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ARTICLE

Linear programs for entanglement and key
distribution in the quantum internet
Stefan Bäuml1,2,3,4✉, Koji Azuma3,4, Go Kato4,5 & David Elkouss1

Quantum networks will allow to implement communication tasks beyond the reach of their

classical counterparts. A pressing and necessary issue for the design of quantum network

protocols is the quantification of the rates at which these tasks can be performed. Here, we

propose a simple recipe that yields efficiently computable lower and upper bounds on the

maximum achievable rates. For this we make use of the max-flow min-cut theorem and its

generalization to multi-commodity flows to obtain linear programs. We exemplify our recipe

deriving the linear programs for bipartite settings, settings where multiple pairs of users

obtain entanglement in parallel as well as multipartite settings, covering almost all known

situations. We also make use of a generalization of the concept of paths between user pairs

in a network to Steiner trees spanning a group of users wishing to establish Greenberger-

Horne-Zeilinger states.
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Quantum entanglement allows for the implementation of
communication tasks not possible by classical means. The
most prominent examples are quantum key distribution

and quantum teleportation between two parties1–3, but there is a
host of other tasks also involving more than two parties4. An
example of a protocol using multipartite entanglement is quan-
tum conference key agreement5, where multiple parties who trust
each other need to establish a common key. Another example is
quantum secret sharing6, where multiple parties who do not trust
each other wish to encrypt a message in such a way that it can
only be decrypted if all parties cooperate. Multipartite entangle-
ment can also be used for the synchronization of a network of
clocks7 and plays an important role in quantum computing8.
Quantum networks allow for the distribution of entanglement as
a resource for such tasks among parties, which could, in principle,
be spread out across different continents in an efficient manner.
Whereas small-scale quantum networks can be designed in such a
way that they perform optimally in distributing a particular
resource to a particular set of users, a future quantum version of
the internet will most likely grow to have a complex structure and
involve a number of user pairs, or groups, requiring entangled
resources for different tasks in parallel.

Recently, in light of the experimental promise of short-term
quantum network deployment, the community has begun to
devote attention to communication problems for networks of
noisy quantum channels and their general structures. Arguably,
the most important one is the computation of the maximum rates
at which the different tasks can be performed. Given that, even in
the case of point-to-point links, entanglement makes the char-
acterization of capacities notably more complicated than its
classical counterpart, with phenomena such as superactivation9, it
was unclear how much it would be possible to borrow from the
theory of classical networks. Besides, the usage of a quantum
channel is much more expensive than that of its classical coun-
terpart. This motivates the introduction of different capacities
which account for resources in different ways. The results of
refs. 10,11 introduced the quantum problem and successfully
established upper and lower bounds on a capacity of a quantum
network which quantifies the maximum size of bipartite maxi-
mally entangled states (for quantum teleportation) or private
states (for quantum key distribution) per network use, as a gen-
eralization of the fundamental/established notion of classical
network capacity12. These upper and lower bounds coincide
when the network is composed only of a very relevant class of
quantum channels, called distillable channels. The results of
refs. 13–15 derive analogous bounds, alternatively defining the
capacity of a quantum network per total number of channel uses
(related with a cost) or per time, rather than per network use, for
generality. In any case, rather surprisingly, the series of funda-
mental works10,11,13–15 have shown that these capacity of quan-
tum networks for bipartite communication behave similar to that
of classical networks. The distribution of bi- and multipartite
entanglement in quantum networks has been in considered in a
number of other works, including refs. 16–22. These works differ
from refs. 10,11,13–15 in that they are not concerned with networks
of general noisy channels.

Namely, given a network of quantum noisy channels and
bounds on their capacities satisfying certain properties, one can
conceptually construct a classical version of the quantum network
where each quantum channel is replaced by a perfect classical
channel with a capacity given by the bound on the quantum
channel capacity. Then, by considering cuts between two nodes in
the induced ‘classical’ network, it is possible to obtain upper and
lower bounds on a capacity of the network for distributing private
keys or entanglement between two clients. The same techniques
have found application for many user pairs10,23,24 and for the

distribution of multipartite entanglement among multiple
users24,25. While the early work has laid down extremely useful
techniques to characterize quantum network capacities, it has
either not focused on their computation13,24 or left open the
computability of several of the scenarios considered11. However,
this is rather important in practice, in the sense that the quantum
network will be required to serve entanglement resources quickly
according to the requests of clients, and, in so doing, efficient
estimation of the quantum network capacities is a necessary basis
for choosing a proper subnetwork to accomplish that. The goal of
this paper is to provide a simple recipe to find such efficiently
computable bounds for quantum network capacities.

In this paper, using the approach taken in refs. 13–15,24, i.e.,
defining a network capacity as a rate per the total number of
channel uses or per time, we introduce or generalize the capacities
for private or quantum communication in the following scenar-
ios: bipartite communication, concurrent communication
between multiple user pairs with the objective of (1) maximizing
the sum of rates achieved by the user pairs or (2) maximizing the
worst-case rate that can be achieved by any pair, as well as
multipartite state sharing where the goal is either to distribute
Greenberger–Horne–Zeilinger (GHZ) or multipartite private
states5 for a group of network users. We then provide linear-
program lower and upper bounds on the all these capacities. The
size of the linear programs (LPs) scales polynomially in the
parameters of the network, making it computable in polynomial
time by interior point algorithms26. A central tool deriving upper
bounds in the case of multiple user pairs are approximate min-cut
max-flow theorems for multi-commodity flows27–29. Up to a
factor of the logarithmic order of the number of user pairs, these
results link quantities that occur in the known upper bounds24,
such as the minimum cut ratio (i.e., the smallest ratio of the
capacity of a cut and the demand across the cut) and the mini-
mum capacity multicut (i.e., the smallest capacity set of edges
whose removal disconnects all user pairs), both of which are NP-
hard problems to calculate in general graphs27,30, to multi-
commodity flow maximizations that can be computed by LPs. A
challenge we address in this work is to find protocols that can
achieve the upper bounds. In the bipartite case, protocols invol-
ving distillation of Bell pairs across all edges of a network, and
entanglement swapping along paths have been used to provide
lower bounds on the network capacities10,11,14. Using such simple
routing methods, it was shown in refs. 10,11,14 that the bipartite
upper bounds can be achieved for networks consisting of a wide
class of channels, known as distillable channels31, which include
erasure channels, dephasing channels, bosonic quantum amplifier
channels, and lossy optical channels. Here, we extend the bipartite
protocol presented in ref. 14 to the case of many user pairs and to
the distribution of GHZ states among a set of users. We do so by
considering edge-disjoint Steiner trees spanning the set of users.

Results
Our base setup is a network of nodes connected by noisy quan-
tum channels (see Fig. 1). The nodes act either as end users or as
repeater stations and have the ability to store and process
quantum information locally. In addition, all nodes are connected
by classical lines of communication, which can be used freely.

We are interested in the possibilities and limitations of quan-
tum networks for different communication tasks and usage sce-
narios. Fortunately, most tasks of interest can be rephrased as the
distribution of an entangled target state among users of the
quantum network32. Here, we consider the distribution of a
bipartite entangled target state between a pair of users, of multiple
bipartite entangled target states between multiple pairs of users in
parallel as well as of a multipartite entangled target state among a
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group consisting of more than two users. The distribution of these
states is known to be equivalent to the problems of quantum
information transmission, private classical communication,
quantum key distribution, and quantum conference key agree-
ment among others.

As we are interested in emergent, organically grown quantum
networks, such as the classical internet, we do not make any
assumptions on the structure of the network except that it can be
described by a finite directed graph. Let the quantum network be
given by the directed graph G= (V, E), where V denotes the set of
the finite vertices and E the set of the finite directed edges, which
represent quantum channels. Each directed edge e∈ E has tail
v∈V and head w∈V. We also denote e by vw. We can also
assign a nonnegative edge capacity (In order to avoid confusion,
we will use the terms ‘edge capacity’ when referring to edges and
‘capacity’, when referring to quantum or private capacities of a
channel or the entire network.) c(e) to every edge. Each edge vw
corresponds to a channel N e ¼ N vw with input in v and output
in w. We assume that each vertex has the capability to store and
process quantum information locally and that all vertices are
connected by public lines of classical communication, the use of
both of which is considered to be a free resource. Let us assume
there is a subset U⊂V of the vertices, the users who wish to
establish a target state containing the desired resource, whereas
the remaining vertices serve as repeater stations. In the following
section we will elaborate on the exact form of the target state.

