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Abstract

The analysis of equilibria of complex systems is challenging due to the
high dimensionality and non-linear interactions. There are different kinds
of complex systems such as cooperative systems in which all interactions
help growth and mixed-weight systems, in which some interactions help
growth, while others hinder it. In this thesis, we focus on the correlation
between the equilibria of cooperative and mixed-weight systems. We sim-
plified the equilibrium equations by combining the attributes of a system
into a one-dimensional equation. This reduced equation is easy to com-
pute and provides an upper bound on the equilibrium value of each node.
Although this bound may exceed many actual equilibrium values, it still
defines the subspace in which all equilibria must lie.

For cooperative systems, we presented a theorem that provides con-
straints on two vectors. If these vectors satisfy the given conditions, then
there exists an equilibrium between the components. We also discussed
methods to find such vector pairs.

We applied this theorem to relate the equilibria of mixed-weight and
cooperative systems. The equilibria of the mixed-weight system are always
less than or equal to some equilibrium in the cooperative system.

We introduced a framework for classifying cooperative equilibria. On
any subset of nodes, an equilibrium may have entries that are maximal
compared to all other equilibria on that subset. This leads to a single
equilibrium that is the largest at every entry, called the principal equilib-
rium, which is component-wise maximal. The principal equilibrium upper
bounds all equilibria of the mixed-weight system.

Finally, we discussed the inherent difficulty of translating coopera-
tive equilibria into the mixed-weight system, which stems from high di-
mensionality and non-linearity. We stated the conditions that mixed-
weight equilibria must satisfy and provided constraints determining if a
cooperative-system equilibrium remains valid when competitive interac-
tions are added.

This concludes the comparison by showing that the principal equi-
librium provides a component-wise upper bound for all equilibria of the
mixed-weight system.
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1 Introduction

When I was a boy, I wondered if it might be possible to write a program that
simulates the entire universe, down to every particle. Of course, this would re-
quire infinite memory. Instead, we use abstractions and mathematics to capture
essential behaviour. There is a vast range of such behaviours in the universe, of
which only some can be described by the so-called ”complex systems”. Many
of these complex systems, with N nodes, can be written in the following form:

dxi

dt
= F (xi) +

N∑
j=1

wijG(xi, xj),

these are also complex systems, which we will consider in this thesis. In the
above,

• xi is the quantity of node i 1.

• F (xi) is the intrinsic (self-induced) contribution.

•
∑N

j=1 wijG(xi, xj) is the contribution of the interactions.

One might wonder if such complex systems are in abundance around us. They
can be found everywhere:

• Lotka-Volterra systems to describe predator-prey dynamics, in which xi

is the population of the species i and wij is the interaction with other
populations. Generally wij > 0 is commensalism (beneficial) and wij < 0
predation (disadvantageous) [1].

• Wilson-Cowan system for neural populations. The value of xi is the firing
rate activity of the neurone associated with node i, where wij > 0 repre-
sents an excitatory neurone and wij < 0 represents an inhibitory neurone
[1].

• SIS systems for epidemic spread. The nodes represent different hosts,
while the xi in this model has a probabilistic interpretation; its value
corresponds to the probability of being infected. In general, wij > 0, and
the magnitude of wij indicates the contagiousness of other hosts [2].

We can even further categorise the systems by distinguishing between coop-
erative and competitive systems. If wij∂G(xi, xj)/∂xj ≥ 0, the interaction is
cooperative, while if wij∂G(xi, xj)/∂xj ≤ 0 it is competitive [1]. Generally, we
take ∂G(xi, xj)/∂xj ≥ 0 and choose the weights wij , depending on the interac-
tion, with a positive sign for cooperative and a negative sign for competitive.
For example, the SIS system is cooperative as interaction with other hosts can
only lead to the spread of the disease, increasing the probability of sickness. An

1The meaning of a node depends on the model it describes. As the examples on this page
illustrate, it could represent a species, a neurone or a host.
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example of a competitive system is certain Lotka-Volterra systems. If the en-
vironment has scarce resources needed by all species, the growth of one species
will hinder the growth of all other species.

Rather than solving the system of N differential equations in time, we focus
on equilibria; configurations of the quantities of each node such that they will
not change over time, if the system is not disrupted.

A substantial amount of research has been done on cooperative systems.
For instance, Wu et al. [2] simplified the system to a one-dimensional equation,
making it possible to determine the existence of non-trivial equilibria analyti-
cally. In Laurence et al. [1], rather than determining the quantity of each node
at an equilibrium, the author approximates the weighted sum of the equilib-
rium, which, although it contains less information, is analytically doable. It is
also common for functions in systems to depend on different parameters, which
brings its difficulties. In Jiang et al. [3], tipping points are predicted when a
system, which is dependent on multiple variables, is at the transition between
having a non-trivial equilibrium and not for a plant-pollinator system. Much
less research has been done on competitive systems or systems that incorporate
cooperative and competitive interactions.

In this thesis, our objective is to establish a connection between strictly
cooperative systems and systems that incorporate cooperative and competitive
elements. There are various ways to define such systems; we focus on mixed-
weight systems, although two other systems are described in Appendix A.

Themixed-weight system is an extension of the cooperative system, where
we relaxed the restriction on the weights, which may now take negative values.
Their weights no longer represent the strength of positive interaction. Instead,
it depends on the sign and magnitude of the weight, where a negative weight is
competitive and a positive weight is cooperative. It is defined as:

∀ i ∈ {1, . . . , N}, dxi

dt
= F (xi) +

N∑
j=1

wij G(xi, xj)

∀x ∈ R≥0, F (x) ≤ 0

∀x, y ∈ R≥0, G(x, y) ≥ 0

∃ i, j, k, l ∈ {1, . . . , N}, wij > 0, wkl < 0.

In this thesis, due to its close relationship with cooperative systems, we
focus on mixed-weight systems. We aim to create a bridge from the information
on cooperative systems to the equilibria of mixed-weight systems. We want to
answer two questions:

1. If the mixed-weight system has a non-trivial equilibrium, does the corre-
sponding cooperative system also have a non-trivial equilibrium?

2. If the cooperative system has a non-zero equilibrium, does the mixed-
weight system also have a non-trivial equilibrium?
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We do not expect a straightforward yes or no answer to either question; there-
fore, we first describe the region where the equilibria exist, which is done in
section 3. In section 4 we illustrate how the equilibria of the mixed-weight sys-
tem correlate to those of the cooperative systems. To refine this correlation, in
section 5, we will group the equilibria of the cooperative system, which reveals
a special equilibrium, the principal equilibrium. In section 6 we cover a system,
but instead of focussing on the equilibria, an interpretation of the whole system
is given. Finally, in section 7 we discuss why we cannot translate the equilibria
of the cooperative system to those of the mixed-weight system. However, we
can formalise conditions on the mixed-weight equilibria and criteria in which an
equilibrium of the cooperative system is also an equilibrium of the mixed-weight
system. In each section, we give brief examples on how to apply theorems and
corollaries except for the last section, in which we cover everything. For more
elaborate examples, we refer throughout the text to the appendices. In each
section, we illustrate the knowledge obtained so far with a simplified depiction.
The starting point is illustrated in Figure 1.

Figure 1: A conceptual illustration of the knowledge obtained. The dots rep-
resent the equilibria. The equilibria are bounded by the left and bottom solid
lines, which represent the zero crossings. The dashed lines visualise the unknown
extent of the equilibria. The question mark in the middle indicates that we have
not yet discovered the correlation between the equilibria of both systems.
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2 Assumptions and Notations

In this work, we will often switch between a mixed-weight system and its corre-
sponding cooperative system. To simplify the notation, we differentiate between
cooperative and competitive interactions.

Definition 1. Let wij denote the weight of the directed edge from node j to
node i in a network of N nodes.

• The node j is a neighbour of node i if wij ̸= 0.

• The positive interaction set is:

A+ :=
{
(i, j) ∈ {1, . . . , N}2 | wij > 0

}
.

• The negative interaction set is:

A− :=
{
(i, j) ∈ {1, . . . , N}2 | wij < 0

}
.

• The positive neighbouring set of node i is:

S+
i :=

{
j | (i, j) ∈ A+

}
,

and the negative neighbouring set is:

S−
i :=

{
j | (i, j) ∈ A−} .

• The dynamic function of node i at v is:

dxi

dt

∣∣∣∣
x=v

= F (vi) +

N∑
j∈S+

i

wij G(vi, vj) +

N∑
j∈S−

i

wij G(vi, vj).

For cooperative systems, we ignore the sum over negative interactions.

• The positive weighted in-degree of node i in a system is equal to the
sum of all the positive weights of the neighbours coming into node i:

k+i :=
∑
j∈S+

i

wij .

For example, consider the network on the right of Figure 2. For node 1,
the neighbours are nodes 2, 3, 4 and 5, but not 3, as node 3 does not influence
node 1 (node 1 does, however, influence node 3). The positive neighbouring set
of node 1, S+

1 , is {2, 4}, while the negative neighbouring set, S−
1 , is {5}. The

positive weighted in-degree, k+1 = 16.
The systems we will examine satisfy the assumptions commonly used to

describe cooperative networks with N nodes.
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Assumptions 1.

A1. Each node’s value is always non-negative:

∀i ∈ {1, . . . , N} xi ≥ 0.

A2. Both functions are continuous on the non-negative real values:

F (xi) ∈ C(R≥0) G(xi, xj) ∈ C(R2
≥0).

A3. A node’s self-interaction suppresses its growth, and the neighbours can
only enhance it. This results in F (xi) being non-positive and G(xi, xj)
being non-negative:

F (xi) : R≥0 → R≤0, G(xi, xj) : R2
≥0 → R≥0.

In addition, we assume that F (xi) is strictly negative for positive argu-
ments:

∀xi > 0, F (xi) < 0.

We also require that G(xi, xj) = 0 whenever the neighbour is zero:

∀x ∈ R≥0, G(x, 0) = 0.

A4. If a quantity of node i, xi, has a value of zero and all the neighbours of this
node also have a value of zero, then this node will not change. Therefore,
F (xi) and G(xi, xj) are 0 if the node and the neighbours of the node are
0:

F (0) = 0, G(0, 0) = 0.

A5. An increase in the value of the neighbours of a node will only result in a
more positive interaction. G(xi, xj) is non-decreasing in its second vari-
able:

∂G(xi, xj)

∂xj
≥ 0.

A6. If we keep increasing the collective quantities of the nodes in a system,
the system’s functions ensure that as the total quantity grows, the overall
system will eventually decrease. Let x be the vector, where the i-th entry
is the quantity of node i:

lim
∥x∥→∞

d ∥x∥
dt

< 0.

A7. NO node has a interaction with itself:

∀i ∈ {1, . . . , N} , wii = 0.
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Remark 1. From the above assumptions, we see that if the quantity of each
node is equal to zero, then, independent of the weights wij , we have an equilib-
rium. This equilibrium is often called the trivial zero equilibrium.

Before moving on to the next section, we clarify how we transition between
cooperative and mixed-weight systems. The corresponding mixed-weight system
of a cooperative system has the same network with the addition of the negative
interaction. In contrast, the cooperative system of a mixed-weight system is
obtained by setting all negative interactions in the network to zero. We therefore
assume that for all nodes i, the positive and negative interaction sets are disjoint:

S+
i ∩ S−

i = ∅.

An example of a cooperative network and a corresponding mixed-weight network
is given in Figure 2. Lastly, all numerically calculated values are given with a
precision of three decimals. The code used for these computations is available
at https://github.com/NorthOfhell/BEP.git.

Figure 2: The network of a cooperative system on the left, and a corresponding
mixed-weight network on the right. An example of a system with this network
is covered in subsection 7.3. The number of each node indicates the index.

8

https://github.com/NorthOfhell/BEP.git


3 Bounds

Common practice for extracting information from the system is to reduce di-
mensionality [1][2]. In this section, we employ a similar approach to obtain an
upper bound on the equilibrium values. Specifically, the upper bound repre-
sents the maximum value that any node can attain at equilibrium. From this,
we determine the minimum positive weighted in-degree a node must have to not
be zero in equilibrium.

However, before doing so, we would like to clarify something about the sys-
tems we examine. Consider, instead of the whole network, only a single node
in the network. For such a node, if the neighbours all have the same quantity,
we could instead consider one neighbour, which has a weight equal to the sum
of all the previous neighbours. This follows since for an arbitrary value of the
neighbours y, the dynamic function of a node i is:

dxi

dt
=F (xi) +

∑
j∈S+

i

wijG(xi, y) +
∑
j∈S−

i

wijG(xi, y)

=F (xi) +G(xi, y)
∑
j∈S+

i

wij +G(xi, y)
∑
j∈S−

i

wij

=F (xi) +G(xi, y)

 ∑
j∈S+

i

wij +
∑
j∈S−

i

wij

 .

This is also visually shown in Figure 3. If all surrounding nodes have the same
quantity, then for the middle node, there is no difference between the left and
right cases. We will leverage this to conclude the information from our reduction
method.

Figure 3: The symbols in each node represent the value of that node. If all the
neighbouring nodes have the same value, then the dynamic function of node 1
in the left case is the same as in the right case.

The reduction method consists of two parts; first, we prove that for a reduced
equation, we always have an upper bound, such that the equation is always
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negative above the upper bound. Secondly, combining this upper bound and
the fact that for a node we can reduce the dynamic function if the neighbours
have the same value, we can upper bound all the nodes of the system.

Theorem 1. Consider a cooperative system with N nodes that meet Assump-
tions 1. Define

Wmax = max
i∈{1,...,N}

 ∑
j∈S+

i

wij

 ,

and define xupper as the supremum over the real non-negative numbers x such
that:

F (x) +WmaxG(x, x) = 0,

then, for any value y above xupper, we have:

F (y) +WmaxG(y, y) < 0.

Proof. xupper is defined as we always have that 0 is a solution to the equation.
Define the function:

H(xi, xj) = F (xi) +WmaxG(xi, xj).

