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Abstract

Traditional centralized power plants have limited ability to adapt to the varying power de-
mands caused due to the increasing deployment of renewable energy sources. For power grids,
willing to increase the use of renewable energy and thereby decrease the energy bills, demand
side energy management could act as an effective solution. Demand side energy management
of the power grid refers to the process of regulating the power demands of the devices it serves.
A large fraction of this power demand on the grid lines is caused due to Thermostatically
Controlled Loads (TCL) such as residential refrigerators, electric water heaters, air condi-
tioners, industrial heaters, ovens, etc. Traditionally, the energy management of these devices
is achieved using model predictive control and linear quadratic regulation. To better handle
the system heterogeneity and computation costs, model-free adaptive control algorithms are
explored.

A homogeneous population of TCL, modeled as a second-order system is considered for the
study. Its power tracking capabilities, using both state and output feedback control, are
discussed along with its limitations. Power tracking is achieved optimally by varying its
temperature set-point. A more rational system representation for a TCL population based
on state bins is adopted. Similar power tracking capabilities are studied using a non-linear
control approach. It is concluded that adaptive optimal control strategies can be effectively
used to regulate the power demands of TCL populations. Numerical simulations are provided
for varying set-points, input weight, and parameter heterogeneity. Finally, a policy iteration
algorithm based on output feedback is proposed with stability analysis.
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Notation

Throughout this technical report,

R+ and Z+ denote the sets of non-negative real numbers and non-negative integers,
respectively.

Vertical bars |.| represent the Euclidean norm for vectors, or the induced matrix norm
for matrices.

For any piecewise continuous function u, ||u|| denotes sup|u(t)|, ∀t ≥ 0.

⊗ indicate Kronecker product.

vec(A) is defined to be the mn-vector formed by stacking the columns of A ∈ RnXm on
top of one another.

vecs(C) = [c11, 2c12, . . . , 2c1m, c22, 2c23, . . . , 2cm−1,m, cmm]T ∈ Rm(m+1)/2.

In stands for the n x n identity matrix.

∇f(x) represents the gradient of the function f(x), i.e:∂f∂x .

A control law is also called a policy, and it is said to be globally asymptotically stabilizing
if under the policy, the closed-loop system is Globally Asymptotically Stable (GAS) at
an equilibrium.
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Chapter 1

Introduction

Recently, there has been an increase in the production and usage of power from the renewable
energy resources. This argument is supported by Figure 1-1 which represents the increase
in the number of global installed wind capacity. Similarly, there is an increase forecasted in
the use of other renewable energy resources such as hydro power, solar power, etc. [7]. It
is inevitable that these energy sources have uncertain power production patterns [8]. This
uncertainty demands power management using generators. But generators might not be able
to operate around the working point which might lead to low efficiency for the system [9].

Figure 1-1: Global cumulative installed wind capacity 2001-2017 [1]

In addition to conventional generators, there are other options to attain the same objective of
power management. These options include flywheels/governors, distributed energy transitions
and Demand Side Management (DSM). The DSM is an interesting topic to study for the
following reasons

A large amount of power demand on the grid lines is caused by Thermostatically Con-
trolled Load (TCL). This statement is supported by Figure 1-2 which shows the per-
capita increase in the use of air conditioner which is an element of TCL. Also, researchers
have identified candidate loads for DSM which are largely TCL.[10, 11, 12, 13, 14, 15, 16]
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2 Introduction

The TCL has a slack term on their system dynamics which makes it possible to control[17].

The problem statement on DSM of TCL can be divided into two phases.

• Modeling phase where accurate linear/non-linear models are developed using empirical
laws

• Control phase where control algorithms are developed/employed to make the TCL track
a required a certain power based on the supply.

From a Systems and Control perspective, the control phase is interesting to study since it can
be posed as a trajectory tracking problem for the system.

Figure 1-2: Global increase in residential use of TCL - air conditioners[2]

1-1 Related work - Modeling of TCL

This problem of modeling and control has been studied in the literature and some noteworthy
articles are mentioned in this section.

[4] develops a Continuous Time (CT) Linear Time Invariant (LTI) state space model. The
model relates the offset applied to the temperature set-point of the homogeneous population
of TCL (input) to the power consumed by the population (output). It uses the probabilities
of a TCL being in an ON/OFF state to calculate the transfer function from which the state
space is derived. It also uses an observer based Linear Quadratic Regulator (LQR) controller
to achieve the reference tracking objective stated before.

[5] develops a CT bi-linear state space model, relating the offset applied to the temperature
set-point of the homogeneous population of TCL (input), to the power consumed by the
population (output). The modeling approach used here is based on state bins. Due to its
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1-1 Related work - Modeling of TCL 3

bi-linear nature, a non-linear controller is developed and uses Lyapunov method for stability
analysis.

[18] develops a Discrete Time (DT) LTI state space representation for a heterogeneous pop-
ulation of TCL. It controls the aggregate power (output) by switching the TCLs ON/OFF
prematurely but staying within the temperature slack. The modeling approach used here is
similar to [5] except for the fact that the bi linearity is removed and is included as a separate
block as a part of manual control. It uses an Model Predictive Control (MPC) as the control
algorithm.

[19] proposes a 2-dimensional state bin model instead of 1 dimensional model as used in the
previous works. It also considers a DT linear time varying state space model which accounts
for more uncertainties (like indoor air temperature, second-order dynamics for the TCL) in
the model in comparison to the previous works. It uses an MPC as the control algorithm.

From a purely modeling perspective, [20] derives a very detailed model for heterogeneous
population of TCL. The modeling is completely based on statistical physics. The importance
of this article is that it considers a very huge class of perturbations in its model. This article
also suggests how important the role of TCL is, in the energy management of power grids.

A heterogeneous group of TCL consisting of smaller groups of homogeneous TCL is considered
in [21]. It proposes a hybrid partial differential equation-based model with numerical stability
analysis based on state and output feedback algorithms. It is to be noted that the model is
still non-linear.

[22] proposes a model-free control of TCL connected to a district heating network. It uses the
following approach. (i) Collects the states of the TCL over a period of time (ii) determines an
offline control action based on the collected states (iii) updates the control. It is to be noted
that the learning of the control action is based on DT Q-learning approach. The disadvantage
of using such a learning algorithm is that the range space must be discretized and can lead
to high computational effort or low accuracy. A summary of the literature survey of TCL
models are described in Table 1-1.

Literature Description TCL population Control
[4] CT, Linear Homogeneous LQR
[5] CT, bi-linear Homogeneous non-linear
[18] DT, Linear Heterogeneous MPC
[19] DT, 2D,Linear Homogeneous with uncertainties MPC
[20] CT, probabilistic model Heterogeneous -
[22] DT, non-linear Heterogeneous Q-learning

Table 1-1: TCL models - survey

As it can be seen from this survey, the controllers used in the past literature for energy man-
agement of TCL are MPC or LQR for a linear model and state/output feedback controllers
for the non-linear model. Figure 1-3 and Figure 1-4 represents the control achieved by using
an MPC for temperature dependent loads. These controllers depend on the state space model
to calculate the control input. Such control algorithms can also be referred to as model-based
control which requires an exact system model. A system model can be hard to obtain [20]
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4 Introduction

or produces a low efficient control input when approximate models are used. This leads for
to an opportunity to study how model-free control algorithms applies to the DSM problem.
The recent advancements in literature in the field of model-free adaptive optimal algorithm
is explored in the upcoming section.

1-2 Related work - Adaptive optimal control

Adaptive optimal control originates from reinforcement learning. This origin is explained in
[23]. It explains the solution of DT systems and CT systems. The solution for DT systems is
direct but the solution of CT is based on certain approximations.

[24] develops a Policy Iteration (PI) algorithm for a CT LTI systems. It solves the regulation
problem but only using partial knowledge of the system dynamics. It requires only the
knowledge of B (input) matrix. It also provides a lower limit for the sampling time of the
CT system to collect the states such that the numerical problem is well-posed. [25] uses the
same algorithm to solve a tracking problem instead of a regulation problem. [26] develops a
PI algorithm but a CT bi-linear system.

[27] develops Value Iteration (VI) algorithm for CT LTI systems. The difference in this article
is that the algorithm gets rid of the assumption on the partial knowledge of the system. It is
an iterative algorithm based on the same set of data collected between certain time intervals.
It also provides a rigorous stability analysis.

[28] works on the same regulation problem as of [27], but is based on stochastic approximation
to develops a VI algorithm. [29] develops a VI algorithm based on stochastic approximation
but for uncertain interconnected systems.

The previously mentioned reviewed algorithms are based on state measurements. But [30] and
[31] concentrates on output feedback rather than state feedback. [30] focuses on regulation
whereas [31] focuses on tracking problem. Both these algorithm are VI algorithms.

The algorithms stated previously are developed for LTI systems assuming that there are no
disturbances present. [6]-Chapter 5 develops adaptive algorithm for LTI CT systems with
matched and unmatched disturbances. The importance of such algorithms has been studied
by applying these algorithms to real-time large-scale system such as power systems in [32]
and [33].

VI and PI algorithms for nonlinear affine and non-affine systems with and without distur-
bances are developed in [6]. It also applies the same to practical system such as inverted
pendulum, car suspension systems, etc. A summary of the adaptive optimal control algo-
rithms are described in Table 1-2.
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1-2 Related work - Adaptive optimal control 5

Figure 1-3: Actual (dots) and predicted (line) temperature-dependent load. May - September
2008 [3]

Figure 1-4: Actual versus predicted load time series for Monday-Friday, June 2 to 6, 2008 [3]
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6 Introduction

Literature System description Algorithm description
[25] Input matrix known Policy Iteration
[27] Completely unknown Value Iteration
[24] Completely unknown Policy Iteration
[28] Completely unknown Stochastic approximation
[31] Completely unknown Output feedback
[34] With ISS disturbances Policy Iteration
[6] Partially linear system Value Iteration

Table 1-2: Adaptive optimal algorithms - survey

1-3 Research Question (RQ)

The RQs that have been left open in the literature and will be answered in this research thesis
are stated below.

RQ 1: Can adaptive optimal control be applied to TCL? Which TCL models should
be used?

RQ 2: What are its limitations? How can these limitations be overcome?

RQ 3: How does the parameter heterogeneity affect the performance of the control?

1-4 Report structure

This thesis report is organized as follows.

