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Chapter 1

Introduction

1.1 Air pollution: from local to global

The amount of attention nowadays paid to smog, the ozone layer, and greenhouse gases
could easily suggest that air pollution is a late twentieth-century invention. However, con-
cern about the quality of the air surrounding us has a long history. The importance of air for
human beings was recognized far before 18th century scientists like Rutherford and Lavosier
discovered its chemical composition. Together with earth, water and fire, air belonged to the
four elements Aristotle considered to be the four fundamental components of every existing
material. Less philosophical, the importance of air for living was probably known by every
human in history, since it is hardcoded in our brain: just put your head under water, and
there will come a moment when you are desperately seeking for air. For sure, the quality
of the air has been recognized as important too, since domestic burning places found in
excavations are often combined with some form of ventilation. Although historical records
are hard to find, the invention of the chimney was probably the first form of air pollution
regularisation ever.

The relation between open fire and air pollution is easily made if smoke is released. The
many small particles in smoke are clearly visible and tend to irritate the lungs and eyes,
warning you about the quality of the air (unless the smoke contains nicotine which may sup-
press this natural reaction). Much of the mass released from a fire is invisible however. A
wellknown example is carbon monoxide, released from primitive cooking or water-heating
devices due to incomplete burning. Accidents with carbon monoxide contamination are
nowadays quite rare in our country, but still a major problem in developing countries (En-
calada et al., 1998). The solution to this form of air pollution is both simple and cheap:
ventilation. Polluted air is mixed with large amounts of clean air to decrease the concentra-
tion of unhealthy components. Ventilation also decreases the unhealthy effect of an open fire
by supplying oxygen, leading to cleaner combustion with less release of carbon monoxide
and smoke particles.

Before the industrial revolution, any form of air pollution could be treated by mixing
it with clean air, since clean air was available on an almost infinite scale. The amount
of polluted air released from antropogene sources used to be negligible, apart from some
cases of slash-and-burn agriculture. The effects of air pollution used to be limited to a
small area close to the source. The development of industrial activities however, required
huge quantities of energy for driving machines and metal production. Energy became first
available from large-scale combustion of coal. After the invention of the gasoline engine

1



2 CHAPTER 1. INTRODUCTION

at the end of the nineteenth century, the use of oil showed an exponential growth, also due
to the growth of the population. The amount of fuel used in the pre-industrial time pales
to insignificance besides the coal, oil and natural gas combusted nowadays, and the impact
of the related air pollution has become a matter of concern. The constant release of waste
gases from combustion and other human activities has led to measurable changes in the air
quality, not only close to the source, but also in the whole city or even in the suburban or
more remote areas.

The air in and around industrial and/or densely populated areas are nowadays character-
ized by relatively high concentrations of waste gases from fossil fuel combustion, mainly
nitrogen oxides and hydrocarbons. The absolute amounts are very low: the maximum con-
centrations are still in the order of volume parts per billion. In comparison with ‘clean’ air,
the concentrations of these trace gases are significant however. Under conditions of high
temperatures and lack of mixing with clean air, the amount of waste gases in urbanized ar-
eas sometimes accumulate to such a level that the gases become visible to the human eye:
a brown colored combination of smoke and fog, simply referred to as smog. Cities such as
Los Angeles, Athens, and Mexico City suffer or have suffered in the past from an almost
permanent smog, as a result of a dense population, warm climate, and unlucky geographi-
cal location. Although the color of smog is its most apparent characteristic (brown, caused
by certain nitrogen oxides), the health risks of smog are mainly caused by invisible com-
ponents. Waste gases are slowly degredated under impact of sunlight and radicals in the
atmosphere. One of the degradation products is ozone, a highly reactive oxidant of which
small amounts occure naturally in the atmosphere. Large concentrations of ozone are harm-
ful to people’s health. Lung tissue is especially at risk, so lung patients are warned to avoid
urban areas during smog episodes. The increase of air pollution has doubled the amount
of ozone throughout the troposphere (lowest part of the atmosphere) since the start of the
industrial revolution (Committee on Tropospheric Ozone, 1991). The impact of air pollution
is therefore not limited anymore to only the source area.

In the last decades a number of findings have lead to the insight that the current amount
of emissions can have an impact on the entire globe. A highly publicized issue is the de-
struction of stratospheric ozone by chlorofluorocarbons (CFCs), with the Antarctic ozone
hole as the most significant result. Where tropospheric ozone is mainly produced by human
activities and regarded as unhealthy, the stratospheric ozone is produced naturally in large
amounts and regarded as essential for to life as it absorbs dangerous radiation from the sun.
Regularisation of CFC emissions has been quite successful, and the ozone depletion is be-
lieved to be stabilized. The concern about the ozone layer has been replaced by concern
about the effects of emissions on the climate due to what is called the greenhouse effect.
Large amounts of carbon dioxide emitted due to fossil fuel combustion tend to absorb ther-
mal radiation from the earth, leading to warming of the atmosphere. Other and sometimes
relatively more important greenhouse gases have been identified, such as CFCs, methane,
but also tropospheric ozone. Reduction of tropospheric ozone by limiting the air pollution
therefore decreases the greenhouse effect too.

The possible consequences of a climate change and especially the rate with which this
might occur have increased the interest in everything which is related to the climate. One
of the new issues in climate research is the impact of aerosols: systems of small particles or
liquid droplets suspended in a gaseous phase. Volcanic eruptions led to the release of large
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amounts of aerosols in the atmosphere, and since extreme eruptions are known to have an
impact on the climate (e.g. the explosion of the Krakatau in current Indonesia in 1883 and
Mnt. Pinatubo on the Philippines in 1991), the interest in aerosols has increased. Aerosols
are introduced directly into the atmosphere by the dispersal of solids, but also indirectly
from chemical reactions. These reactions involve sulfur and nitrogen bonds emitted from
anthropogenic sources; the interest in the global climate has therefore led to a renewed
interest in local emissions and the air pollution related to it.

1.2 Tropospheric ozone

Of all interesting air pollution problems described above, this research focuses on the prob-
lem of tropospheric ozone on the scale of Europe. Ozone levels and presence of smog are
closely linked: the ozone level is related to the health risk of smog, and is a good indication
of the total pollution level. Tropospheric ozone is a key component in air pollution, and
therefore discussed in detail in this section.

1.2.1 Problems related to ozone

The first observations that the accumulation of air pollution could led to dangerous ozone
levels were made in the Los Angeles bassin in the 1940s. Damages to crops were shown
to be caused by overexposure to polluted air. Research by Haagen-Smith and others estab-
lished the important role of ozone in this. The formation of ozone from nitrogen oxides
and organic compounds became widely studied in the following years, as well as the im-
pact of ozone on the environment. Short-term exposure to ozone levels above 120 ppb
were shown to have adverse effects on lung tissue and vegetation. The EU Ozone Directive
(92/72/EEC) advises thresholds of 90 ppb (1 hour average) above which the public should
be informed about the air quality, 180 ppb above which a real warning should be issued, and
a threshold of 55 ppb for an 8 hour mean above which health protection measures should
be taken. Plants may be damaged by long-term exposure to moderate ozone levels, so a
lower threshold is used for vegetation. An often used guideline here is AOT 40c: the total
amount of ozone exceeding a threshold of 40 ppb, accumulated over the growing season for
crops (May-July) during daylight hours, should not exceed 3000 ppbh (UN-ECE/CLRTAP

guideline). AOT levels indicate that damage is caused above certain ozone levels, and that
this damage is not reduced by long periods of low ozone levels.

1.2.2 Measurements

To investigate whether guidelines in a certain area are exceeded, several networks measure
the air quality in Europe. Most of these measurements concern the analysis of air samples at
1-3 m above the ground (figure 1.1). Ground-based measurements are the authorative source
for air quality control, since these indicate the concentrations in the air inhaled by humans
and in contact with crops. Concentrations of one or multiple components are determined
automatically as hourly or half-hourly averages. Apart from the key component ozone,
also concentrations of nitrogen oxides, carbon monoxide, sulfur oxides and hydrocarbons
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Figure 1.1: Example of air quality measurement site in The Netherlands.
The site consists of a small building with equipment and inlet at the top. The
figure at the right shows an example of an ozone time series (measured at
Aston Hill, Wales).

are sometimes measured. Sites are placed at locations where the air samples taken are
representative of a larger area, or where emissions from a specific source can be measured.
Based on their representativeness, sites are classified as urban (inside a city), traffic (near
highways), remote (not in a city or near a highway), or elevated. Measurement sites are often
operational for decades, and therefore useful to analyze trends in air quality. Ozone was for
example already measured in the nineteenth century, and comparison of these records with
current ozone levels showed an increase of ozone levels with a factor three to four (Graedel
and Crutzen, 1993). Another useful application is one that relates changes in the average
concentrations to the emission rates. The emission rates are often computed on a yearly
basis from, for example, the total fuel consumption, and trends in this consumption should
be visible in the measurements.

Although ground-based measurements are the authorative source for judgment of the air
quality, other types of measurements provide useful information too. Vertical profiles of
ozone concentrations are available from lidar instruments and balloon soundings (figure
1.2). The measurements of balloon soundings extend to the middle stratosphere (20-30 km,
until the balloon bursts). Balloon profiles are therefore useful to study the stratospheric
ozone layer, but also provide information about the tropospheric level. Ozone soundings
are launched from a limited number of sites at a frequency of 1-2 times a week; spatial and
temporal coverage is therefore limited.

A larger spatial coverage could be obtained with satellite instruments. These instruments
are able to provide information on areas where other measurements are sparse, for example
over sea. With the growing interest in the stratospheric ozone layer related to the deple-
tion by CFCs, a large number of instruments has been launched to measure the amounts of
ozone. Most of these instruments measure total ozone columns, with limited information
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Figure 1.2: Launch of a balloon sounding, and vertical profile measured with
a sounding launched at Uccle (Belgium).

about the vertical distribution. Especially the information about the troposphere is limited,
since the bulk of ozone is located in the stratosphere and the satellite instrument is more
or less blind where it concerns the ozone below (not to mention problems associated with
clouds). Tropospheric ozone columns retrieved from the GOME instrument have been com-
pared with soundings during the STROPDAS project (Velders et al., 2001), and were shown
to be structurally biased (figure 1.3).

1.2.3 Ozone forecast

In order to warn the public about harmful ozone levels, most developed countries provide
some form of ozone forecast. Similar to a weather forecast, the expected situation for the
coming day(s) is provided on a daily basis. The interest in air quality is much smaller than
the interest in the weather, however. The effort put in the smog forecast is therefore smaller
than that put in the weather forecast, and methods used are quite simple. The ozone forecast
system in the Netherlands is called PROZON and is based on a statistical approach (No-
ordijk, 1994). Given meteorological parameters measured for today, and forecasts of these
parameters for a coming day, PROZON searches in a database of historical measurements for
pairs of dates with same meteorological conditions. If a suitable number of matching pairs
is found, the ratios between ozone maxima measured on these dates determine the forecast
made for the coming day. PROZON thus assumes that the ozone levels today act the same
as they used to do in the past; why they act the same is not considered. In spite of the sim-
ple method, statistical methods like PROZON work well, and their use is therefore common
practice in smog forecasts.

If the ozone forecast is expected to reach a dangerous level, the government can take
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Figure 1.3: Artist impression of ERS2 satellite carrying the GOME instrument
(left; image ESA Visulab). Although the total ozone columns retrieved from
GOME are quite accurate, the tropospheric information is limited and shows
a large bias with balloon soundings (frequency distribution on the right).

measures. For rather low critical levels, the public and especially people sensitive to air
pollution are informed. For larger exceedence, the industry could be asked to decrease
the emissions. A final measure could be the limitation of car traffic, but this restriction
has never been taken yet in the Netherlands (in contrast to strongly polluted cities such as
Athens, where during stringent smog episodes only a limited number of cars is allowed
on the road). If the limitation of emissions is successful, the forecasted ozone level is not
reached. This situation is completely different from weather forecasts, which predict a
situation that cannot be influenced by human activity.

1.2.4 Ozone models

To study the underlaying mechanisms of ozone formation, a large variety of ozone models
has been developed. Ozone models try to describe every physical or chemical mechanism
in the atmosphere involved in the formation of ozone. If all mechanisms are understood
correctly, the model should be able to predict the ozone level. This approach is therefore
completely different from statistical approaches such as PROZON, which do not take into
account any knowledge about ozone formation. Development of an ozone model requires
knowledge about the structure of the atmosphere, the photochemical reactions involved in
air pollution, emissions of pollutants, interaction with vegetation, etc., but also experience
with numerical simulation techniques.

The spatial and temporal scales simulated by models differ widely. For studying gas phase
reactions or for simulating the average pollution level in a city, a simple box model is often
sufficient. Detailed study of spatial structures requires more-dimensional models, however.
The area covered by these models range from the street between two buildings (a street
canyon) to the scale of countries, continents, or the entire globe. Spatial detail decreases
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Figure 1.4: Ozone pattern at ground level simulated by the LOTOS model.
The figure shows the ozone concentration in ppb computed for August 10
1997, 15:00.

with increasing extent; the smallest detail in a global model sometimes completely covers
the domain of a local model. Time periods simulated by models are in general increasing
with the extent too: where small models are used for episodes of a few days, the global
models are used to simulate yearly variations or even climate changes over decades.

The ozone model used in this study is the LOTOS (LOng Term Ozone Simulation) model
developed by the TNO institute in the Netherlands (Builtjes, 1992). LOTOS has been de-
signed to simulate hourly ozone levels on a European scale (figure 1.4), for time periods
of months up to several years. The resolution of the model is too coarse for the prediction
of ozone levels within a city, but detailed enough to study ozone levels on a regional scale.
The model has been used to study the impact of different emission scenarios on the ozone
formation, and whether these exceed guidelines such as AOT40.

1.3 Data assimilation

In the previous discussion about tropospheric ozone, the topics measurements and models
have been treated separately. In practice, both sources of information are closely linked
however. The theory about chemistry and physics embedded in a model is often the result
of research trying to explain what has been observed. A model is only accepted if it is able
to explain what is measured now or in the past. Vice versa, models are used to simulate
processes at locations or times for which no measurements are available. If the model is
able to explain the measurements collected up to now, it is supposed to be valid everywhere,
until new measurements prove the opposite. The final judgment is therefore based on the
measurements; on the basis of these a model is accepted or rejected. Complete rejection of
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a model is rare, in practice, it is often sufficient to modify only certain parts of the model,
since it has been shown to be accurate for other events before. Large three-dimensional
models such as LOTOS are based on submodels for chemistry, emissions, deposition etc,
and if one of these submodels is improved, the rest of the model is left unchanged.

A disadvantage of the described procedure is that a model is modified afterwards. The
model simulates certain events, the result is compared with measurements, the model is
modified, eventually rerun, compared again, etc. A better method would be to modify the
model online. This is the idea behind data assimilation, a common name for a large variety
of applications, methods, and techniques combining models and measurements. The term
data assimilation is used in the field of geophysics, for a combination of measurements and
large-scale atmospheric, hydraulic, and oceanographic models. The techniques used for
data assimilation are often the same as those used in the field of system theory and control
under the name ’filtering’, or taken from the more general field of optimalization.

The first and still most important application of data assimilation is found in weather
forecasting. If the current state of the atmosphere is known perfectly, the model forecasts for
the coming days coincidence with the measurements quite well. For obtaining an accurate
forecast one needs only to feed the model with the current state of the atmosphere, and this
is achieved with data assimilation. Where measurements are available, these are used to
describe the current state; the gaps are filled in by the model. If the model is started from
this assimilated state, the result is a weather forecast based on all information available up
to now: measured quantities and knowledge put in the model. If after a while the model and
measurements deviate again, other measurements have become available, and a new initial
state could be assimilated.

The successful application of data assimilation in meteorology has led to the introduc-
tion of similar techniques in related fields, including the field of air pollution. However,
the targets of using data assimilation in air pollution are quite different than in meteorol-
ogy, where assimilation is used to obtain the current state of the atmosphere to facilitate the
weather forecast. For air pollution, the current chemical state is of minor importance, since
accurate pollution forecasts can be made using simple statistical methods. Data assimila-
tion in air pollution models is often related to parameter estimation. The most interesting
air pollution parameter is probably emissions. Both scientists and policy makers show a
large interest in who or what to blame for high pollution levels, and data assimilation tech-
niques are therefore used to estimate emission rates or to identify sources; this application
is sometimes referred to as inverse modeling.

1.4 Motivation and overview

This thesis describes the development of a data assimilation tool for a local area air pollu-
tion model, in particular LOTOS. The assimilation tool should be able to provide maps of
tropospheric ozone using all available information in model and measurements. Since air
pollution guidelines put a limit on the maximum ozone levels, at least the maxima should be
estimated correctly. In addition, the assimilation procedure should provide insight in why
the model and measurements differ from eachother. The measurements to be assimilated
with LOTOS concern ground-based measurements only, which are available on a regular ba-
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sis throughout the model domain. The limited vertical extent of the LOTOS model does not
allow the use of vertical profiles from balloon soundings or lidars for assimilation. For the
same reason, satellite measurements are not considered either; their use is also limited by
their lack of resolution in the troposphere.

Two frequently used assimilation techniques which are able to satisfy the postulated re-
quirements are variational methods and filter techniques, especially the Kalman filter. Vari-
ational methods (Talagrand and Courtier, 1987) are based on the minimalization of a cost
or penalty function, quantifying the difference between model and measurements. The min-
imalization procedure requires an adjoint of the forward model, which is complicated for a
chemistry model (Elbern et al., 1997; Wang et al., 2001). To avoid the development of an
adjoint for LOTOS, we developed an assimilation tool that is based on a Kalman filter ap-
proach. Originally designed for guidance problems, the Kalman filter (Kalman, 1960) has
a long history of merging (small) models and measurements in electrical engineering and
control. The growing availability of cheap computing power during the last decade made
the filter approach feasible for large geophysical models too. Approximations to the original
filter are necessary however, since the computational burden is still too large. One partic-
ular class of approximations, the low-rank filter, has recently been introduced in a number
of variations: ENKF (Evensen, 1994), PEKF (Cohn and Todling, 1995), RRSQRT (Verlaan
and Heemink, 1995), SEEK/SEIK (Verron et al., 1999). Successful applications in combina-
tion with hydraulic and oceanographic models showed that the low-rank approximation is
a suitable tool for data assimilation. Application to the transport of methane (Zhang et al.,
1999) proved that the technique is suitable for air pollution problems too, encouraging the
implementation with a chemistry model such as LOTOS.

The outline of this thesis could be split into three parts. The first parts contains an in-
troduction to air pollution modeling and data assimilation. Chapter 2 describes the theory
behind photo-chemical air pollution, and in particular how this has been implemented in
the LOTOS model. Chapter 3 gives an overview of popular data assimilation techniques,
with the emphasis on the Kalman filter. The second part describes the results of application
of the Kalman filter to the LOTOS model. The experiments described in chapter 4 have a
small setup, and examine the (im)possibilities of the assimilation technique with a chem-
istry model (Heemink and Segers, 2000). The domain of the LOTOS model is thereto limited
to a test area covering England and Wales, and the time period is limited to five days. In
chapter 5, the experience obtained with the small model is applied to the area of central
Europe, for a time period of one month (Segers et al., 2000c; van Loon et al., 2000). The
experiments focus on providing assimilated ozone fields. Attention is paid to parameter
estimation too, where the filter tool is used to estimate model parameters such as emission
rates and deposition velocities. In addition, the value of the filter tool for forecasts of the
ozone maxima is examined too. The third part describes the technical ’details’ of the filter
used for the experiments. Chapter 6 describes the concept of the low-rank approximation of
the Kalman filter (Segers et al., 2000a). Examples of this class of filters are discussed and
compared. Chapter 7 discusses approximation techniques for dealing with the nonlinearities
in the model (Segers et al., 2000b). The accuracy of different approximations is examined
on a theoretical basis and tested in a practical application. Application of a Kalman filter
to a model such as LOTOS is quite expensive, and was therefore performed by a parallel
computer. Chapter 8 describes and compares two approaches for parallelization (Segers
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and Heemink, 2002). Finally, the main conclusions and recommendations drawn from this
research are summarized in chapter 9.



Chapter 2

Tropospheric chemistry: the LOTOS
model

A description of the key processes of air pollution modeling is given following
the LOTOS (LOng Term Ozone Simulation) model. The gas-phase chemistry
involved in photochemical smog is described, with emphasis on the production
of ozone. The vertical decomposition of the atmosphere plays an important
role in smog formation, and is therefore discussed in detail too. The physics
implemented in LOTOS are suitable for simulation of pollution events in the
area of Europe.

2.1 Introduction

After the first observations that photochemical air pollution has a damaging effects on veg-
etable crops (Haagen-Smit et al., 1951), the physical mechanisms behind this form of air
pollution has been subject of extensive scientific research. The damage was soon shown
to be caused by over-exposure to ozone, produced under certain meteorological conditions
in presence of nitrogen oxides and volatile hydrocarbons. The basic mechanism behind
photochemical air pollution are nowadays understood reasonable well, and have been im-
plemented in a large variety of models.

The most simple models are box models for simulation of the gas-phase chemistry. In-
sight in the gas phase chemistry involved in air pollution has been obtained from experi-
ments with smog-chambers. In these specialized reaction chambers, the conditions under
which pollution is known to reach elevated levels are simulated: intense sun shine, rela-
tively high temperature, and reduced mixing with clean air. After injection of typical urban
emissions from car traffic or industrial activities, the concentrations of the reaction products
are measured. From these studies, the most important reaction paths have been deduced,
leading to long lists of reaction schemes and related parameters such as reaction constants
and photolysis rates. The number of possible reactions in a smog chamber is almost infinite,
but selection of the most important ones have lead to a number of limited reaction schemes
describing the main processes. Examples of these schemes are ADOM, EMEP, RADM2, and
CBM-IV, different from eachother in the components of the chemical state and the reactions
included (see (Kuhn et al., 1998)). Boxmodels are based on numerical simulation of a reac-
tion scheme, and thus differ from eachother with respect to the scheme and the numerical
solver used to simulate the reactions. Box models are useful to investigate smog formation

11
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under different meteorological regimes or changing emission strengths. Intercomparison
studies show that most box models are quite comparable in their calculation of ozone, but
show large differences for higher organic compounds (Kuhn et al., 1998).

If a box model is to simple for an application, a number of box models could be con-
nected to eachother. A model for the transport is required to simulate the exchange between
the boxes. A simple configuration is to put a number of boxes onto eachother, to represent
the different chemical regimes present in the vertical. The bottom box is subject to surface
processes such as injection of emissions and uptake by vegetation, which leads to different
chemical conditions if the exchange with the box above is limited. The vertical structure
of the atmosphere becomes important here, and this structure is in fact quite complicated.
Columns of box models are useful to simulate the diurnal cycle in the gas-phase chem-
istry, driven by sunrise and sun set, on time scales where horizontal transport is of minor
importance. The vertical extent of a column is therefore limited, since at higher altitudes
horizontal transport and mixing becomes rather strong.

To include horizontal transport, a number of 1-D columns could be combined to a 2-D
array. This approach is for example used in the TNO-Isaksen model (Roemer and van den
Hout, 1992), to simulate zonal averages in the global atmosphere. Due to the rotation of the
earth, the longitudinal variations are much smaller than the latitudinal, and zonal averages
are therefore suitable to characterize the global chemical composition. Zonal variations are
induced by seasonal changes in solar angle and related temperature, and the distribution
of land mass and human activities over the latitudes. Zonal average models are useful to
investigate seasonal changes or long year trends in atmospheric composition. Transport
is dominated by large circulations moving air upwards from near the equator towards the
poles, and smaller reverse circulations at higher latitudes.

The final step in atmospheric modeling is a full 3-D model. In an Eulerian approach, large
numbers of box models are connected in a 3-D array to cover a part or all off the globe. The
chemical regimes in the boxes are determined by their position on the globe (solar angle,
emissions), and meteorological parameters such as temperature and water vapor content.
Transport between the boxes is modelled with fluxes through the boundaries computed from
wind fields. In a Lagrangian approach, the boxes are not fixed on their position but move
through the domain following the wind. The meteorological parameters for a 3-D model
are often obtained from operational weather centers, and the simulations are therefore as
close to reality as possible. Full 3-D models are rather expensive in computation time,
since the model requires simulation of the chemistry in each grid box and advection of
all components, in addition complicated by the interaction of advection and chemistry. To
limit the costs, operational atmospheric chemistry models are therefore limited in either the
chemistry or the domain. For accurate and detailed modeling on short time scales, limited-
area models such as LOTOS, EURAD (Elbern et al., 1997), or MATCH (Robertson et al.,
1999) use a complex chemical scheme on a fine grid, on a domain limited to an area of
interest (for example central Europe). Climate modeling requires however computations
over the complete globe, and are therefore necessarily defined with simplified chemistry on
a coarse grid, such as the TM3 model (Houweling, 2000).

The LOTOS model used in this study is a typical example of a 3-D, Eulerian, limited-
area, atmospheric chemistry model. The description of the model starts with the chemical
mechanism applied in the grid boxes (§2.2). The vertical decomposition of the atmosphere
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is described in §2.3, with emphasis on the lowest 2-3 km of the troposphere where LOTOS

is active. Finally, details of the implementation concerning grid definition and numerical
schemes are given in §2.4.

2.2 Chemistry of tropospheric ozone

As a key component in air pollution, the chemical behavior of ozone has been subject of
extensive study since the mid 1940’s. In industrialized areas, the key processes in ozone
formation involve reactions between nitrogen oxides and organic compounds, while carbon
monoxide and methane play a role in remote area. This section describes the most impor-
tant reaction mechanisms for the area of Europe. The actual reaction mechanism used is a
version of CBM-IV, listed in appendix A. Reaction numbers (Rn) and constants kn used in
this section refer to the reactions the appendix.

2.2.1 Nitrogen oxides

Under the name nitrogen oxides, a large variety of gaseous components is known: molecules
such as NO (nitric oxide), NO2 (nitrogen dioxide), and N2O5, acids such as HNO2 (nitrous
acid), and radicals such as NO3. The components NO and NO2 (their sum often referred
to as NOx) play a role in smog formation; the other components are related to the nitrogen
cycle and the formation of aerosols.

In the presence of sunlight, NO2 is able to induce O3 formation through a reaction with
oxygen:

(R1) NO2 + hν + O2 → O3 + NO

where hν denotes an ultra violet photon. Because the availability of oxygen in the atmo-
sphere is almost infinite (in comparison with trace gases), reaction (R1) is bounded by the
availability of NO2 and sunlight only. Production of ozone due to photolysis of NO2 is
therefore related to the angle between the earths surface and the sun: the higher this angle
(daytime, summer months), the more ozone is formed due to (R1). The combination of O3

and NO formed in (R1) has a short lifetime due to the inverse reaction:

(R3) NO + O3 → NO2 + O2

Reaction (R3) is very fast: freshly emitted NO reacts with ozone on a time scale of about
2 minutes (Kley et al., 1994). Emission of NO will therefore decrease ozone levels and
increase the amount of NO2. The sum Ox of O3 and NO2 is however rather constant on
short time scales. Figure 2.1 illustrates a simple chemical regime where (R1) and (R3) are
the only reactions involved. The concentrations follow the photo-stationary steady-state
condition:

JNO2 [NO2] = k3 [NO] [O3] (2.1)

where JNO2 denotes the photolysis rate of NO2 following (R1) and k3 the reaction rate of
(R3). Injection of extra NO to the system will increase the amount of nitrogen oxides,
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Figure 2.1: Simplified representation of chemistry between NO, NO2, and
O3. The panel on the right shows time series of these components and their
sums simulated with a box model. During daytime, NO and O3 are formed
due to to photolysis of NO2; after sunset, the production stops and NO and
O3 reach their initial values again.

but will decrease the amount of ozone. Since 90% of the emissions of NOx consist of
NO, how could emission of nitrogen oxides then be blamed for causing air pollution? The
only explanation is that reactions other than (R3) transfer NO into NO2, without destroying
ozone. In the next section it is state that this is the role of hydrocarbons. The very high
reaction rate of (R3) ensures however, that the short term effect of NO emissions is always
a decrease of ozone concentrations.

The most important source of NOx in the troposphere is fossil fuel combustion. Since
the atmosphere is filled with N2 for about 80%, a partly oxidation of N2 inside the hot
and high pressure environment of a combustion engine can not be avoided. Emissions of
NOx are related to the use of fossil fuel, and their spatial distribution depends on economic
and social parameters such as population densities, transport behavior, industrial activities,
technological development, etc.

Nitrogen bonds are not only emitted to, but also removed from the air. The most import
removal process is the production of nitric acid:

(R20) NO2 + OH → HNO3

The later is removed from the atmosphere through scavenging (wet deposition). Together
with sulfhic acids, nitric acid is one of the major contributionairs to the so called acid
rain observed in polluted areas. Apart from wet deposition, NOx is also removed from the
atmosphere through uptake by the vegetation (dry deposition).
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2.2.2 Volatile organic compounds

A mix of various hydrocarbons present in the atmosphere is known under the name of
volatile organic compounds (VOC’s). The group of VOC’s contains for example ethane,
parafine, and formaldehyde. VOC’s have typical concentrations of a few ppb, and have a
rather short lifetime in the atmosphere. Methane is not considered as part of the VOC’s
because of its much longer lifetime (chemical less active), and related high concentrations
of 1600–1800 ppb. VOC’s are therefore also known under the name Non-Methane Hydro
Carbons (NMHC).

Figure 2.2 shows a representation of the reactions involved in VOC’s (Liu et al., 1987).
The scheme is rather simplified, but indicates the net result: VOC’s involve the formation
of NO2 out of NO, without destruction of ozone. Under impact of OH radicals, which are
available in the atmosphere in very low concentrations, the organic compounds are trans-
formed into other, less complex organic compounds. As intermediate products, various
types of organic peroxy radicals are formed, in a general notation: XO2. Peroxy radicals are
able to transform NO into NO2 (R68). The degradation of organic compounds continues
until all carbon atoms appear as carbon monoxide (CO).

Ozone concentrations usually rise due to the degradation of VOC’s, since NO2 is formed
out of NO without destruction of O3. The reactions involved in VOC’s do not always lead to
higher NO2 concentrations, since the degradation of VOC’s also leads to higher OH concen-
trations and a related loss of NO2 (R20). Complete degradation of a certain VOC into CO
might provide x O3 molecules, where x is called the stoichiometry factor for the particular
VOC. Stoichiometry factors may range from zero and eight, depending on the type of VOC
and the availability of NOx. Simple reaction schemes use stoichiometric factors to model
ozone formation, see for example (van Loon, 1996).

Similar as for nitrogen oxides, the most important emission source of VOC’s is related
to fossil fuel combustion. Complete burning of fuel would provide carbon dioxide and wa-
ter vapour only, but the current state of technology has to allow a partly incomplete burning
too. The products of incomplete combustion vary from simple carbon monoxide to complex
aromatic structures, and are in general quite unpleasant for human health. Another impor-
tant anthropogenic source of VOC’s is their use as solvents. Some types of vegetation are
known as important natural sources of VOC’s; conifer forests release substantial amounts
of isoprene for example.
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injected with a constant ratio, correspond-
ing to urban emissions. In a NO limited
regime, the ozone production is almost in-
different for the VOC load, and vice versa
for a VOC limited regime. Note the trend
to decreasing ozone concentrations for in-
creasing initial concentrations of NO.

2.2.3 NOx- and VOC-limited regimes

The previous described production of ozone continues as long as precursors NO and VOC
are available. The total ozone production is limited by the amount of one of them (figure
2.3). This property has lead to classification of areas as being either NOx- or VOC-limited.

Rural areas are often NOx-limited: emissions of nitrogen are low by lack of population,
while natural releases of VOC’s are rather strong. Small releases of NO will immediately
contribute to a net production of ozone, until all of the available NO has reacted. The
lifetime of additional NO in rural area’s is therefore rather short, and is only visible through
an increased ozone level.

Industrial areas with large emissions of NO are often subject to a VOC limited regime.
In such a regime, the best option to limit smog production is to limit VOC emissions. Re-
duction of NO load might not reduce ozone formation, if it is not combined with VOC
reduction. In fact, ozone reduction might be achieved by additional NO production, as
observed for the so-called ’weekend smog’ in Los Angeles. Traffic emissions limit ozone
production on labor days, but with their absence in the weekend, ozone concentrations may
exceed critical levels. This effect is only a short-term solution for smog-episodes; the ad-
ditional load of nitrogen oxides will cause higher long term ozone levels in the presence of
VOC. The best regularisation strategy for smog is therefore to reduce both NO and VOC
emissions (Builtjes, 1992).

2.2.4 Methane and carbon monoxide

Where in industrialized areas the formation of ozone is strongly determined by the chemistry
of NOx and VOC, the ozone formation in remote area is more dependent on the chemistry
of methane and carbon monoxide.

Methane (CH4) is present in the atmosphere in rather high concentrations (1700-1800
ppb). Important sources of methane are rice fields and natural wetlands. In the presence
of NO and ultra violet light, methane is oxidized into CO by a chain of reactions in which
formaldehyde takes a central place (Houweling, 2000). A net result of the oxidation chain
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is the formation of NO2 due to the reaction:

NO + HO2 → NO2 + OH

Similar as for VOC’s, this reaction provides a mechanism to transform NO into NO2 outside
the NO/NO2/O3 cycle, and therefore leads to an additional production of ozone.

Carbon monoxide is released into the atmosphere by industrial processes and biomass
burning. Besides, it is the end product of the degradation of organic compounds and
methane. Typical concentrations on the northern hemisphere range from 100 through 300
ppb. Under impact of OH radicals, carbon monoxide is oxidized into carbon dioxide (CO2)
under formation of HO2, again leading to additional production of ozone. The impact of
methane and carbon monoxide on ozon production is however limited if compared with the
impact of NOx and VOC, and therefore of minor importance in industrial areas.

2.3 Vertical structure of the atmosphere

Since the human view to the world is strongly based on visible perception, our first char-
acterization of the atmosphere is probably determined by the existence of clouds. Given a
picture of the sky, the amount, shape, color, but also the lack of clouds could give us an
indication of where on earth the picture is taken. Clouds let us realize that the atmosphere
is different over the globe, and since they are a good identification of the weather, we are
often highly interested in their horizontal distribution. However, clouds should also let us
realize that the atmosphere is different with the altitude: they always seem to appear at the
same level.

Trying to find some vertical structure in the earths atmosphere seems to be similar to the
work of a biologist, investigating the life on a apple’s pare. An altitude of 50 km is the top
for most atmospheric studies, which is less than a percent of the earths radius (about 6710
km). Since we use to live on the apple’s pare however, it is still useful to distinguish some
vertical structures. We will describe three divisions of the atmosphere, with vertical scales
decreasing from 10 km to 100 m.

2.3.1 Stratosphere/troposphere

The most coarse division of the atmosphere is based on the different impact of solar radia-
tion in slabs of air. Radiation with all kinds of wavelengths enters the atmosphere inducing
photo-dissociation. The probability of a photon being absorbed increases with the number
of available molecules, and since the air pressure increases during the way down, all radi-
ation of a certain wavelength might be absorbed before it is able to reach the surface. For
example, wavelengths with sufficient energy to dissociate oxygen are not able to penetrate
the lowest 10 km of the atmosphere. The differences in photo-dissociation lead to a division
of the atmosphere in troposphere (0-10 km), stratosphere (10-50 km), ionosphere (50-650
km), and exosphere (above 650 km). Atmospheric studies are often limited to tropo- and
stratosphere only, since the processes in these layers have the most direct impact at ground
level.
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Figure 2.4: Vertical division of the atmosphere based on impact of solar
radiation (stratosphere/troposphere) and forcing from the surface (free atmo-
sphere/boundary layer). On the right: development of mixing regimes in the
boundary layer.

The photo-dissociation of oxygen is the driving force of the atmospheric chemistry in the
stratosphere. A reaction product of the photo-dissociation is ozone. The absolute amount
of ozone reaches a maximum at 20–30 km: at higher altitudes, less ozone is formed due to
a lack of oxygen, while at lower altitudes, the production is bounded by a lack of radiation.
This stratospheric ozone layer is able to absorb ultra violet radiation with wavelengths
harmful for living species on the earths surface. The strong depletion of stratospheric ozone
observed at the end of the 20th century gave rise to serious concern about the environment,
especially when anthropogenic releases of halocarbons were found to be the driving force
behind the depletion. Regularisation of halocarbon production and emissions have however
stabilized the ozone loss. The concern about the ozone layer and good observability have
made ozone the key component in stratospheric research.

Controversely to the stratosphere, photo-dissociation of oxygen is of minor importance
for the chemistry of the troposphere. The chemistry of the troposphere is determined by
what is released from the earths surface, and therefore depends on vegetation, land-use,
and human activities. Since these parameters differ from place to place, the tropospheric
chemistry shows large spatial differences. Since we breath tropospheric air, its quality has
a direct impact on our health. The large emission of nitrogen oxides and volatile carbons
characteristic for industrialized areas might lead to production of unhealthy amounts of
ozone as described in section 2.2. High levels of tropospheric ozone are almost ever due
to human activities, except for the rare case of stratospheric intrusions reaching the earths
surface.

2.3.2 Free troposphere/boundary layer

The division of the atmosphere in boundary layer and free troposphere is based on different
impact of the earths surface on slabs of air. The boundary layer is that part of the troposphere
that is “directly influenced by the presence of the earth’s surface” (Stull, 1988). Air in the
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boundary layer is subject to forcing by friction (rotation of the earth), is heated and cooled
from the surface (induced by radiation from the sun), retains water vapor and pollutants,
etc. Parameters such as temperature show a diurnal cycle, related to sunrise and sunset. The
depth of the boundary layer may range from 100 m to 3 km; at the top, clouds might appear.

The remainder of the troposphere is called the free troposphere. Time series of tempera-
ture hardly show a diurnal cycle here; the temporal scales over which variations occur are
much longer for the free troposphere than for the boundary layer. Total air pressure and tem-
perature are significant lower than in the boundary layer, a well-know fact for mountaineers
and aircraft designers.

2.3.3 Mixing/stable/residual layer

The different characteristics of slabs of air observed at different hours of the day give rise
to a refinement of the description of the boundary layer. The diurnal cycle of sun rise and
sunset causes the boundary layer to be in different states of mixing during the day, leading
to a classification in mixing, stable, and residual layer (see right part of figure 2.4).

At day time, the air in the boundary layer is heated from the surface and cooled from
the top, leading to a state of convection driven turbulence. The slab of air which obtains
this state rapidly grows after sunrise to reach a maximum in the early afternoon. Trace
gases released from the surface become well mixed through the turbulent layer; the layer
is therefore recognized as the mixing layer. The top of the mixing layer varies from day to
day depending on cloud cover, air pressure, and the surface temperature. Typical maximum
heights over Europe range from a few hundred meter over water to sometimes more than 2
km over land.

When after sunset the driving force behind the convective turbulence has disappeared, the
air in the former mixing layer calms down. The lowest part of the boundary layer reaches
an almost stable state; smoke plumes emitted into this stable boundary layer will hardly
spread over the vertical but fan out in the horizontal. What remains of the boundary layer is
initially filled with air similar to the former mixing layer and therefore called the residual
layer. After the following sunrise, the stable and residual layer are merged to form a new
mixing layer.
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2.4 The LOTOS model

The tropospheric chemistry model used in this study is the LOTOS (LOng Term Ozone
Simulation) model (Builtjes, 1992). LOTOS includes the concepts of boundary layer struc-
ture and tropospheric chemistry as described before, and computes hourly concentrations of
the most important trace gases.

The LOTOS model is based on a discretization of the advection/diffusion equation:

∂cs

∂t
= −∇ · (uhcs) + ∇ · (Kh∇cs) +

∂
∂z

(
Kz

∂cs

∂z

)
+ Es + C(c�) − D(cs) + V (cs) (2.2)

where cs is the concentration field of a trace gas s, uh the horizontal velocity field, Kh and
Kz the horizontal and vertical diffusion coefficients, and source/sink terms E, C, D, and
V account for emissions, chemistry, deposition, and mean vertical exchange respectively.
After discretization, the model takes the form:

c[k+1] = L( c[k], t [k], t [k+1] ) (2.3)

The concentration vector c[k] contains the concentrations of all considered components for
each of the cells in the model grid, valid for time t [k]. The LOTOS operator L computes the
concentrations at t [k+1] given the concentrations and model data valid for t [k]. The default
time interval between t [k+1] and t [k] is one hour. Accurate discretization of (2.2) into (2.3)
is quite complicated since the processes on the right hand side involve many different time
scales. Operator L is therefore implemented using a symmetric Strang-splitting technique
(Strang, 1968), applying subprocesses to the concentration array in a symmetric order:

L( c[k], t [k], t [k]+ ∆ t )
= Lmix(∆ t) ◦ Lade(∆ t/2) ◦ Ldep(∆ t/2) ◦ Lvd f (∆ t/2)

◦ Lchem(∆ t) ◦ Lvd f (∆ t/2) ◦ Ldep(∆ t/2) ◦ Lade(∆ t/2) c[k] (2.4)

with Lmix, Lade, Ldep, Lvd f , and Lchem the operators for changing mixing height, ad-
vection/diffusion/emission, deposition, vertical diffusion, and chemistry respectively. The
chemistry operator is applied only once, and performs an integration over a period ∆ t; all
other processes are applied twice and perform integrations over ∆ t/2. If the maximum time
step ∆ t or ∆ t/2 is less than one hour for a certain operator, the sequence (2.4) is repeated.
Operator splitting involves an error since it decouples subprocesses which should actually
interact with eachother, partly suppressed by the symmetric order of the split. The order of
the operations is not necessarily the one in (2.4); see also §8.5.2. The different operators are
described in detail in the next paragraphs.

2.4.1 Model domain and grid

The maximum domain of the LOTOS model covers Europe from the Atlantic Sea in the west
to Russia in the east and from the Mediteranian Sea in the south to Scandinavia in the north
(figure 2.5). In typical applications, the domain is however limited to smaller area’s. The
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domain is divided in a regular grid with cell spacing of 1.0◦ lon × 0.5◦ lat (about 60×60
km at European latitudes).

 10°  W   0°     10°  E  20°  E  30°  E  40°  E  50°  E  60°  E 

40°  N 

50°  N 

60°  N 

70°  N 

Figure 2.5: Maximum horizontal domain of the LOTOS model. The domain
is divided in 70×70 grid cells of 1.0◦ lon × 0.5◦ lat.

2.4.2 Vertical exchange

Three layers of grid cells are placed onto eachother to describe the lowest two kilometers
of the troposphere (figure 2.6). The lowest layer represents the mixing layer; the heights
of the cells is time dependent and follows the rise and fall of the mixing height. During
the night, the properties of a stable boundary layer are assigned to the first layer. Although
not complete correct, it is convenient to call the first layer the ’mixing layer’ even when it
represents the stable situation. The mixing height is part of the meteorological input, and
derived from measurements and models (Seibert et al., 2000).

Two reservoir layers of equal depth cover the mixing layer; the top of the second reservoir
layer is fixed to 2000 m, or to a level high enough to have reservoir layers of 100 m thickness
each. The contents of the reservoir layers is swallowed by the mixing layer during the
rise of the mixing height. If no other physical processes act on the concentrations, the
concentrations in a rising mixing layer are a weighted average from the concentrations in
the stable boundary layer and the reservoir; this process is modelled in operator Lmix in
(2.4). A fall of the mixing height does not influence the concentrations in the mixing layer,
since both mass and volume decrease with the same rate.

The concentration value assigned to a layer represents the average concentration, sup-
posed to be not to different from the actual profile. In polluted areas, this approach is
sometimes too far simplified (Roemer, 1996). Observation of vertical profiles of NO and
NO2 showed for example a clear gradient of these components even within the mixed layer.
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Figure 2.6: Illustration of the layered grid in LOTOS. During the rise of
the mixing height, the mixing layer swallows concentrations from the resid-
ual layers. With the fall of the mixing height, the residual layers obtain the
concentrations of the formal mixing layer.

The vertical resolution of the current model is therefore too low for accurate representation
of NOx measurements.

2.4.3 Vertical diffusion

In addition to the changing mixing heights and mean vertical flux induced by the horizon-
tal wind, an additional exchange between the model layers is implemented in the form of
vertical diffusion:

∂c
∂t

=
∂
∂z

(
Kz

∂cp

∂z

)
(2.5)

The diffusion constant Kz is set to 1.0 m2/s for the boundary between the mixing and reser-
voir layers, and to 0.1 for the other boundaries. The upper boundary concentrations are given
by the global 2-D TNO-Isaksen model (Roemer and van den Hout, 1992). This model com-
putes zonal averages over all longitudes, and the output of the model might therefore differ
significant from the local conditions over Europe, since the release of pollutants is much
higher over here. Comparison of the TNO-Isaksen computations with ozone soundings
from Uccle showed that for the ozone concentrations a correction factor should be applied
(figure 2.7).

2.4.4 Emissions

Emissions of NOx, VOC, CO, SOx and CH4 are injected into the model layers as part of
the advection/diffusion operator Lade from (2.4). Most emissions are injected in the lowest
(mixing) layer, but releases through high chimneys are sometimes injected in the residual
layers too, especially during the night.
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Figure 2.7: Comparison between the
TNO-Isaksen model used for upper
boundary of the LOTOS model (�), and
balloon soundings from Uccle for au-
gust 1997 (errorbars). The TNO-Isaksen
model under estimates the measured
data; multiplication with a factor 1.3 (o)
fits the model to the measurements.
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The emission database provides total emissions in terms of tons per year for each grid
cell, based on inventories by local authorities or environmental agencies. Inventories for
anthropogenic emissions are often combinations of bottom-up and top-down procedures. In
a bottom-up procedure, emissions released by single point sources are added together to
compute the total emission in a certain area. Such a procedure is only useful for large point
sources such as powerplants. In a top-down procedure, estimates of total emissions for a
large area are distributed over smaller areas. For example, the total emission of NOx due to
fuel combustion might be derived from sale figures from oil companies, and then assigned
to small areas based on average traffic density. Inventories of biogenic emissions of VOC
are derived by combining emission rates for certain types of vegetation with a landcover
database.

Hourly emissions in LOTOS calculated from the yearly totals using profiles to account for
temporal variations (a top-down procedure). The profiles consider the different emission
rates in summer and winter, the day of the week, and the local time. Information about
the temporal variations in emissions was collected in the previous PHOXA/LOTOS project
GENEMIS (Lenhart et al., 1995). Conclusion was that “a considerable temporal variation
of emissions from all major source sectors can be observed, not only from sector to sector,
but also from country to country”. The profiles used in LOTOS were shown to have an
on average correct shape, but amplitudes are often to low (figure 2.8). Actual emissions
might differ more than a factor 2 from the emissions modelled in LOTOS. Since LOTOS is
compared with hourly measurements, much of the variations present in the measurements
could be missed by the model.
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Figure 2.8: Examples of differences between real emissions and time pro-
files used in LOTOS (Lenhart et al., 1995). Left panel shows relative daily
small consumer NOx emissions in the United Kingdom and LOTOS factors
for 1990; right panel shows the hourly industrial fuel consumption during a
week according to surveys in Nordrhein-Westfalen and Baden-Württenberg
and the LOTOS hourly time-factors for industrial combustion.
Sources: (Lenhart et al., 1995).

2.4.5 Chemistry

The chemistry model used in LOTOS is the Carbon Bond Mechanism IV (Gery et al., 1989).
The chemical state is described in terms of the concentration of 26 components in total, see
appendix A. Organic compounds are represented by mixtures of reactive groups rather than
by single molecules, in order to limit both the chemical state and the number of reactions
(about 60 in our implementation).

The impact of the reactions listed in the appendix is modeled in terms of a nonlinear
differential equation for each of the components of the state. If for example the chemistry is
limited to reactions (R1) and (R3) only, the ozone concentration should satisfy the equation:

d[O3]
dt

= k1[NO2]− k3[NO][O3] (2.6)

where k1 and k3 denote the reaction rates of (R1) and (R3). The system of differential equa-
tions is solved using Gauss-Seidel iterations, for each single cell in the domain (operator
Lchem in (2.4)). The number of iterations required for convergence might differ from cell to
cell, since each of them has a different initial state. Besides, the reaction rates are different
for each cell too, since these depend on time varying parameters such as temperature, water
vapour concentration, solar angle and cloud cover. A time step of 15 minutes was found to
be the maximum for accurate simulation of the chemistry.
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2.4.6 Deposition and surface concentrations

An important removal process for pollutants is dry deposition on the surface. Vegetation is
able to take up serious amounts of pollutants, leading to cleaner air but poisoned vegetation
as well. As a typical example, the downward tendency observed for the growth of crops in
the Los Angeles basin was found to be related with uptake of ozone. The constant uptake
of trace gases induces a flux towards the ground. Air samples taken at regular measurement
heights (2–3 meters above the ground) are therefore lower than the average value in the
mixing layer. The effect of the deposition should be taken into account when comparing the
LOTOS concentrations with measurements.

Since the LOTOS model does not divide the mixing layer into sub layers, the concentration
of a chemical component in the mixing layer needs to be described with a profile. The profile
cp(z) is assumed to satisfy a steady state diffusion equation:

∂
∂z

(
Kz(z)

∂cp

∂z

)
= 0 , Kz(z) =

κ u� z
φl(z)

(2.7)

That is, the flux Φ = Kz∂cp/∂z is assumed to be constant with the height. The diffusion
coefficient Kz depends on the stability of the boundary layer; its value follows from a pa-
rameterization of the vertical gradient of the wind speed:

∂u
∂z

=
u�

κ
φl(z)

z
, φl(z) =

{
(1−15z/l)−1/4 , l < 0 (unstable)
1+4.7z/l , l > 0 (stable)

(2.8)

where κ is the Von Karman constant (≈ 0.35), friction velocity u� is a scaling parameter,
and the dimension less wind shear φl(z) depends on the value of the Monin–Obukhov length
l. The Monin–Obukhov length is a measure for the turbulence, and is a function of the
average wind speed at 10 meter height (part of the meteorological input), of the exposure
class (function of the solar angle and cloud cover), and of the roughness length z0, which
can be obtained from a land-use database.