If we consider a network with two nodes, links in both directions with weight
Wmax, then on the line x1 = x2 = x we have:

lim
x→∞

H(x, x) < 0,

which follows from A. 6. This implies that there exists M ∈ R such that for all
x ≥ M,

H(x, x) ≤ 0,

with equality if and only if x = M . M exists, as implied by the continuity
of H(xi, xj), which itself is a consequence of both F (xi) and G(xi, xj) being
continuous (see A. 2). We deduce that xupper = M and for any number y >
xupper:

H(y, y) = F (y) +WmaxG(y, y) < 0.

3.1 Upper Bound of Both Systems

We will now, with xupper, perform the second step in the reduction method. For
this, we will consider an arbitrary equilibrium of the system and show that the
highest element of this equilibrium can be upper bounded. We do this first for
cooperative systems, after which we do the same for mixed-weight systems.

Theorem 2. Consider a cooperative system with N nodes that satisfy Assump-
tions 1. Let v be an equilibrium of the cooperative system. Each element i of
the equilibrium is upper bounded:

vi ≤ xupper.
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Proof. Let v be an arbitrary equilibrium of the system. Then there exists an
index k such that:

vk = max {v1, . . . , vN} .
We will show: vk ≤ xupper. For node k, the dynamic function at equilibrium v
is:

dxk

dt

∣∣∣∣
x=v

=F (vk) +
∑
j∈S+

k

wkjG(vk, vj)

≤F (vk) +
∑
j∈S+

k

wkjG(vk, vk) (1)

=F (vk) +G(vk, vk)
∑
j∈S+

k

wkj

≤F (vk) +WmaxG(vk, vk). (2)

In step 1 we reduce the system. The inequality follows as the function G(xi, xj)
is non-decreasing in its second variable (see A. 5). Inequality 2 follows from
the definition of Wmax (see, Theorem 1). By inequality 2 and the definition of
xupper (see, Theorem 1), we can conclude that if vk > xupper we must have:

dxk

dt

∣∣∣∣
x=v

< 0.

This would contradict v being an equilibrium, thus we conclude that for each
index i:

vi ≤ vk ≤ xupper.

For mixed-weight systems, we can make a similar statement and proof.

Corollary 1. Suppose we have a mixed-weight system that satisfies Assump-
tions 1. All the equilibria of this system are element-wise upper bounded by
xupper.

Proof. A full proof is provided in Appendix Proof B.1, but we will sketch the
general idea below. We proceed similarly to the proof of Theorem 2, except
that the dynamic function of node k at v no longer is:

F (vk) +
∑
j∈S+

k

wkjG(vk, vj).

For mixed-weight systems, we have to add the extra negative interaction term,
which results in:

dxk

dt

∣∣∣∣
x=v

=F (vk) +
∑
j∈S+

k

wkjG(vk, vj) +
∑
j∈S−

k

wkjG(vk, vj)

≤F (vk) +
∑
j∈S+

k

wkjG(vk, vj).
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At this point, we could perform the same steps as in the proof of Theorem 2,
resulting in the same conclusion.

Remark 2. If a system with N nodes satisfies Assumptions 1, then for every
equilibrium v of the cooperative system and for every equilibrium u of the
mixed-weight system, we have:

v,u ∈ [0, xupper]
N ,

which is a direct consequence of the upper bound in cooperative systems (see
Theorem 2) and mixed-weight systems (see Corollary 1).

Remark 3. If xupper = 0, then the only equilibrium is the trivial zero equilib-
rium.

The deviation of the upper bound and the elements of an equilibrium depend
on several factors: the variation of positive weighted in-degrees, the functions
F (xi) and G(xi, xj) and whether the system is cooperative or mixed-weight.
In Appendix Example F.1 we give a cooperative system that has equilibria, in
which the quantities of each node are below the upper bound, while in Appendix
Example F.2 we give a cooperative system that has an equilibrium with entries
equal to the upper bound.

We can conclude the first piece of the puzzle. The space in which the equi-
libria for both systems exist is not arbitrarily large but can be determined by
solving an equation in one variable, which can also be seen in the visual graphic
Figure 4.

Figure 4: A conceptual illustration of the knowledge obtained. The dashed lines
in Figure 1 are now full, as we can lower and upper bound every equilibrium,
creating a box in which every equilibrium exists. We still miss a relationship
between the equilibria of the cooperative system and the mixed-weight system.
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3.2 Lower Bound of Positive Weighted In-Degree

In a cooperative system, the functions F (xi) and G(xi, xj) counteract each
other’s influence. For an equilibrium, we require the negative influence, due to
F (xi), to be opposite to the positive influence of the weighted sum over all the
G(xi, xj). To maximise the weighted sum, dependent on xi, it follows by A. 5,
that all xj are equal to the upper bound. What if, even if we maximise the sum,
the dynamic function of node i, with its neighbours, is still always negative;

∀xi ∈ R>0 F (xi) +G(xi, xupper)
∑
j∈S+

i

wij < 0.

The negative influence is, in this case, always stronger than the positive influ-
ence, which implies that this node is zero for all equilibria. To remedy this, we
could increase the positive influence by increasing the weights. Consequently,
there is a minimum of the weights such that the above function is not always
negative. We define this minimum as the minimum weighted in-degree.

Theorem 3. minimum weighted in-degree
Suppose we have a system that meets Assumptions 1. We define Wmin as the
infimum of all non-negative Wmin, such that there exists a positive x for the
equation:

F (x) +G(x, xupper)Wmin = 0.

Every node i of the system that has a positive weighted in-degree less than Wmin

will have a value of zero for all the equilibria of the system.

——

Proof. For the proof, we refer to Appendix Proof B.3.

If we have a node that has a positive weighted in-degree smaller than Wmin,
it is, for all equilibria, zero. We might at this point wonder if we even need this
node, if we are only interested in finding the equilibria; the answer is no. We
could instead consider the subnetwork without the node, which is zero for all
equilibria. We can link the equilibria of the subnetwork to the original network
by setting the deleted node to zero. Since the interaction function G(xi, xj) is
zero if the second argument is zero, it will not diminish the equilibrium. We
can categorise systems that have a node that is zero in all equilibria.

Definition 2. A system with N nodes is a participatory system if for every
node there exists an equilibrium for which the node has a non-vanishing entry.
If for all equilibria v1, . . . ,vM, there is a node i such that:

∀k ∈ {1, . . . ,M} , [vk]i = 0,

we call the system partially redundant.

As stated above, we do not need to consider this the node that is zero in all
equilibria. This implies that we can transform every partially redundant system
by considering a subnetwork, which is participatory.

13



Corollary 2. Every partially redundant system that satisfies Assumptions 1
can be made into a participatory system. The equilibria of the new participatory
system are also the equilibria of the partially redundant system.

Proof. For a detailed proof, we refer to Appendix Proof B.2.

Remark 4. If a system that meets Assumptions 1 has a node that has a positive
weighted in-degree smaller than Wmin, then this system is partially redundant.

In Appendix Example F.3 we illustrate a system in which one of the nodes
has a positive weighted in-degree smaller than Wmin. The same holds for the
reduced network, and this pattern continues recursively until we conclude that
the only equilibrium is the trivial zero equilibrium.

3.3 Example: Bounds

We will now briefly cover an example of a cooperative system in which we apply
the reduction method and check if one of the nodes has a weighted in-degree
smaller than the minimum positive weighted in-degree. Consider the system
with the following network and functions:0 4 0

4 0 0
1 1 0

 ,

F (xi) = −4xi + 4x2
i − 4x3

i , G(xi, xj) = xixj .

The network is also visually shown in Figure 5. Wmax of this network is 4. This
results in the following equation for the upper bound:

−4x+ 4x2 − 4x3 +Wmaxx
2 = 0.

The roots are x = 0 and x = 1, hence xupper = 1. The minimum weighted
in-degree Wmin, is the smallest c, such that there is still a positive x of the
equation:

−4x+ 4x2 − 4x3 + cx = 0.

This results in Wmin = 3. Node 3 has a positive weighted in-degree smaller
than 4, and is consequently zero in all equilibria. The only equilibrium of this
network is: 11

0

 .

We observe that the upper bound is reached for the first two nodes. However,
we derived that the last node is always zero in equilibrium. The upper bound for
this node is therefore highly inaccurate, which is a shortcoming of the reduction
method. The reduction method does not account for the dynamics of each node.
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Figure 5: The network of the system we consider in subsection 3.3. The number
of each node indicates the index.

4 Sufficient Condition for Cooperative Systems

In this section, we provide a theorem that offers information on whether an
equilibrium exists in aN -dimensional box. We will do this by applying Poincaré-
Miranda, which states conditions under which multiple functions have a common
root. We show that we can relax the conditions of Poincaré-Miranda, resulting
in a correlation between the equilibria of the mixed-weight and cooperative
system and a framework for the rest of this thesis.

One of the first theorems that a mathematician learns is the Intermediate
Value Theorem, which states that a continuous function on the bounds [a, b]
attains every value between f(a) and f(b). We can conclude that if f(a) and
f(b) have opposite signs, then there exists a c ∈ [a, b] such that f(c) = 0.

Figure 6: A visual interpretation of the Intermediate Value Theorem. If the
function at two points has opposite signs, then there must be a root between
the two points. Image taken from the webpage Intermediate Value Theorem
Lesson by GreeneMath [4].

For our system, the dynamic function is continuous, but we have multiple
such functions, one for each node. Therefore, we cannot directly apply the
Intermediate Value Theorem to obtain the existence of an equilibrium, due to
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the higher dimensionality. Fortunately, great minds have come before us and
extended the Intermediate Value Theorem to higher dimensions. For example,
the result of Poincaré-Miranda, originally conjectured by Henri Poincaré and
proven by Carlo Miranda in [5].

Lemma 1. Poincaré-Miranda
Let the two vectors a,b ∈ RN be such that ai ≤ bi for all i = 1, . . . , N. Define
the N-dimensional box:

Ω = [a1, b1]× . . . ,×[an, bn].

For all i, we define the two subsets as:

Ii,− = {x ∈ Ω | xi = ai} ,

Ii,+ = {x ∈ Ω | xi = bi} .

Suppose that we have continuous functions f1, . . . fN : Ω → R. If for each i the
function fi satisfies:

∀x ∈ Ii,− : fi(x) ≥ 0 and ∀x ∈ Ii,+ : fi(x) ≤ 0,

then there exists a vector x ∈ Ω such that:

∀i ∈ {1, . . . , N} , fi(x) = 0.

Before we apply this result of Poincaré-Miranda, we would like to give a
visual explanation of its conditions. Consider a N -dimensional box. If we fix
one coordinate of this N -dimensional box but vary all the other coordinates, we
get a face. For each coordinate i, we consider two such faces: one at ai (the
lowest possible value) and one at bi (the highest possible value). The condition
of Poincaré-Miranda states that if on the face with ai the function fi is non-
negative, and on the face with bi the function fi is non-positive, then there
exists a point in the box where all fi = 0. The case for N = 2 is shown in
Figure 7.

We could now, if we find suitable vectors a and b, conclude the existence of
an equilibrium, using Poincaré-Miranda (see Lemma 1). At first sight, it seems
that finding the two suitable vectors is no easy task. The conditions imposed on
the faces of the N -dimensional box are hard to deduce or calculate. Fortunately,
for the systems we examine, there is no need to consider the whole face. We
can prove that if at two points the corners of the N -dimensional box satisfy one
condition each, then we can also conclude the existence of an equilibrium.

Theorem 4. sufficient condition for cooperative systems - SCCS
Consider a cooperative system with N nodes that meet Assumptions 1. If there
exist two vectors l,h such that the dynamic function for each node i at both
vectors is:

F (li) +
∑
j∈S+

i

wijG(li, lj) ≥ 0,
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Figure 7: Poincaré-Miranda in two dimensions. The two functions both have a
line on which they are zero. The crossing of these two lines is the desired point.
Image by Erel Segal-Halevi, via Wikimedia [6].

F (hi) +
∑
j∈S+

i

wijG(hi, hj) ≤ 0,

li < hi,

then there exists an equilibrium z such that:

z ∈ [l1, h1]× · · · × [lN , hN ].

Proof. We want to apply Poincaré-Miranda (see Lemma 1), therefore, for all
i = 1, . . . , N we define the functions fi as the dynamic function of node i:

fi(x) = F (xi) +
∑
j∈S+

i

wijG(xi, xj).

It follows from the continuity of F (xi) and G(xi, xj) (see A. 2) that each fi is
continuous. We use the same definition of the faces Ii,− and Ii,+ as in Poincaré-
Miranda (see Lemma 1).

Case: for all x ∈ Ii,−, fi(x) ≥ 0 :
Let i = 1, . . . , N and take a random vector a ∈ Ii,−. Each entry in this random
vector is larger than or equal to the corresponding entry in l, except for the i-th
entry, which is always equal. It follows from the monotonicity of G(xi, xj) (see
A. 5), that:

∀j ∈ {1, .., N} , G(li, lj) ≤ G(li, aj) = G(ai, aj).
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To check the sign of fi(a), we start with the dynamic function of node i at l,
which is:

0 ≤ fi(l) = F (li) +
∑
j∈S+

i

wij G(li, lj)

≤ F (li) +
∑
j∈S+

i

wij G(li, aj)

= F (ai) +
∑
j∈S+

i

wij G(ai, aj) = fi(a).

Consequently, for a random vector a ∈ Ii,−, we must have fi(a) ≥ 0. We
conclude that ∀x ∈ Ii,−, fi(x) ≥ 0.

Case: for all x ∈ Ii,+, fi(x) ≤ 0 :
We apply a similar structure for this case; therefore, let i = 1, . . . , N and take
a random vector b ∈ Ii,+. Each entry in this random vector is smaller than or
equal to the corresponding entry in h, except for the i-th entry, which is always
equal. It follows from the monotonicity of G(xi, xj) (see A. 5), that:

∀j ∈ {1, .., N} , G(bi, bj) ≤ G(bi, hj) = G(hi, hj).

To check the sign of fi(b), we start with the dynamic function of node i at h,
which is:

0 ≥ fi(h) = F (hi) +
∑
j∈S+

i

wij G(hi, hj)

= F (bi) +
∑
j∈S+

i

wij G(bi, hj)

≥ F (bi) +
∑
j∈S+

i

wij G(bi, bj) = fi(b).