We assume that initially there is no entanglement between any
of the vertices. A target state can be distributed by means of an
adaptive protocol, consisting of local operations and classical
communication (LOCC) among the vertices in the network
interleaved by channel uses10,11,13. In this work we are not con-
cerned with the inner workings of the protocol but describe a
protocol only by the total number of channel uses, and usage
frequencies of each channel. We describe a protocol as follows:
Given upper bounds ne on the average of the number of uses of
each channel N e, we define a set of usage frequencies fpege2E of
each channel N e as pe := ne/n(≥ 0). Here n can be regarded as
time or n with

P
e2E pe ¼ 1 can be considered to be an upper

bound on the average of total channel uses (see ref. 14). Further,
we introduce an error parameter ϵ such that after the final round
of LOCC a state ϵ-close in trace distance to the target state is
obtained. Depending on the user scenario, the target state can be
a maximally entangled state, a tensor product of multiple maxi-
mally entangled states between multiple pairs of users or a GHZ
state. By average we mean that parameters of a protocol are
averaged over all possible LOCC outcomes. We call such a

protocol an ðn; ϵ; fpege2EÞ adaptive protocol. In the asymptotic
limit where n→∞ it then holds ne→∞ for edge e with pe > 0
while fpege2E remains fixed14.

Note that whereas quantum channels are directed, the direc-
tion does not play a role when we use them to distribute entan-
glement under the free use of (two-way) classical communication.
For example, once a channel has been used to distribute a Bell
state, which is invariant under permutations of nodes across the
channel. This motivates the introduction of an undirected graph
G0 ¼ ðV ; E0Þ, where E0 is obtained from E as follows: for any
edge vw∈ E with wv∈ E, the directed edges vw and wv are
replaced by single undirected edge {vw} (or, equivalently {wv})
with c0ðfvwgÞ ¼ cðvwÞ þ cðwvÞ, while, for any edge vw∈ E with
wv∉ E, the directed edge vw is replaced by undirected edge {vw}
with c0ðfvwgÞ ¼ cðvwÞ. For more details about our notations see
Supplementary Note 1.

Let us also note that whereas it is common from a quantum
information theory point of view to allow for free LOCC opera-
tions, there are practical challenges to implement quantum
memories with long storage times. By a slight abuse of our
notation, however, it is possible to include such effects into our
scenario, as well. Namely one could divide a vertex into a pre- and
post storage vertex and add an additional noisy channel
describing the noisy quantum memory (for instance, see ref. 13).

Bipartite user scenario. In this section we obtain linear-program
upper and lower bounds on the entanglement and key generation
capacities of a network for bipartite scenarios. While some of the
discussion have been made implicitly in earlier results10,11,14, it is
worth giving an explicit formulation here, given its relevance. It
will also serve as a good starting point to demonstrate our method
and introduce some notation. Let us suppose that the set of users
only contains two vertices, s∈ E, a.k.a Alice, and t∈ E, also
known as Bob. A possible target state could be a maximally
entangled state jΦdiMsMt

¼ 1ffiffi
d

p
Pd

i¼1 jiiiMsMt
with log d ebits. We

also use the notation Φd
MsMt

¼ jΦdihΦdjMsMt
. In the case of d=

2, this state is called a Bell state. The target state could also be a
general private state33,34, which is of the form γdKsKtSsSt

¼
U twistjΦdihΦdjKsKt

� σSsStU
twisty, where σSsSt is an arbitrary state

and U twist ¼ P
ik ikj i ikh jKsKt

� U ðikÞ
SsSt

is a controlled unitary that
‘twists’ the entanglement in the subsystem KsKt to a more
involved form also including the subsystem SsSt. It has been
shown that, by measuring the ‘key part’ KsKt, while keeping the
‘shield part’ SsSt away from an eavesdropper Eve, log d bits of a
private key can be obtained. The number of ebits or private bits is
treated as the figure of merit.

We can now define a quantum network capacity
Qfpege2E ðG; fN

ege2EÞ per time [QðG; fN ege2EÞ per total channel
use] as the largest rate hlog dðkÞik=n achievable by an adaptive
ðn; ϵ; fpege2EÞ protocol such that after n uses the finally obtained

state ρðn;kÞMsMt
is ϵ-close to ΦdðkÞ

MsMt
, in the limit n→∞ and ϵ→ 0

[maximized over all user frequencies pe ≥ 0 such that
P

e pe ¼ 1].
Here k is a vector keeping the track of outcomes of the LOCC
rounds and the notation 〈⋯ 〉k corresponds to averaging over all
LOCC outcomes. Similarly, we define a private network capacity
Pfpege2EðG; fN

ege2EÞ per time [PðG; fN ege2EÞ per total channel
use] as the largest rate hlog dðkÞik=n achievable by an adaptive

ðn; ϵ; fpege2EÞ protocol such that after n uses the state ρðn;kÞKsKtSsSt
is

ϵ-close to γd
ðkÞ

KsKtSsSt
, in the limit n→∞ and ϵ→ 0 [maximized over

all user frequencies pe ≥ 0 such that
P

e pe ¼ 1].

A

I

F

E

D

C

B

H
G

Fig. 1 Example of a quantum network: it consists of quantum channels,
repeater stations and end users A, B,…, I. In such a network there are
many possible communication tasks. Some examples are the distribution of
private states, Bell states and Greenberger–Horne–Zeilinger (GHZ) states.
The first two are bipartite tasks. We study the implementation of these
tasks between a single pair of users, for instance A and I, and between
multi-pairs of users in parallel, for instance A and I, C and D, and F and H.
The last task, the distribution of GHZ states, is a multipartite user scenario,
for instance A, B, E, G, and I could distill a five-partite GHZ state.
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As the class of private states includes maximally entangled
states, the private capacity is an upper bound on the quantum
capacity33,34. Our main results in this section will be efficiently
computable upper and lower bounds on the private and quantum
capacities, respectively.

In a number of recent works upper bounds on private network
capacities have been obtained11,13,15. The main idea behind those
results is to assign nonnegative edge capacities to each edge e and
to find the minimum edge capacity cut between s and t. By cut
between s and t we mean a set of the edges whose removal
disconnects s and t. The edge capacity of a cut can be defined as
the sum of edge capacities of the edges in the cut. For details see
the ‘Methods’ section. If the edge capacity c(e) of an edge e is
given by the usage frequency pe of channel N e, multiplied by an
entanglement measure EðN eÞ upper bounding the private
capacity of N e, which is continuous near the target state and
cannot be increased by amortization (see properties P1 and P2 of
ref. 15 or Supplementary Note 2), the minimum edge capacity cut
provides an upper bound on the private network capacity.
Examples of suitable quantities EðN eÞ include the squashed
entanglement Esq35, the max-relative entropy of entanglement
Emax

36 and, for a particular class of so-called Choi-stretchable
channels/teleportation-simulable channels31,37–39, the relative
entropy of entanglement ER40 of the channel. If we know such
quantities for all channels constituting the network, all that is left
to do is finding the minimum edge capacity cut, which is a well-
known problem in graph theory. However, it is not necessarily
efficient to solve this optimization directly, because there is a case
where we need to maximize further such a minimized edge
capacity. For instance, it is not clear a priori how to maximize
over channel frequencies the minimum edge capacity to find the
capacity of the network per channel use. To tackle this issue, we
resort to the duality of the problem.