Chapter 2 works on applying adaptive algorithms based on state feedback, to the homo-
geneous model developed in [4]. Power tracking using completely unknown and partially
known systems dynamics are studied.

Chapter 3 concentrates on applying the output feedback algorithm for the homogeneous
model [4]. An indirect adaptive control based PI algorithm is proposed with stability
analysis.

Chapter 4 aims on applying non-linear control algorithms for a homogeneous and a
heterogeneous population of TCL models developed in [5] and [18] respectively.

Chapter 5 provides detailed discussion, results and comparison. Finally, in Chapter 6,
a conclusion is provided also discussing the future works.

Sribalaji Coimbatore Anand Master of Science Thesis



Chapter 2

Homogeneous Model - State
Feedback (SFB)

This chapter concentrates on discussing the state space model developed in [4], and the
algorithms stated in [25] and [27] is applied to the same. It aims in answering the Research
Question (RQ) 1 and RQ 2. It states the limitation at the end of the chapter and the upcoming
chapter aims at solving these limitations.

2-1 Primary Thermostatically Controlled Load (TCL) model

The behaviour of temperature θ(t) in a Thermostatically Controlled Load (TCL) is given by

θ̇ =
{
− 1
CR(θ − θamb + PR), ON State.
− 1
CR(θ − θamb), OFF State.

(2-1)

where

TCL switches from OFF to ON State if θ > θs + ∆
2

TCL switches from ON to OFF State if θ < θs −
∆
2

θ is the TCL temperature - ◦C,

C is the thermal capacitance - kWh/◦C,

R is the thermal resistance - ◦C/kW,

θamb is the ambient temperature - ◦C,

θs is the temperature set-point - ◦C,

Master of Science Thesis Sribalaji Coimbatore Anand



8 Homogeneous Model - SFB

∆ is the temperature dead-band - ◦C,

P is the power drawn - kW,

δ is the step change applied to the input - ◦C.

For a homogeneous group of TCL, let the steady state distribution of the loads in the ON and
OFF states be represented by Nc and Nh. This distribution is proportional to the cooling and
the heating time periods Tc and Th respectively and this relation is given by [4] as follows.

Nc = Tc
Tc + Th

N, Nh = Th
Tc + Th

N

Similarly, the number of ON/OFF loads in a given temperature band [θ, θ+] and [θ−, θ] is
proportional to the cooling/heating times and given by

nc(θ) = N

Tc + Th
tc(θ), nh(θ) = N

Tc + Th
th(θ)

respectively. Let the ON/OFF probability density function denoted by f1(θ) and f0(θ) respec-
tively and the corresponding probability distribution function by F1(θ) and F0(θ) respectively.
These relations are represented in (2-2) and (2-3).

f0(θ) = CR

(Tc + Th)(θamb − θ)
(2-2)

f1(θ) = CR

(Tc + Th)(PR+ θamb − θ)
(2-3)

Where

N is the total number of TCLs present and N = Nc +Nh,

tc(θ) is the time taken to cool down from from θ+ to θ ≥ θ−,

th(θ) is the time taken to rise the loads temperature from θ− to θ ≤ θ+.

Now, assuming that a step change is made in the set-point (δ) of the TCL, the dead-band
(∆) changes as shown in Figure 2-1. The original dead-band was from θ0

− to θ0
+. After the

step change, the dead-band becomes θ− to θ+. We now consider four different TCL initial
conditions (a, b, c and d as in Figure 2-1) before a step change is applied to the input. The
change in average power consumption in regards to this step change in set-point is calculated
by integrating the product of the probability density functions (2-2), (2-3) and the Laplace
transformed power waveform corresponding to the points a, b, c and d as in Figure 2-1. That is,
let Ga(s), Gb(s), Gc(s) and Gd(s) be the Laplace transforms of power waveform corresponding
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2-1 Primary Thermostatically Controlled Load (TCL) model 9

to points a, b, c and d as in Figure 2-1. Then, the average power consumption is given by

Pavg(s) = Pa(s) + Pb(s) + Pc(s) + Pd(s).

Pa(s) =
∫ θ+0

θ−
f0(θa)Ga(s)dθa

Pb(s) =
∫ θ+0

θ−
f1(θb)Gb(s)dθb

Pc(s) =
∫ θ−

θ−0
f0(θc)Gc(s)dθc

Pd(s) =
∫ θ−

θ−0
f1(θd)Gd(s)dθd

Figure 2-1: Dead-band shift after set-point change [4]

∆ << (θs − θamb + PR) (2-4)
∆ << (θamb − θs) (2-5)

δ << ∆ (2-6)

Under the assumptions stated in (2-4)-(2-6), the linear transfer function relating the step
input change and total power output (Ptot) is

T (s) = Ptot(s)
δ/s

= −d+ A∆ωs

s2 + ω2 . (2-7)

Where

A∆ = 5
√

15C(θamb − θ+)(PR− θamb + θ+)
η(P 2R2 + 3PR(θamb − θ+)− 3(θamb − θ+)2)3/2

(3PR− θamb + θ+)N
Tc0 + Th0

,

ω = 2
√

15C(θamb − θ+)(PR− θamb + θ+)
CR∆

√
(P 2R2 + 3PR(θamb − θ+)− 3(θamb − θ+)2)

,

d = N

ηR
.

Here
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10 Homogeneous Model - SFB

θ+ and θ− can be inferred from Figure 2-1,

σ is the damping factor,

η is the thermal efficiency of the TCL,

Tc0 is the steady state cooling time before a step change is applied,

Th0 is the steady state heating time before a step change is applied.

The corresponding state space representation of the transfer function (2-7) is

ẋ =
[
−2σ −ω
σ2+ω2

ω 0

]
︸ ︷︷ ︸

A

x+
[
ωA∆

0

]
︸ ︷︷ ︸

B

u (2-8)

y =
[
−1 0

]
︸ ︷︷ ︸

C

x+ −d︸︷︷︸
D

u (2-9)

2-2 Problem formulation

The goal of the optimal trajectory tracking problem is to find the optimal control policy u∗
so as to make the system (2-8) - (2-9) track a desired reference trajectory (yd) by minimizing
the predefined cost function

J = 1
2

∫ ∞
0

((y − yd)TQ(y − yd) + uTRu)dt

(Q ≥ 0, R > 0) and stabilizes the system.

2-3 Conventional Algebraic Riccati Equation (ARE) solution

Let us define an augmented state space matrix as stated below.[
ẋ
ẏd

]
=
[
A2 0
0 F

] [
x
yd

]
+
[
B2
0

]
u ≡ TX +B1u. (2-10)

y =
[
C2 −1

] [ x
yd

]
≡ C1X

Where F represents the command generator dynamics (ẏd = Fyd) which generates the trajec-
tory to be followed by the TCL output. In the augmented system representation, the output
y represents the error term Cx(t)− yd and therefore the objective of the problem becomes to
find a control input u1 = K1X such that

lim
t→∞

y(t)→ 0 and J = 1
2

∫ ∞
0

(XTCT1 QC1X + uTRu)dt

is minimized. Here, D is assumed to be zero but this assumption is validated in section 2.5.
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2-4 IRL for partially known system 11

Assumption 1-A. System is controllable and observable

To find the solution of the above minimization problem, using ARE, the system should be
both controllable and observable. The system (2-8)-(2-9) satisfies the assumption 1-A but the
system (2-10) does not. Hence a discounted cost is considered as represented in (2-11). The
solution of the Lyapunov value function minimizing this cost function can be found by solving
the conventional ARE as stated in (2-12). The solution of the Lyapunov value function can
be related to the state feedback gain by (2-13). Although this method solves the problem,
this method uses the system matrices (A,B and C). Hence an algorithm to find the solution
of the minimization problem (2-11) without using the system dynamic matrix A is described
in the next section1.

J(X(t)) = V (X(t)) = 1
2

∫ ∞
t

e−γ(τ−t)(X(t)TCT1 QC1X(t) + uTRu)dτ (2-11)

(T − 0.5γI)TP + P (T − 0.5γI)− PB1R
−1BT

1 P + CT1 QC1 = 0 (2-12)
K1 = −R−1BT

1 P (2-13)

2-4 Integral Reinforcement Learning (IRL) for partially known sys-
tem

To remove the need for system dynamic matrix A, a learning algorithm is proposed [25]. In
a time interval ∆t, (2-11) can be approximated as (2-14). If a quadratic positive definite
symmetric solution P exist for the value function, (2-14) can be rewritten as (2-15). This
leads to the online Algorithm-1.

V (X(t)) = 1
2

∫ t+∆t

t
e−γ(τ−t)(X(t)TCT1 QC1X(t) + uTRu)dτ + e−γtV (X(t+ ∆t)) (2-14)

X(t)TPX(t) = 1
2

∫ t+∆t

t
e−γ(τ−t)(X(t)TCT1 QC1X(t) + uTRu)dτ + e−γtX(t+ ∆t)TPX(t+ ∆t)

(2-15)

2-5 Results

The system represented in (2-8) - (2-9) (also represented briefly in (2-16) -(2-17)) contains
the term which describes the system dynamics of the TCL in the matrices B and D. This
is not favored because the matrix B is supposed to be known in the Algorithm-1 and the
objective of the algorithm is to find the optimal state feedback gain without knowing this
system dynamics. Hence, a stable input filter as described in (2-18) is applied to the input
and an indirect control input v is created.

ẋ = Ax+Bu (2-16)
y = Cx+Du (2-17)

Let v̇ = Eu+Gv (2-18)
1Here P represents the solution of the ARE.
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12 Homogeneous Model - SFB

Algorithm 1: Policy Iteration (PI) algorithm for Linear Quadratic Tracking (LQT)
Result: Riccati solution P

1Input: A initial stabilizing control policy

2Initialization: Start with an admissible control input u0 = −K0x, i← 0
3Policy evaluation: Solve for P i from (2-15)
4Policy evaluation: Update the control policy using ui+1 = −R−1BT

1 P
iX

5Stopping criterion: Let i← i+ 1 and go to Step 3, until

||Pi − Pi−1|| ≤ ε

where ε > 0 is sufficiently small predefined threshold.

Applying (2-18) in (2-16)-(2-17) yields the system (2-19)-(2-20) where the filter coefficients
E and G are design parameters.

