⃗2y ` qxN⃗ , n⃗1y2

xn⃗1, n⃗2y ě p

(3.27)

Comparing this with the expression for λS´, we have the sign of the numerator and denominator
both dependent on xn⃗1, n⃗2y ą p. This means that they are positive and negative at the same time,
hence λS´ ě 0.

For the bounds λS´ ď λ˚
S ď λS`, we analyse the behavior of λ near p˚ by setting p “ p˚ ` ε ď 1

with ε ą 0. We have already shown equality in Equation 3.25. Now inserting this perturbed p we
obtain

λ˘ “
pq˚ ´ εqxN⃗ , n⃗1y ˘

?
q˚ ´ ε

b

p˚ ` ε ´ xn⃗1, n⃗2y ` pq˚ ´ εqxN⃗ , n⃗1y2

xn⃗1, n⃗2y ´ p

“
pq˚ ´ εqxN⃗ , n⃗1y ˘

?
q˚ ´ ε

b

εp1 ´ xN⃗ , n⃗1y2q

pq˚ ´ εqxN⃗ , n⃗1y2

“

À

˘
?
ε ¨

À

À ,
à

ą 0.

(3.28)

This means that the if we increase ε to move away from the critical curvature p˚, we will have
λS` increasing and λS´ decreasing. Combining this with λS´ ě 0 we have that λS´ P r0, λ˚

Ss.
Furthermore, we know λS` ě λ˚

S if xn⃗1, n⃗2y ą p. This means that λS` P p´8, 0s Y rλ˚
S ,8q. This

finishes the proof of the theorem.

See Figure 3.5 for a visual overview of the bounds on λS˘ and the explanation why we use λS` for
infinity boxes.
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Note that p˚ “ ´1 when n⃗2 “ n⃗1˚A
(the mirroring of n⃗1 about N⃗), which is equivalent to N⃗ P

Spantn⃗1, n⃗2u. In R2, this will always hold. This means that all possible values for p, and hence all
possible angles between two circles of infinity boxes are possible in R2.

However, in general for R3 and beyond, we do not have that N⃗ P Spantn⃗1, n⃗2u. This indicates that
making higher-dimensional spheres meet at any angle is not possible in general. This is relevant to
the curving of infinity boxes in R3.

Another observation and validation to make on this formula is the value of λS˘
when we set the

vectors N⃗ “ n⃗1 “ n⃗2 for the geometry of a sphere. A simple computation will reveal that λS˘ “ 1
regardless of p. In addition, we have p˚ “ 1 after taking a limit such that the only possible value p
for a sphere is p “ 1 as expected.

The λ Curving Parameter Range

One very important thing we wish to note for λ˘S is the fact that there are two solutions provided
by Theorem 6. However, only one of these two λ will be the one that we intended to find. We will
from now on set λS` “ λS as the curving parameter for spherical infinity boxes. This is because
λS` is the only curving parameter which converges to ˘8 as p Ñ xn⃗1, n⃗2y (we want flat infinity
boxes as solutions).

This also means that we discard λ0 for p “ xn⃗1, n⃗2y because it falls in the range of λS´. An overview
of the parameter ranges for λS˘ is given below along with their meaning.

À

Spherical

λ “ ´8

Flat

λ “ 0

Sphere Other

Á

λ “ λ˚
À

Hyperbolical

λ “ `8

Flat

Figure 3.5: Parameter ranges for λS` “
À

and λS´ “
Á

. Since we want to include the flat infinity
boxes in our parameter range, we pick λS “ λS`. The values of λ in the

Á

range are those where
the spheres of the spherical infinity box SλpF q no longer meet at the vertices of faces, making them
invalid (the transformation p⃗px⃗q is no longer continuous). λ˚ is called the critical curving parameter.

Specialisation For R2

In R2 we can specialise the result from Theorem 6 for polygons with an angle of α between two
points and a desired inner angle β. For illustration, we will derive this equation by a geometrical
argument rather than to substitute cosines in Theorem 6. The below theorem gives the curving
parameter λ for which the internal angle of a circular N-Regular infinity box is equal to β.

Theorem 7 (Curving Parameter For Internal Angle). Let F be an N-Regular infinity box with angle
α “ 2π

N between vertices. Then, the curving parameter λ P R for which the internal angle between
two meeting spheres of SλpF q is equal to β P r0, 2πs is given by

λSpα, βq “

cos

ˆ

β

2

˙

cos

ˆ

α ` β

2

˙ , α, β ă 2π. (3.29)

In addition, the associated circle radius is given by
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r2 “ 1 ` λ2
A ´ 2λA cos

´α

2

¯

. (3.30)

Proof. Let the spacing of the points be given by α. Then we can define the circle center c⃗ as

c⃗ “ λ

ˆ

cospα
2 q

sinpα
2 q

˙

, λ P R (3.31)

The vector pointing from c⃗pλq to N⃗ “ p1, 0q is given by

N⃗ ´ c⃗pλq “

ˆ

1 ´ λ cos
`

α
2

˘

´λ sin
`

α
2

˘

˙

(3.32)

Then, from a geometrical argument, we see that this relates our desired internal angle β in the
following way. (See Figure 3.6 for justification to this argument.)

tan

ˆ

π

2
´

β

2

˙

“
λ sinpα

2 q

λ cospα
2 q ´ 1

(3.33)

If we solve for λ, then we end up with

λ “
tan

´

π
2 ´

β
2

¯

tan
´

π
2 ´

β
2

¯

cos
`

α
2

˘

´ sin
`

α
2

˘

(3.34)

.

We start by simplify the tangent. The tangent can be reduced to

tan

ˆ

π

2
´

β

2

˙

“
sin

´

π
2 ´

β
2

¯

cos
´

π
2 ´

β
2

¯ “
cos

´

β
2

¯

sin
´

β
2

¯ . (3.35)

Now we can simplify the denumerator by means of the cosine sum formula. The cosine sum formula
states cospα ` βq “ cospαq cospβq ´ sinpαq sinpβq. We find that

tan

ˆ

π

2
´

β

2

˙

cos
´α

2

¯

´ sin
´α

2

¯

“
cos

´

β
2

¯

sin
´

β
2

¯ cos
´α

2

¯

´ sin
´α

2

¯

“
1

sin
´

β
2

¯

´

cos
´α

2

¯

cos

ˆ

β

2

˙

´ sin
´α

2

¯

sin

ˆ

β

2

˙

¯

“

cos

ˆ

α ` β

2

˙

sin

ˆ

β

2

˙ .

(3.36)
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Now substituting this in Equation 3.33 results in

λ “

cos

ˆ

β

2

˙

cos

ˆ

α ` β

2

˙ . (3.37)

Which is the primary result that we wanted to prove. To find the associated arc radius, we simply
take the length of the vector N⃗ ´ c⃗. This finishes the proof.

p1, 0q

α “ 72˝

´72˝

c⃗pλq

γ
1
2β0⃗

Figure 3.6: Derivation of the internal angle alignment. A tangent is constructed from the line passing
though c⃗pλq and p1, 0q.