In particular, using the max-flow min-cut theorem41,42, we
rephrase the problem of finding the minimum edge capacity cut
as a network flow maximization problem in the undirected graph
G0. Thanks to this, it becomes sufficient for us to consider
maximization only, in every case. In a network flow maximization
problem in an undirected graph, the idea is to assign a variable fvw
and fwv to each undirected edge {vw} which can take nonnegative
values. fvw is interpreted as an abstract flow of some commodity
from vertex v to vertex w. As such, it has to fulfill the following
constraint: interpreting the edge capacity c0ðfvwgÞ of an
undirected edge {vw} as the capacity of its edge to transmit an
abstract commodity, we require that the sum of edge flows fvw
and fwv does not exceed the edge capacity c0ðfvwgÞ. We call this
the edge capacity constraint.

Having defined a flow of an abstract commodity through an
edge, the obvious next step is to consider a flow through the
entire network. Namely, we mark two vertices, the source s and
the sink t and define a flow from s to t as the sum of all ‘outgoing’
flows fsv, where v is a vertex adjacent to s, such that for every edge
the edge capacity constraint is fulfilled and that for every vertex
w∉ {s, t} the sum over v of ‘incoming’ edge flows fvw is equal to
the sum over v of ‘outgoing’ flows fwv, where v are the vertices
adjacent to w, which is known as flow conservation constraint. If
the graph is undirected, the roles of the source and the sink can be
exchanged, without changing the value of the flow. As both the
edge capacity and the flow conservation constraint are linear, the
maximization of the flow from s to t can be efficiently computed
by means of linear programming43. The max-flow min-cut
theorem now states that the minimum edge capacity cut that
separates s and t is equal to the maximum flow from s to t.
Figure 2 illustrates this with an example. For detailed definitions
of cuts, flows and the max-flow min-cut theorem see the
‘Methods’ section.

Precisely, we use the max-flow min-cut theorem to transform
the min-cut upper bounds on the private network capacity given
in ref. 15 into an efficiently computable LP. To do so we define
directed edge capacities cðeÞ ¼ peEðN eÞ, for every directed edge
e∈ E. Thus, entanglement takes the role of the abstract
commodity considered above.

The interpretation of entanglement as a commodity raises the
question if there exists a protocol that can distribute entangle-
ment in a way similar to the flow of a commodity through a
network. Ideally, one could construct such a protocol using the
edge flows obtained in the flow maximization. To some extend
this can be achieved by a quantum routing protocol, such as the
aggregated repeater protocol introduced in ref. 14. The aggregated
repeater protocol consists of two steps: first each channel is used
to distribute Bell states at a rate peR

$ðN eÞ such that R$ðN eÞ
reaches the quantum capacity Q$ðN eÞ in the asymptotic limit of
many channel uses. This results in a network of Bell states, which
can be described by an indirected multigraph, where each edge
corresponds to one Bell pair. The second step of the protocol is to
find edge-disjoint paths from Alice to Bob and connect them by
means of entanglement swapping. The number of Bell pairs is
thus equal to the number of edge-disjoint paths between Alice
and Bob in the Bell network. Hence, in order to obtain a lower
bound on the capacity, one would have to find the number of
edge-disjoint paths in the multigraph corresponding to the Bell
state network.

Finding the maximum number of edge-disjoint paths between s
and t in a multigraph is the same as maximizing the flow in a

Fig. 2 Example of the max-flow min-cut theorem. a Min-cut: example of an undirected graph with a source-sink pair (in red). The labels of the edges
denote their edge capacities. The edges in dashed lines represent a source-sink cut, i.e., their removal completely disconnects the source from the sink. The
capacity of the cut is given by the sum over the edge capacities in the cut, in this case equal to 1, which is the minimum capacity of all source-sink cuts in
this network. In other words, the min-cut is equal to 1. Note that the minimizing cut is not unique. b Max-flow: by the max-flow min-cut theorem the min-
cut is equal to the maximum flow from the source to the sink. Here we have provided an example of a flow from the source to the sink. The labels denote
the directed edge flows fe. The flow from the source to the sink achieves the min-cut value of 1.
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graph where the edge capacities are given by the number of
parallel edges in the multigraph, however with the additional
constraint that each edge flow takes integer values44. Such an
integer flow maximization can no longer be formulated as a LP.
Physically, the integer constraint corresponds to the fact that
there is no such thing as ‘half a Bell state’. Hence, if a LP provides
an edge flow of 0.5 for some edge and 1 for another, we cannot
translate this into a protocol distributing half a Bell sate over the
first edge and one Bell state over the other. What we can do,
however, is to multiply all edge flows obtained in the optimization
by a factor of 2, and distribute one Bell state along the edge where
we have obtained flow 0.5 and two Bell states along the edge
where we have obtained 1. For rational edge flows obtained in the
optimization and finite graphs, we can always find a large enough
number to multiply the edge flows with to obtain integer values
associated with each edge that can be translated into a number of
Bell pairs distributed along this edge. If the edge flows obtained
are real numbers, we can approximate them by rational numbers
with arbitrary accuracy. This allows us to compute lower bounds
on the quantum network capacities by means of maximizing the
flow over a network with edge capacities given by
cðeÞ ¼ peQ

$ðN eÞ, providing us with a lower bounds that can
be efficiently computed by linear programming. Finally, we can
include an optimization over usage frequencies pe into both LPs,
providing us with:

Theorem 1 For a network described by a finite directed graph G
and an undirected graph G0 as defined above, the private and
quantum network capacities per total channel use, P G; fN ege2E

� �
and Q G; fN ege2E

� �
, satisfy

f
s!t
maxðG0; fQ$ðN eÞge2EÞ ≤ Q G; fN ege2E

� �
≤ P G; fN ege2E

� �
≤ f

s!t
maxðG0; fEðN eÞge2EÞ;

ð1Þ
where f

s!t
max is given by the LP Eq. (12) in the ‘Methods’ section.

Further, E can be chosen to be the squashed entanglement Esq,
the max-relative entropy of entanglement Emax and, for Choi-
stretchable channels, the relative entropy of entanglement ER.

For the proof see Supplementary Note 2. As described in the
‘Methods’ section, the LPs scale polynomially with the size of the
network.

Note that for a subset of Choi-stretchable channels, known as
distillable channels, which include erasure channels, dephasing
channels, bosonic quantum amplifier channels, and lossy optical
channels, the relative entropy of entanglement of the channel N e

(and its Choi state σe) is equal to the two-way classical assisted
quantum capacity31, ERðN eÞ ¼ ERðσeÞ ¼ Q$ðN eÞ. Hence the
bounds in Theorem 1 become tight.

Multiple pairs of users. We now move on to the scenario of
multiple pairs of users (s1, t1),…, (sr, tr) who wish to establish
maximally entangled states or private states concurrently, i.e., we
have target states of the form

Nr
i¼1Φ

di
Msi

Mti
or

Nr
i¼1γ

di
Ksi

Kti
Ssi Sti

.

This would be a typical scenario in a future ‘quantum
internet’, where a number of user pairs might wish to perform
QKD in parallel. In contrast to the bipartite scenario discussed
in the previous section, where the goal is to simply optimize
the rate at which entanglement is distributed between a user
pair, there are a number of different figures of merit in the
multi-pair scenario. We define the following three figures of
merit: (1) a total multi-pair quantum (private) network capacity
QtotalðG; fN ege2EÞ per total channel use [Qtotal

fpege2EðG; fN
ege2EÞ

per time] (PtotalðG; fN ege2EÞ per total channel use [Ptotal
fpege2E

ðG; fN ege2EÞ per time]), defined as the largest sum, over all user
pairs, of the entanglement distribution rates achievable by an

adaptive ðn; ϵ; fpege2EÞ protocol such that after n uses we are ϵ-
close to the target state, again taking the limit n→∞ and ϵ→ 0
[and maximizing over all user frequencies pe ≥ 0 such thatP

e pe ¼ 1]. Whereas maximizing the sum of rates is a good
approach when the goal is to distribute as much entanglement
as possible, it has the drawback that the protocol can be unfair in
the sense that some pairs might get more entanglement
than others, while some might not get anything at all. This
drawback can be overcome by using our second figure of merit:
(2) a worst-case multi-pair quantum (private) network capacity
QworstðG; fN ege2EÞ per total channel use [Qworst

fpege2EðG; fN
ege2EÞ

per time] (PworstðG; fN ege2EÞ per total channel use [Pworst
fpege2E

ðG; fN ege2EÞ per time]), i.e., the least entanglement distribution
rate that can be achieved by any user pair [by maximizing over all
user frequencies pe ≥ 0 with

P
e pe ¼ 1]. This approach is good in

a scenario where the goal is to distribute entanglement in a fair
way, in the sense that the amount of entanglement that each user
pair obtains is maximized. Finally, we consider (3) the case where
we assign weight qi to each user pair (si, ti). This approach can be
used if user pairs are given different priorities. We call the cor-
responding figure of merit weighted multi-pair quantum (private)
network capacity Qq1;¼;qr ðG; fN ege2EÞ per total channel use
[Qq1;¼;qr

fpege2E ðG; fN
ege2EÞ per time] (Pq1;¼ ;qr ðG; fN ege2EÞ per total

channel use [Pq1;¼;qr
fpege2E ðG; fN

ege2EÞ per time]) and define it as the

largest achievable weighted sum of rates [with maximization over
all user frequencies pe ≥ 0 with

P
e pe ¼ 1]. We will now present

our results for the total and worst-case scenario. For bounds on
the weighted multi-pair network capacities see Supplementary
Note 3.