˙[
x
u

]
=
[
A B
0 E

]
︸ ︷︷ ︸

A2

[
x
u

]
+
[

0
G

]
︸︷︷︸
B2

v (2-19)

y =
[
C D

]
︸ ︷︷ ︸

C2

[
x
u

]
(2-20)

Now, (2-19)-(2-20) has a structure that can be used to apply Algorithm-1. For the simulation
purpose, the design choices made [35] are given in Table 2-1. Algorithm-1 is applied to the
system (2-19) - (2-20). The convergence of the matrix norm to the nominal values found by
solving (2-12) is shown in Figure 2-2. The solution obtained by solving the LQT ARE (2-12)
and the solution obtained from Algorithm-1 are shown below.

Parameter Value Parameter Value
Power (P ) 6kW R 0.12 ◦C/kW

C 3.6 kWh/◦C N 100
η 0.5 σ 0.002 hours−1

θset 20 ◦C θamb 32 ◦C
∆ 1 ◦C [E F ] [−1 − 1]

[R Q] [1 5] γ 0.1

Table 2-1: Design parameters

ARE solution

P ∗ =


0.1396 −0.0010 2.2327 0.1396
−0.0010 0.0013 −0.0048 −0.0019
2.2327 −0.0048 36.2917 2.2329
0.1396 −0.0019 2.2329 0.1411

 K∗ =
[
−2.2327 0.0048 −36.2917 −2.2329

]
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2-6 IRL for completely unknown system 13

Solution from Algorithm-1

P =


0.1395 −0.0010 2.2331 0.1396
−0.0010 0.0011 −0.0043 −0.0020
2.2331 −0.0043 36.3031 2.2334
0.1396 −0.0020 4.4669 0.0706

 K =
[
−2.2331 0.0043 −36.3031 −2.2334

]
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Figure 2-2: Norm convergence of matrices P and K to their optimal values - Algorithm-1

2-6 IRL for completely unknown system

Considering a Continuous Time (CT)Linear Time Invariant (LTI) system as in (2-16) - (2-
17), the objective of this section is to find the solution to problem 2-2 without knowing the
system dynamics. To begin with, the system notation is rewritten in the form (2-21) where
Ak = A−BKi. For a completely known system controlled using the state feedback gain (Kk),
the Kleinman algorithm [36] gives (2-22) and (2-23). Applying (2-22) and (2-23) in (2-21)
yields (2-24). It can be noted that (2-24) does not involve the system dynamic matrices and
can be solved by only using the state measurements and the input over a period of time.

ẋ = Akx+B(Kix+ u) (2-21)
0 = (A−BKi)TP i + P i(A−BKi) +Q+KiTRKi (2-22)

Ki = R−1BTP i−1 (2-23)

x(t+ ∆t)TPx(t+ ∆t)− x(t)TPx(t) =

−
∫ t+∆t

t
x(t)(Q+KiTRKi)x(t)dτ + 2

∫ t+∆t

t
(u+Kix)TRKi+1xdτ (2-24)

Now, let us make the following notations

P̂ = vecs(P ), x̄ = x⊗ x,
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14 Homogeneous Model - SFB

Ixx =
[∫ t1
t0
x⊗ xdτ,

∫ t2
t1
x⊗ xdτ,· · ·

∫ tl
tl−1

x⊗ xdτ
]T
,

Ixu =
[∫ t1
t0
x⊗ udτ,

∫ t2
t1
x⊗ udτ,· · ·

∫ tl
tl−1

x⊗ udτ
]T
,

δxx =
[
x̄(t1)− x̄(t0), x̄(t2)− x̄(t1), . . . , x̄(tl−1)− x̄(tl)

]T
,

where 0 ≤ t0 < t1 < . . . tl. Then for any stabilizing gain Ki implies the following linear
consistent set of equation (2-25) which can be solved for P̂ ,Ki+1. This leads to the adaptive
Algorithm-2. It is to note that this algorithm solves regulation problem and NOT a tracking
problem. [

P̂ i

vec(Ki+1)

]
= (ΘT

k Θk)−1ΘT
kEk (2-25)

where
Θk =

[
δxx,−2Ixx(In ⊗KiTR)− 2Ixu(In ⊗R)

]T
Ek = −Ixxvec(Qk)

Algorithm 2: Value Iteration (VI) algorithm for Linear Quadratic Regulator (LQR)
Result: Riccati solution P,K

1Input: A initial stabilizing control policy

2Initialization: Start with an admissible control input u0 = −K0x, k ← 0
3Online data collection: Apply the control policy u = −K0x+ e and collect the
system output and input information. construct the matrix Θk and Kk

4Policy evaluation: Solve for P,K from (2-25)
5Stopping criterion: Let k ← k + 1 and go to Step 3, until

||Pk − Pk−1|| ≤ ε

where ε > 0 is sufficiently small predefined threshold.
6Actual control policy improvement: Terminate the exploration noise e and apply
the control policy u = Kkx.

2-7 Results

Since Algorithm-2 aims in regulation rather than tracking, a Linear Quadratic Integral (LQI)
problem is posed as in (2-26). Here the matrices A,B and C are in accordance with (2-19)-
(2-20) and the augment matrix as in (2-26) is used in Algorithm-2.[

ẋ
ė

]
=
[
A 0
−C 0

] [
x
e

]
+
[
B
0

]
u, y =

[
C 0

] [x
e

]
(2-26)

The design parameter used for simulation are similar to Table 2-1. The data matrices (Θk, Ek)
are collected as mentioned in the algorithm for a time period of 5 seconds. During this period,
an exploration a noise of the form (2-27) is applied to the system. The norm convergence
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2-7 Results 15

of the gain matrices while solving the recursive equation (2-25) is shown in Figure 2-3. The
solution obtained by solving the LQT ARE (2-12) and the solution obtained from Algorithm-1
are also shown below.

u =
100∑
ω=1

sin(ωt) (2-27)

ARE solution

P ∗ =


0.1440 −0.0002 2.2960 0.1363
−0.0002 0.0059 −0.0047 −0.0001
2.2960 −0.0047 37.3273 2.2361
0.1363 −0.0001 2.2361 0.1345

 K∗ =
[
−2.2960 0.0047 −37.3273 −2.2361

]

Solution from Algorithm-2

P =


0.1440 −0.0001 2.2960 0.1363
−0.0001 0.0059 −0.0047 −0.0001
2.2960 −0.0047 37.3273 2.2361
0.1363 −0.0001 2.2361 0.1345

 K =
[
−2.2960 0.0047 −37.3273 −2.2361

]
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Figure 2-3: Norm convergence of matrices P and K to their optimal values - Algorithm-2
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16 Homogeneous Model - SFB

2-8 Discussion

The Algorithm-1 and Algorithm-2 is implemented for the system represented in (2-19)-(2-20).
The significant difference between these two algorithms is that

Algorithm-1 is PI for partially known system and Algorithm-2 is VI for completely
unknown system.

Algorithm-1 solves a tracking problem and Algorithm-2 solves a regulation problem.

A least squares problem is solved in Algorithm-1 whereas the solution is obtained by
recursion in Algorithm-2. Due to this key difference, Algorithm-2 is computationally
less intensive.

During this implementation, the computationally complexity is calculated in terms of
the time consumed for computation. (2-25) attains the solution in 43.6601ms whereas
(2-15) attains the solution in 96.324ms which is in accordance with expectations.
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Figure 2-4: Output trajectories
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Figure 2-5: Control inputs
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2-8 Discussion 17

The system trajectory during the learning phase for Algorithm-1 and the system trajectories
after the learning process with an initial state state of x0 =

[
−1 1 0

]T
is shown in in

Figure 2-4. It can be inferred that Algorithm-1 converges much faster than its counterpart.
But this is accounted for the difference in the magnitude of input as can be seen from Figure
2-5. The convergence rate is a trade of to be made with input magnitude applied to the
system. To apply this control algorithm, in reality, the states have to be measured from
the real world. But a physical interpretation of the states for the system (2-8)-(2-9) cannot
be found in the literature. Hence, although the algorithm works from a control perspective,
the implementation aspect of it falls short. An alternative solution to this problem can be
proposed in the following ways

• Adopt a Output Feedback (OPFB) algorithm since the output y(t) for the system is
measurable.

• Adopt a different system representation where the states are completely measurable.

These solution aspects are investigated in the upcoming chapters.
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Chapter 3

Homogeneous Model - Output
Feedback (OPFB)

In line with the arguments stated in Chapter 2, an algorithm where the output measure-
ments are used instead of state measurements is necessary. The Research Question (RQ) 2 is
partly answered in this chapter where the OPFB algorithm is applied to the system and its
performance is studied.

3-1 Model-free OPFB algorithm

Similar to the Chapter 2, let us assume that a state feedback control of the form u = Kx(t)
is used. Applying this to the system (2-8)-(2-9), the solution x(t) of the system becomes
(3-1). A generalised form of this equation can be written as (3-2). The solution y(t) in terms
of x(t) can be written as (3-3). Using this representation, suppose that there are N output
measurements available, (3-4) can be constructed.

x(t) = e(t−t0)(A+BK)x(t0) (3-1)
x(t− i∆t) = e−i∆t(A+BK)x(t) (3-2)
y(t− i∆t) = Ce−i∆t(A+BK)x(t) (3-3)
y(t)

y(t−∆t)
...

y(t− (N − 1)∆t)


︸ ︷︷ ︸

ȳt

=


C

Ce−∆t(A+BK)

...
Ce−(N−1)∆t(A+BK)


︸ ︷︷ ︸

G

x(t) (3-4)

=⇒ ȳt = Gx(t) (3-5)
Here, x(t) ∈ Rn, y(t) ∈ R1, G ∈ RN×n . We now have the output measurement in terms of
the state measurements. The objective is to find a stabilizing control input u(t) such that

lim
t→∞

y(t)− yd → 0
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20 Homogeneous Model - OPFB

and minimizing the predefined cost function (3-6).

V (t) =
∫ ∞
t

e−γ(τ−t)
(
y(t)TQy(t) + u(t)TRu(t)

)
dt (3-6)

Next, we try to learn the solution (P ) of the value function in terms of the output measure-
ments. The quadratic value function whose solution is to be found is represented in (3-7).
Using (3-5) in this equation results in (3-8) where GN = (GTG)−1GT ∈ Rn×N . This is valid
since the assumption 1-A is satisfied.