Consequently, for a random vector b ∈ Ii,+, we must have for all x ∈ Ii,+, fi(x) ≤
0. By Poincaré-Miranda (see Lemma 1), we conclude that there exists an equi-
librium z to this cooperative system, with:

z ∈ [l1, h1]× · · · × [lN , hN ].

Remark 5. We will refer to the vector l as a lower vector and similarly to
the vector h as a higher vector.

Instead of directly solving the equilibria, we can try to find the two vectors
of the SCCS (see Theorem 4) to approximate the equilibrium. Alternatively,
suppose that we only want to know whether a non-zero equilibrium exists. In
that case, we can also use the SCCS (see Theorem 4). Finding these two vectors,
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especially the lower one, can still be challenging. Although one might think
that we could use the zero vector, this does not yield any new information since
the interval of the equilibrium is closed on the given two vectors. In the next
subsection, we provide a method to obtain a lower vector. For the higher vector,
we can use the information of section 3. Consider a node i of a cooperative
system. If all the neighbours of node i have the same value, we could instead
consider only one node that has the same value and a weight equal to the sum
of all the previous neighbours, which is equal to k+i . By definition, k+i is never
greater than Wmax (see Theorem 1). We could combine this with Theorem 1,
which states that:

F (xupper) +WmaxG(xupper, xupper) = 0.

Since G(xi, xj) is never negative, any value that replaces Wmax, which is strictly
smaller, will always result in the dynamic function being negative, which is what
we want for our higher vector. The above is visually displayed in Figure 8, and
is formalised in the following corollary.

Figure 8: The symbols in each node represent the value of that node. We can
determine the sign of the dynamic function of the centre node on the left by
comparing it to the equation in Theorem 1. This gives us a higher vector for
the SCCS (see Theorem 4).

Corollary 3. For every cooperative system with N nodes that satisfies Assump-
tions 1, in the SCCS (see Theorem 4), the higher vector h can always be taken
as xupper, which is defined by:

xupper := [xupper]
N .

Proof. For an arbitrary node i, the dynamic function at xupper is:

dxi

dt

∣∣∣∣
x=xupper

= F (xupper) +
∑
j∈S+

i

wij G(xupper, xupper)

≤ F (xupper) +WmaxG(xupper, xupper) = 0,
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where the equality at the end follows from the definition of the upper bound
(see Theorem 1).

4.1 Weighted k-Core

Figure 9: Left: original network. Right: corresponding weighted k-core, where
each node has a positive weighted in-degree of at least 3, therefore kmax = 3.

In this subsection, we provide a method to obtain a lower vector, which is
based on the work of Wu et al. [2]. We will consider the subnetwork(s) called
the weighted k-core(s). In the weighted k-core, the lowest weighted in-degree
of all nodes is maximal, which is often denoted as kmax. The value kmax allows
us to determine whether the system has a non-zero equilibrium 2. To find this
subnetwork of a network, we calculate the positive weighted in-degree for each
node. We denote the smallest weighted in-degree, which is the minimum positive
weighted in-degree every node has. Next, we remove the node with the smallest
positive weighted in-degree, recalculate the weighted in-degree of the remaining
nodes, and compare the smallest to the previous one. We repeat this process,
keeping track of each smallest positive weighted in-degree until no nodes are
left. The maximum of these minimum weighted in-degrees is defined as kmax.
A full example on the derivation of the weighted k-cores is given in Appendix
Example F.4, of which the result is given in Figure 9. We will use this kmax to
find the vector we require in the SCCS (see Theorem 4).

Consider the subnetwork that corresponds to kmax. For this subnetwork,
it might be the case that some nodes have a weighted in-degree higher than
kmax. We decrease the weight of the incoming interactions of the nodes with a
higher positive weighted in-degree, until they are equal to kmax. This results in
a semi-symmetric network 3 where every node in the subnetwork has a weighted
in-degree of kmax. If we assume that all the nodes of this subnetwork have the
same value, the dynamic function of each node is similar, and only dependent
on one variable:

F (x) +G(x, x)kmax = 0.

2Although used differently, a similar approach was employed by Wu et al. [2] to indicate
if a non-zero equilibrium exists.

3The network is semi-symmetric, as not all the weights are equal, but the weighted in-
degrees are.
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The solutions of this equation can be used as a lower vector.

Corollary 4. Consider a subnetwork of a cooperative system with N nodes that
meet Assumptions 1. Suppose that each node of the subnetwork has a weighted
in-degree of kmax. If this subnetwork has a non-zero uniform equilibrium v, then
this equilibrium v is a lower vector in the SCCS (see Theorem 4).

Proof. For the proof, we refer to Appendix Proof C.1.

4.2 Spectral Radius

The main focus of Wu et al. [2] is not the search for lower and higher vectors for
the SCCS (see Theorem 4); rather, the focus lies on if a non-zero equilibrium
exists from a cooperative system, also called the survivability of a system. We
can compare the method described in Wu et al. [2] with xupper, which we do in
this subsection.

The spectral radius, commonly denoted as ρ(A), of the network A, provides
critical information if a non-zero equilibrium exists. In Wu et al. [2], it is stated
that if the only solution to the equation:

F (x) + ρ(A)G(x, x) = 0,

is x = 0, then the only equilibrium is the zero equilibrium 4. Similarly, if xupper

is zero, no non-zero equilibria exist. That is, if the only solution to the equation:

F (x) +WmaxG(x, x) = 0,

is x = 0. We want to know which attribute, ρ(A) or xupper, gives the best
approximation. We consider a system with functions of the GRN system:

F (xi) = −Bxi, G(xi, xj) =
xh
j

1 + xh
j

.

To compare both attributes, we will calculate, depending on h, for which B-
values we could still have non-zero equilibria. The same can be done numerically
for the system without applying any reduction methods. The lowest B-value, for
which the system still has a non-zero equilibrium, is the tipping point. We will
do this for two networks, both of which are randomly generated. For the first
network, each interaction is generated from a uniform distribution. The second
network is made such that a few selected nodes have strong in- and outgoing
interactions, and the rest have a weak or non-existent interaction, which can be
called a multi-starlike matrix. Both networks are visualised, which can be seen
in the top two images of Figure 10.

The results of both attributes are visualised in the lower plots of Figure 10.
In both cases, the spectral radius gives a better approximation, although in the

4This only holds for certain functions G(xi, xj). For details, we refer to Wu et al. [2].
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Figure 10: The regions of guaranteed survival and collapse for two randomly
generated matrices. The top two images represent the networks, with the left a
uniform generated matrix, and on the right a multi-starlike matrix. The region
of collapse derived fromWmax is close to ρ(A), in the case of the uniform matrix,
but not for the multi-starlike matrix.

case of the multi-starlike network, the difference is prominent. The spectral
radius gives a better approximation, since:

min
1≤i≤N

n∑
j=1

wij ≤ ρ(A) ≤ max
1≤i≤N

n∑
j=1

wij = Wmax.
5

Since we solve a similar equation for both the spectral radius and Wmax, the
larger the difference between the two, the larger the difference between the
regions. For a uniform matrix, the difference is much smaller than for the
multi-starlike matrix. The spectral radius as Wmax of both matrices is given in
Table 1.

5This inequality is presented as Exercise 8.2.7 in Matrix Analysis and Applied Linear
Algebra by Carl D. Meyer [7], for which we give a formal proof in Appendix Proof C.2
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Uniform Multi-starlike
ρ(A) 29.713 115.630
Wmax 32.198 589.210

Table 1: The values used for the comparison of the regions of collapse.

Figure 11: The symbols in each node represent the value of that node. If the
dynamic function of a mixed-weight system is at equilibrium, then the dynamic
equation of the corresponding cooperative system at the same equilibrium is
either zero or positive.

4.3 Cooperative vs Mixed-weight

How do we incorporate the SCCS for our search for a correlation between the
equilibria of the mixed-weight and cooperative systems? Let v be an equilibrium
of a mixed-weight system. Consider this vector, but for the dynamic functions
of the corresponding cooperative system. The difference is that we no longer
have negative interactions; therefore, each dynamic function would be zero or
positive (see Figure 11). This is exactly the criteria for a vector we need for a
lower vector in the SCCS (see Theorem 4).

Lemma 2. Consider a system that satisfies Assumptions 1. Every equilibrium
v of the mixed-weight system is a lower vector in the SCCS (see Theorem 4).

Proof. The dynamic function of the mixed-weight system for node i at v is:

0 =
dxi

dt

∣∣∣∣
x=v

=F (vi) +
∑
j∈S+

i

wijG(vi, vj) +
∑
j∈S−

i

wijG(vi, vj)

≤F (vi) +
∑
j∈S+

i

wijG(vi, vj).

This proves that v is a suitable lower vector.

This implies that every equilibrium of the mixed-weight system is upper
bounded by an equilibrium of the corresponding cooperative system, since there
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must be an equilibrium between the equilibrium of the mixed-weight system and
xupper.

Corollary 5. Consider a system with N nodes that satisfies Assumptions 1.
For every equilibrium v of the mixed-weight system, there exists an equilibrium
z of the corresponding cooperative system such that for each index i:

vi ≤ zi.

Proof. By Lemma 2 we have that v is a lower vector in the SCCS (see Theo-
rem 4), while we have previously shown in Corollary 3 that we always have a
corresponding higher vector. This implies that there exists an equilibrium z of
the cooperative system such that for all i:

vi ≤ zi ≤ xupper.

Remark 6. If the only equilibrium of the cooperative system is the zero equi-
librium, then so will be the case of the corresponding mixed-weight system.

We conclude that the addition of the negative weight will never result in a
non-zero equilibrium if the cooperative system on itself does not have a non-zero
equilibrium. With this, we can update our visual graphic, which can be seen in
Figure 12.

Figure 12: A conceptual illustration of the knowledge obtained. The space
of equilibria of the mixed-weight system is bounded by the equilibria of the
cooperative network, which follows from Corollary 5. The grey image behind
the mixed-weight is the space of the cooperative system.
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Figure 13: The network of the system we consider in subsection 4.4. The number
of each node indicates the index.

4.4 Example: Sufficient Condition for Cooperative Sys-
tems

Consider the mixed-weight system:
0 4 2 0 2 0
2 0 0 4 3 0
5 0 0 0 −1 0
0 −1 0 0 4 0
3 0 0 0 0 2
0 0 0 0 1 0


F (xi) = −3xi

2
, G(xi, xj) =

x2
j

1 + x2
j

,

where the functions are of the gene regulatory network (GRN) system [2]. The
network is also visually shown in Figure 13. The corresponding cooperative
network, we have previously considered in the subsection 4.1; it is the network
on the left of Figure 9. For this cooperative network, we find kmax = 3. Solving
the equation:

−3x

2
+ kmax

x2

1 + x2
= 0,

yields x = 0 or x = 1. Therefore, a lower vector for the SCCS (see Theorem 4)
is: [

1 1 1 1 1 0
]⊺

.

The last entry is zero, as this node is not in the subnetwork matching the
weighted k-core. The upper bound of this network is 5.828, therefore, the higher
vector is: [

5.828 5.828 5.828 5.828 5.828 5.828
]⊺

.
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By the SCCS (see, Theorem 4), there must be an equilibrium between these two
vectors, which is the case as the only equilibrium of the cooperative system is:[

4.896 5.164 3.200 2.222 2.234 0.555
]⊺

.

As this is the only equilibrium of the cooperative system, all equilibria of the
mixed-weight system are upper bounded by this equilibrium. There is one
equilibrium to the mixed-weight system, namely:[

4.835 4.849 2.641 1.581 2.232 0.555
]⊺

.

Every element of this equilibrium is indeed upper bounded by the matching
element of the equilibrium of the cooperative system.
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5 Maximum Equilibria of Cooperative Systems

In this section, we will show the concept of maximum equilibria, which only
applies to cooperative systems. Maximum equilibria are equilibria that are
element-wise greater than or equal to other equilibria of cooperative systems.
These maximum equilibria allow us to group the equilibria of the cooperative
network. Consequently, there exists an equilibrium that all the equilibria of the
mixed-weight network are upper bounded by.

Before introducing the concept of maximum equilibria, we consider an al-
ternative way to group the equilibria, based on the nodes which have a non-
vanishing value. For this, we adopt the common terminology of linear algebra,
for example, as used in Oriented Matroids by Richter-Gebert and Ziegler [8].

Definition 3. The support of a vector v is defined as:

supp(v) := {i : vi ̸= 0} .

Example 1. The support of the vector:[
3 1 0.5 0 2

]⊺
is {1, 2, 3, 5}, 4 is not included since this element is zero.

Consider equilibria that all have the same support. One of these equilibria
could be a maximum equilibrium. A maximum equilibrium is an equilibrium
that has entries that are the maximum of all equilibria on the support.

Definition 4. For a cooperative network with N nodes that meet Assumptions 1,
a maximum equilibrium u is an equilibrium of the cooperative network, if
for each equilibrium v, with the support of v equal to u, the elements of the
maximum equilibrium u are higher than or equal to the matching entries of v:

∀i ∈ {1, . . . , N} , ui ≥ vi.

We define the order of a maximum equilibrium as:

ord(u) = #supp(u).

Remark 7. There is at most one maximum equilibrium on a given support.

Example 2. Consider a cooperative system that has five non-zero equilibria:

v1 =


1
2
0
4
3
5

 , v2 =


2
3
0
5
4
5

 , v3 =


0
4
0
6
2
1

 , v4 =


0
2
0
4
0
1

 , v5 =


0
1
0
3
0
5


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Figure 14: The dynamic equation at equilibria, v and u, is zero. If we instead
consider the dynamic equation, where we take each node’s value as the maximum
of the corresponding entry in v and u, the dynamic equation is non-negative.

We have two maximum equilibria: v2 and v3. v1 is not a maximum equilibrium,
as v2 has the same support and at least one entry higher than the corresponding
entry in v1. v3 is a maximum equilibrium since it is the only equilibrium on its
support. v4 and v5 are not maximum equilibrium, since both contain an entry
higher, that is, higher than the corresponding entry in the other equilibrium.