Let us begin with scenario (1). As in the bipartite case, we can
assign edge capacity cðeÞ ¼ peEsqðN eÞ to each edge e in the graph
corresponding to the network. From ref. 24 we can obtain upper
bounds on the total multi-pair private network capacity which are
given the minimum capacity multicut. A multicut is defined as a
set of edges whose removal disconnects all pairs. The capacity of a
multicut is defined by summing over the edge capacities of all
edges in the multicut. Whereas this is a straightforward
generalization of the problem of finding the minimum capacity
cut that separates a single pair, there is no exact generalization of
the max-flow min-cut theorem to multicuts. In fact, finding the
minimum multicut in a general graph has been shown to be NP-
hard30.

It is however possible to upper bound the minimum multicut
by means of a total multi-commodity flow optimization, also
known as total multi-commodity flow, up to a factor gt(r) of order
Oðlog rÞ29. A multi-commodity flow is a generalization of a flow
to more than one source-sink pair, each exchanging a separate
abstract ‘commodity’. In order to maximize the total multi-
commodity flow one introduces separate edge flow variables f ðiÞe
for each commodity i as well as each edge e and maximizes the
sum of flows from si to ti over all commodities i ∈ {1,…, r}. In the
optimization, one requires that for each commodity i the flow is
conserved in all edges except at the corresponding source si and
sink ti, resulting in r separate flow conservation constraints. Thus,
it is ensured that for each commodity the net flow leaving the
source will reach the corresponding sink. A multi-commodity
flow is concurrent if all commodities can be distributed in parallel
without exceeding the edge capacities in any edge. In order
to ensure this, one adds the constraint that for each undirected
edge {vw} the sum of flows of all commodities passing through
the edge,

Pr
i¼1ðf ðiÞvw þ f ðiÞwvÞ does not exceed the edge capacity

c0ðfvwgÞ. For details on multicuts and multi-commodity flows
and the gaps that separate them see the ‘Methods’ section.
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Figure 3a shows an example of a minimum multicut separating all
three source-sink pairs. Figure 3b shows a corresponding
concurrent multi-commodity flow. The value of the minimum
multicut is 3.5, which is equal to the sum of the three source-sink
flows. So in this simple example there is no gap.

Applying the aggregated repeater protocol14 to multiple user
pairs and using the same reasoning as in the bipartite case, we
also obtain lower bounds in terms of the maximum concurrent
multi-commodity flows, providing us with the following
efficiently computable bounds:

Theorem 2 In a network described by a graph G with associated
undirected graph G0and a scenario of r user pairs (s1, t1),…, (sr, tr),
the total multi-pair quantum and private network capacities per
total channel use, QtotalðG; fN ege2EÞ and PtotalðG; fN ege2EÞ,
satisfy

f
total
maxðG0; fQ$ðN eÞge2EÞ ≤ QtotalðG; fN ege2EÞ ≤ PtotalðG; fN ege2EÞ

≤ gtðrÞf
total
maxðG0; fEsqðN eÞg

e2EÞ;
ð2Þ

where f
total
max is given by the polynomial sized LP Eq. (19) presented

in the ‘Methods’ section and gt(r) is of order Oðlog rÞ as described
in ref. 29.

For the proof see Supplementary Note 3.
Let us now move on to scenario (2). Let us, again, describe

the network by a capacitated graph with edge capacities
cðeÞ ¼ peEðN eÞ, where EðN eÞ can be chosen to be the squashed
entanglement Esq, the max-relative entropy of entanglement Emax
and, for Choi-stretchable channels, the relative entropy of
entanglement ER of the channel. Using the results of refs. 15,24,
it is possible to show that the worst-case multi-pair private
network capacity is upper bounded by the so-called minimum cut
ratio with unit demands of the capacitated graph. Given a
(bipartite) cut, which separates the set of vertices into two subsets,
the cut ratio is defined as its capacity of the cut, i.e., the sum over
edge capacities of the edges, divided by the demand across the cut,
in this case the number of pairs separated by the cut. The
minimum cut ratio is obtained by a minimization over all
bipartite cuts. See Fig. 3c for an example of a minimum cut ratio.

As for the minimum multicut discussed above, the computation
of the minimum cut ratio is an NP-hard problem in general
graphs27.

Whereas, as in the case of multicuts, there is no exact version of
the max-flow min-cut theorem for the minimum cut ratio, there
is again a connection to concurrent multi-commodity flows up to
a factor gw(r), which can be of order up to Oðlog rÞ27. Namely, it
has been shown that the minimum cut ratio is upper bounded by
gw(r) times what we call the maximum worst-case multi-
commodity flow, also known as maximum concurrent multi-
commodity flow, which corresponds to the maximum flow that
can be achieved by any of the commodities concurrently, with
respect to the same edge capacity and flow conservation
constraints as in the case of the total multi-commodity flow,
discussed previously. Figure 3d contains an example of a
maximum worst-case multi-commodity flow that achieves the
cut ratio in Fig. 3c. Note that this flow is different from the one
achieving the minimum multicut in Fig. 3b. In particular, it is
‘fairer’ in the sense that it also provides a flow for the red user pair
(s1, t1). See the ‘Methods’ section for a detailed definition of the
minimum cut ratio, the worst-case multi-commodity flow and the
gap that separates them.

As in the previous scenarios, we can obtain a lower bound by
application of the aggregated repeater protocol14 to multiple user
pairs and include an optimization over usage frequencies,
resulting in the following result:

Theorem 3 In a network described by a graph G with
associated undirected graph G0 and a scenario of r user pairs
(s1, t1),…, (sr, tr), the worst-case multi-pair quantum and private
network capacities per total channel use, QworstðG; fN ege2EÞ and
PworstðG; fN ege2EÞ, satisfy
f
worst
max ðG0; fQ$ðN eÞge2EÞ ≤ QworstðG; fN ege2EÞ

≤ PworstðG; fN ege2EÞ ≤ gwðrÞf
worst
max ðG0; fEðN eÞge2EÞ;

ð3Þ

where f
worst
max is given by the polynomially sized LP Eq. (21)

presented in the ‘Methods’ section. Further gw(r) is the flow-cut
gap described in the ‘Methods’ section. E can be chosen to be
the squashed entanglement Esq, the max-relative entropy of

Fig. 3 Example of a multi-user scenario with source-sink pairs, denoted by the pairs of red, green and blue vertices, respectively. a A multicut (dashed
edges) that separates all three source-sink pairs. The capacity of the multicut is equal to 7/2, which is the minimum value possible in this network. b A
concurrent multi-commodity flow instance, with values 0, 5/2 and 1 for the red, green and blue pairs, respectively. The total multi-commodity flow is hence
equal to minimum multicut capacity, however at the price that there is no flow for the red pair. c Same network and same edge capacities as in (a), with an
example of a bipartite cut, denoted in dashed lines, with capacity 1 that separates two source-sink pairs, the red and the blue ones. Hence its cut ratio is
given by 1/2, which is also the minimum cut ratio in this graph. d Example of a corresponding multi-commodity flow instance, with concurrent flows of
values 1/2, 2 and 1/2 for the red, green and blue source-sink pairs. Hence, the worst-case multi-commodity flow is equal to 1/2, in this case matching the
minimum cut ratio. Whereas the flows sum up to 3, which is less than the sum of flows in (b), this multi-commodity flow instance is fairer than the one in
(b) as it also provides a flow for the red user pair.
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entanglement Emax and, for Choi-stretchable channels, the relative
entropy of entanglement ER.