V (t) = x(t)TPx(t) (3-7)
V (t) = (GN ȳt)TP (GN ȳt) (3-8)
=⇒ V (t) = ȳTt G

T
NPGN ȳt

(3-8) can be rewritten as
V (t) = ȳTt P̄ ȳt

where
P̄ = GTNPGN ∈ RN×N

Using (3-1)-(3-8), the equation (2-24) can be rewritten as (3-9). This equation does not
require the system state measurements and results in the Algorithm-3.

e−γ∆tȳTt+∆tP̄ ȳt+∆t − ȳTt P̄ ȳt = −
∫ t+∆t

t
e−γ(τ−t)ȳTt Q̄ȳtdτ

− 2
∫ t+∆t

t
e−γ(τ−t)wTRK̄i+1ȳtdτ (3-9)

where Q̄ =
[
1 0 0 0

]T
Q
[
1 0 0 0

]
. The state feedback gain and the output feedback

gain can be related by
ui = Kix = KiGiN ȳt = K̄iȳt (3-10)

3-2 Results and discussion

Consider the system (2-8)-(2-9). The system satisfies assumption 1-A. We seek a controller
of the form u = Kȳt. When the Algorithm-3 is applied to this system with γ = 0.1, R =
1,∆t = 0.1, number of stored data in the history as 3, probing noise of the form (2-27), it
would result in tracking performance (for different input weights (R)) as shown in the Figure
3-1. It can be inferred that convergence and the input magnitude are inversely proportional
in terms of trade-off that must be made to satisfy the performance measure that most suits
the application. As Q increases, the input magnitude increases but the convergence time
decreases. This can also be inferred from Table 3-1 where the norm of the feedback matrices
increases with an increasing weight of Q. A study was also made to infer how the performance
changes with an increasing number of data stored. As can be seen from the Table-3-2, the
cost decreases with an increasing number of data variables but increases the computational
complexity.
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3-2 Results and discussion 21

Algorithm 3: VI algorithm for OPFB
Result: Riccati solution P̄ , K̄

1Input: A initial stabilizing control policy

2Initialization: Find an initial control policy u0, i← 0 and t← 0
3Online data collection: Apply the control policy u = u0 + e and collect the system
output and input information.

4Policy evaluation: Solve for P̄i and K̄i from (3-9)
5Stopping criterion: Let i← i+ 1 and t← t+ ∆t, and go to Step 3, until

||P̄i − P̄i−1|| ≤ ε

where ε > 0 is sufficiently small predefined threshold.
6Actual control policy improvement: Terminate the exploration noise e and
u = u0 as the control input. Apply the control policy u = K̄iȳt.

Q K ||K||
2

[
−0.1055 0.1737 −0.0000 −0.1283

]
0.2404

2.5
[
−0.1251 0.2179 −0.0000 −0.1530

]
0.2942

3
[
−0.1450 0.2619 −0.0000 −0.1771

]
0.3478

3.5
[
−0.1626 0.3075 −0.0000 −0.2054

]
0.4039

Table 3-1: Performance comparison for varying weights Q

N 5 6 7

KT


0.6902
0.1111
−0.4557
0.0644
−0.4114





0.4406
0.2315
−0.0301
−0.2762
0.0416
−0.4091





0.3066
0.2163
0.0963
−0.0538
−0.1907
0.0297
−0.4066


Cost 1.1270e+05 1.1134e+05 1.1052e+05

Table 3-2: Performance comparison for varying history length
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Figure 3-1: Output trajectories and control inputs for varying weights Q (20kW)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

1

2

3

4

5

6

7

Q = 2

Q = 2.5

Q = 3

Q = 3.5

Figure 3-2: Control inputs for varying weights Q

3-3 Proposed algorithm

The Algorithm-3 aims at finding the Riccati solution P for a completely unknown system
using VI. But in the case of TCL systems, the input matrix B is easy to be known or an
input filter of the form (2-18) can be applied to the system such that B can be made to be
known. Also, Policy Iteration (PI) is faster than Value Iteration (VI). Hence a PI algorithm
for a partially unknown system is sought for an output feedback control. Let us consider
the system with the state space representation (2-8)-(2-9). The conventional solution with
the cost (3-6) can be found by solving the Riccati equation offline by knowing the system
dynamics as follows

(A− 0.5γI)TP + P (A− 0.5γI)− PBR−1BTP + CTQC = 0 (3-11)

The Riccati solution can be found without knowing the system dynamics online using the state
measurements for a partially unknown system (knowledge of B is required) by the algorithm
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3-3 Proposed algorithm 23

stated in [25]. The solution is found by solving the equation (3-12) recursively.

x(t)TP ix(t)−e−γ∆tx(t+∆t)TP ix(t+∆t) = 1
2

∫ t+∆t

t
e−γ(τ−t)

[
x(t)TCTQCx(t)+uTi Rui

]
dτ

(3-12)

Using (3-1)-(3-7) in (3-12) results in (3-13)

ȳTt P̄iȳt − e−γ∆tȳTt+∆tP̄iȳt+∆t = 1
2

∫ t+∆t

t
e−γ(τ−t)

[
ȳTt Qȳt + uTi Rui

]
dτ (3-13)

Equation (3-13) is independent of the states. The policy update step is given by ui =
−R−1BTGP̄iȳt. But the equation (3-13) cannot be used to make the algorithm online as
the policy update step still is a function of G. Hence an indirect adaptive control algorithm
can be adapted where the system is estimated and controlled simultaneously.

Now, a detailed description of the parameter estimation algorithm in Continuous Time (CT)
is given here to keep the presentation self-contained as discussed in [37].

Consider a Single Input Single Output (SISO) system with the relation

y = G(s)u

where
G(s) = Z(s)

R(s)
where u is the plant input and y is the plant output. Let

R(s) = sn + an−1s
n−1 + · · ·+ a1s+ a0

Z(s) = bms
m + bm−1s

m−1 + · · ·+ b1s+ a0

Combining the above two equation, a nth order differential equation can be represented as
follows

y(n) + an−1y
(n−1) + · · ·+ a1ẏ + a0y = bmu

(m) + bm−1u
(m−1) + · · ·+ b1u̇+ b0u (3-14)

Now, collecting all the parameters to be estimated together, we have

θ∗ =
[
bm . . . b0 an−1 . . . a0

]T
With the above definition, (3-14) can be re-written as

y(n) = θ∗



u(m)

. . .
u

−y(n−1)

. . .
−y


(3-15)
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24 Homogeneous Model - OPFB

Filtering each side of (3-15) with 1
∆(s) where ∆(s) is a monic Hurwitz polynomial of degree

n, we obtain the parametric model
z = θ∗φ

where

z = sn

∆(s)y

θ∗ =
[
bm . . . b0 an−1 . . . a0

]T
∈ Rn+m+1

φ =
[
sm

∆(s)u . . . 1
∆(s)u − sn−1

∆(s) y . . . 1
∆(s)y

]T
Let us define a parametric estimation model given by

ẑ = θ(t)Tφ (3-16)

where θ(t) is the estimate of θ at time t. The estimation error is constructed as

ε = z − ẑ
m2
s

= z − θTφ
m2
s

(3-17)

Here m2
s = 1 + n2

s, where ns ≥ 0. An appropriate choice for ns includes the ones mentioned
below. α and P are design parameters chosen to tune the algorithm.

n2
s = αφTφ, α > 0 or n2

s = φTPφ, P = P T > 0

Let us define a cost function as follows

J(θ) = ε2m2
s

2 = z − θTφ
2m2

s

This cost function is convex in nature and has a global minimum. The parameters can be
estimated by a gradient descent method. The gradient of the cost function is given by

∇J = ∂J

∂θ
= (z − θTφ)

m2
s

(−φ) = −εφ

The adaptive algorithm to estimate the cost based on the above-mentioned gradient descent
method is given by

θ̇ = −Γεφ (3-18)

Here Γ represents a gain which determines the step size which is a tuning variable. The adap-
tive law (3-18) together with the estimation model (3-16), constitute the gradient parameter
identification algorithm. The gradient algorithm has the following properties

• ε, εms, θ̇ ∈ L2 ∩ L∞ and θ ∈ L∞

• If φ
m2

s
is persistently exciting, then θ(t)→ θ∗

• If the plant has stable poles and no zero-pole cancellations and the input u is sufficiently
rich of order n+m+1, then φ, φ

m2
s
is persistently exciting and |θ(t)−θ∗|, ε, εms converges

to 0 exponentially fast.
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Algorithm 4: PI algorithm for OPFB
Result: Riccati solution P̄

1Input: A initial stabilizing control policy

2Initialization: Apply an initial control policy u0, i← 0 and t← 0, K ← 0
3Online data collection: Apply the control policy u = ui + e and collect the system
output and input information.

4Data estimation: From the data collected, estimate the parameters θ(t) from (3-18)
and construct the matrix G as in (3-4).

5Policy evaluation: Solve for P̄i from (3-13)
6Policy improvement: Apply the control policy ui = −R−1BTGP̄iȳt = K̄ȳt
7Gain estimation: Transform K̄i to Ki using the relation (3-10)
8Stopping criterion: Let i← i+ 1 and t← t+ ∆t, and go to Step 3, until

||P̄i − P̄i−1|| ≤ ε

where ε > 0 is sufficiently small predefined threshold.

The proof of these properties is given in section 3.6.1 of [37]. This gradient descent algorithm
(3-18) along with the policy evaluation step (3-13) can be together used to propose the output
feedback based indirect policy iteration algorithm, Algorithm-4. A flowchart of Algorithm-4
is represented in Figure 3-3.

Lemma 1. The equation (3-11) and (3-13) converge to the same positive definite solution.