We will work towards showing that if a system has a non-zero equilibrium,
the system also has a non-zero maximum equilibrium 6. We start by obtaining a
new lower vector for the SCCS (see Theorem 4). Suppose that we have multiple
equilibria, for example v and u. The dynamic function for each node at both
equilibria is zero. What sign will the dynamic function of each node be if we set
the value of the nodes as the maximum of the corresponding entry in v and u?
Take an arbitrary node i of the system, of which the maximum of both equilibria
is vi. If the neighbours have values matching v, node i is at equilibrium. If one
of the neighbours, node j, has a value of uj , then this value must be higher than
vj . Since the interaction function increases in its second argument (see A. 5), it
follows that:

G (vi, vj) ≤ G (vi, uj) .

6the zero equilibrium, which has an empty support, is also a maximum equilibrium, since
it is the only equilibrium on its support
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Therefore, the dynamic function of this node is non-negative. The same argu-
ment can be made for nodes that take the value of the corresponding entry in u.
This is also visually shown in Figure 14. We formalise the above in the following
lemma.

Lemma 3. Suppose we have a cooperative system with N nodes that meets As-
sumptions 1. Let v1, . . . ,vM be some of the equilibria of the system. We define
the vector vmax as taking the element-wise maximum of each of the equilibria:

vmax :=


max{[v1]1, . . . , [vM ]1}
max{[v1]2, . . . , [vM ]2}

...
max{[v1]N , . . . , [vM ]N}


The vector vmax is an appropriate lower vector in SCCS (see Theorem 4), since
for each i, the dynamic function at vmax is:

F ([vmax]i) +
∑
j∈S+

i

wijG([vmax]i, [vmax]j) ≥ 0.

Proof. Consider an arbitrary node i. There is an equilibrium vk, such that for
the i-th element, the value [vk]i is the highest over all equilibria:

[vk]i = max{[v1]i, [v2]i, . . . , [vM ]i}.

To deduce the sign of the dynamic function of node i at vmax we start at
equilibrium vk:

0 = F ([vk]i) +
∑
j∈S+

i

wij G([vk]i, [vk]j)

≤ F ([vk]i) +
∑
j∈S+

i

wij G([vk]i, [vmax]j)

= F ([vmax]i) +
∑
j∈S+

i

wij G([vmax]i, [vmax]j).

We combine this lower vector with the SCCS (see Theorem 4). If vmax is not
equal to one of the equilibria used, another equilibrium exists 7. In the following,
we show how this implies that if there is at least one non-zero equilibrium, there
must be a non-zero maximum equilibrium.

7The bounds on which the equilibrium exists in the SCCC (see Theorem 4) are closed. If
vmax is equal to one of the equilibria, the lower vector itself could be the only equilibrium in
the N-dimensional box.
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Theorem 5. maximum equilibrium with a larger support
Suppose we have a cooperative system that satisfies Assumptions 1, and let v
be an equilibrium of the system. Then there exists a maximum equilibrium a,
with a support that satisfies:

supp(v) ⊆ supp(a).

Proof. We can distinguish between two cases: either v is a maximum equilib-
rium, at which point we would be done. In the other case, consider all the
equilibria u1 . . .uM , which have the same support as v. Either one of these
equilibria is the maximum equilibrium on the support, or none of them. We
consider the case in which neither of them has the maximum equilibrium. Con-
struct the vector vmax, as defined in Lemma 3, from the equilibria u1 . . .uM

and v. Since this vector is a lower vector in Theorem 4, it implies the existence
of an equilibrium between vmax and xupper. This unknown equilibrium z, must
have a support that is strictly larger than that of v, since we assumed that v
and u1 . . .uM are all the equilibria on the support, but none of them are equal
to vmax. For the new equilibrium z, we could apply the same argument as for
v. If we keep repeating this argument, we either find a maximum equilibrium,
at which point we could stop, or we find an equilibrium that has a support that
contains every node. The support can no longer increase; therefore, it must be
the case that vmax on this support does not produce a new equilibrium. This
can only be the case if vmax itself is equal to one of the equilibria, which must
be a maximum equilibrium.

Remark 8. Since vmax is a lower vector, there must always be an equilibrium
u between vmax and xupper. Therefore, instead of considering one equilibrium
v in the above theorem, we could create vmax of multiple equilibria v1 . . . ,vM ,
which must result in a new unknown equilibrium u. This u could be used in the
above theorem, which results in a maximum equilibrium z, which must satisfy:

M⋃
i=1

supp(vi) ⊆ supp(u) ⊆ supp(z).

Example 3. Before we move on to the next subsection, we will give a brief
example. In Appendix Example F.2 we considered the following cooperative
system: 

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 ,

F (xi) = −4xi + 4x2
i − 4x3

i , G(xi, xj) = 3xixj .

Of all equilibria, two are given by:
1.058
0

1.058
1.415

 ,


1.057
0.707
0

0.707

 .
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It follows from Theorem 5 that there should exist a maximum equilibrium which
has order 4; an equilibrium with non-vanishing entries. We also found the
(maximum) equilibrium: 

2
2
2
2

 ,

which is the maximum equilibrium on the given support.

5.1 Separable Systems

We have shown that a non-zero maximum equilibrium exists if the coopera-
tive system has a non-zero equilibrium. Are there systems that have multiple
maximum equilibria, and are there systems that only have one (excluding the
zero equilibrium). We first work out a set of networks that could have multiple.
Networks that have functions G(xi, xj), that are also zero if the first variable is
zero, are such networks.

Definition 5. A network is separable, if:

∀x ∈ R≥0, G(0, x) = 0.

Remark 9. If the function G(xi, xj) is separable, i.e., it can be written in the
form h(xi)l(xj) and h(0) = 0, the network is also separable. By A. 4 it is already
implied that l(0) = 0.

Example 4. A system with the function G1(xi, xj)=
x2
jxi

xixj+1 is separable,

whereas a system with the function G2(xi, xj)=
x2
j

xixj+1 is not. Both functions

G1(xi, xj) and G2(xi, xj) are not separable.

The intuition behind a separable network lies in its name. Instead of analysing
the whole network, we consider subnetworks by removing nodes. The equilibria
of the subnetworks are also equilibria for the original network, where the deleted
nodes are set to zero. The key detail is that we set the nodes not included to
zero. To clarify why such a node does not disassemble the equilibrium, all in-
teractions of a node in a separable network, where the node has a quantity of
zero, will also be zero. Therefore, this node is not influenced by the values of
its neighbours. We formalise the above in the following lemma.

Lemma 4. Consider a separable system that satisfies Assumptions 1. If a
subnetwork has an equilibrium, then this is also an equilibrium of the full network
if the removed nodes are set to zero.

Proof. The proof is presented in Appendix Proof D.1.

We have previously used xupper as the higher vector in the SCCS (see The-
orem 4), which, although always correct, does not give good constraints on the
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equilibrium between the lower and higher vectors; the support lies between the
support of the lower vector and all nodes. For separable networks, we can modify
xupper to give us precise control of the support on the resulting equilibrium.

Lemma 5. Suppose we have separable cooperative system with N nodes that
satisfy Assumptions 1, and an arbitrary subset A ⊆ {1, . . . , N}. We define the
partial upper bound vector by:

xpartial
upper (A) := (x1, . . . , xN ), where xi =

{
xupper if i ∈ A

0 otherwise
.

xpartial
upper (A) an appropriate higher vector for the SCCS (see Theorem 4).

Proof. A complete proof is available in Appendix Proof D.2.

With this new upper vector (which is only applicable for separable coop-
erative systems), we can do something similar to Theorem 5, except that the
maximum equilibrium must have the same support as our starting equilibrium.

Corollary 6. maximum equilibrium of the same support
Consider a separable cooperative system that satisfies Assumptions 1. If there
exists an equilibrium v, then there exists a maximum equilibrium u such that:

supp(u) = supp(v),

Proof. See Appendix Proof D.3 for a detailed proof.

The maximum equilibria of separable systems are also the upper bounds for
the equilibria of the mixed-weight system. This follows because we have pre-
viously found that the equilibria of the mixed-weight system are lower vectors,
and we can adjust our higher vector for separable systems to our needs.

Corollary 7. Consider a separable system that satisfies Assumptions 1. An
equilibrium v of the mixed-weight system is upper bounded by the maximum
equilibrium u of the cooperative system, given that:

supp(v) = supp(u).

Proof. From Lemma 2 we have that v is a lower vector in the SCCS (see Theo-
rem 4). The higher vector can be taken as the partial upper bound vector in the
set supp(v), defined in Lemma 5. This implies that there exists an equilibrium
z such that for all i:

vi ≤ zi ≤ xpartial
upper (supp[v])i.

Consequently, by Corollary 6 we have a maximum equilibrium on this support,
which proves the statement.
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Example 5. In Appendix Example F.2 we consider the following separable
cooperative system: 

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 ,

F (xi) = −4xi + 4x2
i − 4x3

i , G(xi, xj) = 3xixj .

In which we find the equilibria:
2
2
2
2

 ,


1
2
1
2
1
2
1
2

 ,


0
0
0
0

 ,


0.707
1.057
0.707
0

 ,


1.058
1.415
1.058
0

 ,


0

0.707
1.057
0.707

 ,


0

1.058
1.415
1.058

 ,


0.707
0

0.707
1.057

 ,


1.058
0

1.058
1.415

 ,


1.057
0.707
0

0.707

 ,


1.415
1.058
0

1.058

 .

We may conclude from Corollary 6 that on each support, {1, 2, 3}, {1, 2, 4},
{1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4} and {∅}, we have a maximum equilibrium, which
in this case, in order are:

1.058
1.415
1.058
0

 ,


1.415
1.058
0

1.058

 ,


1.058
0

1.058
1.415

 ,


0

1.058
1.415
1.058

 ,


2
2
2
2

 ,


0
0
0
0

 .

Separable cooperative systems have conditions that allow multiple maximum
equilibria. This condition is that a node that has a quantity of zero is always
in equilibrium. We could instead consider systems that are the opposite of this.
As a system with functions such that a node with a value of zero can never be
at equilibrium if one of its neighbours has a non-zero quantity.

Corollary 8. Consider a cooperative system with N nodes that satisfies As-
sumptions 1. Suppose that the system is not separable, the associated matrix is
strongly connected and that the function G(xi, xj) satisfies:

∀x ∈ R>0, G(0, x) > 0.

Then every non-zero equilibrium v has a support that contains every node.

Proof. The proof can be found in Appendix Proof D.4.

In the upcoming section 6 we consider a system for which Corollary 8 is
applicable.
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Figure 15: A conceptual illustration of the knowledge obtained. We can group
the the equilibria in regions that have the same support. There is at most
one maximum equilibria on a given support. The maximum equilibria are the
equilibria with a red circle.

5.2 Principal equilibria

Something special happens if we apply the knowledge we have obtained of vmax,
to all the equilibria of a cooperative system v1, . . . ,vM . If we create vmax from
the equilibria, we get a lower vector for the SCCS (Theorem 4). Therefore,
there must be an equilibrium between vmax and xupper. However, since we have
already assumed that we know all the equilibria, it can only be that vmax is
itself an equilibrium. This implies that there is one equilibrium in v1, . . . ,vM

equal to vmax. This equilibrium is therefore not only maximal on its support
but maximal over all equilibria. This equilibrium we call the principal equi-
librium.

Definition 6. Consider a cooperative system that satisfies Assumptions 1. The
principal equilibrium is the equilibrium equal to vmax, where vmax is calcu-
lated from all the equilibria of a cooperative system.

Remark 10. The principal equilibrium is also a maximum equilibrium.

There are some direct consequences for the principal equilibrium. One of
them is that all its entries must be greater than or equal to the corresponding
entries of any other equilibrium. This, in turn, implies that it must have the
largest support.

Corollary 9. Consider a cooperative system that satisfies Assumptions 1. For
every equilibrium v, the principal equilibrium u is element-wise larger than or
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equal to v. That is:
∀i ∈ {1, . . . , N} , ui ≥ vi.

Proof. Suppose that v1, . . . ,vM and u are all the equilibria of the system, with
u the principal equilibrium. For an arbitrary entry i we have:

ui = max{ui, [v1]i, . . . , [vM ]i}.

Corollary 10. Consider a cooperative system that satisfies Assumptions 1. For
an arbitrary equilibrium v and the principal equilibrium u of a cooperative sys-
tem, we must have:

supp(u) ⊆ supp(z).

Proof. Consider an element i ∈ supp(v). By Corollary 9, ui ≥ vi, from which
it follows that i ∈ supp(u).

We can link the above two corollaries to the definition of participatory and
partially redundant systems (see Definition 2).

Corollary 11. Suppose we have a cooperative system with N nodes that satisfies
Assumptions 1. The following is equivalent:

1. The order of the principal equilibrium is equal to N

2. the system is participatory

Proof. See Appendix Proof D.5 for the full proof.

Corollary 12. Suppose we have a cooperative system with N nodes that satisfies
Assumptions 1. The following is equivalent:

1. The order of the principal equilibrium is smaller than N

2. The system is partially redundant.

Proof. It follows immediately from taking the negation of the above statements
and seeing that this is equal to the two statements in Corollary 11.

Example 6. In Example 5 we found the maximum equilibria:
1.058
1.415
1.058
0

 ,


1.415
1.058
0

1.058

 ,


1.058
0

1.058
1.415

 ,


0

1.058
1.415
1.058

 ,


2
2
2
2

 ,


0
0
0
0

 .

There is only one equilibrium of this that is the principal equilibrium:
2
2
2
2

 .
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The implications of Corollary 9 and Corollary 10 can also be seen in the
examples shown in the appendix, namely Appendix Example F.1, Appendix
Example F.2, Appendix Example F.5 and Appendix Example F.6.

In Corollary 5, we have shown that an equilibrium of the mixed-weight
system is upper bounded by an equilibrium of the cooperative system. However,
we did not show which equilibrium in particular. Fortunately, there is no such
need, as all the equilibria of the cooperative system are upper bounded by the
principal equilibrium.