For the proof, see Supplementary Note 3. As a proof of
principle demonstration, we have numerically computed the
worst-case and total multi-commodity flows for an example
network. See Supplementary Note 5 for details and plots.

Multipartite target states. In this section we present our results on
the distribution of multipartite entanglement. Let us consider a set of
disjoint users S= {s1,…, sl}, who wish to establish a multipartite target
state, such as a GHZ state45 jΦGHZ;diMs1

:::Msl
¼ 1ffiffi

d
p

Pd�1
i¼0 jiiMs1

�
� � � � jiiMsl

or a multipartite private state5, γdKs1
Ss1 :::Ksl

Ssl
¼ U twist

jΦGHZ;dihΦGHZ;djKs1
:::Ksl

� σSs1 :::Ssl
U twisty, where σSs1 :::Ssl

is an arbi-

trary state and U twist ¼ P
i1;¼;il

ji1; ¼ ; ilihi1; ¼ ; iljKs1
:::Ksl

�
U ði1;¼ ;ilÞ

Ss1 :::Ssl
is a controlled unitary operation. The corresponding

multipartite quantum and private network capacities QS and PS are
defined analogously to the bipartite case.

As a consequence of ref. 24, the private capacity is upper
bounded by the connectivity of the set S of user vertices in the
graph capacitated by peEsqðN eÞ. By connectivity of the set S we
mean the minimum edge capacity cut that separates any two
vertices si and sj (i ≠ j) in S. Such a cut is also known as minimum
S-cut or minimum Steiner cut with respect to S. See Fig. 4a for an
example of a minimum Steiner cut with respect to the set of the
red, green, blue, and yellow nodes. The computation of the
connectivity consists of a minimization of all possible disjoint
vertex pairs within S as well as a cut minimization. See Eq. (31) in
the ‘Methods’ section. Applying the max-flow min-cut theorem
for every possible pair si and sj (i ≠ j) in S, we can transform the
computation of the connectivity of S into another LP that upper

bounds the multipartite network private capacity. See Fig. 4b for
an example.

Finding a lower bound on the multipartite network quantum
capacity, i.e., the maximum rate at which we can distribute a GHZ
state among S, is slightly more involved than in the previously
considered scenarios. As we did in all previous scenarios, we
begin by performing an aggregated repeater protocol to create a
network of Bell states that can be described by an undirected
multigraph. See Fig. 4c for an example. Whereas it is possible to
create a GHZ state locally in one of the nodes and use chains of
Bell pairs to teleport the respective subsystems of the GHZ state
to all other nodes in S, it is easy to find a network where this is
not the optimal strategy. Instead, the idea is to generalize the
concept of paths linking two nodes to Steiner trees spanning the
set S of users. In an undirected multigraph, a Steiner tree
spanning S, or short S-tree, is an acyclic subgraph that connects
all nodes in S. See Fig. 4d for an example of two edge-disjoint
Steiner trees spanning the set of the red, green, blue, and yellow
nodes. See the ‘Methods’ section for more information on
Steiner trees.

A Steiner tree spanning S in the network of (qubit) Bell states
can be transformed into a (qubit) GHZ state among all nodes in S
by means of a protocol introduced in ref. 20, which can be seen as
a generalization of entanglement swapping. Hence, the number of
(qubit) GHZ states obtainable from the Bell state network is equal
to the number of edge-disjoint Steiner trees spanning S.
Computing this number is a referred to as a Steiner tree packing,
which is another NP-complete problem46. However, the number
of edge-disjoint Steiner trees in a multigraph can be lower
bounded by its S-connectivity up to constant factor 1/2 and an
additive constant47–49. Combining this with the max-flow min-
cut theorem, this allows us to derive a linear-program lower
bound on the multipartite quantum network capacity. Hence we
obtain the following:

Fig. 4 Example of a setting where a group of four user nodes (red, green, blue, and yellow) wishes to establish a Greenberger–Horne–Zeilinger (GHZ)
state. a The graph G0 with labeled edge capacities. The dashed edges correspond to a minimum Steiner cut with respect to the set of the four users, i.e., it is
a smallest capacity cut that separates at least one pair of vertices in the set. In this case it separates the red-blue, green-blue, and yellow-blue pairs and has
capacity 1/2. In other words, the set of users is 1/2-connected. b Part of a flow instance corresponding to linear program (LP) given by Eqs. (32)–(36). Here
the flows from the red, green, and yellow vertices to the blue vertex are shown in red, green, and yellow, respectively. For simplicity, flows between other
nodes are not shown in this picture. The directed edge flows correspond to the variables fðijÞvw of the LP given by Eqs. (32)–(36). By providing flows of value
of at least 1/2 between all pairs in the set of users, the LP shows that the set of users is 1/2-connected. c Aggregated repeater protocol: assuming that the
edges in (a) correspond to quantum channels (of some direction) and their capacities to non-asymptotic quantum capacities, one could, by using each
channel (at most) six times, create a network of Bell states that is described by a three-connected undirected multigraph. d Steiner Trees: in our example
the multigraph contains two edge-disjoint Steiner trees, depicted in red and green. The Bell pairs forming the Steiner trees can then be connected by means
of a generalized entangled swapping protocol to form two qubit GHZ states among the four users.
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Theorem 4 In a network described by a graph G with associated
undirected graph G0 and a scenario of a set S = {s1,…, sr} of users,
the quantum and private network capacities per total channel use,
QS G; fN ege2E

� �
and PS G; fN ege2E

� �
, satisfy

1
2
f
S
maxðG0; fQ$ðN eÞge2EÞ ≤ QS G; fN ege2E

� �
≤ PS G; fN ege2E

� �
≤ f

S
maxðG0; fEsqðN eÞg

e2EÞ;
ð4Þ

where f
S
max is given by the polynomially sized LP Eq. (37) presented

in the ‘Methods’ section.
For the proof see Supplementary Note 4.

Discussion
We have provided linear-program upper and lower bounds on
the entanglement and key generation capacities in quantum
networks for various user scenarios. We have done so by reducing
the corresponding network-routing problems to flow optimiza-
tions, which can be written as LPs. The user scenarios we have
considered are the distribution of Bell or private states between a
single pair of users, the parallel distribution of such states between
multi-pairs of users and the distribution of GHZ or multipartite
private states among a group of multiple users. The size of the LPs
scales polynomially in the parameters of the networks, and hence
the LPs can be computed in polynomial time. In order to perform
the LPs, upper and lower bounds on the two-way assisted private
or quantum capacities of all the channels constituting the net-
work have to be provided as input parameters. Thus the problem
of bounding capacities for the entire network is reduced to
bounding capacities of single channels, as well as performing an
LP which scales polynomially in the network parameters.

For a large class of practical channels, including erasure
channels, dephasing channels, bosonic quantum amplifier chan-
nels, and lossy optical channels, tight bounds can be obtained in
the bipartite case. In the multi-pair case, however, there still
remains a gap of order up to log r� between the upper and lower
bounds. This gap, also known as flow-cut gap, is due to the lack of
an exact max-flow min-cut theorem for multi-commodity flows.
From a complexity theory standpoint, the flow-cut gap separates
the NP-hard problem of determining the minimum cut ratio
from the problem of finding the maximum concurrent multi-
commodity flow, which can be done in polynomial time27. From
a network theoretic view the gap also leaves room for a possible
advantage of network coding over network routing in undirected
networks, which is still an open problem50,51. Another gap, of
value 1/2, occurs between our upper and lower bounds in the
multi-pair case. As in the multiple-pair case, this gap is significant
in terms of computational complexity, as it separates our poly-
nomial LP from the problem of Steiner tree packing, which is NP-
complete46.