To solve equation (2.7), two boundary conditions are required. First, the profile is set to
the mixing layers average c at a height hre f of for example 50 m, where the impact of the
deposition is of minor importance. This leads to the profile:

cp(z) = c − Φ Ra(z) , Ra(z) =

hre f∫
s=z

1
Kz(s)

ds (2.9)

Ra is called the atmospheric resistance, and can be computed exactly for the wind shears in
eq. (2.8). The second boundary condition models the flux through the vegetation surface
(and thus through all other horizontal surfaces too) with a first order resistance:

Φ =
cp(0)

Rc
(2.10)

where cp(0) denotes the concentration at the vegetation surface. The surface resistance Rc

determines how effective a chemical component is taken up by a certain type of vegetation,
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and is therefore part of the land-use database. Before a component is able to reach the
vegetation surface, it has to pass the viscous sub layer between the surface and the roughness
length z0. The flux through the viscous sub layer is modelled as a first order resistance too:

Φ =
cp(z0)− cp(0)

Rb
, Rb =

1

2.2 (u�)2/3
(2.11)

where Rb is the viscous-sublayer resistance. Elimination of cp(0) from (2.10) and (2.11)
gives:

Φ =
1

Rb +Rc
cp(z0) =

1
Rb +Rc

( c − Φ Ra(z0) ) (2.12)

which leads to the following equations for the flux and the deposition profile:

Φ = vd c , vd =
1

Ra(z0)+Rb +Rc
(2.13a)

cp(z) = c ( 1 − vd Ra(z) ) (2.13b)

The equation for the deposition velocity vd indicates that the deposition is in fact modeled
as a serial connection of three resistances, describing the atmospheric, viscous and surface
resistance (figure 2.9).

A deposition profile similar to (2.13) might be derived for each component of the state,
using a different surface resistance Rc. However, the profile is based on a steady state
assumption during a small time period, and this might not be valid if components react
with eachother on a smaller time scale. An example is the reaction between O3 and NO.
Therefore, for O3, NO, and NO2, the deposition is applied to the more stable quantities NOx

and Ox, from which the original concentrations are recalculated afterwards by assumption
of a photo-stationary-state.

The total mass in the mixing layer will decrease due to the deposition flux, and should
satisfy the equation:

∂(hc)
∂t

= − Φ(t) = − vd(t) c(t) (2.14)

where h denotes the height of a grid cell. If during a time period ∆ t the meteorological
conditions are rather unchanged, both the cell height and the deposition rate are more or
less constant, and the solution of (2.14) is given by:

c(t + ∆ t) = c(t) exp(−∆ t vd/h ) (2.15)

This relation is used in operator Ldep from (2.4).

2.4.7 Advection and horizontal diffusion

Horizontal advection is modeled by volume fluxes through the boundaries of the grid cells.
The meteorological input provides horizontal wind fields for each of the three model layers.
A vertical component of the wind is derived from the horizontal fields by the condition that
the net volume flux equals the volume change prescribed by evolution of the mixing height.
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Figure 2.9: Modeling of deposition flux and concentration profile. The de-
position flux in the mixing layer is the result of a concentration gradient over
three resistances for the atmosphere (Ra), the viscous sublayer (Rb), and the
vegetation surface (Rc). Whenever a concentration near the ground is re-
quired, it should be computed from the deposition profile.

The advection-diffusion operator Lade in (2.4) is based on κ -discretization and a two
stage Runge-Kutta method (van Loon, 1996). To compute the flux into a certain cell, the
discretization uses a 9-point stencil (see also figure 8.5). The Courrant condition in 2-D
provides an upper boundary for the time step:

∆ t ≤ min
i, j

1
2

/

( |ui j|
∆ xi j

+
|vi j|
∆ yi j

)
(2.16)

where u and v denote the components of the wind vector and ∆ x and ∆ y the size of a grid
cell. The Courrant condition relates the wind speed to the size of the grid cell. Within a
single time step, a parcel of air may not be transported over more than one grid cell since
the wind field might change significantly along the trajectory. Since the LOTOS cells are
rather large (in order of 60×60 km), the Courrant condition is hardly ever violated, and the
maximum time step is determined by the chemistry.

2.4.8 Example: budgets around Vreedepeel

To illustrate the impact of the different operations in the model, the changes in concentration
in a single grid cell have been investigated in detail. Figure 2.10 shows the net sources and
sinks of O3, NOx, and VOC due to different processes for the LOTOS cell around Vreedepeel
(The Netherlands). Vreedepeel is located between large industrialized area’s, and could
be classified as sub-urban. The budgets have been computed as hourly averages during a
LOTOS simulation over two weeks (first part of august 1997), to limit the impact of special
events on the results.
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The upper two panels in figure 2.10 show the sources and sinks for ozone in terms of
absolute volume and concentration, to show the difference between netto fluxes and impact
on concentrations. In terms of volumes, the main sources of ozone are chemical production
(during the day), and import from higher altitudes due to raising mixing heights (in the early
morning). Main sink is the loss of volume due to lower cell volumes after sunset. Deposition
has only a minor impact in terms of total ozone volume. In terms of concentrations, the
smaller cell volumes during the night lead however to a strong impact on the concentrations.
The deposition leads to a strong ozone gradient from the mixing layer to the reservoir,
inducing a downward diffusion flux during the night. With the rise of the mixing layer in
the early morning, the decrease due to deposition is compensated for by accumulation of
ozone from the higher model layers. Advection of ozone within the mixing layer could be
neglected.

The main volume source of NOx is emission of NO, with an overall higher rate during
the day due to higher industrial activities and traffic densities. Main sink is chemical loss
(during the day) and volume loss during the evening. In terms of concentrations, emission
is again the main source. In spite of the lower emission rates, the impact on night time
concentrations is still large due to the rather small cell volume. Since most of the emissions
are injected in the bottom cell, a concentration gradient occurs over the cell ceiling. The
gradient induces a diffusion flux to higher altitudes during the night, and overall lower
concentrations during the rise of mixing layer via mixing with cleaner air. The VOC budgets
show similar behaviour as those for NOx, except that advection is now more important.

A conclusion of this simple budget study is that although a photo-oxidant model focuses
on the chemistry, the aspect of vertical exchange is at least as important. The ground level
concentrations of the key component ozone are strongly influenced by the rise and fall of
the mixing layer: during the morning because of the mixing with clean air, and during the
night because of the large impact of deposition in the stable boundary layer. The importance
of all these processes should be reminded when the model is compared with measurements;
biases between model and data could be caused by errors in many different parameters.
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Figure 2.10: Most important sink and source processes of O3, NOx, and VOC
in terms of volumes and concentrations. The solid lines denote the net sink or
source. Computed for the LOTOS cell around Vreedepeel (The Netherlands),
for a model simulation over the first two weeks of august 1997.



30 CHAPTER 2. TROPOSPHERIC CHEMISTRY: THE LOTOS MODEL



Chapter 3

Data Assimilation

In this chapter, some basic properties of data assimilation are introduced. The
target to be achieved is discussed in terms of states, models, and data. Two
common used classes of data assimilation techniques are described: linear
filters and variational methods. The emphasis will be on the Kalman filter,
since this technique will be used to assimilate data with the LOTOS model. The
general form of a stochastic model required by the Kalman filter is described
in detail, as well as the stochastic model for a Kalman smoother.

3.1 Introduction

Let for a physical process the state at a time t [k] be described by a state vector xt [k] ∈ IRn. If
for example the process concerns the air quality in Europe, the elements of the state vector
could be filled with gas-phase concentrations. The superscript ’t’ denotes that xt is the true
state; the exact value is probably unknown, but at least, it exists. To obtain insight in the
true state, a model is developed. For a time dependent process, we assume for example that
the state at a time t [k+1] is a function of the state at t [k] and other time dependent entities:

x f [k+1] = M(x f [k], t [k]) (3.1)

The superscript ’f’ denotes that x f is a forecast of the true state, in the best case a good
approximation. For example, in the context of the LOTOS model (2.3), the state vector x f

is the concentration vector c and M denotes the model operator L. However, these entities
are often only a part of the state and the model, and therefore the general notations x and M
will be used.

The entities in the state are to be compared with data from an observational network,
for example measurements of ozone. All available data for a time t [k] is stored in a vector
yo[k] ∈ IRr. Apart from the observed data, there is also the ’true’ data: the true values of
the entities being measured, without measurement errors. The true data is supposed to be
related with the true state according to a linear observation model:

yt [k] = H′[k] xt [k] (3.2)

Each measurement is supposed to be equal to a linear combinations of elements of the state.
Often, there will be only one non-zero element in a row of H′, equal to one. For simplicity
we will assume that H′[k] is constant in time, that is, the number of data values is the same

31
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during each time step, and for each data item, the interpolation from the state is always
the same too. A time dependent H′ is not essentially different from a stationary one, and
will only complicate the notations. The notation with a transposed matrix H′ was chosen to
maintain a consistent notation in case of a scalar observation; the matrix H′ then reduces to
a row vector h′.

Through the observation operator H′, a forecast of the observed data could be made from
the forecast of the state:

y f [k] = H′x f [k] (3.3)

In practice there will be a difference between y f and the actual observed value yo, often
referred to as the residual or innovation vector (Daley, 1991):

d f [k] = yo[k] − y f [k] = yo[k] − H′x f [k] (3.4)

The ultimate target of a modeler is to have the residues as small as possible. Under the
name of data assimilation, a variety of methods exist which all try to reach this target.
The term ’data assimilation’ refers to the fact that all methods try to merge model forecasts
and measurements using the benefits of both sources of information. The final goal of an
assimilation procedure is to obtain a time series of assimilated or analyzed states xa[k] given
model and measurements, with assimilated residues as small as possible:

xa[k] = A( M , . . .x f [k] . . . , H′ , . . .yo[k] . . . ) (3.5a)

da[k] = yo[k] − H′xa[k] , ‖da[k]‖ � ∥∥d f [k]
∥∥ (3.5b)

Two families of data assimilation techniques are common used: variational methods and
linear filters. General form and examples of both families will be discussed in the next
sections.

3.2 Variational methods

Variational methods for data assimilation are based on minimization of a cost function. A
common used approach in meteorology is to use the cost function to obtain an optimal initial
state x[0] for a model forecast. The initial state should be not too different from a background
state xb, and lead to model forecast x f [1], . . . ,x f [K] as close to the data yo[1], . . . ,yo[K] as
possible. A suitable cost function to achieve this is the following (Talagrand and Courtier,
1987):

J (x[0]) =
1
2

(
x[0]−xb

)′
(Pb)−1

(
x[0]−xb

)

+
1
2

K

∑
k=1

(
H′x f [k]−yo[k]

)′
(R[k])−1 (H′x f [k]−yo[k]

)
(3.6)

Cost function (3.6) is the sum of quadratic terms, increasing if x[0] differs from the back-
ground state or if the model forecast H′x f [k] deviates from the observed data yo[k]. The
weight of each of these differences in J is determined by the ratio between the back-
ground covariance Pb and the representation covariance R[k]. The quadratic form of J
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is related to the multivariate Gaussian probability density. For a Gaussian distributed vector
x ∼N (

xb,Pb
)
, the probability density p is given by:

p(x) =
1√

(2π )n |Pb| exp
(
− 1

2 (x−xb)
′
(Pb)−1(x−xb)

)
(3.7)

Minimization of the first term of J in (3.6) is equivalent to maximization of the probability
that the background error x[0]− xb is a sample from N (

o,Pb
)
; in this example, the maxi-

mum is reached for x[0] = xb. Minimization of each of the other terms in J maximizes the
probability that the representation error H′x f [k] − yo[k] is a sample of N (o,R[k]), reached
for H′x f [k] = yo[k]. If the background and representation errors are independent from ea-
chother, which is almost ever assumed to be true, the joint probability of the separate events
is maximized by minimization of J .

If a suitable initial state x[0] has been obtained, the analyzed states are formed with a
model forecast:

xa[0] = x[0] , xa[k] = M( xa[k−1] ) , k = 1, . . . ,K (3.8)

The final analyzed state xa[K] is optimized given data from spatial different locations and
from different times in the interval (t [0], t [K]]. The variational approach is therefore often
referred to as 4D-var. Data from the period before t [0] is used implicitly if it was used to
form the background state xb. A common used approach is to set the background state to
xa[0], the last available analyzed state.

The minimization of the cost function is often based on quasi-Newton methods. These
methods require computation of the gradient of the cost function, which is simplified by
its quadratic form. The gradient is computed efficiently using the adjoint of the model
M. If the model is linear (M(x) = Ax), the adjoint is just the transpose A′, otherwise, the
adjoint is the transpose of the tangent linear model A = ∂M/∂x. For the large models used
in atmospheric research, the linear operator A is hardly ever available in a matrix form,
but is implicitly defined by a complex source code. The adjoint is therefore not simply
computed as a transpose, but is implemented as an adjoint operator in source code form.
The development of an adjoint used to be labor intensive work, but has been simplified
significantly by automatic differentiation tools such as TAMC (Giering and Kaminski, 1998)
or O∂YSSÉE (Rostaing et al., 1993).

After successful application of variational methods in operational weather forecast, 4D-
var techniques have become popular data assimilation tools in air pollution modeling too.
(Elbern et al., 1997) applied a 4D-var technique to the atmospheric chemistry model EURAD,
to test the possibilities of data assimilation for online forecast of smog levels. A cost func-
tion similar to (3.6) was used to optimize the initial concentrations for the model. The
variational approach is also suitable for offline parameter estimations. For this purpose, the
cost function is extended with penalties for the parameters to be estimated, to obtain their
optimal value during the assimilation interval. Examples of this approach in air pollution
applications are described in (Elbern et al., 2000), where emission rates of NOx and VOC
were included in the cost function, and (Houweling, 2000), for estimation of global methane
emissions.
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3.3 Linear filters

Where the variational method is based on minimization of a cost function within a time
interval, a filter analysis the state each time that data becomes available. In a linear filter, the
analyzed state is a linear combination of the forecast state and the data elements following
the equation:

xa[k] = x f [k] + K[k] d f
k , d f [k] = yo[k] − H′x f [k] (3.9a)

= (I − K[k] H′) x f [k] + K[k] yo[k] (3.9b)

The first form of the analysis equation (3.9a) reflects that the analyzed state is adapted
proportional to the residue; the second form (3.9b) reflects that the analyzed state is in
between the original state and the measurements.

The gain matrix K[k] describes how elements of the state should be changed given a
residue d f [k]. Each column of K acts as a point spread function, distributing the update
towards one single measurement over all elements of the state vector. Different methods are
in use to fill the gain matrix, from simple but cheap to sophisticated but expensive. Three
methods will be described, which are in some sense extensions to eachother: direct insertion
and/or blending, optimal interpolation, and the Kalman filter.

3.3.1 Direct insertion and blending

The method of direct insertion is based on replacement of state elements by data values.
Such a procedure is only possible if there is a one-to-one mapping between observed entities
and elements of the state, that is, each row of H′ has exactly one non-zero element, equal to
one. The gain matrix K for direct insertion is equal to a mapping from the measurement to
the state vector, which is just the transpose of H′:

KDI = H (3.10)

The columns of this gain are therefore discrete delta functions rather than point spread
functions. Apart from the major advantage of a very simple implementation, direct insertion
has almost only disadvantages. First, the method assumes that the measurements yo are
perfect and do not contain any measurement errors. If there is serious doubt about the
quality or the representiveness of the measurements, one could choose to insert a weighted
average of yo and H′x. This approach is called blending (Robinson et al., 1998), and is
formulated in terms of the gain matrix

KBD = α H , α ∈ [0,1] (3.11)

A second major disadvantage from which both direct insertion and blending suffer is the
lack of smoothness in the analyzed state. An analyzed state will show peaks at positions
where measurements are inserted, and this might lead to instabilities if the analyzed state is
propagated by the model. This problem is less important if the number of measurements is
large in comparison with the number of elements in the state.
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3.3.2 Optimal Interpolation

The assimilation method of optimal or statistical interpolation uses a gain matrix based on
an empirical covariance function or matrix. Basic assumption is that the difference between
the model forecast and the true state has a known, Gaussian distribution:

x f [k] − xt [k] ∼ N (
o,P f [k]

)
(3.12)

A similar assumption is made for the difference between the observed data and its true
value:

yo[k] − yt [k] ∼ N (o,R[k]) (3.13)

The idea of optimal interpolation (OI) is now to set the analyzed state to the conditional
mean of the true state given the observations:

xa[k] = E
[

xt [k] | yo[k]
]

(3.14)

Application of Bayes theorem to Gaussian distributions shows that this could be achieved
with a linear gain (Anderson and Moore, 1979):

xa[k] = x f [k] + KOI [k]
(
yo[k]−H′x f [k]

)
(3.15a)

where KOI [k] = P f [k] H
[

H′P f [k]H+R[k]
]−1

(3.15b)

Figure 3.1 illustrates the Bayes theorem in terms of probability densities. The gain matrix
KOI in (3.15b) is known under several names, such as conditional mean gain and minimal
variance gain. The first name simply refers to the result of the Bayes theorem, while the
second name refers to the property that the error in the analyzed state (3.15a) has the smallest
variance of all possible analyzed states ξ, if measured with the l2-norm:

E
[ ‖xt −xa‖2 | yo ] ≤ E

[ ‖xt −ξ‖2 | yo ] (3.16)

A problem is how to choose suitable covariance matrices P and R. The representation er-
rors between yo and H′x are often supposed to be uncorrelated, leading to a diagonal matrix
for R. The diagonal elements of R are just the squared standard deviations of the represen-
tation error, often set to a constant fraction of the data. For correlated measurements, one
could always switch to uncorrelated measurements with the transformation ỹ = R−1/2y.
Definition of an appropriate forecast error covariance is more complicated, and in fact the
main problem in every data assimilation problem. A simple choice for the forecast covari-
ance would be to let Pk be diagonal too. Forecast errors in two different state elements
are now completely uncorrelated. In case of the operator H′ observing only a single state
element per row, the net result of a diagonal Pk is a blending scheme (3.11), with for each ob-
served element i a different α i = pii/(pii +rii). Uncorrelated forecast errors are not common
practice, however. In geophysical models such as LOTOS, the patterns in the state vectors are
smooth over large spatial distances. Within these distances, the state elements are correlated
to eachother, and errors in their estimates are therefore likely to be correlated too. A suit-
able method to introduce correlations is the definition of a covariance function, defining the
covariance between two arbitrary entities in the state vector, located at arbitrary positions.
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Figure 3.1: Illustration of Bayes theorem for a scalar state x. The true value
xt is located somewhere on the axis. Two estimates of xt are available: the
observed data yo with yo −xt ∼N (o,R), and the model forecast x f with x f −
xt ∼ N (o,P). The minimum variance distribution for xt is now the normal
distribution with mean xa = x f +K(yo −x f ) and variance Pa = (1−K)P, for
gain K = P/(P+R).

A valid covariance matrix is then formed by evaluating the covariance function on a finite
grid. Useful introductions and applications of covariance functions are for example found
in (Daley, 1991), or, for covariance functions on a sphere, in (Gaspari and Cohn, 1999).
An often used approach in atmospheric applications is to define a covariance function with
a separate treatment of horizontal and vertical correlations. The horizontal correlations are
supposed to be isotropic (the same in each direction), although it is also possible to define a
stronger correlation in the direction of the wind (Rijshøjgaard and Källén, 1997). Vertical
correlations are often less strong due to the layered structure of the atmosphere. Once a
general structure of a covariance function has been defined, unknown parameters such as
correlation lengths and variances are obtained by fitting the function with measurements.
Fitting is based on the distribution of the innovation vectors, which should match:

d f [k] = yo[k]−H′ x f [k] ∼ N (
o , H′ P f (ρ[k]) H + R[k]

)
(3.17)

The vector ρ contains unknown parameters of the covariance function. The probability that
d f [k] is a sample from the distribution at the right hand side of (3.17) is maximized over ρ.
The parameters ρ could be estimated adaptively for each single analysis time. Dee (1995)
stated that for this approach, the number of measurements should exceed the number of
covariance parameters with at least a factor three. If this number is not available for each
analysis time, or temporal variations are just small, a suitable ρ could be obtained from time
series of residues, by minimization of the difference between their sample covariance and
the covariance matrix at the right hand side of (3.17).
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3.3.3 Kalman filter

The OI procedure described before has the disadvantage that for each assimilation time, the
user needs to specify the forecast error covariance, independent of previous times. However,
a large part of the current forecast error arises due to forecast errors made in the past. The
Kalman filter (Kalman, 1960) can be seen as an extension of the OI scheme, accounting for
the evolution of errors from previous times. Or, from a Kalman point of view, the OI method
is just a simplification of the Kalman filter, neglecting the time evolution.

The target of the Kalman filter is to obtain a distribution for the true state in terms of a
mean x̂ and covariance P, given the model and the measurements. The first step in a Kalman
Filter is specification of an initial distribution for the true state. Similar as for the OI scheme,
the distribution should be Gaussian:

xt [0] ∼ N (
x̂ f [0],P f [0]

)
(3.18)

The second step in the filter procedure is to specify the error between true state xt [k+1] and
the model forecast A[k] xt [k]. To simplify coming formulae we use the linear form Ax for the
model, instead of the general form M(x); the Kalman filter is in fact consistent for linear
models only. The model error should be described in terms of a Gaussian distribution:

xt [k+1] − A[k] xt [k] ∼ N (o,Q[k]) (3.19)

or, equivalent:

xt [k+1] = A[k] xt [k] + ηt [k] , ηt [k] ∼ N (o,Q[k]) (3.20)

The model error ηt is supposed to be independent of xt , and should cover all possible devi-
ations of the model forecast from the true state. Typical errors included in ηt are unknown
boundary conditions, uncertain model parameters, or just chaos. How to specify the model
error correctly is the most difficult task in a filter procedure. For the moment we assume
that a suitable definition is available, a more detailed description is given in §3.5. Given
the stochastic model (3.19/3.20) and the initial condition (3.18), the Kalman filter is able to
compute a probability density of the true state at any time in future. The stochastic model
(3.20) completely defines the evolution of the distribution of the true state:

x̂ f [k+1] = E
[

xt [k+1]
]

= A[k] x̂ f [k] (3.21a)

P f [k+1] = E
[

(xt [k+1]− x̂ f [k+1])(xt [k+1]− x̂ f [k+1])
′ ]

= A[k] P f [k] A[k]′ + Q[k] (3.21b)

since

xt [k+1]− x̂ f [k+1] = A[k] xt [k]+η[k] − A[k] x̂ f [k] (3.22a)

= A[k] (xt [k]− x̂ f [k]) + η[k] (3.22b)

The third step in the filter is the analysis of data. If observations are available, the mean
and covariance should be replaced by analyzed equivalents given the new information.
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Thereto, a model should be specified for the representation error between observed data
and true value, similar as for the OI scheme:

yo[k] − H′ xt [k] ∼ N (o,R[k]) (3.23)

or, equivalent:

yo[k] = H′ xt [k] + vt [k] , vt [k] ∼ N (o,R[k]) (3.24)

If the mean is analyzed with a linear gain K, an analysis equation for the covariance is
simply derived too:

x̂a[k] = x̂ f [k] + K[k] (yo[k]−H′ x̂ f [k]) (3.25a)

Pa[k] = E
[

(xt [k]− x̂a[k])(xt [k]− x̂a[k])′
]

= (I−K[k]H) P f [k] (I−K[k]H)′ + K[k] R[k] K′[k] (3.25b)

since

xt [k] − x̂a[k] = xt [k] − x̂ f [k] − K[k] (yo[k]−H′ x̂ f [k]) (3.26a)

= xt [k] − x̂ f [k] − K[k] (H′xt [k]+vt [k]−H′ x̂ f [k]) (3.26b)

= (I−K[k]H)(xt [k]− x̂ f [k]) + K[k] vt [k] (3.26c)

A common used choice for K is to use the minimal-variance or conditional-mean-gain, as
used in the OI scheme too:

KMV [k] = P f [k] H
[
H′ P f [k] H + R[k]

]−1
(3.27)

With this gain, equation (3.25b) for the analyzed covariance reduces to a simpler form:

Pa,MV =
(
I − KMV H

)
P f = P f

(
I − H KMV ′)

(3.28)

Why making a difference between a general and the minimal-variance-gain, if the later
provides simpler equations and an analysis with minimal variance? The minimal-variance-
gain (3.27) is the result of a pure algebraic minimization, based on the idea that the forecast
and representation error covariances are exactly described by P f and R. If one of these is
known to be inaccurate, however, a gain matrix different from (3.27) might be used if there
are good arguments to do this. As an example, the common used low-rank approximations
for the covariance matrix P f (chapter 6) suffer from spurious correlations between elements
which are in practice uncorrelated. To not let these correlations disturb the filtering process,
the gain might be formed from a covariance matrix from which the spurious elements are
removed (Houtekamer and Mitchell, 2001). Another example is the gain matrix used in
the POENKF filter described in §6.7, which is constructed out of two different covariance
matrices. In both cases, equation (3.25b) should be used to analyze the covariance matrix
rather than (3.28). After (Bucy and Joseph, 1968), equation (3.25b) is sometimes called the
Joseph form of the covariance analysis. The Joseph form is computational more expensive
than the minimal variance form, but is less sensitive to roundoff errors in the gain.
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The final result of the Kalman filter using the minimal variance gain is a time series of a
mean and covariance of the true state, equal to the conditional mean and covariance given
all available data from the past:

x̂a[k] = E
[

xt [k] | yo[k],yo[k−1], . . .
]

(3.29a)

Pa[k] = E
[

(xt [k]− x̂a[k])(xt [k]− x̂a[k])′ | yo[k],yo[k−1], . . .
]

(3.29b)

The power behind the Kalman filter algorithm is that this is achieved with a sequential
procedure. Once initialized, the filter is able to compute the result for t [k+1] given entities
from t [k] only. The total Kalman filter procedure is in fact not very different from the OI

procedure. The only difference is the origin of the forecast covariance. In OI, the user should
specify this matrix for each time step, or simply assume that it is time independent. In the
Kalman filter, the forecast covariance is specified only once at the initial time, and then
propagated ’automatically’ by the filter. Automatically is quoted here, since the problem of
specification of the forecast covariance has been replaced by the problem of specification
of the model error. Besides, the ’automatic’ propagation is not cheap. The propagation of
the covariance in eq. (3.21b) requires 2n evaluations of the model A, which is expensive
or even impossible if n becomes large. For air pollution models such as LOTOS, the size n
of the state vector is O(104

)
, and approximations to the original Kalman filter should be

considered; an extensive discussion of approximate filters is left for chapter 6.
An important property of the Kalman filter is the conservation of Gaussian probabilities

in case of a linear model. Both the forecast equations (3.21) and the analysis (3.25) preserve
an initial Gaussian distribution for the true state, independent of the contents of the linear
model A and the gain K. This property is lost if the model is nonlinear, however. For
a general nonlinear model M(x) instead of the linear form Ax, the propagation (3.21) of
mean and covariance could be approximated. nonlinear methods are discussed in detail in
chapter 7.

3.4 Kalman filter versus variational methods

An important difference between 4D-var and Kalman filtering is the form of the final result
(figure 3.2). 4D-var provides an assimilated result in the form of piece-wise model evalu-
ations, with discontinuities at the assimilation intervals; the Kalman filter provides a result
in terms of a mean and covariance. The filter mean is comparable with the 4D-var state, but
differs at two points: the mean is discontinuous at each time step where data is available,
and in between, the mean is only the result of a model evaluation if the model is linear. It
is possible to show that for linear models and a quadratic cost function J as in (3.6), the
4D-var state at the end of the time interval is equal to the analyzed filter mean, if the same
data and representation error covariance is used.

The availability of a mean and covariance for the true state is an important advantage of
the Kalman filter. The covariance is a measure for the expected error in the state elements.
A description of the quality is therefore included in the result. Time series of the covariance
provide useful insight in how errors introduced in certain parts of the state evolve in time,
and whether these become dominant or just fade away.
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Figure 3.2: Illustration of assimilation with 4D-var and Kalman filter. 4D-
var provides an assimilation result in terms of a discontinuous model eval-
uation; the initial state at the start of a time interval is optimized to match
with the measurements in the interval. The Kalman filter provides a result in
terms of a mean and covariance, discontinuous at each time step that data is
available.

Both the Kalman filter and the variational methods are suitable to be used in online fore-
cast applications. Nowadays operational weather forecast are based on the 4D-var approach,
as a follow up of the OI (3D-var) techniques used before. There is a tendency to extend the
assimilation procedure with Kalman filter techniques, however, for example to obtain use-
ful background covariances for the cost function. Application of the Kalman filter to the
large models in use for weather forecast has been facilitated by the introduction of low-rank
approximations, discussed in chapter 6. For offline applications such as parameter estima-
tions, the variational approach is often favored due to its clear insight in how parameters
are optimized, by comparison of model forecasts based on certain parameter values with
measurements. The Kalman filter could be used for parameter estimation too, by implemen-
tation of a Kalman smoother, described in §3.6. The theory behind the Kalman smoother is
less clear than that for the variational method, however.

The effort to be put in the implementation is very different for the two approaches. For the
4D-var approach, a vast amount of time should be spent on building the adjoint code. This is
a difficult and labour intensive work, although it has been facilitated by the introduction of
automatic differentiation tools. Every minor change in the model could effect the adjoint,
and maintenance of both codes should be matched carefully. Compared with 4D-var, a
Kalman filter is in general quite simple to implement, since only the forward model is in
use. The computational costs are hard to compare; for the Kalman filter these are dominated
by the propagation of the covariance matrix, and for 4D-var by the number of iterations
required for minimization of the cost function. Data assimilation with either 4D-var or the
Kalman filter is expensive anyway, and effort has to be put in keeping the methods feasible.

For this research, the Kalman filter was chosen as the data assimilation tool for LOTOS.
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Not needing to build an adjoint model was seen as a major advantage here, since an adjoint
of the chemistry model is complicated. Other advantages of the Kalman filter which were
considered are the availability of an analyzed covariance, describing the quality of the result,
and the simple introduction of uncertainties in model parameters, described in the next
section.

3.5 Stochastic model for the Kalman filter

A critical step in the assimilation procedure, present in both the Kalman filter and 4D-
var, is the development of criteria for model errors, in the form of a stochastic model or
a cost function. The user should quantify the error in model entities which are believed
to be uncertain, such as initial states and model parameters. Also the representation errors
for comparison with measurements need to be quantified. The description of the errors
completely defines the result of the assimilation procedure, and is therefore more important
than the method actually implemented. In spite of this importance, descriptions of data
assimilation systems tend to describe ’technical’ details about filter implementation and
adjoint codes first, followed by a short description of the error model used (an approach
followed in this chapter too). One reason for the lower attention paid to the error model
is that for most applications hardly any knowledge about the errors is available. Insight is
obtained itterative, by application of an error model with the chosen assimilation scheme,
investigation of the results, changing the error model according to the results, etc.

The stochastic model (3.19) required for the Kalman filter is based on a specification of
the error made by the deterministic model. That is, if the model is fed with the true initial
state, what should be added to the model forecast to obtain the true state? For the LOTOS

model L defined in (2.3), the quest for the stochastic model is thus to define the contents of
the vector η[k] such that:

ct [k+1] = L(ct [k], t [k]) + η[k] , η[k] ∼ N (o,QL) (3.30)

The error term η[k] should quantify all possible difference between c[k+1] and L(c[k], t [k]),
present due to imperfectness of the chemistry/advection/diffusion/deposition operators, the
finite grid, uncertainties in the injected emissions, interpolations in the meteorological input,
errors in the landuse database, etc. Although the degree of freedom in η is in theory equal
to n, the modelled degree is often smaller. If for example strong spatial correlations exist
between the elements of the state, the bulk of the forecast error could be described in a
limited number of modes. The stochastic model is therefore written in the form:

ct [k+1] = L(ct [k], t [k]) + GL[k] w[k] , w[k] ∼ N (o,I) (3.31)

where GLGL′ = QL and w is white noise vector (uncorrelated in time) with a number of
elements equal to the degree of freedom in η. Stochastic models of this form are for example
obtained from an analysis with empiric orthogonal functions (EOF’s). In this approach,
the columns of the matrix GL are filled with the dominant singular vectors of a sample
covariance, computed over a large batch of model states. A stochastic model based on
EOF’s is the basic idea behind the SEIK filter (see §6.5.2). Another way to fill the matrix
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GL is to use prior knowledge about uncertainties in the state. The concentrations of emitted
components are for example highly uncertain, since spatial and temporal variations in the
emissions are rather unknown (see §2.4.4). The uncertainty in emissions could be modelled
according to:

et [k] = e[k] + Ge w[k] , w[k] ∼ N (o,I) (3.32a)

where e contains the deterministic emissions, et is the true value, and Ge distributes the
noise w over the emission array. Emissions are simply injected into grid cells, and the effect
of the uncertainty on the concentration array could be modelled with:

ct [k+1] = L(ct [k], t [k]) + Γe Ge w[k] (3.33)

where matrix Γe assigns the emissions to elements of the concentration array. If the emis-
sions are subject to fast chemistry, the matrix Γ should account for changes in other than
emitted components too. This could be achieved by the development of a special chemistry
model, describing the impact of variations in emitted components. For the strong nonlinear
chemistry, this is hard to achieve without knowledge of the prior chemical state, however.
A better method is therefore to treat the emissions as a model input and to define these as
stochastic, instead of adding the error caused by uncertain emissions afterwards:

ct [k+1] := L(ct [k], t [k],et [k])
= L(ct [k], t [k],e[k]+Gew[k]) , w[k] ∼ N (o,I) (3.34)

This approach will be used in chapter 4 to build a stochastic model around the LOTOS model:
uncertainties are assigned to a model parameter, and the stochastic parameter is used as in-
put to the model.

A disadvantage of modeling uncertainties using a white noise input w is the introduc-
tion of rapid fluctuations, since w is uncorrelated in time by definition. To specify a more
smoothed uncertainty, a colored noise process γ could be used instead of w (Jazwinski,
1970). In scalar form, a colored noise process satisfies the equation:

γ [k+1] = α γ [k] +
√

1−α 2 σ w[k] , w[k] ∼ N (0,1) (3.35)

If the time correlation parameter α is set to zero, the colored noise process is just equal to
a white noise process with zero mean and variance σ2. For α ∈ (0,1), a sample γ [k] has a
probability relative to α to be close to γ [k−1] since the expected value is equal to α γ [k−1] and
the variance is small (less than σ2). The expected mean and variance over a long (infinite)
time period are equal to zero and σ2 respectively, however. For an α equal to one, γ [k]
becomes a constant value; to ensure that a large batch of samples of γ remains a variance
of σ2, the initial sample, e.g. γ [0], should be random distributed with the desired statistics.
The autocorrelation of the colored noise process is equal to E [ γ [k+l] γ [k] ] = α l . Definition
(3.35) is easily extended from a discrete time process γ [k] to a continues time process γ (t),
with the discrete processes formed from samples of γ (t) on tk, tk+1, etc. If the time step
between two samples is not constant, the parameterization α = exp(−|tk+1 − tk|/τ ) could
be used to obtain a stationairy autocorrelation function, and γ (t) has become the common
used Ornstein-Uhlenbeck process (Jazwinski, 1970). A generalization from scalar γ to a
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vector γ is easily made if the elements of the vector are independent of eachother. In that
case, α and σ are replaced by diagonal matrices. If some kind of correlation is assumed
between the elements of γ, full matrices Aγ and Gγ should be defined as the counterparts
of α and σα = σ

√
1− α 2. To keep the notations simple, we will adopt the convention that

elements of a vector γ are uncorrelated and all have the same time-correlation parameter α
and variance σ2, thus Aγ is equal to α I and Gγ = σα I.

3.6 The Kalman smoother

Given a stochastic model for dynamics and observations, the Kalman filter is able to com-
pute the optimal estimate of the current state given all data from the past. Future measure-
ments are not taken into account. For online forecast applications this is not a problem, since
these are not available anyway. However, for offline applications such as parameter estima-
tions, not taking into account data from after the analysis time is a serious disadvantage of a
filter. Data from behind the analysis time is sometimes the only source of information about
the value of a parameter at the analysis time. For example, emissions released at a certain
moment are only visible in measurements after the time required to travel from source to
receptor. The problem of not taking into account future data is less strong if parameters are
estimated in a 4D-var context, since the cost function could be configured to estimate an
initial value at the begin of a time interval given the data in the rest of the interval. With a
special form of the stochastic model, the same result could be achieved in a Kalman context;
the ’filter’ is then called a smoother. For an extended description of smoothing in terms of
Bayesian statistics we refer to (Evensen and van Leeuwen, 2000).

The general idea in a Kalman Smoother is to augment the state vector with the values
of parameters in the past. For example, the state could exist of the concentration array of
LOTOS at t [k] augmented with a parameter vector λ0 valid for t [0]:

x[k] =
(

c[k]

λ0

)
(3.36)

With a well designed stochastic model, the Kalman filter is able to compute the covariance
of the true state:

P f [k] =
(

Pcc[k] Pcλ 0
[k]

Pcλ 0
[k]′ P λ 0 λ 0

)
(3.37)

where Pcc and Pλ 0 λ 0
describe the covariances of c and λ0 respectively, and Pcλ 0

the covari-
ance between c and λ0. If the later is specified correctly, a measurement of a concentration
provides information about the parameters at t [0]. Analysis of measured concentrations leads
to a more accurate estimate of the concentration array c, and thus, via the correlations in the
covariance, also to a more accurate estimate of λ0. A suitable stochastic model to achieve
this is the following:(

c[k+1]

λ0[k+1]

)
=

( L(c[k],λ0[k])
λ0[k]

)
, λ0[0] ∼ N (

o,P λ 0 λ 0

)
(3.38a)

≈
(

AL BL
O I

)(
c[k]

λ0[k]

)
+
(

O
δ 0kGλ 0

)
w[k] (3.38b)
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Figure 3.3: Illustration of parameter estimation with a fixed point Kalman
smoother. The constant parameter λ 0 with unknown value is correlated with
a concentration c(t), for which 2 measurements are available. The smoother
provides estimates of parameter and concentration in terms of a mean and
covariance; if the covariance between λ 0 and c(t) is computed correctly, as-
similation of the data narrows the estimation band towards the true value.
The exact value of λ 0 will never be known since the measurements contain
random errors.

where λ0[k] is an estimate of λ0 made at t [k]; matrices AL and BL denote linear approxima-
tions of L with partial derivatives to c and λ0 respectively. The covariance Pλ 0 λ 0

= Gλ 0
Gλ 0

′

is an initial guess for the covariance of the true value of λ0; for simplicity we assume a zero
mean. The discrete Dirac function δ 0k is 1 for k = 0 and 0 elsewhere. The stochastic model
(3.38) describes that our best estimate of λ0 at t [k+1] is the same as the previous estimate,
since no extra information has become available between t [k] and t [k+1]. If a Kalman filter
is applied to this model, the mean and covariance for λ0 are equal to the initial guesses
o and Pλ λ until measurements of concentrations are assimilated; see the illustration in fig-
ure 3.3. A Kalman smoother in this configuration is called a fixed point smoother: data is
assimilated to estimate entities at a single moment in the past.

The fixed point smoother could be extended to estimate parameters at multiple times,
by augmenting the state with a time series of parameters. The covariance matrix should
then describe the covariances between the concentration array and all previous values of the
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parameter. A suitable stochastic model is the following:


c[k+1]

λk+1[k+1]

λk [k+1]

λk−1[k+1]
...


 =




L(c[k],λk [k])
w λ [k]

λk [k]

λk−1[k]
...


 , w λ [k] ∼ N (

o,P λ k λ k
[k]
)

(3.39)

or, with a colored noise model for λ[k]:


c[k+1]

λk+1[k+1]

λk [k+1]

λk−1[k+1]
...


 =




L(c[k],λk [k])
α λk [k]

λk [k]

λk−1[k]
...


 +




O
σα I
O
O
...


 w[k]

x[k+1] = M(x[k]) + G w[k]

(3.40)

Application of the Kalman filter to this stochastic model provides estimations λk [k+l] of the
parameters λ[k] given data up to t [k+l], for lags l = 0,1,2, . . . . The distribution of the lag-zero
estimate λk[k] should be prescribed by the user. The estimates are likely to converge after a
number of analyses, since in typical application the impact of a parameter fades to zero after
a while; see illustration in figure 3.4. In (Cohn et al., 1994) this property is used to build
a fixed lag smoother, where the state contains parameters over a fixed time interval only.
The lag is comparable with the length of the assimilation interval in 4D-var. A difference
between 4D-var and the fixed lag smoother is that the smoother provides estimates at each
discrete time, while in most 4D-var applications, only estimates valid for an entire interval
are made.

The quality of smoothed estimates is determined by how accurate the smoother computes
the covariance matrix. Accurate computation is complicated by nonlinearities in the model,
although this is not necessarily a problem if computation time is no constraint (see discus-
sion about nonlinear methods in chapter 7). Another complication for the smoother is the
use of approximate covariance matrices, if the full covariance matrix is too large to store.
For example, the low-rank approximations used in this research (chapter 6) suffer from
truncation of smaller correlations. In a low-rank Kalman smoother, more effort needs to be
taken to remain at least the strongest temporal correlations. The number of parameters in the
augmented state vector should therefore not be too large, to keep storage and preservation
of the correlations feasible.
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Figure 3.4: Illustration of parameter estimation with a fixed lag Kalman
smoother. Estimates of the mean and standard deviation of λ [k] are available
for different lags l = 0,1,2, . . . . The upper panel shows how these estimates
would look like if the impact of a stochastic λ [k] is visible in the measurements
for the first time at t [k+2], and fade away after t [k+7]. The lower panel shows
a possible time series for the true value of λ [k] (solid), and estimated mean
plus and minus standard deviation (dashed). Up to lag 2, the estimation is
equal to the first guess, here a zero mean and constant standard deviation.
The quality of the estimate becomes more accurate for larger lag length. In
this example, the estimate is not improved any more after lag 7.



Chapter 4

Application, part I: UK experience

A data assimilation technique based on a Kalman filter has been applied in
combination with the tropospheric chemistry model LOTOS. Experiments with
simulated ozone measurements show that the filter is able to account for uncer-
tainties in emissions of NOx and VOC, photolysis rates, and deposition veloc-
ity of ozone. The uncertainty in most of these parameters is reduced significant
by the assimilation of ozone measurements only; accurate estimation of VOC
emission requires measurements of other components too. A combination of
uncertain parameters is necessary for application with measurements from an
observational network. 1

4.1 Introduction

For application of a Kalman filter to the LOTOS model, a stochastic model should be speci-
fied for the model error. The stochastic model should describe the difference between model
forecast and true state, if the forecast is made from the true initial state. Given this specifi-
cation, the Kalman filter is able to assimilate measurements in the LOTOS model. The goal
of the research described in this chapter is to identify an appropriate stochastic model.

Traditionally, the stochastic model describes the covariances between all elements of the
state vector in terms of a covariance function, relating errors in one element of the state to
errors in other elements. Early operational data assimilation schemes based on optimal inter-
polation used covariance functions to obtain optimal initial conditions for, for example, nu-
merical weather prediction. Many covariance functions are based on simple parameteriza-
tions of standard deviation and spatial correlations. An approach often used in atmospheric
applications is to separate horizontal and vertical correlations, with an isotropic correlation
function in the horizontal (Daley, 1991). For use in 4D-var or Kalman like assimilation
schemes, it is possible to extend the covariance function with temporal variations (Eskes
et al., 1999). The unknown parameters in the covariance such as correlation lengths are
obtained from fitting towards measurements (Dee, 1995; Mitchell and Houtekamer, 2000);
a large number of spatially distributed measurements should be available to estimate the
correlation parameters correctly. For the LOTOS model with ozone as the main element in
the state, a natural choice for the stochastic model would be a specification of covariances

1Partly in Modeling and prediction of environmental data in space and time using Kalman filtering by A.W.
Heemink and A.J. Segers. Submitted to Stochastic Environmental Research and Risc Assessment.
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between ozone concentrations, since the available measurements concern ozone too. A co-
variance model for ozone concentrations only is not enough to specify the total model error,
however. Ozone on its own has only a limited life time in the troposphere due to the strong
deposition. Transport of ozone is therefore not able to explain smog episodes; also chem-
ical production has to be taken into account. A useful covariance model should therefore
include covariances between ozone and its precursors NOx and VOC. Measurements of
precursor components are however sparse (VOC) and/or hardly comparable with the LOTOS

state (NOx), such that covariances between these components are hard to estimate. The
complex chemical relations with large spatial and temporal differences gives rise to doubt
about the existence of a simple covariance function anyway.

Instead of using a stochastic model based on correlations between measurements, a stochas-
tic model could be based on correlations in the model output too. Pham et al. (1998) applied
this idea by using empiric orthogonal functions (EOF’s) to describe the initial error for an
oceanographic model; see also section 6.5.2 about the SEEK filter. The EOF’s are obtained
from long time series of model states. A similar approach based on principal oscillation
patterns (POP’s) was used in (Hasselmann, 1988). In both methods, spatial correlations are
expressed in a limited number of modes, obtained from time series of model states, with
optional temporal varying weights. This approach has the advantage that the user does not
need to specify the correlations explicitly; instead, they have been defined implicitly in the
model equations. The strong varying chemistry in LOTOS, with different regimes over small
distances and time scales, complicates expression of all correlations in a small number of
modes.

Instead of prescribing the covariance between all elements of the state, the stochastic
model could be limited to a small part of the state only, if uncertainties in these elements
are the major source of model errors. An example is the value of boundary conditions in
transport problems. For water level prediction in the North Sea, (Verlaan and Heemink,
1997) defined a stochastic model for the error in the open boundary at the Atlantic Ocean.
The error at the boundaries is propagated by the model through the complete domain, au-
tomatically building a time dependend covariance. The same approach could be used for
specification of errors in other model parameters, not necessary included in the state. If the
boundary values are set according to an input data set, for example obtained from a course
resolution model, the stochastic model is in fact defined for the input data, which happens
to be coupled directly with state elements. Without loose of generality, the stochastic model
could be limited to other parameters than the boundary model too, as long as there is some
relation with the state elements.

For an air pollution model, a natural choice for a stochastic model based on errors in pa-
rameters is to define uncertainties in emissions. Except that emissions are the driving force
behind pollution events, they are also highly uncertain on spatial and temporal scale. Be-
sides, policy makers show large interest in estimation of quantitative emissions strengths, in
order to know who to blame for certain pollution events. Stochastic models based on uncer-
tain emissions are therefore common use in air pollution applications. Stochastic varying
emissions were for example used in (Zhang et al., 1999) for estimation of the methane
budget emitted from Europe using a Kalman smoother. In a 4D-var context, stochastic
emissions were used in (Elbern et al., 2000) for assimilation of measurements in a high res-
olution air quality model, and in (Houweling, 2000) for estimation of the methane budget
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from rice fields and wetlands. Since emissions are often injected in the bottom layers of
these models, the stochastic model is in some sense still applied to the boundary conditions.
The same would hold for the deposition model, if defined stochastic; deposition is just an
outward flux through the bottom of the model. Other uncertain parameters are however
clearly distinct from the elements in the state vector, such as photolysis and reaction rates.

With a stochastic model based on the definition of uncertain parameters, an assimila-
tion procedure is able to produce an optimal estimate of the parameters given the measure-
ments. In the Kalman filter context, parameter estimation is performed by simply augment-
ing the state vector with the uncertain parameters, leading to a Kalman smoother instead of a
Kalman filter (see §3.6). Investigation of time series of estimated parameters might point to
structural biases in the underlying system, for example an underestimation of certain emis-
sion categories. The results should be interpreted carefully, since the stochastic model might
not cover all existing errors, and the uncertain parameters are blamed for errors which are
not their fault. The opposite is true for a stochastic model based on a covariance function of
the state, which is able to cover all errors in the model but hardly provides any information
about their origin. For assimilation during online forecast this is no problem, since a proper
initial state is more important for a short range forecast than insight in model dynamics.
Analysis of time series of initial states might point to biases in the model on long term,
leading to a better understanding of dynamics, but this is not a primary target. However, a
stochastic model with uncertain parameters provides insight in the dynamics immediately.
If this leads to a better forecast skill, this gives additional thrust in the result.

Since online forecast of ozone concentrations is no topic in this research, while model
improvement is, the stochastic model for LOTOS will be based on uncertain parameters. A
description of the LOTOS version used in this study is given in §4.2. Three groups of uncer-
tain parameters are considered: for emissions, photolysis rates, and deposition. Stochastic
models based on these groups of parameters or on combinations of them are examined dur-
ing filter experiments with simulated data (§4.3). Finally in §4.4, the Kalman filter is applied
in combination with ozone data from a measurement network.

4.2 Experimental setup

The LOTOS model used in this study is a spatial limited version of the model described
in chapter 2. The model domains was limited to an area of 12 × 12 grid cells covering
England and Wales (figure 4.1). This area was selected for its rather isolated location,
which ensures that most air pollution phenomena arise due to local conditions. The bulk of
the NOx and VOC load are emitted from local sources; only long periods of eastern wind
lead to a substantial inflow of pollutants from the continent. Another important property of
the selected area is that a large number of ozone measurements from rural sites is available
(p. 191).

A 6 day period from august 5 till august 10 1997 was selected as a test period. In the days
before, a strong western wind has filled the area with clean air from the Atlantic; a high
cloud cover has limited the production of ozone. From august 5, a period with advection
from the east and/or the south occurred; clear sky conditions lead to high ozone levels
during the last three days of the period. The initial state was taken from a three week model
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simulation using the maximum domain.