Proof. Dividing (3-13) by ∆t and taking a limit result in

lim
∆t→0

ȳTt P̄ ȳt − e−γ∆tȳTt+∆tP̄ ȳt+∆t

∆t = lim
∆t→0

∫ t+∆t
t e−γ(τ−t)

[
ȳTt Qȳt + uTRu

]
dτ

∆t

lim
∆t→0

∫ t+∆t
t e−γ(τ−t)

[
ȳTt Qȳt + uTRu

]
dτ

∆t = ȳTt Qȳt + uTRu = x(t)TCTQCx(t) + uTRu

lim
∆t→0

ȳTt P̄ ȳt − e−γ∆tȳTt+∆tP̄ ȳt+∆t

∆t
= lim

∆t→0

(
− γe−γ∆tȳTt+∆tP̄ ȳt+∆t + e−γ∆t ˙̄yTt+∆tP̄ ȳt+∆t + e−γ∆tȳTt+∆tP̄ ˙̄yt+∆t

)
= −γȳTt P̄ ȳt + ˙̄yTt P̄ ȳt + ȳTt P̄ ˙̄yt (3-19)

Differentiating (3-5) results in

˙̄yt = Gẋ(t) = GAx(t) +GBu(t)
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26 Homogeneous Model - OPFB

Using this relation in (3-19) gives

lim
∆t→0

ȳTt P̄ ȳt − e−γ∆tȳTt+∆tP̄ ȳt+∆t

∆t = x(t)T (ATP + PA− γP )x(t)

lim
∆t→0

∫ t+∆t
t e−γ(τ−t)

[
ȳTt Qȳt + uTRu

]
dτ

∆t + lim
∆t→0

ȳTt P̄ ȳt − e−γ∆tȳTt+∆tP̄ ȳt+∆t

∆t
= x(t)T (ATP + PA− γP + CTQC)x(t) + uTRu

Now, let G2 be a filter with the same dimension of G, then

uTRu = x̂TPBR−1BTPx̂ (3-20)

where x̂→ x as G2 → G. The estimate G2 can be made close to G by the adaptive algorithm
as discussed before.
Hence the proof

3-4 Discussion

• The advantage of such a novel algorithm is that it can be applied to systems where

the systems matrices are uncertain.
the system states are immeasurable.
the first control update to be made is required to be faster.

• In the Algorithm-4, there are two processes that are combined to result in the PI algo-
rithm. These processes are the parameter estimation process and the policy evaluation
process. The parameter estimation process requires only an input which is persistently
exciting whereas the input to the policy evaluation process is determined by K. So, the
inputs to these processes do not affect each other. The algorithm as stated in Figure
3-3 is initialized with a zero input and a persistently exciting noise. This noise must
be turned off ONLY after the system parameters converge. The noise also helps the
policy evaluation process to converge. Since the noise is known beforehand, it can be
considered into the IRL Bellman equation, to avoid affecting the convergence of the
learning process.

• The parameter estimation process has n+m+ 1 parameters to be estimated (assuming
B should also be estimated) and the policy evaluation process has N(N+1)

2 parameters
to be identified. So, for the process to converge to a positive definite stable solution,
the input noise discussed in the previous point should have n+m+1 or N(N+1)

2 distinct
frequencies, whichever is higher.

• In the Algorithm-4, the parameters to be estimated also includes the elements of the
B matrix. Since the B matrix is assumed to be known, these elements need not be
estimated. This is a special case of the Algorithm-4, and therefore not stated explicitly.
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3-4 Discussion 27

Figure 3-3: Flowchart for Algorithm-4
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28 Homogeneous Model - OPFB

• The process is initialized with K = 0 as can be seen in (3-3). So, this algorithm can
only work for systems where the system is known to be stable and the order of the
system along with the relative degree is known.

• The algorithm as stated in Figure 3-3 can be used to solve tracking and a regulation
problem. When the vector ȳt is stacked with only the output data, the problem to
be solved becomes a regulation problem. When the vector ȳt is stacked with both the
output data and the reference signal r(t), the problem to be solved becomes a tracking
problem. But there are conditions on the choice of γ for the type of problem. These
conditions are the same as the ones stated in [31] and they are presented here briefly.
The solution P is positive definite and one has

Re(λ) < 0.5γ

where λ is the eigenvalue of the closed-loop system Ac with

Ac = A−BR−1BTP

The closed-loop system is asymptotically stable if the condition is satisfied

γ ≤ γ∗ = ||(BR−1/2)T (Q1/2C)T ||

• The solution for P̄ in the policy evaluation step (3-13) is carried out in a Least Squares
(LS) sense. In addition, (3-13) is a scalar equation and P̄ ∈ N × N is a symmetric
matrix with N(N+1)

2 independent elements. Hence, at least N(N+1)
2 data points are

required before (3-13) can be solved. Since N(N+1)
2 amount of data points are required

before making one policy update, this process is not exactly online. A Recursive Least
Squares (RLS) can be used to make this algorithm exactly online. When the RLS
algorithm is used, one data point can be used to update both the policy evaluation step
and the parameter estimation step.
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Chapter 4

Thermostatically Controlled
Load (TCL) Models Based on State

Bins

Similar to the Chapter 3, another way to solve the problem (immeasurable states) is to use a
model, where the state can be measured in real time. This chapter aims at discussing models
where the state measurements are possible in reality and are also the state-of-the-art models.

4-1 Homogeneous model

Let us consider a homogeneous group of TCL where the primary model is represented by
(2-1). The flux of loads moving within temperature bounds (F (·)) can be represented by
(4-1) where X(·) represents the load concentration at time t and Temperature T .

Fon/off = Xon/off θ̇ (4-1)

θ̇ is a function of ambient temperature and temperature set point. This relation is represented
by (4-2). Here α(·) represent the local diffusion rates.

Fon/off = αon/off (θamb, θ)Xon/off (4-2)

The rate of increase of the load concentration is the difference between flux entering and
exiting the control volume. This is represented by (4-3).

∂Xon/off

∂t
= 1
dT

(Fon/off (T )− Fon/off (T + dT )) (4-3)

Merging (4-2) and (4-3) results in (4-4). Here dT denotes the control volume length as can
also be seen from Figure 4-1.

∂Xon/off

∂t
= −

∂[αon/offXon/off ]
∂T

(4-4)
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30 TCL Models Based on State Bins

Figure 4-1: Discretized state bins [5]

(4-4) represents the free model where the set-point is constant. The forced model can be
denoted by (4-5).

∂Xon/off

∂t
= −

∂[(αon/off − Ṫsp)Xon/off ]
∂T

(4-5)

A state space equation can be formulated by applying backward difference method to (4-5)
and is given by (4-6)-(4-7). Here ᾱ represents the average cooling/heating rate, ∆ represents
dead-band and ∆T = ∆

N . HereN decides the smallest control volume possible for control. The
pictorial representation of the diffusion process along the discretized state bins is represented
in Figure 4-1.

ẋ1(t) = − ᾱoff − Ṫsp∆T x1(t)− ᾱon − Ṫsp
∆T x2N (t) (4-6)

ẋN+1(t) = − ᾱoff − Ṫsp∆T xN (t)− ᾱon − Ṫsp
∆T xN+1(t) (4-7)

The above equations can be rearranged into a bi-linear state space model as follows 1

ẋ(t) = Ax(t) +Bx(t)u(u), u(t) = Ṫsp(t) (4-8)
y(t) = Cx(t), (4-9)

1In this chapter, P represents the power drawn by the TCL.
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where A ∈ R2N×2N , B ∈ R2N×2N and C ∈ R2N×1 and

A =



−ᾱoff

∆T 0 0 0 0 0 0 0 −ᾱon
∆T

ᾱoff

∆T
−ᾱoff

∆T 0 0 0 0 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 ᾱoff

∆T
−ᾱoff

∆T 0 0 0 0 0

0 0 0 ᾱoff

∆T
ᾱon
∆T 0 0 0 0

0 0 0 0 −ᾱon
∆T

ᾱon
∆T 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 0 0 −ᾱon
∆T

ᾱon
∆T 0

0 0 0 0 0 0 0 −ᾱon
∆T

ᾱon
∆T



B =



1
∆T 0 0 0 0 0 0 0 1

∆T
−1
∆T

1
∆T 0 0 0 0 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 −1
∆T

1
∆T 0 0 0 0 0

0 0 0 −1
∆T

−1
∆T 0 0 0 0

0 0 0 0 1
∆T

−1
∆T 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 0 0 1
∆T

−1
∆T 0

0 0 0 0 0 0 0 1
∆T

−1
∆T



CT =



0
...
0
P
η
...
P
η



4-2 Heterogeneous model

Considering a heterogeneous group of TCLs that are initially completely ON/OFF. Then, the
probability of the TCLs going from θstart to θend is

P (θend|θstart) = P (ai)

where
ai = θa − θend −mtθg

θa − θstart −mtθg
.

Similarly, the probability of the TCL going from θm < θstart < θm+1 to θn < θend < θn+1 is

P (θn < θend < θn+1|θm < θstart < θm+1) =
∫ θm+1

θm

∫ a2

a1
p(a) da dθstart (4-10)

where
a1 = θa − θ1 −mtθg

θa − θstart −mtθg

a2 = θa − θ2 −mtθg
θa − θstart −mtθg

where,
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• θ1 = θn/n+1 and θ2 = θn+1/n when the TCL is traversing from low/high to high/low
temperature respectively.

• θg is the ON temperate gain of the TCL given by RP for cooling devices.

• m is a Boolean variable 1/0 defining the ON/OFF state of the TCL respectively.

Since this probability depends on the temperature gains, the parameter heterogeneity is inbuilt
in this formulation. Let us divide the temperature dead-band of the TCL into several state
bins as represented in Figure 4-1 and let the number of state bins be represented by N . When
the equation (4-10) is evaluated for every starting and ending bins, the A ∈ R2N×2N matrix
can be analytically derived. The system matrix A can also be identified by considering it as
an autonomous system [38]. Therefore in this model,

• The state x ∈ R2N represent the number of TCL in each temperature bins.

• The control input u ∈ RN represents the number of TCL to be switched from ON/OFF
to OFF/ON respectively. The matrix B can be constructed as in (4-11).

• The output y represents the aggregate power of TCLs. The matrix C can be constructed
as in (4-11).

• The state space representation of this model is represented in (4-12).

B =



−1 . . . 0
... . . .

...
... . . . −1
0 . . . 1
... . . .

...
1 . . . 0


CT = P



0
...
0
1
...
1


(4-11)

ẋ = Ax+Bu (4-12)

4-3 Discussion

The two models discussed in this chapter are (4-8) and (4-12). The key points about these
models are

The model (4-8) is bi-linear and the model (4-12) is linear.

The state x(.) in both cases represent the number of TCLs present in a particular
temperature band (which can also be called as state bins) where the temperature lies
within the dead-band of the TCL.

The sum of the state
∑
n x(.) represents the total number of TCL in the group which is

constant. Hence the individual states cannot be driven to driven simultaneously to 0.
i.e. the controllability of the systems is N − 1.
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The input u(.) represents the derivative of the set-point to be applied to the system
in the former and represents the number of TCLs to be switched prematurely from
ON/OFF to OFF/ON state respectively in the latter. This difference in input causes
the model to vary from a bi-linear to linear.

The output y(.) is the aggregate power consumption of the TCL population.