While our LPs cover an important set of user scenarios and
tasks, we believe that our recipe will find broader use. In the
bipartite case, we could assign costs to the links and consider the
problem of minimizing the total cost for a given set of user
demands52. In the multipartite case, we could apply it to the
distribution of multipartite entanglement between multiple
groups of users, for which one could leverage results connecting
the minimum ratio Steiner cut problem and the Steiner multicut
problem with concurrent Steiner flows53. As another example,
beyond network capacities, many algorithms for graph clustering
and community detection in complex networks rely on the
sparsest cut of graph54,55. This quantity is bounded from below
by the uniform multi-commodity flow problem, which is an
instance of our multi-pair entanglement distribution maximizing
the worst-case multi-commodity flow, and from above by the
same quantity multiplied by a value that scales logarithmically

with the number of nodes in the network. Hence, the direct
solution of this instance could be used to solve the analogous
problem in complex networks where the links are evaluated for
their capability to transmit quantum information or private
classical information. Although we have focused on a LP to
bound capacities, rather than actual rates in practical scenarios
with other imperfections, such as storage limitation or overheads,
we believe that our program could be the basis to develop an
algorithm to treat such practical scenarios as well.

Methods
Bipartite user scenario. In this section we will explicitly define all quantities that
occur in our result for bipartite user scenarios, Theorem 1, and briefly review the
main ingredient in its proof, the max-flow min-cut theorem. Let us begin with the
definition of the capacities: the quantum and private network capacities per total
channel use that occur in Theorem 1 are defined as

Q G; fN ege2E
� � ¼ max

pe ≥ 0;
P

e
pe¼1

lim
ϵ!0

lim
n!1supΛ

hlog dðkÞik
n

: ρðn;kÞMsMt
�ΦdðkÞ

MsMt

��� ���
1
≤ ϵ

( )
;

ð5Þ

P G; fN ege2E
� � ¼ max

pe ≥ 0;
P

e
pe¼1

lim
ϵ!0

lim
n!1supΛ

hlog dðkÞik
n

: ρðn;kÞKsKtSsSt
� γd

ðkÞ
KsKtSsSt

��� ���
1
≤ ϵ

( )
;

ð6Þ
where the suprema are over all adaptive ðn; ϵ; fpege2EÞ protocols Λ. Further k=
(k1,…, kn+1) is a vector keeping the track of outcomes of the n+ 1 LOCC rounds in
Λ, the averaging, denoted by the parenthesis 〈…〉k, is over all those outcomes and

ρðn;kÞMsMt
is the final state of Λ for given outcomes k.

Let us discuss the difference between the above quantities and network
capacities introduced in refs. 10,11, which consider rates per network use. There are
two strategies considered in refs. 10,11, sequential (or single path) routing and
multi-path routing. Both strategies are adaptive in the same sense as defined above,
i.e., the channel uses are interleaved by LOCC operations among all nodes, the
number of LOCC rounds being equal to the total number of channel uses.

In the case of sequential (or single path) routing, one use of the network
involves usage of channels along a single path from Alice to Bob. The path, and its
length, can change with every use of the network. This strategy could correspond to
the external provider offering a path for the users (similar to the paradigm of
circuit switching networks56) instead of allowing the users to precisely determine
the usage frequencies of each channel.

In the case of multi-path routing, a flooding strategy is applied, where during
each use of the network each channel is used exactly once. Hence the total number
of channel uses is given by ∣E∣ times the number of network uses. As shown in
refs. 10,11, there are examples of networks, such as the so-called diamond network,
for which such a strategy provides an advantage over single-path routing. The
multi-path scenario could correspond to a private quantum network where the
users are willing to use the whole of their resources each clock cycle to implement
the desired communication task.

In the present paper, an alternative approach is taken. Instead of considering
rates per use of the network, we consider rates per the total number of channel
uses and per time. By setting our usage frequencies pe constant for all nodes e ∈ E
in the network, we can incorporate the flooding strategy used in the multi-path
routing scenario of refs. 10,11. Hence, although phrased with the channel use metric,
our results also can be used for the network use metric generalizing the original
results in refs. 10,11 to multipartite settings. There is, however, no direct relation
between our capacities and the single-path capacities. In fact they can differ by a
factor OðjEjÞ, which is the order of the number of vertices in the network, as shown
in Fig. 5.

We will now introduce the LP that provides upper and lower bounds on the
capacities Eqs. (5) and (6), respectively. Let us consider undirected graph
G0 ¼ ðV ; E0Þ, as defined at the beginning of the ‘Result’ section, with edge
capacities c0ðfvwgÞ for all fvwg 2 E0 . We assume that we have two special nodes
s, t∈ V, which we call the source and the sink. As the entanglement across each
edge can be used in both directions, we assign two edge flows fwv ≥ 0 and fvw ≥ 0 to
each edge fwvg 2 E0 , where fwv corresponds to a flow from w to v and fvw to a flow
in the opposite direction.

The goal is now to maximize the flow from s to t over the graph G0 . In order to
be a feasible flow, it should not exceed the capacity of each edge. Namely, for each
edge {vw} we need

f wv þ f vw ≤ c0ðfwvgÞ: ð7Þ
We also need that for each edge w ≠ s, tX

v:fvwg2E0
f vw ¼

X
v:fvwg2E0

f wv ; ð8Þ

which is known as flow conservation. By this flow conservation the flow from s to t
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is equal to the flow leaving the source minus the flow entering the source,

f s!t ¼
X

v:fsvg2E0
ðf sv � f vsÞ: ð9Þ

In order to obtain the maximum flow from s to t over the graph G0 , we need to
maximize Eq. (9) over edge flows with respect to constraints Eqs. (7) and (8), which
is a LP:

f s!t
maxðG0; fc0ðfwvgÞgfwvg2E0 Þ ¼ max

X
v:fsvg2 E0

ðf sv � f vsÞ

8fvwg 2 E0 : f wv þ f vw ≤ c0ðfwvgÞ
8fvwg 2 E0 : f wv; f vw ≥ 0

8w 2 V : w≠ s; t;
X

v:fvwg2E0
f vw ¼

X
v:fvwg2E0

f wv:

ð10Þ

In Theorem 1, we set the capacities c0ðfwvgÞ to

c0Cðfvwg; pwv ; pvwÞ ¼ pwvCðN wvÞ þ pvwCðN vwÞ; ð11Þ

where C=Q↔ for the lower bound and C ¼ E for the upper bound, respectively.
In the case where wv∈ E but vw∉ E, we set pvwCðN vwÞ ¼ 0. Further we add an
optimization over the usage frequencies

f
s!t
maxðG0; fCðN eÞge2EÞ ¼ max

0≤ pe ≤ 1;
P

e
pe¼1

f s!t
maxðG0; fc0Cðfvwg; pwv; pvwÞgfvwg2E0 Þ:

ð12Þ

In the following we will make use of the max-flow min-cut theorem: Given a
subset V 0 � V we define a cut of G0 as the set

∂ðV 0Þ :¼ ffvwg 2 E0 : v 2 V 0;w 2 V n V 0g: ð13Þ

If, for given vertices s and t, and a set Vs;t⊂ V, s∈ Vs;t, and t∈ V⧹Vs;t we call ∂(Vs;t)
an st-cut. Let us note that the first and second indices in the subscript of Vs;t have
different meanings. The minimum st-cut of G0 is defined as

min
Vs;t

X
fvwg2∂ðVs;t Þ

c0ðfvwgÞ; ð14Þ

where the minimization is over all Vs;t⊂V such that s∈ Vs;t and t∈V⧹Vs;t. By the
max-flow min-cut theorem41,57 it holds

f s!t
maxðG0; fc0ðfwvgÞgfwvg2E0 Þ ¼ min

Vs;t

X
fvwg2∂ðVs;t Þ

c0ðfvwgÞ: ð15Þ

See Fig. 2 for an example illustrating the connection between cuts and flows.