Corollary 13. Consider a system that satisfies Assumptions 1. Every equilib-
rium v of the mixed-weight system is element-wise upper bounded by the prin-
cipal equilibrium u of the corresponding cooperative system.

Proof. In Corollary 1, we have proved that every equilibrium v of the mixed-
weight system is upper bounded by an equilibrium of the cooperative system.
Since the equilibria of the cooperative system are upper bounded by the principal
equilibrium (see Corollary 9), the statement immediately follows.

Let us now summarise the above theorems and corollaries and relate them
to the connection between the equilibria of the cooperative and mixed-weight
systems. First, we have seen that there always exists a principal equilibrium,
which is element-wise greater than or equal to all other equilibria. This also im-
plies that the equilibria of the mixed-weight system are all element-wise smaller
than or equal to the principal equilibrium. We have also seen that there are sys-
tems for which we can take subnetworks, of which the equilibria transfer over to
the equilibria of the full network. The equilibria of the separable mixed-weight
systems are upper bounded by the corresponding maximum equilibria of the
cooperative system.

5.3 One Variable Principal Equilibrium Algorithm

We can find the principal equilibrium of a cooperative system by iteratively
solving equations dependent on only one variable, which is much easier to solve
directly for the equilibrium. Below is the pseudo-code of the algorithm:
Given: The system, and xupper

Result: The principal maximum of the system.

1 Set vi = xupper for all i = 1, . . . , N.

2 while at least one element of v changed in the last loop

3 loop over i = 1, . . . , N :

4 calculate the supremum of all the positive values x such that:

F (x) +
∑
j∈S+

i

wijG(x, vj) = 0

5 setvi equal to the supremum.
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Figure 16: A conceptual illustration of the knowledge obtained. There is one
equilibrium of the cooperative system that is element-wise the maximum of all
the equilibria, which is called the principal equilibrium. The principal equilib-
rium also upper bounds the equilibria of the mixed-weight system. The principal
equilibrium has a blue circle.

Although we will not put our main focus on the science behind the algorithm,
we will give an intuitive explanation of why it works. We start by setting
the quantity associated with each node at the maximum value xupper. This
maximum value for all nodes is a bit crude, which stems from two things: first,
the maximum value is only obtained if all the neighbours also have a maximum
value. Secondly, although not independent of the first argument, the maximum
value is only obtained if the weighted in-degree of each node is equal to the
maximal weighted in-degree. This is certainly true for one node, but depending
on the network, it does not have to apply to all other nodes. From this, we
may conclude that even if the neighbours of such a node have entries equal to
xupper, due to a lower weighted in-degree than the maximum weighted in-degree,
this node will have a derivative smaller than zero. Therefore, we can conclude
that the current value (xupper) is too large for this node. We can approximate
a better upper bound for this node by recalculating the maximum value for
which this node has an equilibrium, given that the neighbours have a value
xupper. Consequently, we find a new upper bound for this node, smaller than
the previous upper bound. We can do this for all nodes with a smaller weighted
interaction than the maximum weighted interaction. This will give a better
upper bound for each node. But by doing this, we disregarded the assumption
that the neighbouring nodes have entries equal to xupper, as we have calculated
a better upper bound for the neighbours. Therefore, we can recalculate the
upper bound of the quantity of each node with this new information. We can
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keep repeating this process until the entries no longer change, but what does
this imply? This implies that for the current entries, the derivatives of the
quantities of the nodes are equal to zero; an equilibrium. Therefore, instead
of directly trying to solve the equation governing the dynamics of the complex
network, which is multivariable, we iteratively solve equations that depend on
only one variable to get closer and closer to the equilibrium.

5.4 Stability of the Maximum Equilibria

The stability of the equilibria of both systems is not the main focus of this thesis;
however, it is also, in general, an important piece of information. Hence, in the
next section, we briefly provide some information on the stability of different
systems.

Theorem 6. Suppose we have a separable system that satisfies Assumptions 1.
Assume that the function F (xi) is continuously differentiable near xi = 0, and
that the function G(xi, xj) is twice continuously differentiable near (xi, xj) =
(0, 0). If

dF (xi)

dxi

∣∣∣∣
xi=0

< 0,

then the zero equilibrium is stable.

Proof. A complete proof is provided in Appendix Proof D.6. The general idea
behind the proof is that the Taylor expansion of G(xi, xj) around 0 will not
result in a constant term nor in xi and xj , but always in terms of higher order.
Therefore, each diagonal element in the Jacobian is dependent on xi or xj ,
resulting in zero at 0. The diagonal elements are all negative, which implies
that all the eigenvalues are negative.

Proving the stability of equilibria is in itself a whole activity. Different
methods can be used to estimate Jacobian eigenvalues, for example, Gershgorin,
but Gershgorin does not always provide conclusive information, as illustrated
in Appendix Example F.5.

In Appendix Example F.6, we calculate the equilibria of a very simple sys-
tem, dependent on a parameter. The stability of the equilibria changes for dif-
ferent values of the parameter. From this example, we also get insight into why
some systems do and do not have non-zero equilibria. If a system has non-zero
equilibria, and we adjust the parameter, which results in a harsher environment,
we reach a tipping point. The tipping point occurs due to bifurcation of the
non-zero equilibria.
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6 Example: SIS Epidemic Process

In this section, we present a simple example of an SIS epidemic system described
in Wu et al. [2], which focusses not only on the equilibria, but also on interpret-
ing the various components and results. Given its relevance, we use COVID-19
as a framework to clarify the system.

The nodes of the network are hosts of the disease. The functions of the SIS
epidemic process are:

F (xi) = −xi, G(xi, xj) = β(1− xi)xj .

This system does not meet A. 5, since the function G(xi, xj) decreases in xj if
xi > 1. One might think that, as a result, all the above theorems are no longer
applicable. Fortunately, this will not be a problem for a cooperative network, as
a value above 1 cannot correspond to an equilibrium, nor does it make sense in
the system. The quantitative value of each node corresponds to the probability
of infection, while the node itself is the host [2]. We see that the organisms
themselves fight the disease, represented by F (xi), which is linear, independent
of any parameters. This might seem implausible at first, as one would expect
that certain infections are easier to combat. Instead of having an independent
parameter for this, we incorporate it into the parameter β. This implies that
β is the effectiveness of transmission between hosts, which incorporates effects
such as:

1. The method of transmission. One way COVID-19 spreads is in small liquid
particles, according to the World Health Organization [9].

2. If a host shows symptoms while carrying the disease. For COVID-19,
an infected person can spread the disease without symptoms, making
the effectiveness of transmission greater, according to the World Health
Orginization [10].

Transmission is modelled through the function G(xi, xj). If a host itself has
a higher probability of being infected, the influence decreases, reaching zero if
the probability is one. Another parameter, similar to β but more personalised
to each host, is the weight of the interaction with other hosts. People who live
close together are more likely to get infected. However, acquiring a vaccine could
lead to a weaker interaction with neighbouring hosts. In addition, wearing a
face mask makes one less susceptible to infection. In this thesis, we have always
assumed that both the parameters and the weight of the interaction have a
constant value over time. Although this simplifies the analysis, it does not fully
reflect reality. Different mutations of COVID-19 disease are alpha, beta, and
gamma variants, all of which have different transmissibility, which is correlated
with our β [11]. People also do not have a fixed distance from one another
but move over time, which also makes the weight of the interaction dependent
on time. For simplicity, we will consider three cases with constant parameters.
Each case represents a different stage of an epidemic. We will do this for a
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small network, which contradicts a ”usual” epidemic, but the results still give
us relevant insights.

6.1 Stage 1: Early Infection

For the system we consider below, we will first employ different methods to de-
scribe the equilibria, after which we give the numerically calculated equilibrium.
We will compare how the numerically calculated equilibrium changes over the
three stages. Suppose that we have three people, two people close to each other,
and a third who interacts weakly with both. This could result in the following
adjacency matrix:  0 3 0.3

2 0 0.1
0.2 0.1 0

 ,

with a β value of 1
2 . Rather than directly providing the equilibrium of this

network, we will first present some implications derived from the above theorems
and corollaries. The upper bound of this network can be calculated by solving:

−x+ β ·Wmax(1− x)x =0

x = 0 or x = 1− 1

β ·Wmax
,

which, for this system, results in an upper bound of 0.394. This implies that
even the chance of being sick is slim. Since this system satisfies the requirements
of Corollary 8, any non-zero equilibrium must have non-vanishing entries. To
approximate the equilibrium, we will use kmax, which for this network is 2. The
value of kmax equal to 2 corresponds to the subnetwork of node 1 and node 2.
To find the lower vector in Theorem 4, we solve the equation:

−x+ β · kmax(1− x)x = 0

x = 0 or x = 1− 1

β · kmax
.

For this stage, it results in x = 0, which implies that we cannot obtain a useful
approximation from this method. The non-zero equilibrium for this network is:0.2290.192

0.058

 .

It might not come as a surprise that the last entry is significantly smaller than
the other two, as the corresponding node has a weak interaction with the other
two nodes. In general, someone will become less sick from other people if they
have less contact with others.
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6.2 Stage 2: Widespread Outbreak

Suppose that we have the same system as above, but now β is increased to 2.
This will result in a higher probability of disease for each node. We can again
calculate the upper bound, which is now approximately 0.848. This does not
mean that the equilibrium is close to this; it simply provides an upper bound.
Due to the change in the β value, in this stage, the lower vector obtained from
kmax provides useful information. The lower vector is:0.750.75

0

 .

We observe that the new equilibrium for the first two entries is strictly larger
than that in the previous stage. The equilibrium with β equal to 2 is:0.8280.772

0.327

 .

We see that indeed the first two entries are above 0.75, and all entries are below
the upper bound of 0.848. The last entry, which was previously well below the
other entries, is now much closer. It does not matter whether you have very little
contact with other people if the disease is highly contagious. This equilibrium,
compared to the previous equilibrium, is higher, as expected.

6.3 Stage 3: Intervention

Suppose that β remains 2, but person 1 and person 2 receive a vaccination that
makes them less likely to become infected. This could result in the following
adjacency matrix:  0 1 0.1

0.6 0 0.1
0.2 0.1 0

 .

This results in a lower upper bound, namely 0.545. Compared to the previous
equilibrium, vaccination of these two people will result in a lower probability of
infection. A lower vector for this network is:0.1670.167

0

 ,

which is also more promising than the previous lower vector. However, we do
see that the difference between the lower and higher vectors is larger than in
case 2. If we were to only employ these reduction methods, the range of the
first and second nodes is 0.378. This is, compared to the maximum probability
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of 1, inaccurate. The equilibrium of this network is:0.4110.336
0.130

 ,

which is still worse than in stage 1, but better than in stage 2. To improve it even
further, we must hope that the value β decreases with time due to mutations,
or as a result of widespread measures such as handwashing, wearing masks, and
maintaining a distance of 1.5-meter.
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7 From Cooperative to Mixed-Weight

Finally, we illustrate that it is not straightforward to deduce the equilibria of a
mixed-weight system based on the equilibria of the corresponding cooperative
system, as the outcome can strongly depend on the magnitude of the nega-
tive interactions. However, we can state constraints on the equilibria of the
mixed-weight system and give conditions, which state if an equilibrium of the
cooperative system is also an equilibrium of the mixed-weight system.

How the equilibria of the cooperative system change due to the added neg-
ative interaction is closely related to when a system collapses. How and when
a system collapses is part of bifurcation theory. This branch of mathematics
studies how changes in parameters influence equilibria and their stability. For
simple small systems, we can concretely describe how a change in one of the pa-
rameters influences the equilibria, but for the systems we consider, which could
have more than 1000 nodes and interact non-linearly, it is much harder, if not
impossible. We hope to illustrate this with an example of how a change in the
parameters influences the equilibria. Consider the subnetwork of the network
used for the system in Appendix Example F.2, with a small modification:0 1 −c

1 0 1
0 1 0

 ,

F (xi) = −4xi + 4x2
i − px3

i , G(xi, xj) = 3xixj .

The addition of c could make the system mixed-weight. We find for p = 4 and
c = 0, the two non-zero equilibria are:0.7071.057

0.707

 ,

1.0581.415
1.058

 .

We might now wonder what would happen if we increased p or c. In both cases,
we get the saddle-node bifurcation, which is visualised in Figure 17.

There always exist parameter values at which the system is at the boundary
of losing non-zero equilibria. In this example, the tipping point occurs around
p = 4.12 for the parameter p and around c = 0.12 for the parameter c. To my
best knowledge, no theorem exists that characterises when the tipping point
occurs for the systems we consider. If such a theorem exists, it would provide
information not only on how the equilibria move with a change in the parameter
c, but also on when the cooperative system survives.

7.1 Leeway in the Equilibria

Fortunately, we can still impose conditions on the equilibria of the mixed-weight.
This will result in equilibria of the cooperative system, which, independent of
the negative interaction, extend to equilibria of the mixed-weight network.
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Figure 17: The evolution of the quantities of the nodes of the above system. On
the left, p is variable and c = 0, and on the right, c is variable and p = 4. The
two equilibria collide around p = 4.12 on the left, around c = 0.12 on the right,
after which no equilibrium exists for both. The collision of the two equilibria of
this system is also referred to as a saddle-node bifurcation.

Theorem 7. Consider a cooperative system that satisfies Assumptions 1. Let
v be the principal equilibrium. We define the leeway of node i:

∆i(v) := sup
x∈[0,vi]

F (x) +
∑
j∈S+

i

wijG(x, vj)

 .

For every equilibrium z of the mixed-weight system, the negative interaction
received by node i must be smaller than or equal to the leeway of node i:

−
∑
j∈S−

i

wijG(zi, zj) ≤ ∆i(v).

Proof. We will prove the statement with a contradiction; therefore, suppose
that there exists an equilibrium z, such that:

−
∑
j∈S−

i

wijG(zi, zj) > ∆i(v).