Note that Theorem 7 only provides one solution. This solution is equal to λS` from Theorem 6,
due to the nature of the derivation. We do not need to worry about a second solution like λS´ in
this argument. The critical curving parameter in this case can also be simply found as

λSpα, 2πq “
1

cos
´α

2

¯ . (3.38)

We can immediately note that as α Ñ 8, then λS Ñ 1. In other words, the critical curving
parameter of a unit circle is 1 (where λn⃗ lies exactly on the circle itself). We will now turn our
attention to the second curving parameter of interest: the image aligning curvature parameter for
which the first-order image points in an infinity box come together.
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3.6 Curving Parameter For First-Order Image Point Align-
ment

A second result for spheres that we will later use with infinity boxes is the formula for the curvature
λ for which the sphere normal forms is orthogonal specified vector.

Theorem 8 (Curvature For Normal Alignment). Given an incident vector and outgoing vector,

d⃗, r⃗ P Sn´1 respectively. Let N⃗ P Rn be a point on the sphere with pλv⃗, rq P Rn ˆ Rą0 with λ P R.
The value of λ for which the sphere normal n⃗ at N⃗ satisfies xd⃗, n⃗y “ x ⃗́r, n⃗y is given by

λN pN⃗ , v⃗; d⃗, r⃗q “
xd⃗ ` r⃗, N⃗y

xd⃗ ` r⃗, v⃗y
. (3.39)

That is, this is the curving parameter for which an incident vector d⃗ and outgoing vector r⃗ have an
equal angle to n⃗. (In general, this does not imply that r⃗ is the reflection of d⃗).

Proof. The inner product between the sphere normal at N⃗ and p⃗ “ d⃗ ` r⃗ is given by

1

r

A

p⃗, N⃗ ´ λv⃗
E

“

1

r

´

xp⃗, N⃗y ´ λxp⃗, v⃗y

¯

“

1

r

´

xp⃗, N⃗y ´ xp⃗, N⃗y

¯

“ 0.

(3.40)

Where r “ ∥N⃗ ´ λn⃗∥ ą 0 is the radius of the sphere.

The curvature required for aligning two image points in an infinity box is important in a first attempt
at aligning infinity boxes. The sphere normal alignment formula from Theorem 8 provides exactly
what is needed. Given an incident vector d⃗ and a desired reflected vector r⃗, Theorem 8 gives the
curvature for which reflection of d⃗ at the point N⃗ is equal to r⃗.

Note that Theorem 8 only grants that d⃗˚ “ r⃗ d⃗˚ given that N⃗ , v⃗ P Spantd⃗, r⃗u (the four vectors span
a two-dimensional subspace). For R3 and higher, care must be taken to check if this condition is

true. Otherwise λN does not ensure that the ray with direction d⃗ gets reflected to r⃗ (which is what
we seek).

In R2 we can again achieve a nicer result for N-Regular infinity boxes. This formula is provided
here. We also have from the reasoning above that d⃗˚ “ r⃗.

Theorem 9 (Curving Parameter For First-Order Image Point Alignment). Given an N-Regular
infinity box F with point spacing α “ 2π

N . The curving parameter λ for which the reflection of the

incident vector d⃗ “ p1, 0q at the point N⃗ “ p1, 0q of the circular infinity box SλpF q points towards
the vertex with angle αn is given by

λI1pα, nq “

1 ´ sin
´

n
α

2

¯

cos
´α

2

¯

´ sin
´

pn ` 1q
α

2

¯ ď 0, 1 ă n ă
N

2
. (3.41)

25



If λI1 ą 0, then the resulting infinity box Sλ is no longer convex, making λI1 invalid in general. This
is because the ray can get obstructed when it gets reflected.

Proof. Using Theorem 8, set d⃗ and N⃗ as given, and r⃗ equal to

r⃗n “

ˆ

´ sin
`

nα
2

˘

cos
`

nα
2

˘

.

˙

Here r⃗i is the ray pointing from N⃗ to the vertex with angle αi. This expression is derived by
observing that the angle γ of r⃗ is given by nα ` 2pπ ´ γq “ π, since the vertex with angle αn and

N⃗ form a symmetric triangle. Now, applying Theorem 8 results in

xd⃗ ` r⃗, N⃗y

xd⃗ ` r⃗, n⃗y
“

1 ´ sin
`

nα
2

˘

cos
`

α
2

˘

´ sin
`

pn ` 1qα
2

˘ .

By using the summation formula for sines.

Theorem 9 is used to connect N-Regular infinity boxes at their first image point. Due to the
symmetry of N-Regular infinity boxes at the right point p1, 0q, rays that reflect with either mirror
normal will both end up in opposing corner vertices. This results in the world image points of these
rays to coincide.

Formulas to align higher-order image points are beyond the scope of this paper, as the formulas for
computing them will require the collision formula for spheres due to the second collision point no
longer being fixed like N⃗ .
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3.7 Tables With Common Curving Parameters

In the following sections we will provide tables of curving parameters λ for commonly used infinity
boxes. These curving parameters are later used in numerical simulations. To compute the tables, we
will use the main results from Section 3.5 and Section 3.6. Note: The sphere and circle radii rpλq for

each value of λ can be computed from rpλq “ ∥N⃗ ´λn⃗∥ with N⃗ a vertex of the polygon/polyhedron

and n⃗ the face normal of the face connected to N⃗ . All results are subject to numerical impre-
cisions, and rounding errors of approximately ˘0.01. Exact expressions can be computed for all
values.

For reference in computing radii, the radius of the image-aligned dodecahedron infinity box computed
from the curving parameter λ “ ´11.4686 (Dodecahedron λN Table 3.8) is given by r “ 12.2782.
The radius of the 120˝ internal angle dodecahedron infinity box with λ “ ´15.6483 (Dodecahedron
λSpcosp60˝qq) is given by r “ 16.4541.

A value λ ă 0 indicates a convex spherical infinity box. A value of λ “ 0 indicates a fully spherical
infinity box. A value of λ ą 0 indicates a concave spherical infinity box. A value of λ “ ˘8 indicates
a flat infinity box. The closer λ is to zero, the more curvature the infinity box will have. For an
overview of the meaning of the λ parameter, see Figure 3.5 (λ Parameter Range).

3.7.1 N-Regular Polygons

We have listed the curving parameters for N-Regular polygons in Table 3.7. The critical curving
parameters λ˚

S “ λSpα, 360˝q have been provided as well.