Multiple pairs of users. In this section we will explicitly define all quantities that
occur in our results for multiple pairs of users, Theorems 2 and 3. We also briefly
introduce multi-commodity flows and the corresponding generalizations of the
max-flow min-cut theorem, which are used in the proofs of Theorems 2 and 3.

We begin by defining a total multi-pair quantum network capacity and a worst-
case multi-pair quantum network capacity per total channel use respectively as:

Qtotal G; fN ege2E
� � ¼ max

pe ≥ 0P
e pe ¼ 1

lim
ϵ!0

lim
n!1

sup
Λ

Pr
i¼1 hlog dðkÞi ik

n
: ρðn;kÞMs1

Mt1
���Msr

Mtr
�

Or

i¼1

Φ
dðkÞi
Msi

Mti

�����
�����
1

≤ ϵ

( )
;

ð16Þ

Qworst G; fN ege2E
� � ¼ max

pe ≥ 0P
e pe ¼ 1

lim
ϵ!0

lim
n!1 min

i2f1���rg
sup
Λ

hlog dðkÞi ik
n

: ρðn;kÞMs1
Mt1

���Msr
Mtr

�
Or

i¼1

Φ
dðkÞi
Msi

Mti

�����
�����
1

≤ ϵ

( )
;

ð17Þ
where the supremum is over all adaptive ðn; ϵ; fpege2EÞ protocols Λ and k= (k1,…,
km+1) is a vector of outcomes of the m+ 1 LOCC rounds in Λ, the averaging is
over all those outcomes and ρ(n, k) is the final state of Λ for given outcomes k. The
corresponding private capacities Ptotal G; fN ege2E

� �
and Pworst G; fN ege2E

� �
are

defined by replacing Φ
dðkÞi
Msi

Mti
by γ

dðkÞi
Ksi

Ssi Kti
Sti

in Eqs. (16) and (17).

The bounds on Eqs. (16) and (17) given in Theorems 2 and 3, respectively are in
terms of multi-commodity flow optimizations, which we will introduce in this
section. A flow instance involving multiple sources and sinks s1,…, sr and t1, …, tr
is known as a multi-commodity flow, each flow f(i) from si to ti being considered to
be a separate commodity. The maximum total multi-commodity flow is then
obtained by maximizing the sum over all single-commodity flows. Generalizing LP
Eq. (10) accordingly, we obtain the following LP:

f totalmax G0; fc0ðfvwgÞgfvwg2E0

� �
¼ max

Xr

i¼1

X
v:fsivg2E0

f ðiÞsiv � f ðiÞvsi

� �

8fvwg 2 E0 :
Xr

i¼1

f ðiÞvw þ f ðiÞwv
� �

≤ c0ðfvwgÞ

8fvwg 2 E0; 8i : f ðiÞvw; f
ðiÞ
wv ≥ 0

8i; 8w 2 V ;w≠ si; ti :
X

v:fvwg2E0
f ðiÞvw � f ðiÞwv

� �
¼ 0:

ð18Þ

Again, we can define

f
total
max ðG0; fCðN eÞge2EÞ ¼ max

0≤ pe ≤ 1;
P

e
pe¼1

f totalmax ðG0; fc0Cðfvwg; pwv; pvwÞgfvwg2E0 Þ: ð19Þ

Further, the maximum worst-case multi-commodity flow is obtained by adding
additional variable f and maximizing f, while demanding that every single-
commodity flow is greater or equal to f. Hence f corresponds to the least flow
between any source-sink pair. This provides us with the following LP58:

f worstmax G0; fc0ðfvwgÞgfvwg2E0

� �
¼ max f

8i : f �
X

v:fsivg2E0
f ðiÞsiv � f ðiÞvsi

� �
≤ 0

8fvwg 2 E0 :
Xr

i¼1

f ðiÞvw þ f ðiÞwv
� �

≤ c0ðfvwgÞ

8fvwg 2 E0; 8i : f ðiÞvw; f
ðiÞ
wv ≥ 0

8i; 8w 2 V;w≠ si; ti :
X

v:fvwg2E0
f ðiÞvw � f ðiÞwv

� �
¼ 0:

ð20Þ
Again, we can define

f
worst
max ðG0; fCðN eÞge2EÞ ¼ max

0≤ pe ≤ 1;
P

e
pe¼1

f worstmax ðG0; fc0Cðfvwg; pwv; pvwÞgfvwg2E0 Þ:

ð21Þ
Next, we will consider generalizations of the max-flow min-cut theorem to

multiple source-sink pairs: given source-sink pairs (s1, t1),…, (sr, tr), one can define
a multicut {S}↔ {T} as a set of edges in E0 whose removal disconnects all source-
sink pairs and the capacity of a multicut as the sum over the capacity of its edges
{S}↔ {T}, namely

c0ðfSg $ fTgÞ ¼
X

fvwg2fSg$fTg
c0ðfvwgÞ: ð22Þ

Whereas there is no known exact max-flow minimum cut-ratio theorem in the case
of multiple flows, there exists a relation between the minimum multicut and the
maximum total multi-commodity flow up to a factor gt(r) that scales as Oðlog rÞ29.
Namely it holds

f totalmax G0; fc0ðfvwgÞgfvwg2 E0

� �
≤ min

fSg$fTg
c0ðfSg $ fTgÞ ≤ g tðrÞf totalmax G0; fc0ðfvwgÞgfvwg2E0

� �
;

ð23Þ
An example of the relation Eq. (23) is given in Fig. 3a, b. In the example gt(r)= 1.
In the case of the maximum worst-case multi-commodity flow there exists a similar

Fig. 5 Per network use versus per channel use capacities: simple example
of a network, where our capacity Eq. (5) can differ arbitrarily from the
single-path capacity introduced in refs. 10,11. The numbers refer to
capacities of the single channel. When the goal is to maximize the
transmission per total number of channel uses, the upper route is
preferable. It can achieve a transmission of 0.5 using a single channel, i.e., a
rate per channel use of 0.5. The lower route can achieve a transmission of 1
using n (greater than two) channels, i.e., a rate per channel use of 1/n.
When the goal is to maximize the transmission per uses of the network
over a single path as in refs. 10,11, the lower route is preferable as it can
achieve a transmission of 1 per use of the network, whereas the upper route
can achieve 0.5.
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relation with the minimum cut ratio, which is defined as

Rmin G0; fc0ðfvwgÞgfvwg2E0

� �
¼ min

V 0�V

P
fvwg2∂V 0 c0ðfvwgÞ

dð∂ðV 0ÞÞ ; ð24Þ

where the minimization is over (bipartite) cuts ∂V 0 and

dð∂ðV 0ÞÞ ¼ fi : ðsi 2 V 0; ti 2 V n V 0Þ _ ðti 2 V 0; si 2 V n V 0Þgj j ð25Þ
describes the demand across a cut ∂V 0 . Note that in the case of only one source-
sink pair the minimum cut ratio Eq. (24) reduces to the min-cut Eq. (14). Whereas
there is no known exact max-flow minimum cut-ratio theorem in the case of
multiple flows, there is a relation up to some factor gw(r)59,

f worstmax G0; fc0ðfvwgÞgfvwg2 E0

� �
≤ Rmin G0; fc0ðfvwgÞgfvwg2E0

� �
≤ gwðrÞf worstmax G0; fc0ðfvwgÞgfvwg2E0

� �
:

ð26Þ
An example of the relation Eq. (26) is given in Fig. 3c, d. In the example gw(r)= 1.
The gap gw(r) is known as the flow-cut gap. In ref. 59 it has been shown to be of
Oðlog jEjÞ. This was then improved to Oðlog rÞ, where r is the number of source-
sink pairs, in refs. 27,60. In the case of overlapping source and sink vertices, i.e., si=
sj, si= tj, ti= sj, or ti= tj for some i ≠ j, the flow-cut gap has further been improved
to Oðlog r�Þ, where r* is the size of the smallest set of vertices that contains at least
one of such si or ti for all i= 1,…, r28. For a number of particular classes of graphs,
it has been shown that the flow-cut gap can even be of Oð1Þ61–65.

Multipartite target states. In this section we will explicitly define all quantities
that occur in our result for multipartite target states, Theorem 4. We also briefly
introduce the concept of Steiner cuts and Steiner trees, which are used in the proof
of Theorem 4.