The purpose of this research is to test the impact of several uncertain parameters. There-
fore, the stochastic model takes the general form (3.40) for variations in model parameters,
smoothed up to lag 1:


 c[k+1]

λk+1[k+1]

λk [k+1]


 =


 L(c[k],λk[k], t [k])

α λk[k]

λk [k]


 +


 O

σα I
O


 w[k]

or x[k+1] = M( x[k], t [k] ) + G w[k]

(4.1)

In here, c denotes the concentration array, and L the LOTOS model described in §2.4. The
white noise input w forces a colored noise process λ, which operates on parameters in
the model. The exact size of λ depends on which parameters in the model are considered
to be stochastic. For each element of λ, different values for time correlation parameter
α = exp(−1/τ ) and standard deviation σα = σ

√
1− α 2 might be used. Augmentation of the

state with λk[k] and λk−1[k] ensures that the value of the parameters used during assimilation
could be estimated. The model state is to be compared with observations yo according to
the equation:

yo[k] = H′x[k] + v[k] (4.2)

The observation operator H′ assigns the ozone level in the surface layer of a grid cell to an
observation; v is the representation error. The output of the Kalman filter is a mean and
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Figure 4.1: Domain of the test region and location of the measurement sites
(left). The pattern in the background shows the spatial distribution of emis-
sions. The panel on the right shows the initial wind field for august 5, 1997,
0:00.
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covariance of the true state, given the previous observations:

x̂[k] = E
[

xt [k] | yo[k],yo[k−1], . . .
]

(4.3a)

P[k] = E
[

(xt [k]− x̂[k])(xt [k]− x̂[k])′ | yo[k],yo[k−1], . . .
]

(4.3b)

To deal with the expected nonlinear character of the general model M, all experiments are
performed with an ensemble filter (see chapter 6 for a description). This type of filter is able
to provide the correct solution to the filter problem up to any desired accuracy. The ensem-
ble filter requires a number of O(102

)
independent evaluations of the model M, which is

usually very expensive. For our experiments with small domain and short time period, the
computation time is no constraint, however. Less expensive filters will be considered when
a suitable definition of the stochastic model is found.

4.3 Assimilation with simulated data

This section describes the setup and result of filter experiments with simulated data. Mea-
surements are drawn from simulations with a model in which certain model parameters
contain random errors; if the filter is able to reconstruct these errors, it is in theory possible
to detect the same kind of errors in the model given data from an observation network. The
uncertain parameters considered here are emissions, photolysis rates, and deposition.

4.3.1 Uncertainties in emissions

Of all emissions present in the LOTOS model, the emissions of NOx, VOC, and CO are
the most important for the formation of summer smog. Sulfur oxides are related to winter
smog, while methane is related to the background chemistry; uncertain emissions of these
components are therefore not considered here.

NOx emissions In a first experiment, the emissions of NOx have been modelled uncer-
tain. With ēNOx the deterministic value of the NOx emission in a grid cell, the stochastic
emissions are modelled according to:

eNOx [k] = max( 0 , ēNOx [k](1 + λ NOx [k])) (4.4)

The standard deviation σ of λ is set to 30% and the time correlation parameter τ to 24
hours. All emissions are varied with the same factor; the size of the noise input w in (4.1) is
therefore equal to one.

Figure 4.2 shows the variations in NO, NO2, and O3 due to this uncertainty, simulated for
site Ladybower. Variations in NO during day time show a strong correlation with variations
in the other two components; during the night, NO concentrations vanish immediately due
to reaction with ozone. Since almost all NOx emissions concern NO, variations in these
emissions during the night can not be detected directly, but only through impact on other
components such as NO2 and ozone. Note the smoothing impact of the chemistry; where
NO and NO2 sometimes show rapid fluctuations, the variations in ozone are smooth.
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Figure 4.2: Selected results of assimilation experiment with uncertain NO
emissions in site Ladybower. Figures on the left show ground concentrations
of NO2, NO, and O3: first-guess plus and minus one sigma (thin), simulated
truth (thick), simulated measurements (dots); assimilation falls together with
truth and is therefore omitted. Figures on the right show corresponding errors
between model or filter and ’truth’: first-guess and one-sigma bounds (thin),
and similar after assimilation of the simulated NO2 measurements (thick).

For assimilation, a random ’truth’ is generated with a model using random disturbed NOx

emissions (solid lines in figure 4.2). From the ’truth’ run, measurements of NO2 are simu-
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lated for sites Narberth and Ladybower, including a measurement error of 0.5 ppb. The filter
is able to follow the NO2 measurements perfectly. Errorbounds are decreased from 5 ppb
before assimilation to about 1 ppb afterwards. Similar results are obtained for NO and O3,
indicating that the filter is able to determine the correlation between these components and
NO2. Due to the rather simple setup of the stochastic model (emissions disturbed with the
same factor everywhere), the results are similar for other locations on the grid. Decreasing
the errors in Ladybower and Narberth immediately leads to a similar decrease in other grid
cells.

If the experiment is repeated using measurements of O3 instead of NO2, similar results are
obtained. Errors after assimilation are slightly larger since the model errors are observed
less direct. If the NO load is the only uncertainty in the model, assimilation of ozone
measurements is therefore suitable to reconstruct the correct NO level.

VOC emissions In a second experiment, the emissions of VOC have been modelled as
uncertain. A complication involved with uncertain VOC emissions is that measurements
of hydrocarbons are much more seldom than for example NOx measurements. Harwell is
the only rural station in the domain where hydrocarbons are measured; other stations are
located in city centers. Besides, it is difficult to relate measurements of hydrocarbons with
the CBM-IV components in the LOTOS state. CBM-IV expresses hydrocarbons in reactive
groups rather than molecules (see appendix A). Of the 24 organic compounds measured in
Harwell, only ethene could be mapped directly to CBM-IV and vice versa. In addition, the
aromatic components TOL and XYL could be compared with summed measurements of
toluene and ethylbenzene, respectively m+p-xylene and o-xylene. Another strategy could
be to divide the measured components into their reactive groups, and add these together.
The obtained CBM-IV ’concentrations’ are a minimum for the real values, since the mea-
surements probably do not cover all hydrocarbons present in the atmosphere. Assimilation
of hydrocarbon measurements is therefore no serious option, except for eventually ethene.
Instead, the impact of VOC on other components (O3 and NOx) is considered.

The VOC emissions have been modelled stochastic similar as in eq. (4.4) for the NOx

emissions (standard deviation of 30%, decorrelation period τ =24 hour). Measurements of
O3 have been generated from a model run with random noise input (’truth’), including an
error of 0.5 ppb. Figure 4.3 shows the result for the site Harwell. The total concentration
of organic compounds is expressed in the number of carbon atoms per billion (ppbC), by
adding concentrations of all carbon bonds in the state, weighted by the number of carbon
atoms (table A.1). The total carbon load shows a sharp diurnal cycle. High emissions during
the day lead to a rise of the carbon load; after sunset, organic compounds are lost to higher
model layers. Emissions during the night are not able to compensate for the upwards flux,
although these are injected into a thin and stable layer. The error in VOC concentrations due
to noisy emissions therefore decreases during the night. The uncertain VOC emissions lead
to uncertain ozone concentrations, but only during daytime; presence of sunlight is essential
for the transformation of NO into NO2 after degradation of VOC.

Provided with measurements of ozone, the filter is able to reduce the error in the VOC
load during the day from σ = 20 to 10 ppbC. The largest decrease of the error takes place
during sunrise, when the impact of the uncertain VOC load is noticed in the ozone con-
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Figure 4.3: Selected results for assimilation experiment with uncertain VOC
emissions (time series for Harwell).
Figures on the left show ground concentrations of VOC and O3: first-guess
plus and minus one sigma (thin), simulated truth (thick, solid), simulated
measurements of O3 (dots), and assimilated mean (thick, dash/dot). Figures
on the right show corresponding errors between model or filter and ’truth’:
first-guess and one-sigma bounds (thin), and similar after assimilation of
ozone measurements (thick). The figure on the lower right shows the error
in VOC concentration for a similar experiment but in addition assimilation
of ethene concentrations too.
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centrations. Assimilation of ozone measurements only is not able to reconstruct the VOC
load completely however, which was possible for the NOx load when NO emissions were
considered uncertain. Ozone and VOC’s are not as tightly coupled as ozone and NOx, and
without additional information about the VOC composition, a better reconstruction is not
possible. The lower right panel of figure 4.3 shows how the error in the VOC load might be
reduced if measurements of ethene are assimilated (similar experimental setup, with a new
random truth to simulate the measurements). The simple setup of the stochastic model en-
sures that errors in concentrations of carbon bonds are strongly correlated, and assimilation
of ethene measurements leads to improved estimates of all other carbon bonds as well.

Emissions of NOx, VOC, and CO During a third experiment, noise was included in the
emissions of NOx (σ = 30%) and VOC (50%), and in addition, to the emissions of CO
(30%). The uncertainty in VOC was increased since these emissions are in general believed
to be more uncertain than that of the other components. The noise input w for the stochastic
model is a three element vector now. The filter assimilated ozone measurements extracted
from a random disturbed ’truth’ for sites Harwell and Glazbury, including a random error
with σ= 1 ppb. These sites are near the strongest emission sources, and changes in emission
rates will be visible in the ozone measurements on a short time scale.

Figure 4.4 shows the simulated factors 1 + λ nox, 1 + λ voc, and 1 + λ co actually applied to
the emissions, as well as their one-sigma bounds estimated with the lag-1 smoother. Due to
the tight connection between ozone and NOx, the filter is able to estimate the factors applied
to the NOx emissions almost perfectly. A small time lag is visible between the occurance
of peaks in the truth-run and the estimation made by the filter. The filter is not able to
detect emission changes immediately due to the delay between release from the source and
change in ozone at the measurement site. The best estimations of λ nox are obtained during
the night, when the NOx emissions are the only emissions which have a direct impact on
the ozone concentrations. The standard deviation of λ nox decreases from the initial 30% to
less than 10%. During the day, the estimation of λ nox is less accurate (up to 20%), since the
ozone concentrations in the measurement sites are now also influenced by uncertain VOC
concentrations.

The estimates of λ voc show an opposite behavior. The most accurate estimations are made
during the day (25–35%), while the nighttime emissions remain uncertain with 40-50%.
Since the bulk of the emissions are released during daytime, an inaccurate estimation of the
nighttime emissions is however of less importance. That sunlight is required for estimation
of the VOC emissions is best seen for the first day. During the night, the emission factor
is estimated with zero mean and increasing standard deviation; after the first significant
photolysis, the estimation shifts towards the ’true’ value immediately.

The lower panel in figure 4.4 shows that the impact of CO emissions on the measured
ozone concentrations is minor in comparison with the impact of NOx and VOC. The esti-
mates of λ co remain uncertain with about 30%, and is not decreased by the assimilation.

4.3.2 Uncertain photolysis rates

Since the chemistry is the driving force in an air pollution model, errors in chemical pa-
rameters will have a large impact on computed concentrations. An example is the value of
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Figure 4.5: Impact of uncertain photol-
ysis rates in Sibton: deterministic model
(dashed), measurements from observation
network (dots), and 2σ bounds from filter
without assimilation (solid). The specified
uncertainty in the photolysis rates of NO2

and O3 is able to explain a large part of
the difference between model and measure-
ments, except for irregular high ozone levels
during night 4-5, and the low values during
night 5-6.

photolysis rates. (Thompson and Stewart, 1991) studied the effect of uncertain photodisso-
ciation and reaction rates in a tropospheric model using a Monte Carlo method. Due to the
uncertainties, ozone concentration were found to have standard deviations up to 16% for
urban and clean continental conditions (mid latitude). The primary photo dissociations of
NO2 into NO and O3, and of O3 into O2 and O(1D) were found to have the largest impact
on the chemical state in the troposphere. Concentrations of almost all important trace gases
show strong correlations with the source or reaction products of these two photolysis reac-
tions. In particular, both reactions have a large impact on ozone concentrations since they
lead to ozone formation and destruction respectively. Other important reactions were found
to be those between NO and O3 (R3 in appendix A) and between OH and NO2 (R20).

Uncertainties in photolysis and reaction rates arise due to unprecise knowledge of param-
eters such as absorption cross sections, quantum yields, solar fluxes and activation energy. A
detailed description of the possible errors in these parameters is beyond the scope of this re-
search; similar to (Thompson and Stewart, 1991), we will therefore assign overall standard
deviations to the reaction rates, following a lognormal distribution. The list of uncertain
reaction rates is limited to photolysis rates of NO2 (R1) and O3 (R8). According to table 2
in (Thompson and Stewart, 1991), a standard deviation of 30% should be assigned to JNO2 .
Reaction (R8) used is LOTOS is a combination of photolysis of ozone into O and O(1D) with
standard deviations of 10% and 40% respectively; we will use an overall value of 30%. The
photolysis rates used in LOTOS are now computed from:

J[s] = J[s] exp(λ J[s]) φsol φcld , s = {NO2,O3} (4.5)

where J[s] denotes the deterministic value, φsol and φcld denote correction factors for solar
angle and cloud cover, and λ denotes a sample of a colored noise process with zero mean and
standard deviations σ = 0.3 . Similar as for uncertain emissions, a strong time correlation
of α = exp(−1/24) is assumed. The impact of the uncertain photolysis rates modelled in
this way on the ozone concentrations is illustrated in figure 4.5 for site Sibton.

An advantage of the formulation of the stochastic model in terms of a lognormal distribu-
tion is that samples are always positive, such that truncation of unwanted (negative) values
could be omitted. A disadvantage is that the nonlinearity of the state state space model (4.1)
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Figure 4.6: Ozone concentrations in Sibton
during assimilation experiment with uncer-
tain photolysis rates: deterministic model
(dashed), measurements simulated with
random disturbed model run (dots), and as-
similated mean (solid).
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increases, which puts a larger demand on filter resources. Note that a large spatial uncer-
tainty is related with the cloud cover; shape, thickness and the water vapor load all have
impact on photolysis rates in the boundary layer and are hard to quantify. We will neglect
the uncertainties in cloud cover, and consider uncertainties in overall photolysis rates only.

An assimilation experiment with simulated data has been performed with the uncertain
reaction rates, similar to the experiments with uncertain emissions. A set of measurements
was simulated for sites Yarner Wood and Sibton from a model run with random disturbed
photolysis rates of NO2 and O3, including a measurement error of 0.5 ppb. Figure 4.6 shows
resulting time series for the ozone concentrations in Sibton. The random generator produced
photolysis rates of NO2 and O3 which are both on average smaller than the deterministic
values. The net effect is a decreased ozone level since the photolysis of NO2 is faster than
that of ozone. The filter is able to follow the simulated measurements perfectly, which is no
surprise since the error description is perfect.

It is more interesting to investigate whether the filter is able to distinguish between errors
in ozone concentrations due to errors in JNO2 and due to errors in JO3 . Figure 4.7 shows
the time series of the random disturbed photolysis rates and the estimates made by the filter,
with and without assimilation of measurements. The results show that the filter is able to
produce reliable estimates of both photolysis rates. The standard deviation of the estimated
photolysis rates decreases from initial 30% to 10% for JNO2 and to 15% for JO3 . Smaller
sigma bounds might be obtained if measurements from more sites are assimilated, although
some uncertainty will remain due to the measurement errors. The more reliable estimate
of JNO2 shows that the measured ozone concentrations are more sensitive to changes in the
photolysis of NO2 than to changes in photolysis of ozone itself. From the almost equal 2σ
bounds just after sunrise for filters with and without assimilation it is concluded that a sub-
stantial amount of sunlight is required, before errors in photolysis rates affect the measured
ozone concentrations. The filter reacts with a strong adjustment of the estimated photolysis
rate, leading to irregular shaped 2σ bounds during the morning.

Note that the filter does not estimate the rate coefficients directly, but rather the stochastic
processes λ J in (4.5), included in the state vector. While the photolysis rates vanish during
the night, the stochastic processes do not, although they do not have any physical interpre-
tation during the night. The statistics of λ J therefore slowly return to their first guess values
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(zero mean, standard deviation of 30%), such that the estimates of the photolysis rates be-
come almost as uncertain as they used to be without assimilation. Only a small part of the
information about the rate coefficients survives the night due to the strong time correlation
included in the stochastic model. For application to ozone data from a network, a better so-
lution would be to freeze the estimates of the driving stochastic processes during the night,
or to start at sunrise with diurnal averages of the previous day.

An advantage of modeling photolysis rates as uncertain parameters is the rather large
area where their impact is present. Changes in photolysis rates act on ozone production
in the complete domain, while uncertain emissions only affect downwind area’s. Besides,
the photolysis also affects the concentrations in higher model layers. A combination of
uncertain emissions and uncertain reaction rates is therefore a promising approach for an
assimilation procedure. While the number of measurements sites under large impact of
emissions is limited, almost all sites are influenced by photolysis.

4.3.3 Uncertainties in deposition parameters

Where chemical production is the main source of ozone, deposition is the main loss. Inves-
tigation of the impact of uncertain deposition parameters is therefore necessary to obtain a
useful stochastic extension to the LOTOS model.

In the context of LOTOS, the deposition acts directly on the concentrations in the mixing
layer following (2.15). In addition, the parameterization of the deposition is also used to
form the deposition profile (2.13) from which ground level concentrations are computed.
Errors in the deposition rates will therefore be visible in the model output immediately.
For assimilation of ozone measurements, the deposition rate of ozone is a perfect source of
uncertainty. Almost every difference between model and measurements might be corrected
by choosing an appropriate amount of deposition or a lack of deposition. The only exception
is the case of a large underestimation by the model even if the deposition is omitted.

To investigate the impact of uncertain deposition, four different deposition parameters
have been considered stochastic: the atmospheric and viscous-sublayer resistance, which
depends on the surface structure and surface wind:

Rt [k] = (Ra(z0) + Rb[k])(1+ λ Rt [k]) (4.6)

and three surface resistances for components s =O3, NO, and NO2:

Rc,s[k] = (Rc,s)(1+ λ Rc,s [k]) (4.7)

The bars mark deterministic quantities, and each λ [k] denotes a colored noise process with
zero mean, standard deviation σ = 0.3 and time correlation parameter τ = 24. The depo-
sition parameters in (4.6) and (4.7) form the basic input for the deposition model, and are
based on landcover and uptake of trace gases by vegetation. Since many of these param-
eters are quite unknown, the assumed standard deviation of 30% might be a conservative
assumption. The parameters have been multiplied with the same factor for each grid cell
covering land (deposition of ozone is almost zero over sea anyway).

To investigate the impact of uncertain deposition on concentrations in the model, the
stochastic model has been propagated over the test period without assimilation of mea-
surements. Due to the uncertain deposition, the ozone concentrations over land obtained
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Figure 4.8: Assimilation with uncertain deposition parameters and simu-
lated measurements: actual errors in estimates of deposition parameters (fil-
ter mean minus simulated truth), and estimated one-sigma bounds.

standard deviations of 5-7 ppb. The variations in ozone are rather constant in time, although
a small diurnal cycle is visible. The variability increases during day time since deposition
is proportional with the concentrations.

An assimilation experiment has been performed using simulated measurements in 4 sites,
drawn from a random disturbed model run and a random measurement error of 0.5 ppb.
Similar as for the experiments with uncertain emissions and photolysis rates, the assimilated
ozone concentrations perfectly follow the (simulated) measurements. Figure 4.8 shows the
errors in the estimates of the deposition parameters after assimilation. The filter is able to
reduce the error bounds significantly for the atmospheric and viscous-sublayer resistance Rt

and the surface resistance of ozone Rc,O3 from initial 0.3 to about 0.15 after assimilation.
The value of 0.15 is in good agreement with the actual errors between assimilated mean and
simulated truth. The estimates of Rt are most accurate during the night, up to a standard
deviation of 0.10 . The later could be explained from the higher values of the atmospheric
resistance Ra during the night (stable conditions); variations with a random factor such as
used in (4.6) will then lead to a stronger response in the deposition. The filter is not able
to provide accurate estimates of the surface resistances for NO and NO2; the impact of
these parameters on ozone concentrations is almost negligible in comparison with the other
parameters.

Now that only the parameters Rt and Rc,O3 seem to be relevant in a filter procedure, the
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stochastic model might be simplified to a stochastic variation of the deposition velocity of
ozone only:

vd,o3 =
1

Rtopo +Rc(O3)
(1+ λ vd,o3) (4.8)

An assimilation experiment with this choice for the stochastic deposition (σ = 0.3,τ =
24.0,simulated measurements) showed that the filter is perfectly able to detect variations
in a random disturbed vd,o3.

4.3.4 Combination of emissions, photolysis rates, and deposition

The experiments with simulated data showed that the filter technique is able account for
errors in emissions, photolysis rates, and deposition parameters, if one of these parameters
contain stochastic variations. In practice, one would like to define stochastic variations in
all these parameters at the same time, since they are likely to contribute to errors between
model and measurements all together. Therefore, a filter experiment has been carried out
with a combination of several types of stochastic parameters: emissions of NOx and VOC
(standard deviations of 30% and 50% respectively), photolysis rates of NO2 and O3 (30%),
and the deposition velocity of ozone (30%). The stochastic models are implemented simi-
lar as described before, except that now the stochastic variations in the photolysis rates are
frozen. Measurements have been simulated in 5 measurements sites from a random dis-
turbed model, including a measurement error of 0.5 ppb. The chosen locations are either
under direct impact of the emission sources (Harwell, Bottesford, and Glazebury) or more
remote (Yarner Wood and Sibton).

Figure 4.9 shows the errors in the estimates of the stochastic processes λ driving the se-
lected model parameters, as well as the 2σ bounds with and without assimilation. The error
bounds are decreased for all selected parameters, indicating that assimilation of ground
measurements is able to distinguish between the different errors given the available mea-
surements. The standard deviations provided by the filter are reliable since the actual errors
are almost everywhere within the 2σ bounds.

The results show that fluctuations in the deposition rate of ozone might be reconstructed
very accurate, which is not surprising given the tight connection between deposition and the
surface measurements. The filter produces estimates of λ vd,o3 with 2σ-bounds of 5−15%;
the actual value of the parameter is within these bounds at almost every hour. The most
accurate estimates are obtained during the night, when the deposition is almost the only
process acting on ozone.

The value of the NOx emissions is estimated up to 2σ = 30%; during the night, the esti-
mate is more accurate due to the direct impact of NO on ozone. The reverse holds for the
VOC emissions: estimation up to 50% during daytime (from initial 100%), but decreasing
accuracy during the night. Note the rather large errors during the night between day 3 and 4,
which are not discovered by the filter until next sun rise. The uncertainties after assimilation
are still quite large, indicating that reconstruction of uncertain VOC from ground measure-
ments of ozone is difficult. If the model is expected to be perfect except for the emissions,
ozone measurements might be able to account for uncertainties in VOC emissions; other-
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Figure 4.9: Errors in stochastic factors during assimilation experiment with
uncertain emissions, photolysis rates, and deposition velocity (simulated
measurements). Figures show the errors in λ after assimilation (mean mi-
nus simulated truth; thick lines) as well as the 2σ-bounds (thin); dashed lines
denote 2σ-bounds before assimilation.
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wise measurements of hydrocarbons are required to obtain a more accurate estimate of the
VOC load.

For the photolysis rates, the most accurate estimate is obtained for J[NO2] rather than
for J[O3], from initial 60% to 30% to 40% respectively. Photolysis of NO2 seems to have a
larger impact on the ozone measurements than photolysis of ozone itself, which is explained
from the lower rate of the later process. The most accurate results are obtained around noon,
when the photolysis reach their highest rates. Note that although the stochastic processes
driving the photolysis rates are frozen during the night, the small fluctuations in the errors
suggest that the filter still adapts the photolysis factors. This effect is a result of the use
of a finite ensemble in the filter technique, which leads to undesired correlations in the
covariance matrix, for example between the values of λ used for the photolysis rates and
the values used for the deposition. These correlations are hard to avoid (only with infinite
ensemble size), and are acceptable since they do not influence the actual photolysis.

Concluding, a set of uncertain emissions, photolysis rates, and deposition velocity is use-
ful for a stochastic model around LOTOS. Uncertainties in these parameters contribute to
uncertainties in ozone concentrations in both polluted and more remote area’s of the domain,
and their values might be estimated from the assimilation of ozone measurements.

4.4 Assimilation with data from observation network

The experiments with simulated data showed that the filter technique is able to correct sev-
eral types of model errors, if the errors are specified correctly. These experiments therefore
only showed that assimilation of ozone data might be possible, if the chosen error specifi-
cations are indeed the main error sources. One might not expect that differences between
model and data are decreased if they arise due to other errors. Therefore, before any ozone
data is assimilated, a comparison between model and data has to be made to decide what
might be achieved with the assimilation.

The LOTOS simulations have been compared with observations available for the selected
domain and period (see p. 191). A first analysis of the time series shows that they are often
in quite good agreement. During the first days of the selected period, the ozone concen-
trations are rather low, especially in the southern part of the domain. Investigation of the
meteorological data shows this could be explained from a rather large cloud cover. Later on,
the cloud cover decreases, and measured ozone levels start to show high peaks during the
day, with maximum values of 100 ppb. The model simulates the occurance of lower concen-
trations in the beginning and the high peaks later on correctly, but is not able to reproduce
the height of the peaks. Some of the peaks are underestimated with more than 30 ppb. Part
of this misfit might be explained from the coarse resolution of the model, which tends to
spread local high concentrations over a larger area. However, the height of the peaks are not
reproduced for almost all cells at the same time, suggesting a systematic underestimation of
the ozone production. Since the focus of the model is on simulation of smog episodes, it is
at least this underestimation which should be compensated for by an assimilation procedure.

The variability in the measurements is large: the measured values sometimes differ with
more than 10 ppb from one hour to another, while the long term mean over several hours
is almost constant. One explanation is the occurance of measurement errors. Based on
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experience with calibration and experiments with identical measurement devices located
near eachother, the overall measurement errors are estimated to be 5–10% of the measured
value (Tilmes and Zimmermann, 1998). Another source of variability is the impact of local
weather conditions on the ozone concentrations. For example, a single hour of sunshine in
a period with clouded sky might lead to an occasional higher ozone level. Due to the large
natural variability in the measured data, an assimilation procedure might not be expected
to follow each single measurement. A standard deviation of the error between model and
measurement of 5-10 ppb is acceptable.

During the selected period, the wind is directed to west or north west, apart from days
four and five when the wind is directed to north or north east. The modeling of the eastern
boundary, where polluted air from the continent flows into the domain, could therefore be
an important source of errors. The simulated values in Lullington Heath and Sibton (located
on the southern and eastern coast) are in good agreement with the measurements, however,
which makes an error in the boundary values unlikely.

4.4.1 Uncertain NOx and VOC emissions

In a first experiment, the total emissions of NOx and VOC were considered to be uncer-
tain, with standard deviations of 30% and 50% respectively, and a decorrelation period of
τ = 24h. Similar as for the experiments with simulated data, the emissions have been mul-
tiplied with single factors in the complete area covering England and Wales. The ozone
measurements from Harwell, Bottesford, and Glazebury were used for assimilation, since
the ozone levels at these sites are under direct influence of the largest emission sources. Site
Ladybower could have been used instead of Bottesford and Glazebury, since it is actually
surrounded by strong emitting gridcells. However, the site is located at a rather high altitude
(420 m), and timeseries of the ozone observations show that during the night, the station
observes the reservoir layer rather than the mixing layer. The daytime values measured
at Ladybower show a strong correlation with the values measured at surrounding stations,
while the nighttime values are fixed at a relative high value. NOx emissions injected into
the mixing layer during the night would not be visible in Ladybower, and therefore the site
is only used for validation.

Figure 4.10 shows selected results of the assimilation experiments. The time series of
the ozone concentrations in Glazebury (upper left panel) show that the filter is able to de-
crease the residue between model and measurements. The high ozone levels during daytime
which were missed by the model are now reached within the assumed measurement error.
Similar results were obtained for the other assimilated stations. The spatial distribution of
the adjustment at day 4, 15:00, shows that the underestimation of ozone is corrected in a
plume released from the largest emission sources (see distribution of emissions in figure
4.1). At the specific hour, increased ozone levels are correlated with decreased NOx levels
(especially less NO to destroy O3), and increased VOC levels. The filter tends to decrease
the NOx levels during the complete period. Comparison with NOx measurements from La-
dybower show that this is in agreement with reality during daytime (figure 4.10, lower left
panel). The nighttime values are decreased too far, however. The measurements of NOx

often show large fluctuations within a small period; therefore, the figure was plotted using
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Figure 4.10: Selected results for assimilation experiment with data from an observation net-
work, and stochastic model with uncertain emissions only. Upper: time series of ozone in
Glazebury (assimilated) and Aston Hill (diagnosed): measurements (dots), model (dashed),
assimilated mean±2σ (solid). Middle: spatial adjustments (assimilated mean minus model)
at day 4, 15:00. Lower left: 3 hour average of NOx in Ladybower. Lower right: estimates
of total emission in England/Wales: deterministic values (thick), and 2σ bounds after as-
similation (thin).
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three hour averages. If NOx measurements are to be used during an assimilation procedure,
a large representation error should be assigned.

Outside the plume, the adjustments are minor, although the local emissions are adjusted
with the same values for all grid cells. The ozone concentrations in Aston Hill for exam-
ple are hardly influenced by the assimilation during the first five days (figure 4.10, upper
right panel). Thick cloud cover limited ozone production during the first days, and a wind
blowing from the south prevents the inflow of emissions later on. During day 6 however,
the sky was clear and the wind directed from the east, and the filter produced correct ozone
concentrations due to the assimilation in Harwell.

Similar as for the experiments with simulated data, an estimation of the emissions has
been extracted from the λ ’s in the state. The lower right panel in figure 4.10 shows the total
amount of NOx and VOC emitted in the area England/Wales. Due to the modeling with
time profiles, the default emissions (E) show a periodic and blockshaped pattern of high or
low emission rates following day/nighttime and week/weekend (day 5/6). The values used
in the filter are equal to E(1+ λ ). The results in figure 4.10 show that the adjustments made
to the NOx emissions are rather small. During nighttime, the emissions are decreased to
obtain higher ozone values in the assimilated sites. During daytime, the emissions start at
a lower level following the trend from the night before, to increase to a peak emission just
before sunset. Note the behavior in the morning of day six: the nighttime emissions have
been slightly increased, which causes a large additional emission when the emission profile
changes to daytime rate. This higher rate is soon regarded as a mistake, and the emission
rate returns to a lower level. If the peak is regarded as a mistake, the emissions follow a
rather smoothed profile on day six, which shows much resemblance with the profiles on
day 2, 3, and 5. The total amount of emitted NOx has hardly changed; from default 7.5 to
6.0–8.6 104 ppbN/min after assimilation.

The average VOC emissions used by the filter are overall higher. Increased emissions dur-
ing daytime are used to increase the ozone level. As a consequence, this leads to increased
emissions during the night too, since the emission changes are strongly correlated in time.
Without the time correlation, the night time emissions would probably be left unchanged,
and should be followed by even larger adjustments during the day. The adjustments are al-
ready rather strong; although the emissions were given a large degree of freedom (standard
deviation of 50%), the filter sometimes used emissions up to 3 times the default value. The
average emissions change from default 1.3 to 1.8–2.7 105 ppbC/min after assimilation. One
should not conclude from this result that the VOC emissions should be increased with say
150%, since the chosen stochastic model does not include spatial variations nor variations in
VOC composition. In theory, the emission model could be complete correct apart from the
modeling of one single, but for ozone production very important component which requires
an additional release, while all other emissions are correct.

Concluding, the filter approach is able to improve ozone simulations given uncertainties
in the emissions of NOx and VOC. Including the correction factors for the emissions in the
state provides useful insight in how the filters corrects differences between model and mea-
surements. The values of the actual emissions estimated in this way should be interpreted
carefully however. A careful conclusion would be that at least the timeprofiles used for the
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NOx emissions are subject to uncertainties, and that VOC emissions are under estimated.

4.4.2 Uncertain emissions, photolysis, and deposition

In a second assimilation experiment with ozone data, the stochastic model was extended
with uncertainties for photolysis rates of NO2 and O3, and the deposition velocity of ozone.
Since these parameters also affect ozone concentrations in locations outside the emission
plume, the list of assimilated sites was extended with Yarner Wood and Sibton.

Figure 4.12 shows the ozone time series in Yarner Wood (assimilated) and Narberth and
High Muffles (diagnosed). Where assimilation with uncertain emissions only did hardly
affect the ozone concentrations in these sites, including photolysis rates and deposition im-
proves the results significantly. The high ozone peak at day 6 is computed by the filter for
all sites, although only the measurements from Yarner Wood are assimilated. Similar, the
underestimation during the night between days 4 and 5 is corrected. These results suggest
that a part of the difference between model and measurements in the three sites could be
explained from the same model errors in photolysis or deposition. Note the peak in the
measurements in Narberth around hour 72; the only explanation for this peak during the
night is an unmodeled inflow of high ozone concentration from the sea (if an error in the
measurement equipment is omitted). Similar situations occurred in Sommerton during a
few nights. Since these small scale effects are not covered by the stochastic model, the
assimilation procedure is not able to improve the results here.

On first sight, the results for the sites around the emission sources are hardly different
from the experiment with uncertainties in the emissions only, except for some small scale
improvements during the night. The high peaks underestimated by the model are still cor-
rected by the filter. The results for High Muffles (figure 4.12, lower right) show that a part
of the differences around the source areas should be explained from uncertainties other than
the emissions, however. The adjustment of emissions only leads to an overestimation during
day 3; with the extended stochastic model however, the computed ozone is in much better
agreement with the measurements. The night time concentrations computed for High Muf-
fles remain as terrible as they used to be, since the model is not able to produce accurate
simulations here anyway.

Figure 4.13 shows the deterministic values of the selected parameters, as well as their
estimates after assimilation. From the differences between estimation with and without
uncertain photolysis rates/deposition is is possible to identify how other parameters than
emissions become blamed for differences between model and measurements. For example,
the very low NOx emissions during the fourth night used in the emission-only filter are
replaced by decreased deposition. Both settings lead to higher ozone levels, but the later
choice should be trusted more since it is in agreement with a larger set of measurements.
Similar, the increase of VOC emissions during the last three days is replaced by an increased
photolysis of NO2 and a decreased photolysis and deposition of ozone, both leading to
higher ozone levels. Extension of the stochastic model with photolysis rates and deposition
is therefore necessary to explain differences between model and measurements.



4.4. ASSIMILATION WITH DATA FROM OBSERVATION NETWORK 69

Figure 4.12: Ozone concentrations dur-
ing assimilation experiments with data
from observation network: measured
(dots), deterministic model (dashed), as-
similated mean using uncertain emissions
only (thin), and assimilated mean using
all uncertain parameters (thick).
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Figure 4.13: Values of stochastic parameters during assimilation experi-
ment with data from observation network: deterministic (dashed), assimi-
lated mean using stochastic model with uncertain emissions only (thin), and
similar with all uncertain parameters (thick).



4.4. ASSIMILATION WITH DATA FROM OBSERVATION NETWORK 71

4.4.3 Forecast of ozone level

In a third experiment, the filter technique was tested for its value in an ozone forecast system.
The previous described experiments showed that the mean state obtained with the filter is
a more accurate approximation of the true state than that computed with a deterministic
model run. If a model run is started with an assimilated mean as initial state, it is therefore
expected to be in better agreement with the measurements. This property could be used
in an online forecast system. The filter should provide an optimal initial condition for a
deterministic forecast run; if later on new measurements have become available, the filter
continues the assimilation and provides a new optimal initial state.

Apart from the initial state, the quality of an ozone forecast also depends on the quality
of the meteorological input. The forecast skill of meteorological data is limited to 3-5 days,
and one could therefore not expect an ozone forecast to be accurate over more than a few
days. A forecast over one or two days is in practice suitable, since ozone forecast are usually
provided in order to warn the public for unhealthy conditions during the coming day. The
offline experiments described here used analyzed meteorological data, which hardly differs
from forecast data during the first few days but has a higher quality later on.

The forecast skill of the filter has been examined for the state at day 4, 15:00, when the
ozone concentrations have reached their maximum levels. During two forecast runs, the
stochastic model (4.1) including noise in emissions, photolysis rates and deposition was
propagated starting from the assimilated mean. In the first run, the stochastic model was
driven by noise inputs w[k] equal to zero and decorrelation parameter α = exp(−1/τ ) for
τ = 24 hr. With this setup, the values of the disturbed emissions etc decayed from their
mean value at 15:00 to their deterministic value with a rate of α k, where k is the number
of hours past since 15:00 . In a second run, the disturbed parameters were fixed to their
value 15:00, equivalent to α = 1 and w = o. This setup reflects the idea that errors in
model parameters are persistent, such that the settings for the afternoon of day 3 are the best
settings for simulation of the ozone maximum in future too.

Figure 4.14 shows the deterministic, assimilated, and forecasted ozone concentrations for
site Glazebury. The results show that a forecast with zero noise input rapidly converges
to a deterministic model run. After 24 hours, the forecast is still in good agreement with
the measurements (as the deterministic model run is); the high ozone level after 48 hours
is missed for 60%, however. The forecast is still better than the model simulation, partly
because of the better initial condition, and partly because 10% of the adjustments to the
model parameters are still present. If emissions and other uncertain parameters are fixed
to their last obtained value, the forecast skill improves significantly. The forecast of the
maximum ozone level are close to the (optimal) assimilated value in that case. This result
suggests that the optimal settings for the model parameters to simulate the ozone peak at
day 6 are close to the adjustment required at day 4.

If not the model but the complete filter is used to provide a forecast (without assimilation
of measurements), one is able to provide an expected quality of the forecast. The filter
provides a forecast of the true state in terms of a mean x̂ f and covariance P f , and together
with the representation error covariance R, this leads to an expected distribution of the
observations:

yo = H′xt + v ∼ N (
H′x̂ f ,H′P f H + R

)
(4.9)
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Figure 4.14: Simulations and forecasts of the ozone concentration in Glaze-
bury. The forecasts starts on august 8, 15:00 (vertical dotted line) from an-
alyzed concentrations. Uncertain parameters in the stochastic model are ei-
ther fixed to their value at the end of the assimilation, or fade to zero with
decorrelation parameter τ = 24 hr.

The distribution describes confidence intervals in which elements of yo are expected to be
with some probability. The 95% confidence interval (2σ-bounds) for the 15:00 forecasts at
day 6 in Glazebury obtained in this way are [21,85] ppb for the fading forecast (low to mid
range ozone level), and [51,110] ppb for fixed (mid range to high ozone level). Both inter-
vals include the actual measured value of 80 ppb and are therefore both reliable, although
for fading forecast the measured value is close to the upper boundary of the interval. The 2σ
bounds have grown substantially during the two days after the latest assimilation, indicating
that the forecast includes much uncertainty. Providing σ-bounds with the forecast is expen-
sive, since the filter should be run without assimilation of measurements but this is almost
as expensive as running with assimilation. However, the σ-bounds provide useful insight in
the quality of the forecast, and should be computed if the computation time is no restriction.

4.5 Summary and conclusions

In this research, the LOTOS model has been extended with stochastic variations in model pa-
rameters. With the stochastic variations, a Kalman filter is able to assimilate measurements
with LOTOS simulations. Experiments with simulated data in a small domain (UK) showed
that assimilation of measurements is able to compensate for uncertainties in several model
parameters.

Uncertainties in NOx emissions are compensated for by assimilation of NOx and/or ozone
measurements. The tight chemical connection between these components ensures that er-
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rors in modelled emissions are visible in ozone too. The possibility of using ozone measure-
ments for estimation of NOx is important here, since assimilation of NOx measurements is
hardly possible. The lack of NOx measurements for rural sites, and worse representation of
the vertical mixing of NOx in LOTOS limit the comparison of model and NOx data. Similar,
errors in VOC emissions can not be corrected from assimilation of carbon measurements,
since their number is sparse too and comparison with CBM-IV components is complicated.
Ozone measurements provide useful information about VOC’s through chemical coupling
with NOx, however. A stochastic model with uncertain NOx and VOC emissions was shown
to be useful for assimilation of ozone measurements; uncertain CO emissions are of minor
use. Uncertain emissions only are not able to explain all differences between LOTOS and
measurements, since the spatial impact of emissions is limited to the area’s around the
strongest emission sources.

Uncertainties in photolysis rates of O3 and NO2 were shown to have a large impact on
computed ozone concentrations, and therefore suitable for the stochastic model too. Assim-
ilation of ozone measurements is suitable to distinguish between errors in both photolysis
rates. The impact of J[NO2] on the ozone level is stronger than the impact of J[O3] due to
the larger value of the first.

Of the deposition parameters tested for the stochastic model, only those acting direct on
ozone concentrations were found to be useful during assimilation of ozone measurements.
Definition of the deposition velocity of ozone as the only uncertain deposition parameter is
therefore the best option for the stochastic model. Uncertain deposition velocities are the
most important error source for the ozone level during the night; the other uncertainties con-
sidered (emissions, photolysis) require day-light to become visible in ozone concentrations
(except for titration with NO).

A combination of uncertain NOx and VOC emissions, photolysis rates of NO2 and O3,
and deposition velocity of O3 was found to be useful for a stochastic model. Uncertainties
in all these parameters are necessary to explain differences between simulated ozone and
data from a measurement network. Assimilation of ozone measurements is able to decrease
the uncertainties in these parameters. Especially the uncertainties in photolysis rates and
deposition are decreased, since these act directly on ozone in remote as well as sub-urban
sites. Assimilation of measurements with a simple Kalman smoother provides estimates
of the uncertain parameters in terms of a mean and standard deviation. The time series of
these estimates show which parameters are blamed for the differences between model and
measurements. The time series from the experiments performed here are to short to draw
conclusions about structural errors in the LOTOS input. Forecast experiments showed that
the estimates of the model parameters improve the forecast skill of the model significantly.
Fixation of the uncertain parameters to their latest estimated mean value leads to the best
forecast skill for afternoon ozone maxima, which gives trust in the stochastic model.
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Chapter 5

Application, part II: European domain

The Kalman filter around the LOTOS model developed in chapter 4 and tested
for a small domain is applied to a larger region covering west and central
Europe and for a longer period. An error of 10–15 ppb between computed
and measured ozone concentrations is left after assimilation. Estimates of the
uncertain parameters obtained during the assimilation point to the existence of
systematic biases in the model during the selected period. If these biases are
taken into account, the filter is able to provide useful initial states for forecasts
of ozone maxima.

5.1 Introduction

The Kalman filter developed in chapter 4 was shown to be suitable for assimilation hourly
ozone measurements in LOTOS, for a domain covering England and Wales over a five day
time period (august 5 to 10, 1997). Although both domain and time period are rather small,
many interesting characteristics were included: the domain covers industrialized and rural
area’s as well as sea, and during the simulation period a smog episode was build up. The
results with a Kalman filter based on uncertain emissions of NOx and VOC, photolysis rates
of O3 and NO2, and deposition velocity of O3 were satisfactory in all these circumstances,
encouraging experiments for a large domain and longer period.

An issue which has not been discussed so far, but which becomes important for a large
scale experiment, is the computation time of the filter. For the small scale experiments in
chapter 4, the computation time was no constraint since it was limited anyway; the most ex-
pensive experiments took 3–4 hours on a work station. It was possible to configure the filter
to produce the best possible solution for the stated problem, regardless of the computational
costs. Therefore, an ensemble filter was used with an overhead of ensemble members (100–
150), which provides the exact solution of the filter problem regardless of the stochastic
model and complicating features such as nonlinearities. Experiments described in chapter
6 and chapter 7 showed that the ensemble filter is not the most efficient choice in terms of
computation time, however. Therefore, for the large experiments described here a RRSQRT

formulation of the Kalman filter is used, which was shown to provide similar results as
could be obtained with the ensemble filter but for lower costs. The total costs of the filter
are still impressive: for a model domain of 40× 40 cells, similar stochastic model as used
for the small domain, and a simulation period of one month, the total computation time is
estimated on 5-6 days on a work station. The filter has therefore been implemented on a

75
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parallel computer; details of the parallelization are described in chapter 8.

Apart from the computational aspects, the filter procedure used for the large domain is also
different with respect to the stochastic model. The spatial variability in model parameters
is more important for a large domain, and the number of stochastic varying parameters has
therefore been increased. The covariance of the measurement or representation error has
been made time dependent, since comparison of LOTOS simulations with the measurements
showed structural biases between model and measurements, especially during the night. A
procedure is included to adapt the representation error automatically before assimilation.

The experiments on the large domain start with a description of the domain (§5.2) and
stochastic model (§5.3), including the adaptive representation error. In following sections,
results are described concerning ozone concentrations (§5.4), parameter estimation (§5.5),
and forecast skill of the assimilation (§5.6).

5.2 Domain and period

The domain of the model was limited to an area of 40× 40 grid cells (figure 5.1) A rea-
sonable number of measurements is available for this area which might be represented by
LOTOS simulations; elevated sites are excluded, as well as urban and traffic sites. The classi-
fication of certain sites might differ according to different sources; site Harwell for example
is classified as ’rural’ by the UK National Environmental Technology Center, while it ob-
tained classification ’urban’ according to (Tilmes and Zimmermann, 1998). By doubt, the
site was accepted if LOTOS simulations are in good agreement with the measurements. The
measurements from 23 sites were selected for use in the assimilation procedure, while from
18 sites the data was used to diagnose the assimilation result. Three of the diagnosed sites
were excluded from the assimilation since they actually observe the reservoir layer; 4 sites
in the northern part of the domain were used to diagnose the impact of transport and the
adjustments to the photolysis rates which act on all grid cells.

August 1997 was selected as time periode for the assimilation. Except for the first 4 and
last three days, august 1997 is characterized by overall high ozone concentrations. Excep-
tional high ozone levels (above 100 ppb) were measured in the UK on august 10 and august
19, and in central Europe at august 14 and 21/22.

Figure 5.2 shows the diurnal statistics of the difference between LOTOS and the measure-
ments for the sites to be assimilated. The largest errors occur during the night (average
underestimation of 8 ppb). Also the concentrations after sunrise are not simulated correctly;
the rise of the concentrations occurs much faster in the model than in the measurements. For
the later, a large number of explanations might be given, from which poor description of the
rise of the mixing height is the most likely (the meteorological input is refreshed every three
hours only). Around 15:00, when the ozone peak occurs, the model is on average in good
agreement with the measurements.
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Figure 5.1: Sites from the EMEP network used on the 40×40 grid, and areas
used in the stochastic model.

Figure 5.2: Mean and standard
deviation of the difference between
model and measurements as a func-
tion of the hour of the day, for the
sites selected for assimilation.
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5.3 Stochastic model and filter

The stochastic model around LOTOS used in this research contains a combination of un-
certain emission, photolysis rates, and deposition velocity, shown to be useful in chapter 4.
The experiments on the small domain described in chapter 4 showed that the filter technique
is able to account for errors in these parameters. The standard deviations of the uncertain
parameters are set to 40% for the NOx emissions, 50% for VOC, and 30% for the photolysis
rates and the deposition of ozone. The time correlation parameter was set to τ = 12 hour to
let day and night time variation be more or less independent from eachother. Emissions and
deposition velocity are defined stochastically varying in three regions (figure 5.1) covering
the British islands, west, and central Europe respectively. These areas are rather large to
ensure that each contains a reasonable number of measurement sites, and the problem of
estimation of uncertain parameters does not become ill-posed.

How much of the difference between model and measurements might be explained from
these uncertainties? Although the stochastic model provides a reasonable degree of free-
dom, it can not explain every residue between model and measurements. For example, the
spatial degree of freedom is limited to variations in three different area only (emissions
and deposition) or does not contain any spatial variation at all (photolysis). The filter will
therefore tend to produce a situation which is optimal over the assimilated sites on average.
The remaining residue should be explained from the representation error between the cho-
sen stochastic model and the measurements. The diurnal variation observed for the residue
(figure 5.2) suggests that the representation error is time dependent, or at least varying with
the hour of the day. Therefore, the representation error covariance is determined adaptively
following the observed residues, instead of being prescribed on forehand. Such a procedure
is an example of an adaptive filter. In the usual setup for an adaptive filter (Dee, 1995;
Mitchell and Houtekamer, 2000; Ménard et al., 1999), the unknown parameters in a param-
eterization of the forecast error covariance matrix are tuned with the observed residues. In
here we will use the same procedure to tune the representation error covariance, with the
forecast error left unchanged.

For the technique of adaptively choosing the representation error we follow the procedure
described by (Ménard et al., 1999). Let d = H′x f − yo be the residue of the forecast at a
time t [k]. In the context of the Kalman filter, the residue vector is supposed to have zero
mean and covariance Γ (ρ ) = H′P f H+R(ρ ), where P f is the forecast error covariance and
R(ρ ) the representation error covariance. The value of the representation error covariance
depends on a parameter ρ . The representation errors are chosen to be uncorrelated with
standard deviation equal to ρ , thus R(ρ ) = Iρ 2. The unknown variance ρ 2 is set to a value
such that the probability of d being a sample out of N (o,Γ (ρ )) reaches a maximum:

max
ρ

p(d; ρ ) =
1√

(2π )r det(Γ (ρ ))
exp

{
−1

2
d′Γ (ρ )−1d

}
(5.1)

The output of the filter is now not only the mean state and covariance matrix, but also the
tuned variance of the representation error. The representation variance describes how a
measurement might differ from an the average concentration in a large parcel of air, if this
average is computed by the LOTOS model with certain parameters modelled stochastic.
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The Kalman filter used to assimilate the measurements and the stochastic model is de-
scribed in detail in chapter 6. The filter is based on a low-rank parameterization of the
covariance matrix with about 60 modes; a RRSQRT formulation is used to solve the filter
equations. For treatment of the nonlinearities in the model, the filter is configured to use the
forecast step of the SEIK filter, described in chapter 7. Computational costs are dominated
by evaluation of the LOTOS model, which has to be performed at least one time for each
mode of the covariance matrix. A single work station is not able to perform this task in a
reasonable time (apart from storage problems). Therefore, the filter was run on 8 processors
in parallel using a domain decomposition approach; see chapter 8 for the parallelization.