N α 180˝ ´ α λI1pα, 1q λSpα, 120˝q λ˚
S

3 120˝ 60˝ ´0.3660 ´1 2
4 90˝ 90˝ ´1 ´1.9318 1.4142
5 72˝ 108˝ ´2.9021 ´4.7833 1.2360
6 60˝ 120˝ 8 8 1.1547
7 51.42˝ 128.58˝ Concave 6.6907 1.1098
8 45˝ 135˝ Concave 3.8306 1.0823
9 40˝ 140˝ Concave 2.8793 1.0641
10 36˝ 144˝ Concave 2.4048 1.0514

Figure 3.7: The curving parameters λI1 (first-order image alignment) and λS (120˝ internal angle
alignment) for the N-Regular polygons. We omit λI1 ą 0 because then the resulting infinity box is
convex, making Theorem 9 invalid.

3.7.2 Platonic Solids

In this section we will look at the curving parameters of interest for the tetrahedron, cube, dodecahe-
dron, octahedron and icosahedron. The process of computing the curving parameters λSpN⃗ , n⃗1, n⃗2; pq

and λI1 “ λN pN⃗ , v⃗; d⃗, r⃗q requires us to find the vertices, face normals and incoming- and outcom-
ing ray directions for each of them. For the sphere alignment angle p required for λS , we set
p “ cosp180˝ ´ 120˝q “ cosp60˝q. This is because the relation between the internal angle β and the
angle between the normals γ is given by
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β ` γ ` π “ 2π. (3.42)

Name β λN λSpcosp60˝qq λ˚
S p˚

Tetrahedron 70.52˝ ´0.3797 ´1.0000 3.0001 ´0.4999
Cube 90˝ ´1 ´1.7320 1.7320 ´0.5
Octahedron 109.47˝ Non-planar ´4.1815 1.7320 0
Dodecahedron 116.56˝ ´11.4686 ´15.6483 1.2584 ´0.4998
Icosahedron 138.19˝ ´3.3993 2.3849 1.2581 0.3090

Figure 3.8: Curving parameters for the platonic solids. The curving for image alignment is performed
by curving the mirrors until a ray cast at one vertex ends up in another. The curving for internal
angles is performed by applying Theorem 6 to two faces of the polyhedron. The octahedron is the
only shape for which it is not possible to align image points using Theorem 8.

Taking a look at Table 3.8, we can see that the icosahedron requires a positive curving parameter
λS ą 0 in order to obtain a internal angle of 120˝. This makes sense because its internal angle is
greater than 120˝. This table also clearly illustrates duality between the cube and the octahedron,
and the dodecahedron and icosahedron, by looking at the value of λ˚

S . It appears to be identical
for polyhedra that are dual to each other. However, the corresponding angle lower bound p˚ is not
correlated at all.

The reason why we could not provide a value λN for the octahedron is because a ray cast from the
center at one vertex can never reflect into another vertex. See Figure 3.9

Figure 3.9: The octahedron can not be aligned to image points. A ray cast at one of the vertices
from the origin, can never strike another vertex by curving the mirrors.
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4 Ray Collision Testing

In this Chapter we will elaborate on finding the collision step Φ for use in numerical simulations and
ray tracing. A collision step Φpo⃗, d⃗q P R8 is a function on a ray that gives the distance that the ray
can travel until it collides with a surface. These surfaces can be anything from planes to spheres.
The collision step is needed to simulate how a ray moves through the infinity box.

We will begin with the primitive collision formulas of rays with planes and spheres in any dimen-
sion.

4.1 Plane Collisions

The simplest form of collision detection of a ray is with an infinite plane prescribed by a single
normal. This result is used in simulating flat infinity box mirrors.

Theorem 10 (Ray Collision Step For Planes). Let all vectors lie in Rn. Given a ray po⃗, d⃗q and a

plane with normal n⃗. The collision step ΦP pn⃗; o⃗, d⃗q for which the ray o⃗` td⃗ lies on the plane is given
by

ΦP pc⃗, n⃗; o⃗, d⃗q “
xc⃗ ´ o⃗, n⃗y

xd⃗, n⃗y
(4.1)

Proof. We insert the condition on Φ in the equation for the plane to obtain

xo⃗ ` Φd⃗, n⃗y “ xo⃗, n⃗y ` Φxd⃗, n⃗y “ xc⃗, n⃗y

Φ “
xc⃗ ´ o⃗, n⃗y

xd⃗, n⃗y
.

This yields the desired result.

Note that the solution is 8 if d⃗ and n⃗ are orthogonal. We now turn our attention to sphere
collisions.
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4.2 Sphere Collisions

For simulating of curved mirrors, we will need to collide with spheres. We first provide an intermedi-
ate result that simply computes the intersections of a ray and a sphere without taking into account
which intersection is the first the ray will hit.

Theorem 11 (Ray-Sphere Intersection). Let all vectors lie in Rn. Given a ray po⃗, d⃗q and a sphere

with center c⃗ and radius r. The values t˘ for which the ray o⃗ ` t˘d⃗ lies on the sphere are given

t˘ “ xc⃗ ´ o⃗, d⃗y ˘

b

xc⃗ ´ o⃗, d⃗y2 ` r2 ´ ∥c⃗ ´ o⃗∥2, (4.2)

under the condition that the discriminant is not negative,

D “ xc⃗ ´ o⃗, d⃗y2 ` r2 ´ ∥c⃗ ´ o⃗∥2 ě 0. (4.3)

Proof. We insert the equation for the ray o⃗ ` td⃗ in the equation for the sphere to obtain

xo⃗ ` td⃗ ´ c⃗, o⃗ ` td⃗ ´ c⃗y “ r2

t2xd⃗, d⃗y ´ 2txc⃗ ´ o⃗, d⃗y ` ∥c⃗ ´ o⃗∥|2 ´ r2 “ 0.

Now let A be xd⃗, d⃗y “ 1, B be 2xo⃗ ´ c⃗, d⃗y and C be ∥c⃗ ´ o⃗∥2 ´ r2 then we have

t˘ “
´B ˘

?
B2 ´ 4AC

2A

“
´2xo⃗ ´ c⃗, d⃗y ˘

b

4xo⃗ ´ c⃗, d⃗y2 ´ 4p∥c⃗ ´ o⃗∥2 ´ r2q

2

“ xc⃗ ´ o⃗, d⃗y ˘

b

xc⃗ ´ o⃗, d⃗y2 ` r2 ´ ∥c⃗ ´ o⃗∥2q

(4.4)

Recognizing the discriminant under the root yields the desired result.