Again, we begin with the definition of the capacities: given a set S⊂V of users
that wish to establish a GHZ or multipartite private state, the multipartite
quantum, and private network capacities are defined as:

QS G; fN ege2E
� � ¼ max

pe ≥ 0;
P

e
pe¼1

lim
ϵ!0

lim
n!1

sup
Λ

hlog dðkÞik
n

: ρðn;kÞMs1
:::Msl

� ΦdðkÞ
Ms1

:::Msl

��� ���
1
≤ ϵ

( )
;

ð27Þ

PS G; fN ege2E
� � ¼ max

pe ≥ 0;
P

e
pe¼1

lim
ϵ!0

lim
n!1 sup

Λ

hlog dðkÞik
n

: ρðn;kÞKs1
Ss1 :::Ksl

Ssl
� γd

ðkÞ
Ks1

Ss1 :::Ksl
Ssl

��� ���
1
≤ ϵ

( )
;

ð28Þ
where the suprema are over all adaptive ðn; ϵ; fpege2EÞ protocols Λ. As the class of
multipartite private states includes GHZ states, the multipartite private capacity is
an upper bound on the multipartite quantum capacity.

Let us now introduce the concept of Steiner cuts and Steiner trees: for a subset
S⊂ V of vertices in G0 we define a Steiner cut with respect to S, in short S-cut, as a
cut ∂(VS) with respect to a set VS⊂V such that there is at least one pair of vertices
si, sj∈ S with si∈ VS and sj∈ V⧹VS. When considering a minimization of the
capacity over all S-cuts, we can divide the minimization into a minimization over
pairs of vertices in S and a minimization over cuts separating the pairs,

min
VS

X
fvwg2∂ðVSÞ

c0ðfvwgÞ ¼ min
si ;sj2S;si≠sj

min
Vsi ;sj

X
fvwg2∂ðVsi ;sj

Þ
c0ðfvwgÞ; ð29Þ

where minVS
is a minimization over all VS⊂ V such that there is at least one pair of

vertices si, sj∈ S with si∈ VS and sj∈V⧹VS. Further minVsi ;sj
is a minimization over

all Vsi ;sj
� V such that si 2 Vsi ;sj

and sj 2 V n Vsi ;sj
. Note that, as

minsi ;sj2S;si≠sjminVsi ;sj

P
fvwg2∂ðVsi ;sj

Þ c
0ðfvwgÞ does not depend on the order, we can,

without loss of generality restrict to disjoint si and sj with j > i, reducing the number
of resources needed in the outer minimization. We can then apply the max-flow
min-cut theorem Eq. (15) to the inner minimization,

min
si ;sj2S;si≠sj

min
Vsi ;sj

X
fvwg2∂ðVsi ;sj

Þ
c0ðfvwgÞ ¼ min

si; sj2S; si≠sj
j > i

f
si!sj
max ðG0; fc0ðfwvgÞgfwvg2E0 Þ; ð30Þ

where f
si!sj
max ðG0; fc0ðfwvgÞgfwvg2E0 Þ is given by LP Eq. (10). As there are finitely

many disjoint si, sj-pairs in S, we could solve f
si!sj
max ðG0; fc0ðfwvgÞgfwvg2E0 Þ for every

pair and then find the smallest solution. A more efficient way is to introduce flow
variables f ðijÞe for every disjoint si, sj-pair (and every edge) and maximize a slack
variable f, while requiring the flow value for every si, sj-pair to be greater or equal
than f and all other constraints of LP Eq. (10) to be fulfilled for every disjoint si, sj-
pair:

min
si; sj2S; si≠sj

j > i

f
si!sj
max ðG0; fc0ðfwvgÞgfwvg2E0 Þ ¼ f Smax G0; fc0ðfvwgÞgfvwg2E0

� �
;

ð31Þ

where

f Smax G0; fc0ðfvwgÞgfvwg2E0

� �
¼ max f ð32Þ

8i; j > i : f �
X

v:fsivg2E0
f ðijÞsiv

� f ðijÞvsi

� �
≤ 0 ð33Þ

8i; j > i; fvwg 2 E0 : f ðijÞvw þ f ðijÞwv ≤ c0ðfvwgÞ ð34Þ

8i; j > i; 8fvwg 2 E0 : f ðijÞvw ; f
ðijÞ
wv ≥ 0 ð35Þ

8i; j > i; 8w 2 V;w≠ si; sj :
X

v:fvwg2E0
f ðijÞvw � f ðijÞwv

� �
¼ 0: ð36Þ

Adding a maximization over usage frequencies, we obtain

f
S
maxðG0; fCðN eÞge2EÞ ¼ max

0≤ pe ≤ 1;
P

e
pe¼1

f SmaxðG0; fc0Cðfvwg; pwv ; pvwÞgfvwg2E0 Þ:

ð37Þ
It will be convenient to introduce an undirected multigraph G″⌊c′⌋, by replacing

each edge fvwg 2 E0 with bc0ðfvwgÞc identical edges with unit-capacity
connecting v and w. An S-cut in an undirected unit-capacity multigraph G″ is
defined as a set of edges whose removal disconnects at least two vertices in S. The
size λS(G″) of the minimum S-cut in G″ is called the S-connectivity of G″.

In G″ we can also define a Steiner tree spanning S, in short S-tree, as a subgraph
of G″ that contains all vertices in S and is a tree, i.e., does not contain any cycles. If
S only consists of two vertices, we call an S-tree a path. We call two Steiner trees
edge-disjoint, if they do not contain a common edge. The problem of finding the
number tS(G″) of edge-disjoint Steiner trees in a general undirected multigraph is
NP-complete46. However, there is a connection between S-connectivity and the
number of edge-disjoint S-trees in an undirected unit-capacity multigraph47–49:

tSðG00Þ ≥ bg1λSðG00Þc � g2: ð38Þ
In ref. 47 it has been conjectured that Eq. (38) holds for g1 ¼ 1

2 and g2= 0. In ref. 48

it has been shown that the relation holds for g1 ¼ 1
26 and g2= 0, whereas the

authors of ref. 49 show that it holds for g1 ¼ 1
2 and g2 ¼ jVnSj

2 þ 1, which is finite
in the graphs we are considering.

On complexity. Let us briefly discuss the computational complexity of our LPs
Eqs. (12), (19), (21), and (37). Using interior point methods, e.g., ref. 26, a LP in
standard form

min cTx

Ax ¼ b; x ≥ 0;
ð39Þ

where c; x 2 RN , b 2 RM , and A 2 RM ´N , can be solved using Oð ffiffiffiffi
N

p
LÞ

iterations and OðN3LÞ total arithmetic operations. Here L is the size of the problem
data, A, b, c, which scales as OðMN þ M þ NÞ66. If we assume A to be of full
rank, it holds M ≤N, and hence, L scales as OðN2Þ. Using slack variables26, all
inequality constraints in our LPs can be converted into equality constraints. Linear
equality constraints can be easily written in the form Ax= b. Hence N can be
obtained by adding the number of variables and the number of inequality con-
straints in our LPs.

For LP Eq. (12) we have N ¼ 3jE0 j þ jEj. LP Eq. (19) has 2rjE0 j þ jEj variables
and jE0 j þ jEj inequality constraints. Thus N ¼ ð2r þ 1ÞjE0 j þ 2jEj for LP Eq.
(19). LP Eq. (21) has 2rjE0j þ jEj þ 1 variables and jE0 j þ jEj þ r inequality
constraints. Thus N ¼ ð2r þ 1ÞjE0 j þ 2jEj þ 1 þ r for LP Eq. (21). LP Eq. (37)

has 2
jSj
2

� 	
jE0 j þ jEj þ 1 variables and

jSj
2

� 	
jE0 j þ jEj þ jSj

2

� 	
inequality

constraints. Thus N ¼ 3
jSj
2

� 	
jE0 j þ 2jEj þ 1 þ jSj

2

� 	
for LP Eq. (37). Hence,

all our LPs, the number of iterations as well as the number of total arithmetic
operations scale polynomially with the size of the network.
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