The dynamic function of node a at z is:

dxi

dt

∣∣∣∣
x=z

= F (zi) +
∑
j∈S+

i

wijG(zi, zj) +
∑
j∈S−

i

wijG(zi, zj)

< F (zi) +
∑
j∈S+

i

wijG(zi, zj)−∆i(v)

≤ F (zi) +
∑
j∈S+

i

wijG(zi, vj)−∆i(v) ≤ 0.
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The last inequality follows, since each equilibrium of the mixed-weight system
is element-wise upper bounded by the principal equilibrium of the cooperative
system (see Corollary 13). At equilibrium z, the dynamic function of node i is
negative, which is a contradiction.

Remark 11. If the leeway of a node i is zero, then for each equilibrium z of the
mixed-weight network, all negative interactions going to node i must be zero.

Example 7. We consider the mixed-weight system we covered in subsection 4.4:
0 4 2 0 2 0
2 0 0 4 3 0
5 0 0 0 −1 0
0 −1 0 0 4 0
3 0 0 0 0 2
0 0 0 0 1 0


F (xi) = −3xi

2
, G(xi, xj) =

x2
j

1 + x2
j

.

The principal equilibrium v is:[
4.896 5.164 3.200 2.222 2.234 0.555

]⊺
.

The only equilibrium z to the (mixed-weight) system is:[
4.835 4.849 2.641 1.581 2.232 0.555

]⊺
.

Since the function G(xi, xj) is not dependent on xi, the leeway

∆i(v) := sup
x∈[0,vi]

−3x

2
+

∑
j∈S+

i

wij

v2j
1 + v2j

 .

is always obtained at x = 0. Nodes 3 and 4 both have negative interactions.
The leeway of node 3, ∆3(v), is 4.800. This implies that −w35G(z3, z5) ≤
4.800, which is the case as −w35G(z3, z5) = 0.833. For node 4, the leeway,
∆4(v), is 3.332. This implies that −w42G(z4, z2) ≤ 3.332, which is the case as
−w42G(z4, z2) = 0.964.

For separable systems, the maximum equilibrium on a support is similar to
the principal equilibrium. This implies that we can extend the above theorem
to separable systems.

Corollary 14. Consider a separable cooperative system that satisfies Assump-
tions 1. Let A be an arbitrary subset of {1, . . . , N} which has an equilibrium v
with:

supp(v) = A.
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For every equilibrium z of the mixed-weight system, the negative interaction
received by node i must be smaller than or equal to the leeway of node i:

−
∑
j∈S−

i

wijG(zi, zj) ≤ ∆i(v).

Proof. The proof can be found in Appendix Proof E.1.

Unfortunately, more information on the conditions of the equilibria of the
mixed-weight system requires a better understanding of how the negative inter-
actions change the equilibria of the cooperative system.

7.2 The Same Equilibria

Finally, we give conditions that tell us if an equilibrium of the cooperative system
is also an equilibrium of the mixed-weight system. This is rather easy, as we
only have to consider whether a negative interaction influences the equilibrium
equations.

Theorem 8. Suppose we have a system that satisfies Assumptions 1. If there
exists an equilibrium v of the cooperative network, such that the following is
true:

∀ (i, j) ∈ A−, G(vi, vj) = 0,

then v is also an equilibrium of the mixed-weight network.

Proof. The equilibrium equation of the mixed-weight system for a node i is:

dxi

dt

∣∣∣∣
x=v

=F (vi) +
∑
j∈S+

i

wijG(vi, vj) +
∑
j∈S−

i

wijG(vi, vj)

=F (vi) +
∑
j∈S+

i

wijG(vi, vj) + 0 =0.

The sum of all negative interactions is zero, which is implied by our assumption.
The last equation is equal to zero, since v is an equilibrium.

Remark 12. If j ̸= supp(v), it follows that:

∀i ∈ {1, . . . , N} , G(vi, vj) = 0,

which is a direct consequence of A. 3.

Remark 13. If the system is separable and i ̸= supp(v), we deduce that:

∀j ∈ {1, . . . , N} , G(vi, vj) = 0.

This follows by the definition of a separable system (see Definition 5).

For the last time, update our visual to include the latest pieces of informa-
tion, see Figure 18.
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Figure 18: A conceptual illustration of the knowledge obtained. All the equilib-
ria of the mixed-weight system must meet the conditions in Theorem 7. How-
ever, no direct translation between the cooperative equilibria and those of the
mixed-weight equilibria has become apparent. Some of the equilibria of the co-
operative system transfer over to the equilibria of the mixed-weight system.

7.3 Final Example

Finally, we consider an example to illustrate how the theorems and corollaries
we have obtained can be applied. Consider the mixed-weight system:

0 12 0 4 −3
6 0 6 0 3
8 4 0 −2 0
8 −1 5 0 2
−6 2 0 1 0

 ,

F (xi) = −4xi + 4x2
i − 16x3

i , G(xi, xj) = xixj .

Although the system is still relatively small and could probably be solved ana-
lytically, doing so would contradict what we aim to demonstrate. We visualised
the network in Figure 19. We will ignore the trivial zero-equilibrium. We first
calculate the upper bound of the entire network. The upper bound xupper, is
the supremum over all real positive numbers x such that:

−4x+ 4x2 − 16x3 +Wmaxx
2 = 0

x = 0 or x =
Wmax + 4±

√
(Wmax + 4)2 − 256

32
.

For Wmax = 16, this implies xupper = 1. Next, we calculate Wmin, which is
the smallest value such that the function:

−4x+ 4x2 − 16x3 +Wminx,
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Figure 19: The full network of the system we consider in subsection 7.3.

still has positive roots. This results in:

16 + 64(Wmin − 4) = 0

Wmin = 3
3

4
.

Node 5 has a smaller positive weighted in-degree than Wmin, which implies that
the quantity of node 5 is zero for all equilibria of positive and mixed-weight
systems. This system is partially redundant; therefore, we consider the network:

0 12 0 4
6 0 6 0
8 4 0 −2
8 −1 5 0

 ,

also shown in Figure 20. This network has the same xupper and Wmin. Since

Figure 20: The subnetwork of the system we consider in subsection 7.3.

the system is separable, we could instead consider all the sub-matrices. For all
sub-matrices with a Wmax < 12, there are no equilibria on the support, since:√

(Wmax + 4)2 − 256,
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is negative for Wmax < 12. This implies that xupper is zero. This leaves the
sub-matrices:

A{1,3,4} =

0 0 4
8 0 −2
8 5 0

 , A{1,2,4} =

0 12 4
6 0 0
8 −1 0

 ,

A{1,2,3} =

0 12 −1
6 0 6
8 4 0

 , A{1,2} =

[
0 12
6 0

]
.

At this point, to even reduce the sub-matrices we consider, we calculate the
spectral radius of each sub-matrix (only the non-negative entries), which serves
a similar role as Wmax. However, the spectral radius is always smaller than or
equal to Wmax, which we have shown in subsection 4.2. Therefore, instead of
first eliminating sub-matrices with a Wmax < 0, directly eliminating the sub-
matrices A with p(A) < 12 would have yielded fewer sub-matrices. Calculating
the largest eigenvalues, on the other hand, requires more mathematics. The
only sub-matrix with a spectral radius larger than or equal to 12 is A{1,2,3}. We
therefore conclude that all the non-zero equilibria either have a support of 1, 2,
and 3 or 1, 2, 3, and 4.

Wmax on the support of 1, 2, and 3 is 12, which results in xupper = 0.5.
Due to symmetry, if nodes 1, 2 and 3 all have the quantity xupper, it is also an
equilibrium: 

1
2
1
2
1
2
0
0

 .

Consequently, this is the maximum equilibrium on the support 1,2 and 3. This
is also the only equilibrium on the support, which follows from a numerical anal-
ysis. This maximum equilibrium also meets the condition to be an equilibrium
of the mixed-weight network (see Theorem 8).

Finally, we need to consider the principal equilibrium. The minimum positive
weighted in-degree, kmax, of the system is 12. This is obtained in the subnetwork
with nodes 1, 2, 3 and 4. Solving for:

F (x) +G(x, x)kmax = 0.

Therefore, the principal equilibrium is lower bounded by the first vector and
upper bounded by the second vector:

1
2
1
2
1
2
1
2
0



1
1
1
1
1

 .
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A numerical analysis tells us that the principal equilibrium is:
0.826
0.713
0.722
0.760
0

 .

Every equilibrium of the mixed-weight system is upper bounded by this principal
equilibrium. A numerical analysis confirms this, as the equilibria of the mixed-
weight system, with the support of nodes 1, 2, 3 and 4 are:

0.782
0.662
0.612
0.679
0

 ,


0.449
0.330
0.288
0.369
0

 .

50



8 Conclusion

The analysis of equilibria of complex systems remains a fundamental challenge
due to the high dimensionality and non-linear interactions. In this thesis, we
approach this problem by reducing the system to an equation that bounds the
equilibria of both the cooperative system and the mixed-weight system. This
upper bound underlies several Corollaries and Theorems presented throughout
the thesis.

We established a sufficient condition for the equilibria of cooperative sys-
tems (see Theorem 4), which, given two appropriate vectors, states that an
equilibrium exists in a N -dimensional box. The condition shifts the challenge
from computing equilibria to searching for two suitable vectors. We have shown
that the equilibria of the mixed-weight system are always element-wise upper
bounded by an equilibrium of the cooperative system, resulting in a sharper
upper bound.

We developed a framework to group the equilibria. An equilibrium could
exist which, on its support, is element-wise maximal. This led to the principal
equilibrium, an equilibrium which is element-wise always greater than all the
other equilibria. Consequently, all the equilibria of the mixed-weight system are
upper bounded by the principal equilibrium. For separable systems, we were
able to upper bound the equilibria of the mixed-weight system for each support.

Finally, we considered the effect of introducing negative interactions into
cooperative systems. Due to the complexity, we were unable to draw general
conclusions. However, we derived a constraint on the equilibria of the mixed-
weight system. In certain cases, the equilibria of the cooperative system are
also equilibria of the mixed-weight system.

In summary, we can upper bound the equilibria of mixed-weight systems by
those of cooperative systems. However, we were unable to derive an accurate
translation between the systems. Future work could focus on approximation
techniques for such a translation.
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Appendix A: Cooperative and competitive sys-
tems

There are other frameworks, in addition to the mixed-weight system (described
in section 1), that could also describe cooperative and competitive systems. We
provide two such systems below.

The sign-changing system is unique because it is characterised by very
few constraints on the functions that describe the system. It is described by:

∀ i ∈ {1, . . . , N}, dxi

dt
= F (xi) +

N∑
j=1

wijG(xi, xj)

∃x,y ∈ R≥0, F (x) > 0 and F (y) < 0

∃x1, x2, y1, y2 ∈ R≥0, G(x1, x2) > 0 and G(y1, y2) < 0

∀ i, j ∈ {1, . . . , N}, wij ≥ 0.

The dual-interaction system, compared to sign-changing and mixed-weight
systems, has a completely different approach; two networks are laid on top of
each other, where one network is for strictly cooperative interactions G(xi, xj),
and the other for competitive interactions H(xi, xj). This system is more so-
phisticated than the sign-changing system. It can be described by:

∀i ∈ {0, 1, . . . , N}, dxi

dt
= F (xi) +

N∑
j=1

wijG(xi, xj) +

N∑
j=1

vijH(xi, xj)

∀x ∈ R≥0, F (x) ≤ 0

∀x, y ∈ R≥0, G(x, y) ≥ 0, H(x, y) ≤ 0

∀i, j ∈ {1, . . . , N}, wij , vij ≥ 0.

Appendix B: Upper Bound

The proofs of the theorem and corollaries in section 3, which are not provided
in the text.

Proof of Corollary 1:

Proof B.1. Let v be an arbitrary equilibrium of the system. Then there exists
an index k such that:

vk = max {v1, v2, . . . , vN} .

We will show vk ≤ xupper. For node k, the dynamic function at equilibrium v
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is:

dxk

dt

∣∣∣∣
x=v

=F (vk) +
∑
j∈S+

k

wkjG(vk, vj) +
∑
j∈S−

k

wkjG(vk, vj)

≤F (vk) +
∑
j∈S+

k

wkjG(vk, vj)

≤F (vk) +
∑
j∈S+

k

wkjG(vk, vk) (3)

=F (vk) +G(vk, vk)
∑
j∈S+

k

wkj

≤F (vk) +WmaxG(vk, vk). (4)

In step 3 we reduce the system. The inequality follows as the function G(xi, xj)
is non-decreasing in its second variable (see A. 5). Inequality 4 follows from the
definition of Wmax (see, Theorem 1). Inequality 4 follows from the definition of
Wmax. By inequality 4 and the definition of the upper bound (see, Theorem 1)
we can conclude that if vk > xupper we must have

dxk

dt

∣∣∣∣
x=v

< 0.

This would contradict v being an equilibrium, thus we conclude that for each
index i:

vi ≤ vk ≤ xupper.

Proof of Corollary 2:

Proof B.2. We consider a system in which only one node is zero for all equilib-
ria. If there were multiples, a recursive argument could be applied. Let node i
be a node that vanishes in all equilibria and let v be an arbitrary equilibrium of
the mixed-weigh system or the cooperative system. We only consider the neigh-
bours of node i, as these are the only ones influenced. Let k be an arbitrary
node such that:

wki ̸= 0.

The interaction terms for node k are:∑
j∈S+

k \(k,i)

G(vk, vj)+
∑

j∈S−
k \(k,i)

wkjG(vk, vj) + wkiG(vk, vi) =

∑
j∈S+

k \(k,i)

G(vk, vj)+
∑

j∈S−
k \(k,i)

wkjG(vk, vj) + 0.

Where G(vk, vi) = 0, which follows from A. 3. We conclude that solving the
equilibrium equations without node i results in the same equilibrium equations.
Note that the sum over A− would be zero for cooperative systems.
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Proof of Theorem 3:

Proof B.3. We will prove this by contradiction. Suppose that there is an
equilibrium v, for which there exists an index i, such that:

k+i < Wmin, vi ̸= 0.