The discriminant under the square root determines the number of intersections the ray has with
the sphere along its trajectory. This number can be zero if the ray misses (D ă 0), one if the ray
”touches” (D “ 0) and two if the ray enters and leaves pD ą 0q. If we ignore ”touch” collisions
with D “ 0, it is clear that if D ď 0, then the ray has no collisions with the sphere. Using this
information, we will create two collision step functions, one for colliding with the interior and one
for colliding with the exterior of a sphere.
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Corollary 11.1 (Ray Collision Step For Spheres). Let all vectors lie in Rn. Given a ray po⃗, d⃗q and
a sphere with center c⃗ and radius r Let D. Then, given the discriminant D and intersections points
t˘ of the ray o⃗ ` td⃗, the collision steps ΦS˘pc⃗, r; o⃗, d⃗q are given by

ΦS˘pc⃗, r; o⃗, d⃗q “

$

’

&

’

%

maxtt˘u D ą 0, S`

mintt˘u D ą 0, S´

8 D ď 0.

(4.5)

Here, ΦS` and ΦS´
are for colliding with the interior and exterior of the sphere respectively.

Two cases for ray-sphere collisions are illustrated in Figure 4.1 and Figure 4.2. These correspond
to exterior and interior collisions. In our numerical simulations, we discard collisions with Φ ď 0 or
Φ “ 8.

c⃗r x⃗ptq

o⃗
t⃗´

t⃗`

Figure 4.1: Exterior collision of a ray with a sphere.

c⃗r x⃗ptq

o⃗
t⃗´

t⃗`

Figure 4.2: Interior collision of a ray with a sphere, with t´ ă 0 ignored.
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4.3 Infinity Box Collisions

When colliding with multiple spheres at once, we must take care to collide only with the domains of
the sphere that we are interested in. For spherical infinity boxes, we want that the edges of face act
as the boundary of the sphere that is passing through that face. We do not want to collide with the
parts of a sphere that do not originate from the projecting corresponding face onto the sphere. This
is important when compositing multiple sphere collisions together in a spherical infinity box. If we
do not properly test the collisions with the spheres, then we can end up with situations where a ray
collides with the part of a sphere that passes through the interior of the infinity box. See Figure
4.3.

ΦS´

Figure 4.3: All circle arcs inside the pentagon are not part of the infinity box. When performing
collision tests on multiple spheres, it is necessary to check if the collision is part of the infinity box.

Because of this collision issue, we must define a rule that checks if a collision point is part infinity
box. We will state that rule here.

Theorem 12 (Spherical Infinity Box Point Condition). Given a spherical flat infinity box F Ă Rn

and one of its faces P Ă Rn with normal n⃗ P Sn´1 and a vertex v⃗ P P . Let x⃗ P Rn be a collision
point with the sphere with center λn⃗ and radius r that passes through the face P . If there exists a
p ą 0 such that p´1x⃗ P P , then x⃗ P SλpF q. Furthermore, if p exists, then it is given by

p “
xx⃗, n⃗y

xv⃗, n⃗y
. (4.6)

Proof. Suppose that there exists a p ą 0 such that p´1x⃗ P P . Then by definition of the spherical
infinity box, there exists an s ą 0 such that

∥sp´1x⃗ ´ λn⃗∥ “ r. (4.7)

However, since x⃗ is a collision point with that same sphere, we must have that cp´1 “ 1. Hence c “ p.
Therefore x⃗ “ p ¨ p´1x⃗ with p´1x⃗ P P , and by definition of the spherical infinity box x⃗ P SλpF q.
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Furthermore, since p´1x⃗ P P , we have

xp´1x⃗, n⃗y “ xv⃗, n⃗y

p “
xx⃗, n⃗y

xv⃗, n⃗y
.

(4.8)

Which is what we wanted to prove.

We can use this result to derive a condition for sphere collisions in an infinity box. Suppose we found
a collision point o⃗ ` Φd⃗,Φ ą 0 with one of the spheres passing through the face P of the infinity
box. Then we know that if p´1po⃗ ` Φd⃗q P P with p given by Equation 4.6, that o⃗ ` Φd⃗ P SλpF q,
making the collision valid.

In R2, the face P will be a line segment. So the test if p´1x⃗ reduces to checking if p´1x⃗ lies on the
line P . In R3, the face P will be a convex polygon, in which case we must check if p´1x⃗ lies on the
convex polygon. This theorem is used during numerical simulations to validate the collisions with
curved mirrors.
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5 Numerical Simulations Of Infin-
ity Boxes

5.1 Introduction

We have laid the fundamental theory behind infinity boxes in the preceding chapters, now we wish to
apply this theory to better understand the patterns that emerge from infinity boxes in two and three
dimensions. To simulate infinity boxes, we use a computer program named ”Mirai” that can draw
and export infinity boxes in 2D and 3D. This program is split in two components called Mirai2D
and Mirai3D. We will go over 2D and 3D infinity boxes created by MiRai in detail in the coming
sections. For an explanation of the computer implementation of MiRai, see Section 6.

5.2 Two-Dimensional Infinity Boxes

The next sections will show results from simulating two-dimensional infinity boxes. What is visu-
alised in the figures that follow are the world-image points of all rays that start from the origin with
an angle from 0 to 2π. Every time that the ray collides with a mirror surface, a point is drawn
from the origin in the initial direction, with step equal to the total distance travelled up until that
collision. This way we get a ”birds-eye” view of all the reflections of the infinity box from above,
which is not possible in 3D since we would need to view from the fourth dimension to see all of 3D
at once.

This allows us to get a very strong intuition for the patterns created by infinity boxes, which makes
us better prepared for the patterns from 3D infinity boxes, since they can look more chaotic at first
glance. We will begin with N-Regular infinity boxes whose patterns we are already familiar with for
the rectangle, hexagon and triangle.

34



5.2.1 N-Regular Polygons

(a) Triangle infinity box (b) Rectangle infinity box

(c) Pentagon infinity box (d) Hexagon infinity box

Figure 5.1: N -Regular infinity box simulations for N “ 3 (triangle) to N “ 6 (hexagon) with
depth 10. All shapes except for the pentagon create a mirror-tiling pattern.

While the pentagon might look chaotic from the outset, there is still a high degree of symmetry
between the ”spokes” of the pattern. The spokes are the repeating patterns between the chaotic
parts of the infinity box, they can be seen at poking out at the end of the pentagon infinity box.
We will see that, in general, every N -Regular infinity box has N spokes if N is even and 2N spokes
if N is odd. This is not surprising when N is even, since two opposite mirrors facing each other
cause the ray to keep reflecting between them.

When considered as dynamical billiard systems, these infinity boxes give a visual solution to the
trajectories of a particle released from the origin. The chaotic nature of non-tiling infinity boxes
also explains why finding an exact solution to dynamical billiard systems has been subject to much
study.
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(a) Heptagon infinity box (b) Octagon infinity box

(c) 9-Regular infinity box (d) 100-Regular (near-circle) infinity box

Figure 5.2: N -Regular infinity box simulations for N “ 7, N “ 8, N “ 9 and N “ 100 (near-
circular) with depth 10. As can be seen with N “ 100, as the N-Regular polygon transitions closer
and closer to a circle, the infinity box will more and more like the circle infinity box as well.