5.4 Assimilated ozone

The previous described stochastic model and Kalman filter have been used to assimilate
ozone measurements in LOTOS. Figure 5.3 shows an example of the ozone concentrations
during the assimilation for site Neuglobsow (eastern Germany, included in the assimila-
tion). Many features present for the time series in Neuglobsow are also found for other sites.
From the time series it is clear that without assimilation, the model tends to produce long
term averages. The simulated ozone concentrations show a very regular, sinusoidal pattern,
with minima and maxima almost constant during the complete month. The measurements
roughly show a similar sinusoidal pattern but with much more variation in the minima and
maxima. The model is not able to simulate these short term variations correctly, except for
some occasions when the afternoon ozone maximum is obvious lower than the day before
(august 15, 23, and 29). The lower ozone levels are both visible in data and model simula-
tion, and investigation of the model input showed that these features are related with cloud
cover and lower mixing heights. At the other days, the maxima are systematically under-
estimated by the model. This cannot be explained from the fact that the model simulates
average concentrations in large grid cells rather than the concentration at the measurement
site, since the underestimation of the maxima is noticed at surrounding sites too. The lack
of variation in the simulated ozone has therefore to be explained from the lack of variation
in the input data for for example the emissions and the deposition model.

As the assimilated time series for Neuglobsow show, the assimilation procedure is able to
produce ozone concentrations which are in much better agreement with the variations in the
measurements. Most of the extrema in the data are covered by the assimilation, except for,
unfortunately, the two highest measured ozone peaks at august 15 and 22. The build up of
an ozone episode at these days is too fast to be followed by the model; results are better if
the increase is more gradual (august 23–26).

As an example of the spatial characteristics of the assimilation, maps of the simulated,
assimilated, and measured ozone maximum at august 26 are plot in figure 5.4. The mea-
surements were interpolated on the grid through simple Kriging (see for example (Zhang,
1996)). The assimilation is able to reproduce the shape and level of the smog episode in
central Europe, where the model did not simulate the highest level at all. The differences
between model simulation and filter also extends to the alpine region and the Baltic sea.
Although the model shows serious biases with the measurements for those areas, the assim-
ilation leads to a small but significant improvement of the simulations. This result could
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Figure 5.3: Ozone concentrations in Neuglobsow.
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Figure 5.4: Maps of ozone maximum at august 26 according to model simu-
lation, filter, and measurements. The measurements were interpolated on the
grid through simple Kriging; no data was plotted at more than 200 km of a
measurement site.

be explained from transport of improved concentrations from central Europe, and/or the
adjustments to photolysis rates, which impact is present at all grid cells.

Figure 5.5 shows the average deviation of the remaining residue between assimilated
mean and measurements, as a function of the hour of the day. In comparison with the
errors before assimilation (lines, same as figure 5.2), the residues have become unbiased
during almost all hours of the day. The only bias still present is the increase of ozone after
sunset which is still to fast. The stochastic model does not account for the most likely origin
of this bias (inaccurate rise of the mixing layer), and should be extended to cover this model
error to. The residues are decreased for almost all hours of the day, especially during the
afternoon. During these important hours (the ozone maximum is reached here), the standard

Figure 5.5: Mean and one sigma-bands of
the error between simulation and measure-
ments as a function of the hour of the day
for the assimilated sites: before assimila-
tion (lines, same as in figure 5.2) and af-
terwards (error bars).
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deviation of the residues has decreased from 15 ppb to less than 10 ppb.
The improvement of the simulation is also shown from the statistics of the standard de-

viation ρ of the representation errors, adapted during the filter process. The filter was run
first without assimilation of measurements, leading to values for ρ between 8 and 20 ppb
(mean±std.dev.). Figure 5.6 shows that after assimilation, a standard deviation of 7–15 has
to be accepted for the representation error. The best representation is obtained for the after-
noon, when the standard deviation is decreased from 8–16 without assimilation to 7–12 ppb
with assimilation. The highest values for ρ were found for the evening and nighttime hours
between 20:00 and 7:00. After assimilation, the simulation of the ozone built up during sun-
rise has became slightly worse than it was before. The deterministic model already started
to build up ozone too early, and with the filter in a mode producing a higher afternoon max-
imum, the build up has became even stronger. This is a result from the assimilation in the
days before, since the filter is blind for future measurements; the model parameters stored
in the state vector direct the model towards increased ozone production.

To judge the overall errors left after the assimilation, the root mean square errors of the
simulated ozone is computed for for each individual site according to:

RMS =

√
1/ν

ν

∑
i=1

(ci − yo
i )2 (5.2)

where c denotes an ozone concentration simulated with the model or the filter, yo a mea-
surement, and ν denotes the number of available measurement/simulation pairs for a site
and during certain hours of the day. The results are plot in figure 5.7, for the simulations
during the night (21:00–6:00) and day time (9:00-18:00). The figure shows that the assim-
ilation reduces the night-time RMS errors to less than 15 ppb for the bulk of the sites. The
outliers concern sites which actually observe the residual layer during the night or suffer
from irregular inflow from sea side, and had therefore been rejected for assimilation on
forehand. The representation gets slightly worse at four sites, but the errors remain less than
15 ppb. The daytime RMS errors are reduced to less than 12 ppb for most of the sites, except
for 3 sites which suffer from irregular inflow from sea. The assimilation has improved the

Figure 5.6: Statistics of the adapted stan-
dard deviation ρ of the representation er-
ror as a function of hour-of-the-day before
assimilation (dashed) and after assimila-
tion (error bars). The smallest values for ρ
are obtained for the afternoon hours, while
the maxima are obtained around midnight
and sunrise.
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Figure 5.7: Root-mean-square errors between model and measurements and
between assimilated mean and measurements during nighttime hours (21:00–
6:00) and daytime (9:00–18:00), for assimilated (×) and diagnosed (◦) sites.

representation of the measurements for both the assimilated and the diagnosed sites, which
indicate that for these sites the residuals can be explained from similar model uncertainties.

5.5 Parameter estimation during assimilation

After evaluating the simulated ozone concentrations after assimilation, this section describes
how the model parameters have been changed by the filter. That is, how did the filter use
the degree of freedom in the stochastic model ?

The filter provides estimates of the stochastic model parameters in terms of a mean and
covariance, for each hour in the assimilation period. Figure 5.8 shows the statistics of the
mean values of the parameters in the stochastic model as a function of the hour of the day.
The σ-bounds give an impression of the actual emissions, depositions and photolysis rates
used during the filtering process.

The figure shows that the emission rates used in the filter have more or less the same
distribution as those used in the stochastic model, appart for the NOx emissions in western
Europe which are on average 25% higher. The deposition velocities are also strongly biased
from their deterministic values: increased during day time at the British islands, and de-
creased on continental Europe. The model tends to underestimate the ozone concentrations
at some of the continental sites and the filter therefore decreases the removal here. As a
result, the deposition in the easter part of the domain has decreased with about 30%. For the
British sites however, in a significant number of the more remote sites the model shows a
small over estimation, leading to an increased deposition of about 10%. Underestimation of
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Figure 5.8: Mean ± standard deviation of the mean value of stochastic mod-
elled parameters as a function of the hour of the day: before assimilation (thin
lines) and after assimilation (thick). Total emissions are summed over all grid
cells in a certain area; the deposition and photolysis rates are averages.
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high ozone levels is for the British sites only present around industrial areas, and the filter
reacts with a small increase of VOC emissions and decreased titration with NO.

The photolysis rates show on average a strong bias too: J[O3] is decreased with about 20%
during all hours, while J[NO2] is decreased during the early morning and increased during
the afternoon with about the same value. If the stochastic model is correct, these results
suggest that in the model the photolysis rate of ozone should be decreased and that a day
profile should be included for the the photolysis rates of NO2. A physical explanation for
such a profile is the effect that clouds decrease the ratio J[NO2]/J[O3] (Matthijsen, 1995).
This effect could lead to a lower J[NO2] in the morning since cloud coverage is higher at
this time. A cloud dependency for the photolysis-ratio is not included in the model, and
the filter might have partly compensated this lack. The change in the photolysis rate found
in figure 5.8) is too strong to be be explained completely from the described mechanism,
however.

Do the observed biases point to biases in the model parameterizations? They indicate at
least that our stochastic model is not correct since we made the assumption of the uncer-
tainties being unbiased. Only for the VOC emissions and some of the NOx emissions this
seems to be correct, although the situation might change if measurements of nitrogen and
organic compounds are included in the assimilation. For the other parameters it is not sure
whether the deterministic model is really biased or not, since other sources of uncertainty
are not be included in the stochastic model, and we might have better results because of
the wrong reason. The chosen degree of freedom allows reasonable variations in the model
parameters, and due the use of an adaptively chosen representation error, the values of the
parameters fed to the model are not to far outside this degree of freedom. An interesting
experiment is to see whether the estimates of model parameters obtained with the filter are
able to provide a proper simulation, if they are just inserted in the model. The stochastic
model was therefore run over the assimilation period using model parameters set to with
lag-one smoothed parameters in the assimilated mean. The resulting ozone simulations are
comparable with the assimilation results: the RMS errors as drawn in figure 5.7 increased
with less than 2 ppb. The largest differences were left when large ozone maxima were com-
pletely missed by the model, and the filter required a degree of freedom not provided by the
stochastic model.

5.6 Forecast of the ozone maxima

With the assimilation period of one month, it is now possible to analyze the forecast skill of
the filter in more detail. Similar as for the forecast experiments on the small grid described
in §4.4.3, the analyzed mean at 15:00 was used as an initial state for a run with the stochastic
model. Each of the initial states was propagated over 130 hours, such that a forecast of the
ozone maximum could be made up to 5 days ahead.

Figure 5.9 shows an example of simulated and forecasted ozone maxima for the site Neu-
globsow (see also figure 5.3). The parameters in the stochastic model were set to their
deterministic value or fixed to the last value obtained with the filter; fading the parameters
from assimilated towards deterministic values (as used in §4.4.3) provides results in between
these extreme situations. The results in figure 5.9 show that fixation of the parameters pro-
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Figure 5.9: Ozone maxima in Neuglobsow during august 1997 during assim-
ilation and forecast experiments. (see figure 5.3 for complete time series).

vides a forecast that is close to the assimilated mean on almost every day. Exceptions are the
forecasts for august 8 and 19 which exceed the assimilated (and measured) value with more
than 20 ppb; the forcast suffered here from exceptional low values for the deposition rate.
If the parameters in the stochastic model are not fixed but reset to their deterministic values,
the one-day forecast is already close to the values simulated with the deterministic model.
This results shows that an improved initial concentration only does hardly lead to a better
forecast. Similar results were found in (Elbern and Schmidt, 2001), where a 4D-var method
was used to obtain initial concentration fields for EURAD model. In their experiments, sig-
nificantly better forecasts were obtained in the 6 to 12 hour range, including prediction of
afternoon ozone peak; afterwards, an improvement is still visible but quickly fading. For
the current generation of ozone models, an estimation procedure of model parameters needs
to be included in a forecast system.

Figure 5.10 shows the RMS errors of the forecast as a function of the forecast period.
In addition, the RMS errors obtained with the deterministic model and the filter have been
computed too. With parameters set to the deterministic value, the forecast error converges
within three days to the error obtained with the deterministic LOTOS model. With fixed
parameters, the rms error is about 3 ppb less during all days. Even for a five days forecast,
the fixed-parameter forecast is still an improvement in comparison with the model. The
fixed-forecast RMS does not necessarily converge to the model RMS for longer forecast
intervals, since the parameters set during assimilation have changed the model.

Note that the offline ’forecast’ system used here will always perform better than a similar
operational system, since it is based on analyzed meteorological data. The meteorological
forecast for the coming two days is not very different from the data analyzed afterwards.
The five days forecast might however contain serious deviations, and this will influence the
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forecasts of the ozone maxima.

5.7 Discussion and conclusions

In this research, a large scale Kalman filter has been applied to assimilate ozone measure-
ments in the LOTOS model. Hourly ozone measurements from 41 sites in the north-western
part of Europe were found to be comparable with the LOTOS simulation. This number is
in fact rather low, since the total number of air quality sites in the area exceeds the number
of 200 (Tilmes, 1999). Sites in city centers and elevated sites are hardly comparable with
LOTOS, however, due to the coarse grid and poor vertical resolution. The remaining sites
provide useful information about the quality of the model. Timeseries of measurements
and model simulations show for example that the model systematically under estimates the
night-time ozone concentrations.

Many of the differences between model and measurements were found to be covered by a
stochastic model with uncertain emissions (NOx and VOC), photolysis rates (NO2 and O3)
and deposition velocity (O3). The remaining differences are due to uncertainties in other
model parameters (for example the height of the mixing layer), a spatial variability that is
larger than modelled here, or just the lack of representation of a measurement site by the
LOTOS model. An adaptive procedure has therefore been included in the filter to estimate
the optimal value of the representation error during each hour of the assimilation. The
results after assimilation show that a standard deviation of 7–15 ppb should be accepted
for the representation error. The best representation is achieved for the afternoon ozone
maximum (7–12 ppb). The adaptive procedure prevents the filter from adjusting LOTOS

parameters beyond the limits defined in the stochastic model. Some form of adaptive tuning
of the stochastic model should be included in every filter procedure, to obtain covariances
consistent with the actual observed residues. Besides, analysis of the tuning parameters
provides useful information about periods where model and measurements diverge.

Estimations of the uncertain model parameters during the assimilation show that espe-
cially the uncertainties in deposition are used to explain the difference between LOTOS and
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measurements. The impact of emissions is only visible in the measurement sites close to the
largest emission areas. The same holds for the photolysis rates, whose impact is strongest
in the emission plumes. Deposition rates are therefore a key parameter for ozone at ground
level in large parts of the domain. Ground based measurements in rural areas might not
be suitable to draw conclusions about emissions from urbanized areas. If the filter around
the LOTOS model is to be used explicitly for emission estimations, the horizontal resolu-
tion should be increased for better represention of measurements within urbanized area’s
such that these can be assimilated. Another option is to assimilate satellite measurements
which measure total columns rather than surface values. Experiments with the LOTOS clone
EUROS during the STROPDAS project (Velders et al., 2001) showed however that the qual-
ity of tropospheric ozone columns from satellite instruments is too low at the moment (see
also figure 1.3). With improvement of the tropospheric columns, the vertical extent of the
models should be improved too to cover at least the total troposphere.

The assimilation procedure is able to improve the quality of an ozone forecast signifi-
cantly. The rms error in the one-day forecast of the ozone maximum decreases with 25%
in comparison with a deterministic forecast. To achieve this, the uncertain parameters in
the stochastic model should be fixed to the values estimated by the filter for the afternoon.
This results shows that errors in the model parameters are rather persistent, since parameter
settings suitable to simulate the ozone maxima at a certain day are suitable for following
days too. An improvement of the forecast skill is still visible after five days. If the uncertain
parameters are set to their deterministic values, and the only improvement from the assim-
ilation is a better initial condition, the forecast skill is much smaller and almost negligible
after two days. Therefore, a stochastic model for LOTOS or comparable models should be
based on uncertain parameters, since improvement of the initial concentrations only is not
sufficient to improve a forecast.



Chapter 6

Low-rank filters

The filter around the LOTOS model applied in chapters 4 and 5 takes the form of
a low-rank filter. These kind of filters form a broadly used class of approximate
Kalman filters, suitable for data assimilation in models with large state vec-
tors. The background, algorithm, and (dis)advantages of several forms of low-
rank filters are discussed and compared: RRSQRT, SEEK/SEIK, ESSE, ENKF,
and POENKF. The performance of these filters in combination with the LOTOS

model has been tested during experiments with simulated data, with the best
results obtained for a RRSQRT filter incorporating the forecast step of the SEIK

filter.

6.1 Introduction

Application of the Kalman filter in guidance and electrical engineering have lead to decades
of experience in merging measurements with numerical models. With the growing inter-
est of assimilation of measurements in numerical weather, ocean, and climate models, the
Kalman filter has therefore been proposed as a natural tool for solving assimilation problems
(Ghil et al., 1981). Direct application of the traditional Kalman filter techniques to these
kind of models is hampered by the required computation power, however, growing quadratic
with the number of elements in the model state. For geophysical models, the later is often
in order of hundred thousands, and implementation of the Kalman filter is therefore only
possible for massive parallel computers (Lyster et al., 1997). Even if the computational re-
sources could solve the problem in theory, practical considerations about computation time
and financial costs will often reject the option of a traditional Kalman filter.

Since the quadratic growing costs of the Kalman filter are related to storage and propa-
gation of the covariance matrix, many solutions have been proposed for limiting the costs
associated with this matrix. In (Heemink, 1988), the covariance matrix was almost com-
pletely avoided by using a Kalman filter with steady state gain for filtering a 2D shallow
water model. This approach is based on the assumption that the covariance matrix hardly
changes after some initialization period, and can be computed and stored off-line. Another
method to limit the costs of the covariance matrix is to reduce its effective size. Model re-
duction techniques might be used to limit the dimension of the error model. Examples of this
approach are found in (Heemink and Kloosterhuis, 1990) and (Fukumori and Melanotte-
Rizzoli, 1995), where the model errors are defined on a coarser grid than the model state.
Without reducing the size of the covariance matrix, the costs of the covariance propagation

89
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could be reduced by using a simplified propagation. In (Cohn and Todling, 1995), a filter
was implemented with the error propagation based on the leading singular vectors of the
tangent linear model. Although this method leads to an efficient propagation, the storage of
the covariance matrix is still a problem if the dimension of the state increases.

Since devellopers of geophysical models tend to increase the size of the state vector with
the years (higher resolutions, additional physics), storage of a complete covariance matrix
has become almost impossible. Therefore, approximate filters have been proposed, to limit
both the storage as well as the propagation costs. In (Parrish and Cohn, 1985), the co-
variance matrix was approximated by a band matrix, based on the assumption that spatial
correlations vanish at large distances. This method suffers from an increasing bandwidth
which is hard to avoid; simple truncation of off-diagonal elements has the danger of loosing
the positive-definiteness of the covariance. In for example (Eskes et al., 1999), a parameter-
ization of the covariance matrix is used with separate treatment of spatial correlations and
standard deviations, for assimilation of ozone columns in a 2D global model. The standard
deviations form a field on the model grid, propagated in time by the default advection; the
spatial correlations are extracted from measurement data.

In this research, the method of low-rank approximations of the covariance matrix will be
discussed. The low-rank approximation is based on the observation that in many practical
filter problems, the covariance matrix is dominated by a limited set of modes, typical ten
to hundred. The Partial Eigendecomposition Kalman Filter (PEKF) proposed in (Cohn and
Todling, 1995) uses a parameterization of the covariance based on the leading eigenvectors,
computed from a full covariance function with a Lanczos algorithm. A similar approach
based on a singular value decomposition was introduced for the Reduced Rank SQuare
RooT (RRSQRT) filter (Verlaan and Heemink, 1995). The RRSQRT approach does not rely
on a user defined covariance function, but builds a covariance matrix from zero. Expression
of the model error in terms of empirical orthogonal functions lead to the formulation of two
other low-rank filters: the Singular Evolutive Extended/Interpolated Kalman (SEEK/SEIK)
filter (Pham et al., 1998; Verron et al., 1999) and the Error Subspace Statistical Estimation
(ESSE) framework (Lermusiaux and Robinson, 1999b). A natural advantage of the low-rank
filters is that the covariance matrix never needs to be evaluated in full form, although each
element is computed easily if necessary. Besides, the low-rank parameterizations ensure
that the covariance matrix is always positive definite.

All of the mentioned low-rank filters explore the fact that the eigenvectors or modes of the
covariance matrix have an ensemble interpretation. Each mode has the shape of a state vec-
tor, and together these state vectors form an ensemble of deviations around the mean state.
The reverse approach, building a covariance from state vectors, forms the basic idea behind
the Ensemble Kalman Filter (ENKF) (Evensen, 1994). An ensemble of model states is used
as an estimation of the true state; whenever the filter requires statistics such as mean and
covariance, these are obtained from the sample statistics of the ensemble. This approach
is therefore completely different from other low-rank filters, where the basic formulation
starts with an approximation of the covariance matrix, which turns out to have the inter-
pretation of an ensemble afterwards. The simple formulation has lead to application of the
ENKF in many oceanographic and meteorological studies (Evensen and van Leeuwen, 1996;
Evensen, 1997; Keppenne, 2000; Houtekamer and Mitchell, 1998). As a result, features of
the ENKF have been incorporated in other filter schemes, especially to treat nonlinearities.
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The sharp division between the different approaches has therefore disappeared.

The capability of handling models with large state vectors make the low-rank filters suit-
able to assimilate measurements in the LOTOS model. The background and implementa-
tional details of some popular low-rank filters are therefore studied in detail. For complete-
ness, the discussion is started with the full rank formulation (§6.2). Some general properties
of the low-rank formulation are discussed in §6.3 and §6.4. The methods based on low-rank
factorizations of the covariance matrix (RRSQRT, SEEK/SEIK, and ESSE) are described in
§6.5. The ensemble method is discussed in §6.6 as a separate case. Recently, a combination
of factorization and ensemble methods has been proposed to combine benefits of both meth-
ods: the Partially Orthogonal Ensemble Kalman Filter (Heemink et al., 2001); the POENKF

formulation is described in §6.7. A summary of the implementations of all low-rank filters
is given in §6.8. A critical step in the methods based on factorization, the truncation of the
covariance matrix up to some rank, is discussed afterwards in detail in §6.9. The perfor-
mance of the different filter techniques has been tested for the LOTOS model in experiments
with simulated data; setup and results are discussed in §6.10.

6.2 Kalman filter with full covariance matrix

Let for implementation of a Kalman filter around LOTOS the evolution of the state and
observation of measurements be described with the stochastic system:

xt [k+1] = A[k] xt [k] + η[k] (6.1a)

yo[k] = H[k]′xt [k] + v[k] (6.1b)

with xt [k] ∈ IRn the true state vector at time t [k], A[k] a deterministic model, η[k] ∈ IRn a
Gaussian distributed model error (zero mean, covariance Q), and yo[k] ∈ IRr a vector of
observations with v[k] the representation error (Gaussian with zero mean and covariance R).
Indices ’t’, ’o’, and later on ’f’ and ’a’ refer to true, observed, forecasted and analyzed
entities respectively, as introduced in chapter 3. The notation with a linear operator A is
chosen in order not to complicate the formula, although the stochastic model M(x) used
in chapter 4 and 5 is in fact nonlinear in x. The treatment of nonlinearities is discussed in
detail in chapter 7; for the moment, the linear interpretation is suitable and more clear. The
time indices for A and H′ will be dropped in coming equations, assuming that the time is
implied by the state where the operators act on.

The goal of the filter operations is to obtain the mean x̂a and covariance Pa for the prob-
ability density of the true state. The filter equations for this system have been derived in
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§3.3.3 and are summarized by:

forecast:

x̂ f [k+1] = A x̂a[k] (6.2a)

P f [k+1] = A Pa[k] A + Q[k] (6.2b)

analysis:

x̂a = x̂ f + K (yo −H′x̂ f ) (6.2c)

Pa =
{

(I−KMV H′)P f , KMV = P f H′(H′P f H+R)−1

(I−KH′)P f (I−KH′)′ +KRK′ , arbitrary gain K
(6.2d)

In combination with a large model, the propagation of the covariance matrix in (6.2b)
is the most expensive part in the full rank filter. The dynamical model is called 2n times
to perform the operation A(AP)′. Even with the aid of parallel computing this is hardly
feasible (Lyster et al., 1997). The only practical method to implement a full rank filter is to
use simplifications for the model A. A very strong simplification of the model is for example
to replace it by the identity, such that the covariance only grows through the introduction of
dynamic noise in Q. Cohn and Todling (1995) performed a singular value decomposition
of the dynamical operator A, under assumption that the growth of the error covariance is
dominated by a few rapidly growing singular modes of the model.

Note that ’full rank’ does not imply ’completely filled’: the covariance matrix might be
sparse. This is in fact a necessary requirement for implementation of a full rank filter,
since storage of a n×n matrix is practically impossible for large n. If correlations between
grid points are supposed to vanish with increasing distance, the covariance matrix becomes
sparse and only the non-zero elements have to be stored. A problem with this method is
that the sparseness is only maintained during propagation if the dynamical model describes
advection only. If the model is diffusive, new off-line elements are introduced. In (Parrish
and Cohn, 1985), this problem is solved through truncation of covariance elements below
some threshold, but obtained difficulties with preservation of positive definiteness.

Limiting both the number of model evaluations as well as the storage requirements is
better achieved by reducing the rank of the covariance matrix. In the next sections we will
describe a number of filter algorithms based on this method.

6.3 Factorization of the covariance matrix

A covariance matrix is positive definite. This property of a covariance matrix is easily lost
when numerical operations are performed, for example due to truncation errors. To avoid
this problem, (Bierman, 1977) proposed to rewrite the equations for the Kalman filter using
the factorization P = SS′. Numerical inaccuracies made in computation and storage of the
matrix S will never affect the property of positive definiteness of P. Inaccuracies will even
be reduced since the condition number of S is only the square root of the condition number
of P.

The idea of a factorization is useful to reduce the storage requirements of P. Consider
a covariance matrix P written as the product of a rectangular matrix square root S and its
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transpose:

P = S S′
n×n n×m m×n

(6.3)

Matrix P is a valid covariance matrix independent of the shape and contents of the matrix S.
Even for a square root formed by a singe column, the product SS′ is still a valid covariance
matrix. The rank of P is equal to the rank of S, and thus less than or equal to m. An arbitrary
element of the covariance matrix P is equal to the inner product of two rows of S:

pi j = S(i,:) S( j,:)
′ =

m

∑
k=1

siks jk (6.4)

With this formula it is a simple exercise to show that the complete covariance matrix is
formed from a sum of ’outer’ products of columns of S:

P =
m

∑
k=1

S(:,k)S(:,k)
′ =

m

∑
k=1

(
sksk

′) =
m

∑
k=1

Pk (6.5)

where Pk = sksk
′ denotes the rank-one covariance matrix formed from column sk. A full

rank P might be formed from a sum of at least n matrices Pk (symmetric, rank-one). If the
matrices Pk are ordered descending according to some norm, a factorization in square roots
is equivalent to approximation of P by a truncated series:

P =
∞

∑
k=1

Pk ≈
m

∑
k=1

Pk = SS′ (6.6)

An eigenvalue decomposition is in fact based on this approach. Rank-one matrices Pk are
obtained from the eigenvectors and are weighted with the corresponding eigenvalue:

P = LΛL′ =
n

∑
k=1

λ k
(
lklk ′

)
(6.7)

where the diagonal matrix Λ contains the eigenvalues in descending order and L the cor-
responding eigenvectors. The covariance square root represented in this way is filled with
vectors

√
λ klk. The amplitude of the elements in

√
λ klk decrease with k; including more

eigenvalue/vectors introduces more detail.
Relations (6.6) and (6.7) show that adding two low-rank covariance matrices to eachother

is equivalent with combination of the two square roots:

PA + PB =
mA

∑
k=1

(
sA

k sA
k
′)

+
mB

∑
k=1

(
sB

k sB
k
′) =

[
SA , SB ] [ SA , SB ]′ (6.8)

where [., .] denotes that the new matrix is formed from the columns of the original matrices.
If all columns in square roots SA and SB are linear independent, the rank of PA +PB is equal
to the sum of the ranks of the square roots.
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A suitable interpretation of the columns of S is that it represents a base for how the true
state might differ from the mean state. If we accept that the mean x̂ and covariance SS′
approximates the distribution of the true state, we also accept that x̂ + Sw is a possible
realization for each w ∼ N (o,I). The low-rank filters described in this chapter use this
property to create special ensembles of states to be propagated by the model operator. In the
next section it is shown that the minimal variance gain KMV in (6.2d) is within the subspace
spanned by S. The columns of S define how a forecast of the true state might be analyzed
towards the the measurements, and are therefore also referred to as the ’modes’ of the filter.

Instead of extracting an ensemble from the columns of the covariance square root, an
ensemble of states could be used to build a suitable square root too. The sample covariance
of the ensemble {ξ1, . . . ,ξm} with sample mean ξ is given by:

P =
1

m−1

m

∑
j=1

(
ξ j −ξ

)(
ξ j −ξ

)′ =

[
. . .

ξ j −ξ
√

m−1
. . .

][
. . .

ξ j −ξ
√

m−1
. . .

]′
(6.9)

The rank of the square root obtained in this way is equal to m−1, since the m ensemble
members define a subspace of dimension m−1.

6.4 Kalman filter in square root form

The Kalman filter equations from §6.2 are easily rewritten in terms of factorized covariance
matrices. Apart from the previous described factorization P = SS′ for the covariance of the
true state, we also introduce factorizations Q = TT and R = UU′ for the covariance of the
forecast and representation error respectively. Further, a matrix Ψ ′ = H′S is introduced for
the mapping of the forecast covariance square root to the observation space.

After (6.2a-6.2b), the forecast of mean and covariance become:

x̂ f [k+1] = A x̂a[k] (6.10a)

(S f S f ′)[k+1] = A (SaSa′)[k] A + TT′[k]
or S f [k+1] = [ ASa[k] , T[k] ] (6.10b)

The introduction of a forecast error leads to extension of the square root with the columns of
T. Each new column introduces a new direction for the uncertainty of the state vector. To
preserve the number of modes from growing to infinity, filter algorithms based on factoriza-
tions include approximations or mechanism to avoid the growth, for example avoiding the
use of dynamic noise completely, projection of T on the base spanned by AS, or reduction
of the number of columns whenever necessary. If T is to be added to the covariance square
root, the degree of freedom in the system noise (rank of T) should be of order 10−100 to
keep storage and propagation of the covariance square root feasible.

The equations for the analysis of the covariance square root are derived from eq. (6.2d).
Analysis with minimal variance gain or arbitrary gain are discussed separately. The analysis



6.5. EXAMPLES OF FACTORIZED FILTERS 95

equations for a minimal variance gain reduce to:

K = S f Ψ (Ψ ′Ψ +R)−1 (6.11a)

x̂a = x̂ f + K (yo −H′x̂ f ) (6.11b)

SaSa′ = (I−KH′) S f S f ′ = S f [I − Ψ (Ψ ′Ψ +R)−1Ψ ′]S f ′ (6.11c)

or Sa = S f [I − Ψ (Ψ ′Ψ +R)−1Ψ ′]1/2
(6.11d)

Equations (6.11) requires three major operations: solving Θ from the system (Ψ ′Ψ +R)Θ =
Ψ ′, factorization of I−ΨΘ into BB′, and the transformation S f B. If the number of mea-
surements is limited to 10–100, the cost of the first two operations is minor, and the total
coasts of the analysis are completely determined by the transformation of the square root. It
is possible to solve the analysis equations (6.11) without solving matrix systems and factor-
izations, by treating the available measurements as a sequence of uncorrelated scalar mea-
surements. The algorithm for this repeated scalar update is described in appendix B. The
repeated scalar update is simple to implement since no matrix systems need to be solved,
although the later is not necessary a problem since many fast and accurate software libraries
are available. For very large numbers of measurements (much more than the number of
modes), a repeated scalar update becomes less efficient than the matrix method.

For an analysis with an arbitrary gain matrix, the analysis of the covariance is transformed
into:

SaSa′ = (I−KH′)S f S f ′(I−KH′)′ + KUU′K′ (6.12a)

Sa =
[
(I−KH′)S f , KU

]
=
[

S f −KΨ ′ , KU
]

(6.12b)

Similar as for the forecast error during the forecast stage, the representation error leads to
the introduction of new directions in the covariance during the analysis. The new directions
reflect that the observation vector used during the analysis contains random errors, and could
have had a different value leading to a different analysis with equal probability. The memory
requirements for analysis (6.12) could exceed the available capacity, if the gain matrix K
is stored as a separate entity. A more efficient approach is to append the gain matrix to
the existing S f , to replace the first m columns with S f − KΨ ′, and finally to replace the
last columns with KU. If the gain matrix is the result of an analysis with local support
(Houtekamer and Mitchell, 2001), the number of non-zero elements in the gain is limited.
Instead of using a gain matrix with state vector shaped columns, a special implementation
should be considered now, with the columns defined on a spatial limited grid. With this
implementation, it is possible to analyze large numbers of measurements with a factorized
filter.

6.5 Examples of factorized filters

A number of filter technique is in use which all exploit the concept of a factorized covari-
ance matrix. The filters are based on the concept that, although the degree of freedom in
the state is very large, the errors in the state are described very well by a limited number
of directions, typically less than 100. Whether these directions are called singular vectors,
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modes, or EOF’s, the basic equations in all filter implementations remain the same.

6.5.1 RRSQRT filter

The Reduced Rank SQuare RooT (RRSQRT) filter was developed for assimilation of water
level measurements in a shallow water model. The RRSQRT filter has been applied success-
fully to mainly hydro-dynamical models (Verlaan, 1998; Voorrips et al., 1999; Cañizares,
1999).

In the RRSQRT formulation of the Kalman filter, the covariance matrix is expressed in a
limited number of (orthogonal) modes, which are re-orthogonalized and truncated to a fixed
number during each time step. The basic formulation is a direct translation of the linear
Kalman filter into square root formulation, leading to:

x̂ f [k+1] = A x̂a[k] (6.13a)

S f [k+1] = [ A Sa[k] , T[k] ] (6.13b)

Ψ = H′S f [k+1] (6.13c)

K = S f [k+1] Ψ [ Ψ ′Ψ +R[k+1] ]−1 (6.13d)

x̂a[k+1] = x̂ f + K(yo[k+1]−H′x̂ f [k+1]) (6.13e)

Sa[k+1] = S f [k+1]
[
I − Ψ (Ψ ′Ψ +R[k+1])−1Ψ ′]1/2

(6.13f)

VΛV′ = Sa[k+1]′Sa[k+1] (6.13g)

S̃a[k+1] = Sa[k+1]Ṽ (6.13h)

The algorithm is initialized with an empty covariance square root; new columns are added
every time step due to the introduction of system noise (6.13b). As a consequence, the filter
will have to spent some time on building an appropriate covariance matrix. If for example
the system noise is specified to be in the boundary conditions, the filter has to perform a
number time integrations before this uncertainty is propagated through the domain. For
each of the m modes stored in S, the forecast of the covariance requires one evaluation of
the model A. The analysis steps (6.13d)–(6.13f) are usually implemented in the form of a
sequential update for scalar measurements (appendix B), since for the applications where
the filter has been implemented the number of measurements is limited.

An important part of the RRSQRT algorithm is the reduction of the covariance square root
(6.13g–6.13h). With the introduction of system noise in eq. (6.13b), the number of modes
has grown from m to m + q, where q is the number of columns in T (rank of Q). The
reduction step reduces the size to m again. Matrix Ṽ contains the eigenvectors of Sa′Sa

corresponding with the largest m eigenvalues. The new matrix SaṼ is an approximation
of S maintaining the largest singular vectors; see §6.9 for the details of the reduction. If
the square root S is never reduced, or reduced to a n× n matrix if the number of columns
exceeds n, then it is straightforward to show that the RRSQRT-filter is equal to the linear
Kalman filter. Otherwise, some of the correlation structure stored in the covariance matrix
will be lost after reduction. The number of modes required for an accurate estimation of a
covariance grows when the stochastic model is more unstable, when the rank of Q is large,
or when the observations are distributed sparse in time. In practice, the maximum number
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of modes which can be used, is limited by available computing power. If the maximum
number of modes is not able to express the covariance correctly, the stochastic model and
thus the filter problem should be simplified.

In term of computational costs, the most expensive part of the RRSQRT filter is formed
by the propagation of the modes (6.13b), when for each mode the model should be called
once. The reduction should therefore reduce the number of modes as far as possible, while
still preserving the most important structures in the covariance matrix (see section 6.9).
The costs of the reduction are limited if matrix multiplication SṼ is combined with other
multiplications with S (see §6.8).

6.5.2 SEEK and SEIK filter

The Singular Evolutive Extended Kalman (SEEK) filter (Pham et al., 1998) and the Singular
Evolutive Interpolated Kalman (SEIK) filter (Pham, 1996) are two versions of a factorized
Kalman filter based on empiric orthogonal functions (EOF’s). The filter has been applied
in combination with oceanographic models, see for example (Verron et al., 1999). The
SEIK filter is different from the SEEK filter in the use of finite difference approximation
during the forecast stage rather than a tangent linear model. Since this research a TLM is not
considered, the SEIK formulation will be discussed here.

The basic idea of the SEEK/SEIK filter is to make corrections only in a base spanned by
a limited number of EOF’s. EOF’s are just the eigenvectors l of a sample covariance matrix
P = LΛL′, computed over a large number of state vectors obtained with the deterministic
model. A covariance square root is formed with S = LΛ1/2. The algorithm of the SEIK

filter is summarized with the following equations:

x̂ f [k+1] = A(x̂a[k]+L[k]Ω) (6.14a)

L[k+1] =
(
A(x̂a[k]+L[k]Ω) − x̂ f [k+1]

)
Ω−1 (6.14b)

Ψ = H′L[k+1] (6.14c)

Π = (L[k+1]′L[k+1])−1L′[k+1] (6.14d)

(Λ[k+1])−1 =
[
Λ[k]+ΠQ[k]Π ′]−1 +ΨR[k+1]−1Ψ ′ (6.14e)

K = L[k+1] Λ[k+1] Ψ R[k+1]−1 (6.14f)

x̂a[k+1] = x̂ f [k+1] + K(yo[k+1]−H′x̂ f [k+1]) (6.14g)

For propagation of the covariance matrix, the SEIK filter forms an ensemble of states from
the columns of L, in simplified notation: x̂a + LΩ. The m× (m + 1) matrix Ω is chosen
such that the ensemble has sample mean x̂a and covariance LΛL′; see chapter 7 for details.
The forecast of the mean (6.14a) and the covariance factorization (6.14b) are equivalent to
the sample statistics of the propagated ensemble. The SEIK filter is therefore different from
the regular Kalman filter, because it does not make a separate forecast for the new mean.
The use of a sample mean shows more agreement with the ensemble filter (section 6.6),
especially since there is also some randomness included in the computed Ω. In the SEEK

variant of the filter, the mean and covariance base L are propagated separately by a tangent
linear model A = ∂M/∂x, and this version of the filter is therefore comparable with the
Extended Kalman Filter.
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After the philosophy that corrections are only made within a base spanned by the columns
of L, the SEIK filter performs the analysis of measurements in terms of an update of the
matrix Λ (eq. (6.14e), actually an update of Λ−1); the base L remains the same. System
noise is also introduced in the base spanned by L; a projection of Q onto L is introduced
during the analysis step (6.14e). This procedure is justified by the assumption that the EOF’s
in L point in directions amplified by the dynamical model. The benefit of corrections made
in other directions will be marginal. The base in which the filter operations are applied
is initial orthogonal, but this property will soon be lost if it is propagated by a nonlinear
model. Depending on the dynamics applied on the base vectors, some of them will tend
to diverge while groups of other vectors tend to converge to a single direction. To avoid
numerical instabilities, the vectors will have to be periodically renormalized (Pham, 1997),
or re-orthogonalized (Verron et al., 1999). If a re-orthogonalization is applied after each
filter step, the original idea of adjustments within a fixed base is lost, and the algorithm
becomes almost identical to the RRSQRT filter.

6.5.3 ESSE: Error Subspace Statistical Estimation

Error Subspace Statistical Estimation is a mathematical framework introduced in (Lermu-
siaux and Robinson, 1999a; Lermusiaux and Robinson, 1999b) for assimilation techniques
based on a low-rank covariance matrix. Investigation of the goals and constraints for ocean-
atmosphere data assimilation lead to the definition of the filter problem in terms of a low-
rank, evolving, and flexible sized error subspace (ES) that spans and tracks the scales and
processes where the dominant errors occur. Derivations in the framework are based on
general formulations, but the current applications end up with error subspaces in terms of
singular vectors of the covariance matrix and EOF’s. The error subspace is therefore com-
parable with the square root S in the RRSQRT filter and the base L in the SEEK/SEIK filter.

The ESSE system described in (Lermusiaux and Robinson, 1999a) covers a large number
of different applications: filtering, forecast, smoothing, parameter estimation, etc. Almost
all popular techniques for low-rank filtering are available somewhere in the system, to be
selected depending on the application. In the basic formulation, the error covariance matrix
is approximated by a factorization P ≈ EΠE′ where E is a base for the error subspace and
Π contains the eigenvalues according to some norm. The rank of the error subspace is
assumed to be flexible and might be reduced to a suitable size using singular value decom-
positions. Forecasts of the covariance are based on propagation of an ensemble of states,
chosen random or more structured out of the statistical distribution defined by the mean and
the error subspace. The analysis equations follow either the derivations (6.11d) and (6.12)
for the covariance square root, or the ensemble analysis described in section 6.6.

The framework of the ESSE provides a useful overview of techniques available for low-
rank filters. Which of the techniques is used in practice depends on the application and
considerations about computational costs.
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6.6 Ensemble filter

Where the RRSQRT, SEEK/SEIK and ESSE approaches are based on factorization of the co-
variance matrix, the Ensemble Kalman Filter (ENKF) is based on convergence of large num-
bers. Both approaches lead to a low-rank approximation of the covariance matrix. The
ensemble filter was introduced in (Evensen, 1994) for assimilation of data in oceanographic
models.

The basic idea behind the ensemble filter is to express the probability function of the state
in an ensemble of possible states {ξ 1, . . . , ξ N}. Each ensemble member is assumed to be a
single sample out of the distribution of the true state. All ensemble members have the same
weight, and operations are performed on each single ensemble member rather than on the
complete ensemble itself. Whenever necessary, statistical moments are approximated with
sample statistics:

x̂ ≈ 1
m

m

∑
j=1

ξ j , P ≈ 1
m−1

m

∑
j=1

(ξ j − x̂)(ξ j − x̂)′ , . . . (6.15)

The sample statistics will always converge to the true values with increasing ensemble size.
Convergence is rather slow (order 1/

√
m), however, and this the only serious disadvantage

of the ensemble filter. Evensen (1996) stated that for practical ensemble sizes of O (100),
the errors in the filter will be dominated by statistical noise, not by closure assumption or
unbounded error variations growth as have been observed for the EKF. To remove a part
of the statistical noise, (Houtekamer and Mitchell, 1998) used a cutoff radius after which
correlations are ignored, whenever these are extracted from the ensemble.

An important difference between the pair (x̂,P) of the Kalman or factorized filter and the
ensemble statistics (6.15) is that the later are much more connected with eachother. In the
traditional Kalman filters, x̂ and P are processed more or less independent from eachother.
The mean x̂ is analyzed using a gain matrix computed from P, but P is never affected by x̂;
the covariance and gain could even be computed off-line.

It is possible to reformulate the ensemble in terms of a (sample) covariance square root:

P =
m

∑
k=1

ekek
′ = EE′ , ek =

ξk − ξ̄
√

m−1
(6.16)

Each ensemble member defines a rank one covariance matrix ekek
′. At least two ensemble

members are required to provide a sample mean and sample covariance. This is not different
for the filters based on factorizations which require at least two states for the mean and
covariance too: the mean itself and one mode for a rank-one covariance matrix.

The filter equations for the ensemble filter are different from the previous described fac-
torized filters in operating on an ensemble of states instead of a mean and covariance factor.
Given an initial ensemble of states describing a range of possible true states, a forecast of
the statistics for the true state at a future time is simply obtained from propagated ensemble
members. In case of a non-linear model, the propagation becomes:

ξ
f
k [k+1] = M(ξa

k [k]) + ηk [k] , ηk [k] ∼N (o,Q[k]) (6.17)
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where a sample of the system noise is obtained from a random generator. The ensemble
forecast is the same for M being linear or non-linear. Whenever measurements are available,
each of the ensemble members is analyzed with a linear gain:

ξa
j [k+1] = ξ

f
j [k+1] + K(yo[k+1]+v j −H′ξ f [k+1]) , v j ∼N (o,R[k+1]) (6.18)

The vectors v j denote samples of the representation error, drawn from a random generator.
With Pe and Re the sample covariances of the vectors ξ j and v j respectively, this analysis
scheme leads to an analyzed mean and covariance given by (a bar denotes an ensemble
mean):

x̂a = ξa
j = ξ

f
j + K(yo +v j −H′ξ f

j ) (6.19a)

Pe,a = (ξa
j −ξa

j )(ξ
a
j −ξa

j )
′

(6.19b)

= [I−KH] Pe, f [I−KH]′ + KeReK′

+ O
(
(v j −v j)(v j −v j)−R

)
+ O

(
(ξa

j −ξa
j )(v j −v j)

)
(6.19c)

The last two terms converge to zero with order 1/
√

m. If these terms are omitted, the analysis
scheme produces what is expected from (6.2d) for analysis of covariance Pe with an arbi-
trary gain matrix K. The ensemble analysis (6.18) is independent of the gain matrix used.
Under the assumption that the probability densities of both state and measurements are
close to Gaussian, a gain matrix for the ensemble filter might be formed using the ensemble
covariance:

Ke = PeH
[
H′PeH+R

]−1
(6.20)

The ensemble filter is different from the other low-rank filters in not using any kind of or-
thogonalization. There is no need for rank reduction, since the ensemble size does not grow
due to the introduction of system noise or analysis with a general gain matrix. Ensemble
members are almost independent from eachother. The only point where an ensemble mem-
ber might notice the existence of the other members is during the analysis stage, if the gain
matrix is computed from ensemble statistics as in (6.20). This is not necessary, however,
since a gain might be defined completely independent from the ensemble too. An advantage
of the filter acting on ensemble members rather than a covariance matrix is the clear insight
in how the filter performs, since tracing values in individual members is less complicated
than tracing parts of a covariance matrix.

Note 1. In the original implementation of the ensemble filter (Evensen, 1994), the ensem-
ble members were analyzed without random samples v j of the representation error in (6.18).
The true covariance E

[
(xt − x̂)(xt − x̂)′

]
of the ensemble mean was shown to be analyzed

correctly, if the ensemble happens to represent the true covariance exactly. In (Burgers et al.,
1998) it was noticed that this procedure would lead to an analyzed ensemble covariance Pe,a

in (6.19) without an analog for the term KeReKe′, however. This term is lost because each
ensemble member is analyzed with the same observation vector yo, while this is only one
specific realization from a broad range of possible observations. Without the random repre-
sentation errors, the spread in the ensemble members has become to small, and will hamper
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the computation of covariances at future time steps. Including random representation errors
does not influence the true covariance of the ensemble mean.

Note 2. It is possible to rewrite the analysis scheme of the ensemble filter in terms of
adding additional members to the ensemble, analog to equation (6.12) for the factorized
filter. The m̃ new members are formed from the forecast ensemble mean, analyzed with m̃
different random representation errors; the first m members of the new ensemble are formed
from analysis with the average representation error:{

. . .ξ
f
j +K(yo +vl −Hξ f ) . . . , . . .ξ

f
j +K(yo +vl −Hξ

f
j ) . . .

}
j = 1, . . . ,m , l = 1, . . . (6.21a)

The new ensemble has sample mean and covariance equal to (6.19). The practical value
of eq. (6.21a) is limited; it reminds that including random observation errors (note 1) in-
troduces new directions in the ensemble. A continuous growing ensemble is not practical,
however, and a mechanism for reducing the ensemble should be included.

6.7 POEnK Filter

A new direction in implementation of low-rank filters is the use of two filters next to ea-
chother. The combination should compensate for errors made in one or both of the individ-
ual filters.

In (Houtekamer and Mitchell, 1998), a Double Ensemble Kalman Filter (DENKF) was
proposed in order to prevent ’inbreeding’ of the Ensemble Filter: in the analysis step, the
ensemble is updated with a gain calculated from the ensemble itself. This situation might
lead to an underestimation of the covariance. In the DENKF, this effect was limited by using
two ensembles, and analyzing each of them with a gain matrix calculated from the other
one. In (van Leeuwen, 1998) the issue of inbreeding has been discussed in more detail. It
was shown that the DENKF also suffered from this effect, but on a smaller scale. An im-
portant part of the inbreeding was shown to arise from neglecting higher order moments in
the gain matrix. It was argued that using a single ensemble of double size instead of two
small ensembles next to eachother will lead to an overall better performance for the same
computational costs, since covariances are calculated more accurate.

The Partially Orthogonal Ensemble Kalman Filter (POENKF) proposed in (Heemink et al.,
2001) runs a RRSQRT filter next to an ENKF. The basic idea is to let the RRSQRT part
compute the bulk of the covariance structure, described in the first modes. The ENKF part
should account for the truncation error, by introducing directions in the covariance matrix
that have been lost during the reduction. This procedure incorporates the advantages of
both filter types, and accounts for their major disadvantages. Ensemble filters suffer from
a lack of convergence; many ensembles are required before sample mean and correlations
are stable. An ensemble filter is able to estimate and maintain any correlation introduced
by the stochastic model, however. The reverse holds for the RRSQRT filter: a few modes are
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sufficient to describe the main part of the covariance structure, but some of the correlation
structure is lost during the reduction.

The gain matrix used in the POENK filter is computed with a covariance matrix Ppoen

formed from the covariances in the two underlying filters. The bulk of Ppoen is obtained from
covariance Prr of the RRSQRT part, and the remainder from a projection of the ensemble
covariance on the orthogonal complement of Prr:

Ppoen = Prr + Pen⊥rr (6.22a)

Kpoen = Ppoen H ( H′ Ppoen H + R )−1 (6.22b)

Gain (6.22b) is used to analyze both x̂ f and S f of the RRSQRT part, and the ensemble
members in the ENKF part. Since the gain has not the form of the minimal variance gain,
the general analysis scheme (6.12) should be used for the RRSQRT part. The new gain matrix
acts as a variance reductor for the ensemble, since the ensemble mean is less sensitive to
fluctuations due to small ensemble sizes (Heemink and Segers, 2000). The gain matrix
Kpoen is efficiently computed using the square root Spoen of Ppoen. Expressed in the square
root S from the RRSQRT part and the ’ensemble square root’ E defined in (6.16), the square
root Spoen is computed from:

Π‖ = S(S′S)−1S′ (6.23a)

E‖ = Π‖ E (6.23b)

E⊥ = E − E‖ (6.23c)

Spoen =
[

Srr , E⊥
]

(6.23d)

where Π‖ is the projection matrix on the subspace spanned by the columns of S. Thus, the
covariance square root of the POENK filter is obtained from adding a number of columns to
Srr equal to the ensemble size. Storage of Spoen as a separate variable is not very efficient
due to the duplication of the memory requirements, however. A more efficient approach is
to treat E‖ as a separate variable, and then to store the gain computed from Srr, E, and E‖
temporarily behind Srr following the remarks at the end of section 6.4.