The dynamic function of node i at v is:

0 =
dxi

dt

∣∣∣∣
x=v

= F (vi) +
∑
j∈S+

i

wij G(vi, vj) +
∑
j∈S−

i

wijG(vi, vj)

≤ F (vi) +
∑
j∈S+

i

wij G(vi, vj)

≤ F (vi) +
∑
j∈S+

i

wijG(vi, xupper)

= F (vi) +G(vi, xupper)k
+
i .

By the continuity of both F (xi) and G(xi, xj) (see A. 2), we may conclude that:

∃x ∈ [vi, xupper] such that F (x) +G(x, xupper)k
+
i = 0,

which contradicts the definition of Wmin. Thus, we proved by contradiction that
each node i, which has a positive weighted in-degree smaller than Wmin, must
be zero in all equilibria.

Appendix C: Sufficient Condition for Cooperative
Systems

The proofs of the corollary and exercise in section 4, which are not provided in
the text.

Proof of Corollary 4:

Proof C.1. Let node i have reduced incoming weights denoted as qij , where:∑
j∈S+

i

qij = kmax.

The dynamic function of i with these reduced weights at v is:

0 =
dxi

dt

∣∣∣∣
x=v

= F (vi) +
∑
j∈S+

i

qijG(vi, vj)

= F (vi) +
∑
j∈S+

i

qijG(vi, vi)

= F (vi) +G(vi, vi)kmax

≤ F (vi) +G(vi, vi)
∑
j∈S+

i

wij .
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We substitute vj with vi, since the equilibrium is uniform. From the last equa-
tion, we conclude that we have our desired vector.

Proof of Exercise 8.2.7 in Matrix Analysis and Applied Linear Algebra by
Carl D. Meyer [7]:

Proof C.2.

Case : min
1≤i≤N

n∑
j=1

wij ≤ ρ(A)

The Collatz-Wielandt formula [7] states:

ρ(A) = max
v∈Ω

f(v), f(v) = min
1≤i≤N
vi ̸=0

[Av]i
vi

, Ω = {v ∈ Rn : v ≥ 0, v ̸= 0}.

Consider the vector 1 = (1, . . . , 1)N ∈ Ω. This vector evaluated in f is:

min
1≤i≤N

n∑
j=1

wij = min
1≤i≤N

(A1)i
1

= f(1) ≤ max
v∈Ω

f(v) = ρ(A).

Case : ρ(A) ≤ max
1≤i≤N

n∑
j=1

wij

Let u be the Perron vector, which is a normalised positive eigenvector of A
associated to its spectral radius:

Au = ρ(A)u, u > 0, ∥u∥1 = 1.

Let k be the index such that:

uk = max{u1, . . . , uN}.

Then

(Au)k = ρ(A)uk =⇒ ρ(A) =
(Au)k
uk

.

If we write out (Au)k, the desired inequality will follow:

ρ(A) =

n∑
j=1

wkj
uj

uk
≤

n∑
j=1

wkj ≤ max
1≤i≤N

n∑
j=1

wij .

Appendix D: Maximum Equilibria

The proofs of the lemmas, corollaries and theorems in section 5, which are not
provided in the text.

Proof of Lemma 4:
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Proof D.1. Let v be an arbitrary equilibrium of a subnetwork, the same as
the entire network, except that node i is removed. If we can prove that v is also
an equilibrium of the full network, we can conclude from a recursion argument
that it holds for any subnetwork. In comparison to the whole network, we have
two kinds of interaction that are not in the subnetwork. Interactions entering
or leaving the node i.

For a node k ∈ S+
i we have:

G(0, xk) = 0,

which is a consequence of the definition of a separable system (see Definition 5).
For each node n, with i ∈ S+

n , we have:

G(xn, 0) = 0,

which follows by the constraints on G(xi, xj) (see A. 3). We deduce that the
addition of these extra interactions will not change the dynamic interaction at
v.

Proof of Lemma 5:

Proof D.2. We will distinguish two cases that we need to consider. The dy-
namic functions of a node that has a quantity of zero or xupper. Let the index
k be arbitrary such that [xpartial

upper (A)]k = 0. The dynamic function of node k is:

dxk

dt

∣∣∣∣
x=xpartial

upper (A)

=F (0) +
∑
j∈S+

k

wkj G([0, [xpartial
upper (A)]j) = 0

Each G(0, [xpartial
upper (A)]j) is zero, which is implied by the definition of a separable

model (see Definition 5).
Let the index n be arbitrary such that [xpartial

upper (A)]n ̸= 0. The dynamic
function of node n is:

dxn

dt

∣∣∣∣
x=xpartial

upper (A)

=F (xupper) +
∑
j∈S+

n

wnj G(xupper, [x
partial
upper (A)]j).

≤F (xupper) +
∑
j∈S+

n

wnj G(xupper, xupper) ≤ 0.

The last inequality follows from the definition of xupper (see Theorem 2). We
conclude that xpartial

upper (A) is a higher vector in SCCS (see Theorem 4).

Proof of Corollary 6:

Proof D.3. Let v1, . . . ,vM be the set of equilibria such that they all have the
same support:

supp(v1) = · · · = supp(vM ).
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Construct from the set of equilibria the vector vmax of the vector v1, . . . ,vM , as
defined in Lemma 3. For the upper vector, take the partial upper bound vector
on the set supp(vmax), as defined in Lemma 5.

It follows from the SCCS (see Theorem 4), that there is an equilibrium be-
tween vmax and xpartial

upper (supp[vmax]). Since we assumed that the set v1, . . . ,vM

contains all equilibria with this support, it must be that vmax is itself one of
them.

Proof of Corollary 8:

Proof D.4. We will prove this by a contradiction. Suppose that there exists
an equilibrium, v, which has a support that has fewer than N elements. This
implies that there is an index k that satisfies two requirements. First, vk = 0,
and second, k also has a neighbour n such that vn ̸= 0. k exists since the
network is strongly connected. The dynamic function for node k at v is:

dxk

dt

∣∣∣∣
x=v

= F (0) +
∑
j∈S+

k

wkj G(0, vj)

= 0 +
∑
j∈S+

k

wkj G(0, vj) > 0

which contradicts that v is an equilibrium; hence, we must have that node k is
non-vanishing, from which we conclude that no node has a value equal to zero.

Proof of Corollary 11:

Proof D.5. If the principal equilibrium v has order N, then each node is in
the support of v, which makes the system participatory.

If the system is participatory, for every entry, there is at least one equilibrium
such that the entry is non-zero. Denote the equilibrium in which the i-th entry
is non-zero as vi. Creating the vector vmax from all these equilibria is a lower
vector, which is proven in Lemma 3. There must be an equilibrium u for which
we have:

#supp(u) = N,

which is implied by the SCCS (see Theorem 4). Consequently, a maximum
equilibrium exists that has a support greater than or equal to the equilibrium u
(see Theorem 5). Since the support of u contains all nodes, the same must be
the case for the maximum equilibrium. There is only one maximum equilibrium
that has a support of all nodes, which must be the principal equilibrium.

Proof of Theorem 6:

Proof D.6. We will prove the stability of the zero equilibrium by proving
that the eigenvalues of the Jacobian at 0 are strictly negative. All off-diagonal
elements of the Jacobian are only dependent on the function G(xi, xj), since for
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an arbitrary k = 1, . . . , N , the xj derivative of the dynamic function of a node
i ̸= k is:

∂

∂xk

(
dxi

dt

)∣∣∣∣
x=0

=
dF (xi)

dxi
· δik

∣∣∣∣
x=0

+
∑
j∈S+

i

wij
∂G(vi, vj)

∂xk

∣∣∣∣
x=0

= wik
∂G(vi, vk)

∂xk

∣∣∣∣
x=0

.

To calculate the last derivative, we use a Taylor expansion of G(xi, xj):

G(xi, xj) = G(0, 0) +
∂G

∂xi
(0, 0)xi +

∂G

∂xj
(0, 0)xj

+
1

2

∂2G

∂x2
i

(0, 0)x2
i +

∂2G

∂xi∂xj
(0, 0)xixj +

1

2

∂2G

∂x2
j

(0, 0)x2
j

+O(∥(xi, xj)∥3).

• The first term is zero, which is one of the assumptions (see A. 4).

• The second term is zero, which follows since the function G(xi, xj) is not
intrinsic (see A. 3).

• The third term is zero, which is a consequence of the separability of the
system.

All other terms are still dependent on xk if we take the derivative, which at zero
will also vanish. We conclude that the off-diagonal elements are all zero.

For the diagonal elements, we have:

∂

∂xi

(
dxi

dt

)∣∣∣∣
x=0

=
dF (xi)

dxi
· δii

∣∣∣∣
x=0

+
∑
j∈S+

i

wij
∂G(vi, vj)

∂xi

∣∣∣∣
x=0

=
dF (xi)

dxi

∣∣∣∣
x=0

.

The sum over all interactions is zero, which also follows directly from the Taylor
expansion. By assumption, the diagonal elements are negative, which are also
the eigenvalues.

Appendix E: From Cooperative to Mixed-Weight

The proof of Corollary 14, which is not provided in the text of section 7:

Proof E.1. We will prove the statement with a contradiction; therefore, sup-
pose that there exists an equilibrium z, such that:

−
∑
j∈S−

i

wijG(zi, zj) > ∆i(v).
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The dynamic function of node a at z is:

dxi

dt

∣∣∣∣
x=z

= F (zi) +
∑
j∈S+

i

wijG(zi, zj) +
∑
j∈S−

i

wijG(zi, zj)

< F (zi) +
∑
j∈S+

i

wijG(zi, zj)−∆i(v)

< F (zi) +
∑
j∈S+

i

wijG(zi, vj)−∆i(v) ≤ 0.

The last inequality follows, since each equilibrium of the mixed-weight system is
element-wise upper bounded by the corresponding maximum equilibrium of the
cooperative system (see Corollary 7). At equilibrium z, the dynamic function
of node i is negative, which is a contradiction.

Appendix F: Examples

The collection of examples referred to throughout the text. Some of the exam-
ples are thoroughly worked out, whilst others use numerical calculations.

Figure 21: The network of the system in Appendix Example F.1, with the direc-
tion and weight of the interaction. This system has no obvious symmetry, which
makes it harder to solve analytically. The strong interaction between nodes 2
and 3 could lead to equilibria, in which only these two have non-vanishing en-
tries. The number of each node indicates the index.

Example F.1. An illustration of a cooperative system for which all equilibria

60



are strictly below the upper bound is:
0 2 1 0
1 0 4 2
1 4 0 0
1 0 3 0

 ,

F (xi) = −4xi + 4x2
i − 2x3

i , G(xi, xj) =
xixj

2
.

The network is visualised in Figure 21. For this system, we find an upper bound
of 3.106, where, if we numerically calculate the equilibria, we get:

2.002
2.758
2.503
2.174

 ,


0.110
2.473
2.225
1.834

 ,


1.872
2.347
2.347
0.000

 ,


0.261
2.061
2.061
0.000

 ,


0.000
2.452
2.205
1.809

 ,


0.000
2.085
2.042
0.271

 ,


0
2
2
0

 ,


0
1
1
0

 ,


0
0
0
0

 .

All values are strictly below the upper bound. One might ask if this could
have been anticipated. Since the positive weighted in-degree for all nodes is not
Wmax, this system will not have an equilibrium that has entries equal to Wmax.

Figure 22: The graph of the network in Appendix Example F.2, with the direc-
tion and weight of the interaction. There is a lot of symmetry in this network.
The number of each node indicates the index.
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Example F.2. An illustration of a system which has an equilibrium in which
all components reach the upper bound is the following cooperative system:

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 ,

F (xi) = −4xi + 4x2
i − 4x3

i , G(xi, xj) = 3xixj .

The network is visualised in Figure 22. We can solve this system analytically
with basic algebra. To compute the upper bound, we need to find the supremum
of all non-negative x that satisfy:

F (x) +WmaxG(x, x) =− 4x+ 4x2 − 4x3 + 2 · 3x2 = 0

− x(4x2 − 10x+ 4) = 0.

Solving the equation yields:

x = 0 or x = 2 or x =
1

2
.

The supremum of these three solutions is 2, which is therefore our upper
bound. To find an equilibrium, observe that all nodes are indistinguishable
from each other. We can therefore use a symmetry argument to reduce the
problem. We proceed as follows: instead of solving the equilibrium equation
for each node, we assume that all nodes have the same value x, which gives the
equation:

−4x+ 4x2 − 4x3 + 3x2 + 3x2 = 0,

which is the same as solving for the upper bound. This implies that we have an
equilibrium with entries equal to xupper. The corresponding equilibria are:

2
2
2
2

 ,


1
2
1
2
1
2
1
2

 ,


0
0
0
0

 .

We have not searched for equilibria that do not have equal entries, which we
will do next. Again, we employ a symmetry argument, but instead of assuming
that all nodes have the same value, we assume a repeating pattern in which the
value of the nodes alternates. Let x1 and x2 be the two values that result in
the following two equations:

−4x1 + 4x2
1 − 4x3

1 + 2 · 3x1x2 = 0 (5)

−4x2 + 4x2
2 − 4x3

2 + 2 · 3x2x1 = 0. (6)
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Either x1 or x2 is zero; being zero will result in the trivial zero equilibrium. We
can isolate x2 from 5:

2

3
(1− x1 + x2

1) = x2.

Substituting this expression into equation 6 gives:

2

3
(−1 + x2 − x2

2) + x1 = 0

−2

3
+

4

9
(1− x1 + x2

1)−
8

27
(1− x1 + x2

1)
2 + x1 = 0

8x4
1 − 16x3

1 + 12x2
1 − 31x1 + 14 = 0.

Although there are methods to solve this fourth-degree polynomial, we note
that if x2 and x1 are the same, we obtain the case above, where we found the
equilibria x1,2 = 2 and x1,2 = 1

2 . We can factor out these equilibria from the
fourth-degree polynomial, which results in the second-degree polynomial:

8x4
1 − 16x3

1 + 12x2
1 − 31x1 + 14

(x1 − 2)(x1 − 1
2 )

= 8x2
1 + 4x1 + 14,

Which has no real roots as the discriminant is negative:

16− 4 · 8 · 14 = −432 < 0.