Note that the pattern of spokes continues in the above figure as well, but these are harder to see.
If we stop rays in our simulation when they come near a corner, we can filter out the spokes. These
results are shown in Figure 5.3.
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(a) Pentagon infinity box spokes. (b) Hexagon infinity box spokes.

(c) Heptagon infinity box spokes. (d) Octagon infinity box spokes.

Figure 5.3: N -Regular infinity box simulations for N “ 5 to N “ 8 at depth 10 with spokes
visualised by eliminating rays when they collide sufficiently close to a corner. For even N there
are N spokes, for odd N there are 2N spokes.

When considering infinity boxes as visualisation of dynamical billiard systems (particles reflecting
in a closed environment). Then the spokes are exactly the cyclic trajectories of the billiard system.
These are not trivial to compute, even for triangles. But with the help of infinity boxes, the solution
is immediately visible. Note that all the infinity boxes we visualise have rays cast from the origin,
this means that we are visualising all billiard trajectories from the origin. It is possible that such
cyclic trajectories do not pass through the origin, which would require the origin to be moved
in order to find the correct spot. Note that the Theorems on the existence of cyclic trajectories
from Chapter 2 prove the existence of spokes in infinity boxes. Spokes in infinity boxes and cyclic
trajectories are equivalent concepts.

In the next Section we will curve the infinity boxes to obtain an internal angle of 2π{3, in the hopes
of creating patterns that remind of a tiling of R2. We will see that when we curve the infinity
boxes to become more circular, the spokes expand until they connect.
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5.2.2 N-Regular Polygons Curved To Internal Angle 120˝

(a) Curved triangle infinity Box with λ “ ´1. (b) Curved rectangle infinity Box with λ “ ´1.93.

(c) Curved pentagon infinity Box with λ “ ´4.78.
(d) Curved heptagon infinity box with λ “ 6.69 re-
sembling hyperbolic space.

Figure 5.4: N -Regular circular infinity box simulations for N “ 3, 4, 6 and 7 at depth 10 with
the curving parameter λ “ λAp2π{N, 2π{3q. The curving parameters λ used in this figure can be
found in Table 3.7. Observe that the ”spokes” from the previous of the infinity boxes expand for
λ ď 0. This can be seen clearly for the rectangle infinity box, the circular regions on the corners
are the expanded spokes.

We can see for the triangle, rectangle and pentagon that the internal angle is π{3 by looking closely
at the first mirrored reflection. Three edges will meet at the corners of each infinity box, though
this is not visible for the curved heptagon infinity box.

We can see that the curved pentagon infinity box closely resembles the fully circular infinity box
from Figure 5.2 (100-Regular infinity box). If we compare the curved pentagon infinity box to its
flat variant from Figure 5.1, we can see that much of the chaotic pattern is eliminated by curving
the mirrors. Note that the spokes have expanded for the triangle, rectangle and pentagon, while
they have contracted for the heptagon. (Compare with Figure 5.3.)

The highly chaotic pattern near the rim in the curved heptagon infinity box is due the nature of
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convex mirrors. The trajectories of two rays with a nearly-identical initial direction will quickly
diverge, hence resulting in world-image points with highly varying distances.

5.2.3 N-Regular Polygons Curved To Align Image Points

(a) Curved pentagon infinity box with λ “ ´2.90
aligned to first-order image points. (b) Perfect circle infinity box (λ “ 0).

(c) Heptagon infinity box with λ “ ´2.76 aligned by
hand to second-order image points.

(d) 9-Regular infinity box with λ “ ´2.76 aligned by
hand to higher-order image points.

Figure 5.5: Image-aligned pentagon, heptagon and 9-regular infinity boxes compared with the
perfect circle infinity box.

This figure illustrates how the pentagon infinity box can be made to resemble the perfect circle at
λ “ 0 while still have a relatively high curving parameter, |λ| “ 2.90. This property is what makes
the Pentagon infinity box special among other N-Regular infinity boxes.

The heptagon and 9-regular infinity boxes have been aligned by tweaking the parameter λ by hand
since we do not have a direct formula for the higher-order reflections. Note that their curving
parameter is slightly lower than that of the pentagon and that their infinity box features more
irregularities than the pentagon.
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5.2.4 Random Polygons

(a) Random 3-vertex (triangle) infinity box with
depth 20.

(b) Random 5-vertex (pentagon) infinity box with
depth 15.

(c) Random 4-vertex (rectangular) infinity box with
depth 20.

(d) Random 4-vertex (rectangular) infinity box with
depth 15.

Figure 5.6: Random N -Regular infinity box simulations with varying depth.

Random polygonal infinity box create the least-regular patterns as expected. However, we can
spot certain patterns in parts of each infinity box that part of a regular infinity box. Consider
for example the top-right infinity box in the above figure, a repeating pattern runs all the way
from the top to the bottom because two mirrors happen to nearly face each other. These infinity
boxes are another example to illustrate the chaotic nature of dynamical billiard trajectories. All
points that lie on the same ray cast from the origin give the collision points of the infinity box.
These points characterize the trajectory of the ray and thus the trajectory in a dynamical billiard
system.

The same holds for the other three infinity boxes, regularities in their shape are visible in the
infinity box. In the next section we see some more mirror-tiling infinity boxes from which these
random infinity boxes derive some of their patterns.
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5.2.5 Special Mirror-Tiling Polygons

(a) Triangle infinity box with angles 2
π
, π
6
, π
6
. (b) Triangle infinity box with angles π

2
, π
4
, π
4
.

(c) Triangle infinity box with angles π
2
, π
3
, π
6
. (d) Rhombus infinity box with angles 2π

3
, π
2
, 2π

3
, π
2
.

Figure 5.7: Mirror-tiling infinity boxes derived from quads and triangles at varying reflection
depths. See Section 2.3 for an overview of all mirror-tiling polygons.

These infinity boxes have the special property of being mirror-tiling. They are all derived from an
N-Regular infinity box that we know tiles two-dimensional space (triangle, rectangle and hexagon).
In the random infinity boxes from Section 5.2.4, some of their patterns can be found as parts of
the four presented here.
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5.3 Three-Dimensional Infinity Boxes

For 3D infinity boxes, we will not be able to provide a single picture of the entire pattern as a whole.
This is because we will be viewing these 3D infinity boxes with from a single camera perspective
using either an orthogonal or perspective projection.

5.3.1 Platonic Solids

(a) Tetrahedron infinity box. (b) Cube infinity box.

(c) Octahedron infinity box. (d) Icosahedron infinity box.

Figure 5.8: Platonic solid infinity boxes at depth 15 rendered using a perspective projection with
a 90˝ degrees field-of-view.