6.8 General formulation of low-rank filter

Although the previously described filter algorithms are sometimes quite different in philos-
ophy and detail, the actual implementations turn out to be very similar. In this section an
overview is given of the basic matrix/vector operations performed during a filter step. All
operations are defined in terms of the mean/covariance-square-root pair (x̂,S), which could
be interpreted as an ensemble too.

initialization
The algorithm starts with an initial pair (x̂a[k],Sa[k]) which is the best estimate for
mean and covariance of the true state at t [k].
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formation of forecast ensemble
An ensemble of state vectors is formed and stored in a matrix:

[. . . ,ξ j [k], . . . ] = x̂a[k] + Sa[k] Ω (6.24)

The matrix Ω might take many shapes (square, rectangular) and contain special parts
such as zero columns or diagonals. A detailed discussion of the contents of Ω is
left for chapter 7 about nonlinear methods; see especially table 7.2. The columns of
matrix Ω define linear combinations of columns of Sa[k], such that adding the linear
combination to x̂a provides a specific example of a state vector.

propagation of ensemble
Each ensemble member is propagated by the model:

ξ j [k+1] = A[k] ξ j [k] + η j [k] (6.25)

The noise vectors η j are samples of system noise: zero or unity for RRSQRT, always
zero for SEIK, random for ESSE and ENKF. See again chapter 7.

reconstruction of mean/covariance-square-root
A new mean/covariance-square-root pair (x̂ f [k+1],S f [k+1]) is formed from the propa-
gated ensemble, for example:

x̂ f [k+1] = ξ j [k+1] (6.26a)

S f [k+1] =
(

[. . . ,ξ[k+1], . . . ] − x̂ f [k+1]
)
Ω−1 (6.26b)

Matrix Ω−1 is a general inversion operator, depending on the particular choice made
for Ω in (6.24).

analysis
The equations for analysis with minimal variance gain take the form:

x̂a[k+1] = x̂ f [k+1] + S f [k+1] a (6.27a)

Sa[k+1] = S f [k+1] B (6.27b)

See table 6.1 for the exact form of a and B if (x̂ f ,S f ) represents a factorization or an
ensemble, and for analysis with arbitrary gain.

rank reduction
Whenever necessary, the rank of the covariance matrix is reduced by approximation
of S with the largest singular values:

S′S = VΛV′ (6.28a)

S̃ = SṼ (6.28b)

In here is VΛV′ the eigenvalue decomposition of S′S, and contains Ṽ the eigenvectors
corresponding to the largest eigenvalues. See section 6.9 for details of the reduction
mechanism.



104 CHAPTER 6. LOW-RANK FILTERS

factorized filter ensemble filter

v j ∼ N(o,R) , j=1,...,m

v = o v = v j

z j = o z j = (v j −v)/√
m−1

d = yo +v−H′x̂ f

minimal Θ = (Ψ ′Ψ +R)−1Ψ
variance a = Θd
gain BB′ = I − ΘΨ ′ B = I + Θ(Z′ −Ψ ′)
gain x̂a = x̂ f + S f a

Sa = S f B

arbitrary x̂a = x̂ f +Kd
gain K D = Z′ −Ψ ′

Sa =
[
S f +KD , KU

]
Sa =

[
S f +KD

]

Table 6.1: Summary of analysis equations of form (6.27) in use for low-rank
filters. The pair (x̂,S) denotes either a mean/covariance-square-root for a
factorized filter or the sample mean/deviations for an ensemble filter; these
are analyzed with a minimal variance or an arbitrary gain. The analysis
equations for the SEEK/SEIK filter in (6.14) are originally expressed in terms
of a matrix Λ, but are equivalent to analysis of a factorized filter with a
minimal variance gain, and are therefore not discussed as a special case.
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The computational most expensive operations are the propagation of the ensemble in
(6.25), the various transformations of the covariance square-root in (6.24), (6.26b), (6.27b),
and (6.28b), and the eigenvalue decomposition in (6.28a). All other operations are of mi-
nor costs, although the operations to form the analysis matrix B might become expensive if
many measurements are to be analyzed (order 103).

The transformations of S are not all of similar costs; the matrices Ω for the forecast are
often sparse for example. The analysis with optimal gain and the rank reduction require
transformation with a full matrix, however. Transformation of the n × m matrix S with
the m× m̄ matrix B requires 2nmm̄ flops (p. 187) and the costs of this operation increase
therefore quadratic with the number of columns in S. There is no need to apply each trans-
formation at once, however. That is, the covariance square root could be defined as the pair
(S,B) rather than a stand alone S, such that filter operations are applied B rather than S.
This idea is for example used in the SEEK/SEIK filter, where all operations are performed
on Λ, an equivalent of BB′. The only moment that the transformation really needs to be
carried out is during the formation of the forecast ensemble. Collecting the transformations
for analysis, reduction, and forecast leads to the following operation replacing (6.24):

[. . . ,ξ j [k], . . . ] = x̂a[k] + Sa[k] (BṼΩ) (6.29)

The costs of the eigenvalue decomposition (6.28a) are associated with computation of S′S
(nm2 flops) and the actual eigenvalue decomposition (O(m3

)
; for example the symmetric

QR algorithm (Golub and van Loan, 1996, §8.3) requires about 4/3 m3 flops). Thus, the
total reduction sequence of S′S, VΛV = S′S′, and SṼ requires about nm2 +O (m3

)
+2nmm̃

flops. In typical applications, the number of elements in the state is far beyond the number
of modes (n�m), and the costs of a reduction are dominated by computation of S′S and
the transformation, both O(nm2

)
flops. If the transformation SṼ is combined with other

transformations through (6.29), the only additional costs of a reduction is the computation
of S′S. Thus, the reduction step becomes an expensive part of the filter if the number of
flops required for the dot products in S′S and/or the linear combinations in SṼ are not
negligible in comparison with the operation Ax. An example of this situation is described
in (Cañizares, 1999), where a RRSQRT and ensemble filter are applied in combination with
a simple hydro-dynamical model. The reduction part of the RRSQRT filter turned out to
cost about 0.1 Teval m2 flops, where Teval denotes the computation time for a single model
integration Ax. The total costs of the filter are now about Teval(m + 0.1m2). The reduction
part dominates the filter; for 100 modes in the covariance matrix, the RRSQRT filter has
become 10 times as expensive as a comparable ensemble filter. For the chemistry models
applied in this research, this situation does not occur; computation of a single concentration
in a single grid cell one time step ahead requires O(103

)
flops rather than O (10), and the

model propagation is much more expensive than the linear algebra operations applied in the
filter.
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6.9 Modification of reduction algorithm

The reduction algorithm present in the RRSQRT filter and POENKF, and re-orthogonalization
in the SEEK/SEIK or ESSE filter are here discussed in detail 1.

The target of the reduction algorithm is to replace the n × m covariance square root S
by a matrix S̃ with less columns, while the structure of the covariance matrix P = SS′ is
maintained as much as possible in P̃ = S̃S̃′. This is achieved by building P̃ from the largest
eigenvectors of P. With VΛV′ the eigenvalue decomposition of S′S (stored in descending
order), the eigenvalue decomposition of the original covariance matrix is given by:

P = SS′ =
(

SVΛ−1/2
)

Λ
(

SVΛ−1/2
)′

(6.30)

That the eigenvalue decomposition of P is given by (6.30) is shown by multiplication with
the eigenvector-matrix (SVΛ−1/2) and using that V is orthogonal, since S′S is symmetric.
Following eq. (6.7), an approximation by the largest m̃ eigenvalues can be written as a
truncated series:

P =
m̃

∑
j=1

λ i

(
(Sv j)√

λ j

(Sv j)
′

√
λ j

)
=
(
SṼ
)(

SṼ
)′ = S̃ S̃′ (6.31)

where vj denotes the j-th column of V, and Ṽ the matrix with the first m̃ columns. Each
of the m̃ matrices in parentheses is a rank-one covariance matrix on its own, with unit
weight when measured with the l2-norm, since the eigenvalue decomposition of S′S gives∥∥Sv j

∥∥
2

2 = λ j. The m− m̃ rank-one covariance matrices with the smallest corresponding
weights λ i are neglected when the rank of P is reduced to m̃.

For successful application of the reduction or re-orthogonalization, the amount of reduc-
tion should be balanced between as much as possible to limit the costs of future model
integrations, and as minimal as possible for limited loss of covariance structure. The reduc-
tion algorithm has been modified to limit the loss of structure and maximize the reduction
by focusing on some specific characteristics of a filter around an atmospheric chemistry
model.

6.9.1 Unit-invariant reduction

For a filter around an atmospheric chemistry model such as LOTOS, the state x consists in
general of the concentrations of several chemical components in each of the grid cells. Each
of those components is expressed in a typical unit, for example ppb, kg/m3, or mol/l. Which
unit is used is rather arbitrary, and is often subject of change. If an application requires that
concentrations should be expressed in a different unit, one simply multiplies each element
of the state with an appropriate factor.

A problem of the existing large variety in units, is that the reduction is not invariant for
a change of units. In mathematical terms, a change of units is a transformation of the state

1Revised from A modified rrsqrt-filter for assimilating data in atmospheric chemistry models by A.J. Segers
and A.W. Heemink and M. Verlaan and M. van Loon. Environmental Modeling and Software, 15(6–7):663–
671,2000.
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from x to Πx, where Π is a diagonal matrix. The transformed covariance matrix is equal to
ΠPΠ ′, whose eigenvalues will be different from the eigenvalues of P (unless Π is unitary,
which is the same as identity if Π is diagonal). Unfortunately, the covariance square root
according to these eigenvalues. The algorithm has now been modified, to make it invariant
for the units in which concentrations are expressed.

Define σ(P) to be the square root of the diagonal matrix with the same main diagonal as
P. It is straight forward to show that for each covariance matrix P, the eigenvalues of the
matrix

σ(P)−1 P σ(P)−1 (6.32)

are invariant for a state transformation with a diagonal matrix. If the reduction is applied to
(6.32) instead of P, the result is invariant for the units chosen. If expressed in elements of
the covariance square root S, the double transformation of P = SS′ with σ(P)−1 is equal to
division of each square root element si j by ∑ k s2

ik. In the rare case that all elements in a row
are equal to zero, the elements remain zero; a row filled with zeros would not have impact
in the filter anyway.

With the proposed transformation, one does in fact not reduce the covariance matrix P,
but the correlation matrix Γ (x,x) with elements:

γ i j(x,x) =
E [ (xi −E [ xi ])(x j −E [ x j ]) ]

E [ (xi −E [ xi ])2 ]1/2 E [ (x j −E [ x j ])2 ]1/2
(6.33)

The reduction algorithm collects the largest elements of a matrix in the first modes, and
will now collect the largest correlations rather than the largest covariances. In fact, this is
a more natural thing to do in the framework of a Kalman filter. The analysis step updates
all elements of the state given an observation, because all elements are correlated with the
observation through the matrix P. The correlations described within P are therefore just the
structure one likes to maintain.

6.9.2 Amplification of important correlations

Although (6.32) makes the reduction invariant for a change in units, the eigenvalues of the
correlation matrix (transformed covariance matrix) can still be influenced if the state is ad-
ditionally transformed with a (diagonal) matrix with unit-less elements. This fact can be
exploited in favor of the filter performance. The idea is to construct an additional trans-
formation such that the elements in the state are weighted according to their relevance for
the filter. For example, in a system with an atmospheric chemistry model and observations
of ozone, the correlations between ozone and nitrogen oxides near the observation sites
are probably more important for the filter than correlations between methane and carbon
monoxide in remote area. At the moment that a reduction is applied, one cannot say which
correlations will become important for the filter in future (this is a general disadvantage
of a filter, which is blind for the future by definition). However, one can always give an
indication of which correlations will probably become important.

Therefore, let

ȳ = h̄′x + v̄ (6.34)
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denote a scalar observation of a state x, where v̄ denotes a representation error with variance
r̄2. Observation (6.34) should observe those elements in the state which probably become
important in future. The (unit-less) correlation of an element in the state with ȳ is easily
calculated and expressed in elements of the covariance square root:

γ i(x, ȳ) =
E [ (xi −E [ xi ])(ȳ−E [ ȳ ]) ]

E [ (xi −E [ xi ])2 ]1/2 E [ (ȳ−E [ ȳ ])2 ]1/2

= ∑ k sik ( ¯ψ )k√
∑ k sik

2
√

ψ̄′ψ̄ + r̄2
(6.35a)

where the row vector ψ̄′ denotes h̄′S, (.)k the k-th element of a vector, and sik a single
element of S. Let C(x, ȳ) denote the diagonal matrix with diagonal elements γ i(x, ȳ) . A state
transformation with C(x, ȳ) will amplify those elements which are highly correlated with
an element which is assumed to be important for the filter. Therefore, the corresponding
correlations in the covariance matrix are amplified too, and the reduction algorithm will
collect them in the first modes.

6.9.3 Summary of transformations

The extension of the reduction algorithm with transformations adds three extra steps to the
reduction algorithm:

1 computation of transformation matrices σ(P) for invariance to a change in units, and
optional C(x, ȳ) for additional amplification of correlations;

2 transformation: Str =
(

C(x, ȳ) σ(SS′)−1
)

S

regular reduction: S̃tr = Str Ṽtr

3 inverse transformation: S̃ =
(

C(x, ȳ) σ(SS′)−1
)−1

S̃tr

The additional operations are not very expensive in terms of computation time. Both σ(P)
and C(x, ȳ) consist of the main diagonal only: the diagonal elements for σ(P) are simply
computed from the rows of S (see also §8.4.2 and §8.6.2), and the diagonal of C(x, ȳ) can
be calculated very fast if the number of non-zero elements in h̄′ is small. The major part
of the additional computation time is spent on the actual transformations of S and S̃; in
comparison with the calculation of SṼ, this is only a minor part of the total costs of the
reduction algorithm, however.

6.9.4 Experiments and results

The impact of modifications to the reduction algorithm have been tested for a RRSQRT

filter around the LOTOS model. The experimental setup was similar to the one described
in §4.3.1: a horizontal grid of 12 × 12 cells, uncertain emissions of NOx and VOC, and
CO, and simulated ground measurements in 5 different sites. The filter was first applied
with the default reduction, then using a reduction of the correlation matrix rather than the
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Figure 6.1: Average RMS concen-
trations of filter mean during filter
period of 24 hours, as a function
of the number of modes. The fil-
ter used either a default reduction
step, or a reduction of the correla-
tion matrix, or a reduction of the
correlation matrix with in addition
amplification of ozone correlations.
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covariance matrix (transformation (6.32)), and finally using an additional weight as in eq.
(6.35). Because the filter assimilated ozone measurements, the correlations with ozone were
assumed to be the most important; therefore, the observation function h̄ from eq. (6.34) was
set to observe the average ozone concentration over the whole grid. Each hour, the number
of modes was reduced to either 1, 2, 4, 8, 16 or 32 modes; the modifications to the reduction
mechanism are expected to lead to changed convergence for growing numbers of modes.

For each filter-run, the average root-mean-square of the mean state over 24-hour was
calculated according to:

ARMS(ĉs) =
1
T

T

∑
k=1

√
1

ncell
∑
x,y,z

ĉs(x,y,z, tk)2 (6.36)

where ĉs denotes the computed mean concentration of a component s, or a sum of concen-
trations if s denotes a group of components (NOx or VOC). Figure 6.1 shows the ARMS

values for the six main chemical components of the state. For all components, the conver-
gence of the mean concentration is very fast: expressing the covariance matrix in only 2
modes is enough for convergence. This low amount of modes can be explained from the
rather simple setup of the experiment: the noise input had only 5 elements, and each of
them act on the emissions without any spatial differences. The results show that there is
no significant impact on the mean state when reducing the correlation matrix instead of the
covariance matrix. If additional weight is assigned to correlations with ozone, reduction to
only one mode seems to be enough for convergence, however.

The origin for the impact of the ’weighted’ reduction is found in the convergence of
the covariance matrix. The average RMS of a components standard deviation has been
calculated similar to (6.36), with mean ĉs replaced by standard deviation σ{cs}. The value
of ARMS(σ{cs}) quantifies the amount of covariance structure preserved by the reduction.

The results in figure 6.2 show that when the reduction is applied to the correlation ma-
trix rather than to the covariance matrix, the structures preserved in the first modes are no
longer influenced by a components mean value. Components with accidental small mean
values profit from the new reduction, because correlations in which they are involved are
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Figure 6.2: Amount of covariance structure preserved by the reduction, as a
function of the number of modes to which is reduced. Dotted lines (· · · ) denote
default reduction, bullets (o) denote reduction of the correlation matrix, and
a solid line (—) denotes additional amplification of ozone correlations.
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not smaller than other correlations, while their covariances are. Especially VOC (a group
of 9 most small valued components) seems to profit from the new reduction; the amount of
covariance structure preserved in the first mode increases, while the amount decreases for
all other groups.

If additional weight is assigned to correlations involving ozone, the amount of preserved
ozone variances increases significant. With reduction to only one mode, about a factor
10 as much is preserved in comparison with reduction without additional weight. This
explains the impact of the weighted reduction on the convergence of the mean state: the
filter assimilates ozone measurements, and now that variances in ozone are collected more
efficient, a single mode is enough for convergence. The results show that also the variances
of nitrogen oxides are preserved much better in the first modes, due to their tight chemical
correlation with ozone. A component which hardly correlates with ozone is methane, and
the effect of the weighted reduction is clear: methane variances are preserved much worse
than before, and only reach the unweighted level if the covariance matrix is expressed in a
large amount of modes.

6.10 Comparison of filter techniques

The performance of three types of low-rank filters (RRSQRT, ENKF, and POENKF) was tested
during a filter experiment with simulated data. The SEEK/SEIK filters were not considered
explicitly, since the stochastic model for these methods is based on EOF analysis of the
state. The stochastic model used in this research is based on uncertain parameters; for
such a stochastic model, the SEEK/SEIK approach hardly differs from a RRSQRT filter. The
forecast step of the SEIK is incorporated in the RRSQRT filter, however; in chapter 7 it is
shown that this forecast provides most accurate results for lowest costs. The reduction step
in RRSQRT and POENKF is implemented following §6.9.

The model area was limited to 24×24 grid cells covering the British island and north-west
Europe (figure 6.3). Three densely populated and industrialized area were selected from
which 40% of the NOx and 30% of the VOC emissions are released. In each of these three
area, the emissions of NOx and VOC have been defined stochastic with standard deviations
of 50% and time correlation parameter of 12 hours. A three days time periode from august
5–7 1997 was selected with in general eastern wind. Due to these uncertain emissions, three
plumes of uncertain concentrations arise downwind from the emission areas (figure 6.3).

A set of simulated ’true’ concentration patterns was produced from a run with the stochas-
tic model using random noise input. The difference between the deterministic and ’true’
ozone concentrations at august 7, 15:00, is plotted in the right panel of figure 6.4. The dif-
ferences show that the deterministic model underestimates the ozone concentrations over
the Irish Sea (up to -24 ppb) and the North Sea between England and The Netherlands (up
to -8.5 ppb), where due to the lack of deposition a difference in ozone concentrations is
maintained much longer than over land. Ozone concentrations in the plume from London
are overestimated, with a maximum of 19 ppb.

Five measurement sites were selected to filter the uncertain emission flow (figure 6.3).
For each site, a set of ozone measurements was generated including a simulated random
error with standard deviation of 0.5 ppb. Given the locations of the sites, a filter is ex-
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Figure 6.3: Model domain for experiments with different low-rank filters. The
solid rectangles surround the industrialized area’s with the largest emissions.
As an example of the spatial distribution of the emissions, the strength of the
total NOx emissions is displayed in the background. Measurement sites are
Harwell (Har), Aston Hill (AH), Bottesford (Bott), Eskdalemuir (Esk), and
Sibton (Sib).
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Figure 6.4: Left: standard deviation in ozone due to uncertain emissions at
day 3, 15:00 (august 7); contour lines from 2–20 ppb with interval of 2 ppb.
Right: deterministic model minus simulated truth at same hour; contour lines
at ±2.5,5.0,7.5,10.0,15.0,20.0.
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Figure 6.5: Error and estimated standard deviation in ozone at august 7,
15:00, for the RRSQRT filter with 10, 15, or 20 modes. Upper panels: filter
mean minus truth (absolute). Lower panels: standard deviation of the error
according to the covariance matrix computed by the filter.

pected to reconstruct the true emission most accurate for the area downwind from London,
since two sites (Harwell and Aston Hill) are located in the plume. The impact of uncertain
emissions from the Midlands is measured less direct, through advection to Eskdalmuir and
diffusion to the site Bottesford (this site is located in the emission area, but the correspond-
ing cell hardly releases emissions; most emissions are released downwind from Bottesford).
The uncertainties in the Rhine plume are only visible in Sibton, and the filter problem for
this plume is therefore underestimated (two uncertain emissions filtered with measurements
from one site); a filter should be able to estimate the standard deviation of the error correctly,
however.

The system of uncertain emissions and simulated measurements has been filtered with the
three types of low-rank filters for different settings: the ENKF with me = 10, 20, 30, 40, or
60 ensemble members, the RRSQRT filter with reduction to mr = 2, 4, 6, 8, 10, 15, 20, 30,
and 50 modes, and the POENKF with mr = 10, 20, or 30 modes in the RRSQRT part and me =
10, 20, or 30 ensemble members in the ENKF part. To investigate the impact of the random
numbers used in ENKF and POENKF, each of the experiments using one of these filters was
repeated four times.

Comparison of filtered time series and spatial patterns with the ’true’ values showed that
for the RRSQRT filter at least 20 modes are required for accurate approximation of the co-
variance matrix (figure 6.5). If 10 or less modes are used, the filter is not able to uncorrelated
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the errors in the Rhine plume from other errors, and as a result, the concentrations over The
Netherlands and the Irish sea are completely messed up. The almost negligible standard
deviations suggest that the filter result is accurate, however. For 15 modes, the filter assigns
a substantial variance to the concentrations in the Rhine plume, and the error is decreased to
less than a few ppb in all grid cells. For 20 modes, the computed standard deviation for the
Rhine plume is almost comparable with the standard deviations without assimilation, which
is close to the true value since the errors in this plume are hardly filtered. A similar conver-
gence was noticed for the ENKF assimilations. For small ensemble sizes (10–30 members)
the concentration patterns are sometimes completely wrong. An ensemble size of at least
40 members was necessary to provide accurate and reproducible results.

To compare the performance of the three different filters with eachother, the root mean
square errors were computed over the ozone concentrations at ground level for day 3, 15:00
(filter mean minus simulated truth). The RMS errors are plotted in figure 6.6 versus the
number of required model evaluations (me for ENKF, 1 + mr for RRSQRT, and 1 + mr + me

for POENKF), which is a suitable measure for the total computation time.
The slow convergence of the ENKF filter is illustrated by the large spread in the corre-

sponding RMS errors. For 10 or 20 ensemble members, almost all computed ozone patterns
are worse than the first guess run; for 30 members, there is still a significant probability
on less accurate results. As already noticed for the concentration patterns in figure 6.5, the
number of modes used in the RRSQRT algorithm should exceed a critical level too, before the
filter converges. Although the error seems to converge if the number of modes is increased
from 2 to 6, the results get worse when their number is increased further to 15 modes. At
least 30 modes are required to obtain a stable filter during all hours of the assimilation pe-
riode. These results show that the convergence of the RRSQRT filter is much faster than
the convergence of the ensemble filter; while the ensemble filter requires at least 40 model
evaluations, the reduced rank filter can do with 10 less.

For the POENK filters it is possible to compute RMS-errors for two different means: the
mean of the RRSQRT part and the mean of the ENKF part. The final result of a POENKF

is always the result of one of the underlying parts; in (Heemink et al., 2001) the mean and
covariance of the RRSQRT part is used. It is possible to define a ’combined’ result in terms of
a (weighted) average between RRSQRT part and ENKF part, but this option is not considered
here. Instead, the errors in both filter means are computed and compared with their stand
alone counter parts. Comparing the results of the stand alone RRSQRT filter with the RRSQRT

part of the POENK filter shows that the introduction of random ensembles in the gain matrix
is able to stabilize the filter, if the number of modes is too small for convergence. While 10
modes for a single RRSQRT filter is too small for a stable filter (RMS error exceeds the value
obtained with the deterministic model), the POENKF variant with 10 modes always provides
more accurate results. However, there is still a large probability on results less accurate than
the first guess. As soon as the RRSQRT filter has converged (30 modes), including random
ensembles in the gain matrix disturbs the results (figure 6.6, lower right panel). Only a
coincidental lucky set of random numbers might be able to produce more accurate results,
which did not occure in the experiments performed here.

Comparison of stand alone ENKF with the ensemble parts in POENKF shows that introduc-
tion of modes in the gain could indeed act as a variance reductor. For a fixed ensemble size,
the spread in the RMS errors becomes much smaller if the gain incorporates the modes of a
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Figure 6.6: RMS error in ozone concentrations at day 3, 15:00 (filter mean
minus simulated truth). The arrows point from the results obtained with a
RRSQRT filter to results obtained with a POENKF variant using a similar
RRSQRT part; the number of modes and ensemble members is displayed near
the heads. The dashed line denotes the error left with the deterministic model.
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RRSQRT filter. The only exception is the variant with 10 modes and 30 ensemble members,
when an inaccurate RRSQRT filter sometimes leads to an instable filter.

If the RMS errors of all experiments are compared, the RRSQRT algorithm seems to be
the most efficient choice for this particular application. The filter provides an accurate and
constant result at a level of required model evaluations where the other algorithms still
suffer from random fluctuations. Even for small numbers of modes, the results are more
accurate than what could be achieved with an ENKF approach with comparable ensemble
size. The POENKF filter is only able to produce more accurate results when compared
with the stand alone versions of the underlying filters. For this application, the additional
model evaluations spent on a second filter could be spent more efficient on improving the
performance of one of the underlying filters.

Similar results are found if the filter types are judged on estimation of other components
than ozone, or on the estimates of the (co)variances rather than the absolute errors. The tight
connection between different components in the state ensures that either all are accurate or
none. The variances were found to converge with the same number of modes/ensemble
members as the absolute error; underestimation of the variances immediately leads to large
errors in the filter.

6.11 Summary and conclusions

In this chapter, the background, implementation, costs and performance of some common
used low-rank filters have been compared.

low-rank filters are either based on factorization of the covariance matrix (RRSQRT, SEIK,
and ESSE filter), or approximation of statistics from a finite ensemble (ENKF). A new
direction in filter implementation is the use of two filters next to eachother of the same
form (DENKF) or hybrid (POENKF). The factorization approach is often based on the linear
Kalman filter which has been extended towards nonlinear models; the ensemble technique
is a reformulation of the filter problem in a statistical approach.

In spite of the different philosophies, all low-rank filters turn out to have a similar im-
plementation. Evolution of mean and covariance is in each of the filters performed by
propagation of an ensemble of state vectors by the model; how the ensemble is formed de-
pends on the filter approach and is discussed in detail in chapter 7. The propagation of the
forecast ensemble is the most expensive part of the filter. Four different approaches exist
for the analysis of measurements, based on whether the gain will lead to a minimal variance
or not, and whether the filter is based on the factorization or the ensemble approach. The
forms with a minimum variance gain are in practice most often used, and differ hardly from
eachother in computational costs.

The main data structure in all filters is the covariance square root: a large low-rank matrix,
with state vectors stored in the columns. The covariance square root needs to be transformed
at least one time during each time step, which is an expensive operation. Combination of
all transformations in a single operation leads to an efficient filter, however, in which the
forecast and the transformation are the major costs. In addition to forecast and analysis, the
filters based on factorization require a singular value decomposition or re-orthogonalization
of the covariance square root. Two state transformations have been proposed to make the
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decomposition less sensitive to changes in the definition of the state vector, and to collect for
the filter important information in the first modes. The largest impact of the transformations
was found in an improved convergence of the filters covariance matrix.

Three different low-rank filters have been implemented around the LOTOS model: based
on factorization (RRSQRT, incorporating the forecast scheme of the SEIK filter), ensemble
statistics (ENKF), or on a hybrid approach (POENKF, combining a RRSQRT and ENKF fil-
ter). All three methods were found to be suitable to assimilate ozone measurements in a
LOTOS model with stochastic varying emissions. The ensemble filter suffers from statistical
noise due to the use of a random number generator; the results still show a large spread
where a RRSQRT filter with comparable costs already converged. As a consequence, also
the POENKF filter suffers from the statistical noise in its ENKF part. Due to the fast conver-
gence and accurate results reached with the RRSQRT filter, the benefit of additional random
directions in the gain of the POENKF was limited. For comparable costs, the RRSQRT fil-
ter produces stable and more accurate results than ENKF or POENKF. The approach of a
RRSQRT filter combined with the forecast step of the SEIK filter is therefore the most effi-
cient choice for the filter around LOTOS.



118 CHAPTER 6. LOW-RANK FILTERS



Chapter 7

Nonlinear filters

Four different methods for treating nonlinearities in a Kalman filter problem
have been compared and applied to the atmospheric chemistry model LOTOS.
The type of nonlinear dynamics present in such a model complicates an accu-
rate forecast of the state of the system. The different nonlinear forecast methods
are either based on linearizations or ensemble statistics. A filter based on min-
imal exact sampling is shown to produce accurate and stable results with min-
imal costs. Ensemble statistics are able to produce even more accurate results,
but with the cost of at least a double amount of computation time. 1

7.1 Introduction

Photo oxidant models are typical examples of nonlinear models. In general, all chemical
reactions in an air pollution model are weak to strongly nonlinear; an extensive overview is
given in (Lin et al., 1988). Other operations such as advection, diffusion, but also deposition
are more or less linear.

The problem of dealing with a nonlinear model in a Kalman filter is related to proper evo-
lution of the probability density between successive analysis of measurements. A Gaussian
distributed state propagated by a linear model remains Gaussian distributed, and since it
is also maintained by the analysis equations, the linear filter is a closed operation between
Gaussian distributions. This property is however lost with the smallest nonlinearity in the
model, leading to distributions which are only Gaussian in approximation. The Gaussian
assumption is essential for a Kalman filter, since it forms the base of the analysis equation;
efficient analysis schemes for other distributions do not exist (yet). For practical applica-
tions, a Gaussian assumption during the analysis is often accurate enough, but to keep this
accuracy, the probability density should be propagated as accurate as possible, taking into
account the nonlinearities.

Application of Kalman filtering techniques to nonlinear models has been investigated by
many authors. The Extended Kalman Filter (EKF) was designed as an extension of the linear
Kalman Filter to weakly nonlinear models (Jazwinski, 1970). The EKF uses a new linear
model, build from partial derivatives of the nonlinear model, and to this approximation, the

1Revised from Nonlinear Kalman Filters for Atmospheric Chemistry Models by A.J. Segers, A.W. Heemink,
M. Verlaan and M. van Loon, In Inverse Methods in Global Biogeochemical Cycles, Kasibhatla et al., editors,
2000.
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standard Kalman Filter is applied. If second order partial derivatives are available too, a sec-
ond order accurate filter might be used which incorporates extra terms in the filter equations
(Jazwinski, 1970; Henriksen, 1980). An overview of theory and practice of the extended
filters is given in (Miller et al., 1994), where the EKF and other techniques are compared
and applied to the small but illustrative double well and Lorenz models. In (Evensen, 1992;
Evensen, 1993), the EKF is applied to a larger multi layer ocean model. It was shown that
the truncation of higher order partial derivatives might result in instability of the covariance
evolution, (an unrealistic growth of the error covariance not bounded by analysis of mea-
surements). Instability of the filter occurs if the nonlinearities dominate the model evolution
in the time period between successive assimilation of measurements. In many applications
however, the linearization of the model equations works surprisingly well, suggesting that
the long term evolution is close to linear. In (Khattatov et al., 1999) for example, it was
shown from experiments with a box model that linearization of the chemistry was sufficient
to assimilate satellite observation of trace gases in a trajectory model.

The linear model used in an EKF often takes the form of a tangent linear model (TLM),
which provides the perturbations in output variables given perturbations of the model input.
If the output variables are of the same form as the input, the TLM is just the Jacobian matrix
of the model around the initial state. Where development of a TLM used to be complicated,
the work has been simplified by the availability of automatic differentiation tools (Giering
and Kaminski, 1998; Rostaing et al., 1993). Development of a TLM next to the default
model remains rather expensive, however. To overcome implementation of Jacobian matri-
ces or a TLM, approximations to the EKF based on finite differences have been proposed.
For large models, considerations about storage and computation of the covariance matrix
lead to introduction of low-rank filters, discussed in chapter 6. In these approximate filter,
the covariance matrix is parameterized around a limited number of state vectors. For this pa-
rameterization, a finite difference approximation of the Extended Kalman filter is a logical
step. Finite difference approximations have been proposed for the RRSQRT filter (Verlaan
and Heemink, 1995) and the SEEK filter (Pham et al., 1998), which was then renamed to
SEIK filter (Verron et al., 1999). The existing finite difference schemes are accurate up to
first or second order partial derivatives, truncating higher order nonlinearities.

The observed instability of the covariance evolution in the EKF (Evensen, 1992; Gauthier
et al., 1993) lead to a reformulation of the filter equations in terms of ensemble or Monte
Carlo realizations. With the introduction of the Ensemble Kalman Filter (Evensen, 1994;
Burgers et al., 1998), filter technique was in some way rebuild from scratch, since statisti-
cal moments such as mean and covariance are not the main data structures to compute and
evolve anymore. Instead, the ENKF stores and evolves an ensemble of model realizations,
from which statistical moments are extracted if necessary. The ENKF is ultimately effective
in dealing with nonlinear models, without assumptions about vanishing higher order deriva-
tives. The accuracy of the ensemble method increases with the ensemble size, with the
advantage that any desired accuracy might be reached if the ensemble is large enough. The
minimum ensemble size might be rather large, and this is the only serious drawback of the
method. Thanks to its simple and robust formulation, the ensemble filter has become very
popular in geophysical applications such as ocean circulation (Evensen and van Leeuwen,
1996), tidal flow (Cañizares, 1999), and weather forecast (Houtekamer and Mitchell, 1998;
Keppenne, 2000).
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In this research, the different techniques of nonlinear filtering have been compared and
tested for a filter around the LOTOS model. (chapter 2). The general form of the stochastic
model and the filter equations are introduced in §7.2. Four different forecast methods are
discussed in §7.3: first and second order linearization of the EKF, a method based on mini-
mal exact sampling adapted from the SEIK filter, and the forecast of the Ensemble Kalman
filter. Since no tangent linear model is available for LOTOS, implementation of an EKF in
the original form is not considered. For each of the forecast methods, the theoretical back-
ground is discussed, as well as the implementation in a low-rank filter as discussed in chap-
ter 6. Whenever possible, the accuracy of a method is discussed using Taylor expansions.
The performance of the different methods has been tested during filter experiments with the
LOTOS model (§7.4). A new development in nonlinear filter applications is quantification of
the nonlinearity in terms of a single number (Verlaan and Heemink, 2001). The definition
and properties of this nonlinearity number has been examined during the experiments, and
the results are discussed in §7.5.

7.2 Nonlinear stochastic model and filter equations

The model/observation pair used in this chapter is a generalization of the linear form (6.1)
introduced in chapter 6:

xt [k+1] = M
(
t [k],xt [k]

)
+ η[k] (7.1a)

yo[k] = H′[k] xt [k] + v[k] (7.1b)

In here, M is a dynamic model acting nonlinear on the state x, η is the dynamic noise (zero
mean, covariance Q), yo is a vector with observations, H′ is the linear observation operator,
and v denotes a random observation error (zero mean, covariance R). The time indices for
M and H′ will be skipped in the rest of this chapter whenever possible; the time for which
an operator is valid is implied by its arguments. The Kalman filter is able to compute a
mean and covariance of the true state, given our knowledge of physical laws put in M and
the observations in yo (see also chapter 3):

x̂a[k] = E
[

xt [k] | yo[k],yo[k−1], . . .
]

(7.2a)

Pa[k] = E
[

(xt [k]− x̂a[k])(xt [k]− x̂a[k])′ | yo[k],yo[k−1], . . .
]

(7.2b)

The analyzed mean and covariance are computed in a sequence of forecast and analysis
stages. If for a time t [k] an analyzed mean and covariance pair {x̂a,Pa} is available, the
forecast gives a prediction of these entities using the model and the noise input; in a general
form: {

x̂ f [k+1],P f [k+1]
}

= F ( M, x̂a[k], Pa[k], Q[k] ) (7.3)

In case of a linear model M(x) = Ax, the forecast F takes the form of the linear Kalman
forecast:

x̂ f [k+1] = A x̂a[k] (7.4a)

P f [k+1] = A Pa[k] A′ + Q[k] (7.4b)
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This chapter will discuss the implementation of (7.3) in case of a nonlinear M. nonlinearity
of M does not influence the analysis equations, which remain equal to the default Kalman
analysis:

K[k+1] = P f [k+1] H ( H′ P f [k+1] H + R[k+1] )−1 (7.5a)

x̂a[k+1] = x̂ f [k+1] + K[k+1] ( yo[k+1] − H′ x̂ f [k+1] ) (7.5b)

Pa[k+1] = ( I − K[k+1] H′ ) P f [k+1] (7.5c)

Although M does not appear in the analysis equations, the nonlinearity has an indirect in-
fluence. The analysis is based on the assumption that the probability density of the state is
Gaussian, and thus completely defined by a mean and covariance. For a problem description
with nonlinear dynamics, this is only true in approximation. nonlinear dynamics indicate
that opposite deviations around a mean are not of equal importance, and this violates with
a (symmetric) Gaussian distribution. Even in case of a linear model, a pure Gaussian dis-
tribution is not always correct, for example if the state space is limited to positive entities.
The Gaussian assumption is the only practical method available, however, and in practice
often good enough.

7.3 Forecast methods for low-rank filters

The Kalman filter used in this research is based on a low-rank approximation of the covari-
ance matrix. An extensive discussion of the backgrounds and formulation of this kind of
approximate filter has been given in chapter 6. The filter equations used in this chapter are
based on the general low-rank filter formulation as described in §6.8, including a reduction
mechanism when necessary.

The low-rank approximation is based on factorization of the covariance matrices P and
R in low-rank square roots: P = SS′ and Q = TT′. The number of columns in S or T is in
order 10-100, and are often referred to as the modes of the filter. The general form of the
forecast in terms of the square root factors becomes:{

x̂ f [k+1],S f [k+1]
}

= F ( M, x̂a[k], Sa[k], T[k] ) (7.6)

For each of the reduced rank filters discussed in chapter 6 (ENKF, RRSQRT, SEIK) one
or more forecasts methods have been proposed. Although these techniques are based on
sometimes very different concepts, the implementations turn out to be quite the same. All
methods propagate an ensemble of state vectors in order to make a forecast of the mean and
covariance. For the ensemble filter, this is the basic concept; for the other filters, this is a
solution to overcome the nonlinearity problem. In a general notation, each forecast consists
of three stages (see also figure 7.1):

1. Formation of the ensemble: given an analyzed mean and covariance square root, an
ensemble of state vectors is formed:

{ξ1[k],ξ2[k], . . .} = Ens(x̂a[k],Sa[k]) (7.7)

A same number of noise vectors η j is formed too.
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t[k]
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Figure 7.1: Illustration of forecast of mean and covariance square root in a
low-rank filter. The mean and the columns of the square root define an area
in the state space where the true state is expected to be with large probability.
To propagate this area in time, an ensemble of states is formed at t [k] from
the mean and the modes; these are propagated by the model, and serve as
building blocks for the new mean and modes at t [k+1].

2. Propagation: each ensemble member is propagated by the model, forced by the cor-
responding noise vector:

ξ j [k+1] = M(ξ j [k]) + η j [k] , j = 1,2, . . . (7.8)

3. Finally, a new mean and covariance square root are reconstructed from the propagated
ensemble; how this is done depends on how the ensemble was formed, and is therefore
in general the inverse of (7.7):{

x̂ f [k+1],S f [k+1]
}

= Ens−1(ξ1[k+1],ξ2[k+1], . . .) (7.9)

The actual form of the forecast ensembles is now discussed in detail for the different meth-
ods.
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7.3.1 First order linearizations

The forecast method based on first or-
M

t[k]

t[k+1]

der linearizations is an approximation of
the Extended Kalman filter (EKF), and has
been proposed for the RRSQRT filter (sec-
tion 6.5.1). The EKF was introduced as an
extension of the original Kalman filter (KF)
for dynamical models which are weakly nonlinear (Jazwinski, 1970) The idea is to apply
the KF to a linear system which approximates the nonlinear one. If the dynamics are not too
complicated, a linearization of the underlying model in terms of Jacobian matrices could be
used:

x[k+1] = M(x[k]) + η[k]

= M(x0[k]+δx[k]) + η[k] ≈ ∂M
∂x

∣∣∣∣
x0

δx[k] + η[k] (7.10)

For complicated dynamics, calculation of the Jacobian matrices is not feasible, and one has
to use a numerical approximation of the linearizations:

∂M
∂x

∣∣∣∣
x0

δx[k] ≈ M(x0 + ε δx)−M(x0)
ε

(7.11)

The EXT1 forecast proposed for the RRSQRT filter is a direct implementation of the forecast
equations (6.10) for a low-rank filter, with the linear model replaced by such finite difference
approximations:

x̂ f ,ext1[k+1] = M( x̂a[k] ) (7.12a)

S f ,ext1[k+1] ≈
[

∂M
∂x

∣∣∣∣
x̂a[k]

Sa[k] , T[k]

]

≈

. . .

M
(

x̂a[k] + ε sa
j [k]
)
−M( x̂a[k] )

ε
. . . , . . . tl [k] . . .




j = 1, . . . ,m , l = 1, . . . ,q (7.12b)

The modes s j and tl are interpreted as deviations from the mean state; if these deviations
are not too large and the nonlinearities are not too strong, the approximations are accurate.
In view of eq. (7.7-7.8), the ensembles of states used during the forecast are given by
( j = 0, ..,m+q):

ξ j ∈ { x̂a , x̂a + ε sa
1 , . . . , x̂a + ε sa

m , x̂a , . . . , x̂a }
η j ∈ { o , o , . . . , o , t1 , . . . , tq } (7.13)

Similar as in the original Kalman filter, the mean and covariance (square root) are propa-
gated more or less independent from eachother. The new mean is just a propagation of the
previous one; new modes are formed from propagation of the previous modes (m in total)
or by introduction of model noise (q). Introduction of model noise is separated from the
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propagation of the modes: the m ’mode-modes’ represent uncertain knowledge of the true
state due to an uncertain initial condition, while the q ’noise-modes’ represent uncertainties
in the model. The number of modes in the covariance square root has grown during the
forecast from m to m + q; to prevent the filter from growing out of computational limits, a
filter using this forecast scheme should include a reduction mechanism.

The scale-factor ε is set to a value such that the ensemble members are suitable states to
be propagated by the model. Besides, it can be used to obtain additional accuracy. A simple
rule to set the scale-factor is the following:

If q modes are correlated with a mode s j (including s j itself), then a scale-factor
ε =

√
q should be used to form a state vector x̂+ ε s j.

This rule is explained from the values a state vector could take given a mean/covariance pair.
The covariance bounds the amplitude of the variation in each possible direction in terms of
a variance. For a covariance matrix in square root form, the variance in a certain direction is
the sum of the variances of the modes into this direction. If q modes contribute equally to a
variance σ2, then each of them has an average amplitude of σ/

√
q. With the ε set according

to the proposed rule, the model is called with input states which deviate from their mean
with an average amplitude of σ. Following the epsilon-rule, an appropriate choice for the
scale-factors for the EXT1 forecast is to set ε = 1.0 if the modes are orthogonal. This is
for example true if the rank of covariance square root is reduced as in the RRSQRT filter, or
formed from EOF’s as in the SEIK filter.

In appendix C, the accuracy of the first order linearizations has been studied using Taylor
expansions. As shown by the derivations in §C.2, the forecast of the state and covariance are
accurate up to terms containing first order partial derivatives of M. If second order partial
derivatives are zero or small, the error made during the forecast will not be very large.

7.3.2 Second order linearizations

Where the EXT1 forecast is an approximation of the Extended Kalman filter (without Jaco-
bian matrices), a second order accurate forecast is an approximation of the truncated second
order filter (Jazwinski, 1970), without computation of Hessian matrices. A second order fil-
ter does not contain any truncation errors in the forecast if the model M(x) does not contain
third or higher order nonlinear terms.

A second order forecast is almost similar to the first order EXT1 forecast with respect
to the formation of ensembles of states and noise vectors. However, the ensemble of state
vectors is not formed from the columns of S on a one-to-one basis such as in (7.13), but
using a new set of columns. The new columns should specify the same covariances but
have a zero mean in addition:

m̄

∑
j=1

s̄ j s̄′j = SS′ ,
m̄

∑
j=1

s̄ j = o (7.14)

Two methods will be described to form the new covariance square roots: the second order
extended update proposed for the RRSQRT filter, and the minimal exact sample used in the
SEIK filter.
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Second order extended forecast

The second order extended forecast (EXT2) t[k]

t[k+1]

M

is a straight forward method to construct a set of
modes matching the requirements for a second
order forecast. Given an arbitrary covariance
matrix, specified by the columns s1, . . . ,sm of
its square root S, it is straight forward to show
that the set

s̄ j ∈
{
+ 1√

2 s1,− 1√
2 s1, . . . ,+ 1√

2 sm,− 1√
2 sm

}
(7.15)

satisfies (7.14). The number of modes has been doubled from m to m̄ = 2m. Ensembles
of this form were proposed in (Julier et al., 1995) for application in robot guidance, and
in (Verlaan and Heemink, 1996) for a RRSQRT filter around a shallow water model. The
doubled set of modes is used to form input states for the model in a way similar to the first
order forecast:

ξ j ∈ { x̂a , x̂a + ε s̄a
1 , . . . , x̂+ ε s̄a

m̄ , x̂a , . . . , x̂a }
η j ∈ { o , o , . . . , o , t1 , . . . , tq } (7.16)

The propagated ensemble is used to form a new mean and covariance square root. Where
in the first order forecast the new mean is just the propagation of the previous mean, the
second order forecast contains an extra term:

x̂ f ,ext2[k+1] = ξ0[k+1] +
m̄

∑
j=1

ξ j [k+1]−ξ0[k+1]

ε 2 (7.17)

The extra term ensures that (7.17) is the correct forecast of the mean if the model M(x)
contains only second order nonlinear terms; see appendix C.3 for a prove with Taylor ex-
pansions. For computation of the new modes at tk+1, three different methods have been
suggested, summarized in table 7.1. Each of the methods use (7.17) for the forecast of the
mean. method ’a’ (Julier et al., 1995) computes the new modes using deviations from the
second order forecast of the mean, similar to the sample covariance in an ensemble method.
Therefore, the method implies a scale-factor ε =

√
2m since otherwise (7.17) is not equal

to the sample mean. However, the arguments behind the epsilon-rule at page 125 suggest
that such a scale-factor is undesirable if the modes of the covariance matrix are orthogonal,
which is true after a reduction as defined in §6.8 and might be true for the general covariance
factorization used in (Julier et al., 1995). To avoid these problems, method ’b’ (Verlaan and
Heemink, 1996) computes the modes with deviations from the central forecast of the mean.
The second order accuracy is now obtained for any scale-factor. The epsilon-rule at page
125 suggests that ε =

√
2 is a suitable choice if the original modes are orthogonal, since each

direction in the new ensemble is specified by two ensemble members. Finally, method ’c’
was proposed by Voorrips et al. (1998) to limit the number of new formed modes, and thus
to reduce the costs of the reduction mechanism. The difference between the propagations of
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M
sec. mean

a b c

t[k]
t[k+1]

a s f ,ext2
j = ξ j−x̂

ε j
j=1,...,2m (Julier et al., 1995)

b s f ,ext2
j = ξ j−ξ0

ε j
j=1,...,2m (Verlaan and Heemink, 1996)

c s f ,ext2
j = ξ2 j−1−ξ2 j

ε 2 j−1+ε 2 j
j=1,...,m (Voorrips et al., 1999)

Table 7.1: Illustration of different techniques to compute new modes in the
EXT2 forecast. The propagated mean and modes define a quadratic surface;
the second order mean (7.17) is in the convex subspace enclosed by the sur-
face. The new modes are computed from the difference between propagated
modes and second order mean (a), the difference between propagated modes
and central forecast of the mean (b), or from the cord between propagations
of two opposite modes (c). The modes are numbered according to ensemble
(7.16).

two opposite ensemble members is used to form a single new mode. Taylor expansions in
appendix C.3 show that this method leads to a small under estimation of the true covariance,
and therefore to an increased danger of filter divergence. Since the model evaluations form
the majority of the costs of the filter, reducing the costs of the reduction has no priority in
our applications, and method ’b’ will be used for computation of the modes.

Application of the second order forecast using the suggested sets of modes requires 1+2m
model evaluations: two for each of the original modes and one for the mean. An extended
second order forecast is therefore quite expensive. In comparison with the EXT1-forecast,
the second order extended forecast produces more accurate results with the cost of dou-
bled computation time and memory use. A rank reduction is absolutely necessary, since the
number of modes has at least been doubled after the forecast.

Minimal Exact Sampling (MES)

An efficient and elegant algorithm for construction of a set of modes matching (7.14) was
suggested in (Pham, 1996) for use in the SEIK filter. Where the previous described EXT2
forecast requires at least a double amount of model evaluation, the method of Minimal Exact
Sampling (MES) requires the same number of model evaluations as the first order forecast
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EXT1, but gives a second order accurate result.
The idea behind a MES is to replace an existing t[k]

t[k+1]

n×m covariance square root S by the n× m̄ square
root S̄ = SΩ, where the m × m̄ matrix Ω is cho-
sen such that requirements (7.14) are matched. For
the columns ω j this leads to the following require-
ments:

m̄

∑
j=1

Sω j = o ⇒
m̄

∑
j=1

ω j = o (7.18a)

m̄

∑
j=1

(Sω j)(Sω j)
′ = SS′ ⇒

m̄

∑
j=1

ω jω j
′ = ΩΩ′ = I (7.18b)

A specific example is the set of modes (7.15) used for the second order extended forecast,
which is the result of an operation S̄ = SΩ with in each column of Ω only one non-zero
element, equal to plus or minus 1/

√
2. The algorithm proposed in (Pham, 1996) is able

to produce a suitable Ω for any m̄ ≥ m + 1. The algorithm is given in appendix D. If the
algorithm is used to form an Ω with a minimal m̄ = m+1, the Minimal Exact Sample (MES)
drawn from a mean x̂a and a m-column covariance square root Sa is defined as the set:

ξ j ∈ {x̂a +√
m̄Saω1, . . . , x̂a +√

m̄Saωm̄} (7.19)

The algorithm listed in appendix D includes a random generator, such that the set (7.19) is
still more or less a random sample. Each of the new sample members is build from contribu-
tions of all original modes; the choice ε =

√
m̄ for the scale-factors is therefore in agreement

with the epsilon rule from page 125.