We conclude that there are no non-symmetric equilibria. There are still two
cases left to consider; the first is if one of the nodes has a quantity equal to zero.
Due to the symmetry of the system, it does not matter which node we set to
zero. The reduced network is: 0 1 0

1 0 1
0 1 0

 ,

also shown in Figure 23. This system, as well, has symmetry, but unlike the
previous two cases, it is not periodic. Therefore, we need a more advanced
method than before. We consider the following equation:

−4x13 + 4x2
13 − 4x3

13 + 3x13x2 = 0,

where x13 denotes possible equilibrium values for the quantities of nodes 1 and
3. Our strategy is to investigate for what x2 there are multiple possible x13

values. If no such x2 exists, we may conclude that there are no equilibria in
which nodes 1 and 3 are unequal. If such x2 values exist, we investigate further
if such values could correspond to an equilibrium. We begin by solving:

−4x13 + 4x2
13 − 4x3

13 + 3x13x2 = 0

−x13 = 0 or 4x2
13 − 4x13 + 4− 3x2 = 0.

Solving the quadratic equation gives:

x13 =
4± 4

√
3(x2 − 1)

8
.
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Figure 23: The sub-graphs of the network in Appendix Example F.2, with the
direction and weight of the interaction. Both sub-graphs have symmetry in their
network, making it easier to analyse. The number of each node indicates the
index.

For now, we will completely ignore the x13 = 0 solution, as this will correspond
to another node being zero, which will be covered later. We only have multiple
positive values for x13 if:

0 < 3(x2 − 1) < 1,

0 < x2 − 1 <
1

3
,

1 < x2 <
4

3
.

If nodes 1 and 3 have different values, the cooperative term for node 2 will be:∑
j∈S+

2

w2j G(x2, xj) = 3x2
4 + 4

√
3(x2 − 1)

8
+ 3x2

4− 4
√
3(x2 − 1)

8

= 3x2.

The equilibrium equation for node 2 is therefore:

−4x2 + 4x2
2 − 4x3

2 + 3x2 = 0

−x2 = 0 or 4x2
2 − 4x2 + 1 = 0

x2 =
1

2
.

We ignore the zero solution since it corresponds to the trivial equilibrium where
all nodes are zero. This found solution contradicts the earlier bounds for x2,
implying no equilibrium exists with nodes 1 and 3 having different values. Con-
sequently, we aim to find equilibria for which nodes 1 and 3 are the same, which
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result in the following equations:

−4x1 + 4x2
1 − 4x3

1 + 3x1x2 = 0

−4x2 + 4x2
2 − 4x3

2 + 2 · 3x2x1 = 0. (7)

These equations are similar to the previously mentioned equations. Isolating x2

yields:

4

3
(1− x1 + x2

1) = x2.

Substituting this in the Equation 7 gives:

2

3
(−1 + x2 − x2

2) + x1 = 0

−2

3
+

8

9
(1− x1 + x2

1)−
32

27
(1− x1 + x2

1)
2 + x1 = 0

32x4
1 − 64x3

1 + 72x2
1 − 67x1 + 26 = 0,

which is once again a fourth-degree polynomial. Instead of solving it, we give
the approximate roots:

x1 = 1.058 orx1 = 0.707,

which results in the equilibria for the original system to be:
0.707
1.057
0.707
0

 ,


1.058
1.415
1.058
0

 ,


0

0.707
1.057
0.707

 ,


0

1.058
1.415
1.058

 ,


0.707
0

0.707
1.057

 ,


1.058
0

1.058
1.415

 ,


1.057
0.707
0

0.707

 ,


1.415
1.058
0

1.058

 .

Lastly, only one case is left to consider, a system in which two nodes have value
zero. The reduced network is: [

0 1
1 0

]
.

The equilibria of this network are not hard to find. We first calculate the upper
bound for this adjacency matrix (Figure 23):

−4x+ 4x2 − 4x3 + 3x2 = 0

−x(4x2 − 7x+ 4) = 0

x = 0 or 4x2 − 7x+ 4 = 0.

Since the discriminant of the right polynomial is smaller than zero, we only have
the zero equilibrium. This network does not result in new equilibria.
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Figure 24: The network of the system in Appendix Example F.3, with the
direction and weight of the interaction. The number of each node indicates the
index.

Example F.3. Suppose that we have the following cooperative system:
0 1 3 0
1 0 3 0
1 0 0 4
0 1 0 0

 ,

F (xi) = −4xi + 4x2
i − 2x3

i , G(xi, xj) =
xixj

2
.

The network of this system is shown in Figure 24. To calculate Wmin we solve
the equation:

4x+ 4x2 − 2x3 +Wminxupperx = 0,

which only has roots if:

Wmin ≥ 4

xupper
.

The upper bound of this system is 2.425, so Wmin is 1.649. Node 4 has a positive
weighted in-degree smaller than Wmin, from which we deduce that its quantity
is zero in all equilibria, making the system partially redundant. We reduce the
network (as shown in Figure 25) to:0 1 3

1 0 3
1 0 0

 ,

with the same set of functions. This subnetwork has an upper bound of 2, so
Wmin is 2. In this reduced network, node 3 has a positive weighted in-degree
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below Wmin. Consequently, we focus on the equilibria of the subnetwork (shown
in Figure 25): [

0 1
1 0

]
.

This subnetwork has an upper bound of zero; hence, the equilibrium of the
subnetwork is the zero equilibrium. We deduce that for the original system, the
only equilibrium is the zero equilibrium.

Figure 25: The networks of the subnetworks in Appendix Example F.3, with
the direction and weight of the interaction. The number of each node indicate
the index.

Example F.4. Consider the network on the top left in Figure 26. We will
iteratively find kmax of this network. In the network on the top left, node 6
has a weighted in-degree of 1, coming from node 5, which is the lowest of all
the nodes. Removing node 6 results in the network below it. In this network,
node 5 has a weighted in-degree of 3, which is the lowest. Deleting node 5 gives
the network on the bottom left, in which node 4 has a weighted in-degree of
0, which is the smallest for this network; therefore, we remove node 4. Doing
so gives the network on the top right, where node 2 has the smallest weighted
in-degree of 2, which is the same as previously found. We finally arrive at the
final network in which we once again have that the smallest weighted in-degree
is equal to 2, therefore kmax = 3.

Example F.5. Consider the system:0 2 2
1 0 1
3 2 0

 ,

F (xi) = −3xi

2
, G(xi, xj) =

x2
j

1 + x2
j

,
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Figure 26: The iterative process of graph to find kmax. We start at the top left
and work our way down, from which we move to the right. It follows from the
procedure that kmax is 3, which is obtained in subnetworks on the middle left.
The number of each node indicates the index.

where the functions are of the GRN system [2]. The equilibria for this network
are: 1.8251.069

2.249

 ,

0.5840.378
0.675

 .

The first equilibrium is the maximum equilibrium. To deduce the stability of
this equilibrium, we calculate the Jacobian, which is:−1.5 0.931 0.245

0.195 −1.5 0.123
0.584 0.931 −1.5

 .

Numerically calculating the eigenvalues of this matrix gives -0.736, -1.901,
-1.857. The equilibrium is stable because all the eigenvalues are negative. If we
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Figure 27: The Gershgorin circles of A in red and AT in blue, with the eigen-
values of the matrix in example F.5. Both the red and blue circles have a region
on the right side of the y-axis, from which we cannot deduce the sign of all the
eigenvalues.

apply Gershgorin to this Jacobian, we can not conclude the same. We visualised
the results of Gershgorin in Figure 27.

Example F.6. Suppose we have the following complex system:[
0 4
4 0

]
,

F (xi) = −4xi + 4x2
i − αx3

i , G(xi, xj) = xixj α ∈ (1,∞).

This system has equilibrium equations:

−4x1 + 4x2
1 − αx3

1 + 4x1x2 = 0

−4x2 + 4x2
2 − αx3

2 + 4x2x1 = 0.

Before calculating the equilibria, we will first use the method described in Wu
et al [2] to find the interval of α for which this system has non-zero equilibria.
The so-called difficulty of this system is given as:

λ∗ = 4
√
α− 4.

For this simple network, we see that the largest eigenvalue is equal to kmax,
which tells us that if the difficulty is higher than both, no non-zero equilibria
exist:

kmax(A) = p(A) =4 ≥ 4
√
α− 4 = λ∗

2 ≥
√
α.

As we also require that the function F (xi) be negative for any positive input,
we get α ∈ (1, 4]. We now calculate the equilibria of this system with a variable
α. We ignore the zero equilibrium and isolate one of the variables:
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x2 = 1− x1 +
α

4
x2
1,

We can substitute this expression in the equilibrium equation of x2, which
results in:

−4 + 4x2 − αx2
2 + 4x1 = 0

−4 + 4(1− x1 +
α

4
x2
1)− α(1− x1 +

α

4
x2
1)

2 + 4x1 = 0

α3x4
1 − 8α2x3

1 + 8α2x2
1 − 32αx1 + 16α = 0,

which is a fourth-degree polynomial. Although not impossible to solve for ana-
lyticity, we can avoid the complexity by first solving for the symmetric case. If
both nodes have the same quantitative value, we get the following equation:

−4x+ 4x2 − αx3 + 4x2 = 0

x = 0 or αx2 − 8x+ 4 = 0.

Solving the quadratic equation:

x = 0 or x =
4± 2

√
4− α

α
.

On the given interval of α, x is always a positive real. Using this, we can simplify
the previous polynomial:

α3x4
1 − 8α2x3

1 + 8α2x2
1 − 32αx1 + 16α

x2 + 8
ax+ 4α

a2

= α2(4 + αx2
1),

which on the given bounds of α is never zero, thus the only equilibria are the
symmetric equilibria. To study the stability of these equilibria, we will calculate
the eigenvalues of the Jacobian. The Jacobian is:

J(x) =

[
−4 + 8x1 − 3αx2

1 + 4x2 4x1

4x2 −4 + 8x2 − 3αx2
2 + 4x1

]
.

Fortunately, due to the symmetry in the equilibria, we can use that for the
following matrix: [

a b
b a

]
,

the eigenvalues are:
λ = a± b.

For the stability of the equilibria, the sign of the eigenvalues is important;
therefore, we will calculate the eigenvalues dependent on α, and check what
sign they have.

Let β =
√
4− α, α = 4− β2 β ∈ [0,

√
3).
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Case 1: x =
4− 2

√
4− α

α
:

λ1 = −4 + 16x− 3αx2

=
−4α+ 16(4− 2

√
4− α)− 3(4− 2

√
4− α)2

α

=
β(16− 8β)

α
.

This eigenvalue, on the given bounds, is only zero if β = 0 and positive on the
rest of the interval; therefore, this eigenvalue is positive for all α, except for
α = 4, where it is zero. For the second eigenvalue, we have:

λ2 = −4 + 8x− 3αx2

=
−4α+ 8(4− 2

√
4− α)− 3(4− 2

√
4− α)2

α

=
−16 + 4β2 + 32− 16β − 48 + 48β − 12β2

α

= −8
(β − 2)(β − 2)

α
.

This eigenvalue, on the given bounds, is never zero and thus always negative.
Therefore, we conclude that this equilibrium is a saddle for all α values except
for α = 4.

Case 2: x =
4 + 2

√
4− α

α
:

λ1 = −4 + 16x− 3αx2

=
−4α+ 16(4 + 2

√
4− α)− 3(4 + 2

√
4− α)2

α

= −β(16 + 8β)

α
.

This eigenvalue is on the bounds zero for β = 0, and for the rest of the interval
it is negative; hence, this eigenvalue is also negative for all α, except α = 4. The
second eigenvalue is:

λ2 = −4 + 8x− 3αx2

=
−4α+ 8(4 + 2

√
4− α)− 3(4 + 2

√
4− α)2

α

=
−16 + 4β2 + 32 + 16β − 48− 48β − 12β2

α

= −8
(β + 2)(β + 2)

α
.
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This eigenvalue, the given bounds, is never zero and, as a result, is always
negative. This equilibrium is always stable except when α = 4. What happens
exactly at α = 4? The equilibria:[

4−2
√
4−α

α
4−2

√
4−α

α

]
,

[
4+2

√
4−α

α
4+2

√
4−α

α

]
,

are distinct, except for α = 4 where the ”two” equilibria merge into one equi-
librium, namely: [

1
1

]
.

The evolution of the equilibria is visualised in Figure 28. The Jacobian for this
equilibrium does not yield any information about the stability of this equilib-
rium. We could instead use a trick to find out if the non-zero equilibrium at
α = 4 is stable or not. We will look at the change of both variables on the line
x1 = x2. On this line, the change of the quantity of both nodes is the same,
and given as:

dx1,2

dt
= −4x1,2 + 4x2

1,2 − 4x3
1,2 + 4x2

1,2

= −4x1,2 + 8x2
1,2 − 4x3

1,2.

Suppose we have a small deviation from the equilibrium at x1 = x2 = 1. At
such a small deviation, the equation becomes:

dx1,2

dt

∣∣∣∣
x1,2=1−ϵ

= −4(1− ϵ) + 8(1− ϵ)2 − 4(1− ϵ)3

= 4ϵ− 16ϵ+ 8ϵ2 + 12ϵ− 12ϵ2 + ϵ3

≈ −4ϵ2,

where the approximation follows for ϵ close enough to zero. We see that no
matter if we come from above 1 or below 1, the derivative is always negative.
This implies that this equilibrium is not a stable point. This phenomenon,
where one saddle point combines with a stable point, is also called saddle-node
bifurcation, which is explained by Steven H. Strogatz in the book Nonlinear
Dynamics and Chaos [12].
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Figure 28: The vector fields plotted for different α values. The red dots are the
locations of the equilibria. The colour of the vectors is the magnitude of the
vector, according to the colour on the right side. As α increases, the two non-
zero equilibria move towards each other. At α = 4 ”both” non-zero equilibria
merge into one equilibrium. This phenomenon, where one saddle point combines
with a stable equilibrium, is called a saddle-node bifurcation.
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