42



Figure 5.9: Dodecahedron infinity box at depth 15 rendered using a perspective projection with a
90˝ degrees field-of-view. The edges of a single face are marked in red.

Observe that the only mirror-tiling platonic solid is the cube. All shapes are viewed from a point
that highlights their symmetry. If the camera we’re rotated, then the resulting pictures would
be more chaotic. Understanding these 3D infinity boxes is easier when controls to manipulate
the camera are available. Refer to MiRai [13] to view these figures in real-time from various
perspectives. We are not showing the outside edges of the infinity box to reduce clutter, these
figures look directly into the interior of the infinity box.

If we turn to the dodecahedron infinity box, we can see that the reflections of the red edges nearly
connect to from a dodecahedron. This means that the dodecahedron infinity box nearly has a tiling
behavior for the first few reflections. We will see in Section 5.3.3 that we can make these red edges
come together by curving the faces of the dodecahedron to create a better tiling illusion.

The edges are fading in the distance because the light is simulated to lose energy with each
reflection. This results in a smoother picture with less clutter, since the edges at the front are
better visible than the edges in the back. The spokes that we observed for 2D infinity boxes
become infinitely deep holes in 3D infinity boxes. In the previous two figures, these are the white
parts of the image where no edges are in the way.
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5.3.2 Platonic Solids Curved To Internal Angle 120˝

(a) Curved tetrahedron infinity box with λ “ ´1. (b) Curved cube infinity box with λ “ ´1.7320.

(c) Curved octahedron infinity box with λ “ ´4.1815. (d) Curved icosahedron infinity box with λ “ 2.3849.

Figure 5.10: Platonic solid infinity boxes curved to an internal angle of 120˝ using the values from
Table 3.8. The icosahedron is analogous to the heptagon in two dimensions in that it requires
convex mirrors (hyperbolic). The other infinity boxes are viewed from the outside, aligned to the
normal of a face.

Note that these infinity boxes change when viewed from another position, making it hard to create
a single image. In each of these pictures, the infinity box is shown from a point of high symmetry,
which results in a symmetric look into the infinity box. However, if the camera is slightly off, then
the resulting infinity boxes are much harder to comprehend. See Figure 5.11 for the same curved
cube infinity box, but viewed from a different position.
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Figure 5.11: The cube infinity box curved to an internal angle of 120˝ with λ “ ´1.7320. Viewed
from an arbitrary position that highlights less symmetry.
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Figure 5.12: The dodecahedron infinity box curved to an internal of 120˝ with λ “ ´15.6483, as
given from Table 3.8. When compared to the flat dodecahedron infinity box from Figure 5.9, the
regions marked in red are better connected.

In ways that we have expected, curving the mirrors makes the pattern from the dodecahedron
infinity box come together. See Figure 5.12. The red regions now nearly appear to form the front
region of another dodecahedron, the beginning of a tiling pattern. We can still improve on the
pattern from the dodecahedron by aligning to image points instead.
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5.3.3 Platonic Solids Curved To Align Image Points

(a) Tetrahedron infinity box with λ “ ´0.379. (b) Cube infinity box with λ “ ´1.

(c) Dodecahedron infinity box with λ “ ´11.4686. (d) Icosahedron infinity box with λ “ ´3.3993.

Figure 5.13: Platonic solid infinity boxes curved to align first image points with values from
Table 3.8. Viewed from the outside with red edge marks to a single face. It is visible that the
dodecahedron admits the most tiling pattern compared to the others when curved to image points.

Another notable difference between the dodecahedron and the other three, is that it requires the
least curvature to align its first-order image points. The tetrahedron is nearly a full sphere in this
setting, which is not a surprise due to the large angle between the image points. The same goes for
the cube, it requires a large curvature because its first-order image points are far apart. However,
if we we’re to align the cube to second-order image points, then it would perfectly tile as if it we’re
flat.

See Figure 5.14 for a better view of the inside of the dodecahedron and icosahedron in this setting.
The dodecahedron infinity box in this setting can give an impression of the interior of the 120-Cell
for the first few reflections. However, this pattern continues infinity far while the 120-Cell only
consists of 120 dodecahedra.
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(a) Dodecahedron infinity box with λ “ ´11.4686.

(b) The stereographically projected 120-Cell

Figure 5.14: The curved dodecahedron infinity box compared to the stereographically-projected
120-Cell. The curved dodecahedron infinity box can be seen as an approximation of the interior of
the 120-Cell near the origin.
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Figure 5.15: Dodecahedron infinity box with λ “ ´11.4686.
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5.3.4 Polyhedra And Extruded Polygons

(a) Extruded pentagon infinity box. (b) Deformed cube infinity box.

(c) Truncated cuboctahedron infinity box. (d) Rhombic dodecahedron infinity box.

Figure 5.16: Various other flat infinity boxes which show mixed levels of symmetry and disorder.
The pentagon is extruded to a 3D infinity box and provides a different perspective of the patterns
from Figure 5.1. The rhombic dodecahedron is one among the rare mirror tiling polyhedra.

The extruded pentagon shows that, in general, any lower dimensional infinity box can be extruded
to a higher-dimensional infinity box with similar qualitative properties. Comparing the extruded
pentagon with a top-down perspective, it is clear that the 3D perspective is less insightful in this
case. The deformed cube is an example of how slight perturbations in the vertices of the infinity
box accumulate in the distance to create disorder.

This concludes our numerical analyses of infinity boxes in 2D and 3D.
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6 Numerical Methods For Infinity
Boxes

6.1 Introduction

One of the major parts of this paper involved writing a computer program to visualise infinity
boxes in R2 and R3. While the mathematics of infinity boxes is the same between R2 and R3, the
techniques to simulate with a computer are very different.

To visualise an infinity box, we need to cast many rays from the perspective of the camera. A
high resolution is needed to make sense of the resulting image. A naive approach to ray tracing on
the CPU in Python would result in code that takes over a minute to run for around 100000 rays.
While this would be fine for static images, it makes it drastically inconvenient to modify parameters
and understand the transition from flat to curved infinity boxes. A better way to utilize modern
computers is by means of GPU programming.

The GPU or video-card is used to process pixels on a screen in a highly parallel fashion, it is what
drives the responsive screens of modern devices. The power of the GPU lies in its high parallel
processing capabilities thanks to its many processing cores. Since tracing a ray does not depend on
other rays, we can trace our rays using the GPU in a highly parallel fashion. This is what allowed
our program MiRai to achieve real-time visual change when a parameter is changed.

We used the C++ programming language to create MiRai. The code library that we used to interact
with the GPU is called Raylib [10]. In the next two sections we will explain the way we rendered
infinity boxes in 2D and 3D using these tools.