Due to the constraints on the state (and the bi-linearity of the former model), the linear
model algorithms (Algorithm-1 and Algorithm-2) cannot be applied to these systems.

The next section concentrates on applying the non-linear control algorithm ([6]) to the models
developed in this section.

4-4 Non-linear control

A control algorithm for a non-linear affine system is discussed in this section. The block
diagram of such a setting is represented in Figure 4-2. An online learning algorithm with
semi-global stabilization for non-linear systems in the domain of attraction which can be
made arbitrarily large is discussed in this section.

Figure 4-2: ADP-based online learning control for uncertain non-linear system [6]

4-4-1 Problem formulation

Consider a non-linear system of the form (4-13) where x(.) ∈ Rn, u(.) ∈ Rm, f(.) : Rn → Rn
and g(.) : Rn → Rn×m and f(.).g(.) are Lipschitz continuous functions. The objective is to
find a control input u(.) that minimizes the cost function (4-14). Here r(.) can be defined as
in (4-15).

ẋ = f(x) + g(x)u (4-13)

J(x, u) =
∫ ∞

0
r(x(t), u(t))dt, x(0) = x0 (4-14)

r(x(), u(.)) = q(x) + uTR(x)u, q(.) > 0, R(.) > 0 (4-15)

Master of Science Thesis Sribalaji Coimbatore Anand



34 TCL Models Based on State Bins

4-4-2 Non-linear off-policy optimal adaptive algorithm

Consider the system (4-13) which can be rewritten into the form (4-16). Here u0 is the
control input satisfying Assumption-2-A. Due to the existence of exploration noise e, the
Assumption-3-A should be satisfied. The system can be rewritten into the form (4-17) where
vi = u0 − ui + e.

ẋ = f(x) + g(x)(u0 + e) (4-16)
ẋ = f(x) + g(x)ui(x) + g(x)vi (4-17)

Assumption 2-A. There exists a feedback control policy that globally stabilizes the system
(4-13) with finite cost.

Assumption 3-A. The system (4-16) is Input to State Stable (ISS)[39] when e is considered
as input.

The solution of the value function along the trajectory of (4-17) can be found by

V̇i = ∇V T
i (x)[f(x) + g(x)ui(x) + g(x)vi]

= −q(x)− uTi R(x)ui −∇V T
i (x)g(x)vi

= −q(x)− uTi R(x)ui − 2uTi+1R(x)vi (4-18)

Integrating (4-18) on the interval [t, T + T ] yields

Vi(x(t+ T ))− Vi(x(t)) = −
∫ t+T

t
[q(x) + uTi R(x)ui + 2uTi+1R(x)vi]dτ (4-19)

By approximation theory [40], the value function and the control input (V (.) and u(.)) can
be approximated by basis function are represented by (4-20) and (4-21) where ĉ and ŵ are
weights to be determined when N1 and N2 are sufficiently large. Using (4-20) and (4-21),
(4-19) becomes (4-22). The solution ĉ and ŵ can be found by minimizing ei.k in a least squares
sense. The equation (4-22) does not depend on the system dynamics but only on the state
and input measurements. This brings us to the online adaptive Algorithm-5.

V̂i(x) =
N1∑
j=1

ĉi,jφj(x) (4-20)

ûi+1(x) =
N2∑
j=1

ŵi,jψj(x) (4-21)

N1∑
j=1

ĉi,j [φj(x(tk+1))− φj(x(tk))] = −
∫ tk+1

tk

[q(x) + ûTi R(x)ûidt−

∫ tk+1

tk

2
N2∑
j=1

ŵi,jψ
T
j (x)R(x)v̂idt+ ei,k (4-22)
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Algorithm 5: Value Iteration (VI) algorithm for non-linear non-affine systems
Result: Weights of the basis functions ŵ, ĉ

1Input: A initial stabilizing control policy

2Initialization: Determine the set Ω ∈ Rn for approximation. Find an initial control
policy u0 and i← 0

3Online data collection: Apply the initial control policy u = u0 + e and collect the
system state and input information.

4Policy evaluation and improvement: Solve for ŵ and ĉ from (4-22).
5Stopping criterion: Let i← i+ 1, and go to Step 3, until

N1∑
j=1
|ĉi,j − ĉi−1,j |2 ≤ ε1

where ε1 > 0 is sufficiently small predefined threshold.
6Actual control policy improvement: Terminate the exploration noise e and
u = u0 as the control input. Once x(t) ∈ Ω̂i, apply the control policy u = ûi+1.

4-5 Results

The system (4-13) can be related to the model developed in section 4-2 and section 4-1 as
f(x) representing A(x − xset) and g(x) representing Bxu in the bi-linear case and Bx in
the linear case. xset represents the set-point power represented in terms of the distribution of
TCL across state bins. The matrices A,B and C for the bi-linear model are constructed using
the parameters represented in Table 2-1. The matrix A constructed by this method is shown
in (4-23). The Algorithm-4 was applied to the bi-linear model and the output trajectory and
the inputs are shown in Figure 4-3 whereas the norm convergence of φ(·) and ψ(·) is shown
in Figure 4-4. For the linear model, the parameters from Table 2-1 are used to simulate an
uncontrolled diffusion process and the state transition matrix is identified. This matrix is
shown in (4-24). The Algorithm-4 was applied to the linear model and the output trajectory
and the inputs are shown in Figure 4-5 whereas the norm convergence of φ(·) and ψ(·) is
shown in Figure 4-6. The number of state bins considered in both these cases is 2.

A =


−0.075 0 0 0.100
0.075 −0.100 0 0

0 0.100 −0.100 0
0 0 0.100 −0.100

 (4-23)

A =


−0.620 0 0.760 0
0.620 −0.570 0 0

0 0 −0.760 0.830
0 0.570 0 −0.820

 (4-24)

Remark: Since the system involves state coordinate transformation, it is necessary to have an
approximate knowledge about the system dynamic matrix (A). The objective of this thesis is
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to study the effect of parameter heterogeneity, the model developed in [18] is considered more
relevant. A detailed discussion about its advantages and tracking performance is discussed in
the next chapter.
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Figure 4-3: Output trajectory and control input, bi-linear model
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Figure 4-4: Norm convergence of weights, bi-linear model
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Figure 4-5: Output trajectory and control input, linear model
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Figure 4-6: Norm convergence of weights, linear model
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Chapter 5

Results and Discussion

This chapter aims at answering the Research Question (RQ) 3. From the models discussed
in Chapter 4, it is interesting to note that the model discussed in section 4-2 is the most
appropriate model for the following reasons.

• This model can be used to represent both a homogeneous and heterogeneous population.

• This model represents a system where the states are completely measurable.

• The control input is practically implementable since it is easier to switch the state of the
TCL than changing the derivative of the set-point as in the model discussed in section
4-1.

• The system can also be easily identified easily as discussed in the Appendix A since the
states are measurable.

This model is also widely used in literature as in [18] and references therein. This chapter
is dedicated to exploring the model more in detail and to study the effect of the non-linear
control approach as discussed in section 4-4-2 to this model. For a more structured approach,
this chapter is divided in such a way to answer the following questions.

• How does the varying set-points affect the performance?

• How does the varying input weights (R) affect the performance?

• How does this model perform in comparison to the second-order model (2-8)-(2-9)?

• How does the heterogeneity affect the performance?

• How does the number of state bins affect the performance?
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5-1 Effect of varying set-point

Consider a heterogeneous population of TCLs where

• The number of state bins considered is 4.

• The number of TCLs considered is 80.

• The input is considered to be synchronous. That is: consider a state model where the
number of bins is N . The number of control input becomes N . The input applied to
all these inputs is assumed to be the same.

• During the learning process, a noise of the form u =
∑30
ω=1 sin(ωt) is applied to the

system to persistently excite the system.

• The parameter heterogeneity is assumed to occur only the system resistance (R) and
capacitance (C). But the power drawn by the TCL is assumed to be completely known
and homogeneous in distribution.

As mentioned in section 4-4-2, basis functions or function approximations is necessary to
approximate φ(·) and ψ(·). In this particular case, the function approximates are defined as
follows
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x1, x2, x3, x4, x5, x6, x7, x8, x1x1x1, x1x1x2, x1x1x3, x1x1x4,
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Here xi represent the i − th state of the system. Here a heterogeneous population of TCL
with the parameters mean R = 2, C = 10 and distributed with a variance of 0.5 is used to
simulate the temperature dynamics. The temperature response of such a system is shown in
Figure 5-1.
The number of TCLs in a given state bin is collected over a period of 50 seconds and the
response (partly) is shown in Figure 5-2. This data is used to identify a system where the
system dynamics are given by (5-1). It is important to note that

∑8
i=1 xi is the total number

of TCLs.

A =



−1.3849 0.0080 0.0211 −0.0403 1.6074 0.1744 −0.0814 −0.0547
1.3686 −1.3777 0.1377 −0.3212 0.2474 −0.1431 −0.1505 0.3851
−0.0160 1.4752 −1.2884 0.3092 −0.0001 −0.3320 0.2819 −0.5537
−0.1468 0.0811 1.2804 −1.1789 −0.2485 0.2073 −0.1386 0.2382
0.0517 0.1863 −0.3284 0.2158 −1.6444 1.5340 0.2140 −0.1963
0.2135 −0.3035 0.2025 −0.0632 0.0495 −1.6396 1.6664 −0.0845
−0.2896 0.1165 −0.0454 −0.0683 0.0728 0.1680 −1.7430 1.9211
0.2036 −0.1858 0.0204 1.1469 −0.0842 0.0310 −0.0488 −1.6552


(5-1)
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Figure 5-1: Temperature dynamics
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Figure 5-2: Bin dynamics

The learning algorithm is performed with this data and the resulting weights of the basis
function of ψ are shown in Table 5-1.

The learning algorithm is performed on a system that is transferred in co-ordinates. Consider
a system which is identified by subspace identification as mentioned in Appendix A and let
the system dynamics be represented by

ẋ = Ax.

Since the power drawn by the individual TCLs is known, the matrix C can be explicitly con-
structed which means that the reference in terms of power can be transferred into the number
of TCLs to be ON/OFF (the system states - xset). Hence the system can be transferred to

ẋ = Ax̄ where x̄ = x− xset.