The forecast of the SEIK filter (Pham, 1996) consists of formation of a MES from a mean
state and a covariance square root defined on a base of EOF’s. After propagation of the MES

by the model, the new mean and covariance square root specified by the sample mean and
inverse of (7.19):

x̂ f ,seik =
1
m̄

m̄

∑
j=1

ξ
f
j (7.20a)

S f ,seik = 1√
m̄

[
ξ

f
1 − x̂ f ,seik, . . . ,ξ

f
m̄ − x̂ f ,seik

]
Ω′ (7.20b)

The transformation with Ω′ ensures that the number of columns in S f does not grow due
to the forecast. If this transformation is omitted, the next forecast step should not include a
forward transformation with a new Ω. The introduction of dynamic noise is included in the
analysis equations of the SEIK filter; see section 6.5.2. In the context of general low-rank
filter as defined in section 6.8, a forecast based on a MES is similar to equations (7.19) and
(7.20) for propagation of mean and covariance square root; in addition, the columns of the
matrix T are appended to S. The number of columns in the covariance square root will grow
through appending of T. Transformation with Ω′ as used in (7.20b) to avoid the growth of
the number of modes could be omitted, since this number will grow anyway.
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7.3.3 Ensemble forecast

The ensemble forecast is the driving force be- t[k]

M

t[k+1]

hind the Ensemble Kalman Filter
(Evensen, 1997); see section 6.6 for a detailed
description. An ensemble of m states is prop-
agated by the dynamics, where the noise input
for the model is taken from a random genera-
tor. Whenever a mean or covariance are required, these are set to the sample statistics of
the ensemble, and used as an estimate of the true statistics. The ENKF differs here from
filters evoluted from the linear Kalman filter (such as the RRSQRT and SEIK filter), where
the probability density of the state is expressed in terms of an explicit computed mean and
covariance. For treatment of a nonlinear model, these filters form an ensemble of state vec-
tors from the mean and covariance, and the propagated ensemble is used to reformulated
the mean and covariance. In the ENKF however, the ensemble is not an intermediate state in
the filter but defines the probability in all stages.

For an arbitrary ensemble {ξ1, . . . ,ξm} of state vectors defining the probability density,
the ensemble forecast is simply a propagation by the model of each member, forced by
random noise input:

ξ j [k+1] = M(ξ j [k]) + η j [k] , η j [k] ∼ N (o,Q[k]) (7.21)

The ensemble members ξ j usually define the probability density in an ENKF, but might be
formed from a given mean/covariance pair too:

ξ j [k] ∼ N (x̂[k],P[k]) (7.22)

or, in square root form:

ξ j [k] = x̂[k] + S[k] w j , w j ∼ N (o,I) (7.23)

The number of random ensemble members drawn in this way is infinite, and might be
different from the number of columns in S.

The advantage of the ensemble forecast is that the sample statistics of the propagated
ensemble converge to the true statistics for growing ensemble size, even in case of nonlinear
dynamics. It is always possible to choose an ensemble large enough to let the error in the
computed statistics be less than some desired accuracy. However, the convergence of the
ensemble forecast is slow (of order 1/

√
m), requiring a large ensemble size and many model

evaluations. For small ensembles, statistical noise dominates the filter result; in practice,
the number of ensembles should be in order 102.

The most important difference between the ensemble forecast and the forecasts discussed
up to now is the rather brute force strategy. Model noise is introduced with a random gen-
erator; if the number of ensemble members is large enough, the ’true’ sample is probably
included. The EXT1, EXT2, and MES forecasts try to limit the number of samples as much
as possible, by using ensemble members with special properties. The implementation of a
specialized forecast is therefore more complicated, while an ensemble forecast is simple,
easy to understand, and very robust. The only serious drawback of the ensemble forecast is
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the large number of random samples necessary for convergence and removal of statistical
noise. Random drawn vectors will always show spurious correlations, which can only be
removed by increasing the ensemble size.

7.3.4 Summary of forecast schemes

The previous discussed forecast strategies are summarized in terms of a general reduced
rank filter as described in §6.8. Let the probability density of the state be defined by the
mean/covariance square root pair (x̂a,Sa); in case of an ensemble filter, these specify the
ensemble following (7.23). The first step in each of the forecasts is to form a forecast
ensemble, in a general notation:

[. . . ,ξ j [k], . . . ] = x̂a[k] + ε Sa[k] ΩS (7.24a)

[. . . ,η j [k], . . . ] = T[k] ΩT (7.24b)

The notation chosen here reflects that each ensemble member is formed from a linear com-
bination of columns of S or T; for all members together, this is the same as multiplication
with matrices ΩS and ΩT . Forecast techniques differ from eachother with respect to the
size and shape of the matrices ΩS and ΩT , and the value of the scale-factors ε . Table 7.2
gives an overview of these entities for the forecast methods discussed.

The second step is propagation of the forecast ensemble from t [k] to t [k+1], which is similar
for all methods:

ξ j [k+1] = M(ξ j [k+1]) + η j [k+1] , j = 1, . . . (7.25)

Finally, the new mean and covariance square root are formed from the propagated ensemble.
The new mean is either the central forecast, the second order forecast from eq. (7.17), or
the sample mean over all propagated ensemble members. The new modes are formed from
deviations between the propagated ensemble members and either the central forecast (for
the forecasts based on the EKF) or the new mean (for the forecasts based on samples).

7.4 Application to LOTOS

The performance of the different nonlinear methods has been tested for the experimental
setup described in detail in §4.4.2. The domain of the LOTOS model is bounded to the
southern part of the UK; the stochastic model includes uncertainties in emissions of NOx

and VOC, photolysis rates, and deposition velocity of ozone. The filter assimilates hourly
ozone measurements from five different sites, during a 5 day period in august 1997. Figure
7.2 shows an example of the filter result for site Glazebury.

In a large number of experiments, the filter problem has been solved using first order lin-
earization (EXT1), second order linearizations (EXT2), a minimal exact sample (MES), or
an ensemble technique (ENS). All except the ensemble filters required reduction of the co-
variance square root; the number of modes is reduced to either 10, 20, 30, 40, or 50 modes
after each analysis. Ensemble sizes for the ensemble filter were set to similar numbers. If a
method uses random numbers (MES and ENS), the experiment was repeated 4 times to study
the impact of the random generator. The computational costs of a method are determined
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centr. size Ω� ΩS ε mean: modes around:
forc. m × ... ΩT

EXT1 x m+q [I,O] 1 centr. forc. centr. forc.
[O,I]

EXT2 x 2m+q [I,−I,O]/√
2

√
2 (7.17) centr. forc.

[O,O,I]
MES m+1+q [Ωmes,O] √

m+1 sample mean sample mean
[O,I]

ENS m I √
m sample mean sample mean

N (o,I)

Table 7.2: Summary of differences between forecast algorithms: whether a
central forecast of the mean is included or not, size of the transformation ma-
trices ΩS and ΩT (= size of the forecast ensemble), contents of the transfor-
mation matrices (see appendix D for matrices Ωmes), the value of scale-factor
ε , and how the new mean and the new modes are formed.

Figure 7.2: Example of
ozone time series during
the experiments with differ-
ent forecast schemes (site
Glazebury).
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Figure 7.3: RMS error of filter
mean if compared with three differ-
ent reference solutions (ENS 150).
Results for EXT2 with 40 or 50
modes are not very different from
the results with 30 modes, and
therefore skipped. The lines con-
nect errors computed against the
same reference. Note the irregular
spacing in the horizontal ax.

by the number of model evaluations, equal to m + 1 for EXT1 and MES, 2m + 1 for EXT2,
and m for the ENS forecast.

To investigate the error made by different forecast methods, the mean ozone concentra-
tions computed with a filter have been compared with concentrations of a reference solution:

RMSE(O3) =

√
1

nxnynt
∑
i, j,k

(
ĉ f ilt

i j [k]− ĉre f
i j [k]

)2
(7.26)

for all available ozone concentrations ci j [k] at ground level. The reference solution is ob-
tained from an ensemble filter with very large ensemble size (150 members), since this filter
is known to converge to the exact filter solution. Even for 150 members there was still some
variation observed due to the use of random numbers, however; therefore, two extra refer-
ence runs have been produced in addition. The results are plot in figure 7.3. The difference
between two arbitrary reference solutions is equal to about 1.0 ppb. This value is therefore
an underbound for the RMS error which could be obtained with any forecast method. The
errors made with the ensemble filters show a clear convergence to the reference for growing
ensemble size. The only exception is an experiment with 50 ensemble members, where the
error is unexpected large in comparison with all reference solutions. A large spread in the
results is observed for the smaller ensemble sizes, illustrating that statistical noise domi-
nates the results here. The error made using first order linearizations (EXT1) shows a rather
unexpected growth for increasing number of modes, with a maximum for truncation to 30
modes. A possible explanation is the increased numerical inaccuracy for higher truncations,
when a large number of modes are filled with almost zero numbers. Increasing the number
of modes to 40 or 50 decreases the error however. The straight lines connect the errors with
respect to different reference runs; the spread illustrates that the differences between the ref-
erence solutions are not negligible. For truncation to 10 or 20 modes, the error made with the
EXT1 method is for any experiment smaller than an ensemble filter with comparable costs.
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The error made with second order forecasts (EXT2 and MES) is much smaller than those
observed for the first order forecast, fluctuating around an RMS of about 1.0 (the ’reference’
value). Similar as for the EXT1 method, the error made with the EXT2 scheme increases
slowly although less steep. The accuracy is always higher than obtained with ENS or EXT1
for comparable costs. The best results are obtained for the MES method. Although the MES

is build using a random generator, the spread in the result is quite small and seems to be
converged after truncation to 10 modes. The results hardly change for growing number of
modes, and are smaller then or comparable with the other filters for almost each experiment.

The accuracy of the covariances computed by various filters can not be checked by a sim-
ple comparison with a reference solution. Correct estimation of the converged covariance
is not a target, unless the computed mean has converged too. A computed covariance might
be very different from a reference, but could in fact be very accurate if it describes the error
in the computed mean correctly. For a fair competition, a computed covariance should be
compared with the true covariance of the computed mean, that is, the covariance of the
true state around the computed mean (see also the Taylor expansions in appendix C). The
true covariance is hard to obtain, however, since this requires precise knowledge of the true
state. In practice, there are only two ways to compare the true and computed covariance.
First, one could analyze the theoretical difference between them after application of a cer-
tain forecast method. For the first and second order linearizations, this has been carried out
using Taylor expansions in appendix C. Second, the difference between true and computed
covariance could be analyzed in a twin experiment, in which a true state is obtained from
a model run with stochastic noise input. For an experiment with data from a measurement
network and a stochastic model which is probably not perfect, the true covariance is hard to
obtain, however.

A better way of judging the quality of the computed covariance is to check whether com-
puted mean and covariance are able to explain the residue between observations and filter
mean. If we neglect the spatial correlations between different measurement sites, the residue
scaled by its computed standard deviation should have a standard normal distribution:

h′x̂− yo
i√

h′Ph′ + r2
i

∼ N (0,1) (7.27)

If over a large number of measurements the average value of this ratio is far from zero, the
filter solution is seriously biased from the measurements (at least during some occasions). If
the standard deviation exceeds one, the filter is too optimistic about the quality of the mean:
a measurement often differs more from the mean than what could be expected based on
covariance and measurement error. The statistics of ratio (7.27) are therefore an indication
for the quality of the computed covariance.

Figure 7.4 shows the statistics of ratio (7.27) during the experiments. In all experiments,
the average ratio shows a small but positive bias (about 0.1). Detailed investigation of the
assimilated ozone time series showed that this bias is caused by a period of over estimation
in Yarner Wood during the first two days, and a rise of the simulated ozone level in Sibton
during the morning which is too fast in comparison with the measurements. The forecast
methods do not show large differences with respect to the bias. The overall smallest bias is
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Figure 7.4: Average and standard deviation of normalized residue (7.27) over
all assimilated measurements.

obtained with an ensemble filter, but given the large spread in the results this is only due to
a lucky shot with the random generator.

The standard deviation of the normalized residue shows a clear convergence to a value of
about 1.50-1.55. The difference between mean and observed ozone is therefore on average
50% larger than what could be expected given covariance matrix and measurement error.
Underestimation of the standard deviation is an indication that the stochastic model is not
perfect, which is not unusual during assimilation of data from an observation network (see
for example (Ménard et al., 1999)). A standard deviation of about 1.50 seems to be the best
what could be obtained for this experiment. The value of 1.50 is obtained for lowest costs
with a minimal exact sample (MES). The MES method gives equal or better results for the
same number of model evaluations, while the impact of the random generator is limited.
The ensemble method suffers from a slow convergence; at least a double amount of model
evaluations is required to obtain similar results as obtained with a MES. The methods with
first (EXT1) and second order linearizations (EXT2) seem both to require at least 20 modes
to converge, with the best results obtained for EXT2; both methods are not able to beat the
MES method, however.

The difference between EKF2 and MES is remarkable, since both methods are based on
exact propagation of second order nonlinearities. The only explanation is the different ways
in which both methods introduce uncertainty. The EXT2 method introduces uncertainty in
terms of unity vectors, varying one stochastic parameter at the time. Cross correlations are
therefore neglected. For our stochastic model, cross correlations are important however.
For example, increasing both NOx and VOC emissions gives quite different results than
increasing only one of them (see also figure 2.3). The MES method introduces uncertainties
in all directions at the same time in different ratios, and the results in figure 7.4 show that
this improves the results significantly.
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7.5 Measuring nonlinearity

The previous described experiments with the filter around LOTOS showed that treating the
nonlinearity problem with a different technique improves the results significantly. For the
chosen stochastic model and measurement set, a MES forecast with 20-30 model evaluations
was found to be the cheapest and most accurate technique. Although the experiments give
some useful insight in the (dis)advantages of the different techniques, the results should not
be interpreted as valid for other filter problems too. Even for the same filter problem but
applied to another simulation period, the number of modes might to be increased, or an en-
semble filter could be preferable. The only way to figure this out is to perform multiple filter
experiments with very large ensembles. To avoid the time consuming procedure of multiple
filter experiments, an ideal filter should be able to decide on its own whether nonlinearities
should be treated with a sophisticated technique, or whether a more simplified approach is
also accurate enough.

A first step to such a flexible filter was made in (Verlaan and Heemink, 2001). A method
was proposed to analyze the nonlinearities in a filter problem in terms of single ’nonlinear-
ity’ number V . The value of V was shown to be sensitive to all aspects that define whether
a nonlinear model complicates the filter problem or not. In the first place, this is the non-
linearity of the stochastic model, with respect to the basic time step; a pure transport model
is much more linear than a model including chemistry. Second, the quality of the measure-
ments is important, since assimilation is able to compensate for errors involved with the
nonlinear model. And third, if high quality measurements are available, the time period be-
tween successive assimilations should be small enough. Experiments with the Lorenz model
showed that for different parameter settings controlling these aspects, the error made by the
filter is related to the value of V . Besides, for larger values (highly nonlinear problem),
the more sophisticated forecast techniques provided more accurate results, while for small
values (almost linear problem), the performance is indifferent. If the nonlinearity number
is observed continuously during a filter run, an appropriate action could be undertaken if its
value becomes too large.

7.5.1 Tracking the bias

The nonlinearity measure proposed in (Verlaan and Heemink, 2001) is based on tracking of
the bias between true state and central forecast of the mean:

b[k+1] = E
[

xt [k+1]−M(x̂[k])
]

(7.28)

A forecast equation for the bias is derived in appendix C.5 using Taylor expansions. To-
gether with an analysis equation this gives the following system for tracking the bias:

b f [k+1] =
∂M
∂x

∣∣∣∣
x̂a[k]

ba[k] +
[

x̂ f ,�[k+1] − M(xa[k])
]

(7.29a)

ba[k+1] = (I−KH′) b f [k+1] (7.29b)

where x̂ f ,�[k+1] is a higher order forecasts made with the EXT2, MES or ENS method. The
bias is thus increased with the difference between a first and higher order forecast. For an
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almost linear model, this difference is close to zero, and the bias will converge to zero due
to the analysis. For strongly nonlinear models, the bias increases during the forecast and
will remain increasing unless the analysis is able to compensate for the growth.

The length of the bias is a suitable measure for the error in the filter due to nonlinearities.
The definition used in (Verlaan and Heemink, 2001) computes the length of the bias relative
to the covariance, which is a measure for the total error:

V = ‖β‖ , β = (S′S)−1S′b (7.30)

The m-vector β contains the coefficients of the projection of b on the columns of S. The
measure V is not affected by linear state transformation and thus more or less independent
of the exact definition of the state vector. A disadvantage of the nonlinearity number V is
that it is sensitive to the number of elements in β, however. Since this number is equal to
the number of columns in S, a growing number of modes will automatically lead to a larger
value for V . To avoid this dependency, two additional measures are introduced which are
related to V but independent of the number of modes. The measures compare the bias vector
with the subspace in which the filter assimilates measurements (see figure 7.5). For a low-
rank filter, the error between mean and true state is supposed to be a sample Sw for some
w ∼ N (o,Im) . The bias should be small compared to Sw, since otherwise the analysis is
not able to account for the nonlinearity error. The first new measure compares the length of
the projection vector β with a χ 2-distribution2:

p = P (χ 2
m ≤ β′β

)
(7.31)

If β ∼ N (o,Im), then β′β ∼ χ 2(m). Thus, if the projection of the bias is unlikely to be a
sample out of N (o,P), this will be visible in a large value for p. The second new measure
computes the angle between the bias b and its projection Sβ on the subspace spanned by S:

cos θ =
‖Sβ‖
‖b‖ (7.32)

If a large part of the bias is not in the subspace spanned by the columns of S, this will be
visible in θ .

The major costs of computing the nonlinearity measures is formed by the propagation of
the bias (7.29a), which requires one extra model evaluation for the finite difference approxi-
mation of (7.29a). Once the bias b has been analyzed, the m×m matrix S′S and the m-vector
S′b need to be computed, to solve β from the matrix-vector equation (S′S)β = (S′b). Note
that the matrix S′S is rank deficient if the columns of S are deviations form a sample mean
(MES or ENS forecast), such that the equation should be solved in least square sense. Finally,
the measures V , θ , and p are to be computed from the l2 norms over β, Sβ, and b.

7.5.2 Experiments with nonlinearity measures

The non-linearity numbers V , θ , and p have been computed during the experiments de-
scribed in §7.4. The time series obtained for the reference runs (ensemble forecast with 150

2A chi-square random variable of order m is the sum X2
1 + · · ·+ X2

m of m uncorrelated N (0,1) distributed

variables. The probability function is given by P ( χ 2
m ≤ R2

)
= 1

2

∫ R2

r=0(r/2)m/2−1e−r/2dr/ Γ (m/2).
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Figure 7.5: Illustration of bias and projection on S.

ensemble members, figure 7.6) are illustrative for the development of the nonlinearities.
During the first four days, the length V of the bias is rather small and constant compared
with the covariance, but during the following night and day, the bias seems to be rather
large. The last days of the assimilation period were characterized by sun shine, leading
to large ozone peaks during the afternoon and therefore large differences between day and
night, making the nonlinear character much stronger. The same behavior was examined in
(Verlaan and Heemink, 2001) for the Lorenz model, where V increased at critical points in
the trajectories. The large values for V indicate again that the stochastic model is not com-
pletely able to explain the difference between model and measurements, as observed from
figure 7.4 too.

Whether a value of V is ’acceptable’ or ’too large’ is provided by the value of p, which
compares V with a χ 2 distribution (see also the dotted lines in the left panel of figure 7.6).
The value of p acts as a binary switch: zero for a small bias, one for a large bias, and
otherwise in between. As long as p is small enough, say less than 10−2, the nonlinearity
is not a major problem for the filter. The angle θ between bias and sub space spanned by
the covariance is measured to be 20◦ − 50◦, but does not show a clear trend. Information
contained in θ is therefore limited, and won’t be discussed any more.

The trends observed in V and p for the reference run were found for the other filter ex-
periments too, although in general the high values for V are reached sooner. Figure 7.7
shows the average values of the nonlinearity numbers during the assimilation period, for the
filters based on higher order forecast techniques EXT2, MES, and ENS and different num-
ber of modes. The values of V observed for ensemble forecasts with small ensembles are
extreme high; the bias seems to exceed the covariance during the complete assimilation
period. However, the bias vector probably contains a large error in this case, since the en-
semble mean used to compute the bias is far from converged. With growing ensemble size,
the length of the bias vector shows a clear decreasing trend as expected; for 50 ensemble
members, the length is on average in the interval covered by the χ 2 distribution.

The values of V observed for the second order EXT2 and MES methods show a clear
increasing trend with growing number of modes. This is however not due to an decreasing
accuracy, but simply the result of the growing size of the projection vector β from (7.30).
The dependency on the size of β is canceled in measure p, and as the right panel of figure
7.7 shows, the impact of nonlinearities is in fact more constant under growing number of
modes. About 40 model evaluations are required to reach converged values for p.
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Figure 7.6: Timeseries of non-linearity measures V , p, and θ , measured for
the three reference runs with large ensembles (150 members); the three runs
differ due the impact of the random generator. The dotted lines in the left
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zero and one, or close to one respectively.
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variable, where m is set to the number of model evaluations.
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The differences in nonlinearity measure p observed for the different forecasts techniques
show a large correspondence with the plots of the RMS error in the mean (figure 7.3) and
the average error plotted in the right panel of figure 7.4. For example, the nonlinearities
measured for ensemble filters exceed the values for other methods for small numbers of
model evaluations, but converge slowly to reference values which are less then all other.
The value of p measured for the MES filter is converged for 30 or more model evaluations,
and similar has the total error. A difference is that the nonlinearities measured for the MES

filters exceed those measured for EXT2, while the errors are lower. Investigation of the time
series learned that the values of V for both methods act quite similar, but that whenever they
exceed the χ 2 interval, the extrema for MES are much higher than those for EXT2. If the
probability that p exceeds a certain threshold is plotted against against the number of model
evaluations, the result is almost the same as a plot of the error.

The correlation between error and observed nonlinearity might become a useful feature
in online applications. Where the errors are computed from comparison with a reference
run or measurement data, the nonlinearity is observed without using any of these external
information. In online applications this is very useful, since a reference run is not avail-
able and measurement data might be sparse or of low quality during longer periods. By
tracking and observing the bias, the filter has however insight in its own accuracy, and is
able to perform appropriate action if V or p exceed critical levels. The filter might decide
to increase the accuracy by increasing the ensemble size or number of modes, or to switch
to another forecast scheme. This application, decision of which forecast scheme to use
through observation of the bias, was an important goal in (Verlaan and Heemink, 2001). In
our assimilation experiments, the value of the nonlinearity measure p could have been used
to decide on the appropriate number of modes or ensemble members. Comparison of the
p-measures in figure 7.7 with the errors in figures 7.3 and 7.4 suggest for example that p
should be less than 0.3 for accurate results. If the filter is initiated with an ENS-forecast with
40 ensemble members, the value of p is about 0.4−0.8. This indicates that 40 members is to
low; the ensemble size should be increased to at least 60-80 members to obtain a p < 0.3 .
Another option is to switch to a MES or EXT2 scheme, since these provide for this particular
application an appropriate p even for 40 model evaluations.

7.6 Summary and conclusions

In this chapter, approximations to the Kalman filter have been discussed, that are able to
deal with a nonlinear model. Models such as the atmospheric chemistry model LOTOS are
characterized by strong nonlinear dynamics. In contrast with linear models, a probability
density of the state can not be propagated exactly for this kind of dynamics. The use of
approximate methods in the forecast step of the Kalman filter is therefore necessary; the
assimilation of observation is however not influenced by the nonlinearities however.

A comparison has been made between four nonlinear forecast methods, each of them
embedded in a low-rank filter. The ensemble forecast has the advantage of a simple im-
plementation, and produces the most accurate results if the ensemble size is large enough.
Methods based on first or second order linearizations or a minimal exact sample have the
disadvantage of a more complicated implementation, but limit the computational costs.
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Experiments with the LOTOS model showed that the method of minimal exact sampling
(MES) is the most efficient and accurate. With similar costs as made for first order lineariza-
tions (EXT1), the MES method produces more accurate results. Minimal exact sampling
is therefore always preferred over first order linearizations. The method of second order
linearizations (EXT2) has the same accuracy as a MES in theory, but is twice times as expen-
sive. The experiments with the filter around the LOTOS model showed that the EXT2 method
is less accurate if cross correlations in the dynamic noise are more important. The ensemble
forecast (ENS) was able to provide results even more accurate than a MES forecast, but only
with the cost of at least a double amount of model evaluations. Even for ensembles with
50 members, statistical noise still dominated the results, while the MES method converged
for less than 30 modes. If the resources for computation time and storage are not restricted,
the ensemble forecast is to be preferred for use in a Kalman filter; otherwise, minimal exact
sampling is an useful alternative.

Tracking and observation of the bias is able to provide useful insight in the nonlinearity
present in the filter. The ratio between bias and covariance gives an indication whether
assimilation of measurements is able to compensate for errors made due to nonlinearities.
The experiments with the filter around LOTOS showed that a clear correlation exists between
observed bias and total error. This feature might become useful in online applications, to
let the filter automatically increase the accuracy if the bias (and thus the total error) starts to
increase.



Chapter 8

Parallelization of low-rank filters

For implementation on a parallel computer, the low-rank filter around the LOTOS

model has been parallelized in two ways. First, the covariance square root of
the filter was decomposed over the modes, without any change to the model.
This method has the advantage of an efficient parallelization of the forecast
stage of the filter, but the disadvantage of a more complicated implementation
of the filters matrix algebra. Second, the filter has been implemented in combi-
nation with a parallel, domain-decomposed version of the model, which leads
to efficient matrix algebra but a less efficient forecast stage. The performance
of the parallelization of different filter components has been analyzed in terms
of speedup and total execution time. The domain-decomposition is slightly fa-
vored as the best parallelization strategy based on speedup, flexibility, and im-
plementation. 1

8.1 Introduction

Application of a data-assimilation tool to large scale models puts a large demand on com-
puting power. In practice, the demand is always ahead of the available computing devices,
because both the need for assimilation has grown, and the underlying models have become
more extensive. The availability of computing power therefore provides a limit to the as-
similation problems which can be solved. The chosen implementation should explore the
capacities of the platform as much as possible.

The growing availability of fast multiprocessor machines encouraged the application of
the Kalman filter technique to large models. In fact, without the use of these machines, some
filter problems can not be solved at all. Online application of filter techniques for periodic
forecasts are bounded by the time period in which the problem has to be solved, and this
task is often not feasible for a single processor. Besides, some applications do simply not
fit in the memory which can be addressed by a single processor. An implementation with
not frequently accessed entities stored on external devices could be considered here, but
this will extremely slow down the application. An early example of parallel implementation
of a Kalman filter is found in (Lyster et al., 1997). Measurements from the UARS satellite

1To appear as Parallelization of a large scale Kalman filter: comparison between mode- and domain-
decomposition by A.J. Segers and A.W. Heemink (2002). In Wilders, P., Ecer, A., Periaux, J., Satofuka, N.,
and Fox, P., editors, Parallel Computational Fluid Dynamics: Recent developments and applications, Proceedings
of the Parallel CFD’01 Conference. Elsevier.
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were assimilated with a global 2D model by a filter with a full-rank covariance matrix, with
either the model parallelized over its domain, or through processing the model on parts of
the covariance matrix in parallel. In both methods, the model had to be evaluated 2n times,
with n the number of elements in the state (here 1.3 · 104). The analysis of measurements
turned out to be a bottleneck for the speedup of the parallel filter.

A fundamental change in parallel implementation of large scale Kalman filters was the
introduction of low-rank filters (see chapter 6 for an extensive overview). Instead of oper-
ating and storing a full-rank covariance matrix, a limited ensemble of state vectors is used
to describe the correlations. In all low-rank formulations, the ensemble members need to
be propagated in time by the dynamic model, and this is often the computational most ex-
pensive part of the filter. In the context of the Ensemble Kalman filter, (Evensen, 1994)
proposed to propagate the ensemble members independently by multiple processors. This
strategy leaves the model intact, and could therefore be applied to any available model im-
mediately. The approach was used in (Keppenne, 2000) for a large 2 layer shallow water
model, assigning one ensemble member to each processor. The analysis equations are how-
ever not easily solved in this configurations, since analysis of each single measurement
requires data from all ensemble members. Therefore, the analysis step was implemented
using a domain-decomposition approach, where each processor analyzed the measurements
in circular, overlapping regions. A similar method was used for a parallel ensemble filter
around a much larger ocean general circulation model (Keppenne and Rienecker, 2000),
where each ensemble member needed to be decomposed over 8 processors.

The rather inefficient implementation of the analysis step is now recognized as a major
disadvantage of an ensemble-decomposed parallel filter, especially when large amounts of
measurements are to be analyzed. In (Houtekamer and Mitchell, 1998; Houtekamer and
Mitchell, 2001) a method is proposed for online analysis of order 104 measurements. The
method consists of analysis of batches of observations located in disjunct areas, where spa-
tial correlations between grid cells and observations are ignored after some distance. These
batches are efficiently processed in parallel, if the ensemble is decomposed over the domain
rather than over the ensemble members. Application of this approach is therefore limited to
models for which a domain-decomposition is available.

The two different approaches for a parallel filter, decomposition over the modes or over
the model domain, have both been implemented for the filter around the LOTOS model
(chapters 4 and 5). Some general remarks about parallel computing are made in section 8.2.
In section 8.3, the general equations for a low-rank filter are summarized. Then, in section
8.4, a decomposition of the filter over the modes is described, where the LOTOS model re-
mains unchanged. Sections 8.5 and 8.6 describe a domain-decomposition of LOTOS and the
filter respectively. Both techniques have been implemented and analyzed on a massive par-
allel machine (CRAY T3E). Finally, the two methods are compared based on computational
characteristics, ease of use, and flexibility.

8.2 Parallel computing

Thanks to the large variety in computer architectures and related software libraries, a simple
overview of how to solve a problem in parallel is hard to give. Often, the decision of how
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the problem is to be solved is not given by what is possible but more by what is available to
a user.

In this research we had access to the CRAY T3E massive parallel computer of Delft Uni-
versity. The T3E consists of a scalable number of processors (128 at time of writing),
interconnected by a fast network with 3-D torus topology (see figure 8.1). Each processor is
equipped with 128 Mb local memory, and is able to access the local memory on other pro-
cessors through the network. According to different classification schemes, the architecture
of the T3E can be classified as:

• Multiple instruction stream, multiple data stream (MIMD).
Each processor is able to perform different kinds of instructions on different memory
items, independent of other processors.

• Logically shared, physically distributed memory.
Each processor is able to access all memory addresses, although only a small part is
stored locally.

• Non uniform memory access (NUMA).
The access times for different parts of the memory is not uniform, but depends on the
physical distance. In the 3-D torus, each node is connected directly to 6 other nodes,
and access to memory at these nodes will be faster than access to memory on more
remote nodes.

The MIMD/NUMA architecture is often used in modern supercomputers, but also describes
the architecture of a cluster of workstations or PC’s. The configuration of processor/memory
nodes and interconnection network is extended rather easily, such that the machine is able
to met growing needs by including an extra set of nodes. The architecture of the CRAY T3E

allows the programming style of Single Program/Multiple Data (SPMD): the same compiled
program is executed on all processors, but each processor is responsible for a different part
of the data. SPMD does not imply that each processor at any time executes the same instruc-
tion. At run time, each of the running programs obtains a key identifying the processor on
which it is running. Given the value of this key, the program might decide to execute certain
statements or not. Software libraries are available to send data to or to receive data from
other processors, and to synchronize the execution of the program.

The architecture of the CRAY T3E is exploited by using the logically shared, distributed
memory access (SHMEM) library for the communication between the processors. SHMEM

routines are based on message passing, and without major changes, the communication
could be performed with the low level but more general Message Passing Interface (MPI)
library too.

To judge the performance of a parallel algorithm, a number of measures is available. The
speedup denotes how much faster a certain task is executed in parallel in comparison with
sequential execution. The speedup is computed as the ratio between computation time T1

spent on the task by a single processor, and the time Tp spent by p processors:

S(p) =
T1

Tp
(8.1)
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Figure 8.1: Architecture of the CRAY T3E. Each node (left) consists of a pro-
cessing element (PE), local memory (M), and a CONTROL UNIT for connec-
tion between processor, memory, and the communication network. The nodes
are connected in a 3D torus topology (middle). The photo on the right shows
an example of a CRAY T3E as installed at the center for High Performance
Applied Computing (HP α C) at Delft University.

An optimal speedup is achieved if S(p) = p, that is, a double number of processors performs
a certain task twice as fast. If the problem requires that the processors communicate with
eachother, the speedup curve will flatten for p → ∞ , since a growing number of processors
will lead to more communication. While the speedup curve is still increasing, a problem
will be solved faster if more processors are used. If communication is not the bottleneck
for the parallelization, a particular algorithm might even show a super linear speedup: the
problem is solved faster than what could be expected based on the number of processors
only. A super linear speedup is observed if the processor is able to make more efficient use
of fast memory (cache), for example if the total amount of data managed by the processor is
small. Occurrence of this effect is more related to the hardware/software configuration than
to the algorithm.

Related to speedup is efficiency, which is defined as the ratio of the time spent on a
problem by a single processor, and the time spent by p processors together:

E(p) =
T1

p ·Tp
=

S(p)
p

(8.2)

The efficiency describes which fraction of the total consumed cpu time is used to solve
the actual problem (workload). What remains is overhead due to communication time or
load-imbalance (processors might become unemployed if other processors have to complete
their tasks first). If computing facilities are rented on a commercial base, the efficiency gives
insight in how effective the money is spent.
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8.3 Filter equations and covariance decomposition

The filter equations used in this chapter are based on the general formulae for low-rank
filters (§6.8). The model/observation pair with a general nonlinear model is given by:

x[k+1] = M(t [k],x[k]) + η[k] , η[k] ∼ N (o,Q[k]) (8.3a)

yo[k] = H′[k] x[k] + v[k] , v[k] ∼ N (o,R[k]) (8.3b)

In following equations, the time identifications for M and H′ will be skipped, if the time is
implied by the arguments. The target of the filter is to compute a mean x̂[k] and covariance
P[k] for the true state given the model and the observations. The covariance matrix is pa-
rameterized with the factorization P = SS′, where S is the low-rank covariance square root.
In chapters 6 and 7, a low-rank filter based on the RRSQRT approach and a forecast using a
minimal exact sample was found to be suitable for assimilation of data in LOTOS. The filter
equations are summarized to:

forecast: ξ j [k] = x̂a[k] + ε sa
j [k] , j = 1, . . . ,m (8.4a)

ξ j [k+1] = M(ξ j [k]) + η j [k] , j = 1, . . . ,m (8.4b)

x̂ f [k+1] = ξ j [k+1] (8.4c)

S f [k+1] = ( [..,ξ j [k+1], ..] − x̂ f [k+1] )/ε (8.4d)

analysis: Ψ ′ = H′ S f [k+1] (8.4e)

Θ = Ψ (Ψ ′Ψ +R[k+1])−1 (8.4f)

a = Θ ( yo[k+1] − H′ x̂ f [k+1] ) (8.4g)

BB′ = I − Θ Ψ ′ (8.4h)

x̂a[k+1] = x̂ f [k+1] + S f [k+1] a (8.4i)

rank reduction: VΛV′ = B′ ( S f [k+1]
′

S f [k+1] ) B (8.4j)

transformation: Sa[k+1] = S f [k+1]
(
BṼΩ

)
(8.4k)

diagonal: d[k+1] = diag(Sa[k+1]Sa[k+1]′) (8.4l)

The listed equations cover the main operations performed in other filter algorithms too;
see tables 7.2 and 6.1 for the corresponding choices for Ω, a, and B. Transformation (8.4k)
combines three matrix-matrix multiplications originally part of the analysis (B), rank reduc-
tion (Ṽ), and preparation of the forecast ensemble (Ω). The computation of the diagonal of
the covariance matrix is added as an extra stage. In typical applications, at least a small part
of the diagonal is used for output; to investigate the maximum costs of this operation, the
complete diagonal was computed here.

Since the major workload in the filter is related to the covariance square root S, a parallel
version of the filter should distribute the tasks related to S over the processors. The non-
uniform memory access of the CRAY T3E (and other frequently used platforms) requires
thereto that each processor has quick access to that part of S, for which tasks are to be
performed. Therefore, the covariance matrix has to be decomposed and distributed over the
processors (if the size of S is too large to fit in the local memory of a single processor, this
would be necessary anyway). Figure 8.2 illustrates two options considered: a decomposition
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Figure 8.2: Decomposition of the covariance square root: over the modes
(column-wise) or over the domain (row-wise).

over the columns, where each processor owns a number of modes of the covariance, and
a decomposition over the rows, where each processor is responsible for a certain part of
the model domain. Some smaller entities will not be decomposed or distributed, but each
processor will own a complete copy. If each processor updates these entities in the same
way, some work is done double, but this is often more efficient than decomposition with
the cost of communication. The implementation of the two strategies for a parallel filter,
mode-decomposition and domain-decomposition, are discussed in the following sections.

8.4 Parallel filter: decomposition over the modes

A filter based on a mode-decomposition explores the natural parallelism of the forecast. Eq.
(8.4b) requires a large number of similar model propagations; these could be processed in
parallel without interaction. An almost optimal speedup is expected for the forecast stage,
and since this is the major time consumer, the speedup of the filter is expected to be large.

The strategy of a mode-decomposition is best interpreted in the view of the ensemble
filter (section 6.6). Each processor should manage the propagation and analysis of a certain
number of ensemble members. Thereto, each processor owns a complete copy of the model
dynamics and model data (meteo, land use, etc). If the ensemble members are distributed
equally, the time required for a single filter step is the same for each processor. In terms of
a covariance square root, the decomposition of the ensemble is equal to distribution of the
columns of S over the processors (figure 8.2). To let each processor own the same number
of states, the number of modes should be a multiple of the number of processors npe, which
is often a power of 2. For efficient implementation of operations (8.4a) and (8.4d) on the
forecast ensemble, each processor should be able to store a copy of the mean state too.

The next paragraphs contain a description of the filter operations for a mode-decomposed
covariance square root. The following notations and conventions will be used:

• a processor is identified by a key k ∈ K, were K owns npe elements;
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Figure 8.3: Adding of a set of state vectors, dis-
tributed over five processors. During each stage
of the algorithm, pairs of processors cooperate in
summing their states. Some processors might be
unemployed for a while if it does not own a state
to be summed. The total number of stages is equal
to �2log(npe) .
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• the modes stored on a processor k are identified by the set Jk; the sets Jk for k =
1, ..,npe form disjunct subsets of J = {1, . . . ,m};

• the loop ’for j ∈ Jk’ denotes that j is set sequentially to an element of Jk;
the loop ’for all k ∈ K’ denotes that the loop is performed in parallel, for each
processor with a different k at the same time;

• ’receiving’ and ’sending’ denotes transfer of data between processors.

8.4.1 Adding distributed states

A simple operation, which often occurs in filter operations, is computation of the sum over
a set of states vectors. If the set of states {xk} is distributed over multiple processors (one
state for each pe k), the following notation for this global sum will be used:

sum(xk,K,kdest) = ∑
k∈K

xk (8.5)

where the result is stored in xk on processor kdest . Figure 8.3 illustrates a recursive algorithm
(Foster, 1995) which could be used used to perform operation (8.5). The number of recursive
stages is equal to �2log(npe) . During each stage, at least one state vector is to be transfered
from one processor to another. For large state vectors, the total costs of the adding is almost
completely determined by the communication time required to transfer the states. Routines
for computing the global sum are often provided by the communication library in optimized
form.

8.4.2 Operations on the covariance square root

The decomposition of the covariance square root has important consequences for the im-
plementation of the various filter operations. In this section we will give an overview of the
implementation of the basic operations on S.

Ψ ′ = H′S
This operation is performed during the analysis in eq. (8.4e). The result is a matrix
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Ψ ′ with the projections of the modes on the observation space. Interpolation matrix
H′ is often sparse; each row corresponds with a single observation, and contains often
only one element unequal to zero. Each processor should project the locally stored
columns on each availabe observation. The corresponding columns ψ′

j of Ψ ′ are send
to the other processors:

Require: S distributed column-wise, H′ available on each pe
for all k ∈ K do

for j ∈ Jk do
ψ′

j = H′s j

send ψ′
j to all k ∈ K

end for
end for

Ensure: Ψ ′ = [ . . . ψ′
J . . . ] = H′S on all pe’s

x = Sa
The result of this operation is a linear combination of columns of S, and is for example
used to analyze the mean state in eq. (8.4i). Taking the sample mean over all modes
is a special form of Sa, with each element of a equal to 1/m. Each processor could
compute a part of the result for the modes stored in the local memory; the final result
is computed with a global sum:

Require: S distributed column-wise, a available on each pe
for all k ∈ K do

xk = ∑ j∈Jk
a js j

end for
x = sum(xk,k ∈ K,kdest)

Ensure: x = Sa available on pe kdest

The costs of this operation are determined by the communication time for the global
sum. If the vector a contains many zero elements, the number of processors involved
in the operations might be lower than npe.

S := SC
This operation is a major time consumer in a filter operation, and has to be performed
at least one time during the transformation in eq. (8.4k), with C = BṼΩ. Each
column of S is replaced by a linear combination of all (other) columns, which makes
the operation difficult for two reasons. First, a column of S could not be replaced
by a new version, since the original value is necessary for computation of other new
columns too. To avoid this, one could chose to store two copies of S (the old an the
new one), but this is not preferable for the massive increase of memory consumption.
Second, since the columns are distributed over the processors, communication can
not be avoided. Two algorithms have been examined: one which is independent of
the size and contents of the state vector, and one which decomposes S in blocks of
rows.
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1. State independent SC.
This algorithm is based on the idea that the transformation should be indepen-
dent from the exact size and shape of the state vector. If a change in the model
leads to a changed state vector, this should not lead to any changes in the filter
operations. All that is required is that the state is a vector, with suitable defini-
tions for adding and scalar multiplication. The matrix C is first decomposed into
LU, the product of a lower and upper triangular matrix. Note that C might have
a rank less than m. For example, the matrix B from analysis eq. (8.4h) has a rank
equal to the number of observations, if this number is less than the number of
modes. The actual transformation SC is now performed through first replacing
S by SL and then by (SL)U. This methods avoids the storage of two covariance
square roots, since each new column is formed from a linear combination of
columns not transformed yet:

Require: S distributed column-wise, C available on each pe
for all k ∈ K do

LU = C
for j = 1, . . . ,m do

s j := Sl j

end for
for j = m, . . . ,1 do

s j := Su j

end for
end for

Ensure: S := SC

In total 2m operations of the form Sa have to be applied, where a is a column
of L or U. The costs of one of such operations is determined by the number
of state-transfer stages, with a maximum of �2log(npe) stages if all processors
are involved. If each processor owns a set of sequential numbered columns, the
number of processors involved in the transformation decreases with the number
of zero elements in l j or u j. A simple calculation shows that for a scenario with
exactly one mode per processor, the operation SL is performed with the cost of
φk = 1, 5, 17, or 49 transfer stages for a number of processors k = 2, 4, 8, or 16
respectively. If the number of modes m exceeds the number of processors, the
number of stages increases with about m/npe. The total communication costs of
multiplication with L and U is the equivalent of 2φkm/npe state transfers.
Since the communication costs grow dramatically with the number of proces-
sors, the expected speedup of the state independent transformation is not very
good. Many processors are unemployed if the columns l j and u j contain many
zeros, and have to wait until other processors have finished their jobs.

2. Decomposition over the rows.
Instead of treating the transformation SC as acting on the columns of S, the
operation could also be viewed as an operation on the rows. After the trans-
formation, a single row s′i has been replaced by the vector-matrix product s′iC.
Each processor could perform a number of these multiplications; a row should
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be collected first, transformed, and redistributed afterwards. For communica-
tion it is more efficient to transfer a block of rows rather than a large number of
single rows. The maximum number of rows in a block is about n/npe, with n
the number of elements in the state; for small numbers of processors it is more
efficient to use a smaller number since each block has to be stored completely
in the local memory.

Let each block of rows be identified by a key l ∈L; each processor k is expected
to collect, transform, and redistribute the blocks for all l in a subset Lk. The
notation (S)kl is introduced for the block l stored on processor k:

Require: S distributed column-wise, C available on each pe
for all k ∈ K do

for l ∈ Lk do
receive (S)kl from all k ∈ K in Σl = [. . . ,(S)kl , . . . ]
Σl := ΣlC
send all (S)kl from Σl to all k ∈ K

end for
end for

Ensure: S := SC

Since each row is collected and distributed once, a total amount of 2m(npe −
1)/npe states is transfered between the processors. If only one pair of proces-
sors is able to communicate at the same time, the communication time is the
equivalent of the same number of state transfers; if each processor is able to
communicate directly with all other processors at the same time, the communi-
cation time is decreased with a factor npe −1. In the 3-D torus network on the
T3E, the total communication time will be in between the costs of 2m/npe and
2(npe −1)m/npe state transfers.

Comparison of the communication costs for the two algorithms shows that the row-
decomposition is always cheaper than the state-independent algorithm: the factor φk

for the costs of the later makes the difference. In a non-fictive configuration with
about 100 modes managed by 8 processors, the operation (SL)U with the state-
independent algorithm would require more than 400 transfer stages; for 16 processors,
this number has grown to more than 1200. For the row-decomposition, however, the
communication costs are even for 16 pe’s in the range of 25-200 transfer stages only.

d =diag(SS′)
The diagonal of the covariance matrix is often the minimum of what is extracted from
the covariance matrix as output; storage of the complete covariance square root each
hour is often not necessary and feasible. The diagonal is equal to a global sum of all
columns, squared element wise; in simplified notation:

Require: S distributed column-wise
for all k ∈ K do

dk = ∑ j∈Jk
s2

j
end for
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d = sum(dk,k ∈ K,kdest)
Ensure: d =diag(SS′)

A = S′S
The matrix S′S is used during the rank reduction of S in a RRSQRT filter, and for
projections on the space spanned by the columns of S (for example used in POENK

filter, see §6.7). An element ai j is equal to the dot-product between modes si and
s j. Since these might be stored on different processors, this operation requires the
transfer of many state vectors:

Require: S distributed column-wise
for all k ∈ K do

for i = 1, . . . ,m do
for j = i, . . . ,m do

if j ∈ Jk then
if i /∈ Jk receive si

ai j = a ji = si
′s j

send ai j,a ji to all pe
end if

end for
end for

end for
Ensure: A = S′S

If each processor owns an equal number of modes, the communication time required
for this procedure is the equivalent of (npe − 1)m/2 state transfers; the costs grow
linear with the number of processors. A less expensive algorithm is to collect rows of
S on different processors (similar as for SC), and to perform the operation row-wise:

S′S =
n

∑
i=1

S′
(i,:)S(i,:) (8.6)

Since the rows do not have to be redistributed, the communication time of a row-wise
S′S is half the communication time of a row-wise S := SC, thus O (m) rather than
O (m npe) required for the first algorithm.

a = S′x
This operation is used for projections on the subspace spanned by the columns of S,
see for example eq. (6.23d) for the POENK filter, or eq. (7.30) for the nonlinearity
number. If each processor owns a copy of x, the major part of this operation could be
performed locally, and only a few elements of a have to be transfered; otherwise, first
x should be copied to each processor:

Require: S distributed column-wise, x available on each pe
for all k ∈ K do

for all j ∈ Jk do
a j = s′jx
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send a j

end for
end for

Ensure: a = S′x

8.4.3 Performance of the mode-decomposed filter

The performance of a mode-decomposed filter was tested during assimilation experiments
with the LOTOS model. The experimental setup was almost similar as described in chapter
5. To be able to run the complete filter on a single processor too, the model domain was
limited to an area of 32×32 grid cells. A number of 9 uncertain parameters was included in
the stochastic model (NOx and VOC emissions and deposition rates in three different area).
During each time step, the number of modes was reduced to 61; from these, a forecast
ensemble with 62 members is formed, and together with the filter mean and a determinis-
tic model run for diagnose, this leads to a total number of 64 model evaluations per time
step. The number of 64 evaluations ensures that the number of model evaluations could
be distributed equally over the processors, if their number is equal to a power of 2. In
our experiments, the filter run on either 1, 2, 4, 8, 16, or 32 processors. A number of 23
measurements was assimilated each hour. Since this number is rather limited, no special
treatment of the analysis is considered. Each of the processors computes the vector a and
the matrix B from equations (8.4g-8.4h) in the same way, using the algorithm in appendix B.
Computation times for the filter have been measured for an assimilation experiment over 12
hours, after an initialization period to obtain a covariance square root of at least 61 modes.
The parallel filter was implemented on the CRAY T3E.

To have a clear insight in the parallelization performance of the operations in the filter, the
executable compiled from the source code was kept the same as much as possible, for each
number of processors involved. The only difference is the number of modes stored in the
local memory, which could be lower if the covariance square root is distributed over multiple
processors. Therefore, an executable which is produced to run on multiple processors could
have been formed with speed increasing, but memory consuming optimizations too. These
are however not possible in the single processor case, and therefore not used during the
experiments.