6.2 Rendering 2D Infinity Boxes

6.2.1 Overview

When rendering infinity boxes in 2D, we do not show a first-person image from the view of a 1D
camera, contrary to 3D. We opted to visualise the infinity boxes in 2D from a top-down view. This
top-down view shows all the world image points where a ray collided with a mirror. The resulting
image reveals patterns from a perspective that can not be achieved in 3D, since we can not view 3D
space from a top-down view in 4D.

For this reason, the rendering process is different from 3D, because we must draw dots on varying
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positions on the screen as opposed to tracing rays from the eye and giving a color for every pixel on
the lens as in 3D. We outline the 2D rendering process below.

1. Load a flat circular infinity box as a sequence of vertices v⃗i P R2, i “ 0, . . . ,M that form a
closed polygon. Let b P N be the maximum number of reflections and N P N be the total
number of rays to cast.

2. GPU Compute Pass. For each ray i “ 0, . . . , N ´ 1, we compute the distance travelled
each time it collides with a mirror surface of the infinity box. For each of these collisions
j “ 0, . . . b´1 we will store the distance travelled up until that point, where b is the maximum
number of reflections. Therefore we end up with a distance matrix D with entries Dij that
contains for each ray i the distance to the j-th collision. The ray is given radially by

d⃗i “

ˆ

cos
`

2πi
N

˘

sin
`

2πi
N

˘

˙

, i “ 0, . . . , N ´ 1. (6.1)

Where N is the total number of rays. This means that each ray i will have b values stored on
the GPU indexed by j.

3. GPU Render Pass. Draw N ¨ b points pi, jq P t0, . . . , N ´ 1u ˆ t0, . . . , b ´ 1u at the location

p⃗ij “ Dij d⃗i. (6.2)

Therefore, for each of the collision distances we computed in the GPU Compute Pass, we draw
a point along the ray at that distance. The justification that p⃗ij is actually the world image
point obtained after reflecting the last collision in all previous mirrors is given by the Unfolding
Theorem from Section 3.1.

4. Repeat Steps 2 and 3 every time a parameter is changed.

In our implementation of this scheme in MiRai, we allow N up to 500, 000 and b up to 32. Therefore
the total amount of distances that is computed can be up N ¨ b “ 16 ¨ 106. Each of these distances
is a floating point number and requires four bytes of GPU memory. Therefore the memory needed
to store all these distances is 64 Megabytes. All modern (after 2010) graphics cards guarantee GPU
memory of at least 128 Megabytes, therefore memory is not a concern when running MiRai.

These four steps outline the broad outline of the 2D rendering process. However, the practical
implementation of Step 2 requires more depth. This is the topic of the next section.

6.2.2 Reflection Computations

In Step 2 of the rendering process for 2D infinity boxes we must compute the distances dij containing
for the i-th ray the j-th distance travelled. The exact step-by-step process to obtaining these values
is given below.

1. Compute the initial ray direction d⃗i as given by Equation 6.1.

2. Initialize all distances for this ray to zero, Dij “ 0 for j “ 0, . . . , b. Initialize the total travelled
distance s of this ray to zero, si “ 0.

3. Collision Testing. For each line segment pu⃗k, v⃗kq, k “ 0, . . . ,M ´ 1 with normal n⃗k or circle
with center λn⃗k and radius ∥u⃗k ´ λn⃗k∥ (depending on if we use flat or curved infinity boxes),
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compute the collision step Φk ą 0. Then, perform the following checks to validate if the
collision is part of the infinity box.

(a) Collision Point Validation. Check if the collision point p⃗ “ o⃗ ` Φkd⃗ or its projection
on the line segment pu⃗, v⃗q actually lies between the points u⃗ and v⃗. If not, ignore this
collision. We are essentially applying Theorem 12 to validate the collision by checking if
the projection p´1x⃗ P HullpPkq for the collision point x⃗, line Pk and projection constant
p´1 ą 0.

(b) Minimum Step Validation. Check if the collision distance Φk is greater than a mini-
mum step size ε ą 0. This check is required to avoid rays colliding when Φk “ 0, which
are not valid collisions. If the step Φk is valid, add it to the set of valid steps V .

4. Take the minimum over all valid collision distances pΦ “ minkPV tΦku to get the first surface
that the ray collides with. If #V “ 0, stop computing for this ray, this can happen if the ray
origin lies outside the infinity box and the ray misses all surfaces.

5. Let pk be the mirror that caused the collision at collision distance pΦ. Reflect the ray in this
mirror at position o⃗ ` pΦd⃗. Finally, add pΦ to the total distance travelled si and set Dij “ si.
Increment j by one.

6. If j ă b, repeat from Step 3, else stop and continue with the next ray.

The tests for the validity of a collision point are important to avoid invalid collision points. In the
implementation of MiRai, ε is generally set to 10´3. Higher values of ε will ignore collisions that
occur at close distances, which can result in no collisions at all. The origin point o⃗ and the curving
parameter λ can be configured by the user.

This concludes the explanation of the 2D infinity box renderer in MiRai. The exact code can be
found on Github [13].

6.3 Rendering 3D Infinity Boxes

6.3.1 Overview

The process for rendering infinity boxes in 3D is easier, because we directly show the view from the
perspective of the camera. For each pixel on the screen, we trace a ray as if it came from the camera.
If the ray hits an object in its way that is not reflective, we assign the pixel a color. These steps are
outlined below.

1. Load a 3D model of an infinity boxes as a list of polygonal mirrors Pk with a normal n⃗k. Since
3D models consist of triangles, we must perform additional processing on each model to turn
co-planar and connected triangles into polygons, which we can then use as mirrors.

2. GPU Camera Ray Computing. For each pixel on the screen pu, vq P r´1, 1s ˆ r´1, 1s

(in normalized screen coordinates) we compute the corresponding ray direction and origin by
un-projecting the screen coordinates to world space. This un-projecting is done by inverting
the screen coordinates with the projection ˆ transform matrix P ˆ M .

53



o⃗h,uv “ pPMq´1

¨

˚

˚

˝

u
v

´1
1

˛

‹

‹

‚

, p⃗h,uv “ pPMq´1

¨

˚

˚

˝

u
v
1
1

˛

‹

‹

‚

. (6.3)

In these equations, o⃗h and d⃗h are the homogeneous coordinates in the cameras view frustum.
The first three coordinates of the vector represent the location inside the viewing frustum,
which can be thought of as a deformed cube. This is due to the way projection and transfor-
mation matrices work. The fourth component must be set to 1 and is used in translation and
projection.