The reference set-point is a parameter in the learning algorithm. The above weights are
learned for a system for which the set-point is

[
0 0 0 0 20 20 20 20

]T
. The output

matrix C used in this study is C =
[
0 0 0 0 5 5 5 5

]
. Let us say, the power to be

tracked is 300 kW and 400 kW . This can be transferred to the states as
[
5 5 5 5 15 15 15 15

]T
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x1 0.4573 x2 -1.1192
x3 0.3883 x4 -0.3147
x5 0.7206 x6 -0.1558
x7 -0.1717 x8 0

x1x1x1 -0.6770 x1x1x2 3.7618
x1x1x3 -3.1089 x1x1x4 1.3090
x1x2x2 -6.9359 x1x2x3 11.4138
x1x2x4 -4.8117 x1x3x3 -4.6663
x1x3x4 3.9254 x1x4x4 -0.8290
x2x2x2 4.2568 x2x2x3 -10.4759
x2x2x4 4.4279 x2x3x3 8.5442
x2x3x4 -7.2024 x2x4x4 1.5215
x3x3x3 -2.3111 x3x3x4 2.9142
x3x4x4 -1.2266 x4x4x4 0.1718

Table 5-1: Weights of function approximates

and
[
15 15 15 15 5 5 5 5

]T
. It is to note that this transformation is not unique, and

a solution is valid when it follows the below mentioned rules:

• The sum of the total number of TCLs should result in a positive integer while the
individual elements also remain positive.

• The number of TCL in any state bin cannot be zero. It is because the TCLs traverse
around the dead-band in a counter-clockwise direction as represented in Figure 4-1.
Making the reference zero in one state-bin means that the TCL has to traverse without
entering into a particular state bin which is impossible.

• An exception to the previous case can be when all the TCLs are completely ON/OFF.

The weights (Table 5-1) is used to apply input to these reference points and the simulated
results are shown in Figure 5-3 to Figure 5-5. The following inferences can be made from the
plots

• The initial state of the system is equidistant from 100 kW and 300 kW and hence has
the same inputs.

• Since the references are in the opposite direction (increase and decrease of power from
the initial condition), the inputs are negated as expected.

• Also, the references with higher magnitude have higher control inputs. It is possible in
real life scenarios, that this magnitude of the control input is limited. Hence a study of
varying input weights R is studied next.
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Figure 5-3: Output trajectories for different set-points
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Figure 5-4: Control inputs for different set-points
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Figure 5-5: Output trajectory for varying set-points
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5-2 Effect of varying input weights

The input weight (R) plays an important role because

• There can a physical limitation in the number of TCLs that can be switched but can
deal with longer settling time.

• Although the states are physically represented by the system, in simulations, there can
be situations where the states do not physically mean anything. For example, a state
with negative values has no physical interpretation.

The same system matrices as discussed in (5-1) is used to simulate the following results (Figure
5-6 and Figure 5-7) but with a different input weight. As the input weight R increases, the
magnitude of the input decreases, the settling time increases, and the cost increases. The
increase of the cost might not be evident from the plots but the cost is calculated by using the
equation

∑tn
t=0 y(t)T y(t)+u(t)TRu(t) and is represented in the Table 5-2. The same objective

of tracking can be achieved both by increasing the input weight R or by reducing the weight
on Q.
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Figure 5-6: Output trajectory for varying input weights R

R cost
1 125 103

10 127 103

30 128 103

Table 5-2: Cost for varying input weights R

5-3 Comparison to second-order model

The system represented in (2-8)-(2-9) is a second-order model of a homogeneous population.
A similar setting is created here to track 20 kW and the results are shown in Figure 5-8. The
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Figure 5-7: Control input for varying input weights R

norm convergence of the system weights during the learning process is shown in Figure 5-9.
The system matrix (a homogeneous population) is shown in (5-2). From this system matrix
it can be noted that, for a homogeneous population as in this case, most of the elements
are zero except the diagonal elements and its adjacent elements. This means that there is
a transition from the current state bin to the next state-bin or its same state which also
happens in real life as mentioned in Figure 4-1. There are some critical differences between
the models compared in this section.

• The former has an input that represents the deviation of the set-point temperature
whereas in the latter case, the input represents the number of TCL to be switched.

• The latter has a more desirable situation because the same objective is achieved by
making the TCLs stay within the initially defined dead-band.

• Since the A matrix is identified rather than derived, the latter would be more robust.

• In reality, since the power drawn by the TCL in ON state is known and OFF state is
assumed to be zero, it is very relatable as to the effect of input on the output in contrast
to the former model.

• In the latter model, a faster convergence is practical/a reality.

A =



−1.2903 0.0000 −0.0000 0.0000 1.5366 −0.0118 0.0001 −0.0000
1.2983 −1.2270 0.0000 −0.0000 −0.0100 0.0001 −0.0000 0.0000
−0.0080 1.2343 −1.1834 0.0000 0.0001 −0.0000 0.0000 −0.0000
0.0001 −0.0073 1.1901 −1.1173 −0.0000 0.0000 −0.0000 0.0000
0.0000 −0.0000 0.0000 −0.0000 −1.5267 1.5414 −0.0128 0.0001
−0.0000 0.0000 −0.0000 0.0001 0.0000 −1.5297 1.6656 −0.0141
0.0000 −0.0000 0.0001 −0.0095 −0.0000 0.0000 −1.6529 1.6947
−0.0000 0.0001 −0.0067 1.1268 0.0000 −0.0000 0.0000 −1.6807


(5-2)
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Figure 5-8: Output trajectory and control input for 20kW, homogeneous case
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Figure 5-9: Norm convergence of weights
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5-4 Effect of heterogeneity

A more detailed study on the effect of parameter heterogeneity on the tracking performance
is conducted in this section. Let us consider the coordinate transferred system representation

ẋ = Ax̄ where x̄ = x− xset.

The controllable system can be represented as

ẋ = Ax−Axset +Bu.

Here, A is identified as mentioned in Appendix A. Now there are two questions which seems
interesting which are

1. If the input weights ψ(·) are learnt for one particular system representation, can the same
weights be applied for a system with a different parameter heterogeneity distribution?

2. Let the system be represented by ẋ = A1x−A2xset +Bu. If the input weights ψ(·) are
learnt for one particular system representation where A1 and A2 are identical, can the
same weights be applied to for a system where A1 and A2 are different?

A system with 4 state bins is considered and the wights (ψ(·)) are learned for a homogeneous
population. These weights are applied to a system with different parameter heterogeneity
and the results are shown in Figure 5-10. The simulation is carried out with Q = 1, R = 5.
There is a difference in the rate of convergence, but the cost differs significantly. The cost is
calculated by

∑tn
t=0 y(t)T y(t) and the result is shown in Table 5-3. To provide a similar setting

as of the second-order model (section 3-2) for comparison, a heterogeneous population with
σ = 0.1 is made to track a reference of 20 kW and the result is shown in Figure 5-11 with the
same weights R and Q. It is evident from the figure that the response is different significantly
and the cost increases. This answers question 1. An experiment is conducted to determine
the answer to question 2 in the following way: The weights of ψ(·) are learned for a system
where A1 = A2 and the weights are applied to the system where A1 6= A2. It is concluded
that the system becomes unstable except for extremely low norm different matrices. Hence
this algorithm works only when the system knowledge is known approximately.

σ cost
0 206 103

0.1 205 103

0.2 204 103

0.4 204 103

0.6 204 103

Table 5-3: Cost for varying parameter heterogeneity
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Figure 5-10: Output trajectories for varying parameter heterogeneity
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Figure 5-11: Output trajectory and control input for 20kW, heterogeneous case
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5-5 Effect of the number of bins

This study is performed to study how the increase in the number of bins affects performance.
The main advantage of using a system with a higher number of state bins is that the control
becomes more precise. That is: the dead-band becomes discretized into smaller bins which
makes it possible to accurately place certain TCLs in an accurate temperature band inside
the dead-band. Consider a homogeneous ((5-3)-(5-5)) and a heterogeneous population ((5-
6)-(5-8)) of TCLs with increasing number of state bins.

A =


−0.62 0.00 0.76 −0.00
0.62 −0.57 −0.00 0.00
0.00 −0.00 −0.76 0.83
−0.00 0.57 0.00 −0.82

 (5-3)

A =



−1.06 0.00 −0.00 1.28 −0.00 0.00
1.07 −0.92 0.00 −0.00 0.00 −0.00
−0.00 0.92 −0.80 0.00 −0.00 0.00
0.00 −0.00 0.00 −1.27 1.07 −0.00
−0.00 0.00 −0.00 0.00 −1.06 1.20
0.00 −0.00 0.81 −0.00 0.00 −1.19


(5-4)

A =



−1.62 0.00 −0.00 0.00 −0.00 1.92 −0.01 0.00 −0.00 0.00
1.63 −1.55 −0.00 −0.00 0.00 −0.01 0.00 −0.00 0.00 −0.00
−0.01 1.56 −1.60 −0.00 −0.00 0.00 −0.00 0.00 −0.00 0.00
0.00 −0.01 1.61 −1.46 −0.00 −0.00 0.00 −0.00 0.00 −0.00
−0.00 0.00 −0.01 1.47 −1.38 0.00 −0.00 0.00 −0.00 0.00
0.00 −0.00 0.00 −0.00 0.00 −1.90 1.96 −0.01 0.00 −0.00
−0.00 0.00 −0.00 0.00 −0.00 −0.00 −1.94 1.85 −0.01 0.00
0.00 −0.00 0.00 −0.00 0.00 −0.00 −0.00 −1.83 2.10 −0.02
−0.00 0.00 −0.00 0.00 −0.01 0.00 −0.00 0.00 −2.08 2.14
0.00 −0.00 0.00 −0.01 1.40 −0.00 0.00 −0.00 0.00 −2.12


(5-5)

A =


−0.58 −0.19 0.94 0.02
0.80 −0.39 −0.27 −0.20
−0.13 0.02 −0.60 0.78
−0.09 0.56 −0.07 −0.60

 (5-6)

A =



1.11 −0.19 0.04 1.53 0.03 −0.05
1.45 −1.09 −0.06 0.11 −0.18 0.03
−0.16 1.23 −0.74 −0.10 −0.23 −0.05
−0.15 0.24 −0.16 −1.49 1.43 0.01
0.10 −0.19 0.01 0.22 −1.44 1.41
−0.12 −0.00 0.91 −0.27 0.38 −1.35


(5-7)
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A =



−1.79 −0.31 0.44 −0.34 0.12 2.13 0.00 0.33 −0.30 0.00
1.93 −1.35 −0.30 0.07 −0.18 −0.20 0.06 −0.50 0.55 0.02
−0.25 1.33 −1.20 −0.04 0.19 0.29 −0.05 0.51 −0.48 −0.35
0.13 0.39 1.30 −1.38 −0.36 −0.16 −0.08 −0.44 0.06 0.69
−0.29 −0.05 0.10 1.49 −1.12 0.02 0.34 −0.05 −0.33 −0.12
0.17 0.17 −0.49 0.26 0.12 −2.19 2.12 0.10 −0.05 −0.23
−0.01 −0.22 0.40 −0.06 −0.32 0.23 −2.36 2.03 0.36 0.12
−0.28 0.35 −0.26 −0.00 0.10 0.10 0.22 −2.27 2.12 −0.02
0.08 −0.09 −0.17 0.04 0.13 0.05 0.03 0.11 −2.46 2.31
0.31 −0.21 0.20 −0.03 1.30 −0.28 −0.29 0.16 0.54 −2.42


(5-8)

To understand the dynamics better, a comparison is made between the eigenvalues of a
homogeneous and a heterogeneous population. As the number of state bins increases, the
system becomes well represented and the area covered by the fictions circle connecting the
eigenvalues increases. This can be well understood from Figure 5-12. This pattern changes
when heterogeneity is introduced as can be more evidently seen in Figure 5-13. Although
these matrices are identified, their validity has been proven in comparison to the analytically
derived matrices in [18].