Figure 8.4 shows the speedup of the total filter and the different filter stages, measured for
2, 4, 8, 16, or 32 processors. The stages recognized here reflect equations (8.4).

As expected for a mode-decomposed filter, the best speedup is achieved for the forecast
stage, when each processor performs an equal number of model integrations. The speedup
is not perfect, since each processor has to spent some time on the initialization of the model.
Other sources of overhead are the formation of the ensemble (8.4a) and the formation of
the new modes (8.4d), since in both operations, each processor should receive a copy of the
mean state. The overhead leads to a parallel forecast stage which is only 26 times faster
if evaluated on 32 processors, in spite of the idealized distribution of state vectors. Note
that the solid lines between the measured speedups for the forecast stage are not represen-
tative for intermediate numbers of processors. The speedup is determined by the maximum
number of model steps performed on one of the processors. The true speedup will show a
staircase pattern, since for example 17 processors will not perform 64 model integrations
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Figure 8.4: Performance of the mode-decomposed filter around LOTOS. Left:
speedup of total filter and different filter stages. The percentages in the legend
denote the fraction of the total execution time spent on a stage, for evaluation
on 32 processors. Right: total execution time (summed over all processors);
the time required for the single processor case is set to 100%.

faster than 16 can do.

The speedups measured for the rank reduction and the transformation are comparable
with that of the forecast. The communicational overhead for growing number of pro-
cessors seems to be compensated for by the spread of the workload. Both operations
are implemented ’block’ wise, which turned out to have a much better speedup than the
state-independent implementations, as expected from the lower amount of communication.
Although the communication is still quite large (complete states have to be transfered),
the fast communication network of the T3E ensures a reasonable performance. The costs
of the rank reduction are completely determined by computation of S′S; the eigenvalue-
decomposition of B′(S′S)B into LΛL′ takes less than 5% of the costs. Implementation of
a parallel eigenvalue-decomposition, such as a parallel Jacobi algorithm (Golub and van
Loan, 1996, §8.4), has therefore not been considered.

The speedup measured for the computation of the covariance diagonal is significant less
than that of forecast, transformation, and rank reduction. The costs of the operation diag(SS′)
are dominated by the computation of the global sum (order 2 log(npe)). The workload per
processor is minor, and increasing the number of processors does therefore hardly decrease
the computation time.

Note that the computation of S′S (rank reduction) and the diagonal of the covariance
matrix are rather expensive in comparison with the computation of S(BṼΩ). The later
requires a similar number of flops (p. 187) as the rank reduction, but seems to be significant
cheaper. Simple tests showed that the compiler/processor combination is able to compute
the vector-matrix product si

′A (2m2 flops in theory) about 50% faster than the vector-vector
product sisi

′ (m2 flops). Introduction of a few extra transformations in the filter algorithm



154 CHAPTER 8. PARALLELIZATION OF LOW-RANK FILTERS

would therefore hardly increase the total execution time. This is for example useful if
the rank reduction is implemented including the scaling algorithm from section 6.9. The
scaling requires computation of the diagonal of the covariance matrix before the actual rank
reduction, and this is a simple task only if the transformation SB is performed immediately
after the analysis.

The worst speedup is measured for the analysis stage. In the chosen implementation,
hardly any parallelism is present. Each processor computes a copy of the vector a and
matrix B from eq. (8.4g-8.4h), and this part of the analysis has therefore no speedup at all.
Some speedup is however achieved from the interpolation of the modes to the measurement
locations in (8.4e). The total costs of computing these entities is small (8% on 32 pe’s), since
the number of measurements is limited. For larger numbers of measurements, equations
(8.4f) and (8.4h) might be solved in parallel, or a domain-decomposition strategy could be
considered.

The total speedup is a sum of the speedup of the different filter stages, weighted by their
importance in the total algorithm. For 8 processors, the total speedup is almost perfect (7.5),
while for 16 and 32 processors, the speedup is still very good (14 and 24 respectively). The
speedup curve is not flattening, thus running the filter on more than 32 pe’s will still decrease
the computation time. The total speedup is strongly related to the speedup of the forecast,
which consumes 70-80% of the total computation time (right panel of figure 8.4). The less
efficient parallelization of the analysis, and less important, of the diagonal computation, do
therefore hardly hamper the total speedup, but make it only slightly smaller than the speedup
of the forecast.

Concluding, the decomposition over the modes provides an efficient parallelization of
the filter. The major costs are spent on the propagation of the modes, and this part of the
forecast stage is to parallelize very efficient. The linear algebra operations on the covariance
square root are parallelized efficient too, if the workload is spread over the processors using
some form of domain-decomposition. In the chosen experiments, the filter profits from the
optimal number of model evaluations, and the communication network of the CRAY T3E

which allows fast transfers of complete state vectors.

8.5 Parallelization of the LOTOS model

The previous section discussed the implementation of a parallel filter around the LOTOS

model, where the model is not aware of the existence of other processors. In this and the
following section, the reverse situation will be discussed: a parallel model, in a filter hardly
aware of the parallelism. The discussion is started with the parallelization of the LOTOS

model; the description of the filter is left for §8.6.

For a parallel implementation of LOTOS, the concentration array needs to be decomposed
in a number of sub arrays. Each processor owns one of the sub arrays, and needs to com-
municate if a concentration is required that is stored somewhere else. A few options for the
decomposition of the concentration array have been considered.
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chemical decomposition In this option, each processor manages the operation on a single
or a group of component(s). Advection, horizontal and vertical diffusion, and the
exchange between between model layers could be applied without communication.
Only the chemistry operator requires transfers of concentrations stored somewhere
else. This decomposition is efficient if the chemistry is rather simple, or concentra-
tions could be divided in chemical more or less independent groups, and is therefore
strongly dependend on the chemical scheme.

vertical decomposition The concentration array is now decomposed over the layers. Each
processor manages the concentrations in a single layer of the model. Horizontal ad-
vection, chemistry and deposition (lowest layer only) do not require any communica-
tion in this decomposition, while vertical exchange and the changing mixing height
do. Since the later are minor operations, a decomposition over the layers could be
very efficient. An import drawback is however that the number of processors which
can be used is bounded by the number of layers (3 in LOTOS). For a full 3D model
with multiple layers this problem is less important, although such a model probably
includes vertical advection requiring additional communication. Another drawback is
the different computational costs associated with different layers; emissions and de-
position concern the lowest layer(s) only, while in higher model layers stronger wind
fields require smaller time steps for the advection. These differences are not in favor
of an efficient load balance for the processors.

horizontal decomposition In a horizontal decomposition, the domain is divided in several
horizontal subdomains, and each processor manages all concentrations in the corre-
sponding grid cells. In this decomposition, only advection requires communication
between the processors: concentrations at the edges of a subdomain are shared with
other subdomains. Since most processes in LOTOS are cell oriented (chemistry) or
column oriented (treatment of mixing layers, vertical diffusion, deposition), a hori-
zontal decomposition promises an efficient parallelization. Examples of this approach
are found in (Owcarz and Zlatev, 2000; Barone et al., 2000).

Since the chemical interaction between the components is strong and the number of ver-
tical layers is limited, the horizontal or domain-decomposition is the best strategy for par-
allelization of LOTOS. This parallelization strategy will be discussed in two parts: first the
actual decomposition, followed by a discussion of the operator splitting in relation to the
speedup.

8.5.1 Decomposition of the LOTOS domain

Since the domain of the LOTOS model is very regular (rectangular, almost equidistant grid),
a domain-decomposition could be made in a straight forward way. The domain selected
for a certain application is divided into a number of rectangular subdomains (figure 8.5).
Each subdomain is assigned to a different processor, and if each covers a similar number of
cells, operations such as chemistry, vertical exchange and deposition will require a similar
computation time.
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Figure 8.5: Domain-decomposition in LOTOS. The maximum domain is the
area for which meteo and surface data is available; the actual domain in typ-
ical applications is often smaller. The domain is decomposed into a number
of rectangular subdomains, each covering a number of grid cells as equal
as possible. Each subdomain is extended with two shells of boundary cells.
Meteorological data for the boundaries is filled with data for the maximum
domain, or extrapolated over the edge. Concentrations for the boundary cells
are either copied from another subdomain or from a global model.

Communication between the subdomains is necessary during the advection stage. The
advection is implemented using κ -fluxes for the horizontal flow in combination with an
Runge-Kutta scheme for the time integration (van Loon, 1996). The advection scheme is
explicit: advected concentrations are computed from the current concentrations and wind
fields only. The κ -fluxes use a 9-point discretization stencil; to update one single cell, the
scheme requires concentrations up to two grid cells away. All grids involved in horizontal
processes are therefore extended with 2 shells of boundary or ghost cells: concentrations
and horizontal wind fields, but also the mixing height which is interpolated over the cell
borders to estimate the volume. Entities in the boundary cells are never subject to physical
processes, but only used to store data: either meteorological data from the maximum grid,
or concentrations managed by other subdomains or the global model. The implementation
of a domain-decomposition is now very simple.

1. At the begin of a time step, the meteorological fields are read for the maximum do-
main. These are used to fill the data arrays for each subgrid and its boundaries. For
those boundary cells that are not part of the maximum domain, appropriate values are
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obtained through extrapolation.

2. Before an advection step is performed, each processor fills the boundaries of its sub-
domain with concentrations copied from other domains. Depending on the opera-
tor splitting scheme (section 8.5.2), the exchange of boundary concentrations is per-
formed 6-8 times for each time step of one hour.

3. At the end of a time step, output concerning the complete domain is collected from
the subdomains and saved.

The parallel model hardly differs from the sequential model. Each subdomain is managed
in the same way as the total domain used to be managed; the only difference is how the
boundary cells are filled. Originally, boundary cells were filled from the maximum domain
or the global model only; in the parallel model, they might be filled with data from other
subdomains too.

A domain-decomposition implemented in this way is very straight forward, and provides
a benchmark for further improvements. A simple improvement might be to synchronize
only upwind boundary concentrations. This method reduces the amount of concentrations
to be transfered with a factor 2, but increases the total amount of transfers (many small
blocks of memory rather than a single large one); the total communication time is therefore
not necessarily decreased. Another option is to use a simpler discretization scheme at the
boundaries instead of the 9 point stencil used now. This reduces the amount of memory
transfers, but leads to small differences between the original and the domain-decomposed
model.

The straight forward domain-decomposition has been implemented in LOTOS and tested
on the CRAY T3E. For a decomposition as shown in figure 8.5 the long shaped subdomain
at the right hand side is a bottleneck for the speedup, since the ratio between the number
of boundary and internal cells is largest here. The best strategy would be to let subdomains
have a shape as equal as possible. A model domain of 40×40 cells has been decomposed
into equally shaped subdomains of 20× 40 (2), 20× 20 (4), 10× 20 (8), 10× 10 (16), or

Figure 8.6: Speedup of advec-
tion, chemistry, etc. after domain-
decomposition. Measured for LOTOS

model on 40 × 40 grid, decomposed in
equal shaped, rectangular subdomains. sp
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5 × 10 (32). Figure 8.6 shows the speedup measured for the different model operators.
Thanks to the very fast communication of the T3E, the speedup of the domain-decomposed
advection is good in spite of the simple implementation. With decomposition in 8 subdo-
mains, the speedup of the advection is about 6.3, which is reasonable in comparison with
other examples of parallel Runge-Kutta schemes (Fritsch and Möhres, 1998). For 16 sub-
domains, the speedup has decreased to 9.3, since the ratio between boundary cells and cells
inside the subdomain has become worse. The speedup of the other operators is in theory
linear with the number of processors, since they do not require additional communication.
The results in figure 8.6 show that for some operations, the speedup is even super linear.
The vertical diffusion for example becomes 30 times faster when evaluated on 16 proces-
sors. An explanation is that for decomposition in smaller subdomains, the concentration
array is stored in a smaller block of memory; the time spent on collecting and restoring
all concentrations in a column or a single cell is smaller then. Since the vertical diffusion
and exchange are rather simple operations, the time spent on memory management is quite
important. For the chemistry this is however only a minor part of the costs, and the super
linear speedup is limited here.

8.5.2 Operator splitting

The total speedup of the domain-decomposed model is strongly determined by the operator
splitting. The operator splitting determines how many times a model operator is called
during a time step. If the splitting is chosen such that processes with low speedups are
avoided as much as possible, the total speedup will reach a maximum.

The time integration in LOTOS is implemented using a Strang-splitting technique (Strang,
1968). The concentrations at time t + ∆ t are computed from the concentrations at time t
through application of all subprocess in a symmetric order, for example:

c(t + ∆ t) = Lade(∆ t/2)◦Ldep(∆ t/2)◦Lvd f (∆ t/2)◦Lchem(∆ t)
◦Lvd f (∆ t/2)◦Ldep(∆ t/2)◦Lade(∆ t/2) c(t) (8.7)

where the operators denote horizontal advection/diffusion and emission, deposition, vertical
diffusion, and chemistry (see §2.4). In splitting (8.7), the chemistry operator is applied only
once, and concerns an integration over a period ∆ t; all other processes are applied twice
and perform integrations over ∆ t/2. The maximum value of the time step ∆ t is determined
by the chemistry, which allows a maximum time step of 15 minutes (Maarten van Loon,
personal communication). To integrate the dynamics over one hour (the basic time step of
the model and between two successive assimilations in the filter), the sequence of operations
in (8.7) is repeated four times.

Operator splitting involves an error since it decouples subprocesses which actually interact
with eachother. A theoretical analysis of the error involved in splitting is hard to make,
and only possible for simplified operators (Lanser and Verwer, 1999). Practice has however
shown that splitting works very well, almost independent of the order in which the operators
are applied.

For the total computation time of a certain splitting order it is important how expensive the
different operations are. As an example, figure 8.7 shows the fraction of the time spent on
each model operation for a model with splitting (8.7). The advection with κ -fluxes turns out
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Figure 8.7: Percentage of execu-
tion time spent on various opera-
tions in the model, in case of Strang
splitting with chemistry as central
operation.

chemistry 

advection  37%

vert. exchange  2%

vert. diff. 7%
deposition  4%

to be an expensive operation, which takes almost 40% of the total time. The fractions will be
different if the splitting order is changed. Table 8.1 shows the total execution time for three
different splitting schemes, measured for the LOTOS model using a 40×40 grid. The first
scheme is equal to (8.7), with chemistry as the central operator. The maximum time step
is limited by the chemistry (15 min.), and therefore the operator sequence is repeated four
times for simulation over one hour. Whenever possible, two sequential calls to the advection
operator over 7.5 minutes are replaced by a single operation over 15 minutes. With this time
step, the Courrant condition is always satisfied during the assimilation period for the chosen
grid. In 50% of the period, even a time step of 20 minutes is allowed. For a domain
extended to the highest latitudes with smaller grid cells, a maximum time step of only 12
minutes is required during 10% of the time.) The chosen scheme has the advantage of a
minimum number of calls to the chemistry operator, with the cost of an increased number

processors 1 2 4 8 16

Strang splitting: nopp × ∆ topp execution time
nr central loops chem. advec. speedup
1. chem. 4 4×15.0 2×7.5, 100.0 51.3 25.5 13.8 8.2

3×15.0 1.0 1.9 3.9 7.2 12.2
2. advec. 3 6×10.0 3×20.0 89.5 45.1 23.1 11.9 6.7

1.0 2.0 3.9 7.5 13.4
3. advec. 4 2×7.5, 4×15.0 95.8 48.7 24.5 13.0 7.5

3×15.0 1.0 2.0 3.9 7.4 12.8

Table 8.1: Total execution time and speedup for three different Strang split-
tings. The central operation in the splitting is either chemistry, with always
4 loops of 15 minutes per hour, or advection, either 3 or 4 loops per hour
given the Courrant condition. For the chemistry and advection operators,
the number of calls and corresponding time steps are listed in the third and
fourth column respectively. The total execution time is scaled with the time
for splitting around chemistry, single processor case.
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of advection steps. Schemes 2 and 3 use the advection as central operator, called either 3
times with steps of 20 minutes (scheme 2), or 4 times with steps of 15 minutes (scheme 3),
appropriate for different Courrant conditions. For scheme 3, two sequential chemistry steps
over 7.5 minutes are replaced by a single one over 15 minutes; for the second scheme this is
not possible since it would lead to an integration over 20 minutes. Schemes 2 and 3 lead to
total execution time on a single processor of 89.5 % and 95.8 % of scheme 1 respectively.

The last columns of table 8.1 show the speedup measured for the different splitting
schemes. Up to 4 processors, there is hardly any difference in performance between the
three methods. For execution on 8 and 16 processors however, the splittings 2 and 3 with
advection as the central operation show both a better speedup than splitting 1 with chem-
istry in the center. With a decomposition over 16 processors for example, the speedup of
the advection-splittings are 12.8 and 13.4 respectively, while the chemistry-splitting has a
speedup of 12.2 only. The relatively large number of advection steps in this splitting ham-
pers the performance.

The total execution time for the advection-splittings is smaller than what could be ex-
pected from the speedup only. In splittings 2 and 3, the chemistry is integrated over rather
small time steps (10.0 or 7.5 minutes instead of 15.0). The number of iterations required
for convergence of the solver is often smaller in this case. For a single chemistry step the
computation time is reduced with 12% for a 10 minutes timestep, and to 20% for a 7.5 min-
utes timestep. Thus, although the splittings around advection lead to an increased number
of chemistry steps, a part of the additional computation time is compensated for by the, on
average, smaller time steps.

Concluding, the splitting with advection as the central operation is preferable over the
original scheme. For a model run with each hour a number of advection steps as small as
possible, a speedup of about 7.5 might be reached on 8 processors, which is close to optimal.
The total execution time is about 5-10% lower than what could be achieved with chemistry
as the central operation, due to the lower amount of advection steps and increased speed of
the chemistry solver for smaller time steps.

8.6 Parallel filter: decomposition over the domain

With the parallel LOTOS model available, implementation of a parallel low-rank filter is
rather simple. The problem of exploring parallelism has been moved from the top (filter)
downwards to the model; the filter is not necessarily aware of the presence of multiple
processors. The data structures of the filter should follow the domain-decomposition of
the model. Each processor is assigned to a single subdomain; therefore, it should own a
copy of all entities of the filter that have any relation with this subdomain. For example, the
covariance square root is distributed in blocks of rows (figure 8.2), such that each processors
owns the rows corresponding to its subdomain. Similar, the mean state is distributed. A
number of smaller entities that are of interest for all subdomains are not decomposed, but
each processor owns a copy; their contents have to be synchronized.

In the following two paragraphs the implementation of the operations in the domain-
decomposed filter will be described. Apart from the conventions defined at page 146, the
following additional notations are introduced:
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• (x)k denotes the part or the copy of the entity x stored on processor k;

• ’distribution’ of an entity denotes a decomposition over the subdomains, followed by
a transfer of the results to the corresponding processors.

8.6.1 Operations on domain-decomposed states

The following operations produce entities which are formed from data spread over several
domains, but are of interest for all domains. The results are therefore synchronized between
the processors.

y = H′x = 〈H,x〉K
The value of a state vector evaluated at a certain measurement point is of interest
for all domains during the analysis. Elements of y are often formed from concen-
trations in one or a few grid cells only. The observation matrix H′ could therefore
be decomposed over the domains, such that the actual interpolation is performed in
parallel:

Require: x and H distributed row-wise
for all k ∈ K do

(y)k = (H)k
′(x)k

end for
send (y)k to all k ∈ K

Ensure: y = H′x

If each domain is involved in the analysis of a similar number of observations, the
parallelization of this operation is rather efficient.

a = x1
′x2 = 〈x1,x2〉K
The dot-product between two states is not a standard operation in a filter, but used for
special operations such as rank reduction and projection on the covariance. The op-
eration is almost similar to the operation y = H′x; see above for the algorithm. Since
only a single number has to be exchanged between the processors, the communication
time for this operation is minor.

Both operations are part of the model context rather than of the filter. A change in the
model state or the observations will require changes in these operations, and their imple-
mentation should therefore be separated from the filter.

8.6.2 Operations on covariance square root

In this paragraph, all basic operations on a covariance square root S are described in case of
a decomposition over the rows. Since each processor owns all elements in a row, operations
acting on a row do not require any communication.

Ψ ′ = H′S
The mapping of modes onto observation space is processed easily using the previous
described mapping of a single state:
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Require: S and H′ distributed row-wise
for all k ∈ K do

for j = 1, . . . ,m do
ψ′

j =
〈
H,s j

〉
K

end for
end for

Ensure: Ψ ′ = H′S

S := SC
Where the discussion of the transformation SC took almost 2 pages for the mode-
decomposed S, the implementation becomes very simple in case of a domain-decomposition.
Each row s′i is replaced by the vector-matrix product s′iC, completely independent
from other rows. The expected speedup is therefore perfect, if each subdomain owns
the same number of state variables.

Require: S distributed row-wise, C available on each pe
for all k ∈ K do

(S)k := (S)kC
end for

Ensure: S := SC

d = diag(SS′)
Similar as any other state vector, the diagonal d is domain-decomposed over the pro-
cessors. Since each element of the diagonal is formed from a single row of S, the
implementation is simple in case of a domain-decomposition:

Require: S distributed row-wise
for all k ∈ K do

(d)k = ∑ j(s j)2
k

end for
Ensure: d =diag(SS′)

A = S′S
The matrix S′S is used during the rank reduction of S in a RRSQRT filter, and for
projections on the space spanned by the columns of S. With the definition of the
dot-product on page 161, this operation is implemented straight forward:

Require: S distributed row-wise
for j = 1, . . . ,m do

ai j = a ji =
〈
si,s j

〉
K

end for
Ensure: A = S′S

x = Sa
The result of this operation is a linear combination of columns of S, and is for ex-
ample used to analyze the mean state. Since the result is a state vector and therefore
decomposed over the domain, no communication is required:
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Require: S distributed row-wise, a available on each pe
for all k ∈ K do

(x)k = ∑ m
j=1 a j (s j)k

end for
Ensure: x = Sa

a = S′x
This operation is used for projections on the subspace spanned by the columns of S,
see for example eq. (6.23d) for the POENK filter, or eq. (7.30) for the nonlinearity
number. Each element of the result is a dot-product between state x and a column of
S:

Require: S distributed row-wise, x distributed
for j = 1, . . . ,m do

a j =
〈
s j,x

〉
K

end for
Ensure: a = S′x

8.6.3 Performance of domain-decomposed filter

The performance of the domain-decomposed filter was measured for the same assimilation
experiment as described in §8.4.3. To be able to run the filter on a single processor to, the
domain was limitted to 32×32 cells again. Figure 8.8 shows the speedup and total execution
time of the different filter stages (compare with figure 8.4 for the mode-decomposed filter).

The most apparent result is the observed super linear speedup of the transformation stage.
Thanks to smaller concentration arrays in the decomposed S, the computation of SC is 44
times faster if evaluated on 32 processors. Note that the super linear effect is not observed
for the 2 processor configuration; in that case, the concentration arrays are still too large
to explore all possibilities of the processors. The net effect of this super linear speedup is
however limited, since the total computation time spent on the transformation is less than
2% of the total.

Another apparent result is the not very optimal speedup of the forecast stage. Evaluated on
16 processors, the forecast is only 10 times faster, while speedups above 13 were measured
for the LOTOS model (table 8.1). The parallel LOTOS model suffered in this experiment
from the smaller grid size of 32 × 32 cells, necessary for running the filter on a single
processor too. For 40×40 cells over 16 processors, the subdomains have size 10×10 and
ratio between boundary and inner cells is 0.8, while for 32× 32 cells the subdomains are
8×8 and the ratio has grown to 1.0 . With decomposition over 32 processors, the situation
is even worse. Therefore, the number of processors used in a domain-decomposed filter
should be related to the size of the domain to remain sufficient speedup. Note the constant
computation time for the forecast for evaluation on 2 and 4 processors; similar as observed
for the transformation, the forecast seems to profit from the smaller concentration arrays
here.

Figure 8.8 shows that the performance of the domain-decomposed rank reduction and
computation of the covariance diagonal are comparable with that of the mode-decomposed
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Figure 8.8: Performance of domain-decomposed filter. Left: speedup of total
filter and different filter stages. The percentages in the legend denote the
fraction of the total execution time spent on certain stage, for evaluation on
32 processors. Right: total execution time (summed over all processors). The
time required for the single processor case is set to 100%.

filter. This is remarkable, since the operations on the covariance square root used in these
stages require a lower amount of communication in case of domain-decomposition. This
might be explained from the fast communication network in the Cray computer, where
transfers of large blocks of memory are rather cheap. The costs of the communication are
more determined by the number of communication events. An interesting experiment would
be to compare the two strategies on a platform with relatively slow communication, such as
a Beowulf cluster.

Similar as for the mode-decomposition, the worst speedup is observed for the analysis,
since hardly any effort has been put in parallelization. The total time spent on this operation
is however minor, and therefore hardly visible in the total speedup. The total speedup is
almost equal to that of the forecast, since this stages consumes about 80-85% of the total
cpu time (right panel of figure 8.4).

Concluding, the performance of the domain-decomposed filter is completely determined
by the performance of the parallel model. If the size of the domain is too small for de-
composition over many processors, the speedup of the filter is strongly limited. The filter
operations on the covariance square root are however implemented very efficient.

8.7 Comparison between parallelization strategies

For a true comparison of the different filter strategies, both have been implemented in most
optimal form for the experimental setup of chapter 5. The analysis of the different filter
stages in sections 8.4.3 and 8.6.3 required that the filter was able to run on a single processor
too. This limited the use of important compiler optimizations, which are able to increase
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Figure 8.9: Total computation time spent on different filter stages for mode
or domain-decomposition, evaluated on 8 processors; experimental setup as
described in chapter 5 (40×40 grid cells, 64 model evaluations). The com-
putation time is scaled with the total time for the mode-decomposed filter.

the speed of the computations with the cost of additional memory consumption.

The two filter codes have been compiled in full optimized form for a domain of 40×40
grid-cells, 64 model evaluations in total, and execution on 8 processors. The differences in
computation time between mode- and domain-decomposition are shown in figure 8.9. The
total computation time for the domain-decomposed filter is about 10% lower than for the
mode-decomposed filter. A large part of the difference could be explained from the time
spent on computation of the covariance diagonal, which turns out to be significant cheaper
in domain-decomposed form (no communication). Also the transformation and the rank
reduction are cheaper in case of domain-decomposition. The costs of the forecast stage are
comparable in both parallelizations, in spite of the different communicational needs. Where
the mode-decomposed filter requires the transfer of a limited amount of complete states,
the domain-decomposition requires a large amount of small transfers (boundary concentra-
tions); the costs seem to be comparable however.

The bars in figure 8.9 show that the rank reduction takes about 12% of the total com-
putation time, for the current application. Application of a RRSQRT filter is therefore not
significant more expensive than application of an Ensemble Kalman filter with the same
number of model evaluations. If the reduction mechanism is able to limit the number of
model evaluations, the total computation time for a RRSQRT filter is soon smaller than for a
ENKF.
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8.8 Discussion

After evaluating the experiments with the mode- and domain-decomposed filters, the dif-
ferent strategies are judged on aspects of performance, flexibility, and ease-of-use. The
discussion is extended to applications or filter configurations that are not in use for the cur-
rent filter around LOTOS, but might be implemented in future. Table 8.2 shows a summary
of the conclusions.

speedup The two filter strategies have almost optimal speedup for either the model propa-
gation or the filter algebra.
A mode-decomposed filter has a perfect speedup for the forecast, as long as the num-
ber of model evaluations is a multiple of the number of processors. The matrix algebra
in the filter equations require however the transfer of complete state vectors, and this
will hamper the speedup on platforms with relatively slow communication.
The reverse holds for the domain-decomposed filter. The speed up of the matrix alge-
bra is almost optimal (as long as the number of state elements is divided equally over
the subdomains), while the speedup of the forecast is hampered by the speedup of the
parallel model. For the atmospheric chemistry models considered here, the domain-
decomposed model is very efficient, if the subdomains are not too small. The number
of processors should therefore be related to the size of the domain.

memory A mode-decomposed filter makes less efficient use of the available memory, since
each processor owns a complete copy of the model. For an atmospheric model as
considered here, the amount of meteorological, emission, and land use data is sub-
stantial, and for some models this could take more than 95% of the total storage 2.
The domain-decomposed filter is more efficient here, since each processor owns the
local parameters only.

scalability For the current filter/model combination, typical applications require different
shaped and sized domains. If the performance of the filter remains the same if both
the grid size and the number of processors is increased, the parallelization is called
scalable.
For the mode-decomposed filter, increasing the number of processors will lead to a
decrease of efficiency since most of the communication is related to state transfers
from one to all other processors. The number of communication events for a single
processor will therefore increase. The sizes of the data arrays stored on a processor
are increased too, and this is often not in favor of the computation time.
The scalability of the domain-decomposed filter is however much better. Most of the
communication is required between neighboring subdomains only, thus the total num-
ber of communication events for a single processor does hardly grow if the domain is
extended with a few new subdomains. The sizes of data arrays won’t increase, such
that the memory management on a processor is unchanged.
Note that none of the filter strategies is scalable with the number of modes, since the
filter operations other than the forecast are O(m2

)
rather than O (m).

2The EUROS model at the start of the STROPDAS project (Velders et al., 2001)
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observations with local support In application with large amounts of measurements to be
assimilated, for example satellite tracks, the use of a domain-decomposed filter is fa-
vored. Each processor needs to store only those measurements which are located in
its own subdomain, and this is only a fraction of the total number. Besides, since
the spatial correlation between measurements and computed concentrations is often
limited, the implementation of an analysis with local support could be considered
(Houtekamer and Mitchell, 2001). In a domain-decomposition, this limits the com-
munication between the processors to neighboring subdomains only.
In a mode-decomposed filter however, each processor needs to store the information
about all measurements. Projections of the modes stored on a processor onto obser-
vation space need to be send to all other processors, even in case of a gain with local
support.

different treatment of modes In some formulations of the low-rank filter, the mean and/or
the modes or are treated different. Examples are a filter in which the modes are prop-
agated by a reduced instead of the original model, or a filter which uses two filter
algorithms next to eachother (section 6.7). The parallelism is much better preserved
in these examples in a domain-decomposed filter. The mode-decomposed filter suf-
fers from irregular distribution of the different type of modes over the processors. For
optimal speedup, each processor should own an equal number of each type of modes,
and this property is hard to preserve in case of a flexible number of modes or proces-
sors. A domain-decomposed filter is more flexible it this case, since the modes are
processed sequentially rather than parallel.

independence of model If the filter tool is used in combination with different models, the
implementation should be flexible in incorporating another model.
The mode-decomposed filter is favored here; implementation of filter and model are
almost completely independent. The only requirement for the model is a clear de-
scription of the state vector, including suitable definitions for linear operations be-
tween states (the state should be a vector). For efficient implementation of some filter
operations it is useful if operations are available to decompose the state in blocks (see
the row-based algorithms for computing SC and S′S at pages 150 and 151). Given that
these operations are defined, any model could be embedded in a mode-decomposed
filter. A domain-decomposed filter depends on the existence of a parallel model how-
ever.

coding The code for a mode-decomposed filter is quite complex. For each operation acting
on a mode, the program has to consider whether it is stored locally or not. If such a
code is used exclusively on a single processor machine, the overhead of unused state-
ments is large.
In a domain-decomposed filter, the problem of parallel implementation has been
moved from the desktop of the filter programmer to that of the model develloper.
The filter is hardly aware of running on multiple processors, since communication
is required on the model level only. For the LOTOS model, the parallel model code
hardly differs from the sequential code. The total number parallel statements in model
and filter is therefore limitted.
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decomposition
filter aspect mode domain
speedup + +
memory consumption +
scalability +
observations with local support +
different treatment of modes +
independence of model ++
coding ++

Table 8.2: Comparison of parallel filter strategies, judged on different aspects
of application and implementation.

8.9 Conclusions

Parallelization of a low-rank Kalman filter is efficiently performed with both a mode as well
as a domain-decomposition strategy. Each of the discussed parallelization strategies has its
own advantages and disadvantages, but whether these are important strongly depends on the
application and the computing platform.

For the filter around LOTOS, the domain-decomposition is slightly favored. Implemented
on a massive parallel machine (CRAY T3E), the speedup achieved with mode or domain-
decomposition is almost indifferent. The choice for domain-decomposition is therefore
based on more or less subjective criteria such as easy implementation, and potential positive
effects when running on other platforms or when large numbers of measurements are to be
analyzed. For the LOTOS model, building an efficient domain-decomposed model is not
complicated, and the amount of communication is limited. An efficient parallel filter is eas-
ily implemented given the domain-decomposed model. The low amount of communication
becomes more important if the filter is implemented on a platform with slower commu-
nication than the CRAY T3E used in our experiments. Further, the domain-decomposition
gives an efficient memory management, shows better scalability, and promises an efficient
analysis of large amounts of measurements.

All these advantages are however not relevant if a domain-decomposition for the model
is not available, or not very efficient. Spending some time on building or improvement of
the parallel model should be considered here; having an efficient parallel model is useful
anyway. If this is not possible or the result is not satisfactory, the mode-decomposition is
the only alternative. The parallelism inherent to the low-rank filter will ensure an useful
efficiency. For efficient implementation of the matrix algebra in the filter, a rough form of
a domain-decomposition is necessary. A suitable approach could be to implement a hybrid
parallelization, with the forecast parallelized with a mode- and the analysis with a domain-
decomposition.



Chapter 9

Discussion and conclusions

The chemical composition of the air in urbanized areas is one of the most uncertain as-
pects of atmospheric research. Uncertainties in emissions, meteorological conditions, and
unknown interaction with vegetation all lead to variations in trace gas concentrations which
are hard to describe with a model. Measurements of trace gases are able to give insight in
the actual value of the variations however. The best way to improve simulations is therefore
to assimilate the measurement data in the model.

This thesis describes the assimilation of measurements in an air-pollution model using
a Kalman filter. The technique is applied to the LOng Term Ozone Simulation (LOTOS)
model. LOTOS is a photo-oxidant model that simulates the tropospheric ozone level accross
Europe. Measurements made at ground-based sites are available on a regular basis for
comparison with the simulations. The main deficiencies in the LOTOS model and its inputs
are believed to lie the parameterizations of emissions and deposition. Values of emission
strength and deposition velocity are based on yearly totals, projected to simulation time
using standard profiles. Many temporal variations present in nature are therefore not present
in the model. Parameters related to the meteorological dynamics are obtained from weather
forecast data, and already show large temporal variations. These are not considered as
uncertain in this study, although especially the height of the mixing layer has a large impact
on the ozone level.

Using a stochastic model for uncertain parameters in LOTOS, the Kalman filter is able to
compute an optimal estimate of the ozone level given available measurements. Uncertain-
ties in emission parameters are of large scientific and political interest, and therefore these
are the first parameters to consider. The majority of the emissions in Europe is released
from a few densely populated areas. Variations in ozone concentrations in the plumes re-
leased from these areas are smoothed due to deposition and titration by NO during the
night. The variations in ozone do therefore not range much further than 300-600 km, un-
less an emission plume is transported over water, where deposition and titration is limited.
Other uncertainties than emissions should be considered to explain the differences between
model and measurements. A stochastic model based on a combination of uncertain emis-
sions, photolysis rates, and deposition velocity was shown to be useful to assimilate ozone
measurements in LOTOS. The uncertainties in these parameters are able to explain differ-
ences between model and measurements for both suburban and remote sites, for daytime as
well as nighttime hours. Since the absolute differences are hard to quantify beforehand, an
adaptive adjustment should be included in the filter to balance the stochastic model with the
actual observed residues. In this research, the representation error was adjusted adaptively,
to explain the residue between model and measurements given a fixed degree of freedom in
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the model parameters. The chosen stochastic model was able to represent the measurements
up to a difference of 7–12 ppb in the afternoon, and up to 15 ppb during the rest of the day.

Given the large uncertainties involved in air-pollution modeling, users will always ask
whether a data assimilation procedure is able to estimate model parameters. The Kalman
filter is able to provide optimal estimates of uncertain model parameters such as emissions if
it is implemented as a smoother. An important application of a smoother is the estimation of
emissions. Assimilation experiments showed that a smoother is able to decrease the uncer-
tainties in emitted nitrogen oxides (NOx) and volatile organic compounds (VOC) through
assimilation of ozone measurements. The tight chemical coupling between these compo-
nents ensures that variations in emissions are visible in the ozone measurements. The most
accurate estimations have been made for uncertain NOx emissions during the night, when
these are the only emissions acting on the ozone level. Estimation of VOC emissions from
ozone measurements requires that the ratio in which the various organic components are
emitted is exactly known. For more accurate or exact reconstruction of the emissions, other
measurements than ozone should be assimilated too. Assimilation of other components was
not considered in this research, however, since these are either inaccurately represented by
the model (NOx), or only available for urban sites (VOC). To be able to assimilate other
components too, the model should be improved at two points: the vertical resolution should
be increased to improve the simulation of NOx, and measurements of VOC in urban area
should be represented better, for example by nesting a high-resolution model. Profile data
from soundings or satellite instruments could become useful in future to estimate emissions;
especially satellite information is useful because of its large spatial coverage. Assimilation
of satellite profiles requires extension of the current LOTOS model in the vertical, however,
such that at least the total troposphere is covered. In addition, the vertical resolution of the
satellite retrieval should be increased.

The model parameters estimated with the filter/smoother are able to improve the model
simulations significantly. If the assimilation tool is used in a forecast procedure, the es-
timates of the ozone maxima for the coming day are 25% more accurate when based on
estimated parameters than when based on analyzed concentrations only. Initial variations
in concentrations have a limited lifetime in the chemical active troposphere, and cannot ex-
plain all variations observed in ozone concentrations. An assimilation procedure for a smog
forecast should therefore be based on an estimation of uncertain parameters rather than on
an estimation of initial concentrations.

The filter developed for LOTOS takes the form of a low-rank filter. This type of approxi-
mate Kalman filter is are suitable for application to models with large state vectors. A num-
ber of commonly used low-rank filters has been compared, and although these filters have
been developed from different theoretical backgrounds, the actual implementation is quite
similar. All methods use a low-rank parameterization of the covariance matrix, and prop-
agate the covariance structure in time using 40–100 evaluations of the model. A RRSQRT

filter using the forecast step of the SEIK filter was shown to be the best choice for the filter
around LOTOS, combining high accuracy with low computational costs. The forecast step
incorporated from the SEIK filter uses a technique of minimal exact sampling (MES), which
ensures accurate propagation of the forecast error even in case of strong nonlinear dynamics.
The MES method is computationally as expensive as the first-order linearizations used in the
original RRSQRT filter, and their default use is therefore suggested. Ensemble techniques,
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which are ultimately suitable for coping with non linearities, were found to suffer from a
slow convergence in multiple experiments. At least a double amount of model evaluations
is required for these methods in comparison with the RRSQRT approach to obtain similar
results. An ensemble filter is able to provide results up to any desired accuracy however.
For experiments with simple models, where computation time is no constraint, an ensemble
method is therefore the best choice.

The computational costs of the filter around LOTOS are impressive, even for the chosen
RRSQRT approach. Implementation of the filter on a parallel machine is therefore necessary.
Two approaches have been considered: parallelization of the filter over the modes, leaving
the model unchanged, and parallelization of the model using a domain decomposition. Both
methods have been implemented on a massive parallel machine (CRAY T3E) and both pro-
vided an efficient speedup. Implementation of a domain-decomposed filter turned out to be
much easier than a mode decomposition, and requires in theory less communication. Be-
sides, the domain decomposition is more efficient if large numbers of measurements are to
be assimilated, for example retrieved from a satellite. If an efficient domain-decomposed
model is available or easily developed, using a parallel filter based on this approach is there-
fore favored.

For future research, a few recommendations are made. As already mentioned, to be able
to assimilate other components than ozone, the model should be improved. The vertical
resolution of the model should be increased for better representation of NOx, and horizontal
resolutions should be increased at least locally for representation of VOC in urban areas.
However, both improvements will increase the computational costs of the model and there-
fore of the filter. To reduce the costs of the filter, a simplified version of the model could be
developed too. The full model is then used to propagate the filter mean, while the simplified
model is used for the modes. The simplified model could be based on a coarse grid or on
a parameterized chemistry, or just be a complete new (tangent linear) model for forecasting
of the ozone maxima only. The parallelized filter with the full model provides a benchmark
against which a simplified filter could be validated.
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Appendix A

Gasphase reactions

The chemistry model used in LOTOS is a version of the Carbon Bond Mechanism IV de-
scribed in (Gery et al., 1989). The basic idea in CBM-IV is to represent the organic chem-
istry not in terms of molecules, but in terms of reactive groups of atoms (table A.1). Only
formaldehyde and ethene are represented as single molecules because of their characteris-
tic chemical behavior. Other organic molecules should be decomposed into a sum of the
characteristic groups represented by the mechanism. This method has the advantage that
a large variety of molecules can be expressed in only a limited number of carbon bonds.
A disadvantage is that it is difficult to compare measurements of organic molecules with
CBM-IV calculations. If CBM-IV proposes a certain mixture of carbon bonds, this might be
representative for a large variety of molecules.

The version of CBM-IV used in the LOTOS model is slightly different from the original
version (Kuhn et al., 1998). Reactions involving the oxygen radicals O and O(1D) have been
eliminated for example, while reactions for methane and sulfur oxides have been included.
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Table A.1: Chemical components in CBM-IV version for LOTOS.

component description

inorganic components
O3 ozone
NO nitric oxide
NO2 nitrogen dioxide
N2O5 dinitrogen pentoxide
PAN peroxyacyl nitrate
HNO2 nitrous acid
SO2 sulfar dioxide
SO4 sulfate

organic components
CO carbon monoxide
CH4 methane
ETH ethene CH2CH2

FORM formaldehyde CH2(O)
MGLY methylglyoxal CH3C(O)C(O)H
TOL toluene C6H5 −CH3

XYL xylene C6H4 − (CH3)2

PHEN phenol C6H5−OH
PAR paraffin carbon bond C−C
OLE olefinic carbon bond C = C
ALD2 high molecular weight aldehydes RCHO

radicals
OH hydroxyl radical
HO2 hydroperoxy radical
NO3 nitrate radical
C2O3 peroxyacyl radical CH3C(O)OO·
PHO phenolhydroxy radicaal

operations
XO2 NO-to-NO2 operation
XO2N NO-to-nitrate operation
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Table A.2: Chemical reactions in CBM-IV version for LOTOS.

inorganic chemistry

R1 NO2
hν→ NO + O3

R3 O3 + NO → NO2

R7 NO2 + O3 → NO3

R8 O3
hν→ a1 OH + a2 O3

R10 O3 + OH → HO2

R11 O3 + HO2 → OH
R12 NO3 + NO → 2 NO2

R13 NO3 + NO2 → NO + NO2

R14 NO3 + NO2 → N2O5

R15 N2O5 →
R16 N2O5 → NO2 + NO3

R17 NO + NO2 → 2 HNO2

R18 HNO2 + HNO2 → NO + NO2

R19 HNO2
hν→ NO + OH

R20 NO2 + OH →
R21 NO + OH → HNO2

R22 NO + HO2 → OH + NO2

R23 NO + NO → 2 NO2

R26 HNO2 + OH → NO2

R27 NO3
hν→ NO2 + O3

R28 NO3
hν→ NO

R29 HO2 + HO2 →
R30 HO2 + HO2 →
R31 CO + OH → HO2

organic chemistry
R32 FORM + OH → CO + HO2

R33 FORM
hν→ CO + 2 HO2

R34 FORM
hν→ CO

R36 FORM + NO3 → CO + HO2

R38 ALD2 + OH → C2O3
R39 ALD2 + NO3 → C2O3

R40 ALD2
hν→ FORM + CO + 2 HO2 + XO2

R42 C2O3 + NO → FORM + NO2 + HO2 + XO2

R43 C2O3 + NO2 → PAN
R44 PAN → C2O3 + NO2

R45 2 C2O3 → 2 FORM + 2 HO2 + 2 XO2

R46 C2O3 + HO2 → 0.79 FORM + 0.79 OH
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+ 0.79 HO2 + 0.79 XO2

R47 MGLY
hν→ C2O3 + CO + HO2

R48 MGLY + OH → C2O3 + XO2

R50 PAR + OH → 0.45 ALD2 - 0.75 PAR + 0.93 HO2

+ 1.49 XO2 0.067 XO2N
R52 OLE + OH → FORM + ALD2 - PAR

+ HO2 + XO2

R53 OLE + O3 → 0.66 FORM + 0.50 ALD2 - PAR
+ 0.212 CO + 0.28 HO2

+ 0.08 OH + 0.144 XO2

R54 OLE + NO3 → 0.91 HO2 + 0.91 XO2 + 0.09 XO2N
R56 ETH + OH → 2 FORM + HO2 + XO2

R57 ETH + O3 → FORM + 0.37 CO + 0.13 HO2

R58 TOL + OH → 0.36 PHEN + 0.56 MGLY + 0.36 PAR
+ 1.13 FORM + 0.37 CO
+ HO2 + 0.64 XO2

R59 PHEN + NO3 → PHO
R60 PHO + NO2 →
R61 XYL + OH → 0.67 FORM + 1.33 MGLY

+ 0.28 PHEN + 0.67 CO + 0.56 PAR
+ HO2 + 0.72 XO2

methane chemistry
R49 CH4 OH → FORM + HO2 + XO2

operator chemistry
R67 XO2N + NO →
R68 XO2 + NO → NO2

R69 XO2 + HO2 →
R70 XO2 + C2O3 → C2O3 + XO2 + HO2

sulfar chemistry
R71 SO2 + OH → SO4 + HO2

R72 SO2 → SO4



Appendix B

Repeated scalar update

The repeated scalar update is an algorithm to solve the analysis equations for a general
low-rank filter (§6.3) based on the Potters algorithm (Maybeck, 1979, chapter 7). The
algortihm is able to handle the analysis equation for a filter based on factorization as wel as
an ensemble filter (table 6.1), for analysis with a minimal variance gain.

Given the observation equation yo = H′x+v with v ∼N (o,R) and R diagonal, the anal-
ysis of the forecasted mean x̂ f and covariance-square-root S f is given by:

Ψ ′ = H′ S f (B.1a)

K = S f Ψ (Ψ ′Ψ +R)−1 (B.1b)

x̂a = x̂ f + K (yo −H′x̂ f ) (B.1c)

Sa = S f [I − Ψ (Ψ ′Ψ +R)−1Ψ ′]1/2
(B.1d)

The Potters algorithm is able to analyize the covariance square root without matrix factoriza-
tion (B.1d), in case that the observation vector yo has only one element. For the vector case,
the algorithm should be applied for each element one after the other. The result does not
differ from analysing all measurements at once using a matrix factorization. Assimilation
of a sequence of measurements with infinite small time intervals in between is not different
from analysis of all measurements together, if the mean and covariance square root have not
been changed.

The Potters algorithm is bassed on the observation that for a scalar measurement yo =
h′x + v, with v ∼ N (

0,r2
)
, the matrix to be inverted in (B.1d) is the scalar σ2 = ψ′ψ +

r2. The matrix in square brackets becomes a Householder matrix with simple to derive
factorization:

I−σ−2ψψ′ =
(
I− α ψψ′)(I− α ψψ′)′ , α = 1/(σ(σ+ r)) (B.2)

The complete analysis of a scalar measurement becomes:

k = S f ψ/σ2 (B.3a)

u′ = ψ′ r/(σ+ r) (B.3b)

x̂a = x̂ f + k (yo −h′x̂ f ) (B.3c)

Sa = S f [I − ψψ′/(σ(σ+ r))
]

= S f + k
(
u′ −ψ′) (B.3d)

Comparison of (B.3) with table 6.1 shows that the scalar analysis with Potters algorithm
takes the same form as the ensemble analysis. With a different vector u′ and an average
observation error added to yo, the equations are the same. The most expensive part of the
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scalar update are the computation of the gain vector k in (B.3a) and the replacement of the
modes in (B.3d). Each requires about 2nm flops (page 187); if a number of ny measur-
ments is analyzed in this way, 4nymn flops are required in total. The memory requirements
are limitted, since apart from some smaller entities only the gain vector k needs to be stored.

Repeated application of Potters algorithm becomes expensive if the number of measure-
ments grows. However, it is possible to combine a number of scalar analysis in a way that
the mean and covariance matrix are updated only once according to:

x̂a = x̂ f +S f a (B.4a)

Sa = S f B (B.4b)

The m-vector a and m×m matrix B are sequentially updated for each element of yo. With
a small difference for factorized or ensemble kind of analysis, the repeated scalar update is
given by:

a0 = o , B0 = I (B.5a)

for l = 1, . . . ,size(yo)
φ = hl

′x̂ f , ϕ′ = hl
′ S f (B.5b)

ψ′ = ϕ′ Bl−1 (B.5c)

σ2 = ψ′ψ + r2
l (B.5d)

factorized filter ensemble filter
(v′) j=1,..,m ∼N (

0,r2
l

)
v̄ = o (v′) j

u′ = ψ′rl/(σ+ rl) (v′ − v̄)/√
m−1

(B.5e)

al = al−1 +Bl−1ψ{yo
l + v̄− (φ+ϕ′al−1)}/σ2 (B.5f)

Bl = Bl−1
(
I−ψ(u′ −ψ′)/σ2) (B.5g)

end for

a = al , B = Bl (B.5h)

The matrix B formed in this way is in fact the matrix square root of the bracketed term
in eq. (B.1d), obtained with a sequence of Householder matrices. The costs of the re-
peated scalar update are completely determined by transformation (B.4b), approximately
2m2n flops. The repeated update is therefore cheaper than sequential application of Potters
algorithm if more than m/2 measurements are to be analyzed, or if the transformation with
B is combined with other transformations in the filter.



Appendix C

Taylor expansions

The accuracy of the different nonlinear forecast methods described in chapter 7 are discused
using Taylor expansions. The approach followed here is a generalization of the one used by
in (Julier et al., 1995). After introduction of notations, conventions, and basic expansions,
the accuracy of first and second order linearizations will be discussed in §C.2 and §C.3;
for completeness, also the Taylor expansion of the ensemble forecast is given §C.4. The
equation used for the bias propagation is derived in §C.5.