To get the ray starting position and direction, we must divide these coordinates by their w
coordinate, such that it becomes 1.

o⃗uv “
1

wuh,uv

¨

˝

xuh,uv

yuh,uv

zuh,uv

˛

‚, p⃗uv “
1

wph,uv

¨

˝

xph,uv

yph,uv

zph,uv

˛

‚. (6.4)

These are the world-space ray origin o⃗ and ray target point p⃗. The full ray is given by

r⃗uvptq “ o⃗uv ` t
p⃗uv ´ o⃗uv
∥p⃗uv ´ o⃗uv∥

. (6.5)

This is the ray that is traced to compute the color value for the pixel at screen location
pu, vq in normalized screen coordinates. For a detailed explanation of working with projection
matrices for computers and graphics programming interfaces, See [7], [2] and [9]. The notion
of homogeneous coordinates is well-established in computer graphics, these three citations
provide information on this topic.

3. GPU Compute Pass. After we have computed the ray in world-space, we can start by
simulating its movement through the infinity box. For each of these rays we compute collisions
and reflections up until b P N reflections. When we collide with the edge of of a mirror, we
assign the pixel a color value. If there have been no collisions, we set the color to match the
background.

4. Repeat Steps 2 and 3 every time a parameter is changed.

In MiRai, the resolution of the screen is set to 800ˆ800 by default. This is allows more than enough
detail to view a high amount of reflections. This means that MiRai will always cast 8002 “ 640, 000
rays in 3D, one for each pixel on the screen. Since the frame-rate can drop below 60 frames per
second when the mirror count increases, the resolution is adjusted dynamically in MiRai to increase
performance. This dynamic resolution feature can be disabled. The 3D renderer on the other hand
does not require storing of the collision distances Dij as in the 2D case, making it slightly more
efficient in memory usage.

6.3.2 Reflection Computations

The reflection computations follow the same rules and collision validations as in 2D. See Section
6.2.2. The only difference is that in order the check if a curved collision is valid , we now project
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back on the polygonal mirror instead of a line. If the point lies within the bounds of the polygon, then
it is a valid collision. This is the three-dimensional variant of applying Theorem 12 that provides a
condition if a collision point lies on the curved infinity box SλpF q.

In addition, after having found the next collision step Φ̂k with mirror k, we test if this collision point
lies on any of the edges of the mirror. If so, we assign a color value at the pixel of that ray. This is
what makes the 3D computations slightly less efficient than the 2D computations, since they require
an additional edge collision test for every mirror.

6.4 Limitations

MiRai excels at visualising infinity boxes in 2D and 3D, however not all types of infinity boxes are
supported. Both the 2D and 3D renderer are optimised for flat spherical infinity boxes. This means
that it is not possible to curve non-spherical flat infinity boxes in MiRai. In addition, the screen
resolution is fixed at 800 ˆ 800, but this can be adjusted.

Both the 2D and 3D renderer can be extended to support arbitrarily shaped infinity boxes, though
these can not be curved. This can open up research in non-convex infinity boxes, potentially with
gaps, nooks and corners. However, for the purposes of this paper and simplicity, the current version
of MiRai has not included these extensions.
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7 Conclusion

In this paper we have applied infinity boxes to generate mirror-tiling patterns in 2D and 3D. We have
formally defined infinity boxes and rays, and with these definitions, computed several geometrical
cases related to these mirror-tiling patterns. In particular, we computed the curvature of the mirrors
in 2D and 3D for which either internal angles become a pre-determined angle, or for which the first-
order image points coincide.

We have built this theory in an effort to create numerical routines to simulate and visualise infinity
boxes in 2D and 3D. The result is a program called MiRai that we used for (nearly) all our simulations
and visualisations of infinity boxes. This program is available on the internet [13]. These numerical
simulations of infinity boxes revealed the various patterns that hide in infinity boxes of regular
polygons, random polygons, platonic solids and other polyhedra. We have used our analytical
results to compute the exact curvatures of the mirrors for which the mirror patterns from non-tiling
infinity boxes become more ordered. This has resulted in particularly pleasing images for the infinity
boxes of the pentagon and the dodecahedron.

From the dodecahedron infinity box we concluded that a reasonable approximation of the interior
of the 120-Cell can be obtained from a special curved dodecahedron infinity box. In general, we
conclude that curved infinity boxes are able to approximate tilings in curved and hyperbolic space
objects with dimension one higher than the infinity box.

Finally, we have connected infinity boxes to problems in dynamical billiards theory, which by them-
selves connect to many other fields of mathematics. We concluded that infinity boxes are visual
solutions to dynamical billiard trajectories, and that they could be potentially used to shed more
light on the chaotic patterns in these dynamical billiards. This makes the study of infinity boxes an
exciting field that combines visual aesthetic with intricate patterns that relate to higher dimensional
objects.
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8 Discussion

To conclude this paper, we want to give some remarks on the work we have done, fields of improve-
ment and potential further research.

First, the theory of infinity boxes we have presented in this paper apply only to a special class of
infinity boxes that are derived from polytopes with vertices on the unit sphere (unit polygons, unit
polyhedrons etc). These objects we’re our primary object of interest because they are convenient
to work with and relate to the regular solids, platonic solids and regular polygons. However, a
potentially interesting class of infinity boxes is the class of non-convex infinity boxes. Curving these
infinity boxes in the way we defined is not possible, but their patterns are well worth studying. In
particular, concave infinity boxes can be used to further analyse solutions of dynamical billiards.
The questions whether there exists a cyclic trajectory can be answered by analysing the infinity box
at various positions.

A second point of interest is that of non-Euclidian infinity boxes. We have only been working with
Euclidian infinity boxes because we are interested in mending problems that occur with non-tiling
objects in Euclidian space by using curved mirrors. We are also interested in Euclidian infinity boxes
because they can be built in real life. But, a whole new area of infinity boxes and their patterns can
be studied be redefining the motion of a ray. If the motion of a ray through space we’re replaced
with the geodesic motion in spherical or hyperbolic space, then infinity boxes like the pentagon and
dodecahedron would become mirror-tiling, which would be a more accurate way to generate the
interior of the 120-Cell.

A third point is the fact the we did not find any high quality visualisations of the 120-Cell from the
interior. It would be worth to create a tool to explore the 120-Cell from the inside under varying
projections. This can be used as a way to compare the approximations with the dodecahedron
infinity box.

A last point is to consider infinity boxes in four dimensions instead of two or three. These infin-
ity boxes would generate an entire three-dimensional pattern that can be observed from various
perspectives using a 3D camera. For this to work, a ray-tracer should be created to simulate how
a 4D ray travels through 4D space and collides with 4D objects. Many of the results to achieve
this are already provided in this paper, such as collision testing, mirroring and infinity box curving.
The patterns that would arise from these 4D infinity boxes would without doubt be an order more
difficult to understand, but they can reveal patterns in 4D objects from a different perspective than
abstract algebra. In particular, it would be interesting to see how the infinity box of the 120-Cell
would look like.

To conclude, there are many branches of infinity boxes that can be worked upon and this paper
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provides a solid foundation for several of them.
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