Considering this system ẋ = Ax where the system is initialized at xi = 10 ∀i. The free
response of the system is shown in Figure 5-14 and Figure 5-15. The system is stable as
can be seen from the figures and controllable. It can be inferred from the figure that as the
number of state bins increases, the number of oscillations and the settling time increases as
well. It is possibly because of the more accurate system representation.

When the system is transformed as ẋ = Ax − Axset, the response changes as represented in
Figure 5-16 and Figure 5-17. This plot represents x − xset vs time. The system settles to
the reference point after a particular time. One might argue that, since the error dynamics
are stable, a control input might not be necessary. But control input is necessary because
of the reason that in certain cases a very fast convergence is preferred. Besides, the system
dynamics represented in Figure 5-2 is for one particular case where the transferred system
settles as can be seen from Figure 5-16 and Figure 5-17. But there might be cases where the
system settles after a longer period in terms of hours. This simulation represents a possible
direction of control methodology which can be extended to a system with different dynamics
to have a desirable performance.

The non-linear control approach is applied for these systems for varying state bins and the
results are shown in Figure 5-18 - Figure 5-21. These simulations are carried out with Q = 1
and R = 5. It is important to see that the magnitude of the control input increases as the
number of bins increases, but this increase is due to different initial conditions as can be seen
from the figures. In Figure 5-19, the control input is applied for a longer period in contrast
to Figure 5-18 where a control input with a higher magnitude is applied for a shorter period.
Although a system with a higher dimension makes the representation accurate, there is a
compromise that needs to be made in terms of the computational effort as can be seen in
Table 5-4. This time only represents the time taken by the algorithm to converge to a stable
solution. But the algorithm is off policy and requires the system states before initializing the
algorithm. So, the time to collect the states in addition to the time mentioned in Table 5-4
is the total time before which the policy can be updated. In general, there is no thumb rule
to determine the number of data points necessary to guarantee a stable solution.
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Figure 5-12: Eigenvalues, homogeneous and heterogeneous population
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Figure 5-13: Eigenvalues comparison, Nbin=10
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Figure 5-14: Free response for Nbin 2 and 3

Remark: The switching of TCLs that are represented in these plots denoted as inputs (which
represents the number of TCLs to be switched) only represents the external switching. There
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Figure 5-15: Free response for Nbin 4 and 5
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Figure 5-16: Free response for Nbin 2 and 3, transferred co-ordinates
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Figure 5-17: Free response for Nbin 4 and 5, transferred co-ordinates

is always an internal switching which keeps happening due to the internal dynamics of the
TCL.
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Figure 5-18: Output trajectory and control input for Nbin 2
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Figure 5-19: Output trajectory and control input for Nbin 3
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Figure 5-20: Output trajectory and control input for Nbin 4
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Figure 5-21: Output trajectory and control input for Nbin 5

Number of state bins Nbin 2 3 4 5
Time[ms] 8.50 33.78 43.28 80.07

Table 5-4: Computational complexity for varying state bins

In this chapter, a study is done to explore how the number of state bins and the heterogeneity
affect the performance of an ensemble of TCL. The study gives a more acute understanding
of the limitations of the model/algorithm and how it affects the performance.
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Chapter 6

Conclusion and Future work

In this research thesis, an attempt is made to answer the following questions:

1. Can adaptive optimal control be applied to Demand Side Management (DSM) of
Thermostatically Controlled Load (TCL)? Which TCL models should be used?

Yes, adaptive optimal control can be applied to DSM of TCL. But the type of control
algorithm to be used depends on the model used. Three state-of-the-art models for
TCLs developed in [4], [18] and [5] are discussed briefly.

2. What are its limitations? How can these limitations be overcome?

The model developed in [4] suffers from the limitations that the states are immeasurable
(Chapter 2). Hence an Output Feedback (OPFB) algorithm can be used (Chapter 3).

The model developed in [18] and [5] suffers from the limitation that the system knowl-
edge must be known approximately. But this limitation can be overcome by using
identification techniques (Chapter 4).

3. How does the parameter heterogeneity affect the performance of the control?

A detailed study is done analyzing the performance for varying heterogeneity distribu-
tion, input weight, set-point and number of state bins (Chapter 5). From this study, it
can be concluded that a model based on state bins (with a high number of state-bins)
is a more accurate system representation and the non-linear control algorithm applied
to it produces results with good performance.

There are a few interesting future works which can be investigated

• The system developed in section 4-2 is controlled using the non-linear control approach.
The constraints that the system states face of being non-negative and the summation
limits are now controlled only by increasing the weight on the input (R). But an in-
teresting alternative approach would be to look into the direction of adaptive optimal
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control where the constraints are also included in the learning process [41].

• All the control procedures carried out in this research thesis is in Continuous Time (CT).
Since all the systems, in reality, are more discrete in nature, a more appropriate con-
trol methodology would be to look into the application of Discrete Time (DT) control
policies to the system developed in section 4-2. A possible direction to look into would
be along the methodologies stated in [42].

• The system studied in this research thesis is considered with no external disturbances.
But there can be possible external disturbances like the ambient temperature, second-
order dynamics along the TCL, etc. Hence a non-linear control approach with distur-
bances can be studied. [19] has some interesting possible approaches to this work.

• The reference signals considered in this study is a step change. An approach to look
into is where the set-point changes in a sinusoidal or ramp fashion. It is important to
study these types of signals as they have been studied in [4] and references therein

• The algorithm proposed in this thesis is a Policy Iteration (PI) adaptive optimal algo-
rithm. To make it completely online, a Recursive Least Squares (RLS) can be performed
as in [37]. A comparative study of time taken to converge and studying its performance
would be interesting future work. It is interesting to look into this option as policy
iteration makes the system converge faster.
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Appendix A

Subspace Identification - Autonomous
Systems

Consider a Linear Time Invariant (LTI) Discrete Time (DT) system

x(k + 1) = Ax(k) +Bu(k)
y(k) = Cx(k) +Du(k)

where x(k) ∈ Rn, u(k) ∈ Rm and y(k) ∈ Rl. When the states and the outputs are measurable,
the following data equation can be constructed as shown below. To use this relation in
subspace identification it is necessary that s > n.

y(0)
y(1)
y(2)
...

y(s− 1)

 =


C
CA
CA2

...
CAs−1


︸ ︷︷ ︸

Os

x(0) +


D 0 0 . . . 0
CB D 0 . . . 0
CAB CB D . . . 0

...
...

... . . .
...

CAs−2B CAs−3B . . . CB D


︸ ︷︷ ︸

Ts


u(0)
u(1)
u(2)
...

u(s− 1)



To make use of more data points, a Hankel matrix can be constructed as shown below. And
in general, we have n < s << N .

y(0) y(1) . . . y(N − 1)
y(1) y(2) . . . y(N)
y(2) y(3) . . . y(N + 1)
...

... . . .
...

y(s− 1) y(s) . . . y(N + s− 2)


︸ ︷︷ ︸

Y0.s.N

= OsX0,N + Ts


u(0) u(1) . . . u(N − 1)
u(1) u(2) . . . u(N)
u(2) u(3) . . . u(N + 1)
...

... . . .
...

u(s− 1) u(s) . . . u(N + s− 2)


︸ ︷︷ ︸

U0.s.N

where
X0,N =

[
x(0) x(1) . . . x(N − 1)

]
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58 Subspace Identification - Autonomous Systems

Hence the data equation becomes as represented below. The explanation of the subscripts is:
the first entry represents the time index of the first element of the matrix, the second and the
third entry represents the number of rows and columns of the matrix.

Y0,s,N = OsX0,N + TsU0,s,N

For an autonomous system, all the entries of U0.s.N is zero. Hence the data equation becomes

Y0,s,N = OsX0,N

Let the Singular Value Decomposition (SVD) of Y0,s,N be represented by

Y0,s,N = UnΣnV
T
n ,

where Σn ∈ Rn×n and rank(Σn)− n, then Un can be denoted by

Un = OsT =


CT

CTAT
...

CTA
s−1
T

 .

The matrix AT is computed by solving the set of equations and it has a unique solution.

Un(1 : (s− 1)l, :)AT = Un(l + 1 : sl, :)

Here AT represents the matrix calculated upto similarity transformation. The matrix A and
AT have the same eigenvalues which determine the system dynamics but have different matrix
elements.
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Glossary

List of Acronyms

ADP Adaptive Dynamic Programming

ARE Algebraic Riccati Equation

CT Continuous Time

DSM Demand Side Management

DT Discrete Time

GAS Globally Asymptotically Stable

IRL Integral Reinforcement Learning

ISS Input to State Stable

LQI Linear Quadratic Integral

LQR Linear Quadratic Regulator

LQT Linear Quadratic Tracking

LS Least Squares

LTI Linear Time Invariant

MPC Model Predictive Control

OPFB Output Feedback

PI Policy Iteration

RLS Recursive Least Squares

RQ Research Question

SFB State Feedback
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SISO Single Input Single Output

SVD Singular Value Decomposition

TCL Thermostatically Controlled Load

VI Value Iteration
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