C.1 Notations and conventions

To facilitate simple notations of Taylor expansions, an operator D is introduced for summa-
tions over partial derivatives:

Dl
δx =

1
l!

(
δx′ ∇

)l =
1
l!

(
n

∑
k=1

δ xk
∂
∂xk

)l

(C.1)

where ∇ denotes the vector with partial derivatives to the state elements and δx denotes a
(small) difference between two state vectors. For a vector function M, two specific examples
are:

D δ xM =
(
δx′∇)

M (C.2a)

D2
δ xM = 1

2

(∇′δxδx′∇)
M (C.2b)

Let xt [k] be the true value of the state vector at a time t [k], which deviates from a user derived
state x̂[k] by δx[k] = xt [k]− x̂[k]. With this notation, the true state at the next time step is equal
to a Taylor series of the stochastic model M from eq. (7.1a) around x̂[k]:

xt [k+1] = M
(
xt [k]

)
+ η[k] = M(x̂[k]+δx[k]) + η[k] (C.3a)

= M(x̂) + (D δ xM)(x̂) +
(
D2
δ xM

)
(x̂) (C.3b)

+
(
D3
δ xM

)
(x̂) + . . . + η[k] (C.3c)

We adopt the convention that the model or partial derivatives of the model are evaluated in x̂
if not mentioned otherwise. Taking expectation over (C.3) leads to an equation for the mean
forecast:

x̂ f [k+1] = E
[

xt [k+1]
]

(C.4)

= M(x̂) + E [ D δ xM ] + E
[

D2
δ xM

]
+ E

[
D3
δ xM

]
+ . . . (C.5)

179



180 APPENDIX C. TAYLOR EXPANSIONS

If the distribution of δx is symmetric (for example Gaussian), expectation over factors
formed by an odd number of elements of δx (odd powers of operator Dδ x) will be zero.

The true error covariance of x̂ f [k+1] is given by:

P f ,t [k+1] = E
[ (

xt [k+1]− x̂ f [k+1]
)(

xt [k+1]− x̂ f [k+1]
)′ ]

(C.6a)

= E
[

D δ xMDδ xM′ ] − E [ D δ xM ]E
[

D δ xM′ ] (C.6b)

+
(
E
[

D δ xMD2
δ xM′ ] − E [ D δ xM ]E

[
D2
δ xM′ ]) (C.6c)

+
(
E
[

D2
δ xMDδ xM′ ] − E

[
D2
δ xM

]
E
[

D δ xM′ ]) (C.6d)

+ . . .

The true covariance (C.6) is an indication for the quality of our estimate x̂ f , since it de-
scribes what the difference between x̂ f and xt might be. However, even if xt is available
we are hardly able to compute P f ,t exactly. In practice, all what we have is a computed
estimated P f ,c, which should be as close to P f ,t as possible.

In the context of the low-rank Kalman filter, we usually assume that xt [k] is a sample from
a random distribution with mean xa[k]. The deviation δx is a random variable with zero
mean and covariance Pa, parameterized by modes s j:

E [ δx ] = o , E
[
δxδx′ ] = Pa =

m

∑
j=1

sa
js

a
j
′ (C.7)

For simplicity, the index ’a’ will be omitted from now on. The modes si are used to form
input states for the model:

M(x̂+ ε si) = M(x̂) + o + ε 2 (D2
si

M
)
(x̂) + o + . . . (C.8)

These Taylor expansions will be used to analyze the theoretical difference between x̂ f and
x̂t , and between P f ,c and P f ,t for the forecast methods discussed in chapter 7.

C.2 First order linearizations

To judge the accuracy of a forecast based on first order linearizations (§7.3.1), the mean and
covariance computed with algorithm (7.12) should be compared with the true state and true
covariance. Comparison of (7.12a) with (C.5) shows that the computed first order mean is
equal to the first term of the Taylor series of xt [k+1] in (C.3):

x̂ f ,ext1[k+1] = M(x̂[k]) (C.9)

In case of a symmetric distribution of the state around x̂, it is also accurate up to the first
order partial derivatives, since these are equal to zero in that case. The true covariance of
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this computed mean is equal to:

P f ,ext1,t = E
[ (

xt [k+1]−x f ,ext1[k+1]
)(

xt [k+1]−x f ,ext1[k+1]
)′ ]

(C.10a)

= E
[

D δ xMDδ xM′ ] − O (C.10b)

+
(
E
[

D δ xMD2
δ xM′ ] − O

)
+
(
E
[

D2
δ xMDδ xM′ ] − O

)
(C.10c)

+ . . .

The actual with (7.12b) computed covariance is given by:

P f ,ext1,c =
m

∑
i=1

s f ,ext1
i s f ,ext1

i
′

= E
[

D δ xMDδ xM′ ] − O (C.11a)

+ ε
( m

∑
i=1

DsiMD2
si

M′ − O
)

+ ε
( m

∑
i=1

D2
si

MDsi M
′ − O

)
+ . . . (C.11b)

where we used the relation

m

∑
i=1

DsiMDsi M
′ =

m

∑
i=1

(∇M′)′si si(∇M′) = (∇M′)′P(∇M′) (C.12a)

= (∇M′)′E
[
δxδx′ ](∇M′) = E

[
D δ xMDδ xM′ ] (C.12b)

In the limit ε → 0, the extended forecast becomes equal to the forecast of the Extended
Kalman Filter, which uses Jacobian matrices to approximate non-linear dynamics. Using
very small scalefactors has numerical disadvantages, however, such as computing differ-
ences between state vectors which hardly differ, and division by small numbers. Besides,
close approximation of the EKF is not a final target of the forecast scheme. A better ap-
proach would be to set ε to a value that maximizes the (theoretical) accuracy of the forecast.
The largest terms in computed mean and covariance which are influenced by the scalefactor
are the third order moments in (C.11). These terms might be rewritten to a form that is close
to an approximation of expectation by a sample mean:

1
ε 2

m

∑
i=1

D ε siMD2
ε si

M′ ≈ E
[

D δ xMD2
δ xM′ ] (C.13)

In a usual sample mean, all sample members are equivalent since there is no preference for
direction or amplitude; each element in the result is an average over m equivalent elements.
Therefore, each sample should be weighted by 1/m, suggesting a ε 2 = m is an appropriate
choice. In the RRSQRT context, however, the ’sample members’ si are not equivalent since
they have been made orthogonal; each sample in (C.13) should become a unit weight, thus
ε 2 = 1. Similar considerations about the model states fed to the model lead to the formu-
lation of the ε -rule at page 125, also leading to scalefactors ε = 1. Setting ε to 1 seems to
be a suitable choice for obtaining appropriate model input on forehand as well as accurate
results afterwards.
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C.3 Second order accurate forecast

Second order forecasts for the mean are given in equations (7.17) for the EXT2 and (7.20a)
for the MES method. The Taylor series is in both cases given by:

x̂ f ,sec = M(x̂) +
m̄

∑
i=1

M(x̂+ ε si)−M(x̂)
ε 2 (C.14a)

= M(x̂) + o + E
[

D2
δ xM

]
+ o + ε 4

m̄

∑
i=1

E
[

D4
si

M
]

+ . . . (C.14b)

where (C.2b) is used to derive:
m

∑
i=1

D2
si

M =
m̄

∑
i=1

1
2

{∇′sisi
′∇}

M =
1
2

{∇′P∇}
M = E

[
D2
δ xM

]
(C.15)

Comparison of (C.14b) with the optimal state estimate (C.5) shows that the second order
forecasts compute the term with second order partial derivatives correctly. If the true state
is distributed symmetric around x̂, the largest error occurs in the fourth order term, because
the odd order terms in (C.5) vanish in that case. Otherwise, the largest error appears in the
first order term, but, under the assumption that the distribution is at least close to symmetric,
this error is small.

The true covariance of (C.14b) is given by:

P f ,sec,t [k+1] = E
[ (

xt [k+1]− x̂ f ,sec[k+1]
)(

xt [k+1]− x̂ f ,sec[k+1]
)′ ]

(C.16a)

= E
[

D δ xMDδ xM′ ] − O (C.16b)

+
(
E
[

D δ xMD2
δ xM′ ] − E [ D δ xM ]E

[
D2
δ xM′ ]) (C.16c)

+
(
E
[

D2
δ xMDδ xM′ ] − E

[
D2
δ xM

]
E
[

D δ xM′ ]) (C.16d)

+
(
E
[

D δ xMD3
δ xM′ ] − O

)
+
(
E
[

D3
δ xMDδ xM′ ] − O

)
(C.16e)

+
(
E
[

D2
δ xMD2

δ xM′ ] − E
[

D2
δ xM

]
E
[

D2
δ xM′ ]) + . . . (C.16f)

For computation of the new covariance modes, three algorithms have been listed in table
7.1. Method ’a’ calculates the new modes as deviations from the computed mean:

s f ,seca

i [k+1] =
ξi[k+1]− x̂ f ,sec[k+1]

ε
(C.17)

The computed covariance expanded in Taylor series becomes:

P f ,seca
= E

[
D δ xMDδ xM′ ] − O (C.18a)

+
(
O − O

)
+
(
O − O

)
(C.18b)

+ ε 2( m̄

∑
i=1

DsiMD3
si

M′ − O
)

+ ε 2( m̄

∑
i=1

D3
si

MDsiM
′ − O

)
(C.18c)

+

(
ε 2

m̄

∑
i=1

D2
si

MD2
si

M′ − (
2− m̄/ε 2)E

[
D2
δ xM

]
E
[

D2
δ xM′ ]) (C.18d)

+ . . .
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In case of a symmetric distributed state, the largest errors are introduced in the fourth order
terms, because odd order terms vanish in that case.

With the choice ε = √
m̄, the expansion shows much resemblance with a Monte-Carlo-like

approximation; the factor 2− m̄/ε 2 in (C.18d) becomes equal to 1.0 which is correct ac-
cording to the expansion of the true covariance (C.16). This choice is undesirable, however,
because the input to the dynamics could become unrealistic large. Taking the ε very small
is undesirable too, because this would amplify the second term in (C.18d). This effect can
be explained from the fact that in case of a small scalefactor, the propagated states form
a cloud around the central forecast of the mean. Algorithm C.17 computes the covariance
around the second order forecast, however. If the scalefactor becomes small enough, this es-
timate will be outside the propagated cloud, leading to an over-estimation of the covariance.
The problems with the second term in (C.18d) are avoided by computing the new modes as
deviations from the central forecast of the mean (method ’b’ in table 7.1):

s f ,secb

i [k+1] =
ξi[k+1]−ξ0[k+1]

ε
(C.19)

It is straight forward to show that the computed covariance following from this method is
equal to (C.18e), except that the second term in (C.18d) vanishes. Besides the ’a’ and ’b’
methods for computing the new modes, a third ’c’ method was suggested in (Voorrips et al.,
1999) for use in the EXT2 forecast (section 7.3.2):

s f ,secc

i [k+1] =
ξ+i[k+1]−ξ−i[k+1]

2ε
, i = 1, . . . ,m̄ (C.20)

In here, the state ξ+i[k+1] and ξ−i[k+1] denote states formed after propagation of a mode
in positive and negative direction respectively. Method (C.20) saves memory, because the
number of modes is not doubled; eq. (7.17) for computation of a second order accurate
forecast of the mean can still be used, however. The computed covariance in case of method
’c’ is similar to (C.18e), except that both terms in (C.18d) completely vanishes. The method
has therefore the disadvantage of a small under estimation of the covariance.

C.4 Ensemble forecast

In a similar way as has been done for the first and second order linearizations, the ensemble
forecast could be expanded in Taylor series too. At a time t [k], the ensemble members ξ j

form a cloud around their sample mean x̂ such that the scaled deviations si = (ξi − x̂)/√
m−1

have zero mean and ∑ s js j
′ = P. If the ensemble members are propagated, the new sample

mean is given by:

x̂ f ,ens =
1
m

m

∑
i=1

M(x̂+√
m−1si) (C.21a)

=
1
m

m

∑
i=1

{
M(x̂) + √

m−1(∇′M)si + m−1
2 ∇′(sisi

′)∇M + . . .
}

(C.21b)

= M(x̂) + o +
m−1

m
∇′Pt∇ M + . . . (C.21c)
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The first terms of the new mean converge to the first terms of a second order linearization
with order 1/m. For strongly nonlinear functions, the ensemble forecast becomes more
accurate than the linearizations since also higher order terms are approximated correctly
(for large m). In a similar way, the computed covariance (a sample covariance) can be
shown to converge to the true covariance with order 1/m too.

C.5 Bias equation

For observation of the nonlinearity as described in §7.5, an equation for the forecast of the
bias should be derived. The bias at a time t [k+1] is defined as the expected difference between
true state and central forecast of the mean:

b[k+1] = E
[

xt [k+1]−M(x̂[k])
]

(C.22)

With δx = xt − x̂ and E [ δx ] = b, and the aid of the Taylor expansion (C.3) of the true state,
the forecast of the bias becomes:

b f [k+1] = E
[
(D δ xM)(x̂) +

(
D2
δ xM

)
(x̂) +

(
D3
δ xM

)
(x̂) + . . .

]
(C.23a)

= (DbM)(x̂) + E
[ (

D2
δ xM

)
(x̂)

]
+ E

[ (
D3
δ xM

)
(x̂)

]
+ . . . (C.23b)

= (∂M/∂x)(b) +
[

x̂ f ,� − M(x̂)
]

(C.23c)

where x̂ f ,� is one of the higher order forecasts EKF2 or MES expanded in (C.14), or the
EKF forecast expanded in (C.21). The bias is thus propagated by the Jacobian ∂M/∂x and
increased with the difference between a first and second order forecast.
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Minimal Exact Sampling

The term ’minimal exact sample’ (MES) was introduced in (Pham, 1996) for the forecast
step of the SEIK filter, and is used in §7.3.2 to define a second order accurate forecast. A
MES was defined as the smallest possible set of modes with zero mean and matching a given
covariance.

Given a covariance P = SS′ defined by the rank m square root S, the MES consists of a set
of linear combinations Sω j of columns of S, for j = 1, .., m̄ . In matrix notation: the set is
formed by the columns of the matrix S Ωmes . To let the set have zero mean and covariance
P, the vectors ω j should satisfy two constraints:

m̄

∑
j=1

Sω j = o ⇒
m̄

∑
j=1

ω j = o (D.1)

m̄

∑
j=1

(Sω j)(Sω j)
′ = SS′ ⇒

m̄

∑
j=1

ω jω j
′ = I (D.2)

Both requirements are met if the columns of the following m̄× (m + 1) matrix W are or-
thogonal:

W =




m̄−1/2, − ω1
′ −

m̄−1/2, − ω2
′ −

...
...

m̄−1/2, − ωm̄
′ −


 (D.3)

The minimal value of m̄ for which this is possible is m+1. An algorithm proposed in (Pham,
1996) constructs a suitable matrix W using Householder reflections. The Householder re-
flection of a vector z ∈ IRk is a k× k orthonormal matrix with z as its first column:

Ho(z) = Ik − 1
1− z1




z1 −1
z2
...

zk


 [z1 −1,z2, · · · ,zk] (D.4)

185



186 APPENDIX D. MINIMAL EXACT SAMPLING

The algorithm to produce a suitable matrix W is now:

W1 = ±1
for k = 2, . . . ,m̄ do

if k == m̄ then
zk = [1, · · · ,1]′ ∈ IRk

else
zk ∼ N (o,Ik)

end if
H(zk) = [ Ho(zk/‖z‖) ](:,2:k)
Wk = [ zk, H(zk) Wk−1

′ ]
end for
W = Wm̄

The subscript beneath the brackets around the Householder matrix denotes that the k× (k−
1) matrix H(zk) is formed with the second to the last column. The k×k matrices Wk have zk

as its first column, and are orthonormal because the other columns are just a rotation of the
orthonormal complement of zk. The special choice for zm̄ ensures that Wm̄ is the matrix W
from eq. (D.3). The matrix Ωmes for the minimal exact sample is formed by the transpose
of the last columns of Wm̄:

Ωmes = [ W ](:,2:)
′ (D.5)

Since the vectors zk in the algorithm are drawn from a random generator, the number of
suitable matrices Ωmes which can be formed is infinite. The use of a random generator
will not lead to formation of samples with unrealistic large elements. Because Ωmes′ has
orthonormal columns, all its elements have a magnitude less or equal to one. Thus, a new
mode Sω j is build up as a summation of (positive or negative) fractions of the older modes.

It is possible to construct a ’general exact sample’ (GES) with m̄ > m+1, as a generaliza-
tion of the case with minimal m̄. The algorithm above should still produce a m̄× m̄ matrix
W; the rows of the last m columns form a suitable set of vectors ω j. Using a GES rather
than a MES provides a flexible way of generating more or less random samples of any size
with given covariance.
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Symbols and notations

E.1 Vectors and matrices
entity description
x,ξ vector (column)
A,Γ matrix
x′,A′ transpose
o null vector
I identity matrix

E.2 Mathematical accents
notation description
xt true value
xo observed value
xb background value
x f forecasted value
xa analyzed value
x̂ mean value
xe ensemble entitie

E.3 Definitions
term definition
flop (floating point operation)

Defintion in (Golub and van Loan, 1996): one flop is the amount of work
associated with an operation of the form a = b+ c or a = b×c.

E.4 Symbols

symbol description see page(s)

α auto correlation parameter 42
β coefficients of bias projection 135–139
Γ covariance of residue d 78
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γ colored noise process 42
ε scale-factors in finite difference approximation 125
η model error vector 37, 41–45
Θ projection of gain on covariance square root 104
θ nonlinearity measure 135–139
Λ eigenvalue matrix 103
λ model parameter 43–45, 50
ξ ensemble member (sample state) 94, 99–101, 103
Π projection matrix 102
ρ parameter of residue covariance Γ 78
σ standard deviation 42
σα correlation dependent standard deviation 43
τ auto correlation parameter 42
φk number of transfer stages 149
Ψ projection of S on observation space 94, 147, 161
Ω forecast ensemble coefficient matrix 97, 103, 185
ω column of Ω 185

A linear model 33, 91, 105
a analysis coefficient vector for mean 103, 178

B analysis coefficient matrix for S 103, 178
b bias 135–139, 184

c concentration vector (ppb) 20, 31, 41, 158
cp(z) deposition profile (ppb) 26

D partial derivative operator 179–184
d residual or innovation vector 32, 36, 78

E ensemble covariance square root 99, 102
E efficiency 144

G model error operator 45, 50

H′ observation operator 31
Ho Householder matrix 186
hre f reference height for deposition profile 25

J photolysis rate 13, 55–58, 85
J cost function 32–33, 39
J set of mode identifiers 147

K gain matrix 34, 35, 38
K set of processor identifiers 146
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kn reaction constant 13

L LOTOS model operator 20, 31, 41, 158

M nonlinear model 31, 45, 50
m number of modes (columns of S) 92

n size of state vector 45
npe number of processors 146

P state error covariance matrix 33–35
p nonlinearity measure 135–139

Q model error covariance matrix 37
q number of elements in model error noise w 45

R representation error covariance matrix 33, 35
r size of observation vector y 31
Ra atmospheric resistance (s/m) 25
Rb viscous-sublayer resistance (s/m) 26
Rc surface resistance (s/m) 25, 60
Rt atmospheric and viscous-sublayer resistance (s/m) 60

S speedup 144
S error covariance square root 92–94, 122, 145
s mode of error covariance, column of S 92–94

T execution time 144
T model error covariance square root 94
t mode of model error covariance, column of T 122–127
t time 20, 31

U representation error covariance square root 94

V nonlinearity number 135–139
V eigenvector matrix 96, 103
v representation error vector 37
vd deposition velocity (m/s) 26

w model error noise 41, 45, 50

x state vector 31, 45, 50

y observation vector 31, 72
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Fritsch, G. and Möhres, G. (1998). Multistage simulations for turbomachinery design on
parallel architectures. In Emerson, D., Ecer, A., Periaux, J., Satofuka, N., and Fox,
P., editors, Proceedings of the Parallel CFD’99 Conference, Manchester, 1997, pages
225–238. Elsevier Science B.V.

Fukumori, I. and Melanotte-Rizzoli, P. (1995). An approximate Kalman filter for ocean
data assimilation; an example with an idealized Gulf Stream model. J. Geophys. Res.,
100:6777–6793.

Gaspari, G. and Cohn, S. E. (1999). Construction of correlation functions in two and three
dimensions. Quart. J. Roy. Meteor. Soc., 125:723–757.

Gauthier, P., Courtier, P., and Moll, P. (1993). Assimilation of simulated wind lidar data
with a Kalman filter. Mon. Weather Rev, 121:1803–1820.

Gery, M., Whitten, G., Killus, J., and Dodge, M. (1989). A photochemical kinetics
mechanism for urban and regional scale computer modelling. J. Geophys. Res.,
94(D10):12.925–12.956.

Ghil, M., Cohn, S., Tavantzis, J., Bube, K., and Isaacson, E. (1981). Applications of estima-
tion theory to numerical weather prediction. In Bengtsson, L., Ghil, M., and Källén, E.,
editors, Dynamic Meteorology: Data Assimilation Methods, pages 139–224. Springer-
Verlag.

Giering, R. and Kaminski, T. (1998). Recipies for adjoint code construction. ACM Trans.
on Math. Software, 24(4):437–474.

Golub, G. H. and van Loan, C. F. (1996). Matrix computations. The Johns Hopkins Uni-



BIBLIOGRAPHY 195

versity Press, London, third edition.
Graedel, T. and Crutzen, P. (1993). Global change: the last several decades. In Atmospheric

Change, an earth system approach, chapter 13, pages 251–275. W.H. Freeman, New
York.

Haagen-Smit, A., Darley, E., Zaitlin, M., Hull, H., and Noble, W. (1951). Investigation
on injury to plants from air pollution in the Los Angelos basin. Plant Physiology,
27:18–34.

Hasselmann, K. (1988). PIP’s and POP’s: The reduction of complex dynamical systems us-
ing principal interaction and oscillation patterns. J. Geophys. Res., 93:11,015–11,021.

Heemink, A. and Kloosterhuis, H. (1990). Data assimilation for non-linear tidal models.
Int. J. for Numerical Methods in Fluids, 11:1097–1112.

Heemink, A. and Segers, A. (2000). Modeling and prediction of environmental data in space
and time using Kalman filtering. submitted to Stochastic Environmental Research and
Risc Assesment.

Heemink, A., Verlaan, M., and Segers, A. (2001). Variance reduced Ensemble Kalman
filtering. Mon. Weather Rev, 129(7):1718–1728.

Heemink, A. W. (1988). Two-dimensional shallow water flow identification. Appl. Math.
Modelling, 12:109–118.

Henriksen, R. (1980). A correction of a common error in truncated second order nonlinear
filters. Modeling, Identification and Control, 1(3):187–193.

Houtekamer, P. and Mitchell, H. L. (2001). A sequential Ensemble Kalman filter for atmo-
spheric data assimilation. Mon. Weather Rev, 129(1):123–137.

Houtekamer, P. L. and Mitchell, H. L. (1998). Data assimilation using an Ensemble Kalman
Filter technique. Mon. Weather Rev, 126:796–811.

Houweling, S. (2000). Global Modeling of Atmospheric Methane Sources and Sinks. PhD
thesis, University of Utrecht, The Netherlands.

Jazwinski, A. H. (1970). Stochastic Processes and Filtering Theory, volume 64 of Mathe-
matics in Science and Engineering. Academic Press, New York.

Julier, S. J., Uhlmann, J. K., and Durrant-Whyte, H. F. (1995). A new approach for filtering
nonlinear systems. In Proceedings of the 1995 American Control Conference, pages
1628–1632, Seattle, Washington.

Kalman, R. E. (1960). A new aproach to linear filter and prediction theory. J. of Basic
Enginering., 82D:35–45.

Keppenne, C. L. (2000). Data assimilation into a primitive-equation model with a parallel
Ensemble Kalman filter. Mon. Weather Rev, 128(6):1971–1981.

Keppenne, C. L. and Rienecker, M. M. (2000). Assimilation of temperature data into an
ocean general circulation model with a parallel Ensemble Kalman filter. In Proceedings
of Third International Symposium on Assimilation of Observations in Meteorology and
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furter Str. 135, 63067 Offenbach am Main.

Tilmes, S. and Zimmermann, J. (1998). Investigation on the spatial scales of the variability
in measured near-ground ozone mixing ratios. J. Geophys. Res., 25(20):3827–3830.

van Leeuwen, P. J. (1998). Comment on “data assimilation using an Ensemble Kalman
Filter technique”. Mon. Weather Rev, 127:1374–1377.

van Loon, M. (1996). Numerical Methods in Smog Prediction. PhD thesis, University of
Amsterdam, The Netherlands.

van Loon, M., Builtjes, P., and Segers, A. (2000). Data assimilation applied to LOTOS:
First experiences. Environmental Modelling and Software, 15(6–7):603–609.

Velders, G., Matthijsen, J., v. Loon, M., van Oss, R., Sauter, F., and Segers, A. (2001).
Smog forecasts with a chemistry-transport model using data assimilation; possibilities
of GOME tropospheric ozone observations. NRSP-2 report 00-38, RIVM.

Verlaan, M. (1998). Efficient Kalman Filtering Algorithms for Hydrodynamical models.
PhD thesis, Delft University of Technology.

Verlaan, M. and Heemink, A. (1996). Data assimilation schemes for non-linear shallow
water flow models. In M. Rahman, C. B., editor, Advances in Fluid Mechanics 96,
New Orleans, pages 277–286, 25 Bridge st,Billerica,MA 01821,USA. Wessex Institue
of Technology, Computational Mechanics Publications.

Verlaan, M. and Heemink, A. (2001). Non-linearity in data assimilation applications: a
practical method for analysis. Mon. Weather Rev, 129(6):1578–1589.

Verlaan, M. and Heemink, A. W. (1995). Reduced Rank Square Root Filters for large scale
data assimilation problems. In Second International Symposium on Assimilation of Ob-
servations in Meteorology and Oceanography, pages 247–252. World Meteorological



BIBLIOGRAPHY 199

Organization, WMO.
Verlaan, M. and Heemink, A. W. (1997). Tidal Flow Forecasting using Reduced Rank

Square Root Filters. Stoch. Hydrology and Hydraulics, 11(5):349–368.
Verron, J., Gourdeau, L., Pham, D., Murtugudde, R., and Busalacchi, A. (1999). An

Extended Kalman fiter to assimilate satellite altimeter data into a nonlinear numer-
ical model of the tropical pacific ocean: Method and validation. J. Geophys. Res.,
104(C3):5441–5458.

Voorrips, A. C., Heemink, A. W., and Komen, G. J. (1999). Wave data assimilation with the
Kalman filter. J. of Marine Systems, 18:267–291.

Vossepoel, F. C. (1999). Sea-level data assimilation for estimating salinity variability in the
tropical Pacific. Ph.d. thesis, Delft University of Technology.

Wang, K., Lary, D., Shallcross, D., Hall, S., and Pyle, J. (2001). A review of the use of the
adjoint method in four-dimensional atmospheric-chemistry data assimilation. Quart.
J. Roy. Meteor. Soc., 127:2181–2204.

Zhang, X.-F. (1996). Data assimilation in air pollution modelling. PhD thesis, Delft Uni-
versity of Technology.

Zhang, X.-F., Heemink, A., Janssen, L., Janssen, P., and Sauter, F. (1999). A computation-
ally efficient Kalman smoother for the evaluation of the CH4 budget in europe. Appl.
Math. Modelling, 23(2):109–129.



200 BIBLIOGRAPHY



Summary

Data assimilation in atmospheric chemistry models using
Kalman filtering

The problem of air pollution around urbanized area across Europe is strongly related to tro-
pospheric ozone. Tropospheric ozone is a result of photo-chemical oxidation, and therefore
an indication of the presence of pollutants. Overexposure to ozone is harmful to the health
of humans, animals, and vegetation, and the concentrations are therefore measured on a
regular basis to check exceedence of air-quality guidelines. Models have been developed
to simulate the ozone formation, for example to make a forecast of the air quality for the
coming days, or to study underlying mechanisms. Where possible, the models are validated
with the measurements. A new direction in air-pollution modeling is data assimilation:
merging model simulations and measurements in a single procedure. The target of a data
assimilation problem is to decrease the difference between models and measurements, and
with this, improvement of the simulations for which measurements are not available.

This study describes the development of a data assimilation tool for the air pollution model
LOTOS, based on a Kalman filter. The LOTOS (LOng Term Ozone Simulation) model com-
putes hourly concentrations of pollutants for the area of Europe, representative for suburban
and remote sites. A detailed description of the chemistry and other operators in LOTOS is
given in chapter 2. Ground-based measurements of ozone are available on a regular ba-
sis. Given stochastic models for the model error in LOTOS and the representation error of
the measurements, a Kalman filter is able to compute an optimal estimate of the pollutant
concentrations in terms of a mean and covariance. The background and definition of the
Kalman filter and other data assimilation approaches is given in chapter 3. The core of this
work is split into two parts: the application of the developed filter to LOTOS is described in
chapters 4 and 5, while the actual implementation is left for chapters 6 to 8.

Chapter 4 describes the result of the Kalman filter experiments with a small-scale version
of LOTOS (domain limited to England and Wales). During these experiments, a number
of different model parameters has been defined as uncertain, to examine their usage in a
stochastic model. Variations in ozone level due to uncertainties in emissions of nitrogen
oxides (NOx) and volatile organic compounds (VOC) were shown to be compensated for
by assimilation of ozone (O3) measurements. The tight chemical coupling between these
components ensures that variations in the emissions are visible in the measurements too.
Other useful parameters to consider stochastic were photolysis rates. The photolysis rates
of O3 and NO2 have a large impact on the height of the afternoon ozone peak, and are
uncertain by their deterministic value, cloud cover, and absorption of sunlight at higher
altitudes. For variations in the nighttime ozone level, it was found useful to consider the
deposition velocity of ozone a stochastic parameter. Together the uncertainties in all these
parameters are able to explain the differences between model and measurements for both
suburban and remote sites, and during daytime as well as nighttime hours.

Chapter 5 describes the application of the Kalman filter to a full-scale version of LOTOS,
with a domain covering west and central Europe, and for a time period of one month. The
stochastic model is based on the uncertain emissions, photolysis rates, and deposition veloc-
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ities found in chapter 5. The assimilated ozone fields represent the measurement data up to
an average difference of 10-15 ppb. Afternoon ozone maxima are estimated most accurately
with a difference up to 7–12 ppb, which is a decrease of 5 ppb in comparison to the deter-
ministic model. The assumed variance of the representation error was estimated adaptively,
to prevent the filter from overestimating the degree of freedom in the stochastic model. A
Kalman smoother has been implemented to be able to estimate the value of the uncertain
parameters and to obtain insight in how the filter uses the degree of freedom in the stochastic
model. The parameter estimations show that the filter especially uses the degree of freedom
in deposition, for example to increase the night time simulations of ozone, which systemat-
ically underestimate the measurements. The degree of freedom in emissions is only used to
explain ozone variations near the industrialized areas, where, for example, the uncertainty in
NOx emissions was used to decrease the ozone level in the morning. The model parameters
estimated with the filter were shown to improve the model simulations significantly. If the
filter is used to provide initial conditions for an ozone forecast, the ozone maxima for the
coming day are estimated 25% more accurate when the estimated parameters are included
in the initial condition.

The second part of this thesis describes the actual implementation of the Kalman filter.
The filter developed for LOTOS takes the form of a low-rank filter. This type of approximate
Kalman filters are suitable for application to models with large state vectors. A number of
commonly used low-rank filters were discussed in chapter 6: RRSQRT, SEIK, ESSE, ENKF,
and in addition the POENK filter, which combines RRSQRT and ENKF. Although these filters
have been developed from different theoretical backgrounds, their actual implementation is
quite similar. All methods use a low-rank parameterization of the covariance matrix, and
propagate the covariance structure in time using a large number of model evaluations (40–
100). A RRSQRT filter using the forecast step of the SEIK filter was shown to be the best
choice for the filter around LOTOS, with a few modifications focussing on the characteristics
of a chemistry model.

One of the difficulties associated with the application of a Kalman filter comes from the
fact that it was originally designed for linear models. The LOTOS model is strongly non-
linear however, due to the chemistry. A number of methods for treatment of nonlinearities
is discussed in chapter 7. The methods are either based on linearizations or on ensemble
statistics, and all require additional model evaluations for increased accuracy. The theoret-
ical performance of the nonlinear methods has been analyzed using Taylor expansions, and
was examined in practice for filter experiments with the LOTOS model. The method of min-
imal exact sampling (MES) as introduced for the SEIK filter was shown to be not only the
most accurate but also the cheapest method, both in theory and in practice, during the filter
experiments. A second-order accurate result is obtained at almost the same cost as that of a
first-order result. A higher accuracy could be reached with an ensemble forecast, the basic
approach of the ENKF. Ensemble methods suffer seriously from statistical noise, however,
which can only be reduced by increasing the number of model evaluations in the filter.

Chapter 8 describes the implementation of the filter on a parallel computer. Application
of the developed Kalman filter to LOTOS is expensive because 40-100 model evaluations are
required for propagation of the error covariance. The filter has therefore been implemented
on a parallel computer in two different ways. In a mode-decomposed parallelization, each
processor is equipped with a complete copy of the model. Independent model evaluations
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are parallelized efficiently in this way, and since these form the major costs of the filter,
the reduction of the computation time is almost optimal. The linear algebra operations in
the filter are less efficient since these require much communication between the processors.
On a platform with fast communication as used in this study (CRAY T3E, a massive parallel
machine), the decrease of efficiency is small, however. The second approach tested is based
on parallelization of the model rather than parallelization of the filter. The LOTOS model is
efficiently parallelized using a domain decomposition, such that the model can be evaluated
multiple times very fast. Building a filter around a parallel model is rather simple, and offers
the possibility of efficient assimilation of large numbers of measurements. For assimilation
runs as held in this research, the domain-decomposed filter is slightly favored over the mode-
decomposed filter because of the simple implementation and slightly better speedup.

Arjo Segers, December 2001
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Samenvatting

Data-assimilatie in atmospheer-chemie modellen met behulp
van Kalman filteren

Het probleem van luchtverontreiniging in stedelijke gebieden is sterk gerelateerd aan tro-
pospherisch ozon. Tropospherisch ozon ontstaat als gevolg van foto-chemische afbraak, en
is daarmee een indicatie voor de aanwezigheid van vervuilende stoffen. Verhoogde bloot-
stelling aan ozon is schadelijk voor de gezondheid van mensen, dieren en planten, en de
concentraties worden daarom voortdurend gemeten om overschreiding van richtlijnen voor
luchtkwaliteit waar te nemen. Modellen zijn ontwikkeld om het ontstaan van ozon te si-
muleren, bijvoorbeeld om de luchtkwaliteit voor de komende dagen te voorspellen, of om
de onderliggende reacties te bestuderen. Waar mogelijk zijn de modellen gevalideerd met
de metingen. Een nieuwe trend bij modellering van luchtverontreiniging is data assimila-
tie: samenvoegen van simulaties en metingen in één en dezelfde procedure. Het doel van
data assimilatie is verkleinen van het verschil tussen modellen en metingen, en daarmee
simulaties te verbeteren voor plekken waar geen metingen beschikbaar zijn.

Deze studie beschrijft de ontwikkeling van een data-assimilatie tool rondom het luchtver-
ontreiniging model LOTOS, gebaseerd op een Kalman filter. Het LOTOS (LOng Term Ozone
Simulation) model berekent uurlijkse concentraties van vervuilende stoffen boven Europa,
representatief voor verstedelijkte en afgelegen gebieden. Een gedetailleerde beschrijving
van de chemische en andere operatoren in LOTOS is gegeven in hoofdstuk 2. Grond metin-
gen van ozon zijn beschikbaar op regelmatige basis. Gegeven een stochastisch model voor
de modelfout in LOTOS en de representatie fout in de metingen is het Kalman filter in staat
om een optimale schatting te maken van de concentraties vervuilende stoffen, in termen van
een gemiddelde en een covariantie. De achtergrond en definitie van het Kalman filter en
andere data-assimilatie methoden is gegeven in hoofdstuk 3. De kern van dit proefschrift
kan verdeeld worden in twee stukken: de toepassing van het ontwikkelde filter op LOTOS is
beschreven in hoofdstukken 4 en 5, terwijl de daadwerkelijke implementatie is beschreven
in de hoofdstukken 6 tot en met 8.

Hoofdstuk 4 beschrijft de resultaten van Kalman filter experimenten met een verkleinde
versie van LOTOS (domein beperkt tot Engeland en Wales). Tijdens deze experimenten zijn
aan verschillende model parameters onzekerheden toegekend, om zo hun geschiktheid voor
een stochastisch model te onderzoeken. De resultaten toonden dat variaties in ozon niveaus
door onzekerheden in emissies van stikstof oxiden (NOx) en vluchtige organische stoffen
(VOS) gecompenseerd kunnen worden door assimilatie van ozon metingen (O3). De sterke
chemische koppeling tussen deze componenten verzekerd dat variaties in de emissies ook
zichtbaar zijn in de metingen. Een andere bruikbare groep model parameters om onzeker-
heden aan toe te kennen zijn fotolysesnelheden. De fotolysesnelheden van O3 en NO2 zijn
van grote invloed op de hoogte van het ozon maximum in de middag, en zijn onzeker met
betrekking tot absolute grootte, wolken bedekking, en absorptie van zonlicht hoger in de at-
mosfeer. Voor variaties in het nachtelijke ozon niveau is de depositie snelheid van ozon een
bruikbare parameter gebleken om onzekerheden aan toe te kennen. De onzekerheden in al
deze parameters te samen zijn in staat om verschillen tussen model en metingen te verklaren
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voor verstedelijkte en meer afgelegen gebieden, zowel overdag als tijdens de nacht.
Hoofdstuk 5 beschrijft de toepassing van het Kalman filter op een volledige versie van

LOTOS, met een domein met west en midden Europa en voor een tijds periode van 1 maand.
Het stochastische model is gebaseerd op onzekere emissies, fotolyse snelheden en depositie
zoals verkregen in hoofdstuk 5. De geassimileerde ozon velden zijn in staat om de metingen
te representeren met een gemiddeld verschil van 10-15 ppb. De ozon maxima in de middag
worden het meest nauwkeurig geschat met een verschil van 7–12 ppb, wat een afname van 5
ppb is in vergelijking met het deterministische model. De variantie van de representatie fout
is adaptief bepaald, om te voorkomen dat het filter de vrijheidsgraad van het stochastisch
model overschat. Een Kalman smoother is geı̈mplementeerd om de waarde van de onzekere
model parameters te kunnen schatten en inzicht te krijgen in hoe het filter de vrijheidsgraad
in het stochastisch model gebruikt. De parameter schattingen tonen dat met name de vrij-
heidsgraad in depositie wordt gebruikt door het filter, hoofdzakelijk om de ozon simulaties
tijdens de nacht te verhogen omdat deze systematisch worden onderschat door het model.
De vrijheidsgraad in emissies is alleen gebruikt om ozon variaties te verklaren rondom de
belangrijkste industrie gebieden, waar bijvoorbeeld de onzekerheid in NOx is gebruikt om
het ozon niveau in de ochtend te verlagen. De met het filter geschatte parameters zijn in
staat om de model simulaties te verbeteren. Als het filter wordt gebruikt om begin condities
voor een ozon voorspelling te optimaliseren worden de ozon maxima voor de volgende dag
25% nauwkeuriger voorspeld als schattingen van model parameters in de begin toestand
worden opgenomen.

Het tweede deel van dit proefschrift beschrijft de daadwerkelijke implementatie van het
Kalman filter. Het filter ontworpen voor LOTOS heeft de vorm van een lage-rang filter. Dit
type Kalman filters is geschikt voor toepassing op modellen met grote toestands vectoren.
Een aantal veel gebruikte lage-rang filters zijn besproken in hoofdstuk 6: RRSQRT, SEIK,
ESSE, en ENKF, en tot slot het POENK filter, wat een combinatie is van RRSQRT en ENKF.
Hoewel deze ontwikkeld zijn vanuit verschillende theoretische achtergronden, vertonen de
uiteindelijke implementaties grote overeenkomsten. Alle methoden gebruiken een lage-
rang parameterisatie van de covariantie matrix, en propageren de covariantie structuur in
tijd met behulp van een groot aantal model evaluaties (40–100). Een RRSQRT filter met de
propagatie stap van het SEIK filter bleek de beste keuze voor het filter rond LOTOS, met
enkele aanpassingen voor specifieke eigenschappen van een chemie model.

Een moeilijkheid bij toepassing van een Kalman filter is dat het oorspronkelijk is ontwor-
pen voor lineaire modellen. Het LOTOS model is echter sterk niet-lineair ten gevolge van
de chemie. Een aantal methoden voor het behandelen van niet-lineariteiten is besproken in
hoofdstuk 7. De besproken methoden zijn ofwel gebaseerd op linearisaties of op ensemble
methoden, en vereisen extra model evaluaties voor extra nauwkeurigheid. De theoretische
nauwkeurigheid van de niet-lineaire methodes is onderzocht met behulp van Taylor reek-
sen, en getest in de praktijk met filter experimenten met het LOTOS model. De methode van
minimaal exacte samples (MES) zoals geı̈ntroduceerd voor het SEIK filter bleek de meest
nauwkeurige maar ook goedkoopste methode, zowel in theorie als in praktijk tijdens de fil-
ter experimenten. Een tweede orde nauwkeurig resultaat is verkregen voor bijna dezelfde
kosten als vereist voor een eerste orde resultaat. Een nog hogere nauwkeurigheid zou even-
tueel bereikt kunnen worden met een ensemble voorspelling, het basis idee achter het ENKF.
Ensemble methoden ondervinden echter in belangrijke mate last van statistische ruis, wat
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alleen onderdrukt kan worden door het aantal model evaluaties te verhogen.
Hoofdstuk 8 beschrijft de implementatie van het filter op een parallelle computer. Toe-

passing van het ontwikkelde Kalman filter op LOTOS is duur door het aantal van 40-100
model evaluaties vereist voor de propagatie van de fouten covariantie. Het filter is daarom
geı̈mplementeerd op een parallelle computer op twee verschillende manieren. In een pa-
rallellisatie gebaseerd op een mode-decompositie bevat iedere processor een kopie van het
complete model. Onafhankelijke model evaluaties worden op deze manier efficiënt geparal-
lelliseerd, en omdat deze in het filter de belangrijkste kostenpost vormen is de reductie van
de rekentijd bijna maximaal. De lineaire algebra operaties in het filter zijn minder efficiënt
omdat deze veel communicatie tussen de processoren vereisen. Op een platform met snelle
communicatie zoals gebruikt in deze studie (CRAY T3E, een massaal parallelle machine)
is de afname in efficiëntie echter beperkt. De tweede geteste methode is gebaseerd op pa-
rallellisatie van het model in plaats van het filter. Het LOTOS model kan efficiënt worden
geparallelliseerd met een domein-decompositie, zodat het model snel een groot aantal ma-
len geëvalueerd kan worden. Een filter bouwen rondom een parallel model is betrekkelijk
eenvoudig. Bovendien biedt een domein-decompositie de mogelijkheid om grote hoeveel-
heden data efficiënt te assimileren. Voor de assimilatie experimenten zoals gehouden in
deze studie is de domein-decompositie lichtelijk favoriet boven de mode-decompositie door
een betere efficiëntie en de eenvoudige implementatie.

Arjo Segers, december 2001
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Dankwoord

Met het voltooien van dit proefschrift is het tijd om een aantal mensen te bedanken die
van invloed zijn geweest op de totstandkoming er van. Verspreid over Delft, Apeldoorn
en Bilthoven zijn dat vele collega’s en vakgenoten, met wie ik vol- of deeltijds heb mogen
samenwerken. De stelling dat ’afwisseling van werkplek tot creatiever onderzoek leidt’ (F.
Vossepoel, 1999) is gedurende de afgelopen jaren uitermate verdedigbaar gebleken.

De eersten om te bedanken zijn uiteraard de promotoren Arnold Heemink en Peter Buil-
tjes, voor het op de rails zetten van en richting geven aan het onderzoek. De combinatie van
techniek (Arnold) en toepassing (Peter) was uitermate inspirerend om iets te ontwikkelen
dat zowel wiskundig als praktisch interessant is. Waarmee maar weer bewezen is dat dit
niet per definitie onmogelijk is. Het uitgebreide netwerk van beiden heeft bovendien geleid
tot vele contacten met vakgenoten, op al dan niet exotische plaatsen.

Van alle collega’s aan de TU wil ik als eerste Martin Verlaan bedanken voor de bege-
leiding in de wondere wereld van het Kalman filter. Zijn aanstekelijke enthousiasme voor
nieuwe mogelijkheden van verbetering, uitbreiding, en toepassing hebben me doen inzien
dat de techniek na 40 jaar nog lang niet uitgeëvolueerd is. Als enige kamergenoot heeft hij
het bovendien de volledige vier jaar uitgehouden (in deeltijd weliswaar, maar toch). Een
rijke schare aan andere kamergenoten is daarnaast nog de revue gepasseerd: Karin (wier
aanstekelijke enthousiasme toch een belangrijk argument was om het aio-schap te aanvaar-
den), Jan (die het wel meer dan 2 jaar uithield), Duncan (slechts 2 weken), Liedwien, en
Fahmi. Verder nog een woord van dank aan alle collega’s van de voorheen zevende/achtste
verdieping voor het koffie- dan wel lunchleuten over de bijzaken des levens (naast werk). Ik
zou hier nog een collega met name kunnen noemen, maar iedereen verwacht dat ik dat later
nog doe, dus dat doe ik hier maar niet. Tot slot, Mirjam Nieman bedankt voor de engelse
correctie, die de leesbaarheid van dit proefschrift aanmerkelijk vergroot heeft.

Alleen al vanwege de wekelijkse treinreis over de Veluwe was het een waar genoegen om
met TNO in Apeldoorn te mogen samenwerken. In het bijzonder Maarten van Loon bedankt
voor het toegankelijk maken van LOTOS (sorry voor het kompleet overhoop halen van de
code; dat leer ik nooit af, ben ik bang). De discussies over waarom iets op een bepaalde
manier, en waarom eigenlijk überhaupt gemodelleerd is, vormden een nuttige cursus. Daar-
naast nog een woord van dank aan Michiel Roemer, die bij iedere rare uitkomst wel weer
een reactie mechanisme wist te bedenken waardoor alles in eens weer heel logisch werd; in
atmosfeerchemie is alles verklaarbaar.

De wekelijkse bezoeken aan het RIVM gedurende het laatste jaar waren qua reis uiteraard
minder inspirerend dan die aan TNO, maar de indrukwekende toegangscontrole maakte veel
goed. Werken met het EUROS model gaf bovendien het geruststellende gevoel dat LOTOS

eigenlijk helemaal zo gek nog niet was. Guus Velders bedankt voor de nu reeds legenda-
rische project naam (al zullen weinigen weten waar STROPDAS ook al weer de afkorting
van was), Ferd Sauter voor de scriptjes en landkaartjes, en natuurlijk Jan Matthijsen voor
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de fotolyse cursus en de analyse van de Bilthovense huizenmarkt (nog maar even in Delft
blijven wonen). Afscheid nemen van het RIVM hoeft gelukkig niet echt, want via Remus
zal ik ook de komende jaren nog wel enigzins kijk houden op het wel en wee bij LLO.

Na de TU, TNO, en het RIVM is er natuurlijk nog maar één instituut waar je ooit geweest
moet zijn: het KNMI! De Koninklijke wordt bij deze bedankt voor de pre-doctorale opvang;
ik kijk nu al uit naar de post-doctorale periode. Collega ASers: bedankt voor het niet al te
nadrukkelijk vragen ’of het al af is’. Het moment waarop je dit volmondig bevestigend kan
beantwoorden is overigens wel een opluchting.

Nog meer mensen? Tuurlijk! Ouders, broer, vrienden en anderen die voor de nodige
afleiding gezorgd hebben. En gelukkig ook al niet al te veel gezeurd hebben ’of die som nou
al af is’. De paranimfen, Jorg Benningshof en Suzanne van Dalen, voor de bereidwilligheid
om aan de protocolaire zaken mede deel te nemen (dan ben ik in ieder geval niet de enige).
Tot slot, Suzanne natuurlijk nog even speciaal. De afgelopen jaren waren in veel opzichten
bijzonder, en in ieder geval anders dan we in het begin vermoed hadden kunnen hebben.
Het heeft je er niet van weerhouden om voor korte tijd collega te worden; de indruk die ik
je gegeven heb van het aio-bestaan was blijkbaar positief genoeg. Bedankt voor je geduld
bij het afronden; nu zit het er toch echt op. Tijd voor andere dingen!

Arjo Segers, december 2001



211

Curriculum Vitae

Arjo Segers werd geboren op 19 juli 1974 in Gouda, maar groeide op in het onbetwiste
dieptepunt van Nederland: Nieuwerkerk aan de IJssel. Van 1986 tot en met 1992 volgde hij
het atheneum aan het Emmauscollege in Rotterdam. Aan de Technische Universiteit Delft
volgde hij daarna de studie Technische Wiskunde, eind 1996 met lof afgesloten bij de vak-
groep Toegepaste Analyse. Voor het afstuderen werd onderzoek gedaan aan een model voor
lichtverstrooiı̈ng in biologische weefsels.

Van 1997 tot en met januari 2001 was hij als assistent in opleiding verbonden aan de
Technische Universiteit Delft. Bij de leerstoel Wiskundige Analyse van Grootschalige Mo-
dellen van prof. A.W. Heemink verrichte hij onderzoek gedaan aan assimilatie van metingen
in luchtverontreinigingsmodellen. Bij dit onderzoek werd nauw samengewerkt met de af-
deling Milieukwaliteit en Analyse van TNO-MEP in Apeldoorn, en het Laboratorium voor
Luchtonderzoek van het RIVM te Bilthoven. De resultaten van het onderzoek zijn beschre-
ven in dit proefschrift.

Vanaf februari 2001 is hij in dienst van het KNMI in De Bilt als onderzoeker op het gebied
van assimilatie van satellietmetingen in globale modellen.
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